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Abstract

Canonical correlation analysis (CCA) is a useful tool in analysing two sets of variables

measured on the same sample. This statistical technique maximizes the correlation between

linear combinations of the two sets of variables. However, in high-dimensional data and

data with high variance, CCA faces limitations including inaccuracy, lack of interpretability,

and even inapplicability in certain cases. Witten et al. (2009) introduce a sparse variant of

this method, which selects only the most important variables, solving most issues. In this

paper, we assess the robustness of sparse CCA when dimensionality and variance changes,

using accuracy and sparsity recognition measurements. This can help researchers to make

informed choices about applying sparse CCA and developing new methods. Simulation

studies comparing sparse CCA with regular CCA reveal that sparse CCA performs better

in most scenarios, including high-dimensional and noisy data. This paper demonstrates

strengths and weaknesses of sparse CCA as opposed to regular CCA. Furthermore, we apply

sparse CCA to genomic data from breast cancer patients to identify genes that are correlated

with DNA copy number changes, providing insights into potential underlying causes.



1 Introduction

Canonical correlation analysis (CCA) is a statistical technique that has been around for a long

time, first introduced by Hotelling (1936). Suppose X and Z are two data matrices with meas-

urements of p and q variables on the same sample of n observations, respectively. CCA can

identify linear relationships between the two sets of variables by choosing optimal values for

canonical vectors u and v, so that the correlation between the linear combinations Xu and

Zv is maximized; max
u,v

{cor(Xu,Zv)}. However, CCA has some shortcomings in interpreting

the results, especially when working with high-dimensional data. This is because CCA mainly

focuses on maximizing the correlation between the linear combinations Xu and Xv, rather than

identifying which variables explain the correlation. In addition, CCA is not applicable to all

data sets since it only gives unique solutions if n > p and n > q.

Witten et al. (2009) introduce a sparse variant of CCA; sparse CCA. This technique does

not only maximize the correlation between Xu and Xv, but also imposes sparsity constraints

on the canonical vectors u and v. Consequently, a part of their components become zero

and only a subset consisting of the most important variables is selected. This helps in the

interpretability of the resulting canonical vectors, which is especially useful in cases with a

high number of variables, since sparse CCA serves as a dimensionality reduction technique.

Moreover, in contrast to regular CCA, sparse CCA can be applied to all types of data sets.

In this paper, similar algorithms as described in Witten et al. (2009), solving their penalized

matrix decomposition (PMD), are used to obtain the sparse canonical vectors.

In this paper, we compare the performance of regular CCA with the sparse CCA method of

Witten et al. (2009) in different data settings, using a variety of accuracy and sparsity recognition

metrics. Specifically, we investigate how the two methods react to differing dimensionality by

altering the number of variables and observations in the data, and how they behave when

differing the variance and including outliers in the data. Wilms and Croux (2015b) find that the

sparse CCA method of Witten et al. (2009) outperforms the regular CCA in high-dimensional

data and noisy data. They use simulated covariance matrices, without simulating the true

underlying canonical vectors. In this paper, we compare the accuracy of CCA and sparse CCA

in different dimensions and for different variances by simulating the data matrices according to

the true (simulated) canonical vectors, enabling direct assessment of variable selection and a

more explicit evaluation of the estimation accuracy.

Understanding how sparse CCA behaves in different dimensions and different variances is

important for understanding the robustness, generalizability and scalability of this method, and

for assessing the strengths and weaknesses of sparse CCA. This is relevant to know when one

considers applying sparse CCA. Additionally, recognizing the limitations of sparse CCA can help

in developing new methods and techniques specifically to handle data with explicit dimensions

or different variances where sparse CCA does not perform well.

To evaluate the properties of sparse CCA and regular CCA, we conduct simulation studies.

We increase the dimensionality by expanding the number of observations and variables in the

simulated data sets. Additionally, we examine the performance of CCA and sparse CCA by

changing the variance in the simulated data sets. Also, we augment the variance of 10% of the

simulated data to see how CCA and sparse CCA react to outliers.
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In genomic research, there are often multiple sets of different measurements on the same

set of samples. These assessments can include, for example, gene expression measurements,

DNA copy number changes, single nucleotide polymorphism (SNP) data, and other phenotype

measurements. These data sets often have a very large number of variables. Therefore, sparse

CCA is generally an adequate method to find correlations between different genomic data sets

measured on the same sample. In this paper, a data set of breast cancer patients is considered.

Various cancer types can be identified by regions of chromosomal gains or losses. Therefore, we

use sparse CCA to identify a set of genes that are correlated with DNA copy number changes

(comparative genomic hybridization (CGH) spots). Breast cancer is one of the most prevalent

types of cancer amongst woman. Identifying those genes can help conducting cancer research

in this field, which is crucial. This application is performed using a data set of gene expression

measurements and a data set of CGH spots of 89 breast cancer patients (Chin et al. (2006)).

The main findings of this paper are that both CCA and sparse CCA are affected by changing

the number of variables and observations in the data. Increasing the number of variables leads to

less accurate performance of CCA, while sparse CCA is more robust to this increase. Altogether,

sparse CCA performs more accurately than CCA, except when there are a small number of

variables and a high number of observations. In addition, CCA is sensitive to outliers, whereas

sparse CCA is more robust to outliers. Finally, when we apply the sparse CCA method of

Witten et al. (2009) to a genomic data set about breast cancer, we find that sparse CCA is a

good method for identifying a set of genes that are correlated with DNA copy number changes.

Sparse CCA also performs well in a holdout out-of-sample validation method using this genomic

data set.

This paper replicates parts of Witten et al. (2009). They consider two variants of their PMD

that can be applied to solve sparse CCA. We replicate the simulation study comparing those

two methods with simulated CGH data and extend it by utilizing some accuracy and sparsity

recognition measurements in different simulation settings. We do this to obtain more specific

and measurable differences between the methods. Furthermore, we extend the simulation studies

of Witten et al. (2009) by altering some characteristics, including the number of variables, the

number of observations, and the variance. This contributes to obtain knowledge about the

behaviour of sparse CCA in different data settings. Finally, we replicate the application of

sparse CCA to a data set about breast cancer patients.

The aim of this paper is to assess the strengths and weaknesses of sparse CCA by identifying

its relative advantages opposed to regular CCA, and understanding its behaviour in data with

differing number of observations, variables, and different variances. Also, this paper aims to

explore the application of sparse CCA in identifying correlations between gene measurements

and DNA copy number changes in a breast cancer data set.

In the next section, Section 2, we discuss relevant literature that can be linked to our research.

Then in Section 3, we elaborate on the data that we use in our paper. In Section 4, we explain

the methods and algorithms that are used in our research and we introduce some metrics for

evaluating (sparse) CCA. After that, in Section 5, we discuss the obtained results. Finally, in

Section 6 we draw conclusions and suggest further research.
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2 Literature

In this section, we discuss relevant literature to this paper. First, we examine some related

matrix decomposition methods. Then, we discuss other literature that uses sparse canonical

correlation analyses and are relevant to this research.

2.1 Matrix decomposition methods

The penalized matrix decomposition (PMD) of Witten et al. (2009) is a generalization of sin-

gular value decomposition (SVD, further explained in Section 4.1.1), introduced in the modern

formulation by Lanczos (1950). This PMD of Witten et al. (2009) is not the first generalized

improvement over SVD. Lee and Seung (1999) and Lee and Seung (2001) introduced a non-

negative matrix factorization (NNMF) method, adding non-negative constraints to the SVD

to improve interpretability. Hoyer (2002) developed the non-negative sparse coding (NNSC)

method adding sparsity constraints to the NNMF method. The results of NNMF and NNSC en-

sure non-negativity in the obtained factors, so the results can differ substantially from the factors

obtained after performing PMD. Lazzeroni and Owen (2002) developed the cluster-based Plaid

model, which can give interpretative results. The Plaid model can cluster genes and conditions

simultaneously, based on their expression profiles. As opposed to previous matrix decomposition

methods, it is in a non-convex form so it cannot be precisely optimized.

2.2 Sparse canonical correlation analysis

A useful application of PMD is sparse canonical correlation analysis (sparse CCA), a variant of

CCA (first introduced by Hotelling (1936)). Sparse CCA is often used in genomic research, since

it becomes increasingly common for biological researchers to use more than one evaluation on a

single set of observations. Witten et al. (2009) use sparse CCA to obtain correlations between

data on DNA copy number changes and gene expression measurements for a breast cancer data

set, in order to identify a set of genes that have correlated expressions with a set of chromosomal

gains or losses. Other papers which also identify sparse correlations between genomic data sets

are Parkhomenko et al. (2007), Lin et al. (2014), Du et al. (2020). For Parkhomenko et al.

(2007) specifically, the goal is to identify the most relevant sets of genes that are associated with

different phenotypes for a leukaemia and lung cancer data set. Parkhomenko et al. (2007) also

perform a genomic study applying a sparse CCA method, closely related to the PMD based

sparse CCA of Witten et al. (2009). Sparse CCA can also be applied to non-genomic data sets.

For example, Iaci et al. (2010) apply the method to an environmental data set and Hastie et al.

(2015) apply sparse CCA to Netflix data for possible marketing purposes.

Furthermore, Parkhomenko et al. (2009) propose a variant of sparse CCA, adaptive sparse

CCA, that can automatically adapt the sparsity level in the correlation coefficients. Waaijen-

borg et al. (2008) propose a penalized CCA method with elastic net type penalty functions

and investigate DNA copy number data and gene measurement data for brain tumours. The

algorithms they use are quite similar to the algorithms of Witten et al. (2009).

The sparse CCA procedures of Witten et al. (2009), Waaijenborg et al. (2008) and Parkho-

menko et al. (2009) are three of the most popular sparse CCA methods.
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Wilms and Croux (2015b) consider the limitations of CCA from a predictive point of view.

