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Abstract

The value-at-risk (VaR) and expected shortfall (ES) are approved risk measures used by

financial institutions around the globe. Hence, accurately forecasting these risk measures

is of primary importance. Our empirical study consists of the returns and intraday ranges

from five financial indices ranging from approximately 1999 to 2023. We evaluate the out-

of-sample forecasting performance for the 1% and 5% one day ahead VaR and ES for a set

of individual and combining methods such as the simple average, the minimum score, and

relative score combinations. More importantly, we examine whether trimming the subpar

methods from the forecast combinations based on the Model Confidence Set (MCS) of Hansen

et al. (2011) improves forecast accuracy during periods of high volatility. The results reveal

that trimming based on the MCS increases forecast accuracy often. Specifically, the simple

average incorporating trimming is the most competitive forecasting method.

1 Introduction

Managing and evaluating risk is a crucial task in the financial industry, including banks and

other financial institutions. The COVID-19 pandemic and the ongoing Russian-Ukrainian (2022)

conflict have had notable effects on the volatility experienced by the financial world, see Baek

et al. (2020) and Umar et al. (2022), respectively. Hence, the downward risk stemming from

these events has bolded the importance of risk management. Accurate forecasts regarding risk

in the financial markets can minimise the potential losses experienced by financial institutions.

These accurate forecasts allow financial establishments to make justified decisions regarding

determining and analyzing investment opportunities.

A popular measure of risk within the context of trading portfolios is the value-at-risk (VaR).

The VaR is defined as the maximum loss a market portfolio can experience for a given confidence

level over a specified time horizon. The VaR is used by bank regulators and pension plans to set

capital requirements and measure the risk to which portfolios are exposed (Linsmeier & Pearson,

2000). However, the VaR is a non-subadditive measure that does not reveal any information

regarding losses exceeding the quantile (Artzner et al., 1999). The expected shortfall (ES),

a novel measure of risk, addresses these limitations as a subadditive measure conditional on

the losses exceeding the VaR level (Yamai & Yoshiba, 2005). Accurate VaR and ES forecasts

quantify the potential losses a financial institution can experience, hence allowing them to devise

a mitigation strategy to minimise the downward risk.

A technique used to increase out-of-sample forecast accuracy is through employing com-

bination methods. Specifically, even a simple combining approach like the equally weighted

combination outperforms individual methods in accuracy (Lichtendahl Jr & Winkler, 2020).
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Aiolfi et al. (2010) show that this naive combining method often outperforms linear and non-

linear models in accurately forecasting a range of macroeconomic variables for several forecasting

horizons. In financial risk management, forecast combinations also improve accuracy and are

more robust to limitations faced by individual methods (Barrow & Kourentzes, 2016). There is

not much literature regarding forecast combinations in the context of predicting both the VaR

and ES. However, Taylor (2020) argues that the superiority of forecast combinations remains in

this context.

The Model Confidence Set (MCS) proposed by (Hansen et al., 2011) statistically tests for

the best forecasting methods. Hence, it allows us to perform forecast combinations with the

methods with superior predictive ability. Incorporating trimming before combining models is

common practice in the macroeconomic environment. Samuels & Sekkel (2017) show that util-

ising the MCS as a trimming method before averaging the forecasts results in a significant

accuracy increase for forecasting macroeconomic indicators for the US. Utilising the MCS as a

trimming technique to optimise the out-of-sample forecast combinations is new to the literature

surrounding VaR and ES forecasting, to our knowledge.

This paper contributes to existing literature regarding forecast combinations in the scope

of VaR and ES forecasting by extending the framework of Taylor (2020). Firstly, the data is

extended to the start of 2023 to account for the recent crises experienced by the financial markets:

the COVID-19 pandemic and the ongoing Russian-Ukrainian conflict. Furthermore, we include

a global commodity index (S&P GSCI) alongside stock indices. We expand the data in this

fashion to dictate the robustness of certain forecast combinations in periods of high volatility

and other financial markets. In particular, the 2008 financial crisis caused commotion regarding

the robustness of VaR forecasts (Halbleib & Pohlmeier, 2012). Finally, we employ the MCS as

an initial trimming step before using the simple average, minimum score combining, and relative

score combining methods. This additional step should reveal whether trimming based on the

MCS should be common practice when investigating the out-of-sample performance of forecast

combinations in risk management.

The results reveal that trimming based on the MCS before performing forecast combinations

generally increases the forecast accuracy according to the out-of-sample scoring functions aver-

aged over all five indices. In particular, the trimmed simple average produces the most accurate

VaR and ES forecasts. The remainder of the paper is structured as follows. Section 2 presents

the literature surrounding VaR and ES forecasts and corresponding forecast combinations. Sec-

tion 3 shows the data utilised. The methodology is extensively presented in Section 4. The

results and conclusions are in Sections 5 and 6, respectively.
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2 Literature Review

Forecast combinations often increase forecasting accuracy compared to individual methods.

Lichtendahl Jr & Winkler (2020) explain that the advantage of pooling forecasts is two-fold.

Primarily, a diversity of predictions with low correlations amongst them increases accuracy.

Secondly, forecast combinations for time series data are relatively robust, hence risk-reducing.

Even simple forecast combinations like the equally-weighted technique produce precise results

known as the ’equal weights puzzle’ (Diebold & Shin, 2019). An extensive number of forecast

combinations are present for the VaR metric. In particular, Bayer (2018) proposes a penal-

ized quantile regression approach to combine VaR forecasts for stocks. The quantile regres-

sion approach involves regularization through shrinkage methods to reduce the multicollinearity

amongst the predictions. This approach has superior forecasting ability relative to individual

methods. Chiu et al. (2010) investigate the forecasting ability of linear combination techniques

for the VaR for crude oil and Brent prices. The results show that linearly combining competing

models often outmatch individual models at a VaR level of 1% and 5%. Finally, Halbleib &

Pohlmeier (2012) improve the VaR forecasts by optimally combining forecasts for periods of high

volatility. The first technique optimises weights based on different VaR evaluation schemes. The

second technique imposes quantile regression on individual VaR forecasts. The results reveal

that the proposed methods are robust and accurate for times of recession. Forecast combina-

tions are not well-explored in the field of ES due to the ES’ non-elicitable nature. Meaning that

there is no appropriate loss function to evaluate the out-of-sample ES forecasts. Although, the

elictability of the ES appears when considering the VaR and ES jointly. Fissler et al. (2015)

introduce scoring functions to evaluate the VaR and ES forecasts together.

Taylor (2020) investigates the importance of combining techniques such as the equally-

weighted and two different weight optimising techniques for accurately forecasting the VaR

and the ES. The empirical study consists of five stock indices ranging from 1993 to 2017. Taylor

(2020) uses a variety of scoring functions based on the form proposed by Fissler et al. (2015)

to evaluate the out-of-sample forecasting performance of the methods. Additionally, different

calibration tests are also employed to evaluate the forecasts. The individual models are un-

competitive relative to the forecast combinations. However, constructing forecast combinations

faces a crucial consideration, namely whether we should include each method (Diebold & Shin,

2019). Including forecasts of models with inferior predictive accuracy in a forecast combination

could degrade its out-of-sample performance (Lichtendahl Jr & Winkler, 2020).

The MCS proposed by Diebold & Shin (2019) statistically tests the out-of-sample perform-

ance of methods and constructs a confidence set involving the superior predictive models. The
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use of the MCS as an evaluation measure is well explored in the context of VaR and ES fore-

casts [see for example (Bernardi & Catania, 2016), (Taylor, 2020), (Luo et al., 2017)]. Trimming

based on the MCS is well-versed in the context of macroeconomic predictions. Shang & Haber-

man (2018) average the forecasts of Japanese mortality rates selected by the MCS. Garcia et al.

