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Abstract

The use of machine learning programs is increasing but these programs often do not ex-

plain how the results are obtained. To add to the research of interpretable machine learning,

this research paper validates the workings of the interpretable Clustering Analysis MILP

formulations introduced by Carrizosa et al. (2023). The two MILP models form rule-based

explanations for obtained clusters. The quality of the explanations is measured in accur-

acy and distinctiveness. One of the MILP models simultaneously provides explanations and

clusters, while the other attains explanations for predetermined clusters. To further enhance

the interpretability of Cluster Analysis, an additional MILP model is introduced that simul-

taneously forms clusters and their corresponding explanations while accounting for imputed

values. The MILP model penalizes the use of rules based on features containing imputed

values attempting to find better explanations based solely on observed data. In the paper,

we find that the additional MILP model finds similar and in some cases better results than

the MILP of Carrizosa et al. (2023).

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.



1 Introduction

The use of machine learning (ML) is an up-and-coming practice in our daily life. ML has become

a crucial aspect of the digital world in the last few years because of its accuracy and simplicity

of use (Aggarwal et al., 2022). While the ML systems do not provide an explanation of their

results, the demand for the use of the systems seems to rise and broaden towards different fields,

such as banking (Doumpos et al., 2022), criminal justice (Saunders, Hunt & Hollywood, 2016)

and medicine (Patterson et al., 2019). However, it is not always ethical to use ML in these

fields. For example, in determining if a client is credit-worthy the decision must be supported

by logical explanations that the client can understand. ML programs often do not provide these

explanations and are therefore not ethical to use for creditworthiness determination. To make

use of ML systems ethically in these fields, users should be able to understand the decisions and

functionality of ML machines (Bacelar, 2021).

Together with ML, Explainable Artificial Intelligence (XAI) has gained attention in recent

years (Kukkonen, Lindroos & Brauer, 2022). XAI methods supply the ML user with further

explanation about the decisions the system makes and what it learns from the provided input

data. The predominance of XAI research focuses on supervised ML methods while research on

interpretable unsupervised methods is more scarce. Unsupervised methods run on unlabeled

data, where the correct answers are unknown. The performance of these methods is therefore

difficult to measure. Additionally, the methods are often applied to search for hidden patterns

within the data. Explaining the results provides insight into the uncovered patterns that had

previously gone unnoticed (Montavon et al., 2022). So not only can supervised methods benefit

from explanations, but also unsupervised methods. Especially one of the most common classes

of unsupervised learning algorithms, namely Clustering. A clustering algorithm assigns obser-

vations to clusters based on their features such that intra-homogeneous and inter-heterogeneous

clusters are formed.

Current research focuses on interpretable Cluster Analysis by applying Integer Programming

techniques. Carrizosa et al. (2023) constructed a Mixed Integer Linear Programming (MILP)

problem that simultaneously forms intra-homogeneous clusters while creating rule-based explan-

ations for each cluster. They also provide a MILP to extract distinct explanations for already

predetermined clusters.

This paper utilizes the two models of Carrizosa et al. (2023) to validate their results and to

further extend the models. Carrizosa et al. (2023) assume excess to a complete dataset, while in

most real-life cases a complete dataset is hard to obtain (Altman & Bland, 2007). The chances

are high that a dataset contains missing values. The missing values can be imputed, altering

the distribution, the correlation between variables and the sample variance. As a consequence,

imputation can provide biased results (White, Daniel & Royston, 2010). In the case of the

models created by Carrizosa et al. (2023), imputation can lead to biased cluster explanations.

An extended version of the clustering and explanation providing MILP that penalizes the

use of features with imputed data to explain the clusters is investigated in this paper. The goal

is to find better explanations for a cluster taking into account which features contain imputed

values to prevent the explanations from being biased. When considering an incomplete dataset

the extended MILP seems to provide similar and in some cases better results for the real data
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than for the original MILP.

The remainder of the paper is structured as follows. The next section provides a literat-

ure overview on interpretable Cluster Analysis and dealing with missing data while clustering.

Section 3 gives a short description of dealing with the missing data problem. In Section 4, the

MILP formulations are explained in detail. Next, the results are presented. Lastly, Section 6

concludes the paper.

2 Literature

There is a need for interpretable unsupervised machine learning methods, particularly inter-

pretable Cluster Analysis (CA). We first discuss the already available interpretable CA al-

gorithms. Next, a shortcoming that all of the mentioned methods have in common and how it

is dealt with while performing CA is discussed, namely the assumption of excess to a complete

dataset.

2.1 Interpretable Cluster Analysis

Recent research focuses on developing Integer Programming (IP) formulations that provide dis-

tinctive rule-based explanations to previously determined clusters, a so-called post-hoc approach.

In 2022, Lawless and Gunluk (2022) framed an IP technique regarding a polyhedral description

problem which explains the grouping of data points within a cluster by forming a polyhedron

surrounding them.

Carrizosa et al. (2022) proposed two MILP formulations, a covering and partitioning model

based on classic Location Analysis problems, the covering and the p-median problem. The

covering problem maximizes demand satisfied among customers while having excess to p facilities

that can be opened or closed (Garćıa & Maŕın, 2015). The p-median problem allocates demand

to customers with a fixed number of p open facilities while minimizing the total travel distance

(Daskin & Maass, 2015). At the end of the paper, the authors suggest the next step in their

research, namely presenting a MILP technique that simultaneously divides the data into intra-

homogeneous inter-heterogeneous clusters and provides corresponding explanations. Such a

MILP formulation is also referred to as an intrinsic model. The following year the writers

published a paper covering a MILP formulation that concurrently builds and explains clusters

(Carrizosa et al., 2023). In addition, another post-hoc model based on this intrinsic model is

formulated in the same paper.

Lawless et al. (2022) also constructed an intrinsic model. The model is a Mixed Integer

Non-Linear Programming (MINLP) problem which surrounds each cluster with a polytope and

searches for separating planes, also known as hyperplanes, to aid the interpretability. Polytopes

are geometric shapes with a flat side that surround the observations. The authors claim that

their model has a higher expressive power than decision-tree approaches since polytopes can be

plotted into a decision tree together with hyperplanes that are aligned with the axes.
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2.2 Handling Missing Data

An important observation is that all IP techiniques denoted in the previously mentioned papers

assume the availability of a complete dataset. In practice, the gathered data has almost always

some proportion that is incomplete. This missing data can arise in only one attribute or more,

caused completely at random, at random or not at random (Lin & Tsai, 2020).

There are two ways to deal with missing data: deletion or imputation. Once the percentage of

missing values exceeds 15% of the data, the observations with missing features can no longer be

deleted without it having a significant effect on the final clustering result (Acuna & Rodriguez,

2004). When this occurs the missing data is often imputed. There are various imputation

methods. Popular methods in comparative research are K-Nearest-Neighbour (KNN), Singular

Value Decomposition, Bayesian Principal Component Analysis (BPCA) and Median imputation

(Celton, Malpertuy, Lelandais & De Brevern, 2010).

For decades, the statistical technique of replacing missing values with the mean has been

well-researched and validated as a reliable approach to complete a dataset (Little & Rubin,

2019). De Souto, Jaskowiak and Costa (2015) concluded in their comparative analysis on the

impact of different imputation methods that the mean imputation does not significantly impact

the quality of the clusters compared to the results from the complete dataset. The mean method

performed as well as more complex strategies, such as KNN and BPCA.

Researchers also found multiple ways to perform clustering on the incomplete dataset without

the need for deletion or imputation. Chi, Chi and Baraniuk (2016) proposed a version of the k-

means clustering algorithm that is applicable even when the dataset is incomplete. The method

determines the differences between the observations only using the observed values, avoiding

wasted data as a consequence of deleting observations and avoiding erroneous differences caused

by wrongly imputed values. Wagstaff (2004) constructed a clustering algorithm that contains a

set of constraints based solely on known values. Again providing a clustering method that can

handle missing data.

The next section introduces the goal of this paper, why it is important to account for missing

data and the composition of the rules used to form explanations.

3 Problem description

To contribute to the research of interpretable Machine Learning, we have set a goal to heighten

the interpretability of Cluster Analysis by providing accurate and distinctive explanations for

the clusters. We attempt to achieve our goal by considering three different models that are

applicable in different scenarios.