They compare these three popular methods with regular CCA, using several performance meas-

urements (as in Rothman et al. (2010)) in different simulation settings using low- and high-

dimensional data. They find that the sparse CCA method of Witten et al. (2009) outperforms

regular CCA, especially in high-dimensional data. Wilms and Croux (2015a) compare CCA, ro-

bust CCA (Karnel (1991)), sparse CCA and the newly introduced method robust sparse CCA,

using similar median-based metrics as Wilms and Croux (2015b). They consider different alter-

ations to simulated data in order to make it more varianced and compare the methods. They

find that all methods are affected by the data alterations and show the advantages of sparse

CCA opposed to regular CCA. Note that both Wilms and Croux (2015b) and Wilms and Croux

(2015a) use simulated covariance matrices, whereas we use simulated underlying canonical vec-

tors. In addition, they both only investigate the cases of high- and low-dimensional data, while

we increase the number of observations and variables step wise to gain a better insight in the

behaviour of regular and sparse CCA.

In genomic research, there are often multiple assays to represent only one set of observations.

Sometimes more than two data sets are available for analysis. First of all, outcome measurements

of all samples may be available, for example survival time in case of cancer samples. Witten

and Tibshirani (2009) developed a method called supervised sparse CCA to include this kind of

data in the analysis. Secondly, next to DNA copy number changes data and gene measurement

data, often single nucleotide polymorphism (SNP) data is also available. Witten and Tibshirani

(2009) developed the PMD based sparse multiple CCA to handle more than two sets of variables.

This can be very useful if one wishes to analyse more than two data sets measured on the same

set of observations.

There are also other algorithms to consider when solving sparse CCA. Chu et al. (2013)

developed an algorithm to solve sparse CCA that is competitive and sometimes even better

than the algorithms used in Witten et al. (2009).

3 Data

Certain cancer types can be identified by regions of chromosomal gains or losses. Therefore

we investigate the correlation between DNA copy numbers changes and gene expression meas-

urements of breast cancer patients. In this section, we describe the data about breast cancer

patients where the sparse CCA method of Witten et al. (2009) is applied to. The results of this

application can be found in Section 5.3.

The data used in this paper is the same as in Chin et al. (2006) and can be found in the

‘PMA’ package in R (Witten and Gross (2011)). The data set consists of 89 observations of

gene expression measurements and DNA copy number changes measurements of breast cancer

patients. The data set contains nine different elements. The first element is a matrix of 2149

comparative genomic hybridization (CGH) spots for all 89 samples. A CGH spot measures

DNA copy number changes along chromosomes. The second element is a matrix containing

19 672 gene expression measurements in 89 different samples. The third and fourth element

describe the CGH spots by the chromosomal location and the nucleotide position of each CGH

spot, respectively. Note that the chromosomal location of each CGH spot corresponds with
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one of 23 different chromosomes pairs, since humans have 22 autosomal chromosome pairs,

and one sex chromosome pair. Therefore, these locations range between the values 1 and 23.

The remaining elements describe the gene expression data by the accession numbers, names,

descriptions, chromosomal locations and nucleotide locations for all gene expressions. Note that

in the gene expression data, the range of the chromosomal locations go from 1 to 24. This

is because the gene expressions that correspond with the sex chromosome pair are split up in

location 23 and 24 for the X and the Y chromosome, respectively. Finally, note that there are

some gene expressions that do not have a specific chromosomal location.

We alter the data before analysing it by centering the data matrices around zero. That

is, subtracting the mean of the data matrices from each value. To analyse the relationship

between DNA copy number and gene expression data, sparse CCA is executed for each individual

chromosome. For each chromosome, this process uses the DNA copy number information specific

to that chromosome, and all available gene expression data (so for all chromosomes).

4 Methodology

4.1 Penalized matrix decomposition

First of all, we describe the general form of penalized matrix decomposition (PMD) as proposed

in Witten et al. (2009).

4.1.1 Singular value decomposition

The PMD is a generalization of a singular value decomposition (SVD) introduced in the modern

formulation by Lanczos (1950). SVD can decompose a matrix X into matrices U,D and V:

X = UDV′, where U′U = In, V′V = Ip, d1 ≥ d2 ≥ · · · ≥ dK > 0. (1)

Here, X denotes an n× p matrix with rank(X) = K ≤ min{n, p}. U denotes an n×K matrix

where uk indicates the kth column of U. V denotes a p×K matrix where vk indicates the kth

column of V (k ∈ {1, . . . ,K}). Furthermore, D denotes a K×K diagonal matrix with diagonal

elements d1, . . . , dK , and Iq stands for an identity matrix of size q. Lastly, we assume without

loss of generality that the mean of X is 0. By centering X around 0, we remove bias and ensure

that SVD analyses the underlying variability and correlations and not the trends. Note that

throughout this paper, matrices and vectors are indicated in bold for clarity.

Eckart and Young (1936) derived that for any r ≤ K, the following equation holds:

r∑
k=1

dkukv
′
k = argmin

X̂∈Mr

∥X− X̂∥2F . (2)

Here, X̂ denotes an rank-r approximation of X, Mr denotes a set of all n × p matrices with

rank r and ∥· · ·∥2F stands for the squared Frobenius norm which sums all squared elements of a

matrix. This means that the first r factors of SVD provide the best approximation of a matrix

with rank r, indicated with regard to the Frobenius norm, which is a useful property.
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4.1.2 PMD for a single factor

Witten et al. (2009) propose a generalization of the SVD by adding penalties on the magnitudes

of U and V. In this subsection, we look at an approximation of the PMD with rank 1 (so

K = 1). From Equation (2), we know that the best approximation of a matrix with rank r

equals
∑r

k=1 dkukv
′
k. Therefore, for a single factor (r = 1) this best approximation equals duv′

(for the case of a single factor, we denote d1 as d, u1 as u and v1 as v). That is why Witten

et al. (2009) propose the following optimization problem:

min
d,u,v

1

2
∥X− duv′∥2F s.t. ∥u∥22 = 1, ∥v∥22 = 1, P1(u) ≤ c1, P2(v) ≤ c2, d ≥ 0. (3)

P1 and P2 denote convex penalty functions and c1 and c2 are the scalar upperbounds for those

convex penalty function. Note that ∥w∥q of a vector w denotes its Lq-norm
∑

i |w
q
i |

1
q . In

Appendix A, we explain how we choose the values of c1 and c2. The convex penalty functions

P1 and P2 can take a lot of different forms, but we only consider two different convex penalty

functions:

• LASSO: P1(u) =
∑n

i=1 |ui|

• Fused LASSO: P1(u) =
∑n

i=1 |ui|+ λ
∑n

i=2 |ui − ui−1|, λ > 0

This fused LASSO penalty form is motivated in Tibshirani et al. (2005).

We can rewrite Problem (3) by using the following equality:

1

2
∥X−UDV′∥2F =

1

2
∥X∥2F −

K∑
k=1

u′
kXvkdk +

1

2

K∑
k=1

d2k. (4)

The proof of this equality is given in Appendix B. In the situation of K = 1, we can rewrite

Problem (3) into the following problem:

max
u,v

{u′Xv} s.t. ∥u∥22 ≤ 1, ∥v∥22 ≤ 1, P1(u) ≤ c1, P2(v) ≤ c2. (5)

Problem (5) solves for the same u and v as Problem (3) and the value of d solving Problem (3)

is u′Xv. u′Xv is bi-linear in u and v, meaning that it is linear in u if v is fixed, and it is linear

in v if u is fixed. Note that we replaced the equality constraints with inequality constraints,

since ∥u∥22 ≤ 1 also satisfies ∥u∥22 = 1 given that c1 is chosen so that u can have a Euclidean

norm greater or equal than 1 (Boyd and Vandenberghe (2004)).

Witten et al. (2009) propose an algorithm to solve a single-factor PMD model:

Algorithm 11

1. Initialize v to have a Euclidean norm of 1.

2. Iterate until convergence:2

(a) u = argmax
u

{u′Xv} subject to P1(u) ≤ c1 and ∥u∥22 ≤ 1.

1All algorithms in this paper are cited from Witten et al. (2009).
2That is, until 20 iterations are performed, or when the difference between the new v and the old v is smaller

than 1e−7.
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(b) v = argmax
v

{u′Xv} subject to P2(v) ≤ c2 and ∥v∥22 ≤ 1.

3. d = u′Xv.

Witten et al. (2009) initialize v in the following way:

• If p > n, vinit = X′vSV D(XX′).

• If p ≤ n, vinit = vSV D(X′X).

• Lastly, standardize vinit so that it has a Euclidean norm of 1.

Where vSV D(XX′) denotes the vector v obtained after performing SVD on XX′ (similar for

vSV D(X′X)). Note that this algorithm may not always reach a global optimum in general, but

empirical studies conducted by Witten et al. (2009) show that the algorithm does converge to

interpretable results if the penalty sizes are chosen correctly.

4.1.3 PMD for multiple factors

When we want to obtain a rank-K approximation of a matrix X, we need to attain multiple

factors of the PMD, therefore we solve the optimization problem for the single factor PMD

(Problem (5)) repeatedly. Witten et al. (2009) propose an algorithm to solve a K-factor PMD

model:

Algorithm 2

1. Let X1 = X.

2. For k ∈ {1, ...,K}:

(a) Find uk, vk and dk by applying Algorithm 1 to Xk.

(b) Xk+1 = Xk − dkukv
′
k.

Here, for each k ∈ {1, ...,K}, the residuals obtained by subtracting the 1, ..., k− 1 factors found

from the data matrix is used as the X matrix. Note that the solutions are not orthogonal due

to the P1 and P2 penalty functions (uk and vk are not in the column and row spaces of Xk for

each k ∈ {1, ...,K}), whereas the solutions of SVD are orthogonal.

4.1.4 Special forms of PMD

Witten et al. (2009) propose two specific forms of the penalty functions in the PMD. These

specific forms are denoted by PMD(A,B), where A denotes the type of the P1 penalty function

on u, and B denotes the type of the P2 penalty function on v. In this paper, we consider

two forms; PMD(L1, L1) and PMD(L1, FL). L1 stands for a LASSO type L1 penalty function,

and FL represents a fused LASSO type penalty function. In the simulation studies in Section

5.1, we apply PMD(L1, L1). In Section 5.2, we compare the performance of PMD(L1, L1) with

PMD(L1, FL).

