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Abstract

The application of machine learning algorithms in medical diagnosis has gained signific-

ant attention due to their potential to enhance accuracy, efficiency, and objectivity in the

decision-making process. Decision tree models in particular are interesting for this purpose,

due to their interpretability and simplicity. In this paper, we investigate the performance

of Decision Trees as Integer Programs (DTIP), which is a way of encoding the learning of

decision trees of a fixed depth as an integer optimization problem. We test this method

and a variation of it with an extra penalty on false positive predictions on two medical dia-

gnosis datasets. We find that DTIP with an existing decision tree as a starting solution

always finds trees that outperform decision trees given by the greedy heuristic CART, both

in-sample and out-of-sample. Furthermore, we show that imbalanced DTIP can be applied

to limit the number of false positive predictions and can for some imbalanced datasets even

improve the out-of-sample accuracy.

1 Introduction

Advances in machine learning have revolutionized numerous fields, and one area where its po-

tential is increasingly being recognized is in medical diagnosis. The ability of machine learning

algorithms to analyze vast amounts of complex data, detect patterns, and make accurate predic-

tions holds great promise for enhancing diagnostic capabilities. Traditionally, medical diagnosis

has relied heavily on the expertise of healthcare professionals and their interpretation of clin-

ical symptoms, laboratory tests, and medical imaging. However, this process can be subject

to human error and limitations in analyzing large and heterogeneous datasets. Machine learn-

ing offers the possibility to overcome these issues. A machine learning tool that is especially

interesting in the realm of medical diagnosis are decision tree methods. These methods create

insightful models, that are easy to understand and apply, and have proven to be very effective for

diagnostic purposes (Podgorelec et al. (2002)). In this paper, we specifically focus on Decision

Trees as Integer Programs (Verwer and Zhang (2017)) to create decision trees that outperform

those created by more traditional methods, such as Classification and Regression Trees (Breiman

et al. (1984)). We test our methods on two medical datasets: one with data of breast cancer

tumours, and the other one with data of potential heart disease patients.

Breast cancer is one of the most common forms of cancer among women. When a tumor is

identified, it is important to examine whether it is benign or malignant. Benign tumors can be

removed and do not reappear. Malignant tumors grow much faster than benign tumors and can

be fatal when left untreated. Treatment of breast cancer can be highly effective, especially if

it is identified early. For this reason, classifying breast cells as benign or malignant is a crucial

task, and machine learning techniques could help a lot in identifying cancerous cells and thereby

increase the survival rate of breast cancer. In this paper we will specifically focus on optimal

decision trees to classify a tumor as benign (B) or malignant (M) based on a set of features that

are computed from digitized images of fine needle aspirates (FNA) of breast masses, derived by

Street et al. (1993).

Heart diseases, or cardiovascular diseases (CVDs) in general, are the leading cause of death

globally, taking an estimated 17.9 million lives each year. As stated by the World Health Organ-

ization (WHO): ”Identifying those at highest risk of CVDs and ensuring they receive appropriate
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treatment can prevent premature deaths”. This shows the importance of proper diagnosis. In

this paper we use optimal decision trees to identify whether or not a patient suffers from any

kind of heart disease based on a number of features collected by Janosi et al. (1988).

Decision trees are a popular tool for classification. They provide a simple scheme of splitting

rules that allow the user to classify new instances extremely efficiently. Moreover, the outcome

is highly interpretable, unlike many other machine learning methods. This makes it especially

suitable for medical purposes, because the doctors who might use the outcomes to identify breast

cancer, will likely not have a lot of knowledge on statistics, calling for a model that is easy to

understand for everybody.

Typically, decision trees are constructed following the approach proposed by Breiman et al.

(1984): Classification and Regression trees, abbreviated as CART. This heuristic starts at the

root of the tree, and works downwards, recursively determining the best split in every node.

The downside of this greedy approach is that in each split the effect on future splits is not

taken into account, resulting in sub-optimal decision trees. This issue is addressed by Verwer

and Zhang (2017), who propose a way of programming the problem of learning optimal decision

trees as an integer optimization problem (DTIP). Using this formulation, we can apply powerful

MIP-solvers to find optimized trees. Although this method requires more running time, it has

been shown to improve performance over CART, when provided with a decision tree found by

CART as a warm start. Moreover, their proposed formulation allows for creating decision trees

with non-standard objectives.

We utilize the flexibility of the methods introduced by Verwer and Zhang (2017) by including

a constraint for counting false positives and adding it to the objective function with a multi-

plier λ. By increasing this value λ, we can reduce the amount of false positive classifications

made by the decision tree. This is a useful feature, because in practice we might not want to

wrongfully diagnose a patient as having a malignant type of breast cancer or having a heart

disease. Furthermore, the breast cancer dataset is quite imbalanced, as only 37% of the patients

suffer from a malignant tumor and 63% have a benign tumor. By including this penalty term in

the objective of DTIP, this method is able to handle this imbalance better than heuristic-based

decision trees. We refer to this method as imbalanced DTIP.