In the case that clusters are provided, the clusters are explained by means of the post-hoc

model. Are the clusters yet to be formed, then one of the intrinsic models is considered. When

the dataset is complete the original intrinsic model of Carrizosa et al. (2023) is employed to

search for cluster explanations. Cases with missing values are clustered and explained by virtue

of an extended version of the original intrinsic model, referred to as the imputed data intrinsic

model.

Performing CA while only having excess to an incomplete dataset is a well-researched topic.

3



On the other hand, there has been no research on missing data while working with interpretable

CA. Imputation seems to be a great solution to deal with missing values while forming clusters.

However, the explanations that result from the interpretable CA based on the features with

imputed values are less reliable than the explanations based on features that do not contain

missing values (Rodwell, 2014). We can not state for certain that the imputed values portray

the missing values well, resulting in explanations formed by features from which we can not

guarantee they portray reality. To penalize the use of imputed-value-based explanations and

stimulate the selection of explanations based on observed data, the imputed data intrinsic model

is introduced in this paper.

3.1 Explanation assessment

The quality of the explanations is assessed based on their accuracy and their distinctiveness. The

accuracy is measured as the number of true positive cases in a cluster divided by the number of

individuals assigned to the cluster, also called the true positive rate (TPR). When an individual

in cluster k meets the requirements of the explanation of cluster k, ek, it is counted as a true

positive case. A false positive case is added when an individual outside cluster k is explained

by ek. The distinctiveness is equal to the number of false positive cases for a cluster divided by

the number of individuals outside of the cluster, referred to as the false positive rate (FPR). We

desire a TPR close to 1 and a FPR close to 0.

We denote the number of clusters by K. For each cluster k holds that k ∈ {1, ...,K}. The

number of clusters within a dataset is set equal to the number of predetermined clusters. The

post-hoc model explains these clusters. The individuals are thus divided into K different groups,

such that J = ∪K
k=1Jk for which holds that Jk ∩ Jk′ = ∅ where k ̸= k′ and J represents the set

of individuals.

3.2 Rule formulation

The number of rules by which the explanations of clusters are constructed can be determined

in multiple ways. For continuous features, the level of granularity of the threshold determines

the number of rules. Each threshold has two corresponding rules. For a continuous feature s,

the rules are features ≤ threshold and features > threshold. A binary feature s has rules

features = 0 and features = 1. We refer to these rules as if-then rules, meaning that if the

rule n is selected for a cluster k and individual i satisfies n then we want individual i to belong

to cluster k.

For the highest level of granularity, all possible values of the threshold are considered based

on the values the features hold within the datasets. Because of the abundance of rules, similar

explanations lead to the same level of accuracy and distinctiveness. A less granular case is to

consider only the deciles. With the deciles, the rules for each feature can be ascertained for

which the dataset is divided into 10 ranked groups of equal size, i.e. if the first decile is selected

then 10% of the dataset is below the corresponding threshold of a feature.

Both proposed ways to form rules will be applied to the post-hoc model and to the intrinsic

model, the results of which can be found in Section 5. For the imputed data intrinsic model,

only the decile thresholds are utilized.
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The if-then rules that can be formed by means of the features are stored in a collection A.

Collection A consists of N rules that can be split into S number of subgroups, As, for which

A =
⋃S

s=1As and s ∈ {1, ..., S}. Each subgroup contains the if-then rules related to one specific

observed feature and has the property As
⋂
As′ = ∅ where s ̸= s′. From A, a maximum of l

rules may be selected and joined by an AND operator to form an explanation ek for a cluster

k. When more than one rule is selected, each rule must originate from different subgroups of A.

In the models, we denote a rule by n for which n ∈ {1, ..., N}. An individual is either denoted

by i or j. The total amount of individuals is denoted by I, this indicates that i, j ∈ {1, ..., I}.

4 Methodology

In this section, we present the model that provides an explanation for predetermined clusters.

The original model by Carrizosa et al. (2023) that builds and explains clusters concurrently is

discussed next. Lastly, we formulate how this model can be expanded such that it accounts for

imputed values while selecting the explanations.

4.1 Post-hoc model

This section introduces the notation needed for the post-hoc model. The post-hoc model explains

the clusters that have been formed beforehand. For each individual in the clusters, it can be

extracted from the data if the individual is explained by a rule n of feature s. We denote this

using bisn for an individual i, see the definition below.

bisn =

1, if rule n ∈ As explains individual i

0, otherwise.

For the model, the binary decision variable γki is defined. When an individual i belongs

to cluster k, γki is one if i complies with the explanation of k, otherwise it equals zero. This

definition makes counting the true positive cases possible. In the case of γk′i where k ̸= k′, the

decision variable equals one if i complies with the explanation of cluster k′, otherwise zero. This

interpretation can provide the number of false positive cases. In addition, the decision variables

zksn are introduced to track the rule selection.

zksn =

1, if rule n ∈ As is selected to explain cluster k

0, otherwise

The model below is the post-hoc MILP model that interprets the clusters Jk for k = 1, ...,K.

It selects rule-based explanations by combining maximum l rules of the groups As, s = 1, ..., S.

The model includes NK binary decision variables, IK continuous decision variables and S(K+

I) + 2K + I constraints.
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minz,γ −
K∑
k=1

∑
i∈Jk

γki + θ
K∑
k=1

K∑
k′=1,k ̸=k′

∑
i∈Jk′

γki (1)

s.t.
∑
n∈As

zksn ≤ 1, k = 1, ...,K; s = 1, ..., S (2)

1 ≤
S∑

s=1

∑
n∈As

zksn ≤ l, k = 1, ...,K (3)

γki +
∑
n∈As

(1− bisn)zksn ≤ 1, i ∈ Jk; k = 1, ...,K; s = 1, ..., S (4)

γki +
S∑

s=1

∑
n∈As

(1− bisn)zksn ≥ 1, i ∈ Jk′ ; k, k
′ = 1, ...,K; k ̸= k′ (5)

zksn ∈ {0, 1}, s = 1, ..., S;n ∈ As; k = 1, ...,K (6)

γki ∈ [0, 1], i = 1, ..., I; k = 1, ...,K. (7)

The objective 1 of the above model maximizes the accuracy and distinctiveness of the explan-

ations selected for each cluster by maximizing the number of true positive cases and minimizing

the weighted number of false positive cases respectively. The false positive cases are weighted

by a parameter θ ≥ 0 which can be altered. A higher value of θ increases the importance of a

low FPR.

The first Constraints 2 ensure that at most one rule is selected from each As, s = 1, ..., S,

for the explanation of a cluster. The restriction that at most l rules are allowed to be combined

into an explanation is secured by Constraints 3. These constraints concurrently guarantee that

the explanation of each cluster contains at least one rule.

Constraints 4 and 5 define the lower and upper bound of γki. First, we look at the case

where an individual i that is assigned to cluster k is not explained by the rules selected for k,

γki should be equal to zero. For a rule n selected from As it holds that zksn =1 but bisn = 0.

Recognise that
∑

n∈As
(1− bisn)zksn ≤ 1, since at maximum only one rule n of As is selected to

explain cluster k. In this case
∑

n∈As
(1 − bisn)zksn = 1, therefore γki ≤ 0. Since γki must be

non-negative, γki equals zero.

In the case that individual i is not a member of cluster k but does fit the explanation of k,

we want γki to equal one. For each rule n ∈ As for all groups s = 1, ..., S that is assigned to

the explanation of cluster k, it holds that zksn = 1 and bisn = 1. As a consequence, γki must be

larger or equal to one. Following from the fact that γki is smaller or equal to one, γki is set to

one.

Lastly, the binary characteristic of zksn is ensured by Constraints 6 and the assumption that

γki is a continuous variable between the values zero and one is established by Constraints 7.

The relaxation of γki from a binary variable to a continuous variable does not lead to any loss

of optimization because of the formulation of the objective function and the constraints.

6



4.2 Intrinsic model

In this section, we introduce the notation for the intrinsic model related to the clusters, the

individuals and the dissimilarities between these individuals as defined by Carrizosa et al. (2023).

Before the intrinsic model can be applied, the dissimilarities between data points must be

determined. Carrizosa et al. (2023) used the Euclidean distance as a measure of dissimilarity.