PMD(L1, L1) set L1 penalty norms on both u and v. This leads to the following optimization

problem for a single factor:

max
u,v

{u′Xv} s.t. ∥u∥22 ≤ 1, ∥v∥22 ≤ 1, ∥u∥1 ≤ c1, ∥v∥1 ≤ c2. (6)
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We regulate the values of c1 and c2 by restricting them to be in the ranges [1;
√
n] and [1;

√
p],

respectively, as explained in Witten et al. (2009). This special form of PMD leads to sparse

factors u and v for appropriate choices of c1 and c2.

When considering an optimization problem of the form max
u

{u′a} s.t ∥u∥22 ≤ 1, ∥u∥1 ≤

c, u is solved for u = S(a,∆)
∥S(a,∆)∥2 , where ∆ = 0 if the condition ∥u∥1 ≤ c is satisfied, and

otherwise ∆ is adjusted such that ∥u∥1 = c is satisfied. This is proven in Appendix C. Here,

the function S(·) indicates the soft thresholding operator. This operator takes the form of

S(a, c) = sign(a)(|a| − c)+ where c is a positive scalar and (x)+ equals x if x > 0 and 0 if x ≤ 0.

Knowing the solution to this optimization problem, we can adjust our PMD algorithm for a

single factor for the case of PMD(L1, L1) in the following way:

Algorithm 3

1. Initialize v to have a Euclidean norm of 1.

2. Iterate until convergence:

(a) u = S(Xv,∆1)
∥S(Xv,∆1)∥2 where ∆1 = 0 if this results in ∥u∥1 ≤ c1; otherwise, ∆1 is chosen to

be a positive constant such that ∥u∥1 = c1.

(b) v = S(X′u,∆2)
∥S(X′u,∆2)∥2 where ∆2 = 0 if this results in ∥v∥1 ≤ c2; otherwise, ∆2 is chosen

to be a positive constant such that ∥v∥1 = c2.

3. d = u′Xv.

Binary search is employed to determine the values of ∆1 and ∆2, for each update of u and v.

We compare the results of PMD(L1, L1) with the SVD method described in Section 4.1.1. A

simulation study shows that the PMD method is better in identifying underlying factors and

can be found in Appendix D.

PMD(L1, FL) is another variant of the PMD method of Witten et al. (2009). This variant

sets an L1 penalty function on u, and a fused LASSO penalty function on v. This leads to the

following optimization problem for a single factor:

max
u,v

{u′Xv} s.t. ∥u∥22 ≤ 1, ∥v∥22 ≤ 1, ∥u∥1 ≤ c1,
∑
j

|vj |+ λ
∑
j

|vj − vj−1| ≤ c2.

(7)

To solve this optimization problem, we first rewrite it in a minimization problem using the

Lagrange form on the constraints on v:

min
u,v

{−u′Xv +
1

2
v′v + λ1

∑
j

|vj |+ λ2

∑
j

|vj − vj−1|} s.t. ∥u∥22 ≤ 1, ∥u∥1 ≤ c1. (8)

This Lagrange form gives the same solutions for u and v as the bound form in Problem (7).

This special form of PMD leads to sparse factors u and sparse and rather smooth factors v.

The values of λ1 and λ2 are chosen by cross validation (λ1, λ2 ≥ 0).

We can solve this PMD(L1, FL) by adjusting PMD Algorithm 1 for a single factor in the

following way:
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Algorithm 4

1. Initialize v to have a Euclidean norm of 1.

2. Iterate until convergence:

(a) u = S(Xv,∆1)
∥S(Xv,∆1)∥2 where ∆1 = 0 if this results in ∥u∥1 ≤ c1; otherwise, ∆1 is chosen to

be a positive constant such that ∥u∥1 = c1.

(b) v = argmin
v

1
2∥X

′u− v∥22 + λ1
∑

j |vj |+ λ2
∑

j |vj − vj−1|.

3. d = u′Xv.

In Algorithm 4, the v in step 2(b) can be updated using software implementations of fused

LASSO regressions as used and described in Tibshirani and Wang (2007), Friedman et al. (2007),

and Hoefling (2010).

Lastly, we can solve PMD(L1, L1) and PMD(L1, FL) for multiple factors in the same way

as Algorithm 2, but instead of repeatedly applying Algorithm 1, we repeatedly apply Algorithm

3 and Algorithm 4, respectively for PMD(L1, L1) and PMD(L1, FL).

4.2 Canonical correlation analysis

The PMD of Witten et al. (2009) can by applied in multiple fields. One application of the

PMD method is in canonical correlation analysis (CCA), introduced by Hotelling (1936). CCA

is a statistical technique that can identify relationships between two sets of variables, measured

on the same sample. Suppose that there are p + q variable measurements on n observations

and these variable measurements can be naturally split up into two sets of p and q variables,

respectively. Let X denote the n× p matrix of the first part of variables and Z the n× q matrix

of the second part of variables. CCA finds linear combinations between the two sets of variables

by choosing optimal canonical vectors u and v that maximize the correlation between Xu and

Zv. This is obtained by solving the following problem:

max
u,v

{u′X′Zv} s.t. ∥u∥22 ≤ 1, ∥v∥22 ≤ 1. (9)

Note that the constraints in (9) are different than those from Hotelling (1936). We replaced

the constraints u′X′Xu ≤ 1 and v′X′Xv ≤ 1 by ∥u∥22 ≤ 1 and ∥v∥22 ≤ 1, respectively. This is

because it has been shown that changing the covariance matrix into an identity matrix performs

well in high-dimensional data sets (Dudoit et al. (2002) and Tibshirani et al. (2003)). Regular

CCA can be solved analytically, and is further explained in Johnson and Wichern (2019).

4.2.1 Sparse canonical correlation analysis

It can be useful to investigate which variables drive the correlation between the two data sets,

especially in high-dimensional settings. By incorporating sparsity constraints to the canonical

vectors u and v, a part of the components in u and v become zero, and only the most important

variables remain, which can help interpreting the results. When including sparsity constraints
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in CCA, the method is called sparse CCA and has the following formulation:

max
u,v

{u′X′Zv} s.t. ∥u∥22 ≤ 1, ∥v∥22 ≤ 1 P1(u) ≤ c1, P2(v) ≤ c2. (10)

Again, P1 and P2 are convex penalty functions and c1 and c2 are the penalty sizes for the penalty

function. The convex penalty functions ensure sparsity in the canonical vectors u and v. This

optimization problem is very similar to the PMD Problem (5). The only difference is that X is

replaced by X′Z. Sparse CCA can be solved using the same algorithms that are used to solve

PMD, explained in Section 4.1 .

Different penalty functions can be included in solving sparse CCA. In Section 4.1.4, we

consider two specific forms of PMD; PMD(L1,L1) and PMD(L1,FL). These two specific forms

can also be applied to sparse CCA. Sparse CCA(L1,L1) leads to sparse canonical vectors u and

v when c1 and c2 are small enough. Sparse CCA(L1,FL) also leads to sparse canonical vectors

u and v when c1 and c2 are sufficiently small, but also to a somewhat smooth vector v. Sparse

CCA(L1,FL) is often used when the variables in Z are ordered.

Sparse CCA is particularly useful when dealing with high-dimensional data sets, especially

when the number of variables is larger than the number of observations (p, q ≥ n). In this case,

regular CCA result in non-unique canonical vectors and is inapplicable, whereas sparse CCA can

still be applied. Sparse CCA is also very useful when handling data with high multi-collinearity,

since it only selects the most important features and resolves this issue.

4.3 Performance measurements

In this subsection, we introduce and explain some metrics to evaluate the fit of CCA and sparse

CCA.

4.3.1 Accuracy metrics

We measure the accuracy of the canonical vectors obtained by CCA and sparse CCA by the

angle between subspaces spanned by the canonical vectors, as was done in Wilms and Croux

(2015b) and Wilms and Croux (2015a). We measure the angle between the subspace spanned

by the estimated canonical vectors and the true canonical vectors. The smaller the angle, the

more alike the true and the estimated canonical vectors are, so the more accurate the estimated

canonical vectors are. The angle for canonical vector U is measured in the following way:

• First, calculate the QR-decomposition of the estimated Û and the real U. Û = QÛRÛ

and U = QURU.

• Secondly, calculate the SVD in the following way: Q′
Û
QU = UsvdDsvdV

′
svd.

• The Dsvd matrix is a diagonal matrix with diagonal elements d1 ≥ d2 ≥ ... ≥ dK > 0. The

minimum angle between the subspaces spanned by Û and U is given by arccos(d1).

The angle for canonical vector V is measured in the same way.

This measurement is determined over M simulations, and the average angle is given in the
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following way:

θ(Û,U) =
1

M

M∑
m=1

θm(Ûm,U), θ(V̂,V) =
1

M

M∑
m=1

θm(V̂m,V). (11)

Note that the range of θ(Û,U) is [arccos(1); arccos(0)] ≈ [0; 1.5708].

Furthermore, for the sparse CCA method, we measure the accuracy using the Frobenius

norm. Here, we multiply the matrices X and Z to obtain the p× q matrix X′Z. From this X′Z

matrix, we randomly remove 10% and apply the PMD(L1, L1) method to obtain UPMD, VPMD

and d1,PMD, ..., dK,PMD. Then, we estimate the matrixX′Z by X̂′Z =
∑K

k=1 dk,PMDuk,PMDv
′
k,PMD.

The Frobenius norm accuracy is given by:

FN =
1

M

M∑
m=1

∑p
i=1

∑q
j=1 I{(i,j)∈Rm}((X

′Z)(i,j) − (X̂′Z)(i,j))
2

|Rm|
. (12)

This accuracy measurement indicates the average squared difference between the true (removed)

values and the estimated values. Here, Rm denotes the set of indices that are removed from X′Z

in simulation m and |Rm| denotes the cardinality of this set. Furthermore I{(i,j)∈Rm} denotes the

indicator function that equals 1 if element (i, j) (row i and column j) is in Rm and 0 otherwise.

