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Abstract

In this research paper, we examine the impact of combining heterogeneous autoregressive

(HAR) models with a feed-forward neural network on one day-ahead realized variance (RV)

forecasting performance. The study utilizes volatility data from 25 stocks in the Dow Jones

Industrial Average Index spanning January 2001 to December 2021. We use six variations of

the HAR model, a feed-forward neural network, and three model combinations. We assess

forecasts using the mean squared error, QLIKE, and Diebold-Mariano tests. Findings show

that the simple model combination significantly outperforms the benchmark HAR, semivari-

ance HAR, and log HAR model, but does not significantly improve on other models. More-

over, the simple model combination slightly outperforms the more complex combinations.

Overall, the model combination provides robust RV forecasts due to stable performance in

both low and high volatility regimes. This research emphasizes the importance of combining

forecasting models to achieve robust RV forecasts while maintaining computational efficiency.

Keywords: Realized variance forecasting, Heterogeneous autoregressive (HAR) model, Machine

Learning, Feed-forward neural network, Model combinations, peLASSO.

1 Introduction

Over the past decades, volatility forecasting has become increasingly important due to the

increase in market volatility. With the availability of high-frequency data and advancements

in machine learning (ML), there has been a shift in the focus of volatility forecasting research.

Realized variance (RV) has emerged as the standard measure of volatility, and ML techniques,

such as neural networks, have shown promising results in short-horizon forecasts, while tree-

based models excel in long-horizon forecasts (Christensen et al., 2022).

However, not every researcher or business has access to large computational capacities in

order to run computationally demanding ML algorithms. Additionally, hyperparameter tuning

of ML models can be challenging and opaque. Therefore, there is a need for clear and compu-

tationally efficient methods that can be readily used by researchers and analysts facing these

limitations.

To address these challenges, this research explores the combination of traditional, easy-to-use

heterogeneous autoregressive (HAR) models with an off-the-shelf feed-forward neural network

(FFNN) to forecast one-day-ahead RV. The aim is to assess the extent to which a model com-

bination of HAR models and a neural network can improve volatility forecasting performance.

Furthermore, the research investigates the performance of these models and combinations in

different volatility regimes and compares the forecasting performance of simple and complex

model combinations.
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To answer our research questions, we use data from various sources. We obtain our data

from Kleen and Tetereva (2022), OptionMetrics, and Yahoo Finance. We use seven explanatory

variables on 25 companies with observations ranging from January 29, 2001 to December 30,

2021 (5264 observations). The dataset is split into a training, validation, combination, and test

set. The validation set is used to optimize the FFNN and prevent overfitting. The combination

set is used to estimate forecast weights of the model combinations. The dataset used by Kleen

and Tetereva (2022) includes: RV, semivariance RV (RV-/RV), quadratic variation (QV), and

the CBOE volatility index (VIX). The daily (RVD), weekly (RVM), and monthly (RVM) lags of

RV are computed from the provided RV. From OptionMetrics by WRDS, we obtain the implied

volatility (IV). This variable captures the expected volatility which is calculated using option

pricing (Jiang & Tian, 2005). Literature finds that the IV is an important predictor of RV

(Christensen et al., 2022; Kambouroudis et al., 2021). From Yahoo Finance, we obtain the

1-week momentum (MOM) and dollar trading volume (TV). A description and the descriptive

statistics of the variables are included in Appendix A.1 table 2 and 3.

In this study, we fit seven individual models on the training and validation set, including vari-

ations of the HAR model and an FFNN. The HAR models use a rolling window approach, while

the FFNN uses a fixed window. Moreover, we construct three model combinations: the equally-

weighted model combination (SCOMB), the partially egalitarian LASSO model combination

(peLCOMB), and the volatility quantile-base model combination (VQCOMB). The weights for

the peLCOMB and VQCOMB are estimated on the combination set. Performance comparisons

are conducted on the combination and test set, evaluating RV forecasts using metrics such as

QLIKE, relative mean squared error (MSE), and the Diebold-Mariano (DM) test.

Previous literature suggests that future volatility can be mostly explained by historical

volatility (Christensen et al., 2022). Therefore, the HAR model family is a great method to

forecast RV as it uses previous volatility. Extensions on the HAR have been made to leverage

various patterns in asset volatility. The logHAR is proposed to enable a more efficient estima-

tion using ordinary least squares, as the estimation errors of the log transformed HAR model

show more symmetry (Corsi, 2008). The HAR quarticity (HARQ) and HARQ-full (HARQF),

proposed by Bollerslev et al. (2016), incorporate a measure for the measurement error. Subse-

quently, the models allow for greater persistence of previous volatility when measurement errors

are small, and lesser persistence when measurement errors are large. The semivariance HAR

(SHAR) is suggested to capture the ’leverage effect’ using RV- and RV+ (Patton & Sheppard,

2015). However, Christensen et al. (2022) also indicates that expected volatility is an important

predictor of RV. The HARX model incorporates other lagged variables in addition to the nor-
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mal HAR structure. IV allows the HARX model to include expected volatility, which has been

proven to be of significant importance (Kambouroudis et al., 2021).

As previously mentioned, ML is a well-performing model class in volatility forecasting and

mainly includes tree-based models and neural networks. Tree-based models show favorable

performance, particularly for longer forecasting horizons, as highlighted by Christensen et al.

(2022). However, since we focus on one day-ahead forecasting, we decide to research the neural

networks as these show more promising results in shorter horizons. Current literature on neu-

ral networks in forecasting RV predominantly focuses on the long short-term recurrent neural

network (LSTM RNN) as this shows better results (Bucci, 2020; Rahimikia and Poon, 2020;

Zhang et al., 2023). However, the LSTM RNN is computationally demanding and therefore not

suited for this research. Therefore, we decide to implement the FFNN as previously research by

Christensen et al. (2022).

Christensen et al. (2022) observe varying performance between HAR models and ML models

across various volatility regimes. HAR models demonstrate relatively favorable performance in

periods of low volatility, whereas FFNN shows promising results on mid and high volatility.

Thus, the combination of HAR forecasts with FFNN forecasts may prove beneficial. Forecast

combinations are well-established and effective approaches for generating robust forecasts. Ex-

tensive insights into forecast combinations are provided by Timmermann (2006), who highlights

the effectiveness of simple combinations over complex ones. Timmermann (2006) finds that

allowing for modest time variations in weights and eliminating poorly performing models, prove

to be useful. The peLASSO method, introduced by Diebold and Shin (2019), uses a shrinkage

method to eliminate underperforming models while assigning equal weight to the remaining

models. This approach promotes simplicity in the model structure while deleting unnecessary

models. In addition, this research proposes the VQCOMB to allow for varying model weights

over various volatility regimes.

The results reveal that the SCOMBmodel combination showed significant improvements over

the benchmark HAR model, as well as the SHAR and logHAR models showing significant re-

ductions in MSE compared to the HAR model (13.3%, 7.8%, and 35.6% respectively). However,

the SCOMB does not outperform the HARQ(F), HARX, and FFNN models. In low volatility

regimes, the logHAR model achieves a significant 65% MSE reduction, while the FFNN model

shows a substantial increase of 73% in relative MSE. In high volatility regimes, the HARQF

and HARX models have MSE reductions (14% and 21% respectively), whereas the logHAR and

FFNN models underperform. The SCOMB model beats the peLCOMB and VQCOMB in terms

of MSE across all volatility regimes, highlighting the importance of a simpler model combination
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approach. In conclusion, the SCOMB model proves to be a robust choice for RV forecasting,

given the varying model performance across different volatility regimes.

