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Abstract

Gender discrimination in decision trees is profoundly relevant for society. By addressing

and resolving this issue, we can advance towards a more equal society. Overcoming gender

bias in decision-making processes fosters inclusivity, ensuring that individuals are treated

fairly and are offered equal opportunities. We replicate the results of Verwer and Zhang

(2017), and extend their integer programming formulation to account for discrimination-

awareness, by adding constraints which bound discrimination explicitly. We test the per-

formance of our adapted formulation in the context of gender discrimination, focusing on

the accuracy-discrimination trade-off. With our adapted formulation we are able to build

decision trees with significantly decreased gender discrimination, while having near-optimal

accuracy.

1 Introduction

Decision trees are a popular tool for supporting decision making, and are widely used for classi-

fication and regression problems. For example, a regression tree can be used to predict the price

of a stock, based on market indicators. A classification example could be predicting whether a

patient has a certain disease or not, based on their symptoms. These are only two examples, but

show that decision trees are a versatile tool, which can be applied in many different fields to solve

a wide range of problems. Apart from their applicability, decision trees are also transparent,

meaning non-experts are easily able to use and understand them.

A decision tree can be seen as a series of decisions to be made, presented in a tree-like structure.

Figure 1 shows what this structure looks like.

Figure 1: General structure of a decision tree

The tree is traversed from top to bottom, where in each decision node of the tree, a condition
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is evaluated based on an object’s data. This evaluation then leads to the decision of proceeding

either in the left or the right sub-tree. When one eventually arrives in one of the leaf nodes, the

object can be classified accordingly.

The topic of decision trees has been studied since the late 20th century. Among the first scien-

tific research papers are for example Breiman et al. (1984) and Quinlan (1986), who introduce

the concept and optimization of learning decision trees. Hyafil and Rivest (1976) show that this

problem is NP-complete. Therefore greedy heuristics like CART (Breiman et al. (1984)), ID3

(Quinlan (1986)), and C4.5 (Salzberg (1993)) have been developed. These heuristics determine

splits in a top-down fashion. The advantage of using such heuristics is their computational

efficiency, however, Bertsimas and Dunn (2017) address some of their drawbacks. Each split in

the tree is determined by an optimization problem which provides a local optimum, not taking

into account future splits. In this way, the underlying characteristics of the data set are not

captured well, and this can result in trees which are not good at classifying new data points.

Furthermore, top-down approaches have a limitation in the fact that they require pruning

to design trees which generalize well. A penalty on tree complexity can prevent the selection of

weaker splits, however, it might be that strong splits are concealed behind these weaker splits.

Therefore, a top-down approach may not find the best tree when the complexity penalty is too

high. This problem is usually solved by growing the tree as deep as possible, and then pruning

back up using the complexity penalty.

Another way to solve the problem of strong splits hiding behind weak splits, is using look-

ahead heuristics like IDX (Norton (1989)), LSID3 and ID3-k (Esmeir and Markovitch (2007)).

As its name suggests, a look-ahead heuristic also tries to optimize the tree based on deeper trees

which are rooted at the current node. However, the drawback of such a method is the danger

of overfitting, leading to weak generalization.

The drawbacks of the classical heuristics, together with the immense increase in computational

power of mixed-integer optimization (MIO) solvers, are the main motivations for trying to learn

optimal decision trees using mixed-integer optimization. Verwer and Zhang (2017) manage to

outperform CART for data sets up to 1000 observations and a tree depth up to five, but for

larger data sets the classification accuracy of the best solution found within a reasonable time

frame drops significantly. However, they do find that using a feasible CART solution as starting

point for the MIO solver always results in an improved solution. This idea of using a so called
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warm start is also used by Bertsimas and Dunn (2017). In their paper, the authors provide a

different formulation than Verwer and Zhang (2017), which in general also improves CART. In

particular, they find that mixed-integer optimization solvers are able to practically solve decision

tree problems for data sets where the number of observations is in the thousands. Verwer and

Zhang (2019) address the issue of having to create variables and constraints for each observa-

tion in the data set. They manage to formulate the decision tree problem such that its size is

for the most part independent of the number of observations in data set, resulting in a much

smaller number of variables and constraints. This, in turn, results in faster solving time and

more accurate solutions.

