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Abstract

As machine learning models are becoming larger and more complex, interpretability is

becoming increasingly crucial. The counterfactual explanation (CE) method is well-known

for giving insight into the inner workings of a large class of models. A CE method generates

an action such that the output of an automated decision model is changed. Extensive

research has been conducted to ensure the realism of suggested actions, however, there

has been a limited focus on assessing the desirability of an action from an individual’s

perspective. In light of this, we extend the Distribution-Aware Counterfactual Explanation

(DACE) method by Kanamori, Takagi, Kobayashi and Arimura (2020) with individual utility.

A multi-objective optimization approach is utilized, where we minimize the DACE cost

function while maximizing utility. Results show that our new Utility & Distribution-Aware

Counterfactual Explanation (UDACE) method is capable of generating multiple Pareto-

efficient counterfactual explanations for the same individual. However, for some datasets,

UDACE might be impractical due to long execution times.
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1 Introduction

The field of artificial intelligence research is advancing rapidly. Prominent technology com-

panies are trying to capitalize on the new research output by swiftly implementing AI-assisted

products. However, these products have inherent biases that must be dealt with, in particular,

when these products are autonomously making high-stake decisions. To combat the bias of auto-

mated decision-making systems, explainable artificial intelligence (XAI) is becoming crucial. To

evaluate if the systems are acting desirably, we must first understand how they come to their

conclusions.

Counterfactual explanation (CE) methods are frequently used in the domain of XAI. A CE

method aims to change the inputs to an automated decision model, such that the decision of

the model changes. CE methods are well suited to explaining which factors contributed most

to a decision. Moreover, they are highly suitable for algorithmic recourse. Algorithmic recourse

involves modifying the decisions made by automated decision-making models by providing ap-

plicants with recommended courses of action.

To find realistic and desirable courses of action, we extend the Distribution-Aware Coun-

terfactual Explanation (DACE) method by Kanamori et al. (2020). Our extension includes the

utility of stakeholders during optimization. By taking utility into account we have a framework

which captures both effort and utility, and hence should increase the probability of successful

recourse. The resulting method is named Utility & Distribution-Aware Counterfactual Explan-

ation (UDACE). Where the DACE cost function is treated as a proxy for effort.

The key stakeholders during a recourse process are the institution that utilizes the machine

learning model for automated decision-making, and the applicant who is affected by the decision.

In this research, only the preferences of applicants are taken into account, since they will have

to perform the actions.

The main research question of our research is: How can counterfactual explanations take

stakeholder preferences into account for personalized recourse?

To answer our main research question we must tackle the latent nature of preferences. It is

common to infer preferences by observing an individual’s choices (Samuelson, 1948). If multiple

pairwise choices of an individual over a set of items are observed, then a Bradley-Terry model

can be estimated to find a ranking of all items. The Bradley-Terry model was also used by Rawal

and Lakkaraju (2020) to generate counterfactual explanations (CEs). However, a key difference

is that they estimate a joint Bradley-Terry model to find the ranking for all applicants. While

we estimate a separate model for each applicant.

Synthetic preference simulation is used to evaluate UDACE since obtaining real pairwise

choice data using a field experiment lies outside the scope of our research. We incorporate the

preferences into the DACE formulation by extending the formulation to become a multi-objective

optimization problem. This problem simultaneously minimizes effort while maximising utility,

where effort is the amount of work required by an applicant to act. Since effort is not known

a priori, we use the cost function proposed by Kanamori et al. (2020) as a proxy. The multi-

objective approach, allows us to generate multiple CEs for the same applicant with a spectrum

of associated efforts and utilities.

Our research has both scientific and practical relevance, firstly research on the inclusion of
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preferences in counterfactual explanation methods is limited in the literature (Verma, Dickerson

& Hines, 2020). Secondly, the practical relevance of our research stems from the fact that

recourse is more likely to occur if a counterfactual explanation aligns with the preferences of the

applicant who has to perform the actions.

Additionally, the economic relevance of our research stems from the fact that we capture

the preferences of applicants within a utility framework. Hence, our approach fits within the

economic imperialist tradition initiated by Becker (2010), who used the economic toolkit to

describe a variety of phenomena, including discrimination and its impact.

The inclusion of preferences is necessary for successful recourse. In essence, a counterfactual

explanation method optimizes a cost functions, which is often a distance metric. The goal is to

find the smallest possible perturbation that produces a different outcome (Wachter, Mittelstadt

& Russell, 2017). However, we can question whether the smallest perturbation results in the

highest probability of recourse. For example, suppose a counterfactual explanation in a medical

context advises an individual to start consuming chicken. This action could be easy for some

people in the population, but if we ask a vegetarian to start eating chicken, the utility loss for

the vegetarian is likely to be so large that she will never engage in recourse.

By employing our proposed UDACE method, we demonstrate the applicability of a multi-

objective optimization approach in generating multiple Pareto-efficient CEs. This enables ap-

plicants to have a range of options to choose from. In cases where an applicant is unable to

make a choice, we provide a suggested best action that makes a trade-off between effort and

utility.

1.1 Contributions

The main contributions of our work are:

• Design a method to generate synthetic preference orderings for evaluation purposes.

• Enhance the DACE formulation by incorporating applicant preferences into the framework.

• Formulate a multi-objective optimization problem that considers both effort and utility,

aiming to identify a subset of the Pareto-frontier.

• Utilize a selection mechanism based on previous studies which makes a trade-off between

Pareto-efficient CEs to suggest a single CE.
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2 Literature review

In this review we aim to contextualize the position of our UDACE method within the existing

literature. We first include a brief review on relevant CE methods and then proceed to discuss

how preferences can be captured effectively using utility.

2.1 Counterfactual explanations

The CE method was originally developed by Wachter et al. (2017). Since their publication,

there has been a surge of research interest in CEs. Although the name ”counterfactual” has no

direct link to counterfactuals in a causal context. Nonetheless, some studies have incorporated

causal graphs in the generation of CEs (Mahajan, Tan & Sharma, 2019).

Several studies have incorporated the preferences of applicants in generating CEs. For in-

stance, the study by Mahajan et al. (2019) introduces applicant-specific constraints to ensure

that CEs are locally feasible. Downs, Chu, Yacoby, Doshi-Velez and WeiWei (2020) capture pref-

erences by allowing the applicant to specify constraints, which they use with a Conditional Sub-

space Variational Autoencoder to generate multiple CEs. Rawal and Lakkaraju (2020) consider

the preferences of all applicants by estimating a Bradley-Terry model on pairwise comparisons

of actions. They also conduct a small-scale field experiment to validate their approach.