This research shows that a model combination is not able to beat all HAR models and

the neural network, but allows for more robust forecasts of RV. Especially in low and high

volatility, not all forecasting models are capable of providing reasonable RV forecasts, whereas,

the SCOMB can provide robust forecasts. Therefore, combining forecast results can increase

robustness in these situations. Moreover, this study describes the behavior and performance of

the various models in different volatility regimes. Additionally, we identify that simple model

combinations are more useful than complex model combinations.

The remainder of this paper is structured as follows. First, we explain how we handle the data

in Section 2. Then, we elaborate on the used methods in Section 3. Following the methodology,

we show the results in Section 4. Lastly, we present our main findings in Section 5.

2 Data

This section provides a description of the dataset used in our research. The dataset is obtained

from multiple sources and consists of daily observations spanning from January 29, 2001, to

December 30, 2021, containing 5264 trading days. The dataset contains information related to

25 companies included in the Dow Jones Industrial Average Index, which are labeled using a

tracker. The variables included in the dataset are realized variance (RV), realized quarticity

(RQ), realized semivariances (RV-/RV+), the CBOE volatility index (VIX), implied volatility

(IV), 1-week momentum (MOM), and dollar trading volume (TV). An overview of the variables

is provided in Appendix A.1.

Kleen and Tetereva (2022) provide us with a dataset containing: RV, RQ, RV-/RV+, and

VIX. This dataset covers 29 companies from January 3, 2000 to December 30, 2021. We extend

this dataset by adding IV through OptionMetrics and MOM and TV through Yahoo Finance.

The IV data is obtained from OptionMetrics through the WRDS database. We query the implied

volatility of options for the 25 companies from January 29, 2001, to December 30, 2021, and

calculate the median implied volatility for each asset on a given date. MOM and TV are obtained

from daily data sourced from Yahoo Finance, including closing prices and trading volume.

The dataset spans a period that includes significant market events, such as: the dot-com

bubble and burst (2000-2001), 9/11 (2001), the global financial crisis (2007-2009), the European

debt crisis (2010-2012), the flash crashes of May 6, 2010, and August 24, 2015, the US debt

ceiling crisis (2011), and the COVID recession (2020-). We focus on 25 companies, excluding

DOW (Dow Chemicals), JPM (JP Morgan), PG (Procter and Gamble), and UNH (United
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Health) due to missing observations. The tickers of the included companies are: AAPL, AXP,

BA, CAT, CSCO, CVX, DIS, GE, GS, HD, IBM, INTC, JNJ, KO, MCD, MMM, MRK, MSFT,

NKE, PFE, RTX, TRV, VZ, WMT, XOM.

To fit our research, we segment the data into different subsets. For replication purposes, we

use the same training, validation and testing set as Christensen et al. (2022) but we label the

testing set as our combination set. The training set covers the period from January 29, 2001, to

December 12, 2012, comprising 57% of the dataset. This used to fit all the individual models.

The validation set spans from December 13, 2012, to August 20, 2014, covering 8%. This

subsample is used to construct the FFNN. For the HAR models, we incorporate the validation

set into the training set. The combination set is defined from August 21, 2014, to December 29,

2017, representing 16% of the data. This subsample is used to estimate combination weights for

our model combinations. Finally, the testing set includes observations from December 30, 2017,

to December 30, 2021, accounting for 19%.

To forecast realized variance, we rely on the explanatory ability of multiple variables. Chris-

tensen et al. (2022) find - according to their variable importance measure - that daily, weekly

and monthly lags of the RV, VIX, and the IV are the most important predictors of RV. There-

fore, we decide to include these variables in our dataset. Kambouroudis et al. (2021) find that

implementing the IV in the HAR is more accurate than any HAR model excluding it. Moreover,

we use RQ and RV+/RV-, since well-known variations of the HAR model rely on it. Lastly, we

use the MOM of asset prices and the TV of the underlying asset.

We preprocess the data to handle missing values and prepare it for neural network input.

(i). We use linear interpolation to interpolate the VIX index on May 4, 2006. (ii). We exclude

data on February 2, 2011, from our dataset, since this data was also missing from the original

dataset provided by Kleen and Tetereva (2022). (iii). We normalize data using the sample mean

and sample variance from the training set to standardize the input for the FFNN.

3 Methodology

The aim of this research is to forecast the quadratic variation (QV). We haveXi = {Xi,1, ..., Xi,5264}

which denotes the series of log prices for each day for stock i. The QV of Xi captures the stochas-

tic volatility process and the aggregate jumps of Xi (Christensen et al., 2022). Since the QV is

a theoretical variable, we estimate the QV using the realized variance (RV). RV is shown to be

a consistent estimator of QV (Barndorff-Nielsen & Shephard, 2002). We denote the log price

Xi at day t as Xi,t. In the Equation below, we show the calculation of the realized variance on

day t for stock i:
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RVi,t =
n∑

j=1

(ri,j)
2 (1)

where ri,t denotes the intraday returns of stock i at time j and n is the number of intraday

returns.

3.1 HAR model

The heterogeneous autoregressive (HAR) model of Corsi (2008) is widely considered the bench-

mark in volatility forecasting research (Christensen et al., 2022). To ensure comparability with

available research, we use the HAR model as the benchmark model in this research. The HAR

model is defined as

RVi,t = βi,0 + βi,1RVi,t−1 + βi,2RVi,t−2|t−5 + βi,3RVi,t−6|t−22 + ui,t, (2)

where ui,t
iid∼ N(0, 1). RVi,t−1 denotes the lagged daily RV. RVi,t−2|t−5 and RVi,t−6|t−22 the

lagged weekly and monthly RV respectively. We compute the daily, weekly, and monthly RV

such that they are independent on each other. To show this, the weekly RV uses the RV from

5 days ahead till two days ahead. The RV from one day-ahead is not used, since this would

give collinearity issues with the daily RV. The weekly and monthly RV for stock i at day t are

calculated as follows:

RVi,t−j|t−k =
1

k − j + 1

j∑
i=k

RVt−i (3)

where j = 2 and k = 5 for the weekly RV and j = 6 and k = 22 for the monthly RV.

3.2 Variations on the HAR model

Since Corsi (2008) proposed the general HAR framework, many other variations on this model

have been proposed. In the original paper, Corsi (2008) also proposes the log HAR. The log

HAR log transforms all the variables of the HAR model. Since the distribution of the RV

is left-skewed and right-fat-tailed, the log transformation of RV values makes the distribution

more symmetric, and thus more normally distributed. Consequently, the residual of a log HAR

resembles the normal distribution better. This makes the parameter estimation using OLS more

efficient. The log HAR for stock i is estimated as follows:

log(RVi,t) = βi,0 + βi,1 log(RVi,t−1) + βi,2 log(RVi,t−2|t−5) + βi,3 log(RVi,t−6|t−22) + ui,t, (4)

where ui,t
iid∼ N(0, 1).
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To make RV forecasts, we need to transform the log RV back to RV. Since the residual of

the log HAR - ui,t - is standard normally distributed, the expected value of its exponential is

equal to exp(σ
2

2 ). Thus, the transformation is as follows:

RVi,t = exp(βi,0+βi,1 log(RVi,t−1)+βi,2 log(RVi,t−2|t−5)+βi,3 log(RVi,t−6|t−22))+exp(
σ̂2

2
), (5)

where σ̂2 will be estimated using the sample variance s2.