The most recent work in this field aims to improve computation times, and incorporate as-

pects like fairness and discrimination. Newest insights are for example from Aghaei et al. (2021),

Carrizosa et al. (2021) and Blanquero et al. (2021).

The goal of this thesis is to learn good discrimination-aware decision trees, which can clas-

sify objects with high accuracy. In particular, we focus on limiting gender discrimination. As a

first step, we replicate and verify the work of Verwer and Zhang (2017), who try to find optimal

decision trees using integer optimization. Then we extend their integer optimization model to

account for discrimination, and test the resulting model on three data sets. We manage to obtain

almost the exact results of Verwer and Zhang (2017), with only a few small deviations in accu-

racy. Furthermore, we find that our adapted formulation for discrimination-aware decision tree

learning finds solutions with drastically decreased discrimination, while having close-to-optimal

accuracy.

In Section 2, we discuss the used data sets and data transformation in detail. Thereafter,

we introduce the decision tree learning formulation of Verwer and Zhang (2017) in Section 3,

and add discrimination awareness to their formulation in Section 4. Finally, we report our re-

sults in Section 5 and provide our conclusions together with suggestions for future research in

Section 6.

2 Data

For reproducing the results of Verwer and Zhang (2017), we need to conduct the same exper-

iments as they do, using the same data sets. For their classification experiments, Verwer and
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Zhang (2017) use three data sets, named “Iris”, “Diabetes” and “Bank”. The “Diabetes” data

set comes from the Pima Indian Diabetes database, and “Bank” is from Moro et al. (2014).

We obtained these data sets from the UCI machine learning repository (Dua and Graff (2017)).

For our extension on discrimination-aware decision trees we use another banking data set called

“Japanese Credit Screening”, which contains data on people who were or were not granted credit

by a Japanese banking institution. We refer to this data set as “Credit”. As a second data set to

test discrimination-aware decision trees we use a data set called “Heart Disease”, which contains

data on people who were or were not diagnosed with a heart condition. This is a large database

consisting of four smaller databases, each one corresponding to an institution where the data

was collected. In our testing, we use the Cleveland database. Finally, we use a data set called

“Titanic”, which contains data on passengers of the Titanic ship, and whether they survived

its sinking or not. We obtained “Credit” and “Heart Disease” from the UCI machine learning

repository (Dua and Graff (2017)), and “Titanic” from Kaggle (2010).

Data sets “Bank, “Credit”, “Heart Disease” and “Titanic” contain categorical attributes, mean-

ing the attribute can take on a fixed amount of values. An example of this is themarital attribute

from “Bank”, which can take on values from the set {married, divorced, unknown}. It is difficult

to provide interpretable thresholds for decision rules in the tree in this way. Therefore we split

each categorical attribute into N binary attributes, where N is the number of categories of the

attribute. Such a binary attribute then indicates whether an observation has that category or

not. This makes it possible to interpret decision rules in the tree.

Originally, “Heart Disease” has five target classes numbered 0-4, where 0 means no presence

of a heart condition and numbers 1-4 indicate the kind of heart condition in case of presence.

We simplify this by using a binary classification for which classes 1-4 are merged in a single class

which indicates the general presence of a heart condition. Furthermore, “Heart Disease” has 6

observations which contain missing values, and therefore we remove these.

The “Titanic” data set originally consists of 10 attributes. However, we neglect the name

and ticket number attributes as we assume they do not affect survival probability. Furthermore,

the cabin attribute is always empty, so we omit this attribute as well. There are 179 observations

with at least one of the remaining attribute values missing. In the absence of a more suitable

option, we choose to delete these observations.

The other data sets do not contain missing values, and therefore we do not remove any of their

observations. In Table 1, a summary of the data sets is provided, where for “Bank”, “Credit”,
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“Heart Disease” and “Titanic”, the total number of attributes after splitting the categorical

attributes into binary attributes is provided in parentheses.