There are also studies which implicitly capture institutional preferences, by categorizing an

action into one of three distinct categories: immutable, improvement or manipulative (Chen,

Wang & Liu, 2020).

Studies which include the preferences of multiple stakeholders are relatively rare. The only

study we could find was done by Tsirtsis and Gomez Rodriguez (2020). They take into account

the preferences of the institution and the applicant by formulating the process of recourse as a

Stackelberg competition.

Most CE methods consider a weighted sum of objectives when looking for an action. The

first study which used multi-objective optimization to produce CEs was done by Dandl, Molnar,

Binder and Bischl (2020). They use a modified Nondominated Sorting Genetic Algorithm to find

multiple CEs. Their Multi-Objective Counterfactuals method is competitive compared to other

diverse counterfactual generation methods on the German credit dataset (Dua & Graff, 2017).

Mothilal, Sharma and Tan (2020) generate a diverse set of CEs by introducing the Diverse Coun-

terfactual Explanations (DiCE) framework based on detrimental point processes. Overall, the

existing literature presents an opportunity for a valuable contribution which integrates studies

on preferences with the generation of multiple CEs.

2.2 Utility modelling

A core aspect of the economic discipline has always been to try to understand the behaviour of

economic agents. To do so the concept of utility was introduced. The nature of utility has been

debated for a long time. Marshall (2009) utilizes a cardinal form of utility, when he introduces

the Marshallian demand function. While on the other hand, Vilfredo Pareto introduced an

ordinal form of utility, where the focus lies on indifference curves (Wicksteed, 1906).

The key difference between cardinal and ordinal utility is that in an ordinal framework the
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number of utils does not say anything about how much you prefer one state over another. One

can only state whether a certain state is preferred or not preferred when compared to another

state, without making any claims about the intensity of the preference. Even though the concept

of utility has been widely used and accepted, it has also been criticized. For example by Robinson

(1962), who argued that utility theory cannot be tested scientifically because of the assumption

of preference stability.

Over time several models have been developed mostly in the field of discrete choice theory.

These models can often be derived from an underlying utility specification. One of these models is

the Bradley-Terry (BT) model developed by Bradley and Terry (1952), which is a type of logistic

regression model with latent variables. The BT model can be used to describe choices between

a set of items when pairs of items are compared. The BT model satisfies the independence of

irrelevant alternatives assumption, meaning that the outcome of a pair-wise comparison is not

influenced by other items present. This assumption is reasonable but does limit the complexity

of preferences one can have. For example, if one prefers coffee only if there is a chocolate cake

and else one prefers milk. These preferences cannot be captured by a BT model.

Based on the previous works on utility, we extract three axioms that must hold for UDACE

to be a valid approach to obtaining CEs. The first axiom is that preferences are stable over

time. The second axiom is that people reveal their preferences when they make choices. The

third axiom is that people maximize their utility when deciding their course of action.

3 Data

We will utilize the same data sources as Kanamori et al. (2020), which are the FICO dataset

(FICO et al., 2018) and German credit dataset (Dua & Graff, 2017). Both datasets are publicly

available in the UCI machine learning repository (Dua & Graff, 2017).

The FICO dataset is a dataset on the home equity line of credit (HELOC). A HELOC uses

the underlying property of a lender as collateral for a loan with a fixed term. A classifier is used

to determine whether an applicant should receive a line of credit or not. The FICO dataset has

23 integer-valued features.

The German credit dataset is a dataset with loan applications submitted to German banks.

The prediction task for a classifier is to predict whether an individual will default on their loan.1

The German credit dataset has 61 features, 54 of which are binary and 7 are integer-valued.

Besides these data sources, synthetic preference ranking data will be generated. For repro-

ducibility, the procedure used to generate the data will be described and the synthetic datasets

will be made publicly available.2

1The authors of this paper do not endorse interest-based lending, the FICO and German dataset are used
solely for comparison with prior studies.

2The datasets can be retrieved from the zip file submitted with this paper or from ht-
tps://github.com/achasol/udace
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4 Methodology

The methodology is split into several sections. Firstly, the general notation will be introduced.

Afterwards, the construction of a synthetic preference dataset will be discussed. Then the

problem will be defined and a formulation for UDACE will be derived. Subsequently, we will

discuss the algorithm used to find Pareto-efficient CEs. In the end, we will discuss the algorithm

we use to find a single suggested CE.

4.1 General notation

Since UDACE is an extension of the DACE method, the notation introduced by Kanamori et al.

(2020) is used. For an assertion ψ, let 1[ψ] be it’s characteristic function. Such that 1[ψ] = 0,

if ψ is false and 1[ψ] = 1 if ψ is true.

The type of automated decision-making model we consider are binary additive classifiers.

Suppose a classifier has D features. Let the set of all possible values for a feature i be denoted

by Xi ⊆ R with i = 1, .., D. Then the entire feature space is defined as X = X1 × · · · × XD, and

the output range is denoted by Y = {−1, 1}. Let a classifier be defined as H : X → Y, and let

an instance be defined as x = (x1, ..., xD) ∈ X .
If a dataset includes categorical variables, it is necessary to apply one-hot encoding to these

variables. Let G ⊆ 21,...,D represent the set of all sets of features that constitute a categorical

variable. Each set G ∈ G represents a one-hot encoded variable with |G| possible values. The

feature space of g ∈ G can be defined as X g = {0, 1}, and it must hold that
∑

g∈G xg = 1 holds

for all x ∈ X .
For a given instance x̄ ∈ X and a classifier H : X → Y, an action α ∈ RD is defined as

a perturbation vector which results in H(x̄ + α) = 1, while H(x̄) = −1. The finite set of all

feasible actions is denoted by A = A1 × · · · × AD. Where the set of feasible values a single

feature can take is Ad ⊆ {αd ∈ R | x̄d + αd ∈ Xd}, for d = 1, ..., D. For all features it follows

that 0 ∈ Ad and specifically for immutable features, it must hold that Ad = {0}. Kanamori et

al. (2020) mention that the feasible set Ad of a feature can be determined in advance, but the

feasible set does depend on the properties of the classifier.

4.2 Classifiers

We consider two types of binary additive classifiers. The first type of classifier is a logistic

regression model, which is a member of the class of linear models.

The second type is a Random Forest model, as part of the class of tree ensemble models.

