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Abstract

Building upon influential research by Kirby & Ostdiek (2012), this paper explores the

mean-variance optimization, timing strategies and naive diversification in portfolio manage-

ment. Our analysis suggests incorporating timing strategies, especially reward-to-risk timing

(RRT) strategies with factor models, can greatly improve the returns compared to naive di-

versification, while also accounting for transaction costs. Based on the empirical data, mean-

variance optimization performs better than naive diversification in the absence of transaction

costs. However, for reducing turnover and improving performance, volatility timing (VT)

and RRT strategies show promise, particularly with specific datasets. Additionally, this pa-

per investigates the use of a dynamic conditional correlation model with non-linear shrinkage

(DCC-NL) and an approximate factor model (AFM) for covariance estimation. Our analysis

demonstrates that incorporating these techniques improves the performance of the minimum

variance strategy, outperforming naive diversification. Furthermore, it highlights potential

future research directions, such as exploring additional datasets, alternative risk factors or

models, tuning parameters, conducting robustness tests, and evaluating covariance estima-

tion techniques in various market contexts.

1 Introduction

Modern portfolio theory has relied heavily on mean-variance optimization as a fundamental

building block, making it a crucial aspect of academic research in recent years. However, a

classic literature DeMiguel et al. (2009) raises doubts about the effectiveness of mean-variance

optimization when compared to a simple naive diversification strategy. The authors explore

various variants of the standard mean-variance model across multiple datasets and conclude

that none of the models consistently outperforms a 1/N portfolio in terms of Sharpe ratio or

CEQ return. Their findings challenge the notion that mean-variance optimization is superior

to the straightforward equal-weighting approach. Nonetheless, several subsequent studies have

refuted this viewpoint, and Kirby & Ostdiek (2012) is one of the seminal papers among them.

In this study, the authors show that the results of DeMiguel et al. (2009) are primarily due to

their research design. Regardless of the individual risk or return characteristics of each asset

in a portfolio, the 1/N portfolio strategy involves allocating an equal amount of capital to each

one that is available. While seeking the most effective trade-off between risk and return based

on the mean-variance framework, MVE (Mean Variance Efficient) strategies seek to optimize

the portfolio allocation by incorporating the expected returns and volatilities of assets. MVE

strategies take into account the benefits of diversification and permit different asset weights,

which could result in better risk-adjusted returns than the 1/N approach. They compare 13

actively managed MVE strategies to the naive strategy and conclude that MVE portfolios are

superior to 1/N portfolio, and even high transaction costs can not prevent the two timing

strategies from outperforming the 1/N strategy.

The proposed strategies not only serve as mean-variance timing rules but also draw upon

extensive literature on asset allocation considering estimation error and portfolio holding con-

straints. This study addresses several aspects explored in previous research (e.g., Kirby &

Ostdiek (2012); Tu & Zhou (2011)), focusing on investors who acknowledge the changing nature

of conditional means and variances of asset returns over time. Consequently, a new group of
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active portfolio strategies is introduced to capitalize on sample information concerning volat-

ility dynamics, effectively reducing the impact of estimation risk. These methods, known as

volatility timing (VT), are rebalanced on a monthly basis entirely based on swings in predicted

conditional volatilities. The degree to which portfolio weights are sensitive to these variations

is controlled by a tuning parameter that represents timing aggressiveness. This method ensures

that the recommended solutions keep competitive turnover levels comparable to naive diversi-

fication. Furthermore, a broader range of timing strategies is proposed, including the utilization

of sample information on the dynamics of conditional expected returns. These reward-to-risk

timing (RRT) methods are rebalanced on a monthly basis solely based on changes in anticipated

reward-to-risk ratios. Two estimators of conditional expected returns are employed: a straight-

forward rolling estimator devoid of parametric assumptions and an estimator designed to reduce

estimation risk by incorporating predictions derived from asset pricing theories.

While Kirby & Ostdiek (2012) is a notable study that employed robust methodologies and

yielded fruitful results, it is essential to acknowledge potential areas for improvement. One sig-

nificant concern is the use of a simplified estimated diagonal covariance matrix in estimating the

weights for the two timing strategies. This approach, which involved simple rolling estimation,

may overlook valuable information embedded in the correlations between assets and potentially

introduce bias. To address this limitation, a more sophisticated approach proposed by De Nard

et al. (2019) and R. F. Engle et al. (2019) can be employed. This approach involves estimating

the covariance matrix using a dynamic factor model, dynamic conditional correlation model

(DCC) and non-linear shrinkage method (NL) to extract additional information from the asset

correlations when the dimension of the assets is large.

Factor models have a longstanding history in finance and are widely employed in portfolio

construction (Chincarini et al., 2006; Meucci, 2005). For instance, the Capital Asset Pricing

Model (CAPM) introduced by Sharpe (1964) is a prominent example of a factor model that

relates an asset’s expected return to its systematic risk and the risk-free rate. We choose to

incorporate approximate factor models (AFM) instead of exact factor models (EFM) due to

the overly strict assumptions associated with EFM in practical applications. EFM assumes a

precise and predetermined set of factors that completely capture the variation in asset returns,

which is often unrealistic. In contrast, AFM relaxes these strict assumptions by allowing for

a more flexible and adaptive representation of factors that can better capture the complexit-

ies of real-world financial markets, leading to improved modeling accuracy and performance.

(De Nard et al., 2019; Fan et al., 2013). Then we aim to apply the DCC-NL method to model

the time-varying conditional correlations among the residuals from factor models. DCC-NL

extends the traditional DCC model by allowing for nonlinear dependencies in the conditional

correlations (R. Engle, 2002), which consists of two main steps: univariate volatility estimation

and correlation estimation R. F. Engle et al. (2019). We use GARCH (1,1) model to estim-

ate the univariate estimation. To estimate the parameters of the model and the correlations,

we utilize two innovative techniques, namely the composite likelihood method (R. Engle et al.,

2008) and the NL shrinkage method proposed by R. F. Engle et al. (2019). The method can help

in capturing the dynamic dependencies and tail behavior in the covariance matrix estimation,

especially in a large-dimensional setting.
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The paper’s results section examines the out-of-sample performances of the MVE, VT, and

RRT strategies in comparison to the 1/N strategy across various datasets. The implementation

approach utilized for all strategies aligns with the method employed by Kirby & Ostdiek (2012)

in their study. The empirical findings support mean-variance optimization outperforming 1/N

strategy in the 10 Industry dataset, in the absence of transaction costs. The timing strategies

(VT and RRT) exhibit promise in effectively managing turnover and enhancing performance,

particularly in the 10 Momentum dataset. For instance, the VT strategies demonstrate higher

estimated Sharpe ratios (range from 0.48 to 0.52) compared to the 1/N strategy (0.43) when

transaction costs are not considered. In the 10 Industry dataset, the incorporation of a 4-factor

risk model improves RRT strategies by reducing estimation risk. Moreover, transaction costs

have minimal impact on the effectiveness of both VT and RRT strategies in both datasets. For

instance, the Sharpe ratios of RRT strategies with a factor model in the 10 Industry dataset

(after accounting for 50 bp transaction costs) range from 0.56 to 0.60, which closely aligns with

the range without transaction costs (0.56 to 0.61). Overall, dynamic timing strategies, especially

RRT with a factor model, enhance risk-adjusted returns compared to naive diversification. Fur-

thermore, AFM-DCC-NL estimation is able to improve the performance of MV portfolio and

help it outperform 1/N strategy.