Another variation on the HAR model is the semivariance HAR model (SHAR) (Patton &

Sheppard, 2015). This model is set up such that it is able to capture the leverage effect. The

leverage effect refers to the observed tendency of an asset’s volatility to be negatively correlated

with the asset’s returns (Aı̈t-Sahalia et al., 2013). In other words, volatility tends to increase

when the asset price declines. Whereas when there is an increase in price, asset price levels

are more stable. The SHAR model leverages these effects by using the positive and negative

semivariance. The SHAR model is as follows:

RVi,t = βi,0 + β−
i,1RV −

i,t−1 + β+
i,1RV +

i,t−1 + βi,2RVi,t−2|t−5 + βi,3RVi,t−6|t−22 + ui,t, (6)

where RV +
i,t =

∑
j:ri,j>0(ri,j)

2, RV −
i,t =

∑
j:ri,j<0(ri,j)

2, ri,j is the intraday return of stock i, and

ui,t
iid∼ N(0, 1).

Bollerslev et al. (2016) propose the HAR Quarticity (HARQ) and HARQ full (HARQF)to

allow for time-varying parameters of the HAR model that differ with the estimated degree of

measurement error. The result is that the model can allow for greater persistence when the

measurement error is small, and weaker persistence when the measurement error is large. The

HARQ and HARQF model use the realized quarticity (RQ): RQi,t =
n
3

∑n
j=1(ri,)

4. RQ is used

to estimate the degree of measurement error. RQ has been shown to estimate the integrated

quarticity (IQ) (Barndorff-Nielsen & Shephard, 2002), which in turn captures the estimation

error of RV. Therefore, RQ is a consistent estimator of the estimation error of RV. The HARQ

as proposed by Bollerslev et al. (2016):

RVi,t = βi,0 + (βi,1 + βi,1QRQ
1/2
i,t−1)RVi,t−1 + βi,2RVi,t−1|t−5 + βi,3RVi,t−1|t−22 + ui,t, (7)

where ui,t
iid∼ N(0, 1).
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To allow for longer-term leverage effects, Bollerslev et al. (2016) also propose the HARQF:

RVi,t = βi,0 + (βi,1 + βi,1QRQ
1/2
i,t−1)RVi,t−1 + (βi,2 + βi,2QRQ

1/2
i,t−2|t−5)RVi,t−2|t−5

+ (βi,3 + βi,3QRQ
1/2
i,t−6|t−22)RVi,t−6|t−22 + ui,t, (8)

where ui,t
iid∼ N(0, 1).

Lastly, we define the HARX model. This model includes the ”baseline” HAR model and

extends it using other explanatory variables. Besides the daily, weekly, and monthly lagged RV,

we use the VIX, implied volatility (IV), 1-week momentum (MOM), and dollar trading volume

(TV) as described in Section 2:

RVi,t = βi,0 + βi,1RVi,t−1 + βi,2RVi,t−2|t−5 + βi,3RVi,t−6|t−22 + βi,4VIXi,t−1

+ βi,5IVi, t− 1 + βi,6MOMi,t−1 + βi,7TVi,t−1 + ui,t, (9)

where ui,t
iid∼ N(0, 1).

All HAR models and variations on the HAR models are estimated using a rolling window

approach. To limit computational demand, we estimate and re-estimate the model three times.

For our forecasts on the combination set, we estimate the models on August 21, 2014, October

2, 2015, and November 14, 2016. For the forecast on the test set, we estimate the model on

December 30, 2017, May 2, 2019, and August 31, 2020. For both sets, we fix the backward-

looking estimation window at w = 2986.

To estimate parameters for all our HAR models, we use ordinary least squares (OLS) esti-

mation. We perform all the estimations and forecasts in the R programming language.

3.3 Feed-forward neural network

The feed-forward neural network (FFNN) is a - relatively - lightweight trainable neural network

that can be used for forecasting volatility (Christensen et al., 2022). Compared to the widely-

recommended long short-term memory recurrent neural network (LSTM RNN) (Bucci, 2020),

the FFNN is less computationally demanding. Therefore, we decide to use the FFNN.

3.3.1 Network architecture

A FFNN consists of an input layer, hidden layer(s), and an output layer. The input layer receives

the input data. In our case, these are the explanatory variables such as IV and lagged monthly
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RV (RVM). The hidden layers consist of neurons that are able to make nonlinear transformations

on the data. Eventually, they will - ideally - learn the relations between variables. Lastly, the

output layer provides our output data. In this research, the output layers are comprised of a

single neuron that gives a value for the (predicted) realized variance.

A hidden layer l is made up of multiple neurons. We build our FFNN such that there are

three hidden layers that contain 64, 32, and 16 neurons. A neuron j receives input data and

weighs this according to a weight matrix θ(l). The input data is weighted and a bias term b(l)

is added. Next, the transformed data passes through the activation function. The activation

function transforms the data nonlinearly. In this way, an FFNN can capture nonlinearity. Our

FFNN uses the Rectified Linear Unit (ReLU) as an activation function.

Thus, we can denote the model prediction as a function of the weighted sums, bias terms,

and activation functions:

a
θl+1,bl+1

t = gl

 Nl∑
j=1

θ
(l)
j aθl,blt + b(l)

 , 1 ≤ l ≤ L, (10)

where a
θl+1,bl+1

t is the output from layer l with the input for layer l + 1, gl is the activation

function, θ
(l)
j is the weighted sum of input aθl,blt in neuron j, b(l) is the bias term of layer l, L is

the number of layers, and Nl is the number of neurons in the layers.

Figure 1: This figure illustrates the architecture of the feed-forward neural network used in this

research. This illustration is taken from Christensen et al. (2022).

3.3.2 Parameter estimation

To estimate the parameters, we use back-propagation (Goodfellow et al., 2016). Back-propagation

is the practice of using an algorithm to compute the gradient of the loss function (MSE) for

the network parameters, the weights θ(l) and biases b(l) (Goodfellow et al., 2016). The weights
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and biases are then updated using the gradient and a certain learning rate. Eventually, the pa-

rameters converge to their optimal state. In our case, we use the Adaptive Moment Estimation

(Adam) algorithm, since this algorithm allows for fast convergence (Wang et al., 2022).

To better understand the parameter estimation, we will describe the process more closely.

First, we select the training and validation set. Second, we initialize the FFNN and compute

a prediction. The process of making a prediction using a feed-forward neural network is called

forward propagation. Third, we use the Adam algorithm to optimize our parameters according

to the loss function (back-propagation). When the model is not ’optimal’ yet, we compute

another prediction with the ’new’ parameters. The process of performing an iteration of forward

propagation and back-propagation is called an epoch. Our FFNN algorithm is set up such that

we have a maximum of 100 epochs or a loss function that has not changed substantially for 10

epochs. In the latter case, we stop the algorithm at an ’early stage’. In both cases, we complete

the parameter estimation.

3.3.3 Regularization

Since the FFNN optimizes its parameters by performing a lot of iterations over the same sample,

the model is prone to overfitting. Therefore, to allow for generalization of the model, we use

multiple regularization techniques. These include (i). drop out, (ii). early stopping, and (iii).

ensembles. Dropout is a technique where a fraction of the hidden layer output is set to zero.

Regarding Equation 10, the drop-out function sets values from a
θl+1,bl+1

t to zero. In our FFNN,

we employ a drop-out of 0.2. This means that the drop-out function sets 20% of the variables to

zero at random. The drop-out function is applied between each hidden layer. Moreover, Early

stopping is used to ensure that the FFNN does not perform the maximum amount of epochs

each time. This ensures better calculation times, but also regularization. Lastly, ensembling is

the technique of combining the models to make predictions. We estimate 100 models of which

we select the best ten to be used for the ensemble. We combine forecasts of the ten best models

by equally weighting their outcomes.