(2017) employ different Machine Learning (ML) methods to forecast Brazilian inflation for many

different horizons. An equally weighted combination based on the MCS with a confidence level

of 80% is the best out-of-sample forecasting method compared to the best individual model and

a simple average of all models. Shang & Haberman (2018) average the model forecasts selected

by the MCS at a 90% confidence level based on the out-of-sample root mean squared forecast

error. This equally weighted combination is competitive in terms of out-of-sample accuracy.

Finally, Amendola et al. (2020) show that the MCS averaged trimming technique achieves the

optimal out-of-sample forecasts for multivariate volatility of U.S stocks.

Utilising the MCS as a trimming method before combining is not explored yet to our know-

ledge for VaR and ES forecasting. However, Happersberger (2021) utilises the partially egalit-

arian LASSO (peLASSO) proposed by Diebold & Shin (2019) as a combining technique of VaR

and ES forecasts for 12 equity markets. The peLASSO method involves two steps that coincide

with the simple average combination post trimming. Firstly, a shrinkage method such as LASSO

selects the optimal forecasts based on an out-of-sample scoring function. In the second step, the

weights of the surviving predictions are shrunk towards equality. The peLASSO method has

accurate out-of-sample forecasting performance for the VaR and ES and outperforms other com-

bining techniques. Additionally, Taylor (2020) also performs VaR and ES forecast combinations

while discarding the historical simulation method due to its subpar performance. The results in-

dicate that trimming the underperforming historical simulation from the forecast combinations

increases the out-of-sample accuracy.

3 Data

In this empirical study, we focus on forecasting the one day ahead 1% and 5% VaR and ES.

We consider the log-returns of the S&P 500 (US), CAC 40 (France), FTSE 100 (UK), DAX 30

(Germany), and NIKKEI 225 (Japan) stock indices, as well as a global commodity index (S&P

GSCI). The S&P GSCI includes many diversified commodities such as precious metals and oils

(McGlone & Gunzberg, 2011).

The starting dates are the 25th of June 1999, the 17th of November 1999, the 30th of July

1999, the 6th of November 1998, and the 6th of July 1999, respectively. The sample for the

stock and commodity indices ends on the 28th of April 2023. This results in a sample size of
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6000 observations for each index. The difference in starting dates among the indices is due to

the different holidays in each respective country. We download the daily closing, maximum, and

minimum prices from the Bloomberg terminal.

The daily log returns for period t are calculated as follows rt = ln( Pt
Pt−1

), where Pt denotes the

price in period t. The intraday range IRt is the log difference between the closed daily high P high
t

and daily low P low
t . We use the initial 2000 observations for estimating the individual methods.

The following 2000 out-of-sample forecasts determine the weights for the forecast combinations.

We employ a rolling window approach with window size RS = 2000 days moving one trading

year ahead (252 days) for the estimation procedures to reduce computation time. Finally, we

evaluate the forecasts based on the last 2000 observations to determine how individual and

combining methods perform during periods of high volatility e.g. COVID-19 and the Russian-

Ukrainian conflict. After the evaluation of the initial (combining) methods, we reconstruct the

combining methods based on the models selected by the MCS.

Figure 1: The log returns of the S&P GSCI commodity index over the last two decades.

Figure 1 depicts the log returns of the S&P GSCI commodity index over the entire sample

range. The Figure shows that the financial crisis of 2008 and the COVID-19 pandemic caused

high volatility. These large volatility spikes remain visible in 2022 possibly due to the Russian-

Ukrainian conflict. This ongoing conflict impacts numerous commodities and their respective

markets (Alam et al., 2022). It is interesting to note that the COVID-19 pandemic caused larger

negative returns relative to the financial market crisis of 2008 experienced by the commodity

market.

Before the estimation procedure of the individual methods, we employ an AR(1) as a filter,

for which we use a similar rolling window approach with RS 2000 as done in (Taylor, 2020).
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4 Methodology

We follow the same methodological framework as in Taylor (2020). We first present the indi-

vidual and combining methods. Subsequently, we give an overview of the evaluation criteria

used to evaluate the VaR and ES forecasts.

4.1 Individual Methods

Methods forecasting the VaR are generally (semi)parametric or non-parametric (Engle & Man-

ganelli, 2004). We use all three types in this study, with the addition of a method that incor-

porates intraday ranges for robustness. A variety of methods could assist the performance of

forecast combinations as they process information differently (Happersberger, 2021).

The expression for the out-of-sample VaR and ES forecasts for t+ 1 for models m = 1, ..., 5

are shown in Equations (1) and (2), respectively. 1

V aRm,t+1|t(α) = Qα(rt+1|It), (1)

where It represents the available information set containing information up till time t and

Qα denotes the quantile function with respect to the probability level α.

ESm,t+1|t(α) = E(rt+1|rt+1 ≤ V aRt+1|t, It). (2)

We forecast the VaR and ES one day ahead, with probability levels 1% and 5%.

4.1.1 Historical Simulation

The historical simulation is a non-parametric method commonly used for forecasting quantiles.

We use the historical simulation based on 250 observations as our benchmark model. We opt

for 250 observations as Taylor (2020) reveals that a different number of observations does not

lead to improved accuracy.

4.1.2 GJR-GARCH

The GARCH model and its respective adoptions are well known in the context of forecasting

financial variables. Ergün & Jun (2010) investigate the predictive performance of numerous

GARCH models for the VaR and ES for future indices of the S&P 500. The GARCH-based

models have accurate out-of-sample VaR forecasts. The GJR-GARCH(1,1) model is an extension

of the GARCH model often found to perform well in the context of VaR forecasting (Su et al.,

1We utilise the same notation for the VaR and ES forecasts as done in (Happersberger, 2021).
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2011). The performance of the GJR-GARCH(1,1) model resonates with its ability to analyze the

impact of negative and positive returns on conditional volatility. We opt for a GJR-GARCH(1,1)

based on the student t-distribution. The expression of the GJR-GARCH(1,1) is in Appendix B.

4.1.3 CAViaR-AS-EVT

The conditional autoregressive value at risk (CAViaR) model proposed by Engle & Manganelli

(2004) is an autoregressive model which utilises quantile regression for estimation procedures.

The CAViaR model is commonly used in existing VaR forecasting literature due to its reputable

predictive ability [see for example (Jeon & Taylor, 2013), (Huang et al., 2009), (Chen et al.,

2012)]. To produce ES forecasts the CAViaR model is extended by incorporating the peaks-

over-threshold extreme value theorem (EVT) to the standardised returns exceeding the VaR

level. 2 Models incorporating EVT are found to produce accurate VaR forecasts (Ergün & Jun,

2010).

The CAViaR-AS-EVT is expressed as

Qt = β0 + β11(rt−1 > 0)|rt−1|+ β21(rt−1 ≤ 0)|rt−1|+ β3Qt−1,

where Qt denotes the quantile at time t. We extend the CAViaR model further by imple-

menting the asymmetric slope (AS) to account for the leverage effect as done for the GJR-

GARCH(1,1) model.

4.1.4 CARE-AS

Taylor (2008) introduces the conditional autoregressive expectile (CARE) to estimate the VaR

and ES. The advantage of this method is its ability to avoid distributional assumptions. The

estimation of τ is done as in the framework by Taylor (2008). The model is re-estimated

continuously using different values of τ using step sizes of 0.0001 for the observations in the first

rolling window. Based on experimentation performed by Taylor (2020), we set τ equal to 0.0018

and 0.0016 for α equal to 1% and 5%, respectively. The expression for the CARE-AS model is

given in Equation (3).

