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Abstract

Value at Risk (VaR) and Expected Shortfall (ES) are widely used risk measures by in-

vestment and commercial banks for both internal risk management and regulatory purposes,

and even required by the Basel Committee. This research aims to examine if combining

multiple forecasts can lead to improved predictive ability over their individual components.

This is done by comparing six different individual forecasting methods: GJR-GARCH, HAR

range, CARE-AS, CAViAR-AS-EVT, Historical Simulation and Asymmtric Laplace EWMA.

These methods are combined in three ways, a simple average, Minimum Score combination

and Relative Score combination. For these scores and the evaluation of the individual and

combined forecasts, different scoring functions are used. The data used for this research has

been sourced from Bloomberg and consists of 6000 log returns, from different start dates

in 1999 till the 28th of April 2023, of five stock indices, the CAC 40, DAX 30, FTSE 100,

NIKKEI 225 and S&P500. We find that combining different forecasts does indeed lead to

better predictive ability. Especially the Relative Score combination excluding the Histor-

ical Simulation method consistently outperforms the individual methods. The AL-EWMA

model does not outperform the individual methods, but does help in the diversification and

improvement of the combinations due to the different way the information is used.
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1 Introduction

Value at Risk (VaR) is a widely used tool for risk management in the financial world as it

reflects the potential loss in an asset portfolio (Holton, 2002), and is also in use by several large

investment banks. VaR denotes the lowest quantile (1%, 5% etc.) in the return distribution

of an investment portfolio. The VaR measure is of use for both internal risk management and

regulatory purposes. Regarding the regulatory aspect, the VaR is prescribed by both the second

and third Basel Accord (Basel Committee on Banking Supervision, 2019), meaning that banks

have to justify their investments using this metric. A limitation of this VaR method is however

that it provides no insight in the potential exceedances under this quantile. This is where the

Expected Shortfall (ES) comes in. Where the VaR denotes the quantile, the ES denotes the

expected value of the returns under this quantile. The importance of this metric has increased in

recent years with the previously mentioned Basel Committee now also recommending the use of

the ES as a risk measure. Forecasting these risk measures accurately is of upmost importance for

banks, as an overestimation of the risk could lead to more liquidity and disappointing returns

due to conservative investing behaviour. The consequence of an underestimation of the risk

probably does not need an explanation as it can lead to high exposure leading to in the worst

case defaults.

One possibility to increase the accuracy of the forecasts of these risk measures is to combine

different individual forecasts. The idea behind the combinations of individual forecasts is that

when combined the resulting forecasting could cancel out certain deviations which are present

in individual forecasts (Atiya, 2020). Empirical support on the benefit of these combinations

are available across multiple different applications for example in the case of inflation in Engle,

Granger and Kraft (1984).

This research aims to investigate the added benefit of combining multiple forecasts of VaR

and ES. Previous research has shown that combined forecasts can outperform their individual

components in predicting for example VaR, this includes: McAleer, Jimenez-Martin and Perez-

Amaral (2013a), McAleer, Jiménez-Mart́ın and Pérez-Amaral (2013b), Halbleib and Pohlmeier

(2012), Fuertes and Olmo (2013) and Jeon and Taylor (2013). We perform the forecasts on five

different stock indices, the S&P 500, FTSE 100, NIKKEI 225, CAC 40 and DAX 30 on the

period from 1999 till 2023.

The presented analysis is based on the paper by Taylor (2020) and consists of a replication

as well as the addition of a (robust) Asymmetric Laplace Exponentially Weighted Moving Av-

erage (EWMA) model, which is compared to the methods used in the paper by Taylor (2020).

Furthermore, the earlier mentioned paper is extended by adding newer data to also include the

recent, turbulent period with the COVID-19 pandemic and Ukraine war. The research question

is therefore:

Can combined forecasts for Value at Risk and expected shortfall outperform

those of individual methods, including an asymmetric Laplace EWMA?

The hypothesis is that this is in fact the case, as the combination of different individual

methods has previously been shown to improve forecasting ability (Pooter, Ravazzolo & Dijk,

2010).
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The asymmetric Laplace EWMA (AL-EWMA) extension is an evolution of the standard

EWMA, of which a specific version is known as the RiskMetrics method, introduced back in

1994 by JP Morgan (Longerstaey & Spencer, 1996). This is a widely used method to calculate

market risk by large investment banks like JP Morgan. The RiskMetrics and the AL-EWMA

models are basically restricted versions of respectively a standard or assymetric GARCH model.

We expect this model to have added value for a few reasons. Firstly, it uses the absolute

returns instead of the squared ones, making it more robust to large shocks, and potentially

improving performance in more tumultuous times like the recent COVID pandemic. Secondly,

this method allows for skewness in the returns, providing an advantage over the symmetric

methods like the standard GARCH or RiskMetrics models. Together, these factors can lead to

diversification benefits in the combinations of the individual methods, as this method uses the

available information in a different way and is thus likely to generate alternative results that

may sketch potential developments that might otherwise be missed.

It is interesting to see how this AL-EWMA method compares to the five already included

models. This may also prove to be a useful addition to the current literature on the topic of

forecasting VaR and ES which is discussed below in Section 2.

We have found that combined forecasts do in fact outperform their individual counterparts,

confirming the hypothesis set before and showing the merits of combined forecasts. The second

important finding is that AL-EWMA model does not outperform the other individual forecasting

methods, but its added value can be found in the diversification of the combinations.