Any classifier H : X → Y part of the aforementioned classes can be represented as:

H(x) = sgn(
T∑
t=1

wt · ht(x)− b)

The weight of a base-learner ht : X → R is defined by wt for t = 1, .., , T . And the intercept is

denoted by b.

Notably for the logistic regression model, the base-learners are equal to the features of the

dataset. While for the random forest model, each base-learner is a decision tree. The Random
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forest model classifies an applicant by averaging the predictions of all T decision trees.

4.3 Components in the objective

In this subsection, each component used in our objective functions is introduced.

4.3.1 Local Outlier Factor

To make sure that the generated CEs are not considered outliers, Kanamori et al. (2020) use

the Local Outlier Factor (LOF) as a cost component.

The local outlier factor was initially developed by Breunig, Kriegel, Ng and Sander (2000).

To define the LOF, we define the distance metric △ : X ×X → R≥0 on X . We also select a set

of N instances X ⊆ X . For any instance x ∈ X , let the set of k-nearest neighbours of x within

X be denoted by Nk(x). Let the distance from x to it’s k-th nearest neighbour be denoted by

dk(x). Then the k-local reachability-density of x is defined as:

lrdk(x) =
|Nk(x)|∑

z∈Nk(x)
max(△(x, z), dk(x))

Using the local reachability-density, the k-LOF of x can be defined as:

qk(x | X) =
1

|Nk(x)|
∑

z∈Nk(x)

lrdk(z)

lrdk(x)

4.3.2 Mahalanobis distance

Kanamori et al. (2020) utilize the Mahalanobis distance (MD) introduced by Chandra et al.

(1936), to evaluate how realistic a counterfactual explanation is relative to other applicants in

the population. For any two instances x, z ∈ RD and a positive semi-definite matrix Σ ∈ RD×D.

The Mahalanobis distance is defined as:

dM (x, z,Σ) =
√
(x− z)TΣ(x− z) = ∥U(x− z)∥2

Where the second equality follows from the spectral decomposition because any positive semi-

definite matrix Σ can be decomposed such that Σ = UTU .

Kanamori et al. (2020) argue that optimizing the Mahalanobis distance directly is compu-

tationally infeasible. Hence they use the l1-norm MD as a surrogate distance measure. Let Ud

be the d’th row vector of U . Then the l1-norm Mahalanobis distance can be defined as:

d̂M (x, x+ α,Σ) = ∥Uα∥1=
D∑

d=1

|⟨ Ud, α ⟩|

4.3.3 Applicant utility

To account for the preferences of an applicant they have to be measured. However, directly

measuring preferences over the feature space X is infeasible. Depending on the size of D, even

ranking the features itself could be considered an arduous process.
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Hence we propose that the features are partitioned into categories. This way an applicant

only needs to rank the categories.

Define Q to be a partition of {1, ..., D}. into categories. For an instance x, let the corres-

ponding applicant have a preference relation on Q. Such that for all c1, c2 ∈ Q it either holds

that c1 ≻ c2 or c2 ≻ c1. Meaning an applicant prefers changes in one category over another

category.

Let ci denote the i’th category with i = 1, ..., |Q|. The latent utility of a category ci for an

applicant is denoted by ui ∈ R≥0. Where it must hold that ui > uj if and only if ci ≻ cj , for all
ci, cj ∈ Q with i, j = 1, ..., |Q|, i ̸= j. The latent utility of an action α ∈ A is defined as:

u(α) =

|Q|∑
i=1

∑
d∈ci

ui · 1[αd ̸= 0]

So an applicant values actions which change features in preferable categories more. While no

utility is assigned to features which remain unchanged.

4.4 Problem definition

We look for a set of Pareto-efficient actions for the optimization problem stated below, given

binary additive classifier H : X → Y, an instance x̄ ∈ X such that H(x̄ = −1), a partition of

the features Q, a set of instances X ∈ X , a weighting factor λ ≥ 0 and a positive semi-definite

matrix Σ ∈ RD×D.

min
α∈A

d̂M (x̄, x̄+ α,Σ) + λ · q1(x̄ | X)

max
α∈A

u(α)

subject to H(x̄+ α) = 1

4.5 Measuring utility

Both the FICO and German datasets do not contain any utility information on the applicants.

Hence latent utilities for all applicants are simulated. To take into account that latent utilities

are not observed, a Bradley-Terry model is used to infer the latent utilities from simulated

pair-wise comparisons.

4.5.1 Synthetic preference simulation

The preferences of applicants are simulated by repeatedly asking them to compare two categories

and state their preferences. Initially, it is assumed that any applicant has some latent rational

ordering of preference over the partition Q denoted by (c1, ..., c|Q|). Where rational is defined as

a transitive and complete ordering over Q.

During the simulation, two distinct components are captured that differ randomly across ap-

plicants. The first is a motivation component which determines how many pairwise comparisons
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an applicant is willing to perform.

The second component is the fatigue effect, which captures the fact that as an applicant

performs a large amount of pair-wise comparisons, we expect the probability of a mistake to

increase over time. Meaning that the applicant was not able to properly convey their latent

preference. The algorithm for the preference simulation is given below:

Algorithm 1 Algorithm to generate synthetic preference data.

Require: n ≥ 0
Ensure: y = xn

ψ ∼ Beta(2, 32)
f0 ← 1
fe ∼ Beta(10, 2)
K ∼ Geom(ψ)
N = min(|Q| − 1 +K, 0.5|Q|(|Q| − 1)
i = 0
pairs = {}
while i < N do

(c1, c2) = drawUniformUniquePairWithPreference(pairs)

J ∼ Bernoulli(f0 + (fe − f0)
√

i
N )

if J == 1 then
pairs = pairs

⋃
{(c1, c2)}

else if J == 0 then
pairs = pairs

⋃
{(c2, c1)}

end if
i← i+ 1

end while
return pairs

The definition of the drawUniformUniquePairWithPreference() subroutine is excluded for

brevity. This subroutine uses a Priority Queue to uniformly draw pairs which have not yet been

drawn from the preference relation. For more information on this subroutine, we refer to the

source code included with this paper.

We repeat the steps above for each applicant in a dataset and store the pair-wise comparisons

for all applicants.