3.3.4 Hyperparameters

In the previous subsections, we explain the setup of the FFNN algorithm and also note some

of the hyperparameter settings. To gain more insight in the hyperparameter, we provide an

overview in Appendix A.3. The FFNN algorithm is written in Python. Additional functions

and used packages are also included in Appendix A.3.
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3.4 Model combinations

In this section, we discuss the collection of model combinations that will be used in this research.

Timmermann (2006) provides a comprehensive outlook on forecast combinations. He finds that

simple forecast combinations often outperform more complicated combinations. Therefore, we

consider the simple average model combination (SCOMB):

f̂i,t =
1

M

M∑
m=1

f̂i,m,t, (11)

where ˆfi,m,t indicates the RV forecast for stock i of model m at time t and M = 7 indicating

the total amount of forecast models.

3.4.1 peLASSO forecast combination

Diebold and Shin (2019) propose a forecast combination using the abilities of both shrinkage

models and simple-average combinations. Their method relates to the idea of eliminating ’bad’

models and averaging over the remaining sufficient models. This is called the partially egalitarian

LASSO forecast combination (peLCOMB):

In this research, we use a two-step approach to the peLASSO forecast combination as de-

scribed by Diebold and Shin (2019). First, we fit a LASSO model on the forecasts. Second,

we find which LASSO parameters are nonzero and set all these parameters such that they have

equal weights.

First, we forecast using all the individual models on the combination set. Thus, we obtain

seven different series containing 847 RV forecasts. Second, we fit a LASSO regression on the

model forecasts and the actual RV values in the combination set. A LASSO regression is a

penalized linear regression where we minimize the squared estimation error plus a penalty term

(Tibshirani, 1996). We estimate the LASSO regression by minimizing the following function

(Friedman et al., 2010):

min

[
1

2S

S∑
i=1

(
(
RVi,t − βi,0 −

M∑
m=1

βi,mf̂i,m,t

)2
+ λ

M∑
j=0

|βi,j |

]
, (12)

where f̂i,m,t is the RV forecast of stock i by model m at time t , M = 7 is the total amount of

models, S = 25 is the total amount of stocks, and λ = 0.1 is the shrinkage parameter.

We use the glmnet package in R to estimate the LASSO parameters. The glmnet algorithm

computes the parameters by using a coordinate descent algorithm (Friedman et al., 2010). By

fitting the LASSO regression, we now have some parameters that are set to zero and some that

are nonzero. In the third step, we set all the nonzero LASSO parameters - combination weights
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- to equal weight. Resulting, we eliminate some models in our model combination by setting

their weight to zero but maintaining equal weight over the remaining models. We obtain the

following for the partially egalitarian LASSO model combination (peLCOMB):

f̂i,t =
M∑

m=1

wi,mf̂i,m,t, (13)

where wi,m is the weight from the two-step peLASSO for stock i for model m.

3.5 Volatility quantile-based forecast combination

The volatility quantile-based forecast combination (VQCOMB) aims to segment RV into q quan-

tiles based on their volatility. Next, a peLASSO forecast combination is made for each of these

quantiles. Consequently, we obtain q weight vectors. The VQCOMB is a method that aims to

combine the forecast accuracy of multiple volatility forecasting models and cherry-pick models

on each volatility quantile. Christensen et al. (2022) shows that a neural network is accurate

in mid to high volatility and the HARX model performs well in low volatility. This presents

the possibility of combining models and weighing them differently according to the expected

volatility quantile.

To construct the volatility quantiles, we use IV. Since this variable captures the expected

volatility, we use it to forecast the volatility quantile. The quantiles are constructed using data

from the training set. We order the IV and construct q = 10 volatility quantiles based on their

order such that the first Ntrain/10 IVs correspond to quantile q = 1.

The HAR models and FFNN are fitted on the training set and forecast one day-ahead RV

on the combination set. A forecast ˆRVt1 is labeled according to the volatility quantile q it got

assigned by IVt−1. We filter the RV forecasts into 10 quantiles for each stock using the labels.

For each collection of forecasts, we fit a peLASSO forecast combination as described in Section

3.4.1. If a quantile contains only one observation or all peLASSO parameters are zero, the

VQCOMB weight for that quantile is set to equal weights (SCOMB). Thus, for each stock, we

obtain wi,q where q = 1, ..., 10. We construct the model forecast of VQCOMB as follows:

f̂i,t =
M∑

m=1

wi,q,mf̂i,m,t[minq < IVt−1 ≤ maxq], (14)

where minq and maxq are the minimum and maximum IV values within the volatility quantile

q.
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3.6 Model evaluation

To evaluate forecast results by the forecast models and model combinations, we use the relative

mean squared error (relMSE) and QLIKE function. The MSE is a widely used model forecast

evaluation measure. However, we use the relMSE, because it allows us to look at how models

perform relative to each other. The QLIKE function is an evaluation measure specific to volatility

forecasting (Bollerslev et al., 1994).

The relMSE is calculated as follows:

relMSEb,m =
1

S

S∑
i=1

MSEi,m

MSEi,b
, (15)

where S = 25 are the total amount of stocks, MSEi,m is the MSE for model m of stock i, the

MSEi,b is the MSE for the benchmark model b of stock i. We compute the relMSE for both the

combination and test set.

We formulate the QLIKE of a model m for a stock i as follows:

QLIKEm,i =
1

n

n∑
t=1

(
log

(
f̂2
m,i,t

)
+RV 2

i,tf̂
−2
m,i,t

)
, (16)

where n is the total number of evaluated observations. To get the actual Q-function for model

m, we average over all the stocks QLIKEm = 1
S

∑S
i=1QLIKEm,i. Patton (2011) finds that only

the MSE and QLIKE are robust to noise in assessing volatility forecasts. The MSE is sensitive

to outliers of forecast errors in the right tail. The QLIKE function is robust to outliers in the

right tail, but is extremely sensitive to forecast errors in the left tail - so for negative forecast

errors.

To further evaluate the forecast performance, we also use the one-sided Diebold-Mariano

(DM) test to verify whether a model significantly outperforms another model. We use dm.test

from the forecast package in R to compute the p-values for the DM tests. The dm.test

function is based on the theoretical framework proposed by Harvey et al. (1997).

4 Results

In this section, we present the results of our empirical analysis of the forecast performance of var-

ious models for predicting volatility. We compare the performance of the HAR models, FFNN,

and combination models using metrics such as relative MSE, DM tests, and the QLIKE mea-

sure. Additionally, we analyze the performance of the models across different volatility regimes

and assess the difference in forecasting performance between simple and complex combination

models.
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First, we examine the performance of the SCOMB compared to the HAR model. Table 1

reveals that the SCOMB reduces the MSE by 13.3% relative to the HAR model. The DM tests

indicate a 5% significance level for more than 50% of the stocks, specifically 17 out of 25. This

means that the null hypothesis that the models have equally predictive power is rejected for

more than half of the stocks. Furthermore, in Appendix A.4.1 Table 8, we observe that the

MSE of the SCOMB is consistently smaller than the MSE of the HAR model for each individual

stock. However, in Table 9, we find that the average QLIKE is only 2.7% smaller for the SCOMB

compared to the HAR. Still, we can conclude that the SCOMB significantly outperforms the

HAR model.