Future research should examine active portfolio strategies using additional datasets, examine

the effects of alternative risk factors or models on timing strategies, and assess the best tuning

parameters and robustness tests, among other things. It is also advised to evaluate the AFM-

DCC-NL estimation method’s applicability in various market contexts and contrast it with

alternative covariance estimation methods.

For the remaining of this paper, we first introduce the central research question and relevant

sub-questions in Section 2, then we provide an overview of the variables and data-sets in Section

3. Next, in Section 4, we analyze seven different portfolio strategies by using various estimators

and measures, and give an extension to estimate covariance matrix under large-dimensional

condition. Essentially, we present important results and conclusion in Section 5 and Section 6,

respectively.

2 Theory

The main research question of this study is whether active portfolio strategies that integrate

volatility timing and reward-to-risk timing can outperform traditional mean-variance optimiz-

ation and naive diversification. Additionally, we aim to determine if the performance of the

active strategy can be sustained when employing factor models and the DCC-NL method, in

cases where the number of assets is comparable to the number of observations.

To address this research question, several sub-questions will be explored. First, we will

examine whether traditional mean-variance efficient (MVE) portfolios and actively managed

portfolios constructed using volatility timing and conditional beta estimation, as proposed by

Kirby & Ostdiek (2012), outperform the naive diversification strategy. The second objective

of this study is to explore methods for reducing the dimension of the covariance matrix when

constructing portfolios that include a large number of individual assets. Additionally, we aim

to investigate whether active portfolio strategies maintain their superior performance compared
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to naive diversification in such high-dimensional settings. The methodology we used and the

corresponding background are elaborated further in Section 4.

3 Data

The data we used for this paper contains monthly excess returns on U.S. equity portfolios for

the period from July 1963 to December 2022, providing a total of 714 monthly observations for

the empirical analysis, with a 120 month window length. The data consists of three datasets

used in Kirby & Ostdiek (2012) and DeMiguel et al. (2009), including 10 Industry portfolios, 10

Momentum portfolios and 25 Factor portfolios. These datasets are drawn from the data library

maintained by Kenneth R. French.

The industry portfolios (10 Industry) are constructed based on the Standard Industrial

Classification (SIC) system and include Consumer Discretionary, Consumer Staples, Energy,

Financials, Health Care, Industrials, Information Technology, Materials, Telecommunication

Services, and Utilities. Next, we consider the momentum portfolios (10 Momentum) that are

formed based on the 12-2 momentum strategy of Jegadeesh & Titman (1993) and sorted into

deciles based on their past 12-month returns excluding the most recent month.

In Section 4.2.1, we use an alternative estimator of conditional expected returns. Further-

more, we employ a different method to estimate the expected covariance matrix. To accounts for

correlation information, we utilize a special shrinkage estimator that can capture the correlation

structure under large-dimensional setting, as proposed by De Nard et al. (2019). These methods

involves incorporating factor returns, including market, size, momentum and book-to-market

factors, which are used to estimate the loadings for the factor models. The data for these factor

returns, as well as risk-free returns, is also obtained from the same data library. Furthermore,

the 500 individual assets returns data used in the Extension Section 4.5 is obtained from the

Center for Research in Security Prices (CRSP).

4 Methodology

In order to assess the performance of various strategies, we commence the portfolio formation

process by implementing the strategies outlined in Section 4.1. Additionally, we discuss several

approaches to estimate the conditional moments of returns in this section, namely the fixed-

window rolling estimator, an alternative estimator of the conditional expected returns, and

AFM-DCC-NL scheme (De Nard et al., 2019). Furthermore, we introduce two criteria, namely

the Sharpe ratio and the alteration fee between two strategies, to evaluate the performance of

different strategies (Kirby & Ostdiek, 2012).

4.1 Portfolio Strategies

In this section, we outline the various strategies employed in our analysis. Firstly, we consider

the naive diversification strategy across the risky assets, commonly known as the 1/N portfolio

(1/N), which involves allocating an equal amount to each asset in the portfolio. The other

strategies are classified into two main categories: optimal strategies under quadratic loss, in-
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cluding the Minimum-Variance strategy (MV), Tangency Portfolio strategy (TP), and Optimal

Constrained strategy (OC), and strategies that utilize sample information about conditional

means and variances to reduce estimation risk, including the Volatility-Timing strategy (VT)

and Reward-to-Risk Timing strategy (RRT). It is important to note that throughout this paper,

we assume that there are N risky assets and a single risk-free asset. The selection of strategies

is based on Kirby & Ostdiek (2012).

4.1.1 Optimal strategies under quadratic loss

In order to achieve the optimal strategies under quadratic loss, we need to solve the maximization

quadratic objective function by choosing the N×1 vector of risky assets weights wpt (the weight

of the risk-free asset is determined by 1 − w
′
ptι. First, we reduce the risk free returns from the

risky-asset returns to obtain the excess return rt = Rt − ιRft, where Rt is an N × 1 vector

of risky assets, Rft is the risk-free rate, and ι is an N × 1 vector of ones. Next, we use the

unconstrained optimal function as follows to form the optimal unconstrained portfolio (OU):

Q(wpt) = w
′
ptµt −

γ

2
w

′
ptΣtwpt, (1)

where µt is the the conditional mean vector of the excess returns of risky assets, Et(rt+1). The

conditional covariance matrix of the excess returns of risky assets Σt is equal to Et(rt+1r
′
t+1)−

Et(rt+1)Et(rt+1)
′
. Here γ indicates the investor’s preference, which is the coefficient of relative

risk aversion. The well-known solution for this objective function is wpt =
Σ−1

t µt

γ , which indicates

a TP of only risky assets with weights:

wTP,t =
Σ−1
t µt

ι′Σ−1
t µt

. (2)

The fraction on the investor’s wealth allocated to the TP is xTP,t =
ι
′
Σ−1

t µt

γ , and the fraction

that allocated to the risk-free asset is 1− xTP,t.

To obtain the vector of weights for the MV portfolio without risk-free asset, we minimizing

the objective function V ar = w
′
ptΣtwpt subject to w

′
ptι = 1. The classic solution for this function

is as follows:

wMV,t =
Σ−1
t ι

ι′Σ−1
t ι

. (3)

Next, we aim to study the mean-variance efficient strategy with only risky assets to form the

OC portfolio, which refer to solve the function (1) subject to w
′
ptι = 1. We solve it by taking

the first order condition with Lagrange multiplier constraint:

µt + δtι− γΣtwpt = 0, (4)

then the following optimal weights vector is

wpt =
Σ−1
t µt

γ
+

δt
γ
Σ−1
t ι. (5)

It is obvious that the first term on the right-hand side of Equation (5) is proportional to wTP,t,
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and the second term is proportional to wMV,t. Furthermore, we solve for δt and obtain

wpt = xTP,t
Σ−1
t µt

ι′Σ−1
t µt

+ (1− xTP,t)
Σ−1
t ι

ι′Σ−1
t ι

. (6)

The OC portfolio is similar to the OU portfolio, except that the allocation in the risk-free asset

has been shifted to the MV portfolio. Equation (8) implies that

µpt = xTP,tµTP,t + (1− xTP,t)µMV,t, (7)

where µTP,t and µMV,t represent the conditional expected excess returns for the TP and MV

portfolios, and can be described as follows:

wpt = (
µpt − µMV,t

µTP,t − µMV,t
)
Σ−1
t µt

ι′Σ−1
t µt

+ (1−
µpt − µMV,t

µTP,t − µMV,t
)
Σ−1
t ι

ι′Σ−1
t ι

. (8)

In addition, we present a special version of the OC portfolio, referred to as OC+, which prohibits

short sales. Following Kirby & Ostdiek (2012), We only consider the OC and OC+ strategy that

targets the estimated expected return of the 1/N portfolio, in the other words, µ̂pt = µ̂
′
tι/N .