4.5.2 Bradley-Terry model

Given the simulated pair-wise comparisons we estimate a Bradley-Terry model. The Bradley-

Terry (BT) model is a logistic regression model with latent parameters for each category. Let the

total number of categories be denoted by w = |Q|, then for any pair of categories i, j = 1, ..., w

the probability that category ci is preferred over cj is

P (ci ≻ cj) =
eu1

eu1 + eu2

The Bradley-Terry model is estimated using a Bayesian approach similar to Caron and

Doucet (2012). The parameters u1, ..., uw are assigned LogNormal(1,1) prior distributions, to

ensure that they are positive. Let the maximum a posteriori probability (MAP) estimates of the
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parameters be denoted by û1, ..., ûw. The MAP estimates will be used in the utility objective

as weights.

4.6 MOMIP formulation

We extend the MILO formulation proposed by Kanamori et al. (2020). To describe the formu-

lation we first discretize the feasible action space. Let πd,i ∈ {0, 1} be a binary variable which is

1, if αd,i ∈ Ad is chosen and 0 otherwise for d = 1, ..., D, i = 1, ..., |Ad|. Our goal in this section

is to express all objectives and constraints as linear combinations of πd,i

Starting with the constraints, since only one value for a feature can be included in an action,

we introduce the constraints:
|Ad|∑
i=1

πd,i = 1,∀d ∈ {1, ..., D} (1)

For one-hot encoded categorical features we introduce constraints which preserve their one-hot

encoding. For these constraints we make use of the decomposition ad =
∑|Ad|

i=1 αd,iπd,i

∑
d∈G

(x̄d +

|Ad|∑
i=1

αd,iπd,i) = 1, ∀G ∈ G (2)

To effectively formulate the constraint based on the classifier, we observe that based on the

definition of an additive classifier, if H(x̄+ α) = 1 then

T∑
t=1

wtht(x̄+ α) ≥ b (3)

For a linear model we know that T = D and hd(x̄ + α) = x̄d + αd, for d = 1, ..., D by

definition. Hence using the decomposition of αd the classifier constraint for linear models is

given by
D∑

d=1

wd(x̄d +

|Ad|∑
i=1

αd,iπd,i) ≥ b (4)

For tree-ensemble models, the classifier constraint can be derived based on two observations

made by Kanamori et al. (2020). The first observation using the work by Hastie, Tibshirani,

Friedman and Friedman (2009) is that a decision tree ht : X → Y with Lt leaves, can be

represented as a partition of the feature space X into a set {rt,1, ..., rt,Lt}. Let ŷt,l denote the

prediction of leaf l ∈ {1, ..., |Lt|} of tree ht. Then the prediction of tree ht is the prediction of

the leaf which contains the instance, expressed as

ht(x) =

Lt∑
l=1

ŷt,l1[x ∈ rt,l]

The second observation is that x+α ∈ rt,l can be expressed using the decision logic constraint

introduced by Cui, Chen, He and Chen (2015).

To utilize the decision logic constraints, introduce the binary variable ϕt,l (constraint 5),

and constrain it such that ϕt,l = 1[x + α ∈ rt,l]. Additionally introduce the set I
(d)
t,l = {i ∈
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{1, ..., |Ad|} | x̄d + αd,i ∈ r
(d)
t,l }, where r

d
t,l ⊆ Xd, such that rt,l = r

(1)
t,l × ...× r

(D)
t,l . Where the set

Idt,l can be regarded as an indicator because for a feature d, it only contains the discrete action

candidates, that fall within segment r
(d)
t,l of the partition.

ϕt,l ∈ {0, 1}, ∀t ∈ {1, ..., T}, l ∈ {1, ..., |Lt|} (5)

Lt∑
l=1

ϕt,l = 1, ∀t ∈ {1, ..., T} (6)

ϕt,l ≤
1

D

D∑
d=1

∑
i ∈I(d)t,l

πd,i,∀t ∈ {1, ..., T}, l ∈ {1, ..., |Lt|} (7)

Constraint (6) makes sure that a perturbed instance can only end up in a single leaf of a

tree. Constraint (7) is derived by Cui et al. (2015) based on the finding that if ϕt,l = 0 then

a perturbed instance is not contained within leaf l, and hence there must exist at least one

feature k such that
∑

i∈I(k)t,l

πk,i = 0. On the other hand if ϕt,l = 1 then an perturbed instance

is contained within leaf l and hence
∑

i∈I(k)t,l

πk,i = 1, ∀d ∈ {1, ..., D}.
In combination with constraints (5), (6) and (7), the classifier constraint for tree ensemble

models is given by
T∑
t=1

wt(

Lt∑
l=1

ŷt,l · ϕt,l) ≥ b,∀t ∈ {1, ..., T} (8)

4.6.1 Mahalanobis distance

To include d̂M (x, x + α,Σ) as a linear objective function. We introduce δd ≥ 0, and define

constraints such that δd = |⟨ Ud, α ⟩|. The MD distance can then be expressed as:

d̂M (x, x+ α,Σ) =
D∑

d=1

δd

subject to the constraints:

−δd ≤
D∑

d′=1

Ud,d′(

|Ad|∑
i=1

αd′,iπd′,i) ≤ δd,∀d ∈ {1, ..., D} (9)

4.6.2 Local outlier factor

To make the computation of the local outlier factor feasible, Kanamori et al. (2020) choose to

fix k = 1. The 1-LOF component can then be written as

q1(x̄+ α | X) = lrd1(x
(m)) · rd1(x̄+ α, x(m))

with the closest neighbour of x̄+α denoted by m = argminn∈1,..,N△(x̄+α, x(n)). To express the

variables dependent on x̄+ α in terms of πd,i, define νn ∈ {0, 1} and ρn ≥ 0 for n = {1, ..., N}.
We will add constraints such that νn = 1[x(n) ∈ N1(x̄+α)] and ρn = rd1(x̄+α, x(n)) · νn. If

this is the case then q1(x̄+ α) can be written linearly in ρn as follows:
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q1(x̄+ α | X) =
N∑

n=1

l(n) · ρn

Where l(n) = lrd1(x
(n)). The constraints to ensure the definitions of νn and ρn hold are:

N∑
n=1

νn = 1 (10)

Which ensures that |N1(x̄+ α)| = 1.