We also compare the SCOMB with other models. The SCOMB outperforms the logHAR

and SHAR models, as shown in Table 1 by the lower MSE values (35.6% and 7.8% lower,

respectively). Moreover, the DM tests indicate a 5% (logHAR) and 10% (SHAR) significance

level for more than 50% of the stocks. Similarly, in Appendix A.4.1 Table 9, the SCOMB has

a lower average QLIKE compared to these models. However, for the HARQ(F), HARX, and

FFNN, the results are inconclusive. Although the MSE of the SCOMB is lower than that of

HARQF and HARX, the DM tests do not show significance. In addition, for the FFNN, the

average QLIKE shows a decrease of 0.8% indicating equally predictive power. Thus, the SCOMB

improves on the HAR, logHAR, and SHAR, but is inconclusive for the HARQ(F), HARX, and

FFNN.

Figure 2: The figure presents the relative Mean Squared Error (MSE) of RV forecasts for each model,

excluding peLCOMB and VQCOMB, in the test set across different volatility regimes. The volatility

regimes are defined based on observed RV values and are organized into five distinct categories. Each

regime represents a quintile of RV forecasts, with the first regime containing the lowest RV values and the

last regime containing the highest RV values. The ordering of the quintiles follows the actual observed

RV values. Hence, (0.0,0.2) contains forecasts for RVs that correspond to the 20% lowest RVs in the test

set.
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In evaluating the forecasting performance of various models under different volatility regimes,

we first focus on low volatility. Figure 2 shows the relative MSE of the models to HAR in the

test set. Actual values are provided in Appendix A.4.1 tables 7 and 6. We find that the logHAR

stands out with an MSE reduction of 65% compared to the HAR. This is most likely due to

the hesitant behavior of the logHAR to respond to changes in the RV. Figure 3a illustrates

this by showing that the logHAR is the most conservative in responding to an increase in RV.

Moreover, the HARQ and HARQ reduce MSE by 51% and 55% respectively. As figure 3a shows

that the HARQF responds quickly to the increase in RV, we would expect that the model would

underperform in a low volatility regime. However, the HARQ and HARQF are set up such that

they allow for greater persistence when measurement errors are small and smaller persistence

when measurement errors are large. In a low volatility regime, measurement errors are small, so

the HARQ(F) is not responsive to changes in RV. FFNN has the highest relative MSE with an

increase of 73%. The FFNN is likely too sensitive to changes in RV such that it overestimates

RV in low volatility. The responsiveness of FFNN is further supported in figure 3a. Thus, in a

low volatility regime, the most conservative model proves to be the most accurate.

(a) January 30, 2018 - February 13, 2018 (11 observations) (b) March 10, 2020 - March 24, 2020 (11 observations)

Figure 3: These figures display line graphs of the RV and the RV forecasts of six models for Coca-Cola

Co.(KO) on two specific subsamples in the test set. KO is selected as example, because the MSE and

QLIKE of the six selected models correspond with the average MSE and QLIKE over all the stocks.

The forecast models include: HAR, logHAR, HARQF, HARX, FFNN, and SCOMB. For robustness, we

provide line graphs for two different stocks for the same time periods in Appendix A.5.1.

Next, we compare models in high volatility. The HARQF and HARX show the largest

reduction in MSE (14% and 21% respectively). As previously discussed, the HARQF is able to

switch persistence of historical volatility when measurement errors vary. This makes it an agile

model to respond to increases in volatility. Comparing this to the MSE reduction of merely

7% for the HARQ. The weekly and monthly time-varying parameter of the HARQF give more

accurate results in high volatility as opposed to only the daily time-varying parameters for the

HARQ. HARX ensures the greatest MSE reduction. This is most likely due to the IV variable
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which has an forward-looking ability. This forward-looking ability is illustrated in figure 3a as

the HARX increases in RV before any other model does. Underperforming models in the high

volatility regime include the logHAR and FFNN with an MSE increase of 22% and 12%. Though

FFNN shows adequate responsiveness in figure 3a, MSE indicates inaccuracy. This is congruent

with figure 3b, where FFNN portrays ineffect forecasting. Overall, figure 3b illustrates the

inability of models to forecast RV in extreme volatility. This is universal, even for the HARX.

In the mid volatility regimes, logHAR and FFNN are most accurate. Here - on average

- logHAR reduces MSE with 40% whereas FFNN reduces MSE with 20%. The conservative

nature of the logHAR makes it also an adequate model in mid volatility regimes. Findings indi-

cating accuracy in mid volatility regimes are in accordance with previous literature (Christensen

et al., 2022). Notably, is the extreme inflation of MSE from the HARX in mid volatility regimes.

This varies from an increase in MSE of approximately 80-130%. The HARX has been shown

to be inaccurate in mid volatility regimes with inflation of MSE around 10-60% (Christensen

et al., 2022). Hence, our results deviate from previous findings. The large MSE values could

be explained by the sensitivity of HARX to IV. Increased values of IV could trigger an sup-

posedly unnecessary reaction to a high volatility expectation. This in term creates inaccurate

forecasts. SCOMB performs steadily in mid volatility with relative MSE values not deviation

much, indicating robustness.

Table 1 shows that SCOMB has the lowest MSE compared to peLCOMB and VQCOMB.

Also in Appendix A.4.1 Table 6, we find that the SCOMB performs better on all volatility

regimes. This is due to the weighting of peLCOMB and VQCOMB. The weight of the model

combinations is estimated on the combination set. But since the forecast models have different

results in the combination set, the weights are not fitted right for the test set. Appendix

A.4.1 Table 5 shows contradictory results for the logHAR and FFNN compared to the test set.

The peLCOMB mostly selects the HARX and FFNN. Since these models are inaccurate in the

test set, this explains the higher MSE for the peLCOMB. As for the VQCOMB, its weights

are more evenly distributed. But again, the heavy weighting of the HARX and FFNN makes

VQCOMB noncompetitive. Moreover, there is a major critique of whether the forward-looking

IV can segment the following RV value in the right volatility quantile. Concluding, a simple

model combination is desirable to a more complex model combination since the performance of

volatility models can vary significantly between sample sets.

Table 1 reveals that the SCOMB model outperforms both peLCOMB and VQCOMB in

terms of mean squared error (MSE). Additionally, in Appendix A.4.1, Table 6 demonstrates

that SCOMB consistently performs better across all volatility regimes. These findings can be
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explained by the weighting methodology employed in the model combinations. It is worth noting

that the weights of the model combinations are estimated on the combination set. Subsequently,

since the forecast models yield different results within the combination set, the weights may not

be appropriately fitted for the test set. As shown in Appendix A.4.1, Table 5, the results for

logHAR and FFNN contradict those obtained from the test set. Notably, peLCOMB predomi-

nantly selects HARX and FFNN, which are inaccurate in the test set, resulting in a higher MSE

for the peLCOMB. Similarly, VQCOMB distributes its weights more evenly, but the substantial

weighting of HARX and FFNN lowers the competitiveness of VQCOMB. For the VQCOMB

the critical concern arises that the IV cannot accurately label volatility regimes resulting in

an ineffective weighting scheme. Consequently, we find that a simpler model combination ap-

proach is preferable over a more complex one, as the performance of volatility models can exhibit

significant variation across different sample sets.

5 Conclusion

This research aims to answer whether a combination of HAR models and an ’off-the-shelf’ neural

network can improve one day-ahead RV forecasts. Furthermore, we look at the model forecasting

performance in various volatility regimes. And lastly, we research whether a simple or complex

model combination is desirable when forecasting RV.