The Euclidean distance formula is δij =
√∑S

s=1(is − js)2, where i and j denote the indices of

two different observations that contain the values of S features. The matrix ∆ is a matrix of

each dissimilarity between all possible combinations of individuals.

The use of the Euclidean distance may lead to undesired outcomes. Namely, the largest-

scaled feature can dominate the other features creating a skewed result. Therefore, it is import-

ant that the attributes are normalized before the distances are calculated. In this paper, we

apply the min-max normalization which transforms every feature value to a value between zero

and one.

In Table 1, we introduce the definitions of the decision variables and the parameters in the

intrinsic model related to the rules that explain each cluster, the individuals that need to be

assigned to a cluster, and the true positive and false positive cases.

Table 1: Definitions of decision variables and parameters denoted in the intrinsic model

Decision variables

xki =

{
1, if individual i is assigned to cluster k

0, otherwise

αi =

{
1, if the explanation selected for the cluster of individual i is a true positive case for i

0, otherwise

βki =


1, if the explanation selected for cluster k is a false positive case

for individual i and i is not assigned to k

0, otherwise

Parameters

θ1 ≥ 0 Weight assigned to the true positive cases across all clusters
θ2 ≥ 0 Weight assigned to the false positive cases across all clusters
l Maximum number of rules that can form a cluster’s explanation

Below, we present the IP formulation to assign the individuals to the K clusters utilizing

the dissimilarity matrix ∆ while simultaneously determining a rule-based explanation consisting

of maximum l if-then rules from As, s = 1, ...S, for each cluster. The model can be a MILP

problem by introducing a decision variable ykij . We define ykij as the product of two x variables,

ykij = xkixkj , which equals one when both individuals i and j are assigned to cluster k, otherwise

zero.
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minx,z,α,β,y

K∑
k=1

I−1∑
i=1

I∑
j=i+1

δijykij − θ1

I∑
i=1

αi + θ2

K∑
k=1

I∑
i=1

βki (8)

s.t.
K∑
k=1

xki = 1, i = 1, ..., I (9)∑
n∈As

zksn ≤ 1, k = 1, ...,K; s = 1, ..., S (10)

1 ≤
S∑

s=1

∑
n∈As

zksn ≤ l, k = 1, ...,K (11)

αi + xki +
∑
n∈As

(1− bisn)zksn ≤ 2, i = 1, ..., I; k = 1, ...,K; s = 1, ..., S (12)

βki + xki +
S∑

s=1

∑
n∈As

(1− bisn)zksn ≥ 1, i = 1, ..., I; k = 1, ...,K (13)

xki + xkj − ykij ≤ 1, i = 1, ..., I − 1; j = i+ 1, ..., I; k = 1, ...,K (14)

xki ∈ {0, 1}, i = 1, ..., I; k = 1, ...,K (15)

zksn ∈ {0, 1}, s = 1, ..., S;n ∈ As; k = 1, ...,K (16)

ykij ∈ [0, 1], i = 1, ..., I − 1; j = i+ 1, ..., I; k = 1, ...,K (17)

αi ∈ [0, 1], i = 1, ..., I (18)

βki ∈ [0, 1], i = 1, ..., I; k = 1, ...,K. (19)

The objective 8 is composed of three terms. The first term minimizes the intra-homogeneity

(IH) of clusters in the form of summating the dissimilarities within clusters. The second maxim-

izes the total number of true positive cases with an assigned weight θ1. The third term minimizes

the total number of false positive cases with an assigned weight θ2. The solution must comply

with the following constraints. Firstly, Constraints 9 verify that each individual is allocated to

precisely one cluster. Constraints 10 and 11 are identical to Constraints 2 and 3. Because of

the way that the objective is formulated, we only need to include the definition of αi = 0 and

βki = 1, as explained by Carrizosa et al. (2023). To ensure that these values of αi and βki are

well-defined, the Constraints 12 and 13 are included in the formulation. They define αi and βki

is a similar way as Constraints 4 and 5 define γki. The decision variables x and z are binary

variables, which are imposed by Constraints 15 and 16. Decision variables αi and βki are defined

as binary variables as well, however, because of the formulation of the model we can presume

the variables as continuous without loss of optimality (Constraints 18 and 19).

The intrinsic model has K(I+N) binary and I(K(I−1)
2 +K+1) continuous decision variables

between the values zero and one. The total number of linear constraints is I +K( I(I−1)
2 + IS +

I + S + 2).

4.3 Imputed Data Intrinsic model

The intrinsic model does not consider the possibility that there are missing values. If there are

missing values these values could be replaced by imputed values, for example taking the form
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of the mean of the values of other observations. However, explaining the clusters based on the

feature for which there is a high percentage of imputed values would not be reliable since the

explanation would not be based on observed data. The use of rules about features with imputed

values should be penalized.

To penalize the use of rules about features with imputed values, we introduce a new matrix

M with length I and width S for which each mis equals one if individual i had a missing value

for feature s which is replaced by an imputed value and zero otherwise. We multiply mis with

zksn and xki for every possible combination of clusters, individuals and rules and then add up the

multiplications. This summation is multiplied with a parameter λ and added to the objective.

The objective takes the following form.

minx,z,α,β

K∑
k=1

I−1∑
i=1

I∑
j=i+1

δijykij − θ1

I∑
i=1

αi + θ2

K∑
k=1

I∑
i=1

βki + λ
K∑
k=1

I∑
i=1

S∑
s

∑
n∈As

miszksnxki (20)

The added term is defined as the number of individuals that are appointed to a cluster whose

explanation contains a rule based on a feature for which the individual has an imputed value.

We want to minimize this term such that the number of individuals explained solely based on

their non-imputed values is maximized. Because of the formulation of the added term, the

selection of specific feature rules is penalized more strictly when the percentage of individuals

in the cluster with imputed values for the corresponding feature is higher.

To make the model a linear problem again, we introduce decision variable wksni = zksnxki.

The definition of wksni makes it a binary decision variable which can be relaxed to a continuous

decision variable between 0 and 1 without loss of optimality (Constraints 22). With the new

decision variable also comes new constraints, Constraints 21 such that wksni = 1 is well-defined.

The imputed data intrinsic model is formed by Objective 20 and the Constraints (9) - (19), (21)

and (22).

zksn + xki − wksni ≤ 1, k = 1, ...,K; s = 1, ..., S;n ∈ As; i = 1, ..., I (21)

wksni ∈ [0, 1], k = 1, ...,K; s = 1, ..., S;n ∈ As; i = 1, ..., I (22)

When λ equals 1, the model prefers to select explanations that are based on observed data

unless the rules including imputed features provide a significantly better explanation. In the

case of λ set to 0, the model reduces to the original intrinsic model.

This extended intrinsic model has K(I+N) binary and I(K(I−1)
2 +K+KN +1) continuous

decision variables between the values zero and one. The total number of linear constraints is

I +K( I(I−1)
2 + IS +NI + I + S + 2).

5 Results

For the results, we first discuss the data used to apply the different models. Next, the results of

the post-hoc model are shown and are followed by the results of the intrinsic model. Next, we

discuss how the missing values are generated and imputed. Lastly, the outcome of the imputed

data intrinsic model is presented.
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5.1 The data

We apply the original intrinsic and the post-hoc model to two datasets (Carrizosa et al., 2023).

All utilized datasets contain classes formed based on the class definitions which can be found in

Tables 9 to 12 in Appendix B. These tables also provide the definitions of the features. For the

intrinsic model, we ignore the predetermined classes to create our own while the post-hoc model

explains the predetermined classes. The two datasets, the housing and breast cancer dataset,

each contain 2 classes.

For the imputed data intrinsic model, two other datasets are utilized. Since the imputed

data intrinsic model has even more decision variables and constraints than the other two models,

this model is more difficult to solve. The extended intrinsic model is tested using more compact

datasets with fewer observations and features than the datasets used for the models used by

Carrizosa et al. (2023). We refer to these datasets as the cryotherapy and forest fires datasets.

Both comprise two classes.

Further description of the datasets is denoted in Table 2. Table 2 contains information

on each dataset on the number of observations, the number of predetermined classes and the

number of features that are observed. All datasets are available on the UCI repository.