D∑
d=1

|Ad|∑
i=1

(c
(n)
d,i − c

(n′)
d,i )πd,i ≤ Cn(1− νn),∀n, n′ ∈ {1, ..., N} (11)

Where Cn, c
(n)
d,i are constants such that Cn ≥ maxα∈A△(x̄ + α, x(n)) and c

(n)
d,i = △d(x̄d +

αd,i, x
(n)
d ). Constraint 11 ensures that if a neighbour x(n) is selected i.e. νn = 1. Then, this

neighbour must be the nearest neighbour of x̄+ α

ρn ≥ d(n) · νn,∀n,∈ {1, ..., N} (12)

ρn ≥
D∑

d=1

|Ad|∑
i=1

c
(n)
d,i πd,i − Cn(1− νn), ∀n,∈ {1, ..., N} (13)

With d(n) a constant defined as d(n) = d1(x
n). Constraint (12) and (13) together enforce the

definition of the k-reachability distance. Since if a neighbour is selected i.e. νn = 1, then they

jointly require that ρn ≥ max(d(n),△(x̄+ α, x(n)) for an action to be feasible. If a neighbour is

not selected (νn = 0) then both constraints become trivial since ρn ≥ 0 by definition.

4.6.3 Utility of the applicant

To linearize the utility of the applicant, 1[αd ̸= 0] needs to be expressed in terms of πd,i. Define

πd,1 to be the binary variable such that ad,1 = 0. This can always be achieved by shuffling the

elements of the set Ad. The utility of the applicant can then be expressed as:

u(a) =

|Q|∑
j=1

∑
d∈cj

ûj · 1[αd ̸= 0] =

|Q|∑
j=1

∑
d∈cj

ûj

|Ad|∑
i=2

πd,i (14)

The expression follows from the constraint that
∑|Ad|

i=1 πd,i = 1 for d = 1, ..., D. Since if πd,1 = 0

indicating that αd ̸= 0, then it must hold that:
∑|Ad|

i=2 πd,i = 1, otherwise if πd,1 = 1 then∑|Ad|
i=2 πd,i = 0. Hence it follows that 1[αd ̸= 0] can be represented as

∑|Ad|
i=2 πd,i
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4.6.4 Complete formulation

Using the aforementioned constraints and objectives the complete formulation for UDACE is:

min
D∑

d=1

δd + λ
N∑

n=1

l(n) · ρn

max

|Q|∑
j=1

∑
d∈cj

ûj

|Ad|∑
i=2

πd,i

subject to Constraint (1 - 3)Constraint (4), if H is a LM

Constraint (5 - 8), if H is a TEM

Constraint (9 - 13)

πd,i ∈ {0, 1}, ∀d ∈ {1, ..., D},∀i ∈ {1, ..., |Ad|}

δd ≥ 0,∀d ∈ {1, ..., D}

νn ∈ {0, 1}, ρn ≥ 0,∀n ∈ {1, ..., N}

4.7 Searching pareto-efficient solutions

To solve the multi-objective optimization problem, the algorithm proposed by Kirlik and Sayın

(2014) is used. This algorithm is based on the ϵ-constraint method but has a novel search

mechanism which effectively partitions the search space of ϵ. The method of Kirlik and Sayın

(2014) is capable of generating all non-inferior solutions for a discrete optimization problem.

However, the UDACE formulation is not fully discrete, and hence there are no guarantees that

the method will produce all non-inferior solutions. Practical experiments show that the method

does produce a set of Pareto-efficient solutions.

For bi-objective optimization problems, the ϵ-constraint method would also suffice. The

reason we choose the extension of Kirlik and Sayın (2014) is twofold. The first reason is that we

are not interested in enumerating all Pareto-efficient solutions, hence a method which prioritizes

the search process should be more time efficient. The second reason is that the method by Kirlik

and Sayın (2014) can be used for p-dimensional optimization problems, so it would be trivial to

incorporate multiple utility objectives of different stakeholders in our UDACE method.

The core of the algorithm is based on solving a two-stage single-objective optimization prob-

lem. For any bi-objective minimization problem, let the objectives be denoted by (f1(z), f2(z)),

with z ∈ W. Where W is the feasible region of the problem. The first sub-problem in the

two-stage process is given by:

minimize
z

f1(z)

subject to f2(z) ≤ ϵ2,

z ∈ W

(15)

In this problem, we look for a solution z∗, which is optimal for the first-objective given a threshold
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ϵ2 on the second objective. To find an optimal solution, We then solve the following problem:

minimize
z

f1(z) + f2(z)

subject to f2(z) ≤ ϵ2,

f1(z) = z∗,

z ∈ W

(16)

For the second stage problem we look for the optimal value of f2(z), while restricting f1(z) to

the optimal value found previously. Kirlik and Sayın (2014) prove that an optimal solution of

the two-stage problem is an efficient solution for the bi-objective optimization problem. To find

the threshold parameters, the search space is partitioned into rectangles, and a volume measure

is used to determine the order in which they are searched.

4.7.1 Suggesting a single pareto-efficient solution

Once we have obtained a set of Pareto-efficient actions, we can choose to present this set to the

applicant, and let her pick the action which suits her best.

We also explore suggesting a ”best” action using the selection algorithm proposed by Wang,

Zhao, Wu and Wu (2017). The algorithm uses the price-performance ratio to select a single

solution from a set of non-inferior solutions.

In our context, the algorithm makes a trade-off between the effort required to act, and the

utility yielded by an action. Where we argue that the weighted sum of the MD and LOF is a

valid proxy for the effort of an action. Intuitively Wang et al. (2017) explain that their method

looks for an efficient solution which is acceptable for both objectives.

The algorithm of Wang et al. (2017) can be formulated as follows. SupposeM Pareto-efficient

actions for an applicant have been found. Let the actions be sorted by the values of their first

objective in ascending order. We denote the objective values of the m’th action as (f
(m)
1 , f

(m)
2 ),

for m = 1, ...,M . The algorithm is based on the average variability, which is the average of the

slopes between a point and its two direct neighbours, except for the two points at the edges of

the sorted set. The average variability of the j’th objective of the m’th action k
(m)
j is defined by:

k
(m)
j =


(
f
(2)
2 −f

(1)
2

f
(2)
1 −f

(1)
1

)(−1)j−1
, for m = 1

1
2(

f
(m)
2 −f

(m−1)
2

f
(m)
1 −f

(m−1)
1

)(−1)j−1
+ 1

2(
f
(m+1)
2 −f

(m)
2

f
(m+1)
1 −f

(m)
1

)(−1)j−1
, for m = 2, 3, ...,M − 1

(
f
(M)
2 −f

(M−1)
2

f
(M)
1 −f

(M−1)
1

)(−1)j−1
, for m =M


With j = 1, 2 since we have two objectives. The sensitivity ratio of an action scales the average

variability by the value of the j’th objective, and is given by δ
(m)
j =

k
(m)
j

f
(m)
j

, for m = 1, ...,M .