µt = β0 + β1I(rt−1 > 0)|rt−1|+ β2(rt−1 ≤ 0)|rt−1|+ β3µt−1, (3)

where µt is the expectile and where τ is used to estimate the quantile α. We employ the same

estimation procedure as for the CAViaR-AS-EVT. However, we consider the following expectile

scoring function:

2See (Taylor, 2020) for an extensive overview of the forecasting procedure using the CAViaR-EVT method.
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S(µt, rt) = |τ − I(rt ≤ µt)|(rt − µt)
2.

4.1.5 HAR-RANGE

The heterogeneous autoregressive (HAR) is a dynamic model often used to forecast volatility

in financial markets (Corsi & Reno, 2009). The desired VaR and ES forecasts are computed by

multiplying the HAR-RANGE volatility forecasts by the standard deviation of the VaR and ES

estimates based on the student t - distribution.

The daily range IRt is then regressed on an intercept, the weekly range IRw
t−1 =

1
5

∑5
i=1 IRt−i,

the monthly range IRm
t−1 = 1

22

∑22
i=1 IRt−i and an error term ϵt i.i.d with zero mean as shown

in Equation (4).

IRt = β1 + β2IRt−1 + β3IR
w
t−1 + β4IR

m
t−1 + ϵt, (4)

σ2
t = δ1 + δ2IR

2
t . (5)

We estimate the parameters Bi in Equation (4) using least squares (LS). Furthermore, the

coefficients for the conditional variance shown in Equation (5) are estimated using maximum

likelihood estimation (MLE) based on the student t-distribution.

4.2 Combining Techniques

We use three different combining techniques to construct the forecast combinations. The first

technique is the naive simple average that averages all method forecasts. The latter two allocate

weights based on optimising in-sample scoring functions.

4.2.1 Minimum Score Combining

The proposed individual methods may have different forecasting qualities for the VaR and ES

individually. However, allowing the weights of a combining method to differ is impractical

because the ES is conditional on the VaR. Hence, we consider the minimum score combining

method with difference spacing for the VaR and ES shown in the following lines.

V aRc,t+1|t =

M∑
m=1

wv
i V aRm,t+1|t, (6)
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ESc,t+1|t = V aRc,t+1|t +
M∑

m=1

ws
i (ESm,t+1|t − V aRm,t+1|t). (7)

The weights wv
i and ws

i representing the VaR and ES weights, respectively, are both ensured

to be non-negative and
∑M

m=1wi = 1. The optimal weights are determined by the in-sample

minimum AL score. 3

4.2.2 Relative Score Combining

Shan & Yang (2009) extend on literature regarding quantile forecasting combinations based on

quantile loss functions. In which the weight of the candidate model i is shown in the following

line,

wi =
exp(−λ

∑t−1
j=1 S(Vij , Eij , rj)∑M

k=1 exp(−λ
∑t−1

j=1 S(Vkj , Ekj , rj)
. (8)

The tuning parameter λ determines the correlation magnitude between the allocated weights

and the chosen scoring function S. We tune the parameter λ by minimising the in-sample AL

scoring function. The VaR and ES relative score combinations are presented in Equations (9)

and (10), respectively.

V aRc,t+1|t =
M∑

m=1

wiV aRm,t+1|t, (9)

ESc,t+1|t =
M∑

m=1

wiESm,t+1|t. (10)

4.3 Evaluation

We consider multiple scoring functions, calibration tests, and the MCS to evaluate the VaR and

ES forecasts. Furthermore, we construct newly trimmed forecast combinations based on the

MCS.

4.3.1 Scoring functions

The VaR is an elicitable risk measure for which the scoring functions take the following form,

SV (v, r) = (1[r ≤ v]− α)(G(v)−G(r)). (11)

3The scoring functions are presented in Subsection 4.3.
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In which v, r, and α denote the VaR estimate, the return, and the probability level, respect-

ively. According to Taylor (2020), when the function G is set equal to the identity function (I),

Equation 11 becomes the quantile score (QS). The quantile score evaluates the out-of-sample

performance of the VaR forecasts at the 1% and 5% probability levels. As stated in Section 2,

unlike the VaR, the ES is not an elicitable risk measure. Hence, we refer to the loss function form

proposed by Fissler et al. (2015) in Equation 12 to jointly evaluate the VaR and ES forecasts.

SV,E(v, e, r) = (1[r ≤ v]−α)G1(v)−1[r ≤ v]G1(r)+G2(e)(e−v+1[r ≤ v]
(v − r)

α
)−ζ2(e)+a(r).

(12)

The considered G1 and G2 functions are strictly increasing and continuously differentiable.

Additionally, ζ ′2 is equal to G2. Additional conditions that need to be satisfied can be found in

Fissler et al. (2015). Finally, the ES estimate is denoted as (e). Based on Equation (12), several

loss functions that satisfy the necessary properties have become available. These functions are

in Table 1. 4

G1(x) G2(x) ζ2(x) a(r)

AL 0 − 1
x -ln(−x) 1 - ln(1−α)

NZ 0 1
2(−x)−

1
2 −(−x)−

1
2 0

FZG x exp(x)
(1+exp(x)) ln(1 + exp(x)) ln(2)

AS −1
2Wx2 αx 1

2αx
2 0

Table 1: The different joint scoring functions for the VaR and ES forecasts based on Equation
(12).

.The AS scoring function proposed by Acerbi & Szekely (2014) needs to satisfy v ·W < e. We

set W = 4 as done in Taylor (2020) to ensure this requirement is satisfied.

4.3.2 Calibration tests

The VaR forecasts are generally assessed based on the conditional and unconditional calibration

tests (Nolde & Ziegel, 2017). We perform these backtests at a 5% significance level. The VaR

forecast of model i is unconditionally calibrated if Equation (13) is satisfied and conditionally

calibrated if the conditional expectation of HITt+1 is zero.

E(HITt+1) = E(α− I(rt+1 ≤ V ARm,t+1) = 0. (13)

We use a test founded on the binomial distribution to test whether the mean of HITt+1 is

4An overview of these individual scoring functions can be found in Taylor (2020)
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significantly different from 0. Additionally, we employ the dynamic quantile (DQ) test proposed

by Engle & Manganelli (2004) as done in Le (2020) to test whether the conditional mean of

HITt+1 is significantly different from 0. We include four lags in the DQ testing procedure.

The ES forecast of model i is unconditionally calibrated if the discrepancy between the return

and the ES forecast for the period t+1 is zero, given that the return exceeds the corresponding

VaR in that period (McNeil & Frey, 2000). We standardise the test by dividing the expected

discrepancies by the VaR estimate. Similarly to (Taylor, 2020), we use a dependent circular

block bootstrap to avoid any distributional assumptions of the standardised deviations.

4.3.3 Model Confidence Set

We use the MCS proposed by Hansen et al. (2011) as a final evaluation approach. This approach

allows us to statistically detect the worst performing model and remove them from the original

confidence set containing all models M0. The set of superior models is defined as

M∗ = {i ∈ M0 : µij ≤ 0,∀j ∈ M0}, (14)

where µij is defined as the expected loss difference between method i and j. We first apply

the equivalence test δM based on the Diebold-Mariano test to M0. If δM is rejected it indicates

that the predictive performance of the models in the set is not equivalent. Subsequently, we

utilise the elimination rule eM to eliminate the worst-performing models within the set. We

repeat this process until δM is accepted, and the set M* consisting of the models with superior

predictive ability is obtained.

The implementation of the MCS in this paper is two-fold. Firstly, we use it to statistically

evaluate and compare the predictive ability of the individual and combining methods. Secondly,

we construct forecast combinations with the superior individual models based on the MCS. We

follow the same framework as Hansen et al. (2011), opting for a confidence level of 90% and

75%, and the number of bootstrap re-sampling B is 10,000. The MCS trimmed combinations

are based on the out-of-sample AL score in order to stay consistent with the combining methods,

for which the weights are optimised based on the AL score.