The SCOMB model outperforms the HAR model with a 13.3% reduction in MSE and sig-

nificant (p < 0.05) DM test results for more than half of the stocks. It also improves on the

logHAR and SHAR models, showing lower MSE values (35.6% and 7.8% lower respectively) and

significant (5% and 10%) DM test results. However, its performance is inconclusive compared

to the HARQ(F), HARX, and FFNN models. In low volatility regimes, the logHAR shows a

significant 65% MSE reduction, while the FFNN overestimates volatility with a 73% relative

MSE increase. In high volatility regimes, the HARQF and HARX models have substantial MSE

reductions (14% and 21% respectively), while the logHAR and FFNN models underperform.

In mid volatility regimes, the logHAR and FFNN models show higher accuracy, reducing MSE

by 40% and 20% respectively, whereas the HARX model has an unexpectedly large inflation of

MSE. The SCOMB model outperforms peLCOMB and VQCOMB in terms of MSE and across

all volatility regimes, which shows the importance of a simpler model combination approach. A

simple model combination is preferable since the model forecast performance can change quickly

between sample sets. Overall, SCOMB proves to be a robust model to forecast RV, since model

performance varies across volatility regimes.

The research has several limitations that need to be considered. First and foremost, the RV
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forecasts of the FFNN are less accurate compared to the similar NN3
10 by Christensen et al.

(2022). The relative MSE on the same sample set is 0.947 for the FFNN and 0.898 for the NN3
10.

This indicates differences in the models, probably due to hyperparameter settings. Consequently,

the relevance of the model combinations presented in this research is mostly due to the robustness

they provide. Whereas the aim of the research was to investigate whether a combination of HAR

and FFNN could complement each other. Since the FFNN in the test were inaccurate, the model

combinations mostly depended on the HAR models. Second, volatility quantile forecasting using

IV is not efficient in forecasting the following volatility regimes. This makes the VQCOMB a

relatively irrelevant model combination. However, the underlying principle is interesting and

could still be an area of future research. Third, due to time constraints, the RV forecast of the

logHAR was not transformed appropriately. According to Equation 5, an inflation factor due to

the transformation of the error term in Equation 4 is needed. This lacks in our transformation

of the logHAR. Fourth, the QLIKE and MSE are limited metrics in assessing volatility forecasts.

The MSE is highly influenced by outliers that result in high positive forecast errors. On the

other hand, the QLIKE function is robust to outliers for high positive forecast errors but is

susceptible to outliers with high negative forecast errors - overestimation of RV. It is therefore

important to regard both metrics.

For future research, we recommend research outlining the practical implementation of implied

volatility can be useful. Since implied volatility data is hard to come by and calculations are

complex and computationally demanding, an easy-to-use implementation can be convenient

for researchers who are not interested to spend a lot of time on these issues. Moreover, a

practical outline that implied volatility data can be discarded and what data contains important

information is also interesting for further research. Furthermore, we suggest further research in

studying extremely high volatility cases and how to forecast this. Current models are ineffective

in handling these cases. Lastly, further research into neural networks and the promising LSTM

RNN are the future of volatility forecasting.

In conclusion, a combination of HAR models and a neural network is able to improve the

benchmark HAR, SHAR, and logHAR models, but fails to significantly outperform the other

models. That said, the simple SCOMB combination model is able to provide robust forecasts

in various volatility regimes and beats more complex combination models while maintaining

computational simplicity.
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A Appendix

A.1 Variables

Table 2: Variable description

Name Description Formula

RV Realized variance RVi,t =
∑n

j=1(ri,j)
2

RQ Realized quarticity RQi,t =
n
3

∑n
j=1(ri,)

4

RV+ Realized positive semivariance RV+
i,t =

∑
j:ri,j>0(ri,j)

2

RV- Realized negative semivariance RV−
i,t =

∑
j:ri,j<0(ri,j)

2

VIX CBOE volatility index∗ σ2 = 2
T

∑
i
∆Ki

K2
i
eRTQ(Ki)− 1

T [
F
K0

− 1]2

IV Implied volatility∗∗ -

MOM 1-week momentum MOMi,t =
(Xi,t−Xi,t−5)

Xi,t−5

TV dollar trading volume∗∗∗ -

Notes: This table shows the variable name and description with the corresponding formula. ∗Denotes the CBOE volatility

index using the calculation provided by Demeterfi et al. (1999). Regard the document provided by CBOE (2022) for more

information on the calculation procedure. ∗∗ The implied volatility is obtained by taking the median of the implied volatil-

ities of a stock’s option pricing through OptionMetrics. Regard the data section for more information. ∗∗∗Dollar trading

volume denotes the cumulative sum of dollars spent on trades on an asset during one trading day.
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A.2 Descriptive statistics of variables
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A.3 Hyperparameters tuning on feed-forward neural network
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A.4 Results

A.4.1 Combination set (replication of Christensen et al. (2022))

In table 5 we provide the relative MSE of all models in the combination set. These MSEs should

correspond to values for the test set in the study by Christensen et al. (2022).

Table 5: Relative MSE in combination set

HAR logHAR HARQ HARQF SHAR HARX FFNN

HAR 0.976 1.004 1.009 0.984 0.982 0.947

logHAR 1.025 1.029 1.034 1.009 1.007 0.971

HARQ 0.996 0.972 1.005 0.980 0.978 0.943

HARQF 0.991 0.967 0.995 0.975 0.974 0.939

SHAR 1.016 0.991 1.020 1.025 0.998 0.962

HARX 1.018 0.993 1.022 1.027 1.002 0.964

FFNN 1.056 1.030 1.060 1.066 1.039 1.037

Notes: We report the realized variance forecast MSE of each model in the combination sample set in the select

column relative to the benchmark in the selected row. Each number is a cross-sectional average pf such pairwise

relative MSEs for each stock. The formatting is as follow: number (number) [number] denotes whether the Diebold-

Mariano test of equal predicitve accuracy is rejected more than 50% of the time at the 10% (5%) [1%] level of

significance across individual test for each asset. The hypothesis being tested is H0 : MSEb = MSEm against a

one-sided alternative H1 : MSEb > MSEm where model b is the label of the selected row, whereas model m is

the label of the selected column.
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Figure 4 shows the relative MSE performance of all models in the combination set for five

volatility regimes. This figure should resemble the figure on relative MSE of models in various

volatility regimes in Christensen et al. (2022). We note that Christensen et al. (2022) select

different quintiles for their volatility regimes.

Figure 4: The figure presents the relative Mean Squared Error (MSE) of RV forecasts for each model

in the combination set across different volatility regimes. The volatility regimes are defined based on

observed RV values and are organized into five distinct categories. Each regime represents a quintile of

RV forecasts, with the first regime containing the lowest RV values and the last regime containing the

highest RV values. The ordering of the quintiles follows the actual observed RV values. Hence, (0.0,0.2)

contains forecasts for RVs that correspond to the 20% lowest RVs in the combination set.
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A.4.2 Additional results from the test set

Table 6 identifies the forecasting performance of forecasting models on the test set for a given

volatility regime relative to the HAR. This ensures easy comparison between models.
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Table 7 identifies the forecasting performance of forecasting models on the test set for a

given volatility regime. This table shows the absolute MSE values for each volatility regime.

We observe that the MSE in the highest volatility decile is disproportionately high compared to

the other deciles.