The further layout of the paper is as follows: firstly the relevant literature is discussed in

Section 2, this is followed by the data used in Section 3 and the methodology in Section 4, the

results of these methods are presented in Section 5 and to conclude the conclusion and discussion

can be found in Section 6.

2 Literature

Interestingly, empirical studies have found that a simple average of individual forecasts is sur-

prisingly competitive. When the mean has to be forecasted, least squares can be used for the

optimisation of convex combining weights using the individual forecasts as regressors. As an ex-

tension to this, Granger (1989) and Granger, White and Kamstra (1989) suggest using quantile

regression to combine quantile forecasts such as for VaR. Research by Taylor and Bunn (1998)

restricts the parameters in this quantile regression by for example imposing a zero intercept

convex combining weights, similar to the combinations of forecasts of the mean. Another way

of calculating weights of individual weights in the combined forecasts is proposed by Shan and

Yang (2009) who use the inverse of the quantile regression loss function, giving forecasts with a

higher loss a smaller weight. To determine relative performances of different forecasting meth-

ods of the VaR, a scoring function is needed. An often used function for this can be found in

Equation (1), this method has been proven to be consistent by Gneiting (2011). Here the Qt

indicates the predicted quantile and yt the observed value,

S(Qt, yt) = (α− 1[yt < Qt])(yt −Qt). (1)
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In this equation α denotes the probability level of the forecasted VaR quantile, this scoring func-

tion then measures how often the quantile is exceeded, this should be equal to the predetermined

α.

The ES as a risk measure, however, is not elicitable (Fissler, Ziegel & Gneiting, 2015),

meaning that there is no scoring function that can be used to evaluate and compare forecasting

performance of the ES. A workaround for this problem, proposed by Fissler et al. (2015), would

be to score ES jointly with VaR as this would be elicitable. The resulting equation proposed by

them can be found in Equation (2):

S(Qt, ESt, yt) = (1[yt ≤ Qt]− α)G1(Qt)− 1[yt ≤ Qt]G1(yt) +G2(ESt)∗

(ESt −Qt + 1[yt ≤ Qt]
Qt − yt

α
)− ζ2(ESt) + a(yt).

(2)

Varying the functions ζ1, G1, G2 and a in the Equation (2) of this general joint scoring function,

different functions can be obtained. An overview of this can be found in Table 1. These scoring

functions will be used in this research as well to evaluate and compare the different forecasts.

Table 1: Different joint scoring functions
G1(x) G2(x) ζ2(x) a(y)

AL 0 − 1
x −ln(−x) 1− ln(1− α)

NZ 0 1
2(−x)

1
2 −(−x)

1
2 0

FZG x ex

1+ex ln(1 + ex) ln(2)

AS −1
2Wx2 αx 1

2αx 0

Note. In this table ζ1, G1, G2 and a denote the different possible functions and α the quantile

of the VaR and ES estimates and W a parameter set in order that WQt < ESt for all pairs of

forecasts, this is set at 4 in this research.

3 Data

The data used for this research consists of the daily log returns of five different stock indices.

These are the French CAC 40, German DAX 30, English FTSE 100, Japanese NIKKEI 225 and

the American S&P 500, which are stock indices consisting of the 40, 30, 100, 225 or 500 largest

companies on the countries stock exchange. The range of the series differs from the ones used

in the research of Taylor (2020). In that paper 6000 observations were included with starting

dates ranging from 26 October 1993, 27 September 1993, 1 September 1993, 4 January 1993

and 4 August 1993 due to different holiday periods in each country. The end dates were all the

same at the 31st of May 2017. In this paper 6000 observations are used as well, but because

more recent data are included the end date is now the 28th of April 2023. Starting dates range

between 17 November 1999, 16 September 1999, 30 July 1999, 6 November 1998 and 25 June

1999 for the CAC, DAX, FTSE, NIKKEI and S&P respectively. The first 4000 observations will

be used for the in-sample analysis, to train the models, whereas the final 2000 will be used as

out-of-sample to evaluate the models.

The data for these series have been sourced from the Bloomberg Database. And the closing

price levels together with possible dividend have been used to calculate the log returns of the
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indices. The intraday ranges used in the HAR model have been calculated using the log of the

ratio between the daily highs and lows. Some descriptive statistics can be found in Table 5 in the

Appendix. From these decriptive statistics it can be seen that the log returns (in percentages)

have fairly similar order of magnitude with means ranging from 0.0131 to 0.0267. On average

returns of the FTSE 100 are the lowest and the ones from the S&P 500 are the highest. For the

standard deviations of the series the same thing can be said: for all series the standard deviations

have the same order of magnitude ranging from 1.246 to 1.584. Here the S&P 500 has the lowest

variance and the DAX 30 the highest. Interestingly, all series are skewed negatively, indicating

fatter tails on the negative side of the distribution of returns. This is especially interesting for

the models that allow for asymmetry in the modelling of the conditional variance and estimated

quantiles namely the GJR-GARCH, CAViaR-AS, CARE-AS and AL-EWMA models, as this

could make them provide a better fit. For illustration purposes, a plot of the log returns of one

of the series, in this case that of the CAC 40 can be seen in Figure 4 in the Appendix, the plots

of the other series look very similar.

As was done by Taylor (2020), in this research the data series of the daily log returns have

been run through an AR(1) filter. This means that firstly an AR(1) model is fitted on the series

and then the resulting residuals are used for use in the actual VaR and ES prediction models.

The use of this filter allows for the elimination of potential autoregressive patterns in the returns.

The application of this filter was predominantly useful for the NIKKEI 225 and S&P 500, as

these were the only series where the first order autoregressive coefficient was significant on a 1%

level. For the other three indices this coefficient was not even significant on a 10% level.