The idea of decision trees has been around for a long time, but since constructing optimal

classification trees is known to be NP-hard (Hyafil and Rivest (1976)), earlier research focused

on greedy heuristics. Some of the most popular heuristics are Classification and Regression Trees

(CART), introduced by Breiman et al. (1984), which choose the optimal split based on the Gini

impurity, and ID3, introduced by Quinlan (1986), which uses entropy-based information gain to

determine the optimal splits in each layer.

Recently, there has been more focus on building optimal classification and regression trees.

Similar ideas have been explored in the past, for example in Bennett and Blue (1996), but

optimal classification trees only started to flourish with the recent advancements in hardware.

These methods have now become feasible due to the enormous increase in computational speed

by optimization solvers (Bixby (2012)).
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Bertsimas and Dunn (2017) present the problem of creating an optimal decision tree as a

mixed-integer optimization problem. Their formulation can be extended to create multivariate

decision trees, which can split on multiple features in each node. Another formulation of the

problem was introduced by Verwer and Zhang (2017). They propose an integer formulation that

can be adjusted to make discrimination-free decision trees and improve learning from imbalanced

data. Both find that optimal decision trees systematically outperform greedy heuristics, such as

CART.

A downside to optimal decision trees is the computational burden. To speed up the al-

gorithm, Verwer and Zhang (2019) propose a binary formulation that removes the dependency

on the dataset size, thereby improving the scalability of optimal classification trees. Some other

works that introduce methods to improve scalability are Hu et al. (2020), Lin et al. (2020) and

Demirović et al. (2020). Lastly, Aghaei et al. (2022) propose a flow-based formulation that has

a provably stronger linear relaxation than preceding methods.

Regarding the breast cancer data, the first analysis was done by Street et al. (1993), who also

derived the data. With a linear-programming-based inductive classifier, they were able to obtain

a 10-fold cross-validation accuracy of 97%. Although these results are great for prediction, they

are not very useful when trying to understand the data, because the applied model is difficult

to interpret. A more recent study of this dataset was done by Mohammad et al. (2022), using

several Machine Learning techniques for classification and clustering. One of the methods they

tested was a J48 decision tree, which had an accuracy of 93%. We expect to see that the DTIP

achieves a higher accuracy and is more capable of handling the imbalanced nature of the data.

The dataset for heart diseases was obtained by Janosi et al. (1988). Some related works

that discuss the effectiveness of different types of decision tree based classification methods are

Elyan and Gaber (2016), who applied class decomposition to improve the performance of Ran-

dom Forests, and Luna et al. (2017), who proposed Tree-Structured Boosting (TSB) to create

decision trees that outperform CART. Furthermore, it is known that on this dataset Random

Forest classification has an accuracy of 80.26%, which we can consider a baseline for our methods

(Dua and Graff (2017)).

The main question in our research is: How well does DTIP in the context of medical dia-

gnosis? To answer this, we investigate the following sub-questions:

1. What is the rate of correctly classified patients when using regular DTIP?

2. What is the out-of-sample performance of DTIP?

3. Can we reduce the number of out-of-sample false positive predictions with imbalanced

DTIP?

The outcomes of our research are relevant for the medical world, not only for detection of breast

cancer and heart diseases, but for the detection of diseases in general, as this method can be

applied in many different context. Furthermore, our research also contributes to the field of

classification trees, as to the best of our knowledge, no literature exists on the out-of-sample
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performance of DTIP.

Verwer and Zhang (2017) show that DTIP with a CART solution as a warm start can be

used to create decision trees that always achieve an equally high, or higher rate of correctly

classified patients within the training dataset than the decision tree provided by CART. Our

results show that this also holds within the context of medical diagnosis. Moreover, using DTIP

with a warm start on medical diagnosis datasets, we find decision trees that achieve a higher

out-of-sample accuracy than those produced by CART. This shows that DTIP does not simply

overfit to the training dataset, but gives a model that is closer to the true structure of the data.

Furthermore, we find that we can use imbalanced DTIP to reduce the number of false positive

out-of-sample predictions that are made by the resulting decision tree model and even increase

the out-of-sample accuracy of the tree for imbalanced datasets. However, we find that a higher

penalty does not always lead to a reduction in the average number of false positive out-of-sample

predictions, and therefore parameter tuning is required to find the penalty that yields the lowest

number of false positive out-of-sample predictions.

Our paper will be structured as follows: Section 2 discusses the datasets that we use and

describes the data transformation performed. Then, in Section 3, we give our formulation of

DTIP and imbalanced DTIP, and we outline our procedure for the experiments. Next, Section

4 discusses the outcomes of our experiments and lastly, Section 5 summarizes our results and

conclusions and discusses the limitations and options for further research.

2 Data

2.1 Description of the data

The datasets used in this paper are obtained from the UCI Machine Learning Repository (Dua

and Graff (2017)). We construct optimal decision trees for the same datasets as Verwer and

Zhang (2017): “Iris”, “Pima Indian Diabetes” and “Bank Marketing”. We only use the datasets

for classification trees, because our paper does not focus on regression trees. The “Iris” dataset

is a small dataset, consisting of 150 datapoints with 4 attributes and 3 different classes. The

“Pima Indian Diabetes” dataset (Kahn (1994)) contains 768 datapoints with 8 attributes and

2 classes. The largest dataset is the “Bank Marketing” dataset (Moro et al. (2012)), which

consists of 4521 datapoints with 16 attributes. After converting each of the categorical features

into binary variables for each category, we end up with 48 attributes. For the breast cancer dia-

gnosis, we will use the “Breast Cancer Wisconsin (Diagnostic)” dataset. This dataset contains

569 datapoints with 30 attributes and two classifications: Benign (B) or Malignant (M). An

important aspect of this dataset is the imbalance, as only 37% of the patients (212 datapoints)

suffer from a malignant tumor. This could lead to skewed decision trees when applying regular

decision tree methods, and therefore promotes the use of imbalanced DTIP.