The housing dataset will be used throughout this paper as an example. The data points

correspond to owner-occupied homes in the area of Boston Mass collected by the US Census

Service. The homes are divided into two classes, namely whether or not the home is worth more

than the median value of owner-occupied homes.

Table 2: Information on the datasets

Name of dataset # Observations # Classes # Features

housing 506 2 13
breast cancer 683 2 10
cryotherapy 90 2 5
forest fires 122 2 10

5.2 Post-hoc model results

The post-hoc model is solved for multiple values of θ. We alter the parameter θ ≥ 0 between

the values 2p with p ∈ {−5,−4, ..., 4, 5}. The post-hoc model is first solved for the case where θ

equals 2−5 without an initial solution. The model is then applied in increasing order of θ where

the initial solution is set equal to the solution of the model where θ equals the previous value.

The results of the post-hoc model for the housing dataset can be found in Tables 3 and 4.

For the case where the rules are formed using the decile values, the results differ from the results

found by Carrizosa et al. (2023). The most significant cause is the difference in predetermined

classes. Carrizosa et al. (2023) have found clusters that split the observations into a cluster

containing 274 houses and one formed by 232 houses. The split we find has 255 observations in

the first cluster and 251 in the second. The different clusters lead to different explanations and

therefore divergent TPRs and FPRs. The paper of Carrizosa et al. (2023) will also be called the

reference paper.
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Table 3: The clusters and explanations derived from the post-hoc model for the housing dataset
constructed with K = 2 clusters, a maximum length of l = 2, utilizing N = 189 rules generated
from the deciles of the continuous features and considering all attributes of the categorical
features, along with the TPR and FPR found in the reference paper.

θ C TPR FPR
Ref
TPR

Ref
FPR

Explanations

1 0.27 0.00 0.14 0.00 CRIM>5.581 AND NOX>0.668
25

2 0.48 0.00 0.45 0.00 RM>6.376 AND LSTAT≤7.765

1 0.45 0.01 0.14 0.00 DIS≤2.6403 AND LSTAT>15.62
24

2 0.64 0.01 0.59 0.01 RM>6.2085 AND LSTAT≤9.53

1 0.55 0.02 0.14 0.00 PTRATIO>19.7 AND LSTAT>13.33
23

2 0.64 0.01 0.59 0.01 RM>6.2085 AND LSTAT≤9.53

1 0.66 0.04 0.41 0.05 TAX>289 AND LSTAT>13.33
22

2 0.64 0.01 0.59 0.01 RM>6.2085 AND LSTAT≤9.53

1 0.66 0.04 0.70 0.15 TAX>289 AND LSTAT>13.33
21

2 0.76 0.05 0.70 0.06 RM>5.9505 AND LSTAT≤11.36

1 0.83 0.16 0.70 0.06 INDUS>2.91 AND LSTAT>11.36
20

2 0.86 0.15 0.81 0.23 RM>5.9505 AND LSTAT≤13.33

1 0.99 0.42 0.78 0.18 LSTAT>7.765
2−1

2 0.86 0.15 0.97 0.40 RM>5.9505 AND LSTAT≤13.33

1 0.99 0.42 0.99 0.46 LSTAT>7.765
2−2

2 0.96 0.43 0.98 0.83 TAX≤66 AND LSTAT≤15.62

1 0.99 0.42 0.99 0.46 LSTAT>7.765
2−3

2 0.98 0.61 0.98 0.83 TAX≤666 AND LSTAT≤18.06

1 0.99 0.42 0.99 0.46 LSTAT>7.765
2−4

2 1.00 0.79 1.00 1.00 TAX≤666 AND LSTAT≤23.035

1 1.00 0.60 1.00 0.63 LSTAT>6.29
2−5

2 1.00 0.79 1.00 1.00 TAX≤666 AND LSTAT≤23.035

From Table 3, we denote that the TPR ranges from 0.27 to 1 and the FPR takes forms

between values 0 and 0.79. The table depicts the same trend in the true and false positive ratios

as found by Carrizosa et al. (2023). For the lowest value of θ the TPR and the FPR are the

highest. When the value of θ increases, the TPR and FPR decline. This indicates that the best

combination of TPR and FPR, and therefore the best explanations, can be found for θ values

around 0.5, 1 and 2.

The instance with rules formed by all unique values of the features portrays the same cor-

relation between the value of θ and the true and false positive ratios. The result most optimal

is that of the central values for θ. Modest improvement in the TPR and FPR can be noticed

for the more granular case compared to the model with decile rules. The lowest TPR is now

0.51 instead of 0.27 and the highest FPR equals 0.69 rather than 0.79. In addition, the central

θ values results improve when the granularity increases.

The result for the breast cancer dataset is denoted in Table 13 in Appendix C. The breast

cancer dataset is used only in the case of decile thresholds. The TPR ranges from 0.68 to 1,

while the FPR equals values between 0 and 0.52. The obtained output deviates far less from

the Carrizosa et al. (2023) results than that of the housing dataset. The few differences that

occur are dissimilarities in explanations, meaning that the explanations observed in this paper
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Table 4: The clusters and explanations derived from the post-hoc model for the housing dataset
constructed with K = 2 clusters, a maximum length of l = 2, utilizing N = 5646 rules generated
from the unique values of the continuous features and considering all attributes of the categorical
features, along with the TPR and FPR found in the reference paper.

θ C TPR FPR
Ref
TPR

Ref
FPR

Explanations

1 0.51 0.01 0.51 0.00 TAX>402 AND LSTAT>14.37
25

2 0.52 0.00 0.14 0.00 NOX≤0.51 AND RM>6.279

1 0.51 0.01 0.14 0.00 TAX>402 AND LSTAT>14.36
24

2 0.69 0.01 0.58 0.00 RM>6.144 AND LSTAT≤
1 0.52 0.01 0.14 0.00 TAX>AND LSTAT>14.1

23
2 0.69 0.01 0.64 0.01 RM>6.144 AND LSTAT≤9.93

1 0.66 0.04 0.45 0.05 TAX>300 AND LSTAT>13.33
22

2 0.70 0.01 0.64 0.01 RM>6.12 AND LSTAT≤9.93

1 0.65 0.04 0.70 0.04 TAX>305 AND LSTAT>13.33
21

2 0.79 0.05 0.70 0.14 RM>6.059 AND LSTAT≤11.66

1 0.81 0.13 0.80 0.20 INDUS>4.86 AND LSTAT>11.66
20

2 0.79 0.05 0.73 0.06 RM>6.059 AND LSTAT≤11.66

1 1.00 0.40 0.99 0.44 PTRATIO>14.4 AND LSTAT>7.67
2−1

2 0.86 0.15 0.78 0.19 RM>5.957 AND LSTAT≤13.27

1 0.99 0.40 0.99 0.44 PTRATIO>13 AND LSTAT>7.67
2−2

2 0.96 0.38 0.98 0.80 B>127.36 AND LSTAT≤14.81

1 0.99 0.40 0.99 0.44 PTRATIO>13 AND LSTAT>7.67
2−3

2 0.99 0.63 1.00 0.90 B>127.36 AND LSTAT≤19.78

1 0.99 0.40 0.99 0.44 PTRATIO>13 AND LSTAT>7.67
2−4

2 1.00 0.69 1.00 0.97 B>127.36 AND LSTAT≤21.52

1 1.00 0.49 1.00 0.53 PTRATIO>13 AND LSTAT>6.73
2−5

2 1.00 0.78 1.00 0.97 CRIM≤14.4383 AND B>127.36

and that of Carrizosa et al. (2023) have identical true and false positive rates. Since the IH is

identical, the results are equally as good.

5.3 Intrinsic model results

We apply the intrinsic model with different values for the two parameters θ1 and θ2. The values

of θ1 and θ2 are set to combinations of {0.5, 1, 2} to investigate which combination gives the

highest number of true positives and the lowest number of false positives while maintaining an

acceptable dissimilarity level. The first combination is θ1 and θ2 equal 0.5. After that, θ2 is

adjusted until it has taken all forms of {0.5, 1, 2}. The next step is to vary θ1.

The model starts with an initial solution and has a time limit of 10 minutes. For the

first combination of the θ parameters, the initial solution of the cluster allocation equals the

solution of k-means clustering. The k-means clustering results are used to solve the post-hoc

model, providing an initial solution for the rule selection. Further combinations have an initial

clustering solution set to the solution of the previous θ combination and the initial explanation

selection is equal to the outcome of the post-hoc model with this clustering solution as input.