4.3.2 Sparsity recognition measurements

We evaluate the recognition of the true underlying sparseness in the canonical vectors. Rothman

et al. (2010) consider the sparsity recognition measurements true positive rate (TPR) and true

negative rate (TNR). The true positive rate measures the amount of true nonzero variables

in the estimated canonical vectors. The true negative rate measures the hit rate of excluding

unimportant variables in the canonical vectors. We only consider the sparseness accuracy of the

estimated canonical vectors of sparse CCA, since the canonical vectors of regular CCA do not

account for sparsity. The TPR and TPN are defined for U as follows:

TPR(ÛsCCA,U) =

∑p
i=1

∑K
j=1 I{(ÛsCCA)(i,j) ̸=0}I{U(i,j) ̸=0}∑p

i=1

∑K
j=1 I{U(i,j) ̸=0}

. (13)

TNR(ÛsCCA,U) =

∑p
i=1

∑K
j=1 I{(ÛsCCA)(i,j)=0}I{U(i,j)=0}∑p

i=1

∑K
j=1 I{U(i,j)=0}

. (14)

The TPR and TPN are defined in the same way for V.

To assess the sparsity in the obtained (sparse) canonical vectors, some measurements of

sparsity are required. Hurley and Rickard (2009) compare a collection of commonly used sparsity

measurements using six criteria. They found that in terms of those criteria, the Gini coefficient

is the best way to measure sparsity, since it is the only sparsity measurement that satisfies

all of those criteria. The following procedure is applied to calculate the Gini coefficient as in

Hurley and Rickard (2009). First, we concatenate all values in the estimated matrices ÛsCCA

and V̂sCCA in Kp × 1 and Kq × 1 vectors u and v, respectively. Then we take the absolute
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value of all elements in vectors u and v and sort them such that |u1| ≤ |u2| ≤ ... ≤ |uKp| and
|v1| ≤ |v2| ≤ ... ≤ |vKq|. Next, we calculate the Gini coefficient for vector u as follows:

Gini(u) = 1− 2

Kp∑
i=1

Kp− i+ 1
2

Kp

|ui|
∥u∥1

. (15)

This is done in a similar way for v, where p is replaced by q. Interestingly, the Gini coefficient

has a useful graphical interpretation as further explained in Hurley and Rickard (2009).

5 Results

In this section, we compare different aspects of CCA and sparse CCA by applying simulation

studies. Then, we compare two variants of PMD to establish their relative advantages. Finally,

the sparse CCA method is applied to a real life breast cancer data set.

5.1 Simulation study

We conduct simulation studies in this section, by applying sparse CCA(L1, L1). In all following

tables, to determine the penalty sizes, 5-fold cross validation is used. When significant differences

are mentioned, a two-sided t-test is performed with a 5% significance level.

5.1.1 Differing dimensionality

We investigate how regular CCA and sparse CCA perform in different dimensional settings. We

simulate the true values of U and V from a standard normal distribution and we apply 100

simulations (M = 100). Also, we use two factors (K = 2). The simulation details are given in

Appendix E. Note that the true canonical vectors are not sparse.

The results of θCCA(ÛCCA,U) in different dimensional settings are displayed in Table 1.

The values are given a colour, lower values of θCCA(ÛCCA,U) are associated with a greener

colour in the table, indicating higher accuracy. Higher values of θCCA(ÛCCA,U) are associated

with a more red colour, indicating lower accuracy. The results indicate that when the number

of variables (p, q) increases, regular CCA performs significantly less accurate for each increase

in p and q. When we increase the number of samples (n), for low values of p and q, the values

for θCCA(ÛCCA,U) first decrease until n = 101 or n = 251 and then increase when n gets

higher. For high values of p and q, the values for θCCA(ÛCCA,U) are monotonically decreasing

for increasing values of n. Note that around the tipping point from decreasing to increasing

values, θCCA(ÛCCA,U) does not change significantly most of the time. This means that for

small numbers of variables, increasing the number of observations initially improves accuracy,

but after a certain point, accuracy decreases. However, for high numbers of variables, increasing

the number of observations improves accuracy. Finally, we notice that when the number of

observations (n), and the number of variables (p, q) are close, CCA performs inadequately. The

results of θCCA(V̂CCA,V) are similar and given in Appendix F.

The results of θsCCA(ÛsCCA,U) are shown in Table 2. Sparse CCA also performs most

accurate in terms of θsCCA(ÛsCCA,U) when there are few variables. For relatively small numbers
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of observations (n), there is a common upgoing trend in θsCCA(ÛsCCA,U) when p and q increase,

since it never drops significantly. For relatively large numbers of observations, the values of

θsCCA(ÛsCCA,U) first increase for low values of p and q, then decrease again for somewhat

higher values of p, q, and they rise again for really high values of p and q. When we increase

the number of observations (n), θsCCA(ÛsCCA,U) takes a general form for all values of p and

q. It starts relatively high for low values of n, then it goes down, stays somewhat stable for

intermediate values of n, and goes up again for high values of n. Here, p, q = 4 and p, q = 250 are

exceptions. We obtained similar results for θsCCA(V̂sCCA,V). Those are shown in Appendix F.

p,q

n↓ 4 7 10 25 50 100 250 1000

5 0.630 (0.371) - - - - - - -

8 0.447 (0.347) 1.245 (0.168) - - - - - -

11 0.355 (0.263) 1.058 (0.217) 1.356 (0.107) - - - - -

26 0.304 (0.225) 0.614 (0.200) 0.849 (0.188) 1.458 (0.048) - - - -

51 0.244 (0.198) 0.482 (0.170) 0.659 (0.153) 1.272 (0.127) 1.496 (0.030) - - -

101 0.238 (0.215) 0.458 (0.174) 0.559 (0.164) 0.836 (0.107) 1.365 (0.071) 1.518 (0.019) - -

251 0.275 (0.235) 0.495 (0.181) 0.558 (0.140) 0.664 (0.094) 0.825 (0.092) 1.258 (0.074) 1.538 (0.012) -

1001 0.312 (0.245) 0.580 (0.212) 0.633 (0.229) 0.695 (0.135) 0.662 (0.075) 0.727 (0.062) 0.984 (0.041) 1.556 (0.006)

Table 1: θCCA(ÛCCA,U) values when differing the number of observations (n) and the number of variables (p and
q). Lower values of θCCA(ÛCCA,U) correspond to a more green colour (indicating higher accuracy), and higher
values of θCCA(ÛCCA,U) correspond to a more red colour (indicating lower accuracy). Standard deviations are
between brackets.
• •

0 0.79 1.57

p,q

n↓ 4 7 10 25 50 100 250 1000

5 0.221 (0.179) 0.501 (0.236) 0.575 (0.238) 0.644 (0.243) 0.698 (0.294) 0.674 (0.249) 0.638 (0.211) 0.653 (0.227)

8 0.267 (0.210) 0.455 (0.233) 0.507 (0.205) 0.540 (0.192) 0.541 (0.177) 0.550 (0.160) 0.563 (0.158) 0.607 (0.166)

11 0.256 (0.216) 0.424 (0.201) 0.441 (0.161) 0.460 (0.157) 0.469 (0.136) 0.493 (0.103) 0.517 (0.113) 0.573 (0.169)

26 0.258 (0.215) 0.371 (0.172) 0.375 (0.162) 0.379 (0.094) 0.393 (0.066) 0.408 (0.068) 0.450 (0.107) 0.480 (0.163)

51 0.236 (0.197) 0.403 (0.187) 0.411 (0.180) 0.395 (0.132) 0.383 (0.097) 0.407 (0.103) 0.452 (0.168) 0.458 (0.171)

101 0.215 (0.192) 0.365 (0.167) 0.433 (0.205) 0.375 (0.114) 0.367 (0.066) 0.385 (0.097) 0.463 (0.179) 0.486 (0.214)

251 0.275 (0.229) 0.470 (0.204) 0.518 (0.186) 0.409 (0.109) 0.364 (0.066) 0.369 (0.087) 0.476 (0.163) 0.634 (0.319)

1001 0.362 (0.276) 0.624 (0.224) 0.647 (0.230) 0.606 (0.160) 0.472 (0.083) 0.402 (0.046) 0.365 (0.037) 0.775 (0.166)

Table 2: θsCCA(ÛsCCA,U) values when differing the number of observations (n) and the number of variables
(p and q). Lower values of θsCCA(ÛsCCA,U) correspond to a more green colour (indicating higher accuracy),
and higher values of θsCCA(ÛsCCA,U) correspond to a more red colour (indicating lower accuracy). Standard
deviations are between brackets.
• •

0 0.79 1.57

When comparing the performance of CCA in Table 1 with the performance of sparse CCA in

Table 2, we notice that in general, sparse CCA performs more accurate than regular CCA. How-

ever, there are some exceptions for small number of variables (p and q) and high number of obser-

vations (n) where sparse CCA and regular CCA do not differ significantly. Furthermore, we no-

tice that the range of θsCCA(ÛsCCA,U) is much smaller than the range of θCCA(ÛCCA,U). The

range of θsCCA(ÛsCCA,U) is [0.2146; 0.7752] and the range of θCCA(ÛCCA,U) is [0.2378; 1.5560].

This implies that sparse CCA is more robust to high dimensionality in a data set than regular

CCA in terms of the subspace spanned by the canonical vectors. Again, similar results hold for
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V and can be found by comparing the tables in the appendices. It is interesting to note that,

even though the underlying factors are not sparse, the sparse canonical vectors of sparse CCA

are more accurate than the non-sparse canonical vectors of regular CCA in most cases.

Finally, we compute the Frobenius norm measurement for differing number of variables and

observations. The results show that more variables in the data set correspond to more accurate

results for sparse CCA in terms of the Frobenius norm measurement, as we would expect. In

general the more samples in the data set implies significantly higher values of the Frobenius norm

measurement. The details and further descriptions of the results can be found in Appendix G.