For the heart disease diagnosis we use the “Heart Disease” dataset. This dataset consists of

303 datapoints and 13 attributes. We remove all datapoints with missing values, such that we

end up with 297 datapoints. We attempt to predict the presence of a heart disease, indicated
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by values 1, 2, 3 and 4, which we collapse to a value of 1. If the patient does not have a heart

disease, this is indicated by a value of 0. With this definition, 46% of the patients are classified

as 1 (137 datapoints) and 54% are classified as 0 (160 datapoints), making this dataset less

imbalanced than the breast cancer dataset.

2.2 Data transformation

We transformed the data using the following procedure for each column: First, we sort all of

the feature values in increasing order. We merge the sequential feature values that all belong to

datapoints of the same class into one value. Then we count how many times each feature value

occurs and we map the most frequently occurring feature value to 0. Finally, we map all other

feature values to integer values around 0, while retaining the original ordering of the feature

values. With this procedure, we try to mimic the data transformation performed by Verwer and

Zhang (2017) to the best extent. Although our transformation follows their description, we see

some differences in the outputted values compared to those provided in their paper. This could

potentially lead to minor differences in computation times.

To make it more clear how this procedure works in practice, we provide a small example. We

consider a set of 7 datapoints and 2 classifications, as displayed in the table on the left in Figure

1. We start by sorting the data. After this, we merge the feature values that occur multiple

times (7.3 in this example) and we also merge sequential feature values that have the same class

(6.2 and 6.5). We cannot merge 5.1 with 6.2 and 6.5, because it belongs to a different class.

Furthermore, we cannot merge 7.3 with any other feature value, because not all datapoints with

value 7.3 belong to the same class. After we made this merge, we end up with 4 (sets of) feature

values, and we see that the value 7.3 occurs the most, meaning that it will be assigned a value

of 0. The other feature values are then mapped to values around 0, such that we end up in the

table on the right.

Figure 1: Example of data transformation
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3 Methodology

Variable Type Definition

n Constant Number of rows (observations) in data
m Constant Number of columns (features) in data
k Constant Depth of the tree
u Constant Number of nodes in tree (excluding leaves)
v Constant Number of leaves in tree

d(j) Constant Depth of node j in tree (root has depth 0)
v(r, i) Constant Feature value of row r, feature i
t(r) Constant Target value (class) of instance r
LF Constant Minimum value over all features
UF Constant Maximum value over all features

T Set Set of different target values

fij Binary decision variable 1 if feature i is used in decision rule of node j, 0 else
cj Integer decision variable Threshold in decision rule of node j
lhr Binary decision variable 1 if path of data row r goes left at depth h, 0 else
plt Binary decision variable 1 if prediction in leaf l is target (class) t, 0 else
er Binary decision variable Prediction error for data row r

Table 1: Summary of the notation used in the formulation of DTIP

3.1 DTIP formulation

Our formulation of Decision Trees as Integer Programs (DTIP) is largely based on the formu-

lation introduced by Verwer and Zhang (2017), with some changes in notation. The notation

that we use is summarized in Table 1. Note that u and v are constant once we know k, because

we always construct a complete tree. Since the depth of the tree is fixed, we can compute u

as 2k − 1 and v as 2k. The depth of the tree in this formulation is defined as the number of

edges between the root of the tree and a leaf. Also note that for the breast cancer data, we have

only two possible classifications, benign (B) and malignant (M), so t(r) ∈ {B,M} for any row

r. Similarly, for the heart disease data we have t(r) ∈ {0, 1}, where 0 means the patient has

no heart disease, and 1 means they do. Furthermore, we define ML(r) and MR(r) for row r as

follows:

ML(r) = max{v(r, i)− LF |i = 1, ...,m}

MR(r) = max{UF − v(r, i)|i = 1, ...,m}

ML(r) is defined as the maximum deviation from the lower bound over all features values of

a specific row. This corresponds to the highest possible deviation from the threshold if row r

goes left at a certain node and is therefore used for a tight big-M formulation. Likewise, MR(r)

corresponds to the highest possible deviation from the threshold if row r goes right at this node.