Since we want to compare sensitivity-ratio’s, we define the non-dimensionalized sensitivity ratio

as ϵ
(m)
j =

δ
(m)
j∑M

i=1 δ
(i)
j

. The position m∗ of the action suggested by the algorithm is given by:

m∗ = argminm=1,...M | ϵ(m)
1 − ϵ(m)

2 | (17)
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Every time a set of Pareto-efficient CEs is found, we use the algorithm described above to find

the suggested CE.

4.8 Implementation

All methods described above are implemented using Julia 1.8.5. The Turing.jl package by Ge,

Xu and Ghahramani (2018) is used for Bayesian inference of the Bradley-Terry model. The

JuMP library (Lubin et al., 2023) in combination with the HiGHS solver (Huangfu & Hall,

2018) are used to solve the MOMIP formulation. For more details on our implementation we

refer to Appendix B and the included source code with this paper.
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5 Experiments

5.1 Reproducing DACE

To ensure the correctness of our Julia implementation, we reproduce the results by Kanamori et

al. (2020). This means that we solve the complete formulation while removing the second utility

objective. An experiment is performed with the FICO and German datasets. Both datasets

are split at random into a 70% estimation sample and 30% validation sample. For the trade-off

parameter λ, the values found using a sensitivity analysis by Kanamori et al. (2020), are used

which are λ = 0.01 for the German dataset and λ = 1.0 for the FICO dataset.

Using the estimation sample, a l2 regularized logistic regression model is estimated. And a

random forest model with 100 trees and a maximum depth of four is estimated as well. Using

the validation sample and the estimated models a prediction is made whether an applicant will

default on her loan. Counterfactual explanations are generated for 50 of the applicants who are

predicted to default on their loans. We impose that |Ad| ≤ 100 , for d ∈ {1, . . . , D}, restricting
the number of states a feature can take, and enforcing a time-limit of 600 seconds per CE.

For comparison, several baseline methods are implemented. These methods only differ in

the distance function used. The first baseline is the total log percentile shift (TLPS) developed

by Ustun, Spangher and Liu (2019). The second baseline is the weighted l1-norm using the

inverse of the mean absolute deviation (MAD) as introduced by Wachter et al. (2017). The final

baseline is the l2-norm of the Pearson correlation coefficients (PCC), introduced by Ballet et al.

(2019).

The same evaluation metrics as Kanamori et al. (2020) are reported, which are the Mahalan-

obis distance, the 10-LOF and solver time in seconds. To compute the Mahanobis distance, the

estimated covariance matrix of the estimation sample Σ−1 is used. To calculate the 10-LOF

the applicants who were approved within the estimation sample are used, denoted by X+. To

run the experiments, we use a machine with 16 GB of RAM and an AMD Ryzen 3600 6-core

processor with a clock speed of 3.6 GHz.

The results can be seen in tables 1, 2, 3 and 4. Our results are similar to those obtained by

Kanamori et al. (2020). However, with our choice of validation sample the DACE method does

not always, outperform the other methods. The slight differences between the results are likely

to be caused by the difference in random number generation between Julia and python. Which

affects the estimation of the models, and the split of the dataset.

Overall the methods produce relatively similar values for the 10-LOF. The Mahalanobis

distance appears to differ between the methods, but can also be quite close, see for example

Table 3. As noted by Kanamori et al. (2020), the DACE method is very slow compared to

the other methods. Looking at the results it is not clear whether this additional time pays off,

compared to the TLPS method which seems to be quite similar to DACE, but uses a fraction

of the time.

In particular for the random forest model and the FICO dataset (Table 3), the optimal

solution is not always found within the time limit. The probable reason behind this observation

is that the FICO dataset solely consists of integer features, which in turn provides the solver

with a broader feasible region to explore.
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Counterfactual explanations for the German dataset can be solved within a relatively quick

time (Table 2, 4). This was to be expected given that 52 out of the 61 features are binary and

encode a much smaller set of categorical variables.

Table 1

Results for the Logistic regression model on the FICO dataset (N = 50, D = 23)

Logistic Regression
dM (x̄, x̄+ α)|Σ−1) q10(x̄, x̄+ α|X+) Time[s]

MAD 6.96 (5.67) 1.23 (0.23) 0.04 (0.01)
TLPS 5.85 (5.36) 1.22 (0.19) 0.12 (0.53)
PCC 8.12 (5.23) 1.23 (0.23) 0.04 (0.01)
DACE 2.05 (1.35) 1.28 (0.33) 45.66 (30.31)

Table 2

Results for the logistic regression model on the German dataset (N = 50, D = 61)

Logistic Regression
dM (x̄, x̄+ α)|Σ−1) q10(x̄, x̄+ α|X+) Time[s]

MAD 7.11 (4.53) 1.58 (1.71) 0.01 (0.01)
TLPS 2.94 (1.70) 1.33 (0.21) 0.09 (0.52)
PCC 8.82 (3.64) 1.59 (1.70) 0.01 (0.01)
DACE 2.49 (1.37) 1.06 (0.06) 2.89 (1.21)

Table 3

Results for the Random forest model on the FICO dataset (N = 50, D = 23, T = 100)

Random forest
dM (x̄, x̄+ α)|Σ−1) q10(x̄, x̄+ α|X+) Time[s]

MAD 2.40 (1.72) 1.27 (0.30) 104.26 (123.04)
TLPS 2.14 (1.49) 1.26 (0.32) 120.89 (137.74)
PCC 2.64 (1.81) 1.27 (0.31) 140.99 (172.68)
DACE 2.62 (1.92) 1.26 (0.27) 577.75 (73.80)

Table 4

Results for the Random forest model on the German dataset (N = 6, D = 61, T = 100)

Random forest
dM (x̄, x̄+ α)|Σ−1) q10(x̄, x̄+ α|X+) Time[s]

MAD 3.55 (2.75) 2.62 (3.27) 0.96 (0.56)
TLPS 1.64 (1.65) 2.53 (3.32) 1.98 (1.22)
PCC 8.34 (1.85) 2.6 (3.29) 1.0 (0.59)
DACE 2.14 (2.02) 1.01 (0.05) 134.0 (122.99)

Note. The results in the table are based on N = 6 observations. This is an unintended side-effect of our
random seed, and the class imbalance in the German credit dataset.

5.2 Evaluating UDACE

To evaluate the UDACE model we use the same procedure described above when reproducing

the results for the DACE model. Only this time we do include the second utility objective and
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search for Pareto-efficient solutions. We also include the other cost functions TLPS, MAD, and

PCC with the second utility objective and refer to these cost functions as UTLPS, UMAD,

UPPC. We enforce a strict time limit of 600 seconds, to ensure the practical feasibility of our

approach.

