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1 Introduction

In the era of ’Big Data’, increasingly more and larger data sets are available, more comput-

ing power is widely obtainable and accurate forecasting becomes of even greater importance.

Therefore, the need for methods which can deal with these types of data sets, meaning data

sets with large numbers of variables relative to the number of observations, has greatly in-

creased. Two examples of such data sets are (i) data sets on cross-country GDP growth as used

in Barro & Lee (1994) or Fernandez et al. (2001) among many others or (ii) data sets which

try to explain classic macroeconomic variables like GDP growth or Industrial production in a

single country using large numbers of explanatory variables as in Stock & Watson (2002) using

the data obtained from Fred-MD1. Large numbers of macroeconomic variables across all fields

of macroeconomics and over many different time periods are measured throughout the world.

However, these variables are usually only reported on a monthly, quarterly or even yearly basis.

This, in combination with the large number of possible explanatory variables in macroeconomic

data sets, leads to an issue which is commonly referred to as high-dimensionality, which means

that the number of regressors is relatively large compared to the number of observations. For

high-dimensional data, classical regression methods like OLS perform extremely poorly, necessit-

ating the development of other methods which are able to deal with this type of data adequately.

A class of methods which is particularly suited to deal with high-dimensional data is the class

of Bayesian econometric methods, which has led to Bayesian econometric methods becoming

growingly popular in the field of empirical macroeconomics (Koop (2017)).

An ongoing debate within the Bayesian econometric academic community, started by Gian-

none et al. (2021a), discusses the question whether data sets in the economic fields of finance,

microeconomics and macroeconomics are better described by so-called dense models, which in-

clude many predictors in the model and heavily shrink these or by so-called sparse models,

which select fewer variables and apply less shrinkage to these variables (Chernozhukov et al.

(2017)). Giannone et al. (2021a) state that there is an ’Illusion of Sparsity’, meaning that while

many methods used regularly in Bayesian econometrics assume some degree of sparsity of the

data a priori, most economic data sets actually tend more towards density. In this paper the

work of Giannone et al. (2021a) will be replicated specifically for two macroeconomic data sets
2 to check whether the same conclusions regarding the sparsity or density of these data sets are

reached. Then, we will analyze whether incorporating insights from the fields of macroeconom-

ics and macroeconometrics into the general framework of Giannone et al. (2021a) impacts the

conclusions drawn regarding the sparsity or density of these macroeconomic data sets.

To elaborate on this, we will first go into more detail on the field of Bayesian macroe-

conometrics. Following Del Negro (2011), Bayesian macroeconometric methods can be roughly

divided into three categories, which correspond to Bayesian approaches widely used in the field

of empirical macroeconometrics. These are Bayesian Vector Autoregressions (BVAR), Dynamic

Stochastic Equilibruim Models (DGSE) and Dynamic Factor Models (DFM). Below, we will go

into further detail on the general intuition of BVAR models and DGSE models and specifically

1see McCracken & Ng (2016)
2These are the data sets used in Stock & Watson (2002) and Barro & Lee (1994), which are elaborated on in

Section 2.
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on the ways in which prior information is incorporated into these types of models.

Starting with the DGES models, Del Negro (2011) states that DGSE models are generally

defined as a broad class of dynamic macroeconomic models, spanning the basic neo-classical

growth model of King et al. (1988), but also the monetary model developed by Christiano et al.

(2005). A common feature in these models is that decision rules are derived from assumptions

on several economic factors by solving intertemporal optimization problems, where uncertainty

in the productivity of factors is created through exogenous stochastic processes. Condition-

ing on distributional assumptions on these exogenous shocks, a joint probability distribution

function can be derived for the endogenous variables. This likelihood can then be used in a

Bayesian model framework to obtain a posterior distribution for the structural model paramet-

ers. Within the literature on Bayesian DGSE models informative priors are a standard practice.

For example, a good way to include information which is not reflected in the joint likelihood

function is to incorporate this information into a prior distribution. Del Negro (2011) iden-

tifies three possible sources from which such a prior distribution could be elicited, namely (i)

information from macroeconomic series other than the evaluated variables over the same time-

period, (ii) micro-level observations which contain information on the macro-level variables and

(iii) macroeconomic data from years before the sample period. It is of course crucial that this

information is independent from the dependent variable.