Table 1: Characteristics of the data sets

Data set # Observations # Attributes (Splitted) # Classes

Iris 150 4 3

Diabetes 768 8 2

Bank 4521 16 (48) 2

Credit 125 10 (16) 2

Heart Disease 297 13 (22) 2

Titanic 712 7 (11) 2

2.1 Transformation

In decision tree literature the data is often linearly scaled to the interval [0.0, 1.0], see for example

Bennett and Blue (1996) and Bertsimas and Shioda (2007). This has numerous advantages. For

example, this avoids numerical problems in big-M formulations, which are often used in integer

programming. However, Verwer and Zhang (2017) propose a nonlinear data transformation

which maps all unique feature values to a unique integer value, while maintaining the correct

ordering of these values. They claim to significantly improve their obtained solutions using this

transformation, and mention the following advantages of this approach:

• Thresholds in decision nodes can be presented as integers, which causes the MIO solver to

be able to branch on these exact values.

• For observations which have successive integers as attribute values and the same class

label, the values can be mapped to the same integer.

• The most occurring attribute value can be mapped to the value zero.

• Transformed attribute values can be ranged around zero.

All of these help the MIO solver to run faster. However, Verwer and Zhang (2017) do not

emphasize the exact details of their data transformation. We were unable to obtain exactly

their transformed data, however, using Algorithm 1 we were able to transform the data in such

a way that the properties listed before still hold. Note that class labels are not transformed.

5



Algorithm 1 Data transformation

1: Input: Data set S

2: for each non-binary attribute column i of S do

3: Initialize maps M1 = {(key, val) : key ∈ K1, val ∈ V1} and

4: M2 = {(key, val) : key ∈ K2, val ∈ V2}, where K1 and K2 are key sets,

5: and V1 and V2 are value sets.

6: Store all unique attribute values, and sort them in ascending order in an array Ai.

7: for each attribute value vr,i in Ai do

8: Map vr,i to itself in M1. That is, put (vr,i, vr,i) in M1.

9: end for

10: for all pairs (vr1,i, vr2,i) in Ai where vr1,i and vr2,i are neighbours do

11: if all observations having vr1,i as attribute value have the same class label, the same

holds for observations having vr2,i as attribute value, and the class labels of these two sets

of observations are equal then

12: Put (vr2,i, vr1,i) in M1. This pair now tells us that attribute value vr2,i

13: should be transformed to the same integer as vr1,i.

14: end if

15: end for

16: Store all unique values in V1 in ascending order in an array Bi.

17: Map most occurring value xi in Bi to zero, that is, put (xi, 0) in M2.

18: Map all values in Bi smaller than xi to decreasing negative integers, following the ordering

of Bi. Put these pairs in M2.

19: Map all values in Bi larger than xi to increasing positive integers, following the ordering

of Bi. Put these pairs in M2.

20: Transform the attribute column as follows. Use the column’s values as keys in M1,

then use the corresponding values in M1 as keys in the other map M2. The values in M2

corresponding to these keys are the transformed attribute values.

21: end for

3 Integer optimization for decision trees

In order to find optimal decision trees, we want to use integer optimization and therefore have

to formulate the problem as an integer linear program. We use the formulation proposed by
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Verwer and Zhang (2017), which is called Decision Trees as Integer Programs (DTIP). We use

roughly the same notation as used by Verwer and Zhang (2017), however we change some names

to make the formulation a bit more readable. The notation is presented in Table 2.