Taylor (2020) considers discarding the historical method forecast from the combining meth-

ods. The forecast combinations involving trimming are generally more accurate for the 1% and

5% VaR and the ES. This gain in accuracy is because including a subpar-performing model in a

forecast combination is more likely to harm than contribute to its precision (Lichtendahl Jr &

Winkler, 2020).
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5 Results

The index and scoring function-specific results are presented only for the S&P GSCI commodity

index and the AL score to save space. The results regarding the different stock indices and

scoring functions are found in Appendix C.

Table 2: The model confidence set at a confidence level of 90% for all scoring functions for the
S&P GSCI.

1% probability level 5% probability level

QS AL NZ FZG AS QS AL NZ FZG AS

Individual Methods

Historical Simulation 0 0 0 0 0 0 0 0 0 0

GJR-GARCH 1 1 1 1 1 1 0 1 1 1

HAR-RANGE 1 1 1 1 1 1 1 1 1 1

CARE-AS 0 0 0 0 0 0 0 0 0 0

CAViaR-AS-EVT 1 1 1 1 1 1 1 1 1 1

Combinations

Simple Average 0 0 0 0 1 1 1 1 1 1

Relative Score 1 1 1 1 1 1 1 1 1 1

Minimum Score 1 1 1 1 1 1 1 1 1 1

Note: A 1 indicates that the method is included in the MCS for that specific scoring function for the

S&P GSCI index.

Table 2 reveals the models included in the MCS with a confidence level of 90% for the S&P

GSCI index. The individual methods within the MCS for the 1% probability level are constant

over the different scoring functions. Namely, the GJR-GARCH, HAR-RANGE, and CAViaR

methods have the superior predictive ability (SPA). Furthermore, the relative and minimum

score combinations methods in the MCS for all scoring functions over the different probability

levels. The simple average does not forecast the VaR and ES well for the 1% probability

level relative to the 5% level. This dissimilarity is because the 1% VaR and ES surround

extreme events that correspond with more uncertainty, hence, it is more complicated to forecast

accurately.
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Table 3: The model confidence set at a confidence level of 90% for all scoring functions aggregated
over all indices.

1% probability level 5% probability level

QS AL NZ FZG AS QS AL NZ FZG AS

Individual Methods

Historical Simulation 0 0 0 0 1 0 0 0 0 0

GJR-GARCH 3 3 3 3 4 4 3 4 4 4

HAR-RANGE 5 5 5 5 4 5 4 4 4 5

CARE-AS 0 0 0 0 0 2 1 2 2 3

CAViaR-AS-EVT 4 4 4 4 4 4 4 4 4 4

Combinations

Simple Average 3 3 3 3 4 4 4 4 4 4

Relative Score 5 5 5 5 4 5 5 5 4 5

Minimum Score 5 5 5 5 5 4 4 4 4 4

Note: The values depict the number of indices for which the method is included in the MCS at a 90%

confidence level. Higher values indicate better performance, where 5 is the highest attainable value.

Table 3 reflects the MCS at a confidence level of 90% aggregated over all indices. The value

reveals the number of times the method is in the MCS over the five indices. Hence, a large

number suggests that the predictive ability of the method is robust and superior. In particular,

the HAR-RANGE is included in the MCS for almost five indices for both probability levels,

indicating accurate predictive performance. The accuracy of the HAR-RANGE forecasts is

most likely due to the incorporation of high-frequency intraday data relative to solely using the

daily returns such as the other individual models. Besides the performance of the HAR-RANGE,

the CAViaR and GJR-GARCH also perform relatively well. The relative and minimum score

combining methods also have SPA for generally all indices for both probability levels. The

results of this Table are in line with Table 2 as both the CARE and historical simulation models

are uncompetitive.

Table 4 shows the MCS at a 75% confidence level for all indices. The results do not change

drastically compared to Table 3, as both tables show that the CARE-AS and historical simulation

models are subpar at forecasting the VaR and ES at both probability levels.
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Table 4: The model confidence set at a confidence level of 75% for all scoring functions aggregated
over all indices.

1% probability level 5% probability level

QS AL NZ FZG AS QS AL NZ FZG AS

Individual Methods

Historical Simulation 0 0 0 0 0 0 0 0 0 0

GJR-GARCH 3 3 3 3 3 3 2 2 3 4

HAR-RANGE 4 5 5 4 3 4 4 4 4 5

CARE-AS 0 0 0 0 0 2 1 1 1 1

CAViaR-AS-EVT 3 4 4 3 3 4 4 4 4 4

Combinations

Simple Average 3 3 3 3 3 4 4 4 4 4

Relative Score 3 4 4 3 3 4 4 5 4 4

Minimum Score 4 3 4 4 4 3 3 3 3 4

Note: The values depict the number of indices for which the method is included in the MCS at a 75%

confidence level. Higher values indicate better performance, where 5 is the highest attainable value.

The trimmed forecast combinations include the models based on the 75% and 90% MCS for

the AL scoring function for the 1% probability level. We regard the 1% VaR and ES as no

methods are included in the 75% MCS for the S&P 500 index for the AL scoring function at the

5% probability level as seen in Table 14 in Appendix C. Furthermore, it is interesting to note that

the MCS results are consistent for the AL score for the 1% probability level between the 75%

and 90% confidence levels of the MCS. The trimmed forecast combinations of the S&P GSCI,

CAC 40, and NIKKEI 225 include the GJR-GARCH, HAR-RANGE, and CAViaR methods.

The HAR-RANGE and CAViaR models are in the trimmed forecast combinations for the FTSE

100 index. Finally, the trimmed combinations of the S&P 500 index are equal to that of the

HAR-RANGE method. These results can be found in Appendix C.

The calibration test results for the S&P GCSI commodity index are placed in Table 5. A

non-zero entry indicates that the corresponding calibration test is rejected at a 5% significance

level. Hence, lower values are preferred. The results reveal that the forecasts of the CAViaR

and HAR-RANGE methods are the most calibrated relative to the other methods. This finding

is in line with the MCS results, in which the above-mentioned methods generally have SPA.

Furthermore, the results reveal that the VaR and ES forecasts of the CARE-AS model are not

(un)conditionally calibrated for either probability level.
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Table 5: Results of the calibration tests for the S&P GCSI commodity index.

1% probability level 5% probability level

VaR hit VaR DQ ES bootstrap VaR hit VaR DQ ES bootstrap

Individual Methods

Historical Simulation 0 1 0 0 1 0

GJR-GARCH 1 0 0 0 0 1

HAR-RANGE 1 0 0 0 0 0

CARE-AS 1 1 1 1 1 1

CAViaR-AS-EVT 0 0 0 0 0 1

Combinations

Simple Average 1 0 0 0 0 1

Relative Score 1 0 1 0 0 1

Minimum Score 1 1 0 0 0 1

Trimmed Combinations

Simple Average 1 0 0 0 0 1

Relative Score 1 0 0 1 0 1

Minimum Score 1 0 0 0 0 1

Note: A 1 depicts that the corresponding calibration test is rejected for the method at a 5% significance

level.

Table 6 depicts the results of the calibration tests over all five indices. The VaR hit test

at the 1% probability level for the trimmed forecast combinations is rejected only for the S&P

GSCI index. Indicating that the 1% VaR forecasts for the trimmed combining methods are not

calibrated unconditionally for this commodity index. Moreover, the same applies to the trimmed

combinations for the 5% ES, where the ES bootstrap is rejected only for the S&P GSCI index.

Meaning that the expected unconditional ES discrepancies to be zero is rejected. The trimmed

and untrimmed combination forecasts do not differ tremendously in calibration. Taylor (2020)

performs the calibration tests for both the 1% and 5% probability levels, for which the tests are

rejected mainly for the historical simulation. In our case, rejection at either probability level

occurs substantially more for all methods. This difference in calibrated forecasts could be due to

the lack of estimation as we repeatedly move the rolling window one year ahead. Additionally,

as seen in Figure 1, the data used to evaluate the forecasts is very volatile relative to the data

used to estimate the methods and the combining weights.