Finally, dlr(h, j, r) is a binary function that yields 1 when row r follows the path to node j at

depth h, and 0 otherwise. It can be derived from the variable lhr in the following way:

dlr(h, j, r) =

{
lhr if path to node/leaf j goes left at depth h

1− lhr if path to node/leaf j goes right at depth h
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Using this notation, we can formulate our DTIP following (1)-(10). The objective (1) is to

minimize the total classification error over all the rows in the data:

min
∑

1≤r≤n

er (1)

For every node in the tree, we use variable fij to indicate if feature i is used in the decision

rule in node j. We use Equation (2) to make sure exactly one feature is used in each node:

s.t.
∑

1≤i≤m

fij = 1, j = 1, ..., u (2)

To encode all possible paths through the tree following the decision rules in each node, we

use constraints (3) and (4):

∑
0≤h<d(j)

ML(r)dlr(h, j, r)+ML(r)ld(j),r+
∑

1≤i≤m

v(r, i)fij ≤ ML(r)(d(j)+1)+cj , j = 1, ..., u, r = 1, ..., n

(3)∑
0≤h<d(j)

MR(r)dlr(h, j, r)−MR(r)ld(j),r−
∑

1≤i≤m

v(r, i)fij ≤ MR(r)d(j)−cj−1, j = 1, ..., u, r = 1, ..., n

(4)

Constraint (3) is a big-M formulation that makes sure the constraint only becomes active

when a row r follows the path to node j and goes left at this node. The leftmost summation

iterates over each layer and adds ML(r) only if row r follows the path to j in this layer. This

means that when r ends up in node j, this term will add up to ML(r)d(j). The term ML(r)ld(j),r

adds another ML(r) if row r also goes left at node j. This means if row r passes through node

j and goes left, the first two terms cancel with the term ML(r)(d(j)+1) on the right hand side,

and we are left with the following inequality:∑
1≤i≤m

v(r, i)fij ≤ cj

This constraint states that the sum of the feature values that are used in the decision rule in

that node need to be below the threshold cj . This constraint is thus only enforced when row r

goes left at node j, as in all other cases, there will be at least one ML(r) not being cancelled

out on the right side, in which case the equation always holds. Constraint (4) does the same,

but now for rows that go right at node j, by restricting the corresponding feature value to be

strictly greater than the threshold.

We make sure that every leaf corresponds to exactly one classification using constraint (5):∑
t∈T

plt = 1, l = 1, ..., v (5)

To compute the classification error for each row, we use constraint (6), that uses a similar
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approach to constraints (3) and (4):∑
0≤h<k

dlr(h, l, r) +
∑

t∈T : t̸=t(r)

plt ≤ er + k, l = 1, ..., v, r = 1, ..., n (6)

On the left, we again have a summation to check if row r ends up in leaf l, but this time it

will be equal to k if this is the case, and cancel with the k on the right-hand side. Our constraint

then simplifies to the following inequality:∑
t∈T : t̸=t(r)

plt ≤ er

This left hand side in this inequality sums over each wrong classification and adds a value of 1 if

this classification is in fact predicted by leaf l. This means it becomes 0 if leaf l makes the right

prediction, and 1 if it makes the wrong prediction. The error is then enforced to be at least as

great as this, but it follows from our objective that it is always optimal to set it equal to the

left-hand side.

Next, we use constraints (7) and (8) to bound the thresholds to be between the lower bound

and the upper bound of all feature values, in order to reduce the search space:

cj ≥ LF, j = 1, ..., u (7)

cj ≤ UF, j = 1, ..., u (8)

We add constraint (9) to make sure that two leaves from the same parent node give different

classifications. If this is not be the case, the last split would not make much sense.

plt + pl′t ≤ 1, t ∈ T and l and l’ leaves of same parent (9)

Verwer and Zhang (2017) introduced this constraint as an equality, but this only works when

there are exactly two different targets. In general, a certain target might not be predicted in

either of the two leaves, so we change this into an inequality. Lastly, we bound our variables

fij , lhr, plt and er to be binary variables and we bound the thresholds cj to integers. These

constraints are made explicit in (10):

fij ∈ B, i = 1, ...,m, j = 1, ..., u (10)

cj ∈ Z, j = 1, ..., u

lhr ∈ B, h = 0, ..., k − 1, r = 1, ..., n

plt ∈ B, l = 1, ..., v, t ∈ T

er ∈ B, r = 1, ..., n
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3.2 Imbalanced DTIP (IDTIP)

In medical diagnosis, it is very important to be conservative when predicting if a patient is

positive to a certain disease or not, as we do not want to wrongfully classify a healthy patient.

We can discourage the decision tree to make such predictions by including an extra penalty on

false positive predictions. We alter our regular DTIP formulation by adding a new constraint

that counts the number of false positive classifications, which we store in the integer variable z:

z =
∑

r: t(r)=0

er (11)

The above formula is what this constraint would look like for the heart disease data, where 0

(no heart disease) is the negative class. For the breast cancer data, this negative class would

be B (Benign). We include this term in our objective with a penalty size λ. The objective now

looks as follows:

min
∑

1≤r≤n

er + λz (12)

We will from now on refer to this imbalanced version of DTIP as IDTIP.

3.3 In-sample testing

We compute the decision trees with DTIP for depths 1 up to 5 using CPLEX (IBM) and compare

the performance of DTIP with that of the classification method from scikit-learn (Pedregosa et al.

(2011)), an optimized version of CART. Furthermore, we supply the CART solution as a warm

start for our DTIP and we call this method DTIPs. Similarly, we refer to IDTIP with a warm

start as IDTIPs. However, we do not consider IDTIP or IDTIPs for our in-sample analysis, as

this will only reduce in-sample accuracy compared to regular DTIP and only becomes interesting

when looking at out-of-sample performance.