5.1.2 Differing variance

We apply the regular CCA method and the sparse CCA method of Witten et al. (2009) to a

structured simulated data set with sparse underlying factors (simulation details are given in

Appendix H). Again, we use 100 simulations (M = 100) and 2 factors (K = 2). The results are

shown in Table 3. They indicate that regular CCA performs poorly in terms of θCCA(ÛCCA,U)

and θCCA(V̂CCA,V). The values of θCCA(ÛCCA,U) and θCCA(V̂CCA,V) slightly improve when

increasing the variance from 0.32 to 1.22, but are still relatively high. Additionally, for sparse

CCA we notice that this method performs relatively well in cases of a low variance in terms of

θsCCA(ÛsCCA,U) and θsCCA(V̂sCCA,V), but when the variance increases, we see that sparse

CCA performs rapidly worse. When we compare regular CCA and sparse CCA, we observe

that sparse CCA performs significantly more accurate when the variance is relatively low. For

variance ∈ {0.32, 0.62, 0.92, 1.22}, sparse CCA performs significantly better than regular CCA,

but when the variance is 1.52 or higher, sparse CCA and regular CCA do not differ significantly.

Additionally, in terms of the Frobenius norm, sparse CCA exhibits a significant increase in each

step of expanding variance.

Variance θCCA(ÛCCA,U) θsCCA(ÛsCCA,U) θCCA(V̂CCA,V) θsCCA(V̂sCCA,V) Frobenius norm sparse CCA

0.32 1.477 (0.037) 0.478 (0.136) 1.480 (0.032) 0.473 (0.137) 0.036 (0.001)

0.62 1.437 (0.054) 1.116 (0.182) 1.438 (0.045) 1.099 (0.171) 0.141 (0.004)

0.92 1.419 (0.058) 1.327 (0.098) 1.431 (0.048) 1.323 (0.107) 0.316 (0.008)

1.22 1.406 (0.067) 1.360 (0.084) 1.403 (0.063) 1.368 (0.078) 0.560 (0.013)

1.52 1.399 (0.063) 1.376 (0.078) 1.405 (0.063) 1.389 (0.082) 0.871 (0.022)

1.82 1.396 (0.051) 1.396 (0.076) 1.404 (0.065) 1.390 (0.076) 1.257 (0.029)

2.12 1.396 (0.063) 1.386 (0.073) 1.398 (0.067) 1.405 (0.071) 1.711 (0.039)

2.42 1.409 (0.059) 1.393 (0.076) 1.399 (0.064) 1.394 (0.083) 2.231 (0.053)

2.72 1.396 (0.075) 1.397 (0.070) 1.393 (0.069) 1.395 (0.080) 2.822 (0.071)

3.02 1.399 (0.063) 1.383 (0.082) 1.398 (0.069) 1.405 (0.069) 3.482 (0.085)

9.02 1.392 (0.065) 1.397 (0.067) 1.391 (0.062) 1.398 (0.073) 31.222 (0.678)

Table 3: Differing variances in sparse CCA and regular CCA, using accuracy measurements. Standard deviations
are given between brackets. Lower values correspond to higher accuracy of the method.

5.1.3 Contamination of the data

We compare two different types of simulation studies using alterations to 10% of the data.

The type with a known (sparse) structure, as explained in Appendix H, and the type with an

unknown (non-sparse) structure as explained in Appendix E (note that we only draw values 2

to p and q from a standard normal distribution and set the first value equal to 0 to make the
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TNR feasible). We evaluate the performance of regular and sparse CCA in these two types of

structures using accuracy measurements and sparsity recognition measurements. We also vary

the variance from 0.32 to 32. Finally, each time we do not only run our simulation as described

in the appendices, we also make 10% of the data more varianced. We do this by randomly

removing 10% of the simulated U and V for each simulation m ∈ {1, ...,M}, and replace these

values with values drawn from a normal distribution with mean 0 and a standard deviation

equal to 9 times the normally used standard deviation. So if we consider the case where var =

12, the outliers are simulated from N (0, 9× 12). Again, we use M = 100 and K = 2.

The results are shown in Table 4. Regular CCA performs significantly better without the

outliers in terms of θCCA(ÛCCA,U). Sparse CCA also performs more accurate without including

the outliers for a low variance (0.32) with regard to θsCCA(ÛsCCA,U). However, with higher

variances, sparse CCA performs better when outliers are included compared to when they are

not included. This can be explained by the fact that in the resulting estimated canonical vectors,

a large part of the simulated outliers are selected. We again notice that sparse CCA performs

better than regular CCA in terms of angle between the subspaces spannend. Additionaly,

regular CCA performs more accurate in terms of θCCA(ÛCCA,U) in the unstructured simulation

setting. However, sparse CCA performs significantly better in terms of θsCCA(ÛsCCA,U) in the

structured simulation settings for var ∈ {0.32, 12} (except for var = 12 in the case of outliers).

These are perspicuous results, since one could expect CCA to perform better in unstructured

settings as their resulting canonical vectors are unstructerd. One could also expect sparse CCA

to perform better in structured settings as their resulting canonical vectors incorporates sparsity,

so they have a certain structure.

The TPRs are all significantly higher without outliers and the TNRs are all significantly

higher including outliers (except for var = 0.32 with the structured details). The TPR is most

often significantly higher in the unstructured simulation setting than in the structured simulation

setting, while the TNR is significantly higher in the structured data. The Gini coefficients are

always significantly higher when including the outliers, so the canonical vectors become more

sparse with outliers included.

The results are similar for V and are shown in Appendix J.

Simulation details θCCA(ÛCCA,U) θsCCA(ÛsCCA,U) TPR(ÛsCCA,U) TNR(ÛsCCA,U) GINI(U)

Structured w.o 10% with 10% w.o 10% with 10% w.o 10% with 10% w.o 10% with 10% w.o 10% with 10%

Var = 0.32 1.471 1.505 0.459 0.556 0.984 0.921 0.939 0.970 0.640 0.909

Var = 12 1.402 1.485 1.346 0.460 0.894 0.840 0.982 0.990 0.778 0.959

Var = 32 1.395 1.487 1.393 0.362 0.908 0.855 0.981 0.990 0.763 0.961

Unstructured w.o 10% with 10% w.o 10% with 10% w.o 10% with 10% w.o 10% with 10% w.o 10% with 10%

Var = 0.32 1.505 1.519 0.380 0.491 0.992 0.960 0.537 0.608 0.610 0.759

Var = 12 1.434 1.493 1.199 0.448 0.959 0.889 0.482 0.658 0.793 0.947

Var = 32 1.397 1.486 1.385 0.372 0.961 0.869 0.395 0.640 0.737 0.953

Table 4: Results of U, altering 10% of the data to become outliers, using accuracy and sparsity recognition
metrics. On the left of each element, the values without alterations are given and on the right the values with
alterations are given. The table including standard deviations is given in Appendix I.
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5.2 Comparing PMD(L1, L1) with PMD(L1, FL)

Witten et al. (2009) consider two specific variants of their PMD method. Here, we compare the

two variants of the PMD to find the respective merits and limitations of those methods. To

compare PMD(L1, L1) with PMD(L1, FL), we simulate a data set containing 12 samples with

1000 copy number measurements on a single chromosome. The simulated data has five samples

that contain a region of gain in the copy numbers 100 up to 500. The simulation details are

given in Appendix K. Figure 1 indicates that both methods discover the five samples that contain

the region of gains in u. Additionally, the results of canonical vector v in PMD(L1, FL) are

more smooth than the results in PMD(L1, L1). Figure 1 clearly shows that v almost exclusively

consists of nonzero weights in the region 100 to 500. This is not the case in PMD(L1, L1), since

there are a lot of spikes in that area. Also in PMD(L1, L1), there are a lot more fluctuations

besides the true region of gain than in PMD(L1, FL). PMD(L1, FL) is here the better method

to find the region of gain in the copy number measurements.

Figure 1: Performance of PMD(L1, L1) and PMD(L1, FL). On top the results of PMD(L1, FL), in the middle
the results PMD(L1, L1) and on the bottom the generative model.

Furthermore, we compare sparse CCA(L1, L1) with sparse CCA(L1,FL) using accuracy

and sparsity recognition metrics in three different simulation settings. First of all, a structured

version is considered where the true values of U and V are known and either −1, 1 or 0

(Appendix H using n = 50). The second variant is an unstructured variant. Here, the true

values of U and V include randomness (Appendix E, setting the first values equal to 0 to make

the TNR feasible). Lastly, we consider a combination of the above two variants. In this case, we

simulate U according to the unstructured simulation details and V according to the structured

simulation details. Again, we use 100 simulations (M = 100) and 2 factors (K = 2).

The results are shown in Table 5. For the structured data, sparse CCA(L1, L1) performs more

accurate for U with regard to θ(Û,U), gives higher TPR’s (amount of true nonzero variables
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in the canonical vectors), and is more accurate in terms of the Frobenius norm measurement.

Opposingly, sparse CCA(L1, FL) performs more accurate for V with regard to θ(V̂,V), gives

higher TNR’s (hit rate of excluding unimportant variables), and is more sparse in terms of the

Gini coefficients.

In the unstructured data setting, sparse CCA(L1, L1) performs more accurate for both U

and V. It also results in higher TPR’s and better Frobenius norm measurements for sparse

CCA(L1, L1). However, sparse CCA(L1, FL) results are still more sparse in the Gini coefficients

and give higher hit rates of excluding unimportant variables (TNR).

In the case of combination type data, the differences in all measurements are similar to the

results of the structured data.