Table 2: Notation

Symbol Type Definition

D set set of decision nodes

L set set of leaf nodes

R set set of observations

T set set of target values

n constant number of observations in the data set

m constant number of attributes in the data set

y constant number of unique target values

k constant depth of the tree

dj constant depth of node j

vr,i constant value of attribute i in observation r

tr constant target value (class label) of observation r

pl,t binary decision equals 1 if classifier prediction of leaf node l is equal to target value t

er binary decision prediction error of observation r

fi,j binary decision equals 1 if attribute i is used in decision rule of node j

xh,r binary decision equals 1 (0) if path of observation r goes left (right) at depth h

cj integer decision threshold in decision rule of node j

Furthermore, we have values LF and UF which denote the minimum and maximum value

over all attributes, respectively. That is, LF = min{vr,i : 1 ≤ i ≤ m, 1 ≤ r ≤ n} and

UF = max{vr,i : 1 ≤ i ≤ m, 1 ≤ r ≤ n}. Using these values we can define appropriate big-M

values which are necessary for some of the constraints. Let Mr = max{vr,i − LF : 1 ≤ i ≤ m}

and M ′
r = max{UF − vr,i : 1 ≤ i ≤ m} be tight big-M values which are used in some of the

upcoming constraints.
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Finally, to denote the path direction to node j starting from the root node, we have:

dir(h, j, r) =


xh,r if the path towards node j goes left at depth h

1− xh,r if the path towards node j goes right at depth h

(1)

The intuition is as follows. When at a certain moment observation r comes across node j,

dir(h, j, r) will have value one for every depth h smaller than the depth of node j. Thus, nodes

having this smaller depth h will be above node j in the tree. In this way, the path to node j

can be easily tracked, which is necessary for determining what the values of the thresholds on

this path must be.

Using the notation in Table 2, we can explain DTIP step by step. The objective is minimizing

the total prediction error
n∑

r=1

er. (2)

For every node j ∈ D we require that its decision rule consists of exactly one attribute i,

m∑
i=1

fi,j = 1 j ∈ D. (3)

Furthermore, every node j ∈ D needs a threshold cj in its decision rule. For each observation

r, and each decision node j, we have:

dj−1∑
h=0

Mrdir(h, j, r) +Mrxdj ,r +
m∑
i=1

vr,ifi,j ≤ Mr(dj + 1) + cj j ∈ D, r ∈ R (4)

and
dj−1∑
h=0

M ′
rdir(h, j, r)−M ′

rxdj ,r −
m∑
i=1

vr,ifi,j ≤ M ′
rdj − cj − 1 j ∈ D, r ∈ R. (5)

To explain how these constraints work, consider (4). When observation r comes across node j

in the tree, it holds that
∑dj−1

h=0 dir(h, j, r) = dj , as dir(h, j, r) equals one for all depths h in the

summation. If at node j the path continues to the left sub-tree, the Mr(dj +1) term cancels out

and we require the attribute value vr,i for which i is the attribute represented in the decision rule

of node j, to be smaller or equal to the threshold. When the path would continue in the right

sub-tree, or does not come across node j at all, the big-M multiplier Mr makes the constraint

inactive. Constraint (5) models this same behaviour but for an observation r which needs to

continue its path in the right sub-tree.
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Note that we have incorporated some minor differences with respect to the constraints Ver-

wer and Zhang (2017) propose. First of all, the first summation starts from depth 0, and ends

at the depth of node j’s parent node, instead of it starting at depth 1 and continuing up to the

depth of node j. As we define the root of the tree to be at depth 0, this should be included in

the path to node j, while the depth of node j itself should not be included. In this way, also

the right hand sides of (4) and (5) have to be changed accordingly, by adding one Mr and M ′
r

term respectively. Finally, we subtract 1 from the right hand side of (5), such that it enforces

a strict inequality between the left hand side and M ′
rdj − cj . This is necessary because in case

some attribute value vr,i would be equal to the threshold cj , the tree has to decide on taking

the left or right sub-tree for that observation r.

Next we require each leaf node to have exactly one classifier prediction:

y∑
t=1

pl,t = 1 l ∈ L. (6)

Furthermore, it does not make sense for two leaf nodes coming from the same parent node to

have the same classifier prediction,

pl,t + pl′,t ≤ 1 (l, l′) : l and l′ share the same parent node, l, l′ ∈ L, t ∈ T. (7)

Note that in Verwer and Zhang (2017), this constraint is an equality. However, when there are

more than two classes this would want to allocate all these classes to only two leaves, and as a

leaf can only have one classifier prediction, this is not possible. Therefore we replace it by an

inequality.