Since CART is not guaranteed to produce complete trees, the solution it gives is not always

feasible for our DTIP model and we need to make to make some manipulations before we can

use it as a warm start. We add dummy nodes that hold constraints that are always met by

setting the threshold to the UF . Using these dummy nodes and by adding dummy leaves, we

can produce a complete decision tree. Finally, we make sure that every pair of leaves from the

same parent have different classifications, by changing the right leaf to a different class. We can

safely do this, because same classifications only occur when the parent node makes a redundant

split, which we set to send all rows left. For each decision tree, we measure the performance

based on the in-sample accuracy of the method, which is computed as the percentage of correctly

classified instances.

3.4 Out-of-sample testing

In order to test the out-of-sample performances of the different methods on the breast cancer

data and the heart disease data, we use 5-fold cross validation. This means that we train the

model on a part of the sample, and use the resulting tree to classify the remaining instances. We

apply this to different hold-out samples and compute the out-of-sample accuracy as the average
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of the resulting accuracies. The reason we use 5 folds is because we observe large differences in

accuracies between the different hold-out folds that can grow to over 10%. Therefore, we need

multiple folds to get a reliable estimate of the out-of-sample accuracy. Taking into account that

the running time of DTIP is usually half an hour, we decided to go with 5 folds, such that the

total running time of this procedure is at maximum 2.5 hours for each instance. Because our

breast cancer dataset consists of 569 observations, the first 4 folds will include 114 observations,

and the last fold will include 113 observations. For the heart disease data, the first 2 folds

consist of 60 observations, and the last 3 folds consist of 59 observations. We apply out-of-

sample analysis on CART, DTIPs and IDTIPs for depths 1 up to 5. Here we only compare

CART to the optimal decision tree methods with a warm start, as these always find solutions

that are at least as good as regular DTIP and IDTIP solutions.

3.5 Parameter tuning

To optimize the out-of-sample performance of IDTIP, we apply parameter tuning on a depth of

1. This method runs relatively quickly, allowing us to investigate a wide range of penalty sizes.

We use this analysis to get an idea of the influence of the penalty size and to choose the optimal

penalty size λ for a depth of 1. However, when we increase the depth of the tree, the in-sample

accuracy of the tree increases, thus increasing the relative importance of the penalty on false

positives. Because of this, the optimal penalty size is different for each depth and therefore we

apply further parameter tuning for the most promising depths to find the optimal parameter

settings for IDTIP.

4 Results

4.1 In-sample analysis

The accuracies of the three methods CART, DTIP and DTIPs for decision tree depths varying

between 1 and 5 can be found in Table 2. The time limit for each problem is set to 30 minutes.

For DTIP and DTIPs, if no optimal solution was found after 30 minutes, we report the best

feasible solution found by the CPLEX solver. This holds true for each of the runs we performed

for DTIP, DTIPs, IDTIP and IDTIPs, both in-sample and out-of-sample.

The results for the “Iris”, “Diabetes” and “Bank” data are very similar to those found by

Verwer and Zhang (2017). We see that for the “Iris” dataset, DTIP and DTIPs always find the

optimal solution, whereas CART only finds the optimal decision tree for depth 1, 2 and 5. For

both of the other datasets, DTIP and DTIPs always find the optimal solution for a depth of

1, whereas CART does not find the optimal solution. However, for bigger instances DTIP does

not structurally outperform CART when constructing trees of a depth higher than 1. Especially

for the “Bank” data, we see that DTIP struggles constructing trees of depth 4 and 5, as it

only achieves an accuracy of 11.52%. This shows that DTIP without a warm start is not an

appropriate method when dealing with large datasets. Nonetheless, when we provide CPLEX

with the CART solution as a warm start, as we do for DTIPs, we always obtain an accuracy that

is at least as good, and in most cases better than that of the tree found by CART. There are

some slight deviations between the accuracies we get and those obtained by Verwer and Zhang
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(2017), but these only occur for instances that could not be solved to optimality, and can be

attributed to the fact that we used a different computer to run the models.

Dataset Method Depth 1 Depth 2 Depth 3 Depth 4 Depth 5

Iris CART 66.67%* 96%* 97.33% 99.33% 100%*
DTIP 66.67%* 96%* 99.33%* 100%* 100%*
DTIPs 66.67%* 96%* 99.33%* 100%* 100%*

Diabetes CART 73.57% 77.21% 77.60% 79.17% 83.72%
DTIP 75%* 77.73% 78.91% 74.35% 76.95%
DTIPs 75%* 77.73% 79.43% 81.25% 84.38%

Bank CART 88.50% 90.09% 90.47% 91.26% 92.08%
DTIP 89.29%* 89.60% 84.67% 11.52% 11.52%
DTIPs 89.29%* 90.09% 90.49% 91.26% 92.10%

Table 2: Classification accuracies of the different decision tree construction methods for depths
1-5. Values with a * indicate the optimal solutions.