Simulation details θ(Û,U) θ(V̂,V) TPR(Û,U) TPR(V̂,V) TNR(Û,U) TNR(V̂,V) GINI(U) GINI(V) FN

Structured

sparse CCA(L1,L1) 0.496 (0.155) 0.494 (0.156) 0.981 (0.009) 0.981 (0.009) 0.955 (0.046) 0.954 (0.062) 0.674 (0.155) 0.674 (0.155) 0.020 (0.001)

sparse CCA(L1,FL) 0.839 (0.282) 0.121 (0.054) 0.951 (0.032) 0.978 (0.003) 0.964 (0.117) 0.990 (0.002) 0.863 (0.149) 0.794 (0.029) 0.022 (0.001)

Unstructured

sparse CCA(L1,L1) 0.417 (0.139) 0.418 (0.138) 0.989 (0.011) 0.988 (0.011) 0.598 (0.142) 0.572 (0.184) 0.631 (0.116) 0.630 (0.116) 0.022 (0.001)

sparse CCA(L1,FL) 0.550 (0.263) 0.808 (0.098) 0.973 (0.044) 0.983 (0.006) 0.627 (0.072) 0.612 (0.098) 0.714 (0.161) 0.808 (0.061) 0.042 (0.161)

Combination

sparse CCA(L1,L1) 0.398 (0.077) 0.402 (0.052) 0.992 (0.002) 0.986 (0.003) 0.570 (0.143) 0.942 (0.109) 0.614 (0.080) 0.601 (0.086) 0.021 (0.001)

sparse CCA(L1,FL) 0.647 (0.282) 0.132 (0.057) 0.964 (0.052) 0.981 (0.004) 0.613 (0.152) 0.990 (0.003) 0.768 (0.178) 0.761 (0.053) 0.025 (0.001)

Table 5: Performance of sparse CCA(L1, L1) and sparse CCA(L1, FL) using different simulation settings. Stand-
ard deviations are between brackets.

5.3 Application of sparse CCA to a breast cancer data set

We apply the sparse CCA(L1, FL) method to a data set about breast cancer patients. The

method is executed to identify a set of genes that is correlated with DNA copy number changes

(CGH spots) for each chromosome. We define the gene measurement data to be the X data

matrix, and the DNA copy number change data to be the data matrix Z. We apply sparse

CCA(L1, FL) instead of sparse CCA(L1, L1) because, as shown in Section 5.2, this method

give more sparse results, which is favoured in this type of data. Also, when data matrix Z is

ordered, sparse CCA(L1, FL) performs more accurate for the corresponding canonical vectors

v. Here, Z corresponds to DNA copy number changes, which is an ordered data matrix, so

sparse CCA(L1, FL) is a suitable method. Finally, sparse CCA(L1, FL) performs better in

excluding unimportant variables in the canonical vectors, which is a useful advantage over sparse

CCA(L1, L1).

Table 6 shows the most important genes after performing sparse CCA(L1, FL) using the

CGH spots on chromosome 1. Here, the value of penalty size c1 is chosen such that the u vector

have only 25 nonzero values. Table 6 shows the names of the 25 genes with nonzero weights.

i defines the index of the gene and ui defines the corresponding weight. Note that all nonzero

genes are located on chromosome 1. This is expected, since the method finds genes that have a

high correlation with DNA copy number changes on chromosome 1, and a copy number change

on a chromosome should be correlated with genes on that chromosome.

Results of other chromosomes can be obtained by using the data of CGH spots of different

chromosomes. For each chromosome k, the 25 genes with nonzero weights are all located on

chromosome k, as we would expect.
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i Name of gene Chromosome ui
68 jumping translocation breakpoint 1 0.0656

1235 translocated promoter region (to activated MET oncogene) 1 0.1401
1435 glyceronephosphate O-acyltransferase 1 0.2645
1463 NADH dehydrogenase (ubiquinone) Fe-S protein 2 (49kD) (NADH-coenzyme Q reductase) 1 0.2596
1679 nucleoporin 133kD 1 0.0380
1811 geranylgeranyl diphosphate synthase 1 1 0.1432
1863 rab3 GTPase-activating protein, non-catalytic subunit (150kD) 1 0.2741
2140 peroxisomal biogenesis factor 11B 1 0.1674
2324 phosphatidylinositol glycan, class C 1 0.0948
3175 tubulin-specific chaperone e 1 0.0864
4237 protoporphyrinogen oxidase 1 0.0690
5241 tuftelin 1 1 0.0511
5696 S-phase response (cyclin-related) 1 0.0021
8240 papillary renal cell carcinoma (translocation-associated) 1 0.0704
8342 splicing factor 3b, subunit 4, 49kD 1 0.4508
9481 UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 3 1 0.2687
11634 hypothetical protein FLJ12671 1 0.2189
13650 ESTs, mitochondrial precursor [H.sapiens] 1 0.0176
14872 hypothetical protein HSPC155 1 0.1681
15333 mitochondrial ribosomal protein L24 1 0.2165
15354 HSPC003 protein 1 0.3895
15407 hypothetical protein FLJ10876 1 0.0966
15452 CGI-78 protein 1 0.1722
15777 chromosome 1 open reading frame 27 1 0.1344
18440 hypothetical protein My014 1 0.2781

Table 6: Non-zero genes in u using CGH spots on chromosome 1.

5.3.1 Correlations using test and training samples

To assess the usefulness of the sparse CCA method on the breast cancer data set, we divided

the samples into a test and a training set. We draw 10 times randomly and independently 75%

of the sample to serve as the training set. The remaining 25% of the sample is used as the test

set. We applied sparse CCA(L1,FL) to the training set to obtain the canonical vectors utr and

vtr. The correlation of the training sample is calculated as cor(Xtrutr,Ztrvtr). The correlation

of the test sample is calculated using the canonical vectors of the training sample and the data

matrices of the test sample: cor(Xteutr,Ztevtr). Here Xte and Zte denote the data matrices

containing the 25% of the test data and Xtr and Ztr denote the data matrices containing the

75% of the training data. The correlations are calculated as the mean over the 10 iterations.

The results are displayed in Figure 2. They show that the correlations of the training sample

are around 0.8. The correlations of the test sample are slightly lower than the training sample

but still relatively high for most chromosomes. This means that in this holdout out-of-sample

validation method, sparse CCA performs reasonably well.

5.3.2 Chromosomal gains and losses

We performed sparse CCA(L1, FL) using all gene measurements and the DNA copy number

changes of only chromosome 1. The values of the resulting canonical vector v (most important

chromosomal gains and losses) of chromosome 1 are shown in Figure 3. It is shown that the

resulting v is sparse and somewhat smooth. The higher the magnitude presented in Figure 3,

the higher the value of |vi|. The figures for the other chromosomes (v) can be found in Appendix

L.
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Figure 2: Correlations between gene expressions and DNA copy number changes. The correlations of the training
sample in the dotted line and the correlations of the test sample in the black line.

Figure 3: v for chromosome 1 obtained using PMD(L1, FL). The horizontal axes denote the nucleotide position
of the CGH spots along chromosome 1 and the vertical axes denote the value of each element in the resulting
canonical vector v.

6 Conclusion

In this paper, we investigated the performance of sparse canonical correlation analysis (sparse

CCA) using the penalized matrix decomposition method of Witten et al. (2009). We performed

different simulation studies to assess properties of regular CCA and sparse CCA, and examined

the generalizability by differing dimensionalities and variances in data sets. We also applied the

sparse CCA method to a real life breast cancer data set to find correlations between DNA copy

number changes and gene measurements.

We investigated how regular CCA and sparse CCA perform in varying dimensional settings

by changing the number of variables and samples in the data. We evaluated the accuracy using

the angle between the subspace spanned by the estimated canonical vectors and the true canon-

ical vectors. In general, we found that sparse CCA outperforms regular CCA in high-dimensional

data sets, except when the data consists of a small number of variables and a high number of

observations. The accuracy of regular CCA decreases with an increase in variables, while sparse

CCA remains more robust to this increase. Both methods showed improved accuracy when

increasing the number of observations, with an exception of cases where the number of obser-

vations reached a high threshold. Altogether, sparse CCA is more robust to highly dimensional
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data sets than regular CCA.

Additionally, we studied the performance of sparse CCA (and regular CCA) when increasing

the variance in the data set. We found that regular CCA performs overall inaccurately. Sparse

CCA performs more accurately than regular CCA in cases of low variance, but when the variance

increases, sparse CCA performs quickly increasingly inaccurate. Sparse CCA and regular CCA

perform equally poor for data sets with a high variance. Moreover, we investigated how CCA

and sparse CCA deal with outliers in the data by making 10% of the data highly varianced. We

did this for unstructured and structured data to assess the robustness of the methods. Regular

CCA does not manage outliers well, while sparse CCA deals much better with outliers, especially

for data with high variance, since it selects a part of the outliers. In addition, we observed that

CCA performs better in structured data compared to unstructured data, whereas sparse CCA

performs better in unstructured data than in structured data, as we would expect. Furthermore,

results of sparse CCA become more sparse when outliers are included.

Finally, we applied the sparse CCA method to a real life genomic data set of breast cancer

patients, to find correlations between gene measurements and DNA copy number changes. We

found that sparse CCA is an adequate method to analyse this data. All genes that have the

highest correlation with DNA copy number changes on a specific chromosome, are also found

on that specific chromosome, as expected. We also established that sparse CCA performs well

on this data set using a holdout out-of-sample method utilizing training and test data.

In this paper, we only considered two specific types of sparse CCA with LASSO type and

fused LASSO type constraints. For further research, it might be interesting to consider other

convex penalty functions. For example, one might consider to use the adaptive LASSO (Zou

(2006)) as a convex penalty function. Adaptive LASSO gives adaptive weights to the LASSO

penalty term based on estimated coefficients regarding the model fit, which can be useful in

identifying the most important variables in two data sets.

Additionally, we only examine a few different simulation settings. This can limit the methods

to not be generalizable to other data sets with different characteristics. In follow-up research, the

CCA and sparse CCA methods can be compared using different simulation settings to determine

if they perform similar or completely different. For instance, it can be interesting to simulate

the data matrices in a manner such that the data is highly correlated, or not correlated at all.

Then one can compare the performance of sparse CCA and regular CCA to assess how they

behave in this sort of data.

Finally, we solely applied sparse CCA to a genomic data set. The sparse CCA method can

also be applied to other types of data sets and can give interesting insights in different topics.

For example, it can be applied to large environmental data sets to analyse potential harmful

factors to the environment.

In conclusion, this paper explores the behaviour of sparse CCA in different data settings,

which can provide insights for researchers regarding the use of sparse CCA. By understanding

the behaviour of sparse CCA, researchers can make informed decisions when considering to apply

sparse CCA, enhancing the effectiveness of their analyses.
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Appendix

A Algorithm to determine penalty sizes c1 and c2

Algorithm 53

1. From the original data matrix X, construct 10 data matrices X1, ...,X10, each for which

is missing a non-overlapping 10% of the elements, sampled at random from the rows and

columns.