4 Methodology

4.1 Different individual methods

As combining forecasts is said to work best when the different individual methods do not encom-

pass eachother, i.e. they are very different and use different information (Giacomini & Komunjer,

2005). Therefore, the different methods that will be combined are chosen to be of different types

(non parametric, parametric and semi parametric). The six different models are listed below.

The first five are the same as used in Taylor (2020)1 and the sixth and last one is an extension

to check how the combined forecasts compare to AL-EWMA as a more advanced version of the

widely used RiskMetrics method.

4.1.1 Historical simulation

As the simplest of the individual methods, this methods uses a certain amount of previous

returns in order to calculate the cumulative distribution function of the log returns. In this

case this amount will be 250, as research by Taylor (2020) has proven that larger samples do

not provide added forecasting ability. The empirical CDF is then used to calculate the desired

quantile of the distribution of returns.

1Replication code supplied by J. Taylor, this is used for the five methods, combining and evalution.
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4.1.2 GJR-GARCH

The Glosten-Jagannathan-Runkle GARCH model, GJR-GARCH in short, extends the regular

GARCH model by allowing for asymmetry in the update of the conditional variance. This can be

seen in Equation (4). This property increases accuracy over a symmetric (GARCH) model. The

specification of the conditional mean is the same as in the regualar GARCH model (Equation

(3)). The exact model chosen is a GJR-GARCH(1,1). This model is closely related to a TG-

ARCH model as introduced by Zakoian (1994), the difference being that the TGARCH model

uses absolute residuals instead of squared residuals. In the Equations below the specification of

the mean (3) and the variance (4) are shown:

yt = µt + ut, (3)

σ2
t = ω + αu2t−1 + βσ2

t−1 + γu2t−11[ut−1 < 0]. (4)

In these equations µt denotes the mean, σt the volatility and ut the shocks, which are i.i.d. ∼ t(v)

with v degrees of freedom. The estimated parameters are ω for the constant term, alpha the

coefficient for the square of the lagged shocks, β the persistency coefficient, and γ the coefficient

for the square of thelagged negative shocks.

4.1.3 CAViaR-AS-EVT

This Conditional Autoregressive Value at Risk - Asymmetric Slope - Extreme Value Theory

model uses as a base a conditional autoregressive quantile model which is estimated using

quantile regression as described by Engle and Manganelli (2004). This is then extended in

a way proposed by Manganelli and Engle (2004) who use a peaks-over-threshold Extreme Value

Theory on any value exceeding the quantile (threshold). The resulting distribution of extreme

values is then used to estimate the VaR and ES. To allow for the same asymmetry as in the

previously described GJR-GARCH model, an asymmetric slope is used for the CAViAR model

(Equation (5)):

Qt = β0 + β11(yt−1 > 0)|yt−1|+ β21(yt−1 ≤ 0)|yt−1|+ β3Qt−1. (5)

In this model, β0 denotes a constant and β3 the persistency parameter. β1 and β2 represent the

coefficients for the positive and negative lagged returns respectively.

4.1.4 CARE-AS

As the third model, a conditional autoregressive expectile (CARE) model is used. Where ex-

pectiles are estimated using asymmetric least squares. This approach is introduced by Newey

and Powell (1987). However, the use of these expectiles in a VaR and ES framework has been im-

plemented first by Taylor (2008). The representation of this CARE model, using an asymmetric

slope, can be seen in Equation (6) below:

µt = β0 + β11(yt−1 > 0)|yt−1|+ β21(yt−1 ≤ 0)|yt−1|+ β3µt−1. (6)
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In this model, β0 denotes a constant and β3 the persistency parameter. β1 and β2 represent the

coefficients for the positive and negative lagged returns respectively. The expectile of interest

is now µt. The expectile score used to estimate the parameters β to optimize estimations of

quantiles is described in the following Equation (7):

S(µt, yt) = |τ − 1(yt ≤ µt)|(yt − µt)
2. (7)

To convert the expectiles to the quantiles, which are of interest when estimating VaR, τ has to

be chosen in a way that it approximates a quantile closest to α. This is done by re-estimating

the CARE model, with a τ 0.0001 lower than in the previous iteration until the fitted expectile

is exceeded close enough to α% of observations.

4.1.5 HAR-range

The Heterogeneous AutoRegressive (HAR) model has been tied to volatility and subsequently

VaR forecasting by Corsi, Audrino and Renó (2012). This model uses the realised volatility in

earlier days to estimate volatility. The use of historic realised volatility is a commonly used tool

to forecast daily volatility. However due to difficulties in obtaining data on realised volatility,

this is replaced with the high-low intraday range in each day. This method has been proven to

work by Alizadeh, Brandt and Diebold (2002). The implementation of this intraday range into a

HAR model has been proposed by Brownlees and Gallo (2009), resulting in the following model

as can be seen in Equation (8, 9 and 10). The parameters β are estimated using least squares

and the conditional variance is a linear function of the Ranget
2, with the coefficients based on

maximum likelihood. Using this model the variance can be forecasted, and when multiplied

with the VaR and ES of a Student t distribution, the estimates of the VaR and ES are obtained.

The resulting model is the following:

Ranget = β1 + β2Ranget−1 + β3Rangeweek
t−1 + β4Rangemonth

t−1 + ϵt, (8)

Rangeweek
t−1 =

1

5

5∑
i=1

Ranget−i, (9)

Rangemonth
t−1 =

1

22

22∑
i=1

Ranget−i. (10)

Where the Ranget denotes the daily range at time t and the Rangeweek
t and Rangemonth

t

denote the weekly and monthly average range respectively. The ϵt are i.i.d with a zero mean.