The results of the in-sample analysis on the datasets regarding medical diagnosis can be

found in Table 3. For both datasets, we see that all algorithms are able to find the optimal

solution for a depth of 1. We again notice that DTIP outperforms CART on lower depths

(depth 2), but performs worse than CART for higher depths (depth 3, 4 and 5 for “Breast

Cancer” and depth 4 and 5 for “Heart Disease”). As before, when we consider DTIPs, we notice

that it always performs at least as well as CART and usually results in better accuracies. What

stands out in Table 3 are the acccuracies that are obtained for the “Breast Cancer” dataset.

These grow up to 99.47% for a depth of 5, which is a clear sign of overfitting.

Dataset Method Depth 1 Depth 2 Depth 3 Depth 4 Depth 5

Breast Cancer CART 92.27%* 94.20% 97.89% 98.24% 99.47%
DTIP 92.27%* 95.96% 96.66% 93.32% 95.08%
DTIPs 92.27%* 96.13% 97.89% 98.59% 99.47%

Heart Disease CART 76.43%* 77.10% 85.52% 87.54% 91.25%
DTIP 76.43%* 79.80%* 85.52% 86.53% 84.51%
DTIPs 76.43%* 79.80%* 85.52% 89.23% 93.27%

Table 3: Classification accuracies of the different decision tree construction methods for depths
1-5 for the datasets on medical diagnosis. Values with a * indicate the optimal solutions.

4.2 Out-of-sample analysis

To properly analyse the performance of different models for the breast cancer and the heart

disease data, we need to be aware of the risk of overfitting. For example, the breast cancer dataset

consists of 569 observations and 30 features, which means that for deep trees we can achieve

great in-sample accuracies, but these models typically do not work well on new observations.

Therefore, we now move on to out-of-sample analysis, giving better insights in the predictive

capabilities of the different models.
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Figure 2: Out-of-sample accuracy in percentage (left axis) and average amount of out-of-sample
false positives (right axis) for IDTIP of depth 1 with varying penalty sizes on breast cancer
dataset

Parameter tuning for breast cancer data

We start by investigating the effect of parameter λ for IDTIP. Figure 2 shows the effect on

the penalty size for IDTIP with depth 1 on the “Breast Cancer” dataset. From this figure,

it is clear that a small penalty size helps to deal with the imbalance in the data, increasing

the out-of-sample accuracy by up to 3.69% compared to regular DTIP. The reason for this is

that inducing a small penalty on false positives results in a decision tree that produces more

negative predictions, which corresponds with the structure of the data, since there are more

negative than positive patients. When the penalty becomes too high, however, we notice that

the tree becomes too conservative and produces too many false negative predictions, causing

the accuracy to drop. The optimal out-of-sample accuracy is obtained for a penalty size of 3.

For higher penalty sizes, we see no further increase in accuracy, and after a penalty size of 5,

the accuracy starts to drop. In terms of the number of false positives, we see that the biggest

reduction is made when moving from a penalty size of 0 to 1 and another large decrease is made

when moving from 1 to 2. Again, we see that a penalty size of 3 is a turning point, after which

the slope flattens.

The interpretation of this penalty is that every false positive prediction is penalized 4 times

as much as a false negative prediction. To give an idea of how heavy of a penalty this is: the

number of in-sample false positives over the whole sample is reduced from 11 false positives (and

33 false negatives) for no penalty, to 2 false positives (and 53 false negatives) for a penalty of

size 3.
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Figure 3: Out-of-sample accuracy in percentage (left axis) and average amount of out-of-sample
false positives (right axis) for IDTIP of depth 1 with varying penalty sizes on heart disease
dataset

Parameter tuning for heart disease data

Figure 3 shows the same analysis performed on the less imbalanced “Heart Disease” dataset.

We see that for this dataset, the out-of-sample accuracy decreases for any penalty higher than

0. From this we can conclude that IDTIP for a depth of 1 does not improve the out-of-sample

accuracy for this dataset, but it could still be used to confine the risk of making false positive

predictions. For this purpose, a penalty size of 2 seems most fitting, as we see a step decline in

number of false positives before this value, and barely any decline for higher penalties.

The interpretation of this penalty is that every false positive prediction is penalized 3 times

as much as a false negative prediction. To put this into perspective: the number of in-sample

false positives over the whole sample is reduced from 33 false positives (and 37 false negatives)

for no penalty, to 4 false positives (and 109 false negatives) for a penalty of size 2.

Out-of-sample analysis on breast cancer data

The out-of-sample accuracies and the average amount of out-of-sample false positives for the

“Breast Cancer” data computed by 5-fold cross validation for each of the methods are reported

in Table 4. The first important observation is that for each of the methods, a decision tree of

depth 2 (for DTIP) or 3 (for CART) gives the best accuracy, unlike in-sample, where decision

trees of depth 5 always yielded the highest accuracy. Secondly we see that DTIPs can achieve

an out-of-sample accuracy of 92.97% for the optimal depth, whereas the best out-of-sample

accuracy for CART is only 91.38%. This shows that DTIPs does not only give better trees

in terms of in-sample performance, but it also improves predictive performance compared to

CART. To see if we can further improve these results by including a penalty on false positive
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predictions, we apply IDTIPs for depth 2 and 3. We choose to investigate only these two depths,

as we observe that at depth 1 the tree performs much worse than at all other depths. We also

notice for both methods that the accuracy decreases for depths higher than 3, indicating that

the model starts overfitting, making decision trees of depth 2 and 3 the most interesting models.