While replicating the intrinsic model of Carrizosa et al. (2023), the exact same explanations

are found for the housing dataset when using deciles as threshold (Table 5). One small distinction
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is that the TPR ranges from 0.91 to 1 instead of 0.90 to 1, presumably because of a difference

in rounding. The FPR has an equally small range between 0 and 0.09.

The results for a higher granularity, denoted in Table 6, have true and false positive rates

equal to that of the original authors. The explanations do differ slightly. Since the TPR, FPR

and the IH are identical to the original results, it indicates that the explanations found in this

paper are equivalent in interpretability.

Important to note is that these results are not proven to be optimal because of the 10-minute

time limit. We do see while comparing the cases with decile values and the unique values as rule

thresholds that the range of the FPR becomes smaller when the number of rules rises. The TPR

takes a value between 1 and 0.91 in both cases, but the FPR range reduces to values between 0

and 0.04 in the case of higher granularity.

The results for the breast cancer dataset in this paper vary greatly from the Carrizosa et al.

(2023) results. In the original results, multiple intra-homogeneity values are found. This paper

only reports one value for the intra-homogeneity. The magnitude and complexity of the problem

of the breast cancer dataset are higher than that of the housing dataset problem. Therefore,

another grouping of observations could not be found within the 10-minute time limit. We do

observe that the peak values of TPR are again obtained for high values of θ1 and θ2.

Table 5: The clusters and explanations derived from the intrinsic model for the housing dataset
constructed with K = 2 clusters, a maximum length of l = 2, utilizing N = 189 rules generated
from the deciles of the continuous features and considering all attributes of the categorical
features, along with the TPR, FPR and IH found in the reference paper.

θ1 θ2 IH
Ref
IH

C TPR FPR
Ref
TPR

Ref
FPR

Explanations

1 1.00 0.00 1.00 0.00 INDUS>12.83 AND TAX>398
0.5 0.5 0.6*105 0.6*105

2 0.97 0.04 0.97 0.04 NOX≤6.5025 AND RAD≤8
1 0.91 0.00 0.90 0.00 INDUS>12.83 AND PTRATIO>19.7

0.5 1 0.6*105 0.6*105
2 0.97 0.00 0.97 0.00 NOX≤0.605 AND RAD≤8
1 0.91 0.00 0.90 0.00 INDUS>12.83 AND PTRATIO>19.7

0.5 2 0.6*105 0.6*105
2 0.97 0.00 0.97 0.00 NOX≤0.605 AND RAD≤8
1 1.00 0.04 1.00 0.04 INDUS>12.83 AND TAX>398

1 0.5 0.6*105 0.6*105
2 1.00 0.09 1.00 0.09 NOX≤0.668 AND TAX≤437
1 1.00 0.04 1.00 0.04 INDUS>12.83 AND PTRATIO>19.7

1 1 0.6*105 0.6*105
2 0.97 0.00 0.97 0.00 NOX≤0.605 AND RAD≤8
1 0.91 0.00 0.90 0.00 INDUS>12.83 AND PTRATIO>19.7

1 2 0.6*105 0.6*105
2 0.97 0.00 0.97 0.00 NOX≤0.605 AND RAD≤8
1 1.00 0.04 1.00 0.04 INDUS>12.83 AND TAX>398

2 0.5 0.6*105 0.6*105
2 1.00 0.09 1.00 0.09 NOX≤0.668 AND TAX≤437
1 1.00 0.04 1.00 0.04 INDUS>12.83 AND TAX>398

2 1 0.6*105 0.6*105
2 1.00 0.09 1.00 0.09 NOX≤0.668 AND TAX≤437
1 1.00 0.04 1.00 0.04 INDUS>12.83 AND TAX>398

2 2 0.6*105 0.6*105
2 0.97 0.00 0.97 0.00 NOX≤0.605 AND RAD≤8
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Table 6: The clusters and explanations derived from the intrinsic model for the housing dataset
constructed with K = 2 clusters, a maximum length of l = 2, utilizing N = 5646 rules generated
from the unique values of the continuous features and considering all attributes of the categorical
features, along with the TPR, FPR and IH found in the reference paper.

θ1 θ2 IH
Ref

IH
C TPR FPR

Ref

TPR

Ref

FPR
Explanations

1 1.00 0.04 1.00 0.04 INDUS>15.04 AND RAD>3
0.5 0.5 0.6*105 0.6*105

2 1.00 0.00 1.00 0.00 NOX≤0.647 AND TAX≤432

1 0.91 0.00 0.91 0.00 INDUS>15.04 AND TAX>432
0.5 1 0.6*105 0.6*105

2 1.00 0.00 1.00 0.00 NOX≤0.647 AND TAX≤432

1 0.91 0.00 0.91 0.00 INDUS>15.04 AND TAX>422
0.5 2 0.6*105 0.6*105

2 1.00 0.00 1.00 0.00 NOX≤0.647 AND TAX≤432

1 1.00 0.04 1.00 0.04 INDUS>15.04 AND TAX>351
1 0.5 0.6*105 0.6*105

2 1.00 0.00 1.00 0.00 NOX≤0.647 AND TAX≤432

1 1.00 0.04 1.00 0.04 INDUS>15.04 AND RAD>3
1 1 0.6*105 0.6*105

2 1.00 0.00 1.00 0.00 NOX≤0.647 AND TAX≤432

1 0.91 0.00 0.91 0.00 INDUS>15.04 AND TAX>432
1 2 0.6*105 0.6*105

2 1.00 0.00 1.00 0.00 NOX≤0.647 AND TAX≤432

1 1.00 0.04 1.00 0.04 INDUS>15.04 AND TAX>198
2 0.5 0.6*105 0.6*105

2 1.00 0.00 1.00 0.00 NOX≤0.647 AND TAX≤432

1 1.00 0.04 1.00 0.04 INDUS>15.04 AND TAX>351
2 1 0.6*105 0.6*105

2 1.00 0.00 1.00 0.00 NOX≤0.647 AND TAX≤432

1 1.00 0.04 1.00 0.04 INDUS>15.04 AND RAD>3
2 2 0.6*105 0.6*105

2 1.00 0.00 1.00 0.00 NOX≤0.647 AND TAX≤432

5.4 Generating missing and imputed values

Before we can move on to the imputed data intrinsic model, we need an incomplete dataset. To

test the effect of imputed values on the imputed data intrinsic model, 20% of the cryotherapy

and forest fires dataset is deleted. We form incomplete datasets by deleting data completely at

random in specific features. In both cases, around half of the features are selected. These features

are denoted by * in the Tables 11 and 12 which can be found in Appendix B. The newly formed

incomplete datasets mimic real-life datasets for which, for example, the measuring machinery

malfunctioned.

The missing values are then filled by the mean of the remaining values of the corresponding

feature. We use mean imputation because it is easy and fast but most importantly reliable. The

datasets made up of imputed values are now ready to function as the input data of the extended

intrinsic model.

5.5 Imputed data intrinsic model

In this section, we compare the results for the extended intrinsic model of the instance where λ

equals one and the case in which λ is set to zero. The value of λ is equal to one when we want

to penalize the use of features with imputed values for the explanations. When discussing the

results we refer to this case as the imputed data intrinsic model. We set λ to zero when we want
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to reduce the problem to the original intrinsic model. The values of parameters θ1 and θ2 are

varied in the same fashion as for the standard intrinsic model.

We report the best feasible solution found within the time limits including the IH, TPR and

FPR of the imputed dataset and the selected explanations. In addition, the IH, TPR and FPR

for the complete dataset are determined based on the clusters and explanations found for the

imputed dataset.

The initial solutions of the imputed intrinsic model are set similarly to the initial solutions of

the original intrinsic model. The initial solution is set to the original intrinsic model’s clustering

solution of the corresponding θ combination. The initial explanations are then the explanations

for the clustering solution selected by the post-hoc model. The first initial clustering solution is

determined by the k-means clustering outcome.