4.1.2 Volatility-Timing strategy

Although the OC strategy outperforms the TP strategy according to Kirby & Ostdiek (2012), but

it may not consistently beat the 1/N strategy due to transaction costs. Turnover is viewed as the

primary obstacle to taking advantage of mean-variance optimization, as it can be costly. Instead

of focusing solely on portfolio optimization, we seek to develop portfolio selection methods that

enhance performance by exploiting sample information, while keeping the desirable features of

naive diversification. Thus, we consider incorporating several techniques to reduce the turnover

and begin with volatility timing. By using volatility-timing strategy, we are allowed to rebalance

the weight monthly based on changes in the estimated conditional covariance matrix of returns.

Fleming et al. (2003) found that VT strategies significantly outperform unconditionally MVE

portfolio strategies and used future contracts in their study. However, we aim to use a different

approach that is able to avoid short sales and keep turnover as low as possible, with the setting

that all the estimated correlations between the excess risky asset returns are zero (Σ̂t is a diagonal

matrix). The weights are as follows, ŵit =
1/σ̂2

it∑N
i=1(1/σ̂

2
it)
, where σ2

it is the diagonal element of the

expected covariance matrix, which is the estimated conditional volatility of the excess return of

the ith asset. While the weights do not offer any flexibility to adjust to changes in volatility, it

is part of the broader category of VT strategies, which have weights

ŵit =
(1/σ̂2

it)
η∑N

i=1(1/σ̂
2
it)

η
, (9)

where η (≥ 0), the tuning parameter, measures how aggressive the investor adjust the weights

based on volatility changes.

6



4.1.3 Reward-to-Risk Timing strategy

Given the VT strategies do not incorporate information about conditional expected returns, we

introduce the Reward-to-risk timing strategies (RRT), the weights of the simple RRT strategy

are calculated by ŵit =
µ̂it/σ̂

2
it∑N

i=1(µ̂it/σ̂2
it)
, where µ̂it is the estimated conditional mean for the excess

return of the ith asset. Similarly, this equation can also be regarded as an example of the broader

category of RRT strategies, which have weights

ŵit =
(µ̂+

it/σ̂
2
it)

η∑N
i=1(µ̂

+
it/σ̂

2
it)

η
, (10)

where η ≥ 0, and µ̂+
it = max(µ̂it, 0). We refer to the portfolios with weights formatting in

Equation (10) as the RRT(µ+
t , η) portfolio.

4.2 Rolling Estimators

We aim to follow Kirby & Ostdiek (2012) to use a rolling window to estimate µt and Σt. This

approach is designed to balance the trade-off between using more observations, which can lead to

efficiency gains and using less timely observations, which can lead to a loss in forecast precision.

To estimate the expected returns, we use the following formula:

µ̂t = (1/L)

L−1∑
l=0

rt−l, (11)

where rt is the return of the asset at time t and L is the length of the rolling window. We then

use a similar formula to estimate the expected covariance matrix,

Σ̂t = (1/L)
L−1∑
l=0

(rt−l − µ̂t)(rt−l − µ̂t)
′
. (12)

Regarding to the choice of window length, we follow Kirby & Ostdiek (2012) and only consider

L = 120 in this paper. While rolling estimators of conditional expected excess returns offer

simplicity, their use in portfolio optimization introduces a significant level of estimation risk.

It is widely acknowledged that a substantial amount of return data is required to accurately

estimate µt (Merton, 1980). Consequently, we explore an alternative estimator for expected

return in order to mitigate estimation risk when implementing RRT strategies under specific

conditions.

4.2.1 Alternative estimator of conditional expected returns used in RRT strategy

In order to exploit the relationship between the first and second moments of excess returns, we

consider an alternative method to estimate µt, which is to estimate conditional betas instead.

First, we assume the conditional CAPM model holds, which implies that the cross-sectional

variation in conditional expected excess return is due to cross-sectional variation in conditional
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betas. Then we calculate the weights as follows:

wit =
(β+

it /σ
2
it)

η∑N
i=1(β

+
it /σ

2
it)

η
, (13)

where β+
it denotes the conditional market beta of asset i at period t, and β+

it = max(βit, 0).

Furthermore, we employ multi-factors model to extend the method to allow for more factors.

The weights with multiple betas for the RRT strategy become:

wit =
(β̄+

it /σ
2
it)

η∑N
i=1(β̄

+
it /σ

2
it)

η
, (14)

Similarly, β̄+
it = max(β̄it, 0), and β̄it is equal to 1/K

∑K
j=1 βijt. In this case, βijt represents the

conditional beta of the ith asset with respect to the jth factor at period t. Therefore, the β̄it is

the average conditional beta of asset i regarding to the K factors at period t.

We use a rolling estimator of the factor returns and conditional covariance matrix to estimate

conditional betas as well, with the same window length (L = 120). In addition, we aim to follow

Kirby & Ostdiek (2012) to use the Carhart (1997) 4-factor model as the multi-factors model,

which is an extension of the Fama & French (1993) 3-factor model. We refer to this portfolio as

the RRT(β̄+
t , η) portfolio.

4.3 Performance measures: Sharpe ratio and Quadratic Utility

Following Kirby & Ostdiek (2012), we introduce two criteria to evaluate the performance of the

strategies. Assuming a dataset with T + L observations, where T represents the out-of-sample

period, the performance of the strategies is evaluated based on two criteria after computing the

sequence {rpt}T+L
t=L+1 of out-of-sample excess returns for each strategy. The first criteria is the

Sharpe ratio,

λp = µp/σp, (15)

where µp and σp are the mean and standard deviation of the excess return. In order to estimate

the ratio, we calculate the sample mean and variance by:

µ̂p = (1/T )
T+L∑
t=L+1

rpt, (16)

σ̂2
p = (1/T )

T+L∑
t=L+1

(rpt − µ̂p)
2, (17)

which are reported annualized. Thus, we are able to obtain the annualized estimator, λ̂p.

The difference in the estimated Sharpe ratio for 2 strategies is the first measure of relative

performance.

The second criteria is based on quadratic utility (Fleming et al., 2003), which is a second-

order approximation of the investor’s real utility function, can be calculated as follows:

U(Rp,t+1) = Wt(1 +Rp,t+1)−
1

2
αW 2

t (1 +Rp,t+1)
2, (18)
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where α is the level of absolute risk aversion, Wt is wealth at time t, Rp,t+1 is the portfolio

return at t+ 1.In order to keep αWt constant, we introduce its equivalent condition, which set

the relative risk aversion γt = αWt/(1− αWt) to a specified γ. The second relative measure, a

∆γ fee, is obtained by equating the expected utilities generated by 2 strategies (E[U(Rpit)] =

E[U(Rpjt −∆γ)]), which means the investor with relative risk aversion at the level of γ would

be indifferent between 2 strategies after imposing the maximum ∆γ fee. The quadratic formula

is as follows:

∆γ = −γ−1(1− γE[Rpit]) + γ−1((1− γE[Rpit])
2 − 2γE[U(Rpit)− U(Rpjt)])

1/2. (19)

In order to estimate the delta for the out-of-sample period, the estimation was reconstructed

using a method. Additionally, the details of the estimation can be found in Appendix ?? of

this paper. We assess the performance of various strategies (denoted as j) with respect to two

levels of relative risk aversion (γ = 1 and γ = 5), using naive diversification as strategy i. The

annualized basis point value of ∆γ is estimated as ∆̂γ for each active strategy j.