15



Table 6: Results of the calibration tests aggregated over all five indices.

1% probability level 5% probability level

VaR hit VaR DQ ES bootstrap VaR hit VaR DQ ES bootstrap

Individual Methods

Historical Simulation 3 5 2 1 5 2

GJR-GARCH 3 2 2 3 3 3

HAR-RANGE 2 2 0 1 2 2

CARE-AS 5 5 5 5 5 5

CAViaR-AS-EVT 0 1 1 0 1 1

Combinations

Simple Average 2 1 1 0 2 1

Relative Score 1 1 3 1 2 1

Minimum Score 2 4 0 1 1 1

Trimmed Combinations

Simple Average 1 1 0 1 2 1

Relative Score 1 2 1 2 2 1

Minimum Score 1 2 0 1 2 1

Note: The values depict the number of indices for which the calibration tests are rejected at a 5%

significance level. Lower values are preferred.

The 1% VaR and ES evaluated using the AL skill score (%) is seen in Table 7. The AL and

FZG skill scores are computed by first taking the ratio of the score of model i and that of the

historical simulation forecast. We then subtract one from this ratio before multiplying it by 100.

Moreover, the QS, NZ, and AZ scores take positive values, hence, we subtract the ratio from

one before multiplying it by 100.

Table 7 shows that the most competitive methods are the HAR-RANGE and the (trimmed)

combinations as they attain the highest AL skill score (bolded) for the 1% probability level.

However, discarding forecasts before combining does not always lead to improvement. Spe-

cifically, the trimmed combinations perform worse than their untrimmed counterparts for the

NIKKEI225 and FTSE 100 indices. This deterioration in performance could be because every

method processes and captures information differently and can hence still contribute to the ac-

curacy of the forecast combinations (Happersberger, 2021). Nevertheless, when regarding the

geometrical mean across all indices, trimming before combining does increase predictive accur-

acy for both the simple average and minimum score combining. The forecast of the relative score

combination being better before discarding inaccurate forecasts could be because the weights

assigned to the surviving models depend on the in-sample AL score. This indicates a possible

fluctuation in the in-sample and out-of-sample model predictive performance.
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Table 7: 1% VaR and ES evaluated using the AL skill score (%).

S&P 500 CAC 40 FTSE 100 NIKKEI 225 S&P GSCI Geo. Mean

Individual Methods

Historical Simulation 0 0 0 0 0 0

GJR-GARCH 10.486 9.691 12.194 12.825 6.716 10.382

HAR-RANGE 30.104 10.158 13.320 13.158 9.688 15.286

CARE-AS -84.028 -70.388 -41.441 -38.974 -97.908 -66.548

CAViaR-AS-EVT 8.021 11.665 12.870 11.592 6.862 10.202

Combinations

Simple Average 26.563 10.696 15.187 14.224 5.211 14.376

Relative Score 30.104 11.665 15.187 14.224 7.927 15.821

Minimum Score 29.861 11.630 14.607 12.258 6.752 15.022

Trimmed Combinations

Simple Average 30.104 11.809 14.447 13.491 8.771 15.724

Relative Score 30.104 11.450 13.546 12.358 8.404 15.172

Minimum Score 30.104 11.342 13.610 12.625 8.294 15.195

Note: The largest values are bolded and correspond to the most accurate method(s) for each column

(index).

Table 8: 5% VaR and ES evaluated using the AL skill score (%).

S&P 500 CAC 40 FTSE 100 NIKKEI 225 S&P GSCI Geo. Mean

Individual Methods

Historical Simulation 0 0 0 0 0 0

GJR-GARCH 0.294 4.312 6.320 4.472 2.316 3.543

HAR-RANGE 9.394 3.613 6.348 4.028 3.279 5.332

CARE-AS -3.042 2.535 5.221 3.750 -0.632 1.566

CAViaR-AS-EVT -0.854 4.575 6.513 4.611 2.497 3.468

Combinations

Simple Average 3.576 5.041 7.200 5.000 2.858 4.735

Relative Score 9.394 4.837 6.815 4.861 2.677 5.717

Minimum Score 8.700 4.254 6.843 4.833 2.738 5.474

Trimmed Combinations

Simple Average 9.394 4.808 7.227 4.917 3.069 5.883

Relative Score 9.394 4.808 7.255 4.694 2.647 5.760

Minimum Score 9.394 4.662 7.172 4.861 2.677 5.753

Note: The largest values are bolded and correspond to the most accurate method(s) for each column

(index).

The 5% VaR and ES forecasts evaluated by the AL skill score in Table 8 have similar results

to the 1% probability level, as trimming does not always lead to improved predictive ability for

all indices. However, according to the geometrical mean, the trimmed forecast combinations

perform better than their untrimmed counterparts. In particular, the simple average with trim-

ming has the most precise out-of-sample accuracy for both probability levels. Furthermore, it

is interesting to note that the forecast of the CARE-AS method visibly underperforms relative

to the benchmark HS method for the 1% VaR and ES. However, for the 5% VaR and ES, the

CARE model produces more accurate forecasts than the benchmark method. Note, recall that
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the trimmed forecasts of the S&P 500 are the same as that of the HAR-RANGE method.

Table 9: VaR and ES evaluated using the skill scores (%) for all indices.

1% probability level 5% probability level

QS AL NZ FZG AS QS AL NZ FZG AS

Individual Methods

Historical Simulation 0 0 0 0 0 0 0 0 0 0

GJR-GARCH 21.033 10.382 12.530 0.840 33.498 12.210 3.543 7.573 0.325 21.168

HAR-RANGE 26.748 15.286 17.063 1.020 40.792 14.737 5.332 9.677 0.414 21.211

CARE-AS -37.957 -66.548 -43.191 -1.625 -13.736 10.324 1.566 5.865 0.296 17.043

CAViaR-AS-EVT 21.780 10.202 2.864 0.512 35.885 12.513 3.468 7.883 0.325 19.693

Combinations

Simple Average 23.003 14.376 14.884 0.900 36.127 13.713 4.735 8.802 0.355 20.266

Relative Score 27.189 15.821 17.572 1.020 40.275 15.930 5.717 10.270 0.414 23.150

Minimum Score 25.774 15.022 16.617 0.960 37.960 15.245 5.474 10.156 0.414 21.978

Trimmed Combinations

Simple Average 27.361 15.724 15.444 1.050 41.817 16.185 5.883 10.498 0.414 23.349

Relative Score 26.569 15.172 16.816 0.990 40.797 16.023 5.760 10.392 0.414 23.061

Minimum Score 27.736 15.195 16.908 1.020 40.848 16.026 5.753 10.392 0.414 23.184

Note: The values are the geometrical mean skill scores over the five indices. The bolded values

represent the most accurate method(s) for each column (skill score).

Finally, Table 9 reveals the geometric mean over each index for all scoring functions. The

results indicate that the trimmed forecast combinations almost invariably achieve the highest

out-of-sample scoring functions, except for the AL and NZ skill score for the 1% probability

level. In particular, the MCS-trimmed simple average method performs the best. The equally

weighted combination gains the most out-of-sample accuracy from trimming relative to the other

combining methods. This difference in accuracy gained from trimming is because the relative

score and minimum score methods assign weights to the methods based on the in-sample AL

score. Hence, these combining methods already account for the performance of the individual

models in the in-sample period. Therefore, the improvement in discarding the least accurate

forecasts does not result in an enormous gain in predictive accuracy. Moreover, contrary to the

simple average and minimum score combing method, the relative score combining deteriorates

when incorporating trimming when considering the 1% VaR and ES.