5.5.1 Cryotherapy results

The time limit for the cryotherapy dataset is set to 10 minutes and the results are portrayed

in Table 7. The features that contain imputed values are Time, NumbWarts and Area (Table

11) of which Area is used multiple times to explain clusters when the original intrinsic model

is applied. This is just over half of the number of features in the dataset. When λ is equal to

1, the IH values remain unchanged. However, the explanations that contain Area in the case of

the original intrinsic model are altered when accounting for imputed values. The explanations

exclude the Area rules and maintain the remaining rules. Despite these changes, the TPR

and FPR of these new explanations retain the same value, indicating that the explanations are

equally as accurate and distinctive as the explanations in the case of λ is zero.

One combination of θ1 and θ2 reports different explanations for both λ values that are not

related to the imputed data. For the θ combination where both parameters are assigned value

0.5, the clustering solution and therefore the explanations differ in the two cases of λ. This

is likely caused by the increase in the model’s complexity when the λ parameter is fixed at

1. Despite the complexity increase, the time limit remains of equal length in both cases of

λ causing the solutions to differ for this particular θ combination. Because of this divergent

clustering solution, the range of the TPR varies. For λ equal to zero, the TPR ranges from 0.97

to 1 and the FPR has a value of 0 or 0.03. Changing λ to one results in TPR values between

0.91 and 1. The FPR range remains the same. The TPR and FPR values in both cases are

identical for the imputed and complete datasets.

5.5.2 Forest fires results

The forest fires dataset contains twice the amount of features as that of the cryotherapy dataset,

increasing the complexity of the problem. The time limit is therefore set to 20 minutes. Again

half of the features have generated missing values that are imputed by the mean, namely the

features FFMC, DMC, DC, ISI and BUI (Table 12). These features are determined by a Fire

Weather Index (FWI) system. This means the imputed dataset illustrates a situation where the

FWI system malfunctions.

Without taking the imputed values into account while selecting the explanations, the explan-

ations contain rules concerning features with imputed values in more than half of the results for
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Table 7: The clusters and explanations derived from the imputed data intrinsic model for the
cryotherapy dataset constructed with K = 2 clusters, a maximum length of l = 2, utilizing N =
62 rules generated from the deciles of the continuous features and considering all attributes of the
categorical features, along with the intra-homogeneity, TPR and FPR values for the complete
dataset.

θ1 θ2 λ IH
Actual
IH

C TPR FPR
Actual
TPR

Actual
FPR

Explanation

0.5 0.5

0 1.12*103 1.39*103
1 0.97 0.00 0.97 0.00 Type>1.4

2 1.00 0.03 1.00 0.03 Type≤1.4

1 1.16*103 1.43*103
1 0.91 0.00 0.91 0.00 Age>21.6 AND Type>1.4

2 0.95 0.00 0.95 0.00 Type≤1.4

0.5 1

0 1.12*103 1.39*103
1 0.97 0.00 0.97 0.00 Type>1.4

2 0.98 0.00 0.98 0.00 Age≤41.9 AND Type≤1.4

1 1.12*103 1.39*103
1 0.97 0.00 0.97 0.00 Type>1.4

2 0.98 0.00 0.98 0.00 Age≤41.9 AND Type≤1.4

0.5 2

0 1.12*103 1.39*103
1 0.97 0.00 0.97 0.00 Type>1.4

2 0.98 0.00 0.98 0.00 Age≤41.9 AND Type≤1.4

1 1.12*103 1.39*103
1 0.97 0.00 0.97 0.00 Type>1.4

2 0.98 0.00 0.98 0.00 Age≤41.9 AND Type≤1.4

1 0.5

0 1.12*103 1.39*103
1 0.97 0.00 0.97 0.00 Area>9.8 AND Type>1.4

2 1.00 0.03 1.00 0.03 Type≤1.4

1 1.12*103 1.39*103
1 0.97 0.00 0.97 0.00 Type>1.4

2 1.00 0.03 1.00 0.03 Type≤1.4

1 1

0 1.12*103 1.39*103
1 0.97 0.00 0.97 0.00 Type>1.4

2 1.00 0.03 1.00 0.03 Type≤1.4

1 1.12*103 1.39*103
1 0.97 0.00 0.97 0.00 Type>1.4

2 1.00 0.03 1.00 0.03 Type≤1.4

1 2

0 1.12*103 1.39*103
1 0.97 0.00 0.97 0.00 Type>1.4

2 0.98 0.00 0.98 0.00 Age≤41.9 AND Type≤1.4

1 1.12*103 1.39*103
1 0.97 0.00 0.97 0.00 Type>1.4

2 0.98 0.00 0.98 0.00 Age≤41.9 AND Type≤1.4

2 0.5

0 1.12*103 1.39*103
1 0.97 0.00 0.97 0.00 Area>9.8 AND Type>1.4

2 1.00 0.03 1.00 0.03 Type≤1.4

1 1.12*103 1.39*103
1 0.97 0.00 0.97 0.00 Type>1.4

2 1.00 0.03 1.00 0.03 Type≤1.4

2 1

0 1.12*103 1.39*103
1 0.97 0.00 0.97 0.00 Area>9.8 AND Type>1.4

2 1.00 0.03 1.00 0.03 Type≤1.4

1 1.12*103 1.39*103
1 0.97 0.00 0.97 0.00 Type>1.4

2 1.00 0.03 1.00 0.03 Type≤1.4

2 2

0 1.12*103 1.39*103
1 0.97 0.00 0.97 0.00 Type>1.4

2 1.00 0.03 1.00 0.03 Type≤1.4

1 1.12*103 1.39*103
1 0.97 0.00 0.97 0.00 Type>1.4

2 1.00 0.03 1.00 0.03 Type≤1.4
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all θ combinations. It was less than half of the cases for the cryotherapy dataset. Therefore,

changing the λ value should have a bigger effect on the explanations while using the forest fires

dataset. The results are represented in Table 15 in Appendix D.

For the original intrinsic model, the intra-homogeneity remains constant for all combinations

of the θ1 and θ2 parameter values, indicating that the clustering performance remains constant.

The true positive rates take on values between 0.16 and 0.98. The FPR range from 0.03 to 0.31.

The TPR and FPR for the complete dataset differ for the forest fires dataset from the TPR and

FPR for the imputed dataset. Nonetheless, the ranges remain consistent across both datasets.

The TPR ranges from 0.82 to 1 in the case of λ equal to 1. For the false positive rates, the

range is 0.03 to 0.52. In the imputed data intrinsic model case, the ranges of the TPR and FPR

for both the imputed dataset and the complete dataset also remain identical. Nevertheless, the

specific values of TPR and FPR differ from the actual TPR and FPR for certain combinations

of the θ parameters. In addition, the imputed data intrinsic model provides better TPR scores,

but also worse FPR scores compared to the original intrinsic model.

The IH values do change in some instances for the imputed data intrinsic model. For these

instances, the model that accounts for features with imputed values finds lower IH values than

the model that does not account for these features. Unfortunately, a few of the corresponding

false positive rates rise and true positive rate values decline. It is difficult to conclude from these

results which model finds the better solution. To make the comparison easier, the objective of

the original intrinsic model (Equation 8) is calculated for each solution. The values are denoted

in Table 8 and referred to as the ’Obj value’. The solution that has the lowest value for this

summation is the better option since we want a high IH, high TPR and low FPR.

In the case that θ1 and θ2 both equal 0.5, changing the value of λ results in dissimilar

solutions. In Table 8, we see that for the imputed data intrinsic model, the solution has a

lower objective value for both the imputed data and the complete data compared to the original

intrinsic model. The imputed data intrinsic model again finds a better solution for θ1 equal to

1 and θ2 equal to 0.5. Both θ combinations mentioned result in explanations including features

with imputed values when λ is set to 0. If λ is equal to 1, the explanations do not contain these

features.

For a few other results of θ combinations varying λ does not impact the solution for these

combinations. This indicates that, for these cases, the imputed data intrinsic model can not

find a solution that does not contain rules based on features with imputed values rules without

providing a significantly higher objective value.
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Table 8: The original objective functions’ values for the solutions obtained from the extended
intrinsic model using imputed data examined across all combinations of λ, θ1, and θ2 parameters
in relation to the forest fires dataset calculated for the imputed and complete datasets.