4.4 Transaction costs and Turnover

Strategies that have high turnover rates are more affected by transaction costs. To illustrate

this, we aim to present a second set of results that show returns after deducting transaction

costs. According to Kirby & Ostdiek (2012), we make the assumption that transaction costs

remain consistent across assets throughout the entire sample period, and assign a value of 50

basis points (c = 50 bp) for the level of proportional costs per transaction. We estimate the

expected turnover τ̂p for each strategy as follows:

τ̂p = (1/T )
T+L∑
t=L+1

τ̂pt. (20)

Here, τ̂pt is the turnover at time t, which is defined as the sum of the absolute value of the weight

differences across N assets: τ̂pt =
∑N

i=1(|ŵi,t+1 − ŵi,t∗ |). ŵi,t+1 denotes the desired weight of

asset i at time t + 1 after rebalancing, while ŵi,t∗ represents the weight before rebalancing at

t+1. Therefore, the effect of implementing transaction costs can be determined by subtracting

τ̂pc from the sample mean of Rp,t.

4.5 Extension: Alternative estimator of expected covariance matrix – AFM1-

DCC-NL of De Nard et al. (2019)

Kirby & Ostdiek (2012) used a different covariance matrix for the volatility timing and reward-

to-risk strategies than for the four MVE strategies. The reason for this difference is that the

MVE strategies are based on the assumption of mean-variance efficiency, which implies that

investors care only about the expected return and variance of their portfolio. the VT and RRT

strategies, on the other hand, are intended to catch higher moments of the return distribution.

By using a diagonal covariance matrix, the authors of Kirby & Ostdiek (2012) assume that

the estimated pair-wise correlations between the returns are all 0. This allows the authors to

separate the effects of VT and RRT strategies from the effects of mean-variance optimization.
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Therefore, in order to improve the estimation of the covariance matrix for portfolio selection

in high-dimensional settings, we employ the one-factor AFM-DCC-NL method proposed by

De Nard et al. (2019). The AFM-DCC-NL method is a two-step approach used to estimate large-

dimensional covariance matrices using factor models. This method combines the Asymmetric

Factor Model (AFM) and the Dynamic Conditional Correlation (DCC) model to incorporate

time-varying conditional heteroskedasticity and capture the correlation dynamics between assets.

In the first step, the AFM is employed to estimate the factor model, allowing for the asymmetric

responses of asset returns to market-wide risk factors (Connor & Korajczyk, 1986; Bai & Ng,

2002; Fan et al., 2008). The DCC model is employed to represent the varying correlation

between assets in the portfolio. This process allows for capturing the evolving dependencies and

correlations among the assets as time progresses. In the subsequent stage, the NL shrinkage

estimator suggested by R. F. Engle et al. (2019) is utilized to enhance the precision of the

estimated factor loadings matrix. This shrinkage estimator helps to reduce noise in the estimated

factor loadings by pulling them towards a common value, thereby enhancing the precision and

reliability of the estimation. Ultimately, this can lead to improved performance when applying

the estimated covariance matrix in out-of-sample scenarios.

By incorporating factor modeling techniques, it captures the common factors driving asset

returns and allows for time-varying covariances (Meucci, 2005; Chincarini et al., 2006). To

minimize additional estimation uncertainty, we employ a single factor model instead of a multiple

factors model from the dynamic approximate factor models based on the DCC-NL estimation

scheme, as demonstrated in the study by De Nard et al. (2019). we aim to evaluate the out-

of-sample performance of the dynamic one-factor AFM-DCC-NL using the Sharpe ratio as our

performance measure.

To use one-factor approximate factor model (AFM1), we first introduce the unconditional

single market factor dynamic model as follows:

ri,t = αi + β
′
if + ui,t, (21)

where ri,t is the return of asset i at time t, ft is the return for market factor at t, and ui,t

represents the residual. The intercept αi and the factor loading βi are both time-invariant

under the assumptions of unconditional dynamic models (Avramov & Chordia, 2006; Ang &

Kristensen, 2012; R. F. Engle, 2016).

Secondly, we introduce the estimator of the time-varying covariance matrix of rt according

to De Nard et al. (2019), which is as follows:

Σ̂r,t = B̂
′
Σ̂f B̂ + Σ̂u,t, (22)

where B is an 1 × N matrix with βi as ith column, the covariance matrix of factor, Σ̂f is

assumed to be time-invariant to make the dynamic component solely due to the error terms.

Therefore, the first component of the right side of Equation (22) is time-invariant, while the

second component, Σ̂u,t is time-varying, which is the estimator of covariance matrix of the

residuals {ut}, the starting point is the sample covariance matrix Sû. When the number of

assets is of the similar magnitude as the number of observations, e.g., N = 500, we need to use
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DCC model (R. F. Engle, 2000; R. F. Engle et al., 2019; R. Engle, 2002) to achieve an accurately

estimated covariance matrix, and they employ the NL-shrinkage method proposed by Ledoit &

Wolf (2011) for the estimator of the DCC model (Ledoit & Wolf, 2015). The AFM1-DCC-NL

method makes the estimation of the covariance matrix with large dimensions feasible.

We use the method proposed by R. F. Engle et al. (2019) to apply NL shrinkage in the DCC

model to handle covariance matrix with large dimensions, using two important tools: composite

likelihood method (R. Engle et al., 2008) and non-linear shrinkage method (Ledoit & Wolf,

2011). First, for each asset, we use the fitted model univariate GARCH(1,1) to estimate the

conditional variances of each residual series,

d2i,t = wi + aiu
2
i,t−1 + bid

2
i,t−1, (23)

where ui,t is the residuals for asset i at time t, d2i,t denotes the conditional variance of ui,t, and

(wi, ai, bi) are the parameters of the model. Thus, we are able to devolatilize the residual series

as follows,

si,t = ui,t/di,t, (24)

where si,t denotes the devolatilized residual series. The conditional covariance matrix of devo-

latilized series Qt can be calculated as follows:

Qt = (1− α− β)C + αst−1s
′
t−1 + βQt−1, (25)

where C is the unconditional correlation matrix of the ut, which we will explain in the following

step, and (α, β) are the DCC parameters in correlation space, which we will address in the final

step. Then we are able to obtain the conditional correlation matrix as:

Rt = Diag(Qt)
−1/2QtDiag(Qt)

−1/2. (26)

Accordingly, the time-varying Σ̂u,t can be represented by DtRtDt, where Dt is the diagonal

matrix with di,t as the ith diagonal element.