4.1.6 Asymmetric Laplace EWMA

As an addition to the GJR-GARCH model discussed in Section 4.1.2., a similar model is used in

the form of a asymmetric Laplace EWMA model. The EWMA approach is a restricted version

of GARCH in the way that both coefficients in the GARCH model are required to add up to

one and the constant is restricted at 0.

And as also mentioned by Pooter et al. (2010) and Atiya (2020), the added benefit of combin-

ing methods increases when models are included that use different information. So this standard
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EWMA approach has to be modified in a way that it incorporates different information or uses

the information in a different way. This will be done in two ways. The first is to use the absolute

returns instead of the squared ones. This makes the model less susceptible to large shocks and

therefore more robust (Gerlach, Lu & Huang, 2013). The second way in which the model differ-

ences from the GJR-GARCH model (which is the closest in terms of specification) is by using

a different distribution. The model mentioned before uses a t-distribution and the AL-EWMA

model uses a (asymmetric) Laplace distribution for the estimation of the parameters as well as

the calculation of the quantiles for the VaR.

The model uses two parameters which are both estimated by means of maximum likelihood

estimation and using the asymmetric Laplace distribution. The first parameter is the persistency

parameter λ, which determines to what degree the volatility in the next period is correlated to the

current one. The second parameter is the skewness parameter p, which represents the degree

to which the distribution deviates from a symmetrical distribution. The parameter p varies

between 0 and 1 and when p = 0.5 the model reduces to the symmetric Laplace distribution.

p > 0.5 indicates negative skewness and vice versa. The third parameter is k, however the value

for k is dependent on p: k =
√

p2 + (1− p)2. The resulting model is the AL-EWMA approach

as proposed by Gerlach et al. (2013), as displayed in Equation (11) below:

σt+1 = λσt + (1− λ)

(
k

1− p
1[rt > 0] +

k

p
1[rt < 0]

)
|rt|. (11)

Here, λ and k are as specified earlier and σt rt denote the volatility and return at time t

respectively.

The estimates for the VaR and ES follow from the estimates for the volatility mentioned

before, and the estimated values for p and k and using the asymmetric Laplace distribution.

The resulting estimates for the VaR are then calculated as displayed in Equation (12). This is

done on both a confidence level of 1% and 5% (α = 0.01 and 0.05). The estimation of the α

VaR quantiles at time t is as follows:

V aRαt =

{
σt

p
k log(

α
1−p); 0 ≤ α < p

−σt
(1−p)

k log(1−α
1−p ); p ≤ α < 1.

(12)

In this estimation, there is a distinction between two cases, the first being when the estimated

skewness parameter p is higher than the set α and the second one when this one is lower. For

the latter, the returns have to be highly positively skewed in order for the p to fall under the α

of at most 0.05.

The AL-EWMA and the GJR-GARCH also have a common difference with regular GARCH

models; both let go of the symmetry assumption in regular GARCH and EWMA approaches.

Furthermore, this estimate of the AL-EWMA model in Equation (11) is a special case of the

first-order threshold GARCH (TGARCH) model as introduced by Zakoian (1994), Which has

the following form as can be seen in Equation (13):

σt+1 = α0 + α+
1 r

+
t + α−

1 r
−
t + β1σt. (13)

7



Where α0 denotes the constant, α+
1 and α−

1 r
−
t the different coefficients for the positive and

negative returns respectively, and β1 the persistency coefficient.

4.2 Combining methods

A set of three different combination methods will be used in order to optimally combine the

individual methods. The first, and the most simple method is taking a simple average. Secondly,

a set of two score combining methods are used: minimum and relative score combining. As

the performances of the individual methods are very likely to differ, especially the historical

simulation method most likely performs worse, it might be useful to make it possible for the

weights of the individual methods in the combination to differ.

The first proposed approach with flexible weights involves the combination of forecasts of the

spacing between expected shortfall (ES) and value at risk (VaR), rather than directly combining

ES forecasts. This method is referred to as minimum score combining. Using this method, the

combined forecasts are first constructed as functions of the weights and individual forecasts as

can be seen in Equation (14 and 15) where wQ
m indicates the weights in the quantile forecast

combination, wS
m the weight for the spacing between the estimated quantile and ES. Lastly, m

indicates the individual method. These weights w are then optimised to minimize the scoring

function of the combined forecast. Firstly the combined VaR is constructed as a function of the

weights

Q̂comb,t =
M∑

m=1

wQ
mQ̂m,t, (14)

next, the combined ES follows from this combined VaR

ÊScomb,t = Q̂comb,t +
M∑

m=1

wS
m(ÊSm,t − Q̂m,t). (15)

The second approach is called relative score combining, which is a method of combining VaR

and ES forecasts using convex combining weights that are inversely proportional to the mean

squared error (MSE) (Bates & Granger, 1969). In this research, the joint scoring functions

from Equation (2) and Table 1 are used to measure accuracy, resulting in a single set of weights

for both VaR and ES prediction. These weights are calculated using the formula displayed in

Equation (16). The parameter θ denotes the degree to which the weights are dependent on the

scoring function, which a value close to zero making the weights close to the simple average and

a value close to one resulting in a combination close to the best performing individual method.