Ultimately, the MCS reveals that the HAR-RANGE, GJR-GARCH, and CAViaR methods

generally have SPA among the combinations. Furthermore, the CARE-AS method demonstrates

significant limitations in forecasting the VaR and ES at both probability levels. This finding

contradicts that of Taylor (2020), for which the CARE-AS model is the best-performing indi-

vidual method for the 5% probability level. Furthermore, for both the 1% and 5% probability

levels, the trimmed forecast combinations have the best predictive accuracy when considering

the geometrical mean. Trimming forecasts based on the MCS before combining increases the

out-of-sample forecast accuracy of the combining methods. However, the change in accuracy is
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dependent on the index and the probability level, indicating that trimming prior to combining

does not always lead to better predictive ability.

6 Conclusion

This paper investigates the out-of-sample forecast accuracy gained when discarding non-competitive

methods based on the MCS from forecast combinations. In particular, we evaluated the fore-

casting performance of individual models and (trimmed) forecast combinations during periods

of high volatility caused by the COVID-19 pandemic. The MCS revealed that forecast com-

binations have superior predictive ability. However, the HAR-RANGE and CAViaR-AS-EVT

methods are very competitive in producing accurate out-of-sample forecasts. The calibration

tests showed that the CAViaR-AS-EVT method followed by the trimmed forecast combinations

are rejected the least amount of times at a 5% significance level. The geometrical mean of

the out-of-sample skill scores showed that discarding uncompetitive forecasts before combining

methods increases the out-of-sample scoring functions. In particular, the equally-weighted fore-

cast combination performs best. However, the advantages of trimming are not as apparent when

regarding the indices individually.

The main limitation of this present study is the rolling window approach utilised to estimate

the individual methods and the weights of the combining methods. Iteratively moving the rolling

window one year ahead for the estimation procedure could lead to the method parameters not

being optimised compared to moving the window by one day. This estimation procedure could

explain why the CARE-AS method is subpar at predicting in our present study. Furthermore,

the gains achieved by the trimmed forecast combinations could be due to look-ahead bias. To

elude this bias, we can split the out-of-sample forecasting sample into two sub-samples as done in

Garcia et al. (2017). The first sub-sample constructs the MCS at the two confidence levels. The

second sub-sample evaluates and estimates the trimmed forecast combinations. Alternatively,

we can base the MCS on the in-sample scoring functions.

With the accurate performance of the HAR-RANGE method and the increased availability

of high-frequency data, we can include more models in our framework. For example, a novel

approach that incorporates intraday returns proposed by Meng & Taylor (2020) can be used

to extend this current paper. Including multiple competitive methods could further reveal how

different MCS confidence levels could impact the forecast accuracy gained when trimming. Dis-

carding many under-performing predictions from the combinations, known as aggressive trim-

ming, substantially increases the out-of-sample accuracy (Timmermann, 2006). Moreover, it

would be interesting to further investigate the forecasting performance during periods of high
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volatility. For example, we can employ the fluctuation test to evaluate the forecasting stability

of the models. Finally, it would be engaging to compare the forecasting ability of the peLASSO

against the trimmed simple average based on the MCS due to their similarity.
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7 Appendix

The raw results, code, and data used in this present study can be found in the supplementary

materials attached to this file.

A Programming Packages

The code used to replicate the study by Taylor (2020) and our extension was done through the

GAUSS software. The GAUSS software and the packages are downloaded from the APTECH

store. 5 Both the replication code sent by Taylor (2020) and the extension code used for the

MCS forecast combinations make use of the following packages: CO(MT), CML(MT), and

LP(MT).

The CO package stands for constrained optimisation and allows us to solve constrained non-

linear programming problems. The CML depicts the constrained maximum likelihood package

which enables us to estimate certain methods using maximum likelihood (ML) while adhering

to constraints. Finally, the LP package is used to solve linear programming problems.

B Individual Methods

B.0.1 GJR-GARCH(1,1)

rt = σtϵt,

σ2
t = ω + (α+ γ1t−1)r

2
t−1 + βσ2

t−1.

Where ϵt is the error term and σ2
t denotes the conditional variance of the returns on day t.

We define the indicator function as

1t(rt) :=

1 if rt < 0 ,

0 if rt ≥ 0 .

to guarantee the positive nature of the conditional variance, the following constraints are kept

in place: ω > 0 β, α ≥ 0 and α + γ ≥ 0. Variance stationarity is ensured by α + β + 0.5γ < 1

(Nugroho et al., 2019).

5The used packages can be found on this website: https://store.aptech.com/gauss-applications-category.html
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C Additional Results

Table 10: The model confidence set at a confidence level of 90% for all scoring functions for the
S&P 500.

1% probability level 5% probability level

QS AL NZ FZG AS QS AL NZ FZG AS

Individual Methods

Historical Simulation 0 0 0 0 0 0 0 0 0 0
GJR-GARCH 0 0 0 0 0 0 0 0 0 0
HAR-RANGE 1 1 1 1 0 1 1 1 1 1
CARE-AS 0 0 0 0 0 0 0 0 0 0
CAViaR-AS-EVT 0 0 0 0 0 0 0 0 0 0

Combinations

Simple Average 0 0 0 0 0 0 0 0 0 0
Relative Score 1 1 1 1 0 1 1 1 0 1
Minimum Score 1 1 1 1 1 0 0 0 0 0

Table 11: The model confidence set at a confidence level of 90% for all scoring functions for the
CAC 40.

1% probability level 5% probability level

QS AL NZ FZG AS QS AL NZ FZG AS

Individual Methods

Historical Simulation 0 0 0 0 0 0 0 0 0 0
GJR-GARCH 1 1 1 1 1 1 1 1 1 1
HAR-RANGE 1 1 1 1 1 1 0 0 0 1
CARE-AS 0 0 0 0 0 0 0 0 0 1
CAViaR-AS-EVT 1 1 1 1 1 1 1 1 1 1

Combinations

Simple Average 1 1 1 1 1 1 1 1 1 1
Relative Score 1 1 1 1 1 1 1 1 1 1
Minimum Score 1 1 1 1 1 1 1 1 1 1

Table 12: The model confidence set at a confidence level of 90% for all scoring functions for the
FTSE 100.

1% probability level 5% probability level

QS AL NZ FZG AS QS AL NZ FZG AS

Individual Methods

Historical Simulation 0 0 0 0 1 0 0 0 0 0
GJR-GARCH 0 0 0 0 1 1 1 1 1 1
HAR-RANGE 1 1 1 1 1 1 1 1 1 1
CARE-AS 0 0 0 0 0 1 0 1 1 1
CAViaR-AS-EVT 1 1 1 1 1 1 1 1 1 1

Combinations

Simple Average 1 1 1 1 1 1 1 1 1 1
Relative Score 1 1 1 1 1 1 1 1 1 1
Minimum Score 1 1 1 1 1 1 1 1 1 1
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Table 13: The model confidence set at a confidence level of 90% for all scoring functions for the
NIKKEI 225.

1% probability level 5% probability level

QS AL NZ FZG AS QS AL NZ FZG AS

Individual Methods

Historical Simulation 0 0 0 0 0 0 0 0 0 0
GJR-GARCH 1 1 1 1 1 1 1 1 1 1
HAR-RANGE 1 1 1 1 1 1 1 1 1 1
CARE-AS 0 0 0 0 0 1 1 1 1 1
CAViaR-AS-EVT 1 1 1 1 1 1 1 1 1 1

Combinations

Simple Average 1 1 1 1 1 1 1 1 1 1
Relative Score 1 1 1 1 1 1 1 1 1 1
Minimum Score 1 1 1 1 1 1 1 1 1 1

Table 14: The model confidence set at a confidence level of 75% for all scoring functions for the
S&P 500.