2. For each candidate value of c1 and c2:

(a) For i ∈ 1, ..., 10:

i) Fit the PMD to Xi with tuning parameters c1 and c2, and calculate X̂i = duv′,

the resulting estimate of Xi.

ii) Record the mean squared error (MSE) of the estimate X̂i. This MSE is obtained

by computing the mean of the squared differences between elements of X and

the corresponding elements of X̂i, where the mean is taken only over elements

that are missing from Xi.

(b) Record the average mean squared error across X1, ...,X10 for tuning parameters c1

and c2.

3. The optimal values of c1 and c2 are those which correspond to the lowest MSE.

In practise this algorithm from Witten et al. (2009) takes a lot of computational space.

Therefore, we do not consider different candidate values for c1 and c2, but only different candidate

values for parameter c. The values of c1 and c2 are then computed by c1 = c
√
n and c2 = c

√
p.

Similar cross-validation techniques are used in Wold (1978) and Owen and Perry (2009). In

Owen and Perry (2009) they performed a kind of cross validation for SVD and the non-negative

matrix factorization as described in Lee and Seung (1999).

We use a slightly different optimization problem when performing PMD while handling

missing data values:

max
u,v

∑
(i,j)∈C

Xijuivj s.t. ∥u∥22 ≤ 1, ∥v∥22 ≤ 1, P1(u) ≤ c1, P2(v) ≤ c2. (16)

Here, C denotes the set of all non-missing elements in the data matrix X, Xij denote the

element in row i and column j of matrix X and ui and vj denote the ith and jth element from

vectors u and v respectively. A similar approach for handling missing data in a singular value

decomposition (SVD) is proposed in Troyanskaya et al. (2001).

Note that we did not program Problem (16) ourselves, since it is already incorporated in the

‘PMA’ package in R (Witten and Gross (2011)).

3This algorithm is also taken directly from Witten et al. (2009). In this case, some sort of 10-fold cross-
validation is used, where in Section 5.1 we apply 5-fold cross-validation.
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B Proof of Equation (4)

In this appendix, we give the proof of Equation (4) in Section 4.1.2.

1

2
∥X−UDV′∥2F =

1

2
∥X∥2F −

K∑
k=1

u′
kXvkdk +

1

2

K∑
k=1

d2k.

Using the trace trick, we can rewrite ∥X−UDV′∥2F as follows:

∥X−UDV′∥2F = tr((X−UDV′)′(X−UDV′))

= tr((X′ −VDU′)(X−UDV′))

= tr(X′X−X′UDV′ −VDU′X+VDU′UDV′)

= ∥X∥2F − tr((X′UDV′)′)− tr(VDU′X) + tr(VDU′UDV′)

= ∥X∥2F − 2tr(VDU′X) + tr(VDU′UDV′).

Here, we use the trace properties tr(A + B) = tr(A) + tr(B), tr(AB) = tr(BA) and tr(A) =

tr(A′). We can rewrite tr(VDU′UDV′) as follows:

tr(VDU′UDV′) = tr(UDV′VDU′)

= tr(UDIpDU′)

= tr(UDDU′)

= tr(DU′UD)

= tr(DInD)

= tr(DD)

=
K∑
k=1

d2k.

Here, we use that D is a diagonal matrix, so D′ = D, and we use that U′U = In and V′V = Ip,

where Iq is an identity matrix of size q.

We can rewrite tr(VDU′X) as tr(DU′XV). It can be derived that the diagonal elements

of DU′XV are equal to dku
′
kXvk for k ∈ {1, ...,K}. That implies that:

tr(VDU′X) =

K∑
k=1

dku
′
kXvk.

These above derivations together derives that indeed

1

2
∥X−UDV′∥2F =

1

2
∥X∥2F −

K∑
k=1

u′
kXvkdk +

1

2

K∑
k=1

d2k.
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C Proof of Equation in 4.1.4

In this appendix, we prove that in the problem

max
u

{u′a} s.t ∥u∥22 ≤ 1, ∥u∥1 ≤ c

u is solved for u = S(a,∆)
∥S(a,∆)∥2 , where ∆ = 0 if this results in ∥u∥1 ≤ c and otherwise ∆ is chosen

such that ∥u∥1 = c is satisfied.

This maximization problem is equivalent to the minimization problem

min
u

{−u′a} s.t ∥u∥22 ≤ 1, ∥u∥1 ≤ c

and is equivalent to the following Lagrange form:

min
u

{z(u;λ,∆)} = min
u

{−u′a+ λ(∥u∥22 − 1) + ∆(∥u∥1 − c)}.

When we differentiate this objective function with respect to u and equalize to 0, we get:

δz(u;λ,∆)}
δu

= 0 ⇔ −a+ 2λu+∆Γ = 0.

Here, Γi =

sign(ui) if ui ̸= 0

∈ [−1, 1] otherwise
. The Karush-Kuhn-Tucker (KKT) conditions (as further

explained in Kuhn and Tucker (2013)) for optimality are given by:

1. −a+ 2λu+∆Γ = 0

2. λ(∥u∥22 − 1) = 0

3. ∆(∥u∥1 − c) = 0

From these KKT conditions, we can see that if λ > 0 we get

u =
S(a,∆)

2λ
.

Given the above KKT condition 2, we need either λ = 0 (if feasible) or λ ̸= 0 and needs to be

chosen so that ∥u∥2 = 1. This implies that we can solve for u in the following way:

u =
S(a,∆)

∥S(a,∆)∥2
.

Given the above KKT condition 3, either ∆ = 0 (if feasible) or ∆ ̸= 0 and needs to be chosen

so that ∥u∥1 = c. This means that we use ∆ = 0 if ∥u∥1 ≤ c and otherwise we choose ∆ so that

∥u∥1 = c.
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D Penalized matrix decomposition versus SVD

We replicate the simulation study of Witten et al. (2009) that compares their PMD method

with the singular value decomposition (SVD) method to demonstrate the advantages of the

PMD method. The penalized matrix decomposition (PMD) method of Witten et al. (2009) is a

generalization of the singular value decomposition (SVD). In Figure 4, we compare PMD(L1, L1)

with SVD. The simulation details are given in Appendix H, only we use n = 50 in this case.

We apply PMD(L1, L1) and SVD with K = 2. Figure 4 shows that the PMD method performs

quite well in identifying the underlying factors. In general, the PMD gives nonzero values in

the canonical vectors where there are nonzero values in the simulated canonical vectors. Even

though it gives not exactly the same results as the true canonical vectors, it performs way better

than SVD in identifying the underlying factors. SVD gives vague forms of how the canonical

vectors should look like, but there is a lot of noise. In this case PMD is a better method for

canonical correlation analysis than SVD, since it defines the linear combinations of the true data

sets in the best way.

Figure 4: PMD versus SVD. On top the latent canonical vectors, in the middle the results of PMD(L1, L1), and
on the bottom the results of SVD.
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E Simulation details for Table 1 and Table 2

We construct data matrices X and Z using p × 1 vectors u1, and u2 and q × 1 vectors v1

and v2, respectively. All values of the vectors u1, u2, v1 and v2 are drawn from a standard

normal distribution. We simulate two n × 1 orthonormal vectors w1 and w2 by drawing them

from a standard normal distribution, then we apply the Gramm-Schmidt process to make them

orthonormal. We simulate the elements of data matrices X and Z as follows:

• Xij ∼ N (w1,iu1,j + w2,iu2,j , 0.3
2)

• Zij ∼ N (w1,iv1,j + w2,iv2,j , 0.3
2)

F Results Section 5.1.1 for canonical vector V

p,q

n↓ 4 7 10 25 50 100 250 1000

5 0.615 (0.373) - - - - - - -

8 0.476 (0.330) 1.249 (0.189) - - - - - -

11 0.365 (0.279) 1.057 (0.238) 1.344 (0.124) - - - - -

26 0.292 (0.209) 0.615 (0.226) 0.870 (0.194) 1.461 (0.054) - - - -

51 0.211 (0.179) 0.504 (0.184) 0.634 (0.173) 1.257 (0.123) 1.496 (0.024) - - -

101 0.254 (0.195) 0.451 (0.175) 0.526 (0.151) 0.861 (0.109) 1.368 (0.071) 1.521 (0.020) - -

251 0.300 (0.249) 0.490 (0.200) 0.536 (0.174) 0.659 (0.094) 0.836 (0.085) 1.257 (0.081) 1.536 (0.011) -

1001 0.322 (0.249) 0.573 (0.223) 0.660 (0.205) 0.677 (0.145) 0.671 (0.083) 0.726 (0.056) 0.985 (0.042) 1.555 (0.006)

Table 7: θCCA(V̂CCA,V) values when differing the number of observations (n) and the number of variables (p and
q). Lower values of θCCA(V̂CCA,V) correspond to a more green colour (indicating higher accuracy), and higher
values of θCCA(V̂CCA,V) correspond to a more red colour (indicating lower accuracy). Standard deviations are
between brackets.
• •

0 0.79 1.57

p,q

n↓ 4 7 10 25 50 100 250 1000

5 0.231 (0.234) 0.517 (0.239) 0.566 (0.264) 0.650 (0.246) 0.714 (0.289) 0.674 (0.254) 0.638 (0.205) 0.652 (0.224)

8 0.282 (0.234) 0.460 (0.226) 0.476 (0.212) 0.542 (0.195) 0.539 (0.186) 0.550 (0.174) 0.559 (0.152) 0.603 (0.163)

11 0.266 (0.211) 0.425 (0.188) 0.454 (0.214) 0.467 (0.159) 0.464 (0.137) 0.487 (0.103) 0.511 (0.110) 0.571 (0.170)

26 0.261 (0.217) 0.370 (0.188) 0.367 (0.152) 0.385 (0.097) 0.390 (0.065) 0.416 (0.065) 0.453 (0.100) 0.481 (0.162)

51 0.241 (0.213) 0.384 (0.186) 0.415 (0.177) 0.381 (0.127) 0.382 (0.093) 0.406 (0.106) 0.453 (0.165) 0.458 (0.169)