λ = 0 λ = 1
θ1 θ2

Obj value Actual Obj value Obj value Actual Obj value

0.5 0.5 2.60*103 3.71*103 2.59*103 3.64*103

0.5 1 2.58*103 3.68*103 2.58*103 3.68*103

0.5 2 2.58*103 3.68*103 2.58*103 3.68*103

1 0.5 2.52*103 3.60*103 2.51*103 3.60*103

1 1 2.52*103 3.62*103 2.52*103 3.62*103

1 2 2.53*103 3.63*103 2.53*103 3.63*103

2 0.5 2.40*103 3.50*103 2.40*103 3.50*103

2 1 2.41*103 3.54*103 2.41*103 3.54*103

2 2 2.42*103 3.52*103 2.42*103 3.52*103

6 Conclusion

In this paper, we replicate the MILP model created by Carrizosa et al. (2023) that provides

explanations for predetermined clusters based on the features of the observations. In addition,

their MILP formulation that simultaneously assigns observations to clusters and selects corres-

ponding explanations is validated. The Euclidean distance portrays the dissimilarity between

observations. Furthermore, we form rules based on the features that characterize the individuals

within a dataset. The rules are joined by an AND operator to form explanations for the clusters.

Lastly, the availability of a complete dataset is assumed.

The goal of both models is to maximize the accuracy of the explanations by maximizing

the number of true positive cases and to maximize the distinctiveness of the explanations by

minimizing the number of false positive cases. The intrinsic model has an additional goal to

minimize the dissimilarity between individuals that belong to the same cluster. We validate in

this paper that the two MILP models do indeed work and can provide accurate and distinctive

explanations.

On top of the MILP models formulated by Carrizosa et al. (2023), a new MILP model is

introduced. The new model is an extension of the intrinsic model. The extended model, referred

to as the imputed data intrinsic model, penalizes the selection of rules based on features with

imputed values for cluster explanations. When the assumption of availability to a complete

dataset is violated, researchers will resort to utilizing an incomplete dataset. The missing values

contained in the incomplete dataset are imputed or the observations containing missing values

are deleted. Explanations formed by rules based on features that contain imputed values will be

less reliable than explanations consisting of rules based on features that only contain observed

data since it can not be stated for certain that the rules of features with imputed values represent

reality. Our goal is to find explanations that portray the real world the best by searching for

more or as accurate and distinctive explanations using only features consisting of observed data

as the explanations found that include all features.
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We prove that the imputed data intrinsic model provides as accurate and distinctive explan-

ations as the model that does not account for imputed values in almost all cases. In some cases,

the imputed data intrinsic model resulted in an even better solution for the clustering and for

the selected explanations.

It would be interesting to investigate the imputed data intrinsic model further. This paper

tests the imputed data intrinsic model for datasets that contain missing completely at random

values. In reality, values are more commonly missing at random or missing not at random.

Further research could consider the different forms of missing data to make the imputed data

intrinsic model even more applicable in real-life situations. Perhaps new constraints can be

introduced to increase the performance of the models. Lastly, the dissimilarity between indi-

viduals can be determined in various different ways. A comparative analysis of the intrinsic

models utilizing diverse dissimilarity measures would be a valuable addition to the research field

of interpretable Machine Learning.
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A Programming code description

In total 3 Python and 6 Java classes were used to obtain the results denoted in this paper.

The following classes are the Python classes that have been used.

• MCAR&Impute: Generates missing data points, imputes missing data points using the

mean of non-missing data points belonging to the corresponding feature and saves a matrix

for which a value equals 1 if the corresponding index in the imputed dataset is an imputed

value, otherwise the value is zero.

• Deciles: Determines the decile values of the data features.
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• Normalization: Normalizes the data utilizing the min-max normalization. It also con-

tains the code to perform k-means clustering providing the k-means cluster assignments.

Now we will shortly describe the Java classes.

• InputData: Consists of methods to determine the input for the models, namely the dis-

similarity matrix (dissimilarityMatrix method) and the rule matrix (ruleMatrix method).

It also reads the other input such as the initial X and Z in the form of a CSV file and

transforms them into Java matrices using the kmeans method. This class is extended by

all of the following classes.

• PostHocModel: Solves the post-hoc model for instances with binary variables.

• PostHocModel BreastCancer: Solves the post-hoc model for instances without binary

variables.

• IntrinsicModel Housing: Tries to find a feasible solution for the intrinsic model for

instances with binary variables.

• IntrinsicModel BreastCancer: Tries to find a feasible solution for the intrinsic model

for instances without binary variables.

• IntrinsicModel CryoExt: Tries to find a feasible solution for the imputed data intrinsic

model.

To obtain the results in Table 3, run the class PostHocModel with the housing data and the

decile values as the rule thresholds. Run the same class with the housing data only with all the

unique values of the features to get the results from Table 4.

When you run the PostHocModel BreastCancer class with the breast cancer dataset and the

decile values as the rule thresholds, the results from Table 13 can be obtained.

The IntrinsicModel Housing can be run on the housing dataset with the decile values and

all unique values as the rule thresholds to acquire the values stated in Tables 5 and 6 corres-

pondingly.

To attain the results of Table 14, run the IntrinsicModel BreastCancer on the breast cancer

dataset with the decile values as the rule thresholds.

Running the IntrinsicModel CryoExt with the cryotherapy will provide the results of Table

7. When you use the forest fires data the results of Table 15 are obtained and the values of

Table 8 can be calculated by means of the method’s output.
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B Data feature description

Table 9: Feature descriptions of the housing dataset

Feature Description

CRIM Crime rate by town per capita

ZN Proportion of residential land zoned for lots over 25,00 squared feet

INDUS Proportion of non-retail business acres per town

CHAS Dummy variable for Charles River

(equal to 1 if river is bounded by tract; o otherwise)

NOX Nitric oxides concentration in parts per 10 million

RM Average number of rooms per residence

AGE Proportion of owner-occupied units built before 1940

DIS Weighted distances to five Boston employment centres

RAD Index of accessibility to radial highways

TAX Full-value property-tax rate per $10,000
PTRATIO Pupil-teacher ratio by town

B 1000(Bk - 0.63)ˆ2 where Bk denotes the proportion of black people by town

LSTAT Percentage of lower status of the population

Classes Value above (class 1) or below (class 2) the median value of owner-

occupied homes in $1000’s

Table 10: Feature descriptions of the breast cancer dataset

Feature Description

Thickness Clump Thickness

Size Uniformity of Cell Size

Shape Uniformity of Cell Shape

Adhesion Marginal Adhesion

Epithelial Size Single Epithelial Cell Size

Nuclei Bare Nuclei

Chromatin Bland Chromatin

Normal Nucleoli Normal Nucleoli

Mitoses Mitoses

Classes Benign (class 1) or Malignant (class 2)
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Table 11: Feature descriptions of the cryotherapy dataset where * indicates the features for
which missing values are generated

Feature Description

Age Age of the patient

Time* Time elapsed before treatment in months

NumbWarts* Number of warts

Type Type of warts

Area* Surface are that warts cover in mm2

Classes Malignant (class 1) or Benign (class 2)

Table 12: Feature descriptions of the forest fires dataset where * indicates the features for which
missing values are generated

Feature Description

Temp Temperature at noon in Degrees Celsius

RH Relative humidity in percentages

WS Wind speed in km/h

Rain Total rainfall in mm

FFMC* Fine Fuel Moisture Code index from the FWI system

DMC* Duff Moisture Code index from the FWI system

DC* Drought Code index from the FWI system

ISI* Initial Spread Index from the FWI system

BUI* Buildup Index from the FWI system

FWI Fire Weather Index

Classes Forest fires did not occur (class 1), Forest fires did occur (class 2)
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C Results of the breast cancer dataset

Table 13: The clusters and explanations derived from the post-hoc model for the breast cancer
dataset constructed with K = 2 clusters, a maximum length of l = 2, utilizing N = 84 rules
generated from the deciles of the continuous features and considering all attributes of the cat-
egorical features, along with the TPR and FPR found in the reference paper.