1% probability level 5% probability level

QS AL NZ FZG AS QS AL NZ FZG AS

Individual Methods

Historical Simulation 0 0 0 0 0 0 0 0 0 0
GJR-GARCH 0 0 0 0 0 0 0 0 0 0
HAR-RANGE 0 1 1 0 0 1 1 1 1 1
CARE-AS 0 0 0 0 0 0 0 0 0 0
CAViaR-AS-EVT 0 0 0 0 0 0 0 0 0 0

Combinations

Simple Average 0 0 0 0 0 0 0 0 0 0
Relative Score 0 1 1 0 0 0 1 1 0 0
Minimum Score 1 0 1 1 1 0 0 0 0 0

Table 15: The model confidence set at a confidence level of 75% for all scoring functions for the
CAC 40.

1% probability level 5% probability level

QS AL NZ FZG AS QS AL NZ FZG AS

Individual Methods

Historical Simulation 0 0 0 0 0 0 0 0 0 0
GJR-GARCH 1 1 1 1 1 0 0 0 0 1
HAR-RANGE 1 1 1 1 1 0 0 0 0 1
CARE-AS 0 0 0 0 0 0 0 0 0 0
CAViaR-AS-EVT 1 1 1 1 1 1 0 1 1 1

Combinations

Simple Average 1 1 1 1 1 1 1 1 1 1
Relative Score 1 1 1 1 1 1 0 1 1 1
Minimum Score 1 1 1 1 1 0 0 0 0 1
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Table 16: The model confidence set at a confidence level of 75% for all scoring functions for the
FTSE 100.

1% probability level 5% probability level

QS AL NZ FZG AS QS AL NZ FZG AS

Individual Methods

Historical Simulation 0 0 0 0 0 0 0 0 0 0
GJR-GARCH 0 0 0 0 0 1 1 1 1 1
HAR-RANGE 1 1 1 1 0 1 1 1 1 1
CARE-AS 0 0 0 0 0 1 0 0 1 1
CAViaR-AS-EVT 1 1 1 1 1 1 1 1 1 1

Combinations

Simple Average 1 1 1 1 1 1 1 1 1 1
Relative Score 1 1 1 1 1 1 1 1 1 1
Minimum Score 1 1 1 1 1 1 1 1 1 1

Table 17: The model confidence set at a confidence level of 75% for all scoring functions for the
NIKKEI 225.

1% probability level 5% probability level

QS AL NZ FZG AS QS AL NZ FZG AS

Individual Methods

Historical Simulation 0 0 0 0 0 0 0 0 0 0
GJR-GARCH 1 1 1 1 1 1 1 1 1 1
HAR-RANGE 1 1 1 1 1 1 1 1 1 1
CARE-AS 0 0 0 0 0 1 1 1 1 1
CAViaR-AS-EVT 0 1 1 0 0 1 1 1 1 1

Combinations

Simple Average 1 1 1 1 1 1 1 1 1 1
Relative Score 1 1 1 1 1 1 1 1 1 1
Minimum Score 1 1 1 1 1 1 1 1 1 1

Table 18: The model confidence set at a confidence level of 75% for all scoring functions for the
S&P GSCI.

1% probability level 5% probability level

QS AL NZ FZG AS QS AL NZ FZG AS

Individual Methods

Historical Simulation 0 0 0 0 0 0 0 0 0 0
GJR-GARCH 1 1 1 1 1 1 0 0 1 1
HAR-RANGE 1 1 1 1 1 1 1 1 1 1
CARE-AS 0 0 0 0 0 0 0 0 0 0
CAViaR-AS-EVT 1 1 1 1 1 1 1 1 1 1

Combinations

Simple Average 0 0 0 0 0 1 1 1 1 1
Relative Score 1 1 1 1 1 1 1 1 1 1
Minimum Score 1 1 1 1 0 1 1 1 1 1
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Table 19: Results of the calibration tests for the S&P 500 stock index.

1% probability level 5% probability level

VaR hit VaR DQ ES bootstrap VaR hit VaR DQ ES bootstrap

Individual Methods

Historical Simulation 1 1 1 0 1 1
GJR-GARCH 1 1 1 1 1 1
HAR-RANGE 0 1 0 1 1 0
CARE-AS 1 1 1 1 1 1
CAViaR-AS-EVT 0 0 0 0 0 0

Combinations

Simple Average 0 1 0 0 1 0
Relative Score 0 1 0 1 1 0
Minimum Score 0 1 0 0 1 0

Trimmed Combinations

Simple Average 0 1 0 1 1 0
Relative Score 0 1 0 1 1 0
Minimum Score 0 1 0 1 1 0

Table 20: Results of the calibration tests for the CAC 40 stock index.

1% probability level 5% probability level

VaR hit VaR DQ ES bootstrap VaR hit VaR DQ ES bootstrap

Individual Methods

Historical Simulation 1 1 1 0 1 1
GJR-GARCH 1 0 1 0 0 1
HAR-RANGE 1 0 0 0 1 1
CARE-AS 1 1 1 1 1 1
CAViaR-AS-EVT 0 0 0 0 0 0

Combinations

Simple Average 1 0 1 0 0 0
Relative Score 0 0 1 0 0 0
Minimum Score 0 0 0 0 0 0

Trimmed Combinations

Simple Average 0 0 0 0 0 0
Relative Score 0 0 0 0 0 0
Minimum Score 0 0 0 0 0 0

Table 21: Results of the calibration tests for the FTSE 100 stock index.

1% probability level 5% probability level

VaR hit VaR DQ ES bootstrap VaR hit VaR DQ ES bootstrap

Individual Methods

Historical Simulation 0 1 0 1 1 0
GJR-GARCH 0 1 0 1 1 0
HAR-RANGE 0 1 0 0 0 1
CARE-AS 1 1 1 1 1 1
CAViaR-AS-EVT 0 1 0 0 0 0

Combinations

Simple Average 0 0 0 0 0 0
Relative Score 0 0 1 0 0 0
Minimum Score 0 1 0 1 0 0

Trimmed Combinations

Simple Average 0 0 0 0 0 0
Relative Score 0 1 0 0 0 0
Minimum Score 0 1 0 0 0 0
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Table 22: Results of the calibration tests for the NIKKEI 225 stock index.

1% probability level 5% probability level

VaR hit VaR DQ ES bootstrap VaR hit VaR DQ ES bootstrap

Individual Methods

Historical Simulation 1 1 0 0 1 0
GJR-GARCH 0 0 0 1 1 0
HAR-RANGE 0 0 0 0 0 0
CARE-AS 1 1 1 1 1 1
CAViaR-AS-EVT 0 0 1 0 1 0

Combinations

Simple Average 0 0 0 0 1 0
Relative Score 0 0 0 0 1 0
Minimum Score 1 1 0 0 0 0

Trimmed Combinations

Simple Average 0 0 0 0 1 0
Relative Score 0 0 1 0 1 0
Minimum Score 0 0 0 0 1 0

Table 23: 1% VaR evaluated using the quantile skill score (%).

S&P500 CAC 40 FTSE 100 NIKKEI 225 S&P GSCI Geo. Mean

Individual Methods

Historical Simulation 0 0 0 0 0 0
GJR-GARCH 28.362 15.714 23.033 24.501 13.555 21.033
HAR-RANGE 48.978 15.439 25.365 26.605 17.353 26.748
CARE-AS -30.943 -42.246 -28.756 -26.606 -61.234 -37.957
CAViaR-AS-EVT 28.250 18.221 26.078 22.244 14.106 21.780

Combinations

Simple Average 35.104 16.864 26.095 25.543 11.411 23.003
Relative Score 48.978 17.740 28.615 25.543 15.071 27.189
Minimum Score 49.350 17.311 26.189 23.720 12.299 25.774

Trimmed Combinations

Simple Average 48.978 18.187 28.097 25.738 15.806 27.361
Relative Score 48.978 17.654 26.802 23.850 15.561 26.569
Minimum Score 48.978 17.448 26.896 24.327 21.029 27.736

Table 24: 1% VaR and ES evaluated using the NZ skill score (%).