This parameter is estimated by minimizing the values of the scoring function in sample. The

resulting combined forecasts are then very easily interpretable as a weighted sum of the individual

forecasts (Equation (17, 18)) as listed below:

wm =
exp

(
−θ

∑T−1
t=1 S

(
Q̂m,t, ÊSm,t, yt

))
∑M

j=1

(
−θ

∑T−1
t=1 S

(
Q̂j,t, ÊSj,t, yt

)) , (16)
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Q̂comb,t =
M∑

m=1

wmQ̂m,t, (17)

ÊScomb,t =
M∑

m=1

wmÊSm,t. (18)

4.3 Evaluation methods

In order to determine the relative performances of all different predictive models for VaR and

ES and to check the added benefit of the combinations of these individual methods, a selection

of evaluation methods are used. These tests also provide insight in whether the addition of the

AL-EWMA provides extra predictive ability. Firstly, the forecasts are evaluated using backtests.

Secondly, the different individual forecasts and combinations are compared by means of model

confidence sets.

These tests are performed over the 2000 out-of-sample observations as described in the data

Section 3.

4.3.1 Backtesting

The forecasts of both the VaR and ES will be evaluated by backtesting using both calibration

tests as proposed by Nolde and Ziegel (2017) and the scoring functions as described in Equation

(2) and Table 1.

The more traditional way of backtesting is using calibration tests. In this case, the forecasted

VaR quantile Q̂t is calibrated if the expectation of (Hitt = α− 1yt ≤ Q̂t) is equal to zero both

conditionally and unconditionally. In the latter calibration, the Hitt is tested to be significantly

different zero using a binomally distribution based test. The conditional calibration is tested

using a four lag dynamic quantile test as proposed by Engle and Manganelli (2004). The

approach for performing backtests on the ES predictions comes from McNeil and Frey (2000). In

this research the forecasted are tested for a zero mean in the discrepancy between the forecasted

ES and the observed return in the periods where the return exceeds the forecasted VaR. In order

to standardize, the discrepancies are divided by the VaR estimate. As the distribution of these

discrepancies is unknown circular bootstrapping as described by Jalal and Rockinger (2008) is

used.

Next to these calibration tests, the forecasts for VaR and ES are tested using the scoring

functions as described in Equation (2) and Table 1 as well. For the VaR this has been done

by calculating the quantile score of the different methods and comparing them to the one of

the historical benchmark as a benchmark. This way we can calculate a “percentual increase in

predictive ability of the method of interest, MoI” over the historical simulation benchmark in

the following form: 100%(1 − (QSMoI − QSHS)). The same is done for the ES forecasts, but

because of the elicitability problem discussed in Section 2, not the quantile score but the AL

scoring function is used.

All these tests are then aggregated over the 5 different indices.
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4.3.2 Model Confidence Set

In order to obtain more insight in what models and combinations of different models work best in

forecasting VaR and ES, Model confidence Sets (MCS) in introduced. This follows the method

as proposed by Hansen, Lunde and Nason (2011).

The resulting confidence set of models ensures that the best performing model is included

with a certain probability. A not included model is therefore unlikely to be the best model.

In each step of the composition of the set, one model is eliminated using the Diebold-Mariano

based equivalence test and the one-sided elimination rule as introduced by Hansen et al. (2011)

describing it as: Tmax,M , indicating the maximum of the test statistic T over all available models

M . From this same research, we also follow the proposition to use two different confidence levels

for the MCS, 75% and 90%. This procedure is repeated for all 5 different scoring functions as

decribed in Section 4.2.

5 Results

The discussion of the results are divided into different sections. Firstly the different combinations

will be introduced which will then later be evaluated and compared to the individual methods.

This will be done using the two different types of backtesting in the methodology and a Model

Confidence Set framework.

The most important findings are that the combined forecasts do in fact consistently out-

perform their individual components in forecasting VaR and ES. In particular the combination

made using the Relative Score combination method exclusing the Historical Simulation method

shows the merits of the combined forecast. In addition, we find that the AL-EWMA method

does not provide good individual forecasts compared to the other methods. This method does

however help in improving the combined forecasts due to the diversification benefit.

5.1 Combinations of the individual models

As mentioned before, the individual methods are combined in three different ways, a simple

average, the minimum score combining method and the relative score combining method. All

these combinations are performed including and excluding the Historical Simulation method.

The weights of the simple average of the five or six models speak for themselves. For the

minimum score combining method, the two different sets of weights have been estimated as

displayed in Figure 1 and 2, these weights are for the DAX 30, this choice is random, the other

indices show similar results. From the graphs of the weights a few interesting findings can be

derived. Firstly, the weights vary quite a lot over time, indicating that certain models perform

better in certain situations. A big drop in the quantile weight of the CAViAR model is visible

around observations 5250, which is the second quarter of 2020 which coincides with the start of

the COVID pandemic. This could indicate that the CAViAR model performs worse in times of

high volatility or recession. A second interesting finding is the discrepancy between the weights

for the quantiles and the ones for the spacing between the VaR and the ES. Apparently the

models which are useful in the prediction of VaR are not neccesarily useful in forecasting ES.

The dominant models in the minimum score combination for quantiles are the HAR range,
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CARE and CAViAR models. The HAR range and CARE models als play a sizable role in the

prediction of the spacing, although the CARE model sees a big drop towards the end of the

sample period. In the combination of the spacing weights, the AL-EWMA model also plays a

sizable role, possibly indicating that the addition of this model adds something to the prediction

of this. In both sets of weights, the Historical Simulation has a very minor role, confirming the

hypothesis that this model has inferior forecasting performance due to its simplicity.