Secondly, we need to employ the nonlinear function of Ledoit & Wolf (2011) to estimate

the correlation targeting matrix in Equation (25) to replace the sample correlation matrix C,

it allows we have a Σu estimator with better out-of-sample performance when the dimension

of assets N is large. As we know, C = Corr(ut) = cov(st), thus C can also be regarded as

the covariance matrix of devolatilized residuals S = [si,t], then the sample covariance matrix

Ĉ is equal to 1
T SS

′
. We begin with decomposing it into a set of descending order eigenvalues

(λ1, λ2..., λN ) and corresponding eigenvectors (v1, v2..., vN ), then we are able to calculate Ĉ by∑N
i=1 λiviv

′
i. To offer a consistent estimate of out-of-sample variance under large-dimensional

asymptotic conditions, we then use the nonrandom multivariate function called the Quantized

Eigenvalues Sampling Transform (QuEST) proposed by Ledoit & Wolf (2015) and asymptotic

optimal nonlinear shrinkage formula of Ledoit & Péché (2011).1 This function is a multivariate

deterministic function that maps the interval [0,∞) to itself for a given dimension N. It takes a

1As the shrinkage formula and QuEST function are both complex, we will not repeat them here, they are
clearly stated in Ledoit & Péché (2011) and Ledoit & Wolf (2015) respectively. The relevant codes are included
in the DCC-NL code package published on Michael Wolf’s personal website.
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set of population eigenvalues (p1, p2, ..., pN ) as input and returns a deterministic equivalent of the

sample eigenvalues, denoted as QN,T (t) = (q1N,T (t), q
2
N,T (t), ..., q

N
N,T (t)). The QuEST function

is used to estimate population eigenvalues by numerically inverting the QuEST function. This

means that given a set of sample eigenvalues, we are able to use the function to obtain estimates

of the corresponding population eigenvalues:

g̃ = argmint∈[0,∞)N
1

N

N∑
i=1

[qiN,T (t)− λi]
2, (27)

and then receive the shrunk eigenvalues λ̃(g̃) by using the formula of Ledoit & Péché (2011).

Thus, the covariance matrix shrinkage estimator can be represented by

C̃ =
N∑
i=1

λ̃i(g̃)viv
′
i. (28)

Finally, we must estimate the DCC-NL model parameters in order to generate the time-

varying conditional covariance matrix of the residuals. This can be done by using the composite

likelihood technique (R. Engle et al., 2008). The idea is to simplify the estimation technique

by focusing on pairwise residual relationships rather than the full likelihood function, which

can be computationally demanding in high-dimensional scenarios. The goal is to convert the

total joint likelihood of the data into a product of conditional likelihoods. Given the calculated

volatilities, each conditional likelihood corresponds to the conditional distribution of a certain

pair of residuals. In addition, to ensure that the diagonal element of the estimation of C equals

zero, we renormalized it by dividing each column and row by the square root of the corresponding

diagonal element, as cited in R. F. Engle et al. (2019).

Next, our objective is to utilize the AFM1-DCC-NL estimation scheme to address the chal-

lenge of estimating the 1/N portfolio and global minimum variance (GMV) portfolio when

short-sales constraints are not present and there is no transaction costs. The GMV portfo-

lio aims to minimize the portfolio’s risk, the problem is defined as: min
w

w
′ ∑

r,tw, subject to

w
′
ι = 1. In this optimization problem, Σr,t represents the time-variant covariance matrix of as-

set returns, w denotes the vector of portfolio weights. Thus, the estimator of weights for GMV

portfolio at time t can be described as follows,

ŵt =
Σ̂−1
r,t ι

ι′Σ̂−1
r,t ι

. (29)

We specifically choose the GMV portfolio as it demonstrates attractive out-of-sample properties,

not solely in terms of risk reduction but also in terms of the reward-to-risk trade-off. We use a

commonly used risk-adjusted performance measures to analyze and compare the performance of

the naive diversification approach and the GMV strategy: the Information Ratio. The indicator

provides useful insights into the strategies’ risk-adjusted returns and enable for a full assessment

of their effectiveness.
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5 Results

To make a direct comparison, we begin by revisiting and replicating the results of DeMiguel

et al. (2009) according to Kirby & Ostdiek (2012).2 In the first panel of Table 1, we present

the summary statistics for the 1/N strategy and three MVE strategies applied to 10 Industry

portfolios and Mkt/SMB/HML portfolios. These statistics encompass the annualized mean

excess return, annualized excess return standard deviation, annualized Sharpe ratio, and the

average monthly turnover.

Table 1: Characteristics of the 1/N and MVE strategies

The table presents key sample characteristics of four portfolio strategies: 1/N, MV, OC, and Tangency Portfolio
(TP), for two of the five datasets from Kirby & Ostdiek (2012). The first dataset is the ”FF 10 Industry,” and
the second dataset is ”Mkt/SMB/HML”. Panel A of the table reports performance without transaction costs.
These metrics include the mean excess return (ûp), excess return standard deviation (σ̂p), Sharpe ratio (λ̂p), and
average monthly turnover as a fraction of invested wealth (τ̂p). Panel B presents the minimum, median, and
maximum estimates of the annualized time-series of the conditional expected excess return for each strategy. The
MV, OC, and TP strategies employ a 120-month rolling estimator to estimate the conditional mean vector and
covariance matrix of excess returns. Additionally, the OC strategy targets the estimated conditional expected
excess return of the 1/N strategy. The sample period spans from July 1963 to November 2004, comprising 497
monthly observations.

(a) Summary Statistics

FF 10 Industry Mkt/SMB/HML

Strategy ûp σ̂p λ̂p τ̂p ûp σ̂p λ̂p τ̂p

TP 108 457 0.24 473 5.66 7.47 0.76 0.06

1/N 7.15 15.23 0.47 0.02 4.92 6.36 0.77 0.02

MV 7.07 13.13 0.54 0.43 4.80 5.56 0.86 0.02

OC 6.55 13.30 0.49 0.65 4.77 6.26 0.76 0.06

(b) Estimated conditional expected returns (ûpt)

FF 10 Industry Mkt/SMB/HML

Strategy Min. Med. Max. Min. Med. Max.

TP 22.7 47.4 12,216 3.4 6.7 15.5

1/N -3.2 7.9 14.1 -1.3 3.17 8.5

MV -1.7 4.2 12.2 1.8 4.3 8.6

OC -0.3 8.4 15.8 2.6 5.0 8.6

To construct portfolios based on various strategies, we utilize rolling estimators with a win-

dow length of 120, assuming the absence of transaction costs. This approach generates monthly

2We would like to thank the authors of DeMiguel et al. (2009) generously sharing their data and Matlab
programming codes. With their valuable resources, we were able to replicate their results. For the purpose of
this paper, we rescaled all the monthly results to annualized results.
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return series for each strategy. Subsequently, we convert the monthly returns to annualized

returns by multiplying by 12. Additionally, the annualized standard deviation is computed by

scaling the monthly standard deviation by
√
12, and the annualized Sharpe ratio is obtained

using the annualized return and standard deviation.

The results obtained match those reported by DeMiguel et al. (2009) and Kirby & Ostdiek

(2012). Pane A of Table 1 presents compelling evidence regarding the distinct reward and risk

characteristics of the TP strategy in comparison to other strategies. Within the 10 Industry

dataset, TP’s excess returns exhibit remarkable estimates for both standard deviation and mean,

surpassing 100% per year, with the lowest Sharpe ratio and an extremely high turnover. On

the other hand, when considering the Mkt/SMB/HML dataset, the turnover of the TP portfolio

aligns with that of the OC strategy (0.06), and the estimated mean excess return (µ̂TP ) for this

dataset is 5.66%, only slightly higher than the mean for other strategies.

Figure 1: Reward and Risk Characteristics of 2 Portfolios
The figure presents a summary of the sample reward and risk characteristics for two datasets: the 10 Industry
dataset (a and b) and the 10 Volatility dataset (c and d). Each graph panel consists of two graphs. The first graph
in each panel displays the cross section of annualized mean returns, while the second graph shows the cross section
of annualized return standard deviations. The sample period spans from July 1963 to December 2022, totaling
714 monthly observations. However, the reported statistics pertain specifically to the subset of observations 121
to 714, which were used to evaluate the out-of-sample performance of the portfolio strategies.