θ C TPR FPR
Ref

TPR

Ref

FPR
Explanations

1 0.68 0.00 0.68 0.00 Size>4 AND Adhesion>1
25

2 0.86 0.00 0.85 0.00 Size≤2 AND Nuclei≤2

1 0.68 0.00 0.68 0.00 Size>4 AND Adhesion>1
24

2 0.90 0.01 0.85 0.00 Epithelial Size≤3 AND Nuclei≤2

1 0.68 0.00 0.68 0.00 Size>4 AND Adhesion>1
23

2 0.90 0.01 0.90 0.01 Epithelial Size≤3 AND Nuclei≤2

1 0.72 0.01 0.72 0.01 Size>4
22

2 0.90 0.01 0.90 0.01 Epithelial Size≤3 AND Nuclei≤2

1 0.89 0.04 0.88 0.04 Size>2 and Nuclei>1
21

2 0.93 0.03 0.93 0.03 Shape≤3 AND Chromatin≤3

1 0.95 0.07 0.95 0.07 Size>2 AND Shape>1
20

2 0.97 0.07 0.96 0.07 Size≤4 AND Nuclei≤4

1 0.95 0.07 0.95 0.07 Size>2 AND Shape>1
2−1

2 0.98 0.14 0.99 0.14 Size≤4 AND Nuclei≤9

1 0.98 0.12 0.98 0.12 Size>1 AND Shape>1
2−2

2 0.99 0.14 0.99 0.14 Size≤4 AND Nuclei≤9

1 0.98 0.12 0.98 0.12 Size>1 AND Shape>1
2−3

2 0.99 0.19 0.99 0.19 Thickness≤9.8 AND Size≤4

1 0.98 0.12 0.98 0.12 Size>1 AND Shape>1
2−4

2 0.99 0.19 0.99 0.19 Thickness≤9.8 AND Size≤4

1 0.99 0.23 0.99 0.23 Shape>1 AND Nuclei≤10
2−5

2 1.00 0.52 1.00 0.52 Thickness≤9.8 AND Size≤9
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Table 14: The clusters and explanations derived from the intrinsic model for the breast cancer
dataset constructed with K = 2 clusters, a maximum length of l = 2, utilizing N = 84 rules
generated from the deciles of the continuous features and considering all attributes of the cat-
egorical features, along with the TPR, FPR and IH found in the reference paper.

θ1 θ2 IH
Ref

IH
C TPR FPR

Ref

TPR

Ref

FPR
Explanations

1 0.90 0.02 1.00 0.00 Size>3 AND Nuclei>2
0.5 0.5 0.67*105 1.73*105

2 0.97 0.02 1.00 0.00 Size≤4 AND Nuclei≤4

1 0.90 0.02 0.90 0.02 Size>3 AND Nuclei>2
0.5 1 0.67*105 0.67*105

2 0.97 0.02 0.97 0.02 Size≤4 AND Nuclei≤4

1 0.80 0.02 1.00 0.00 Size>3 AND Nuclei>4
0.5 2 0.67*105 1.10*105

2 0.97 0.00 0.97 0.00 Size≤4 AND Nuclei≤4

1 0.97 0.09 1.00 0.00 Size>3 AND Shape>1
1 0.5 0.67*105 1.24*105

2 0.99 0.07 1.00 0.00 Size≤4 AND Nuclei≤9

1 0.90 0.02 1.00 0.00 Size>3 AND Nuclei>2
1 1 0.67*105 1.24*105

2 0.97 0.02 1.00 0.00 Size≤4 AND Nuclei≤4

1 0.90 0.02 1.00 0.00 Size>3 AND Nuclei>2
1 2 0.67*105 1.24*105

2 0.97 0.02 1.00 0.00 Size≤4 AND Nuclei≤4

1 0.97 0.09 1.00 0.00 Size>3 AND Shape>1
2 0.5 0.67*105 1.24*105

2 0.99 0.07 1.00 0.00 Size≤4 AND Nuclei≤9

1 0.97 0.09 1.00 0.00 Size>3 AND Shape>1
2 1 0.67*105 1.24*105

2 0.99 0.07 1.00 0.00 Size≤4 AND Nuclei≤9

1 0.90 0.02 1.00 0.00 Size>3 AND Nuclei>2
2 2 0.67*105 1.24*105

2 0.97 0.02 1.00 0.00 Size≤4 AND Nuclei≤4
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D Forest fires imputed data intrinsic model results

Table 15: The clusters and explanations derived from the imputed data intrinsic model for the
forest fires dataset constructed with K = 2 clusters, a maximum length of l = 2, utilizing N =
132 rules generated from the deciles of the continuous features and considering all attributes of
the categorical features, along with the IH, TPR and FPR values for the complete dataset.

θ1 θ2 λ IH
Actual

IH
C TPR FPR

Actual

TPR

Actual

FPR
Explanation

0.5 0.5

0 2.63*103 3.73*103
1 0.89 0.05 0.85 0.05 Temp≤31 AND BUI≤17.86

2 0.16 0.26 0.16 0.26 Temp>26.1 AND Rain>0.37

1 2.59*103 3.68*103
1 1.00 0.52 1.00 0.52 Temp≤26.1 AND FWI>0.4

2 1.00 0.21 1.00 0.21 Temp≤33 AND FWI≤7.44

0.5 1

0 2.63*103 3.73*103
1 0.90 0.03 0.90 0.03 Temp≤31 AND FWI≤7.44

2 0.87 0.05 0.87 0.05 Temp>31 AND RH≤76

1 2.63*103 3.73*103
1 0.90 0.03 0.90 0.03 Temp≤31 AND FWI≤7.44

2 0.87 0.05 0.87 0.05 Temp>31 AND RH≤76

0.5 2

0 2.63*103 3.73*103
1 0.90 0.05 0.85 0.02 Temp≤31 AND FFMC≤85.32

2 0.82 0.03 0.82 0.03 Temp>31 AND RH≤73

1 2.63*103 3.73*103
1 0.90 0.05 0.85 0.02 Temp≤31 AND FFMC≤85.32

2 0.82 0.03 0.82 0.03 Temp>31 AND RH≤73

1 0.5

0 2.63*103 3.73*103
1 0.90 0.03 0.90 0.03 Temp≤31 AND FWI≤7.44

2 0.98 0.26 0.98 0.26 Temp>30 AND DC>8.4

1 2.62*103 3.71*103
1 0.92 0.05 0.92 0.05 Temp≤31 AND FWI≤7.44

2 0.94 0.20 0.94 0.20 Temp>30 AND RH≤76

1 1

0 2.63*103 3.73*103
1 0.90 0.03 0.90 0.03 Temp≤31 AND FWI≤7.44

2 0.87 0.05 0.87 0.05 Temp>31 AND RH≤76

1 2.63*103 3.73*103
1 0.90 0.03 0.90 0.03 Temp≤31 AND FWI≤7.44

2 0.87 0.05 0.87 0.05 Temp>31 AND RH≤76

1 2

0 2.63*103 3.73*103
1 0.90 0.03 0.90 0.03 Temp≤31 AND FWI≤7.44

2 0.87 0.05 0.87 0.05 Temp>31 AND RH≤76

1 2.63*103 3.73*103
1 0.90 0.03 0.90 0.03 Temp≤31 AND FWI≤7.44

2 0.87 0.05 0.87 0.05 Temp>31 AND RH≤76

2 0.5

0 2.63*103 3.73*103
1 0.98 0.31 0.98 0.31 RH>53 AND FWI≤7.44

2 0.98 0.26 0.98 0.26 Temp>30 AND DC>8.4

1 2.63*103 3.73*103
1 0.98 0.31 0.98 0.31 RH>53 AND FWI≤7.44

2 0.98 0.26 0.98 0.26 Temp>30 AND DC>2.6

2 1

0 2.63*103 3.73*103
1 0.90 0.03 0.90 0.03 Temp≤31 AND FWI≤7.44

2 0.98 0.26 0.98 0.26 Temp>30 AND DC>8.4

1 2.63*103 3.73*103
1 0.90 0.03 0.90 0.03 Temp≤31 AND FWI≤7.44

2 0.98 0.26 0.98 0.26 Temp>30 AND DC>2.6

2 2

0 2.63*103 3.73*103
1 0.90 0.03 0.90 0.03 Temp≤31 AND FWI≤7.44

2 0.87 0.05 0.87 0.05 Temp>31 AND RH≤76

1 2.63*103 3.73*103
1 0.90 0.03 0.90 0.03 Temp≤31 AND FWI≤7.44

2 0.87 0.05 0.87 0.05 Temp>31 AND RH≤76
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