T
ab

le
7
:
M
S
E

fo
r
10

vo
la
ti
li
ty

re
gi
m
es

in
th
e
te
st

se
t

rv
H
A
R

lo
gH

A
R

H
A
R
Q

H
A
R
Q
F

S
H
A
R

H
A
R
X

F
F
N
N

S
C
O
M
B

p
eL

C
O
M
B

V
Q
C
O
M
B

1
0.
35

5
0
.1
87

0.
06

5
0.
09

2
0.
08

4
0.
18

1
0.
19

5
0.
32

2
0.
11

8
0.
14

1
0.
16

7

2
0.
53

0
0
.2
28

0.
09

1
0.
15

3
0.
15

4
0.
22

9
0.
31

8
0.
31

4
0.
16

1
0.
19

1
0.
21

5

3
0.
67

5
0
.2
91

0.
13

5
0.
23

7
0.
24

6
0.
32

3
0.
52

0
0.
32

2
0.
23

4
0.
28

0
0.
33

2

4
0.
83

4
0
.3
20

0.
15

9
0.
30

5
0.
31

0
0.
38

4
0.
64

2
0.
31

1
0.
27

3
0.
31

7
0.
35

7

5
1.
02

6
0
.4
29

0.
23

4
0.
45

1
0.
49

4
0.
54

7
0.
92

5
0.
33

9
0.
39

3
0.
46

0
0.
50

8

6
1.
26

6
0
.5
30

0.
32

0
0.
64

4
0.
70

8
0.
62

2
1.
25

0
0.
39

2
0.
51

5
0.
57

1
0.
63

0

7
1.
59

8
0
.6
39

0.
43

8
0.
85

3
0.
92

3
0.
81

5
1.
61

6
0.
52

7
0.
64

8
0.
75

5
0.
74

8

8
2.
11

8
1
.1
18

0.
81

9
1.
59

4
1.
71

9
1.
61

7
2.
49

2
1.
16

4
1.
21

4
1.
30

5
1.
27

1

9
3.
13

0
2
.4
70

2.
08

1
3.
36

8
3.
61

4
3.
30

2
4.
69

1
3.
57

0
2.
59

8
2.
96

0
2.
54

1

10
11

.8
6
8

9
7.
14

9
11

8
.5
62

90
.5
0
7

83
.7
49

94
.0
73

77
.1
43

10
8.
80

4
81

.4
26

90
.5
35

84
.1
51

N
o
te
s:

T
h
is

ta
b
le

sh
o
w
s
th

e
M

S
E

o
f
a

fo
re

c
a
st

m
o
d
e
l
fo
r
v
a
ri
o
u
s
v
o
la
ti
li
ty

re
g
im

e
s.

E
a
c
h

re
g
im

e
re

p
re

se
n
ts

a
d
e
c
il
e
o
f
R
V

fo
re

c
a
st
s,

w
it
h

th
e
fi
rs
t
re

g
im

e
c
o
n
ta

in
in

g
th

e
lo
w
e
st

R
V

v
a
lu

e
s
a
n
d

th
e
la
st

re
g
im

e
c
o
n
ta

in
in

g
th

e
h
ig
h
e
st

R
V

v
a
lu

e
s.

T
h
e
o
rd

e
ri
n
g

o
f
th

e
d
e
c
il
e
s
fo
ll
o
w
s
th

e
a
c
tu

a
l
o
b
se

rv
e
d

R
V

v
a
lu

e
s.

H
e
n
c
e
,
d
e
c
il
e
1
0

c
o
n
ta

in
s
fo
re

c
a
st
s
fo
r
R
V
s

th
a
t
c
o
rr
e
sp

o
n
d

to
th

e
1
0
%

h
ig
h
e
st

R
V
s
in

th
e
te

st
se

t.
T
h
e
R
V

c
o
lu

m
n

in
d
ic
a
te

s
th

e
a
v
e
ra

g
e
R
V

in
th

a
t
v
o
la
ti
li
ty

re
g
im

e
.

28



Table 8 presents the MSE for each model for a particular stock in the test set. The column

on the left shows the stock’s ticker.

Table 8: MSE per stock in the test set

HAR logHAR HARQ HARQF SHAR HARX FFNN SCOMB peLCOMB VQCOMB

AAPL 8.34 8.59 8.07 8.36 8.12 7.96 7.95 7.90 8.47 8.02

AXP 12.27 13.46 10.53 10.62 12.72 9.55 9.14 9.92 12.29 9.92

BA 86.73 143.16 83.21 49.30 70.29 72.37 138.67 74.65 69.81 74.56

CAT 7.92 9.54 7.57 7.57 8.42 7.20 6.56 7.01 8.17 7.05

CSCO 7.11 8.40 7.07 6.78 7.06 6.17 5.40 6.19 6.45 6.28

CVX 11.98 14.34 10.74 10.53 12.17 9.62 14.61 9.84 10.09 9.37

DIS 8.24 9.95 7.21 7.10 7.94 6.83 9.58 6.93 7.83 8.91

GE 23.40 25.84 23.48 23.75 23.79 23.87 22.85 21.48 22.13 21.47

GS 8.40 8.99 7.33 8.04 9.53 8.03 6.34 5.88 6.34 6.09

HD 11.40 13.10 10.90 10.61 8.84 6.49 9.91 8.56 8.23 8.61

IBM 4.16 5.31 3.71 3.69 4.49 3.50 3.92 3.76 3.88 3.80

INTC 10.75 14.14 10.86 10.71 10.14 9.76 10.66 10.20 11.41 10.06

JNJ 5.27 6.48 5.25 5.12 5.46 4.99 11.91 4.96 5.34 5.65

KO 5.40 6.94 5.14 5.01 5.16 4.71 5.40 4.92 4.91 4.95

MCD 8.50 11.40 6.60 5.86 7.64 6.00 10.09 6.51 6.65 6.80

MMM 5.48 5.13 3.96 4.00 4.65 4.30 3.98 3.91 4.69 3.77

MRK 6.24 6.73 5.85 5.69 6.06 5.73 7.40 5.40 6.08 5.40

MSFT 6.72 8.00 7.03 6.79 6.50 6.27 7.93 6.56 6.50 6.53

NKE 7.91 10.62 7.66 7.12 8.26 6.13 10.39 7.21 9.26 7.31

PFE 6.31 6.91 6.32 6.23 6.26 5.64 5.48 5.84 5.87 6.00

RTX 15.90 22.74 16.94 13.15 13.89 12.04 22.59 13.60 12.75 13.74

TRV 6.29 7.39 5.61 5.93 6.50 5.40 7.65 5.50 6.51 5.57

VZ 4.35 4.94 4.08 3.93 4.50 3.89 3.91 3.97 4.27 4.03

WMT 4.57 5.21 4.17 4.09 4.38 4.32 6.13 4.34 4.64 4.38

XOM 8.61 10.45 8.51 8.39 12.17 6.99 13.43 8.38 9.60 13.50

Average 11.69 15.51 11.11 9.53 11.00 9.91 14.48 10.14 10.49 10.47

Notes: This table shows the MSE for each model on each stock. All the stocks’ tickers are included in the most left column. The bottom row is the average MSE over

all stocks. The MSE is calculated over the test set.
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Table 9 displays the Qlike for each model for a particular stock in the test set. The column on

the left shows the stock’s ticker. We note that some Qlike values are extremely high compared

to other values. This is due to the sensitivity of Qlike to forecast errors in the left-side -

overestimation of RV by forecasting models.