10 Industry Portfolios
(a) Mean Return (b) Volatility

10 Momentum Portfolios
(c) Mean Return (d) Volatility

The subsequent analysis in Panel B of Table 1 sheds light on the underlying reasons for these

observations. It is revealed that the median of µ̂TP,t for the Mkt/SMB/HML dataset stands

at a mere 6.7%, significantly lower than the median for the 10 Industry dataset (47.4%). Such

exceptionally high estimated expected returns in the latter dataset result in extreme turnover.
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Consequently, when excluding the TP strategy, the results derived from the 10 Industry dataset

provide stronger empirical support for mean-variance optimization when compared to the 1/N

strategy. Regarding the outcomes of the Mkt/SMB/HML dataset, it is difficult to conclude that

the MVE strategies outperform the 1/N strategy.

5.1 Results for the 10 Industry Portfolios

In Table 2 and Table 3, specific entries are marked as ”-” for certain strategies, indicating that

the corresponding sample statistic cannot be computed or lacks practical significance. This

circumstance mainly arises due to two reasons. Firstly, it occurs when an actual performance

fee value is unavailable, resulting in an investor being indifferent between the strategy and the

1/N strategy. Secondly, this situation may arise when the turnover for the TP strategy exceeds

20,000% in one or more months, leading to a wealth of zero when factoring in the assumed

transaction costs.

Table 2: Results for the 10 Industry Portfolios

The table presents the out-of-sample performance of 14 portfolio strategies for the 10 Industry portfolios. The
strategies include the 1/N strategy, three volatility timing strategies (Panel A), six reward-to-risk timing strategies
(Panel B), and four Minimum Variance Efficient (MVE) strategies (Panel C). For each strategy, the table reports
various sample statistics based on the monthly excess returns time series. These statistics include the annualized
mean (ûp), annualized standard deviation (σ̂p), annualized Sharpe ratio (λ̂p), average monthly turnover as a
fraction of invested wealth (τ̂p), annualized basis point fee for switching from the 1/N strategy to the timing
or MVE strategy (∆̂λ), p-value for the difference in Sharpe ratio between the timing or MVE strategy and the
1/N strategy (”vs. 1/N p-val”), and p-values for the basis point fees. The timing and MVE strategies utilize
a 120-month rolling estimator to estimate the conditional mean vector and covariance matrix of excess returns.
The OC and OC+ strategies target the estimated conditional expected excess return of the 1/N strategy. The
performance measures are reported under two scenarios: assuming no transaction costs and assuming proportional
transaction costs of 50 basis points. The p-values are obtained from 10,000 trials of a stationary block bootstrap
method with an expected block length of 10. Certain entries in the table are marked as ”-” for several strategies.
This indicates that the corresponding sample statistic cannot be computed. This could be due to the absence of
a real performance fee value that makes the investor indifferent between the strategy and the 1/N strategy, or if
the turnover for the TP strategy exceeds 20,000% in one or more months, leading to zero wealth considering the
assumed transaction costs. The sample period for the analysis is from July 1963 to December 2022, comprising
714 monthly observations. The first 120 observations are excluded to initialize the rolling estimators. Further
details on each strategy can be found in the accompanying text.

No Transaction Costs Transaction Costs = 50 bp

vs.1/N vs.1/N

Strategy ûp σ̂p λ̂p p− val ∆̂1 p− val ∆̂5 p− val τ̂p λ̂p p− val ∆̂1 p− val ∆̂5 p− val

1/N 7.81 15.32 0.51 0.02 0.50

A: Volatility Timing Strategies

VT(1) 7.92 14.15 0.56 0.02 44 0.12 82 0.01 0.01 0.56 0.06 43 0.14 81 0.01

VT(2) 7.85 13.33 0.59 0.04 32 0.18 113 0.02 0.02 0.58 0.12 29 0.22 110 0.02

VT(4) 7.63 12.44 0.61 0.10 -13 0.53 86 0.21 0.03 0.60 0.16 -15 0.56 84 0.21

B: Reward-to-Risk Timing Strategies

RRT(u+t ,1) 7.22 14.90 0.51 0.09 -43 0.78 - - 0.07 0.48 0.63 -69 0.84 - -

RRT(u+t ,2) 7.58 13.67 0.55 0.12 -21 0.72 52 0.19 0.09 0.52 0.17 47 0.20 126 0.17

RRT(u+t ,4) 8.15 13.48 0.60 0.22 37 0.17 108 0.07 0.12 0.57 0.27 33 0.32 104 0.15

RRT(β̄+
t ,1) 8.15 14.05 0.55 0.12 44 0.17 142 0.08 0.02 0.54 0.19 39 0.18 137 0.10

RRT(β̄+
t ,2) 8.21 14.64 0.56 0.13 50 0.19 176 0.09 0.03 0.56 0.23 43 0.25 170 0.15

RRT(β̄+
t ,4) 8.27 14.28 0.58 0.18 62 0.25 192 0.12 0.06 0.58 0.26 54 0.32 184 0.16

C: Mean-Variance Efficient Strategies

MV 5.77 10.63 0.54 0.21 -110 0.91 52 0.10 0.21 0.42 0.87 - - - -

OC 7.81 12.88 0.61 0.15 -11 0.08 62 0.12 0.36 0.44 0.72 - - - -

OC+ 6.58 13.01 0.62 0.14 -31 0.86 102 0.32 0.08 0.47 0.68 - - - -

TP 63.01 134.47 0.47 0.36 - - - - 32.75 - - - - - -
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Table 2 provides a comprehensive analysis of the out-of-sample performance of 1/N, MVE,

VT, and RRT strategies for the 10 Industry dataset. Firstly, when transaction costs are imposed,

the 1/N strategy exhibits only a minor impact on performance, resulting in a slight decrease in

estimated performance. For instance, the revised Sharpe ratio is 0.50 compared to the original

0.51. Moving on to the VT strategies, they demonstrate low estimated expected turnover similar

to the 1/N strategy. However, they outperform the 1/N strategy in terms of estimated Sharpe

ratios, which are statistically significant at the 10% level. Moreover, the VT strategies exhibit

superior estimated means for η = 1 and η = 2, 7.92% and 7.85%, respectively.

The results of the RRT strategies in Panel B indicate less favorable performance compared

to the VT strategies for η = 1 and η = 2. These RRT strategies exhibit relatively higher

turnover, negative utility fees, and lower λ̂p with p-values exceeding 10%. With transaction

costs of 50 bp, the λ̂p decreases to 0.48 for η = 1 and 0.52 for η = 2. Figure 1 presents the

evidence of the dataset characteristics through graphs. The plot on the left shows a narrow

range for the annualized sample mean of excess industry portfolio returns, with most values

between 10% and 13%. In contrast, the plot on the right displays a larger dispersion in sample

volatilities (14.0%-24.3%). This suggests that VT strategies can outperform RRT strategies

for this data set. Furthermore, employing a 4-factor risk model enhances the performance of

the RRT strategies and reduces estimation risk in comparison to the standard rolling estimator.

Notably, the expected turnover estimates for the RRT strategies using alternative estimators are

significantly lower, ranging from 2% for η = 1 to 6% for η = 4. The estimates of ∆γ range from

44 bp to 62 bp for γ = 1 and from 142 bp to 192 bp for γ = 5, before taking transaction costs

into account. Two out of the three values of ∆̂γ for γ = 5 demonstrate statistical significance

at the 10% level, indicating that RRT strategies employing alternative.