Using the descriptions provided by the German and FICO dataset, a partition of the features

Q is manually constructed. For details see Appendix A.

The results can be seen in tables 5, 6, 7 and 8. Overall UDACE seems to produce the actions

with the lowest average Mahalanobis distance, however, the utility of these actions also seems

lower compared to the other methods.

The execution time has increased compared to tables (1 - 4), which was to be expected given

that we attempt to enumerate all non-inferior solutions, before using the selection algorithm

which picks a single solution. In particular, for UDACE on the FICO dataset, no actions could

be obtained within the 600 second time limit. Hence we perform an additional experiment where

we estimate a Random forest with 25 decision trees (T = 25), and we also restrict the number

of discrete action candidates to 25 per feature instead of 100. This way the total computation

time can be reduced drastically (Table 9).

Comparing UDACE to the other methods in Table 9, we observe that it appears to give

slightly better CEs. Since the average MD distance and 10-LOF are lower, while the utility is

higher.

We also observe that in general, compared to tables (1 - 4), the MD distance and 10-LOF

have increased. This finding can be explained by the fact that the lowest MD distance and

10-LOF can only be obtained at the outer edge of the Pareto-front. But this same edge is likely

to correspond with very low utility values. If does were not the case, then it would be likely

that an ideal point exists, that simultaneously optimizes both objectives.

Overall there does not appear to be a cost function which always outperforms the other cost

functions. It could be argued that each cost function has its strengths and that a careful choice

must be made based on the properties of the dataset at hand.

Table 5

Results for the logistic regression model on the German dataset using the formulation with utility
(N = 50, D = 61).

Logistic Regression
dM (x̄, x̄+ α)|Σ−1) q10(x̄, x̄+ α|X+) u(α) Time[s]

UMAD 6.81 (5.85) 1.23 (0.23) 7.89 (2.7) 1.68 (1.31)
UTLPS 6.19 (5.72) 1.23 (0.21) 8.65 (2.56) 2.2 (1.7)
UPCC 8.85 (6.47) 1.24 (0.24) 8.05 (2.93) 0.78 (0.35)
UDACE 2.32 (1.64) 1.26 (0.27) 8.17 (2.44) 462.42 (182.51)

5.2.1 Counterfactual exploration

To get a better picture of the generated CEs, we plot all efficient solutions by UTLPS, UMAD,

UPCC and UDACE for a single applicant for both the Logistic regression model and Random

forest model in a plot (Figure 1). The suggested action using the selection algorithm has a cross

marker.
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Table 6

Results for the logistic regression model on the FICO dataset using the formulation with utility
(N = 50, D = 23).

Logistic Regression
dM (x̄, x̄+ α)|Σ−1) q10(x̄, x̄+ α|X+) u(α) Time[s]

UMAD 9.37 (4.03) 1.56 (1.67) 13.59 (5.52) 0.55 (0.28)
UTLPS 7.71 (4.14) 1.26 (0.37) 15.18 (6.92) 0.93 (1.21)
UPCC 10.19 (3.24) 1.59 (1.7) 14.75 (5.81) 0.17 (0.07)
UDACE 3.36 (0.99) 1.05 (0.06) 9.11 (3.41) 31.51 (1.48)

Table 7

Results for the Random forest model on the German dataset using the formulation with utility
(N = 6, D = 61, T = 100) .

Random forest
dM (x̄, x̄+ α)|Σ−1) q10(x̄, x̄+ α|X+) u(α) Time[s]

UMAD 7.34 (3.6) 2.56 (3.31) 10.01 (3.72) 29.3 (17.82)
UTLPS 4.53 (3.11) 2.66 (3.26) 9.74 (5.01) 30.1 (8.51)
UPCC 10.88 (2.43) 2.6 (3.29) 15.0 (8.67) 11.83 (8.46)
UDACE 3.25 (1.43) 0.99 (0.06) 8.25 (3.42) 283.83 (204.51)

Table 8

Results for the Random forest model with 100 decision trees, on the FICO dataset using the
formulation with utility (N = 50, D = 23, T = 100).

Random forest
dM (x̄, x̄+ α)|Σ−1) q10(x̄, x̄+ α|X+) u(α) Time[s]

UMAD 1.61 (1.15) 1.23 (0.18) 6.18 (2.77) 369.82 (217.13)
UTLPS 1.25 (0.69) 1.24 (0.28) 6.19 (2.32) 323.11 (216.04)
UPCC 2.47 (1.34) 1.23 (0.23) 7.38 (3.0) 412.03 (174.03)
UDACE - - - -

Note. None of the results for the UDACE method could not be produced within the 600 second time
limit.

Table 9

Results for the Random forest model with 25 decision trees, on the FICO dataset using the
formulation with utility (N = 50, D = 23, T = 25).

Random forest
dM (x̄, x̄+ α)|Σ−1) q10(x̄, x̄+ α|X+) u(α) Time[s]

UMAD 2.12 (1.5) 1.29 (0.31) 7.85 (2.48) 41.87 (38.38)
UTLPS 1.85 (1.26) 1.27 (0.29) 7.41 (2.81) 35.43 (32.15)
UPCC 2.79 (1.87) 1.24 (0.23) 7.66 (2.27) 31.68 (31.28)
UDACE 1.74 (1.11) 1.24 (0.25) 8.13 (2.50) 405.42 (179.6)

Note. To allow for relatively fast computation time we imposed the restriction that |Ad| ≤ 25, for
d = 1, . . . D

Actions which require low amounts of effort, and yield high utility are preferable. As is clear

from Figure 1, there is a trade-off present between these two factors.

Notably From Figure 1b, the actions produced by the UTLPS and UDACE methods seem

to align. While the actions proposed by UMAD seem to have the highest variation.

Looking at Figure 1a, the suggested action of UTLPS is superior to the suggested action by

20



UDACE. As can be seen from the fact that the action of UTLPS has a lower value of effort,

but a higher value of utility. Also the UPCC method in Figure 1a, appears to have a very steep

Pareto-front compared to the other methods. Since the additional effort required to achieve

higher levels of utility is very low.

5.2.2 Number of CEs

We plot the distribution of the number of Pareto-efficient CEs found for each applicant by each

of the methods. The distribution for the Logistic regression model on the German dataset can

be seen in Figure 2.