The use of the so-called Vector Autoregression (VAR) in macroeconomics began when Sims

(1980) proposed that VARs should be used for empirical macroeconomic analysis rather than

the large-scale macroeconometric models inherited from the decades before. According to Sims

(1980), these models imposed incredible restrictions, which were not consistent with the actual

macroeconomic reality. He also suggested that Bayesian methods could improve the estimation

of model coefficients compared to frequentist methods. BVARs were first applied to forecasting

by Litterman et al. (1979) and Doan et al. (1984), preparing the ground for a large body of

research in the following decades. To give a more general overview of all different methods and

specifications which have been researched over the past decades, we refer to Karlsson (2013) for

an extensive survey of BVARs with a focus on forecasting. Canova (2007) provides an overview

of VARs and BVARs in the context of applied macroeconomic research methods. Additionally,

Del Negro (2011) provides a clear framework for the different ways in which BVARs can be used

and explains these in the context of other Bayesian Macroeconometric methods. An aspect of

BVAR methods which will be further elaborated on here is prior selection and inference. A com-

monly used prior in the BVAR framework is the ’Minnesota’ prior, first proposed by Litterman

(1980) and Doan et al. (1984) and evaluated and corroborated in Litterman (1986). The basic

intuition of this prior is that most macroeconomic variables can be reasonably approximated

by a random walk with drift. Furtermore, it incorporates very general economic beliefs on the

behaviour of economic time-series. For example, it assumes that the own lags of a variable are

more informative than the lags of other variables and that recent lags are more informative than

distant lags. The Minnesota prior can be implemented using dummy observations, an insight

which dates back to Theil & Goldberger (1961). In the spirit of using economic theory in the

determination of priors, Giannone et al. (2019) suggest theory-based priors on the long-run of

persistent variables as to provide guidance on the long run joint dynamics of macroeconomic
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variables. Another interesting method of prior selection bridges the BVAR approach and the

aforementioned DGSE models. First proposed by Ingram & Whiteman (1994) and later general-

ized by Del Negro & Schorfheide (2004), the broad idea is to construct prior distributions based

on the restrictions which a DGSE model implies for the VAR coefficients. Other possible priors

for BVAR are priors which, rather than using economic theory and intuition, focus on model

selection or try to impose sparsity. This class of so-called sparse priors is much larger than the

literature on BVARs alone. To elaborate further on these sparse priors, a short overview of the

literature on this subject will be given below.

The basic idea of so-called sparse models is to select a relatively small number of non-zero

parameters and set the rest of the parameters to zero. An example of this is the well-known lasso

method. The lasso method was first proposed by R. Tibshirani (1996) for regular regressions

and imposes an ℓ1 penalty for both fitting and penalization of the coefficients. Park & Casella

(2008) adapted the lasso method to a Bayesian framework, stating that the lasso estimate in a

linear regression framework can be interpreted as the estimate of the posterior mode when the

regressors have independent Laplace priors. Over the years many variations and adaptations

of the original lasso method have been proposed which have subsequently been adapted into

Bayesian frameworks. An example of one of these adaptations is the very widely used Elastic

Net Zou & Hastie (2005), which uses a combination of an ℓ1 and ℓ2 term for penalization. The

elastic net was then adapted into a Bayesian framework by Li & Lin (2010). Yuan & Lin (2006)

proposed the Grouped Lasso method, which allows certain groups of (categorical) predictors

to be included and excluded only together. The grouped lasso was adapted into a Bayesian

framework by Raman et al. (2009) and Xu & Ghosh (2015). R. J. Tibshirani (2011) proposed

the Generalized Lasso, which is - as the name suggests - a generalized form of the original lasso

of R. Tibshirani (1996) in which structural constraints can be imposed through the use of a

so-called specify penalty matrix. This matrix is equal to I in the standard lasso case. Yet

another variant is the so-called Square Root Lasso, first proposed by Belloni, Chernozhukov &

Wang (2011). The square root lasso is meant for problems in which the number of possible

regressors is very large, but the number of significant regressors is expected to be relatively

small. Furthermore, methods were developed specifically within the Bayesian framework rather

than being adapted from a standard regression framework. An example of this is the horseshoe

prior put forward by Carvalho et al. (2010), which uses a prior based on multivariate-normal

scale mixtures and is able to deal with the shortcomings of pure ℓ1 or ℓ2 penalization due to the

unique, horseshoe-like, shape of the distribution. Piironen & Vehtari (2017) extend upon the

horseshoe prior and propose the so-called regularized horseshoe prior, which allows specification

of a minimum amount of regularization to the largest values.

The introduction of sparse priors brings us back to the discussion regarding the sparsity or

density of economic data mentioned before. Chernozhukov et al. (2017) pose that the spectrum

Bayesian methods can broadly be divided into two categories, namely sparse models and dense

models. A fairly extensive overview of the many sparse methods has been given above. Dense

methods, on the other hand, rather than selecting a small number of larger coefficients, consist

of a very large number of coefficients which are heavily shrunk towards zero, but are not equal

to zero. An example of a dense method is ridge regression, first proposed by Hoerl & Kennard
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(1970), which applies ℓ2 penalization. Another example is Dynamic Factor Modeling, already

briefly mentioned above, which is based on the belief that the behaviour of macroeconomic

variables is driven by several unobserved underlying factors, of which principal components are

an often-used example.