The prediction errors are computed as follows:

k−1∑
h=0

dir(h, l, r) +
∑

t∈T :t̸=tr

pl,t ≤ er + k l ∈ L, r ∈ R. (8)

When observation r ends up in leaf l,
∑k−1

h=0 dir(h, l, r) = k as at every depth h the value of

dir(h, l, r) equals 1. In this way the k on the right hand side cancels out, and the prediction

error is set to one if the classifier prediction of l is different than the target value of observation

r. When r does not end up in leaf l, the constraint becomes inactive as the right-hand side is

always larger. Again we have changed the first summation’s starting and ending index like we

did for (4) and (5).
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Finally, Verwer and Zhang (2017) strengthen their formulation by including the following bounds

on cj ,
m∑
i=1

LFfi,j ≤ cj ≤
m∑
i=1

UFfi,j j ∈ D. (9)

In complete form, DTIP is as follows:

min
n∑

r=1

er

s.t (3)− (9).

4 Discrimination-aware DTIP

Verwer and Zhang (2017) show the flexibility of their formulation by adjusting the objective

function of DTIP to handle different goals like handling fairness, discrimination and imbalanced

data. We test discrimination-aware DTIP (DA-DTIP) on data sets “Credit”, “Heart Disease”

and “Titanic”. We focus on gender discrimination for all three data sets, that is, we consider

the gender attribute to be a sensitive attribute. For “Credit”, there might be discrimination

against females in terms of being denied credit by the bank. This is because although Japan is a

high-income country, there is quite some gender inequality. Support for this choice can be found

in the Gender Inequality Index (United Nations Development Programme (2021)), where Japan

is ranked 22nd out of 188 countries, which is low given that Japan is a high-income country.

Furthermore, in their Global Gender Gap Report, World Economic Forum (2022) ranks Japan

even lower at a dismal 116th place out of 146 participating countries. As the data was collected

more than 30 years ago, this was even more relevant back then.

Within the context of the “Heart Disease” data set, gender can also be regarded as a discrim-

inatory factor. For instance, there may exist medical biases (Hamberg (2008)) where specific

symptoms or diagnostic standards are predominantly based on research conducted on male pa-

tients, resulting in various complications. Heart disease symptoms can differ between men and

women, and if the decision-making process prioritizes male-oriented symptoms, female patients

might be underdiagnosed or misdiagnosed. Consequently, this can result in receiving sub-optimal

treatment or experiencing unnecessary delays in obtaining the appropriate care.

Finally, in the context of “Titanic”, discrimination might be a bit less obvious. One can think

of males being stronger and more athletic than females, and therefore having a higher survival
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probability as escaping the ship could be easier. The other way around, females might have a

greater survival probability due to the ‘women and children first’ phenomenon, where women

and children are evacuated to safety before men are. We want to stress the fact that although

a decision tree for this data set is unusable in the future, given that there will not be another

Titanic trip, this data set is used as an extra data source to see how well our method works

in-sample. Furthermore, the discrimination in this data set might be less relevant in society than

in “Credit” and “Heart Disease”. However, as there is a large difference in survival probability

for men and women in this data set it serves an excellent data set to test our method on.

Including discrimination in DTIP can be done in multiple different ways. Verwer and Zhang

(2017) add a simple expression to the objective function which computes the difference in posi-

tive class probability for different sets of observations, using the prediction errors. However, we

opt for a different approach. Instead of including an extra term in the objective, we integrate

discrimination-awareness by adding two new sets of constraints. The reason for this becomes

clear in a moment. First we define

zr =


1 if observation r is predicted to be in a positive class

0 otherwise

as a binary variable indicating whether observation r is predicted to be in a positive class or

not. We assume that there is only one negative class, and this class is labeled as 0. To compute

the zr variables, we add to (3)-(9) the following two sets of constraints:

k−1∑
h=0

dir(h, l, r) +
∑

t∈T :t̸=0

pl,t ≤ zr + k l ∈ L, r ∈ R (10)

and

−
k−1∑
h=0

dir(h, l, r) +
∑

t∈T :t̸=0

pl,t ≥ zr − k l ∈ L, r ∈ R. (11)