Moving to Panel C, the results of the 4 MVE strategies display mixed performance in terms

of Sharpe ratio. The TP strategy performs the worst, with a λ̂p of 0.47, which is smaller

than the value of 1/N (0.51). Transaction costs significantly impact the performance of MVE

strategies, leading to lower Sharpe ratios and non-significant performance gains. Specifically,

the value of λ̂p decreases to 0.42 for MV, 0.44 for OC, and 0.47 for OC+. Prohibiting short sales

significantly reduces turnover by 8% and 36%, respectively, and improves the Sharpe ratio for

the OC+ strategy compared to the OC strategy. Overall, these results provide a comprehensive

assessment of the performance of various strategies in the 10 Industry dataset, shedding light

on their effectiveness and sensitivity to transaction costs.

5.2 Results for the 10 Momentum Portfolios

The results from the 10 Industry dataset highlight the significance of turnover in our investig-

ation. Almost all MVE strategies show superior performance compared to naive diversification

when transaction costs are not considered. Although statistical insignificance limits conclus-

ive analysis, the initial evidence generally supports mean-variance optimization. However, the

presence of transaction costs diminishes the advantage of MVE strategies due to high turnover.

Thus, effective control of turnover is crucial for improving mean-variance strategies. The tim-

ing strategies (VT and RRT) demonstrate promising results in this regard for the 10 Industry

dataset, but further evidence is necessary for definitive conclusions.
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Table 3: Results for the 10 Momentum Portfolios

The table presents the out-of-sample performance of 14 portfolio strategies for the 10 Momentum portfolios.
The strategies include the 1/N strategy, three volatility timing strategies (Panel A), six reward-to-risk timing
strategies (Panel B), and four Minimum Variance Efficient (MVE) strategies (Panel C). For each strategy, the
table reports various sample statistics based on the monthly excess returns time series. These statistics include
the annualized mean (ûp), annualized standard deviation (σ̂p), annualized Sharpe ratio (λ̂p), average monthly
turnover as a fraction of invested wealth (τ̂p), annualized basis point fee for switching from the 1/N strategy to the
timing or MVE strategy (∆̂λ), p-value for the difference in Sharpe ratio between the timing or MVE strategy and
the 1/N strategy (”vs. 1/N p-val”), and p-values for the basis point fees. The timing and MVE strategies utilize
a 120-month rolling estimator to estimate the conditional mean vector and covariance matrix of excess returns.
The OC and OC+ strategies target the estimated conditional expected excess return of the 1/N strategy. The
performance measures are reported under two scenarios: assuming no transaction costs and assuming proportional
transaction costs of 50 basis points. The p-values are obtained from 10,000 trials of a stationary block bootstrap
method with an expected block length of 10. Certain entries in the table are marked as ”-” for several strategies.
This indicates that the corresponding sample statistic cannot be computed. This could be due to the absence of
a real performance fee value that makes the investor indifferent between the strategy and the 1/N strategy, or if
the turnover for the TP strategy exceeds 20,000% in one or more months, leading to zero wealth considering the
assumed transaction costs. The sample period for the analysis is from July 1963 to December 2022, comprising
714 monthly observations. The first 120 observations are excluded to initialize the rolling estimators. Further
details can be found in the accompanying text.

No Transaction Costs Transaction Costs = 50 bp

vs.1/N vs.1/N

Strategy ûp σ̂p λ̂p p− val ∆̂1 p− val ∆̂5 p− val τ̂p λ̂p p− val ∆̂1 p− val ∆̂5 p− val

1/N 7.37 17.27 0.43 0.02 0.42

A. Volatility Timing Strategy

VT(1) 7.73 16.13 0.48 0.00 47 0.01 91 0.01 0.01 0.48 0.00 46 0.01 90 0.00

VT(2) 7.86 15.65 0.50 0.01 68 0.01 132 0.00 0.01 0.50 0.00 66 0.01 131 0.00

VT(4) 7.91 15.26 0.52 0.01 98 0.01 174 0.00 0.02 0.51 0.01 96 0.01 172 0.00

B. Reward-to-Risk Timing Strategies

RRT(u+t ,1) 9.62 16.42 0.59 0.00 176 0.00 171 0.00 0.06 0.58 0.00 157 0.00 153 0.00

RRT(u+t ,2) 10.12 16.57 0.61 0.00 208 0.00 192 0.00 0.07 0.60 0.00 181 0.00 166 0.00

RRT(u+t ,4) 10.57 16.75 0.63 0.00 296 0.00 274 0.00 0.09 0.62 0.00 266 0.00 245 0.00

RRT(β̄+
t ,1) 8.56 16.07 0.53 0.00 75 0.02 108 0.02 0.01 0.52 0.01 72 0.00 105 0.00

RRT(β̄+
t ,2) 9.13 15.97 0.57 0.00 96 0.01 138 0.00 0.02 0.56 0.00 93 0.00 132 0.00

RRT(β̄+
t ,4) 9.60 16.09 0.60 0.00 109 0.00 176 0.00 0.03 0.59 0.00 108 0.00 175 0.00

C. Mean-Variance Efficient Strategies

MV 7.22 12.98 0.56 0.14 -11 0.52 96 0.21 0.44 0.34 0.94 - - - -

OC 6.63 14.63 0.45 0.07 -82 0.82 40 0.01 0.19 0.38 0.86 - - - -

OC+ 6.24 15.00 0.42 0.56 -94 0.89 -102 0.62 0.09 0.38 0.82 - - - -

TP -143.21 793.02 -0.18 - - - - - 74.09 -0.74 - - - - -

To examine the generalizability of these findings, we analyze a 10 Momentum dataset, where

firms are sorted into portfolios based on a momentum measure. This sorting scheme is specifically

designed to distribute conditional expected returns. Table 3 presents that the λ̂p of 1/N strategy

is 0.43, Imposing transaction costs has little effect on it, the revised ratio is 0.42. Panel A

shows the results of VT strategies, λ̂p values range from 0.48 to 0.52. Estimated Sharpe ratio

increase compared to naive diversification is statistically significant at the 1% level. Estimated

performance fees range from 47 bp to 98 bp for γ = 1 and 91 bp to 174 bp for γ = 5, all

statistically significant at the 1% level. Imposing transaction costs has little effect on the results,

the revised λ̂p values range from 0.48 to 0.51, significantly larger than 0.42 of 1/N portfolio.

Regarding the RRT strategies in Panel B of Table 3, their performance is even more impress-

ive. Without transaction costs, the standard rolling estimator of µ̂p yields λ̂p values of 0.59 for

η = 1, 0.61 for η = 2, and 0.63 for η = 4. The differences compared to naive diversification are
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statistically significant at the 1% level. The estimated performance fees range from 176 bp to

296 bp, which are also statistically significant. Expected turnover estimates (6%, 7%, and 9%)

are higher than those of the 1/N strategy, but the differences are not substantial. Consequently,

imposing transaction costs does not affect our conclusions. Similar results are obtained when

using the estimator of µ̂p derived from the 4-factor risk model. Expected turnover estimates are

3 to 6 times lower than those produced by the rolling estimator of µ̂p, consistent with the 10

Industry dataset.

In Panel C, the MVE strategies exhibit less competitive performance in this dataset. The

TP strategy shows extreme results, while the MV and OC strategies have estimated Sharpe

ratios of 0.56 and 0.45, respectively, lower than the λ̂p of 1/N.