S&P 500 CAC 40 FTSE 100 NIKKEI 225 S&P GSCI Geo. Mean

Individual Methods

Historical Simulation 0 0 0 0 0 0
GJR-GARCH 14.592 10.656 14.423 15.138 7.843 12.530
HAR-RANGE 31.760 10.656 15.865 16.055 10.980 17.063
CARE-AS -44.635 -45.902 -30.769 -27.982 -66.667 -43.191
CAViaR-AS-EVT 14.163 12.295 15.865 13.761 8.235 2.864

Combinations

Simple Average 21.888 11.475 18.269 16.514 6.275 14.884
Relative Score 31.760 12.295 18.269 16.514 9.020 17.572
Minimum Score 31.760 11.885 17.308 14.679 7.451 16.617

Trimmed Combinations

Simple Average 31.760 12.295 17.308 16.055 9.804 15.444
Relative Score 31.760 11.885 16.346 14.679 9.412 16.816
Minimum Score 31.760 11.885 16.346 15.138 9.412 16.908

Table 25: 1% VaR and ES evaluated using the FZG skill score (%).

S&P 500 CAC 40 FTSE 100 NIKKEI 225 S&P GSCI Geo. Mean

Individual Methods

Historical Simulation 0 0 0 0 0 0
GJR-GARCH 1.201 0.753 0.744 0.896 0.605 0.840
HAR-RANGE 1.952 0.753 0.744 0.896 0.756 1.020
CARE-AS -1.201 -1.958 -0.893 -0.896 -3.177 -1.625
CAViaR-AS-EVT 1.201 0.753 -0.744 0.746 0.605 0.512

Combinations

Simple Average 1.502 0.753 0.893 0.896 0.454 0.900
Relative Score 1.952 0.753 0.893 0.896 0.605 1.020
Minimum Score 1.952 0.753 0.744 0.746 0.605 0.960

Trimmed Combinations

Simple Average 1.952 0.753 0.893 0.896 0.756 1.050
Relative Score 1.952 0.753 0.744 0.746 0.756 0.990
Minimum Score 1.952 0.753 0.744 0.896 0.756 1.020
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Table 26: 1% VaR and ES evaluated using the AS skill score (%).

S&P 500 CAC 40 FTSE 100 NIKKEI 225 S&P GSCI Geo. Mean

Individual Methods

Historical Simulation 0 0 0 0 0 0
GJR-GARCH 49.962 25.071 36.840 43.338 21.278 33.498
HAR-RANGE 67.222 23.807 40.481 46.787 25.664 40.792
CARE-AS -1.590 -18.337 -1.388 -11.460 -35.906 -13.736
CAViaR-AS-EVT 46.953 28.043 45.048 38.053 21.330 35.885

Combinations

Simple Average 53.577 24.012 45.757 39.889 17.400 36.127
Relative Score 67.222 25.119 45.757 39.889 23.386 40.275
Minimum Score 67.865 24.723 40.019 39.583 17.608 37.960

Trimmed Combinations

Simple Average 67.222 27.332 46.529 44.423 23.581 41.817
Relative Score 67.222 26.715 45.387 40.834 23.829 40.797
Minimum Score 67.222 26.257 45.449 41.419 23.894 40.848

Table 27: 5% VaR evaluated using the quantile skill score (%).

S&P 500 CAC 40 FTSE 100 NIKKEI 225 S&P GSCI Geo. Mean

Individual Methods

Historical Simulation 0 0 0 0 0 0
GJR-GARCH 20.134 9.614 15.538 11.022 4.740 12.210
HAR-RANGE 34.922 8.376 14.937 9.606 5.845 14.737
CARE-AS 16.879 7.766 15.140 9.958 1.875 10.324
CAViaR-AS-EVT 19.079 10.376 16.936 11.169 5.004 12.513

Combinations

Simple Average 23.318 10.723 17.642 11.374 5.510 13.713
Relative Score 34.922 10.571 17.267 11.602 5.290 15.930
Minimum Score 33.989 9.406 16.553 11.008 5.268 15.245

Trimmed Combinations

Simple Average 34.922 10.717 17.522 12.035 5.730 16.185
Relative Score 34.922 10.760 17.935 11.184 5.312 16.023
Minimum Score 34.922 10.485 17.815 11.580 5.328 16.026

Table 28: 5% VaR and ES evaluated using the NZ skill score (%).

S&P 500 CAC 40 FTSE 100 NIKKEI 225 S&P GSCI Geo. Mean

Individual Methods

Historical Simulation 0 0 0 0 0 0
GJR-GARCH 11.932 6.111 9.816 6.667 3.158 7.537
HAR-RANGE 23.295 5.000 9.816 6.061 4.211 9.677
CARE-AS 9.091 4.444 9.202 6.061 0.526 5.865
CAViaR-AS-EVT 11.364 6.667 10.429 7.273 3.684 7.883

Combinations

Simple Average 15.341 6.667 11.043 7.273 3.684 8.802
Relative Score 23.295 6.667 10.429 7.273 3.684 10.270
Minimum Score 22.727 6.111 10.429 7.273 3.684 10.156

Trimmed Combinations

Simple Average 23.295 6.667 11.043 7.273 4.211 10.498
Relative Score 23.295 6.667 11.043 7.273 3.684 10.392
Minimum Score 23.295 6.667 11.043 7.273 3.684 10.392

Table 29: 5% VaR and ES evaluated using the FZG skill score (%).

S&P 500 CAC 40 FTSE 100 NIKKEI 225 S&P GSCI Geo. Mean

Individual Methods

Historical Simulation 0 0 0 0 0 0
GJR-GARCH 0.592 0.296 0.295 0.295 0.149 0.325
HAR-RANGE 0.888 0.296 0.295 0.295 0.297 0.414
CARE-AS 0.444 0.296 0.295 0.295 0.149 0.296
CAViaR-AS-EVT 0.592 0.296 0.295 0.295 0.149 0.325

Combinations

Simple Average 0.592 0.296 0.295 0.295 0.297 0.355
Relative Score 0.888 0.296 0.295 0.295 0.297 0.414
Minimum Score 0.888 0.296 0.295 0.295 0.297 0.414

Trimmed Combinations

Simple Average 0.888 0.296 0.295 0.295 0.297 0.414
Relative Score 0.888 0.296 0.295 0.295 0.297 0.414
Minimum Score 0.888 0.296 0.295 0.295 0.297 0.414

31



Table 30: 5% VaR and ES evaluated using the AS skill score (%).

S&P 500 CAC 40 FTSE 100 NIKKEI 225 S&P GSCI Geo. Mean

Individual Methods

Historical Simulation 0 0 0 0 0 0
GJR-GARCH 30.531 14.138 23.373 20.447 8.040 19.306
HAR-RANGE 43.814 13.655 21.061 18.420 9.104 21.211
CARE-AS 24.828 13.246 25.365 16.657 5.122 17.043
CAViaR-AS-EVT 27.182 16.212 27.129 19.242 8.701 19.693

Combinations

Simple Average 30.929 15.784 26.992 18.992 8.633 20.266
Relative Score 43.814 15.793 27.403 19.947 8.792 23.150
Minimum Score 42.872 13.928 25.806 18.537 8.747 21.978

Trimmed Combinations

Simple Average 43.814 16.257 25.973 21.607 9.096 23.349
Relative Score 43.814 16.303 27.418 19.022 8.747 23.061
Minimum Score 43.814 16.130 27.281 19.903 8.792 23.184
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