These two constraints together force the zr variables to have the correct values. To explain how

(10) and (11) work together, assume observation r ends up in leaf l. In this case,
∑k−1

h=0 dir(h, l, r) =

k, therefore (10) reduces to
∑

t∈T :t̸=0 pl,t ≤ zr and (11) reduces to
∑

t∈T :t̸=0 pl,t ≥ zr. If the clas-

sifier prediction of leaf l is (one of) the positive class(es), such that
∑

t∈T :t̸=0 pl,t = 1, zr will be

forced to equal 1. Using this same argument, zr is forced to 0 if the classifier prediction of leaf l

is the negative class. In case observation r does not end up in leaf l, both (10) and (11) become

inactive.
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Using the constructed zr variables we can easily create a constraint which bounds discrimi-

nation, by bounding the absolute difference in positive class probability for two sets of observa-

tions. We use two set of observations Rm and Rf which contain all male and female observations

respectively. Note that although we focus on gender discrimination in our study, the two sets

of observations can be chosen to represent any two groups for which discrimination might exist

between them. Now we add to (3)-(11) the following:∣∣∣∣∣∣ 1

nm

∑
r∈Rm

zr −
1

nf

∑
r∈Rf

zr

∣∣∣∣∣∣ ≤ ϵ, (12)

where nm and nf are the number of male and female observations respectively. The advantage

of this approach is that the feasible region becomes smaller because we have added constraints.

Furthermore, we can try different values for the discrimination tolerance ϵ to see which one

yields the best results in terms of discrimination and accuracy, giving rise to a trade-off between

these two objectives. We prefer this method over adding a similar discrimination term to the

objective function, as with this method we are able to bound discrimination explicitly.

In complete form, DA-DTIP is as follows:

min

n∑
r=1

er

s.t (3)− (12).

5 Empirical results

To verify the work of Verwer and Zhang (2017), we run standard DTIP using CPLEX (IBM

ILOG CPLEX (2014)) for data sets “Iris”, “Diabetes” and “Bank”, and like Verwer and Zhang

(2017) we use a time limit of 30 minutes. The results are presented in Table 3.

Table 3: Classification accuracies using DTIP for “Iris”, “Diabetes” and “Bank”, for depths

1-5. Optimal solutions are denoted by (*).

Data set d = 1 d = 2 d = 3 d = 4 d = 5

Iris 0.667* 0.960* 0.993* 1* 1*

Diabetes 0.75* 0.777 0.794 0.773 0.733

Bank 0.893* 0.895 0.887 0.115 0.115
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We manage to obtain similar results as Verwer and Zhang (2017), despite our different trans-

formed data. The only few minor differences are in the “Diabetes” and “Bank” data sets, where

for some depths the accuracy is a bit smaller or larger. This only is the case for solutions ob-

tained after running for the complete time frame of 30 minutes, indicating this might be due to

using different computers to run DTIP. In Table 3 we see that DTIP can find optimal decision

trees of depths 1-5 for the small data set “Iris”, however for larger data set “Diabetes”, it is only

able to do so for a depth of 1. Using depths 2-5, DTIP always runs until the time limit. For the

“Bank” data set, which is by far the largest set, we see that for depths 4 and 5, DTIP builds a

tree which is too large for CPLEX to find even a decently accurate solution within the time limit.

Now that we have verified the performance of DTIP, we run both DTIP and DA-DTIP for

the “Credit”, “Heart Disease” and “Titanic” data sets with a time limit of 30 minutes as well.

In DA-DTIP we use a discrimination tolerance of 5 percent as a quite strong upper bound,

so we can see the effect on accuracy with ease. Results are reported in Table 4. Note that

discrimination is computed as in the left-hand side of (12).

Table 4: Classification accuracies using DTIP and DA-DTIP for “Credit”, “Heart Disease”,

and “Titanic”, for depths 1-5. Optimal solutions are denoted by (*), and discrimination is

reported in parentheses. A tolerance level of ϵ = 0.05 is used in DA-DTIP.