5.3 Empirical Analysis and results for the Extension

To initiate the empirical analysis of Section 4.5, we download US daily individual asset returns

data set and also daily market factor (Fama & French, 2015) returns over the period from

January 16, 1978 to December 31, 2017, achieved from the Center of Research in Security Prices

through Wharton Research Data Services. In this analysis, we choose a daily time frequency to

better align the strategy with real-world portfolio management methods. However, in order to

reduce turnover and transaction costs, we update the portfolio periodically. Instead of altering

portfolio weights, this strategy entails holding a fixed number of shares each month. Our decision

is consistent with the findings of De Nard et al. (2019), and it aids in striking a balance between

collecting daily market changes and effectively managing trading expenses.

To maintain simplicity and consistency, we adhere to the commonly used convention that

considers 21 consecutive trading days as one month. The out-of-sample analysis spans 480

months or 10,080 days, from January 16, 1978 to December 31, 2017. All portfolios, identified

by investment dates h = 1, ..., 480, are updated monthly. We estimate the covariance matrix

at each investment date h using the most recent 1260 daily returns, which roughly equates

to a five-year historical data window, align with De Nard et al. (2019) and different from the

length used elsewhere in this paper. This method ensures that we capture essential historical

information while keeping the analysis small and meaningful for daily data set.

We obtain the annualized average return, standard deviation and information ratio of the

GMV portfolio and the naive diversification strategy respectively by following the method de-

scribed in Section 4.5 and De Nard et al. (2019); R. F. Engle et al. (2019).3 The results are

reported annualized as follows, the average return of the 1/N strategy is 13.9, larger then the

average return of the GMV portfolio (12.7). However, the standard deviation of the AFM1-

DCC-NL-estimated GMV portfolio is much smaller (8.1) than that of the 1/N approach (16.8).

This decrease in volatility adds to the allure of the GMV method. The Information Ratio for

the naive diversification (1/N) strategy is 0.8, while the GMV strategy employing the dynamic

AFM1-DCC-NL estimate method obtains an excellent Information Ratio of 1.6. This indicates

that the GMV approach outperform in terms of risk-adjusted performance. In conclusion, the

3We would like to thank Michael Wolf generously sharing their data and Matlab programming codes on his
personal website. With his valuable resources, we were able to initiate the analysis faster and understand the
method correctly.

18



AFM1-DCC-NL technique greatly improves the GMV portfolio’s performance, exceeding the

naive diversification strategy by a wide margin.

6 Conclusion

In conclusion, Our findings demonstrate the promising results of timing strategies (VT and RRT)

in controlling turnover and improving performance specifically in the 10 Momentum dataset. our

analysis favors mean-variance optimization over the 1/N strategy without transaction costs in the

10 Industry dataset, while MVE strategies in the Mkt/SMB/HML dataset remain inconclusive.

We emphasize the crucial role of turnover control in strategy performance and stress the need

for effective turnover management to enhance mean-variance strategies.

Moreover, we observe that the use of a 4-factor risk model enhances the performance of

RRT strategies and reduces estimation risk in 10 Industry dataset. Additionally, the imposi-

tion of transaction costs has minimal impact on the effectiveness of VT and RRT strategies in

both datasets, further supporting their efficacy. Overall, our results suggest that the incorpor-

ation of dynamic timing portfolio allocation strategies, particularly RRT with a factor model,

can significantly enhance risk-adjusted returns compared to naive diversification. Successful

implementation requires careful consideration of transaction costs and turnover control. Fur-

thermore, our analysis employing the dynamic AFM1-DCC-NL estimate method reveals that

the minimum variance portfolio can outperform the naive diversification strategy in terms of

risk-adjusted performance, as evidenced by a higher Information Ratio. This emphasizes the

importance of utilizing advanced estimation techniques to improve portfolio performance.

In summary, our study provides valuable insights into the effectiveness of mean-variance

optimization, timing strategies, turnover control, and risk modeling. It highlights the potential

for enhanced risk-adjusted returns through dynamic timing portfolio allocation strategies and

emphasizes the significance of transaction cost management and turnover control for successful

implementation. Additionally, the application of advanced estimation methods, such as the

dynamic AFM1-DCC-NL estimate, demonstrates the superior performance of the minimum

variance portfolio compared to naive diversification in terms of risk-adjusted metrics. These

findings contribute to the understanding of portfolio management practices and offer valuable

implications for practitioners and researchers in the field.

This study suggests several avenues for future research. Firstly, it is recommended to explore

the performance of active portfolio strategies, including volatility timing and reward-to-risk

timing, using additional datasets beyond those analyzed in this study. This would provide a

broader understanding of the strategies’ effectiveness across different market conditions and

asset classes. Additionally, future research could investigate the impact of incorporating other

risk factors or alternative risk models on the performance of the timing strategies. Furthermore,

exploring the optimal tuning parameters for the timing strategies and conducting robustness

tests would contribute to a deeper understanding of their potential. Lastly, it is advisable

to investigate the applicability of the AFM-DCC-NL estimation method in different market

environments and strategies, and evaluate its performance relative to alternative covariance

estimation techniques.
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A Appendix A: Additional Figures

Figure 2 presents the mean return graphs and volatility graphs for 2 datasets we used in this

paper, using the samples from July 1963 to December 2008, matching those reported by Kirby

& Ostdiek (2012).

Figure 2: Reward and Risk Characteristics of 2 Portfolios
The figure presents a summary of the sample reward and risk characteristics for two datasets: the 10
Industry dataset (a and b) and the 10 Volatility dataset (c and d). Each graph panel consists of two
graphs. The first graph in each panel displays the cross section of annualized mean returns, while the
second graph shows the cross section of annualized return standard deviations. The sample period spans
from July 1963 to December 2008, totaling 546 monthly observations. However, the reported statistics
pertain specifically to the subset of observations 121 to 546, which were used to evaluate the out-of-sample
performance of the portfolio strategies.

10 Industry Portfolios
(a) Mean Return (b) Volatility

10 Momentum Portfolios
(c) Mean Return (d) Volatility

B Appendix B: Brief description for programming codes used

in this paper

In this paper, several programming codes were utilized to obtain the results presented in the

tables and figures. The Matlab codes package provided by the authors of DeMiguel et al. (2009)

was employed to calculate the summary statistics and estimate the conditional expected returns

for three mean-variance efficient portfolios and the 1/N portfolio, as shown in Table 1. Detailed

descriptions of these codes can be found in their respective documentation.

Additionally, the figures displayed in Figure 1 and Figure 2 were generated using a specific
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code snippet in the Python code file. The code comments provide further information on locating

the relevant snippet for reproducing these figures.

Furthermore, various programming codes were employed to derive the results presented in

Table 2 and Table 3. These codes encompassed a combination of the Matlab codes package from

DeMiguel et al. (2009), Python codes, and R Studio codes. By examining the code comments,

researchers can locate the specific code snippets used to calculate the annualized return mean,

standard deviation, Sharpe ratio, average monthly turnover, p-value and utility fees.

Lastly, the results discussed in Section 5.3 were obtained using the Matlab codes package

provided by Michael Wolf, one of the authors of De Nard et al. (2019). These codes come with

detailed descriptions, facilitating the replication of the findings.

Overall, the employed programming codes, including those from published sources and

custom-developed codes, played a crucial role in obtaining the empirical results presented

throughout this study.
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