We compute the out-of-sample performance of IDTIPs for penalty sizes λ = 1, λ = 2 and

λ = 3 and report the results in Table 5. We examine λ = 3 as a benchmark penalty size, as

this was the optimal penalty size for a depth of 1, and we compare this to lower penalty sizes to

account for the increase in in-sample accuracy of the model. Furthermore, we look into higher

penalty sizes λ = 5 and λ = 10, to see if we can restrict the number of out-of-sample false

positives. We now see that the best out-of-sample accuracy for DTIPs with a depth of 2 can be

improved by including an additional penalty of 1 or 2 on every false positive prediction, both

of which give the exact same results. In this way, we can achieve an out-of-sample accuracy

of 93.15%, whilst only making 1.6 false positive out-of-sample predictions on average (0.88% of

all predictions). We see that by further increasing the penalty for a depth of 2, we can slightly

reduce the average number of false positives, from 1.6 to 1.4, against a small loss in out-of-sample

accuracy. For a depth of 3, we find substantially higher numbers of out-of-sample false positive

predictions for every penalty size. Furthermore, we see that an increase in penalty size does not

necessarily result in less false positive predictions out-of-sample. For this dataset, it seems that

the most effective way of controlling the number of false positive predictions is by choosing a

low depth.

When we run IDTIPs with λ = 1 and λ = 2 for depth 2 over the whole sample, we again see

that both methods produce the same decision trees. In both cases, we find the tree as shown

in Figure 4. This classification tree has an in-sample accuracy of 95.43% and produces 2 false

positive predictions over the entire sample (0.35% of all predictions).

Method Measure Depth 1 Depth 2 Depth 3 Depth 4 Depth 5

CART Accuracy 87.35% 91.20% 91.38% 91.21% 91.21%
#FP 4.4 6.2 4.8 5 5.2

DTIPs Accuracy 87.35% 92.97% 92.79% 91.74% 90.86%
#FP 4.4 3.2 4.8 4.2 4.6

Table 4: Out-of-sample accuracies and average number of out-of-sample false positives (#FP)
computed by 5-fold cross validation for breast cancer data. Highest out-of-sample accuracy for
each method is highlighted.
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Measure λ = 1 λ = 2 λ = 3 λ = 5 λ = 10

Depth 2 Accuracy 93.15% 93.15% 92.80% 92.80% 92.80%
#FP 1.6 1.6 2.2 1.6 1.4

Depth 3 Accuracy 91.74% 91.56% 92.44% 92.01% 92.44%
#FP 4.6 4.0 3.4 3.4 3.6

Table 5: Out-of-sample accuracies and average number of out-of-sample false positives (#FP)
from IDTIPs with varying penalty sizes computed by 5-fold cross validation for breast cancer
data. Highest out-of-sample accuracy and lowest average number of out-of-sample false positives
are highlighted.

Figure 4: Best decision tree for breast cancer data, found with IDTIPs for depth 2 with penalty
size λ = 2 over the whole sample (B = Benign, M = Malignant).

Out-of-sample analysis on heart disease data

The results of the same analysis for the “Heart Disease” data are reported in Table 6. From

this table, we see that DTIPs again outperforms CART for the optimal depth, which is a depth

of 3 for both of the methods. The out-of-sample accuracy is increased by almost 1%.

We again attempt to further improve these results by including a penalty on false positive

predictions by applying IDTIPs for the most promising depth. We only investigate depth 3, due

to the fact that this depth clearly leads to the best out-of-sample accuracies for both CART and

DTIPs. We compare our benchmark penalty size λ = 2 to a lower penalty of λ = 1 to account

for the improvement in in-sample accuracy of the model over a depth of 1, in order to potentially

increase the out-of-sample accuracy. Furthermore, we look into higher penalty sizes λ = 3, λ = 5

and λ = 10, to see if we can restrict the number of out-of-sample false positives. These results

can be found in Table 7. We find that IDTIPs performs over 5% worse than DTIPs in terms

of out-of-sample accuracy for a penalty of 2, and hardly decreases the average number of false

positive predictions. We can slightly improve this accuracy by moving to a penalty size of 1, but

DTIP still performs better than IDTIPs in terms of out-of-sample accuracy. For the purpose of

restricting the amount of false positives, we see that IDTIPs works for penalty λ = 5, as the
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average amount of false positive predictions is reduced from 4 (6.7%) to 2.8 (4.7%). However,

this is only a small improvement, at the cost of 7.4% in accuracy. Interestingly, we see that

further increasing the penalty size to λ = 10 only leads to more out-of-sample false positives, as

the model starts to overfit in terms of trying to reduce the number of false positives. In order

to further decrease the average number of false positive predictions, we would need to turn to

IDTIPs with a lower depth. As shown before in Figure 3, we can reduce the average amount of

false positives to 0.6 (1.0%) by using a penalty size of 12 or higher for depth 1, but this does

come at the cost of a massive loss of accuracy.

The best performing model for the heart disease data in terms of out-of-sample accuracy

is DTIPs for depth 3. When we run this model over the whole dataset, we achieve an in-

sample accuracy of 85.52% and 19 false positive predictions (6.4%). The resulting decision tree

is visualized in Figure 5.