Table 9: QLIKE in the test set

HAR logHAR HARQ HARQF SHAR HARX FFNN SCOMB peLCOMB VQCOMB

AAPL 2.65 2.90 2.61 2.60 2.62 39938.57 2.62 2.59 2349.21 2.72

AXP 2.93 3.54 3.34 3.93 2.90 4888.84 2.70 2.95 1038.63 2.80

BA 4.04 4.46 4.08 4.55 4.39 22.23 4.30 4.05 4.06 5.76

CAT 3.14 3.34 3.24 3.20 3.14 6.89 3.14 3.14 3.18 6.75

CSCO 2.14 2.37 2.26 2.57 2.18 719.04 2.05 2.11 2.28 2.21

CVX 2.34 2.39 2.47 2.75 9.45 195.56 2.32 2.27 2.37 66.88

DIS 2.64 2.88 2.60 2.84 2.60 6395.32 2.42 2.50 2.63 4525.24

GE 4.47 4.75 4.48 4.55 4.47 4.58 4.50 4.34 4.43 4.36

GS 2.70 2.83 41497.84 499.49 2.70 47466.47 2.73 2.68 2.76 2.73

HD 2.04 2.25 5.84 2.81 1.95 24882.45 1.97 1.94 2.02 2.33

IBM 2.06 2.34 2.40 2.35 2.05 926.57 1.78 2.03 2.10 162.06

INTC 3.41 3.89 3.83 3.88 3.55 3.89 3.23 3.41 3.32 3.44

JNJ 2.48 3.02 2.37 2.27 2.44 13123.50 2.32 2.28 2.50 4708.11

KO 0.99 1.14 1.20 20.82 0.94 809.23 0.87 0.88 0.98 0.91

MCD 1.58 1.89 1.88 885522.40 1.50 764374.60 1.49 1.43 1.85 60485.14

MMM 2.38 2.78 2.35 2.44 6.33 10.60 2.07 2.20 2.66 2.43

MRK 1.99 2.21 1.93 1.94 2.15 3054.87 1.84 1.92 2.01 1.94

MSFT 2.14 2.33 2.20 2.24 2.10 3.20 2.12 2.11 2.16 2.12

NKE 2.19 2.34 2.25 2.33 2.16 3387.56 2.12 2.12 354.49 2324.80

PFE 2.55 2.86 3.25 3.21 2.52 2.64 2.41 2.42 2.49 2.65

RTX 2.56 2.85 3.68 3.21 2.56 586.65 2.47 2.60 2.74 263.03

TRV 1.94 2.16 2.06 42.47 1.99 172198.60 1.96 1.95 41257.22 1.97

VZ 1.24 1.41 1.44 13.56 1.22 1350941.00 1.26 1.19 1.25 1.36

WMT 1.73 2.09 2.09 2.21 1.79 228.26 1.60 1.68 1.64 3.89

XOM 2.21 2.28 2.22 2.36 219.83 630.46 2.29 2.16 2.32 242.31

Average 2.42 2.69 1662.56 35446.28 11.58 97392.06 2.34 2.36 1802.05 2913.12

Notes: This table shows the QLIKE for each model on each stock. All the stocks’ tickers are included in the most left column. The bottom row is the average QLIKE over all

stocks. The QLIKE is calculated over the test set.
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A.5 Robustness checks

A.5.1 Line graphs in the test set

Figure 5 and 6 are line graphs capturing the RV and corresponding RV forecasts for IBM. The

figure act as a robustness check for the figures 3a and 3b in the results section. We note in

figures 5 and 6 that they also show increased volatility. Since volatility is seen throughout all

graphs - also figure 7 and 8 - volatility is market-wide and not firm-specific.

Figure 5: This figure shows the observed RV and RV forecasts of six models for IBM in the test set.

The data spans from January 30, 2018 till February 13, 2018 (11 observations).

Figure 6: This figure displays the observed RV and RV forecasts of six models for IBM in the test set.

The data spans from March 10, 2020 - March 24, 2020 (11 observations).
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Figure 5 and 6 show the line graphs for the RV and corresponding RV forecasts for Boeing

(BA). Like figures 5 and 6, the figures act as a robustness check for figures 3a and 3b in the

results section. We also note here that we observe increased volatility. Especially in figure 8,

we observe extremely high volatility. Since Boeing is of course highly correlated to the aviation

industry, the turbulent situation around Covid, and the subsequent cancellation of many flights,

likely caused the Boeing stock to fluctuate heavily. Moreover, we report that HAR is most

responsive in figure 7 to an increase in RV. This is in contrast to previous findings in other

figures.

Figure 7: This figure portrays the observed RV and RV forecasts of six models for Boeing (BA) in the

test set. The data spans from January 30, 2018, to February 13, 2018 (11 observations).

Figure 8: This figure displays the observed RV and RV forecasts of six models for Boeing (BA) in the

test set. The data spans from March 10, 2020 - March 24, 2020 (11 observations).
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A.6 Additional information on the models

A.6.1 Model combinations

Table 10 exhibits the peLCOMB weights estimated for each stock using the two-stage peLASSO

procedure described in subsection 3.4.1. We note the weights that are assigned to the HARX

and FFNN are much more predominant than for the other models.

Table 10: Forecast combination weights of peLCOMB

HAR logHAR HARQ HARQF SHAR HARX FFNN

AAPL 1

AXP 1

BA 0.50 0.50

CAT 0.50 0.50

CSCO 0.50 0.50

CVX 0.50 0.50

DIS 0.50 0.50

GE 0.50 0.50

GS 0.33 0.33 0.33

HD 0.33 0.33 0.33

IBM 0.50 0.50

INTC 0.50 0.50

JNJ 0.50 0.50

KO 0.50 0.50

MCD 0.50 0.50

MMM 1

MRK 0.50 0.50

MSFT 0.50 0.50

NKE 1

PFE 0.50 0.50

RTX 0.50 0.50

TRV 1

VZ 0.50 0.50

WMT 0.50 0.50

XOM 0.50 0.50

Notes: This table contains the weights assigned to each model for the peLCOMB by the two-stage peLASSO

estimation procedure. The weights are estimated using the forecasts in the combination set.
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Table 11 outlines the average VQCOMB weights set for each volatility regime. The VQ-

COMB weights are estimated for each stock. Here the weights are averaged over all stocks for

each volatility regime.

Table 11: Forecast combination weights per volatility regime of VQCOMB

HAR logHAR HARQ HARQF SHAR HARX FFNN

1 0.119 0.132 0.219 0.106 0.066 0.199 0.159

2 0.097 0.197 0.117 0.057 0.057 0.337 0.137

3 0.069 0.095 0.055 0.122 0.049 0.349 0.262

4 0.078 0.098 0.091 0.078 0.045 0.298 0.311

5 0.006 0.126 0.106 0.086 0.046 0.326 0.306

6 0.031 0.011 0.045 0.065 0.025 0.505 0.318

7 0.026 0.119 0.026 0.099 0.019 0.252 0.459

8 0.071 0.101 0.021 0.041 0.145 0.335 0.285

9 0.067 0.107 0.073 0.100 0.120 0.333 0.200

10 0.149 0.169 0.109 0.109 0.109 0.149 0.209

Notes: This table contains the average weights assigned to each model for the VQCOMB for each volatil-

ity regime. The forecasts in the combination set are labeled using a volatility quantile, indicating to

which volatility regime the forecast corresponds. Next, the forecasts are sectioned and peLASSO weights

are estimated for each volatility regime. This procedure is repeated for each stock. This table includes

the average weights of that procedure for each volatility regime.
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