Data set Method d = 1 d = 2 d = 3 d = 4 d = 5

Credit
DTIP 0.768* (0.083) 0.824* (0.082) 0.856 (0.085) 0.912 (0.072) 1* (0.128)

DA-DTIP 0.720* (0.026) 0.800* (0.046) 0.880 (0.012) 0.896 (0.035) 0.960* (0.042)

Heart

Disease

DTIP 0.764* (0.415) 0.798* (0.204) 0.855 (0.363) 0.848 (0.354) 0.842 (0.401)

DA-DTIP 0.687* (0.016) 0.778* (0.045) 0.771 (0.048) 0.838 (0.050) 0.818 (0.047)

Titanic
DTIP 0.779* (1.000) 0.816* (0.919) 0.826 (0.884) 0.838 (0.696) 0.798 (0.819)

DA-DTIP 0.622* (0.035) 0.669 (0.047) 0.666 (0.049) 0.645 (0.043) 0.596 (0.000)

We can clearly see the flexibility of DTIP from these results. When we impose a discrimina-

tion bound of no more than 5%, for “Credit” we observe only a slight decrease in accuracy for

tree depths 1, 2, 4, and 5. However, for depths 3 the tree even gains accuracy (due to using a

time limit) while also having less discrimination against females.

For “Heart Disease” we see that standard DTIP gives solutions with quite high discrimina-

tion. The probability for a male person to have a heart disease based on the diagnostic criteria
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is much larger than for females, which might indicate the presence of medical bias. However,

with DA-DTIP discrimination can be drastically decreased, while the decrease in accuracy is

much smaller, especially for depths 2, 4 and 5.

Finally, we see that there is extremely high discrimination against males in the “Titanic”

data set, indicating the ‘women and children first’ phenomenon might really be what saved a

lot of female lives, and lead to male deaths. Therefore bounding the discrimination at 5 percent

causes the accuracy to drop significantly for all depths. For depth 5, DA-DTIP is only able to

find a solution within the time limit where all passengers are predicted not to survive.

The point of including discrimination-awareness as a constraint in the formulation is that one

can vary the discrimination tolerance ϵ. In Figure 2 we show the accuracy-discrimination trade-

off for “Credit”, “Heart Disease”, and “Titanic” using a depth of 2 as an illustrative example.

The reason for using this depth is that DTIP is able to find optimal solutions within the time

limit for depth 2, which means we can compare DA-DTIP solutions with optimal DTIP solu-

tions. We plot the accuracy gap, being the difference between the optimal DTIP accuracy and

the DA-DTIP accuracy, against the discrimination tolerance ϵ.
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Figure 2: Accuracy-discrimination trade-offs for d = 2
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The accuracy gap for “Credit” between the optimal solution of DTIP and the solution of

DA-DTIP with zero discrimination is only 0.048. This can be explained that originally, the

discrimination level for the “Credit” data set was not that high, and therefore achieving a zero-

discrimination solution does not come at a large cost. For “Heart Disease” the accuracy gap

equals 0.094, which is in line with the higher discrimination levels of this data set. We see that

after increasing the discrimination tolerance to only 0.025, the gap to the optimal DTIP solution

is already more than halved. The same pattern can be seen for “Titanic”, but it is more subtle

than for “Heart Disease” and needs bigger jumps in the discrimination tolerance. As the original

discrimination level for “Titanic” is extremely high, the accuracy gap for ϵ = 0 is quite large.

Still, DA-DTIP is able to cut discrimination in half while bringing the accuracy gap below 5

percentage points. This shows that DA-DTIP can quite easily find solutions with significantly

less discrimination and close-to-optimal accuracy.