Method Measure Depth 1 Depth 2 Depth 3 Depth 4 Depth 5

CART Accuracy 73.71% 73.05% 80.13% 76.76% 73.70%
#FP 7.8 4.6 4.6 5.4 6.8

DTIPs Accuracy 73.71% 73.03% 81.12% 72.73% 75.08%
#FP 7.8 6 4 6 7

Table 6: Out-of-sample accuracies and average number of out-of-sample false positives (#FP)
computed by 5-fold cross validation for heart disease data. Highest out-of-sample accuracy for
each method is highlighted.

Measure λ = 1 λ = 2 λ = 3 λ = 5 λ = 10

Accuracy 77.76% 76.07% 74.72% 73.72% 67.32%
#FP 4.0 3.6 3.8 2.8 3.4

Table 7: Out-of-sample accuracies and average number of out-of-sample false positives (#FP)
from IDTIPs of depth 3 with varying penalty sizes computed by 5-fold cross validation for heart
disease data. Highest out-of-sample accuracy and lowest average number of out-of-sample false
positives are highlighted.
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Figure 5: Best decision tree for heart disease data, found with DTIPs for depth 3 over the whole
sample (0 = no heart disease present, 1 = heart disease present)

5 Conclusion

We investigated the potential of Decision Trees as Integer Programs (DTIP) for medical diagnosis

purposes. We applied our methods to two datasets: one on breast cancer diagnosis, and the other

on heart disease diagnosis, and investigated the in-sample and out-of-sample performances of

our methods. We found that using DTIP with a CART solution as a warm start, we always find

decision trees that have an in-sample accuracy greater or equal to that of CART. This especially

works well on small datasets, such as the “Heart Disease” dataset, where we see improvements

in in-sample accuracy of up to 2.7 percentage points. Furthermore, we found that DTIP with a

warm start also improves the out-of-sample accuracy over CART for both of our datasets by up

to 1.41 percentage points. This result shows that DTIP with a warm start is an improvement

over greedy heuristics, not solely for the sake of constructing trees that fit the data better, but

also for making predictions and diagnosing new patients. It demonstrates that the decision tree

models produced by DTIP with a warm start resemble the true structure of the data more

closely than those produced by greedy heuristics, such as CART.

We also investigated an imbalanced version of DTIP that penalizes false positive predictions

more heavily, in order to restrict the number of healthy patients that are wrongfully diagnosed

as unhealthy. After some parameter tuning, we were able to improve the out-of-sample accur-

acy whilst decreasing the average number of false-positive predictions for the “Breast Cancer”

dataset, compared to regular DTIP. We found the most succesful method for this dataset to

be imbalanced DTIP of depth 2 with a warm start and penalizing false positive predictions

two or three times as heavily as false negative predictions. With this method we were able to

achieve an out-of-sample accuracy of 93.15%. For the “Heart Disease” dataset, we were unable

to improve the out-of-sample accuracy using imbalanced DTIP. The best performing decision

tree for the “Heart Disease” data in terms of out-of-sample accuracy is found when applying
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regular DTIP of depth 3 with a warm start, giving an out-of-sample accuracy of 81.12%. Re-

stricting the number of false positive predictions is possible, but it comes at the cost of a loss

in out-of-sample accuracy. To find a balance between this loss of accuracy and the number of

false positive predictions, extensive parameter tuning is required, as increasing the penalty size

does not necessarily result in fewer out-of-sample false positive predictions.

All in all, our results show that DTIP can be successfully applied in the context of medical

diagnosis, as it provides easily interpretable models and outperforms heuristic methods to obtain

such models. Furthermore, this flexible formulation allows for different objectives, which can

be exploited to control the number of false positive predictions. Finding the optimal parameter

settings is however quite expensive, due to the fact that each run of 5-fold cross validation takes

2.5 hours. For the purpose of medical diagnosis, these long running times should not be an

issue, because these decision tree models only need to be trained once. If there happens to be a

time shortage, one could resort to out-of-sample testing based on a single test set, lowering the

running time limit, or any combination of these two.

As mentioned before, newer versions of optimal decision tree construction algorithms have

been introduced over the last years, some of which are more efficient while offering the same

flexibility as DTIP. These methods are expected to improve our results, as they can find better

decision trees in the same amount of time. The applications of more recent optimal decision

tree construction algorithms is therefore an interesting direction for further research. Another

topic that could be of interest is the scalability of Decision Trees as Integer Programs. In this

research, the focus was mainly on small datasets, but in general these tend to be much bigger.

Investigating the performance of DTIP, or newer versions of optimal decision tree construction

methods on large medical diagnosis datasets could therefore be valuable for future use of these

algorithms.
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A Programming code

We used java as our main programming language for this project, from which we call the

ILOG CPLEX optimization studio to run the optimization programs for DTIP. We also used

python, in order to have acces to the scikit library to apply the optimized version of CART. The

programming codes for the data transformation, CART, DTIP, DTIPs, IDTIP and IDTIPs can

be found in the supplementary materials, alongside with all of our datafiles and a code manual.

An explanation of how our code works and how we used it to run each of our experiments can

be found in the code manual.
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