Figure 1: 1% quantile weights (Y-axis) of the Minimum Score combination of the six individual

methods for the DAX 30

Note. This graph shows how the 1% quantile weights from the Minimum Score combination

vary over the out of sample period (the last 2000 observations) which runs from 2015 till the

end of the sample in april 2023. The weights for the German DAX 30 index are shown here,

the other indices show similar patterns.
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Figure 2: 1% spacing weights (Y-axis) of the Minimum Score combination of the six individual

methods for the DAX 30

Note.This graph shows the weights for the spacing between the estimated VaR and ES (both

on a 1% level), in the Minimum Score combination method, this spacing is weighted as well as

the quantiles shown earlier. As was the case with the quantile weights, in this graph the

weights for the German DAX 30 index are displayed.

The single set of weights for the relative score combination method are shown in Figure 3.

From this graph we can make a few interesting remarks. Firstly, the GJR-GARCH model seems

to be the dominant model, especially in the final part of the sample. As was the case with the

earlier combinations, the share of the Historical Simulation model is minimal. And even though

the share of the added AL-EWMA model is not very large, it is present, possibly indicating that

adding this model that uses different information provides a useful addition.

12



Figure 3: 5% weights (Y-axis) of the Relative Score combination of the six individual methods

for the DAX 30

Note. As the Relative Score combination method only produces a single set of weights for both

the VaR and ES, only one plot of these over the out of sample period is shown here. As

opposed to the previously reported weights from the Minimum Score combination, here the 5%

VaR and ES are used instead of the 1% VaR and ES, to provide a more diverse and complete

image of the results.

5.2 Backtesting using calibration tests

The first part of the backtesting is done using three calibration tests, a VaR hit proportion test,

dynamic quantile test and the ES bootstrap test as introduced by Jalal and Rockinger (2008).

In Table 2 is counted for how many indices the null hypotheses of these tests is rejected at the

5% level. From this table it can be seen that the null hypotheses are rejected quite often, a

lot more than in the research by Taylor (2020). This could be due to the more unpredictable

and volatile data sample used in this research, which includes the COVID pandemic and the

recent war in Ukraine. However, a possibly bigger factor in this inaccuracy is the estimation

interval of the different models. This has been moved from a 1 day to a 250 day interval, due

to computational time constraints. Interestingly, the combined methods do not seem to suffer

as much from this, the null hypotheses get rejected less, indicating better performance of those.

The CAViAR and AL-EWMA models perform especially poorly when using this evaluation

method. The Historical Simulation and HAR range models seem to have the best performance

of the individual methods.
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Table 2: Results of the calibration tests aggregated over the five indices

1% VaR and ES 5% VaR and ES

Hit %
Dynamic

Quantile

ES Bootstrap

(JR)
Hit %

Dynamic

Quantile

ES Bootstrap

(JR)

Individual Methods

GJR-GARCH 4 4 2 1 5 0

HAR 1 2 2 0 1 4

CARE 4 4 0 4 4 4

CAViAR 5 5 5 5 5 4

HS 0 2 1 1 3 0

AL-EWMA 5 5 0 5 5 5

Combinations Including Historical Simulation

Simple Average 3 4 1 2 1 5

Min. Score 4 5 2 0 1 4

Rel. Score 0 3 0 0 1 2

Combinations Excluding Historical Simulation

Simple Average 3 3 1 2 1 5

Min. Score 3 3 0 1 1 5

Rel. Score 0 2 1 0 0 3

Note. This table shows the number of times the null hypotheses are rejected over the five

indices for the three different calibration tests. A lower number indicates better performance of

that model, as 0 indicates that the null hypothesis has not been rejected for any index, and 5

indicates that it has been rejected for all indices. These backtests are performed over the out of

sample period as described in Section 3.

5.3 Backtesting using skill scores

The second part of the backtesting is done using quantile scoring function and the four different

scoring functions as discussed in Section 2 and 4.3.1. The results of the ratios with the Historical

Simulation method as benchmark have been reported in Table 3. These results are based on the

AL scoring function, but the results for the other scoring functions show similar patterns. The

interpretation for these is fairly straightforward, a positive value means the model outperforms

the Historical Simulation. The value denotes a percentual increase in the scoring function

compared to this benchmark. Subsequently a negative value indicates a percentual decrease

in the scoring function, and worse performance. This type of backtesting yields similar results

as the calibration tests. Of the individual methods, only the HAR range and CARE models

outperform the benchmark, the CARE model only for the DAX, FTSE and NIKKEI indices.

The model that stands out is the CAViAR model, for the 1% forecasts evaluated in Table

3 this model is dramatically outperformed by all models, including the Historical Simulation

benchmark. This is due to the nature of the model, which only uses the fraction of the sample

that falls in the tail of which the VaR estimates are made. For the 1% quantile as displayed in

Table 3, this leaves only a small sample for the estimation. Changing the level of the VaR and
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ES from 1% to 5% therefore has a big effect on the relative performance of this model, increasing

the mean scoring ratio from -55.784 to -1.793.

The evaluation using the scoring functions yields the same conclusions regarding the com-

bination of different forecasts, once again emphasizing the merit of combining different models.

All combinations consistently outperform the benchmark and the other individual methods.

The combination that provides the best forecasting performance seems to be the Relative Score

combination excluding Historical Simulation, the scoring function values of this combination are

the highest for nearly individual index and is the highest on average. This is the method that is

constructed using weights that are inversely proportional to the scoring values of the individual

methods. The exclusion of the Historical Simulation might lead to better overall performance

because this model possibly does not incorporate the information different enough (which leads

to the benefits of combining). This is also supported by the weights assigned to the Historical

Simulation method in the combination of six models.