The distribution of UDACE appears to be quite different compared to UMAD, UTLPS and

UPCC. For UDACE the majority of applicants have exactly three Pareto-efficient CEs.

In Figure 3 the distribution of the Pareto-efficient actions by the Random Forest model on

the FICO dataset can be seen. The distributions of the methods seem quite similar, which is a

desirable property since it implies that there is less dependence on the choice of cost function.

A distribution with less variance would be desirable since it would imply that all applicants

receive a similar number of potential CEs. A large set of Pareto-efficient CEs is not necessarily

beneficial. Since it could complicate the choice for an applicant. However, having a set which is

too small can limit the choice too severely.

5.2.3 Illustration of a counterfactual explanation

To illustrate how the utility affects the generated CEs. We compare a CE generated by DACE

against the suggested CE of UDACE. The comparison is performed for a random applicant

in the German Dataset. The results of the comparison can be seen in Figure 4. The biggest

differences between the CE generated by DACE and UDACE appear to be in the amount of

credit and the age of the applicant. In particular, the CE of DACE suggests drastically lowering

the credit and waiting for four years before re-applying for the loan.

On the contrary, the CE of UDACE suggests that the applicant does not have to age, and can

reduce the amount of credit in a less drastic fashion. The difference between DACE and UDACE

can be explained by the preferences of this applicant. Since this applicant prefers changes to her

income and loan application over changes to her personal traits like age. The UDACE method

seems to be capable of accommodating these preferences. However to achieve this the UDACE

method does suggest an income increase and a decrease of the credit usage at the bank which

will provide the loan.
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Figure 1. A Figure containing the pareto-efficient solutions for all different cost functions for a single

applicant. Subfigure (a) corresponds to the logistic regression model evaluated on the FICO data-

set.Subfigure (b) corresponds to the random forest model evaluated on the German credit dataset. The

cross marker indicates the efficient action which was obtained using the selection algorithm.

(a)

(b)
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Figure 2. The distribution of the number of pareto-efficient solutions found for all applicants,

using the Logistic Regression model on the German dataset.

Figure 3. The distribution of the number of pareto-efficient solutions found for all applicants,

using a Random forest model with 25 decision trees on the FICO dataset.
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Figure 4. A figure showing the Initial state, CE of DACE and CE of UDACE, for an applicant part of

the German dataset. The CE’s were generated using the logistic regression model.

6 Conclusion

In this study, we extended the DACE method proposed by Kanamori et al. (2020), with the

preferences of applicants. To this end, an algorithm which can simulate the preferences of

applicants was developed. The output was subsequently used as an input for a Bayesian Bradley-

Terry model to estimate utilities. We have shown that multiple Pareto-efficient CEs can be

extracted, by extending the DACE formulation into a multi-objective optimization problem.

Additionally, we have shown that using the selection algorithm of Wang et al. (2017), a single CE

can be extracted which strikes a balance between effort and utility. This answers our research

question: How can counterfactual explanations take stakeholder preferences into account for

personalized recourse?

Our study possesses certain limitations that should be acknowledged. Firstly, it is worth

noting that the process of acquiring CEs for certain datasets, particularly when utilizing the

UDACE method, is time-consuming. This temporal constraint has the potential to impede
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the practical implementation and adoption of UDACE. Consequently, an essential avenue for

future investigations would involve the development of more efficient formulations to expedite

this process. Specifically, exploring alternative measures beyond the Local Outlier Factor (LOF)

for the purpose of encompassing outlier risk could yield promising outcomes.

An additional constraint inherent in our study is the absence of an exhaustive comparison

encompassing various cost functions, such as employing k-fold cross-validation as a means to

evaluate their performance. The adoption of such an approach would prove advantageous, as

we have noted the results are sensitive, to the choice of the validation sample. Consequently,

incorporating this evaluation methodology would offer valuable insights into the robustness and

generalizability of our findings.

Furthermore, it is essential to acknowledge another limitation in our study, namely the

absence of a comparative analysis between the UDACE method and alternative counterfactual

explanation (CE) techniques that yield a diverse set of counterfactual instances. By neglecting

this comparative aspect, our study does not provide a comprehensive assessment of the UDACE

method’s peformance in relation to other CE methods.

Several promising directions for future research have emerged from our study. Firstly, one

fruitful avenue entails conducting field experiments to empirically examine the tangible benefits

experienced by applicants when given the chance to share their preferences. Additionally, the

use of field experiments would enable a systematic assessment of various cost functions, showing

which measure effectively captures the inherent effort exerted by applicants.

Secondly, future research endeavors can focus on the development of heuristic approaches that

efficiently retrieve the optimal solution suggested by the selection algorithm, without exhaust-

ively enumerating the entire non-dominated set. Lastly, an important area for future research

involves incorporating the preferences of multiple stakeholders, including both the institution

and the applicants, into the decision-making framework. By integrating diverse perspectives,

this inclusive approach has the potential to enhance the recourse process.
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Appendix A

In order to test our method we developed a partition of the features for both the FICO and

German credit datasets. In practice, this could be done through latent topic modelling if de-

scriptions of the features are given, or manually by a domain expert.

For the FICO dataset, we partition the features into five distinct categories. These categories

are labelled: Bad payment behaviour, lending frequency, usage of other credit lines, credit usage

and good payment behaviour.

For the German dataset, all features are partitioned into six categories. These are Employ-

ment, Relationships, Wealth, Debts, Loan application, and Personal traits.

To see which features belong to which categories we refer to the included category specific-

ation with the source code of the paper.

Appendix B

The code written for our research can be decomposed into three separate parts which build on

top of each other. The first part is the module which deals with preference simulation, estimation

of the Bradley-Terry model and storing the preferences in an easy-to-use CSV file. This part

can be found in the preferences subfolder of the source code.

The second part is comprised of several modules which together have the objective of for-

mulating the MOMIP formulation and solving the problem. Examples of modules in this part

are the ActionCandidate module, which deals with the generation of the feasible action space

A and the MahalanobisDistance module which contains several functions used to compute the

MD distance and construct the interaction matrix Σ. Several other modules exist which each

deal with a small part of the formulation. This part consists of several subfolders.

The third part is the ParetoSelection module which contains an implementation of the al-

gorithm byWang et al. (2017). This module is called by the CE methods once the Pareto-efficient

actions have been identified. This part can be found within the actions subfolder.

The entry point of our code is contained within the UtilDace module. This module contains

a detailed description and example code which can be used to reproduce the results of our

research. 3
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