6 Conclusions

We have formulated the problem of discrimination-aware decision tree learning as an extended

version of the formulation of Verwer and Zhang (2017), where we add constraints which bound

discrimination explicitly. Our empirical testing in the context of gender discrimination shows

that we are able to decrease gender bias in the decision tree often by over 50% of the original level,

while the accuracy is only a few percentage points lower than the optimal accuracy obtained

using the formulation without discrimination-awareness. This can be achieved efficiently for trees

up to depth 5 and data sets with up to 1000 observations. In the future it could be interesting to

use heuristic solution as a warm start for the MIO solver, as such a solution initially might not

satisfy the desired maximum discrimination level. Furthermore, since we performed our tests

in-sample, a logical continuation would be to test our method out-of-sample to investigate its

generalization.
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A Appendix: Code description

The main programming language we used is Java. With IBM ILOG CPLEX (2014) we were

able to run DTIP and DA-DTIP in Java. Our code consists of 9 .java files. For each file, we

provide a short description:

1. DTIP.java: class used for solving standard DTIP for data sets “Iris”, “Diabetes” and

“Bank”.

2. DADTIP.java: class used for solving DA-DTIP for data sets “Credit”, “Heart Disease” and

“Titanic”. Note that it is also possible to run standard DTIP using this class by setting the

mode parameter to 0. Upon solving, the resulting discrimination level, together with the

positive class probabilities for males and females is printed as output next to the objective

value. This is different from DTIP.java as in that class only the objective value is printed,

because we do not consider discrimination for “Iris”, “Diabetes” and “Bank”.

3. Iris.java, Diabetes.java, Bank.java, Credit.java, Heart.java, Titanic.java: these classes read

the corresponding data set. In particular, they read the classification column and the
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attribute values. Using a method from Transform.java, the transformed attribute values

can be obtained.

4. Transform.java: class used mainly for the general data transformation method. This

method is used by all data set classes. Next to this, contains some minor functionalities

like getting a certain column from a matrix.

We performed the following runs to obtain our final results:

1. DTIP results for “Iris”, “Diabetes” and “Bank”: run DTIP.java with the target values

and attribute values for the desired data set, for depths 1-5. The input setups for all three

data sets are in the main method.

2. DTIP results for “Credit”, “Heart Disease” and “Titanic”: run DADTIP.java with mode

0, using the target values and attribute values for the desired data set, for depths 1-5. The

input setups for all three data sets are in the main method, one just has to provide 0 as

the mode parameter in the solve method.

3. DA-DTIP results for “Credit”, “Heart Disease” and “Titanic”: run DADTIP.java with

mode 1 and epsilon is 0.05, using the target values and attribute values for the desired

data set, for depths 1-5. The input setups for all three data sets are in the main method,

one just has to provide 1 as the mode parameter and 0.05 as the epsilon parameter in the

solve method.

4. Accuracy-discrimination trade-off for “Credit”: run DADTIP.java for all ϵ ∈ {0, 0.01, 0.02, 0.03,

0.04, 0.05, 0.06, 0.07, 0.08, 0.082}, using a depth of 2 and mode 1. This grants 10 classifica-

tion accuracies. Using the optimal accuracy of standard DTIP of 0.824, one can compute

the accuracy gap for each of these 10 discrimination tolerances. These resulting data can

be used to create a plot of the accuracy-discrimination trade-off for “Credit”.

5. Accuracy-discrimination trade-off for “Heart Disease”: run DADTIP.java for all ϵ ∈

{0, 0.025, 0.05, 0.075,

0.1, 0.125, 0.15, 0.175, 0.2, 0.204}, using a depth of 2 and mode 1. This grants 10 classifica-

tion accuracies. Using the optimal accuracy of standard DTIP of 0.798, one can compute

the accuracy gap for each of these 10 discrimination tolerances. These resulting data can

be used to create a plot of the accuracy-discrimination trade-off for “Heart Disease”.

19



6. Accuracy-discrimination trade-off for “Titanic”: run DADTIP.java for all ϵ ∈ {0, 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.919}, using a depth of 2 and mode 1. This grants 11 classifica-

tion accuracies. Using the optimal accuracy of standard DTIP of 0.812, one can compute

the accuracy gap for each of these 11 discrimination tolerances. These resulting data can

be used to create a plot of the accuracy-discrimination trade-off for “Titanic”.

Note that all .java files are well-documented, so complete descriptions of the functionalities of

each .java file can be found in the Javadoc of these files.
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