Table 3: Evaluation of 1% VaR and ES forecasts using the AL skill score

CAC 40 DAX 30 FTSE 100 NIKKEI 225 S&P 500 Mean

Individual Methods

GJR-GARCH -7.45157 -4.30573 -6.59856 -8.33881 -7.07989 -6.75491

HAR 1.691999 5.599441 3.560607 0.125764 -0.26688 2.142187

CARE -1.55214 2.411742 1.861259 1.99107 -1.52942 0.636502

CAViAR -63.0872 -63.2812 -54.3823 -55.4355 -57.7356 -58.7844

HS 0 0 0 0 0 0

AL-EWMA -6.36174 -3.18085 -3.96575 -7.60987 -6.47664 -5.51897

Combinations Including Historical Simulation

Simple Average 1.858337 5.095319 2.872401 0.869095 0.209627 2.180956

Min. Score 1.895872 5.338747 3.289635 1.342824 -0.75163 2.223089

Rel. Score 3.007695 5.104094 4.30734 1.672401 0.198764 2.858059

Combinations Excluding Historical Simulation

Simple Average 2.120282 5.619295 3.813234 1.311359 0.511155 2.675065

Min. Score 2.120282 5.619295 3.813234 0.912787 -0.6879 2.355541

Rel. Score 2.654037 5.253743 4.335773 1.477987 0.616607 2.867629

Note. In this table the ratio of the AL skill scores as discussed in Section 4.3.1 are reported

for the 1% VaR and ES. A higher value means a higher percentual outperformance of the

Historical Simulation method, so better forecasting ability. The other skill score ratios show

fairly comparable results. These backtests are performed over the out of sample period as

described in Section 3.

5.4 Model Confidence set

The final part of the evaluation of the methods and combinations introduced consists of a

Model Confidence Set (MCS) framework. Table 4 displays the number of times a certain model

is included in the model confidence set. This is done based on the five different scoring functions
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and for both a 75% and 90% confidence level. This table shows the results for the forecasts of 5%

VaR and ES. If a model is included in a Model Confidence Set, it means that with a confidence

level of 75% or 90% respectively, the best model is included. If then a model is the only one

left in the set, this indicates that this is the best performing. This is true for the Relative

score combination excluding Historical Simulation in certain cases. This model is included in

every single MCS, as seen by the 5 at the complete bottom of the table. This model was also

indicated to be the best performing by the earlier evaluation methods. Overall the combined

models outperform the individual ones, except the simple average combination of 6 models. Out

of the individual models, only the HAR range and CARE models are included relatively often.

The other individual models are not and especially GJR-GARCH and AL-EWMA models are

never included, confirming that these are definitely not the best performing ones. The same

holds to a lesser extent for the CAViAR and Historical Simulation models. The benefit of the

addition of the AL-EWMA model should therefore not be sought in the improvement of the

already included individual methods but in improving the combination as it incorporates the

information in a different way than the other models, which adds to the diversification of the

combination. Finally it can be remarked that in the MCS with 90% confidence level, naturally

more models are included.

Table 4: Models in the different Model Confidence Sets for the 5% VaR and ES
75% Confidence level 90% Confidence level

QU AL NZ FZG AS QU AL NZ FZG AS

Individual Methods

GJR-GARCH 0 0 0 0 0 0 0 0 0 0

HAR 2 1 2 2 3 3 3 3 3 3

CARE 2 1 2 2 2 3 3 3 3 3

CAViAR 0 0 0 0 1 0 0 0 0 3

HS 0 0 1 0 0 1 2 2 2 1

AL-EWMA 0 0 0 0 0 0 0 0 0 0

Combinations Including Historical Simulation

Simple Average 1 0 1 1 2 1 2 2 2 3

Min. Score 4 4 4 4 4 5 4 5 5 4

Rel. Score 4 4 4 4 4 5 4 5 5 4

Combinations Excluding Historical Simulation

Simple Average 2 0 2 2 2 4 3 4 4 3

Min. Score 4 3 4 4 4 5 4 5 5 4

Rel. Score 5 5 5 5 5 5 5 5 5 5

Note. This table shows the number of times a certain model is included in the both the

75% and 90% MCS for the five indices. This is reported for MCS based on the Quantile score

and the four different joint scoring functions. A higher value indicates better performance as

a 0 would for example indicate that with either a 75% or 90% confidence level the model of

interest is not the best performing model for any of the indices. It can be noted that only the

combinations have values close to 5 (best possible). This evaluation has been performed over
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the out of sample forecasts of the 5% VaR and ES.

6 Conclusion

Looking at the results of this research, a few conclusions can be drawn in order to formulate an

answer to the research question:

Can combined forecasts for Value at Risk and expected shortfall outperform

those of individual methods, including an asymmetric Laplace EWMA?

The first conclusion already goes a long way in providing an answer: Combined forecasts for

VaR and ES do in fact outperform those of individual methods in this research. This follows

partly from the calibration tests performed, where the null hypotheses of correct specification

of the forecasts is rejected less for the combined forecast. However, this conclusion is the most

strongly supported by the skill score backtesting and Model Confidence Set framework. The

average skill score ratio is 2.87 for the best combined method versus 2.14 for the (on average)

best performing individual method, the CARE model. And for each of the six different combined

methods it holds that they perform better than this individual method. Besides the increase

in average performance, the combination also seems to be a lot more consistent, with a less

fluctuation in the skill score values across the different indices. The MCS framework further

supports this finding, with the combinations being included in the confidence sets a lot more

than the individual methods. Out of the combined forecasts, the Relative Score combination

method provides the best performing weighted combination of the individual methods. This is

the method where the weights are proportional to the scoring function values of the individual

methods. Furthermore, excluding the Historical Simulation method improves the performance

of the combined forecasts with the Relative Score combination without the Historical Simulation

providing the best forecasting ability. Confirming the merits of combinations shown in earlier

research.