101 0.257 (0.196) 0.389 (0.144) 0.423 (0.166) 0.378 (0.119) 0.361 (0.060) 0.390 (0.091) 0.462 (0.175) 0.485 (0.210)

251 0.289 (0.261) 0.452 (0.204) 0.500 (0.180) 0.402 (0.097) 0.377 (0.058) 0.373 (0.074) 0.477 (0.161) 0.633 (0.319)

1001 0.309 (0.272) 0.614 (0.218) 0.667 (0.242) 0.584 (0.149) 0.467 (0.093) 0.402 (0.041) 0.364 (0.039) 0.775 (0.160)

Table 8: θsCCA(V̂sCCA,V) values when differing the number of observations (n) and the number of variables
(p and q). Lower values of θsCCA(V̂sCCA,V) correspond to a more green colour (indicating higher accuracy),
and higher values of θsCCA(V̂sCCA,V) correspond to a more red colour (indicating lower accuracy). Standard
deviations are between brackets.
• •

0 0.79 1.57
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G Frobenius norm for differing dimensionality

We compare the accuracy of sparse CCA in terms of the Frobenius norm measurement, as

described in Section 4.3.1. The results are shown in Table 9. We see that the Frobenius norm

measurement decreases significantly in each step for all n when increasing the number of variables

(p, q). This means that sparse CCA tends to become more accurate in terms of the Frobenius

norm measurement as the number of variables in the data set increases. Additionally, in general,

having a larger number of samples (n) in the data set leads to significantly higher values of the

Frobenius norm measurement, meaning less accurate performance of sparse CCA. There are

some exceptions, for p, q = 10, n ∈ {5, 8, 11} the Frobenius norm decreases, but not significantly.

Also for low values of p, q and low values of n, the Frobenius norm measurement does not always

increase significantly in each step.

p,q

n↓ 4 7 10 25 50 100 250 1000

5 0.680 (0.591) 0.421 (0.267) 0.294 (0.168) 0.070 (0.021) 0.025 (0.004) 0.010 (0.001) 0.003 (<0.001) 0.001 (<0.001)

8 0.786 (0.673) 0.421 (0.243) 0.288 (0.111) 0.074 (0.021) 0.028 (0.004) 0.011 (0.001) 0.004 (<0.001) 0.001 (<0.001)

11 0.786 (0.648) 0.433 (0.250) 0.279 (0.152) 0.077 (0.016) 0.030 (0.004) 0.012 (0.001) 0.004 (<0.001) 0.001 (<0.001)

26 0.872 (0.688) 0.518 (0.272) 0.316 (0.129) 0.088 (0.016) 0.038 (0.003) 0.017 (0.001) 0.006 (<0.001) 0.002 (<0.001)

51 0.880 (0.503) 0.544 (0.289) 0.359 (0.132) 0.108 (0.016) 0.047 (0.003) 0.022 (0.001) 0.008 (<0.001) 0.002 (<0.001)

101 0.985 (0.675) 0.666 (0.262) 0.412 (0.135) 0.139 (0.016) 0.064 (0.004) 0.030 (0.001) 0.012 (<0.001) 0.003 (<0.001)

251 1.233 (0.683) 0.805 (0.319) 0.581 (0.155) 0.199 (0.017) 0.095 (0.005) 0.047 (0.001) 0.018 (<0.001) 0.004 (<0.001)

1001 2.159 (1.232) 1.403 (0.409) 1.016 (0.224) 0.394 (0.039) 0.189 (0.009) 0.092 (0.002) 0.036 (<0.001) 0.009 (<0.001)

Table 9: Values of the Frobenius norm measurement when differing the number of observations (n) and the
number of variables (p and q). Standard deviations are between brackets.

H Simulation details for Table 3 and Figure 4

We use n = 150, p = 100 and q = 100. In this simulation study, we simulate data matrices X

and Z using p × 1 vectors u1 and u2 and q × 1 vectors v1 and v2, respectively. The details of

vectors u1, u2, v1 and v2 are:

• u1 consists of 20 times 1, 20 times −1 and 60 times 0.

• u2 consists of 10 times −1, 10 times 1, 10 times −1, 10 times 1 and 60 times 0.

• v1 consists of 60 times 0, 20 times −1 and 20 times 1.

• v2 consists of 60 times 0, 10 times 1, 10 times −1, 10 times 1 and 10 times −1.

Furthermore, we simulate two n × 1 orthonormal vectors w1 and w2. Here, we simulate both

w1 and w2 from a standard normal distribution and than apply the Gramm-Schmidt process to

make them orthonormal. Then we simulate data matrices X and Z as follows:

• Xij ∼ N (w1,iu1,j + w2,iu2,j , 0.3
2)

• Zij ∼ N (w1,iv1,j + w2,iv2,j , 0.3
2)

In Table 3 the variance of generating Xij and Zij (0.32) differs.
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I Results Section 5.1.3 with standard deviation

Simulation details θCCA(ÛCCA,U) θsCCA(ÛsCCA,U) TPR(ÛsCCA,U) TNR(ÛsCCA,U) GINI(U)

Structured

Var = 0.32 1.471 (0.040) 1.505 (0.026) 0.459 (0.114) 0.556 (0.180) 0.984 (0.008) 0.921 (0.105) 0.939 (0.142) 0.970 (0.121) 0.640 (0.123) 0.909 (0.096)

Var = 12 1.402 (0.051) 1.485 (0.040) 1.346 (0.093) 0.460 (0.221) 0.894 (0.190) 0.840 (0.129) 0.982 (0.011) 0.990 (0.001) 0.779 (0.164) 0.959 (0.041)

Var = 32 1.395 (0.068) 1.487 (0.031) 1.393 (0.070) 0.362 (0.222) 0.908 (0.182) 0.855 (0.123) 0.981 (0.013) 0.990 (0.001) 0.763 (0.164) 0.961 (0.028)

Unstructured

Var = 0.32 1.505 (0.021) 1.519 (0.021) 0.380 (0.088) 0.491 (0.208) 0.992 (0.003) 0.960 (0.077) 0.537 (0.205) 0.608 (0.152) 0.610 (0.093) 0.759 (0.176)

Var = 12 1.434 (0.053) 1.493 (0.031) 1.199 (0.152) 0.448 (0.163) 0.959 (0.072) 0.889 (0.122) 0.482 (0.246) 0.658 (0.036) 0.793 (0.155) 0.947 (0.038)

Var = 32 1.397 (0.066) 1.486 (0.036) 1.385 (0.066) 0.372 (0.197) 0.961 (0.083) 0.869 (0.128) 0.395 (0.287) 0.640 (0.103) 0.737 (0.168) 0.953 (0.036)

Table 10: Metrics using 10% outliers. On the left of each element, the normal values are given and on the right
the values using 10% outliers. This is for the outcomes of U.

J Results contamination of V

Simulation details θCCA(V̂CCA,V) θsCCA(V̂sCCA,V) TPR(V̂sCCA,V) TNR(V̂sCCA,V) GINI(V)

Structured

Var = 0.32 1.482 (0.034) 1.504 (0.024) 0.455 (0.116) 0.545 (0.176) 0.984 (0.007) 0.921 (0.105) 0.949 (0.071) 0.976 (0.102) 0.639 (0.123) 0.910 (0.096)

Var = 12 1.413 (0.062) 1.483 (0.034) 1.349 (0.086) 0.466 (0.221) 0.895 (0.189) 0.840 (0.129) 0.981 (0.012) 0.991 (0.001) 0.779 (0.164) 0.959 (0.039)

Var = 32 1.403 (0.067) 1.483 (0.040) 1.397 (0.078) 0.368 (0.209) 0.905 (0.172) 0.854 (0.122) 0.980 (0.013) 0.991 (0.001) 0.763 (0.164) 0.962 (0.026)

Unstructured

Var = 0.32 1.509 (0.024) 1.519 (0.021) 0.376 (0.092) 0.488 (0.202) 0.992 (0.004) 0.960 (0.077) 0.563 (0.174) 0.612 (0.140) 0.609 (0.094) 0.759 (0.175)

Var = 12 1.431 (0.055) 1.494 (0.035) 1.193 (0.150) 0.438 (0.190) 0.958 (0.073) 0.887 (0.121) 0.477 (0.244) 0.663 (0.023) 0.792 (0.155) 0.948 (0.037)

Var = 32 1.391 (0.060) 1.486 (0.034) 1.384 (0.063) 0.382 (0.212) 0.959 (0.083) 0.868 (0.127) 0.400 (0.290) 0.650 (0.077) 0.739 (0.167) 0.954 (0.035)

Table 11: Metrics using 10% outliers. On the left of each element, the normal values are given and on the right
the values using 10% outliers. This is for the outcomes of V.

K Simulation details for Figure 1

We use n = 12 and p = 1000 by simulating the n× p matrix X. We simulate matrix such that

the first 5 samples have regions of gain or loss between positions 100 and 500. This is done in

the following way:

• All values Xij are generated from a standard normal distribution N (0, 1)

• except for i ∈ {1, ..., 5} and j ∈ {100, ..., 500}, they are generated from N (1, 1).
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L Weights of v for the other Chromosomes

Figure 5: v for Chromosome 2

Figure 6: v for Chromosome 3

Figure 7: v for Chromosome 4
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Figure 8: v for Chromosome 5

Figure 9: v for Chromosome 6

Figure 10: v for Chromosome 7
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Figure 11: v for Chromosome 8

Figure 12: v for Chromosome 9

Figure 13: v for Chromosome 10
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Figure 14: v for Chromosome 11

Figure 15: v for Chromosome 12

Figure 16: v for Chromosome 13
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Figure 17: v for Chromosome 14

Figure 18: v for Chromosome 15

Figure 19: v for Chromosome 16
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Figure 20: v for Chromosome 17

Figure 21: v for Chromosome 18

Figure 22: v for Chromosome 19
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Figure 23: v for Chromosome 20

Figure 24: v for Chromosome 21

Figure 25: v for Chromosome 22
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Figure 26: v for Chromosome 23
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