Regarding the addition of the asymmetric Laplace EWMA model, a few conclusions can be

drawn as well. In terms of individual forecasting performance, the AL-EWMA model does not

outperform the five already included models. This becomes clear from both the backtesting and

the Model Confidence Sets. The model does not perform well in the calibration tests and the skill

scores are lower than for example the HAR range and CARE models. Besides, the AL-EWMA

is not included in the confidence sets. However, judging by the decently sized weights of this

model in the combinations, the addition of this model does help in the overall performance and

diversification of the combinations. This would be due to the fact that this model incorporates

the available information in a different way by using absolute returns instead of squared ones.

This would also be in line with earlier studies on the combinations of forecasts, for example in

Atiya (2020), it was found that combinations of different types of forecasts boost the combination

benefits. This research confirms this to be the case with the AL-EWMA model in the light of

VaR and ES forecasts combined with the methods from Taylor (2020) as well.

Another interesting remark that can be made concerns the CAViAR model. This model is

not suitable to predict 1% VaR and ES using this dataset. For the prediction of 5% VaR and
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ES it does work, but due to the limited sample used for the lower quantile, the performance is

severely limited relative to the other models.

A final conclusion from this research specifically is that the shift from a 1 day to a 250 day

estimation interval for the individual methods has had negative impact on the accuracy of these

models. This is the most prominent in the calibration tests. Especially the more advanced

models suffer from this, the more simple Historical Simulation method does not seem to be

affected as much. This could also be the reason why the Historical Simulation method performs

relatively fine, which contradicts earlier research.

This bring us to the shortcomings of this research. Apart from shortening the estimation

interval, which would increase computation time. There are more areas that could be improved

in further research. One of which would be extending the asymmetric Laplace EWMA part

with time varying parameters λ and p. Incorporating this could lead to better forecasting

performance as it would increase the flexibility and adaptability of the model. Next to time

varying parameters, another possibility would be to derestrict the parameters, this would result

in a TGARCH model. And even though a less restricted model would possibly perform better

individually than the AL-EWMA model, this model would come very close to the GJR-GARCH

model, which could possibly impede the diversification benefits. Another possible improvement

for future research would be the use of more observations of the series used, this could especially

be an improvement for the CAViAR model. This method only uses a small subsample and

did seem to struggle with forecasting the 1% VaR and ES in particular, using this data set.

More data could increase the small subsample this method uses, improving the performance.

Another extension of this research could be to compare the models and results of this research

to those of Generalized Autoregressive Score (GAS) models as introduced by Creal, Koopman

and Lucas (2013). In recent research, these GAS models have been proven to provide good

forecasting ability in for example Liu, Semeyutin, Lau and Gozgor (2020). This GAS models

are a very general form of Autoregressive models, which under specific restrictions turns into for

example a GARCH model. However, due to the more general nature, these model are very free

in the specification. This fairly different way of use of the available information could make it

interesting in the combination of different methods due to the diversification benefits discussed

earlier.
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A Appendix

Table 5: Descriptive statistics on the indices

CAC40 DAX30 FTSE100 NIKKEI225 SP500

Mean 0.0188 0.0191 0.0131 0.0155 0.0267

Median 0.0663 0.0623 0.0664 0.0335 0.0656

Maximum 1.253 1.257 1.306 1.073 1.096

Minimum −1.398 −1.394 −1.324 −1.127 −1.276

Std. Dev. 1.559 1.584 1.353 1.472 1.246

Skewness −0.160642 −0.164103 −0.336711 −0.227275 −0.368247

Kurtosis 9.955209 8.705108 12.92317 6.930868 13.04769

Jarque-Bera 12119.54 8163.994 24730.69 3914.585 25374.62

Probability 0.000000 0.000000 0.000000 0.000000 0.000000

Sum 112.504 114.309 78.691 93.172 160.042

Sum Sq. Dev. 14576.84 15057.19 10979.95 12989.70 9308.24

Observations 6000 6000 6000 6000 6000

Note. In this table, the descriptive statistics are given for the log returns (in percentages) of

the five different indices. These statistics include the mean, maximum, minimum and standard

deviation but also skewness and kurtosis.

Figure 4: Plot of the log returns of the CAC 40

Note. In this figure, the log returns of the CAC 40 are plotted. The choice for this index is

from alphabetical order, the other indices show similar patterns.

A.1 Code

The full code and datasets can be found in the zip file attached. The code consists of two

parts, an R program and a GAUSS code. The R program implements the AL-EWMA model to

produce VaR and ES forecasts. The produced forecasts are stored in txt files and loaded into the

GAUSS program. This program first estimates the other five models, and produces forecasts.
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These are then weighted in the three different ways. Lastly the forecasts are evaluated and

the relavant metrics reported. This includes the weights, Model Confidence Sets and scoring

function values. For the execution of the GAUSS program four different (paid) packages are

needed. These are the following: co, cmlmt, pgraph, lpmt. The data used in this research is

also provided, Data van Bloomberg werkversie AR1filtered.xlsx is used for the AL-EWMA

model in R, and the Data van Bloomberg werkversie.txt file is used for the combined program

in GAUSS.
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