Giannone et al. (2021a) set out to determine whether economic predictive problems are

more likely to be characterized by a sparse or a dense model. They formulate a very general

model including two hyperparameters q and γ which correspond to the probability that a cer-

tain variable is included in the model and the level of shrinkage which is then applied to this

coefficient respectively. A more technically detailed explanation of this model is given in Section

3.1. Giannone et al. (2021a) then apply this model to six widely used data sets in the fields

of microeconomics, finance and macroeconomics and evaluate the posterior densities of the hy-

perparameters. They conclude that for almost all data sets, except one microeconomic data

set, the data sets tend more towards density than sparsity. Seeing that, as was shown before,

many of the newer proposed Bayesian methods assume some form of sparsity, Giannone et al.

(2021a) conclude that there is an ’Illusion of Sparsity’ in the academic sphere. Furthermore,

Giannone et al. (2021a) show that model uncertainty, expressed through the hyperparameter

q, the probability of inclusion, is extremely persistent and they accordingly stress the relevance

and importance of using model averaging methods rather than model selection methods in fore-

casting exercises. The debate on the veracity of these claims is still ongoing. For example, Fava

& Lopes (2021) pose that the approach of Giannone et al. (2021a) is not consistently able to dis-

tinguish randomly generated predictors from the real data and show that the results regarding

the level of density are sensitive to the choice of prior distribution. Gruber & Kastner (2022)

state that the level of sparsity or density varies between data sets and time frames and touch

upon the potential of dynamic model averaging to combat this issue.

Over the past years, the importance and effects of properly modeling the prior distributions

when using Bayesian methods have become more and more clear (Gelman et al. (2017), Betan-

court (2021), Team (2017)). Whereas before it was often standard practice to choose a prior to

be as uninformative as possible, Gelman et al. (2017) state the following:

We view much of the recent history of Bayesian inference as a set of converging mes-

sages from many directions—theoretical, computational, and applied—all pointing

towards the benefits of including real, subject-matter-specific, prior information in

order to get more stable and accurate inferences

Of course, as was discussed earlier, many of the methods used in Bayesian macroeconomet-

rics, specifically with respect to BVARs and DGSE models already implement economic intuition

and theory heavily in the elicitation of priors. Taking this general sentiment into account and

building on widely established practices in the field of Bayesian macroeconometrics, we will

adapt the approaches formulated by Giannone et al. (2021a) specifically for the macroeconomic

data sets3 they use by incorporating macroeconomic domain expertise into the elicitation of the

priors of this framework and the general set-up of the framework. Then, the effects of incor-

porating macroeconomic expertise on the behaviour of the prior and posterior distribution of

3These are a data set on US industrial production used among others by Stock & Watson (2002) and a data
set on cross-country GDP, see Barro & Lee (1994), these will be further explained in Section 2.
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the hyperparameters q and γ will be analyzed. Specifically, the effects of changing the prior

distributions of the ’first layer’ model parameters and the effect of ’fixing’ certain variables so

they will always be included in the model will be analyzed. The results with respect to the prior

and posterior distribution of the hyperparameters will then be compared to the original model

proposed by Giannone et al. (2021a) and accordingly we will discuss whether the conclusions of

Giannone et al. (2021a) regarding the sparsity or density of these data sets can be corroborated

when the proposed changes are made.

We find that using a t-distribution as a prior on β instead of a normal distribution leads

to sparser models for the two macroeconomic data sets, extremely so in case of data set on

cross-country GDP growth. On the other hand, always including certain variables based on a

benchmark of the posterior probability of inclusion leads to significantly denser representations.

In contrast to this effect, always including variables based on macroeconomic theory has a very

limited effect on the results.

This paper adds to the existing literature by expanding upon the original framework of

Giannone et al. (2021a) by incorporating macroeconomic domain expertise into the formulation

of the priors and evaluating the effects of doing so on the conclusions. This paper adds in a

practical sense to the growing body of literature advocating for the use of more informative priors

by evaluating the effects of incorporating more informative priors in practice. Lastly this paper

adds to the ongoing ’Illusion of Sparsity’ debate by evaluating whether the original conclusions

of Giannone et al. (2021a) are corroborated in these more specific cases. To this end, first the

results regarding the prior and posterior distribution of the two macroeconomic data sets used

in Giannone et al. (2021a) are replicated, and then the proposed strategies are implemented and

the results evaluated. In Section 2 the relevant data sets will be explained. Finally in Section

3.1 and 3.2 the original framework of Giannone et al. (2021a) and the proposed adaptations will

be discussed respectively. In Section 4 the results will be discussed and finally in Section 5 some

concluding remarks will be given.

2 Data

In this research two data sets which are also analyzed in the research of Giannone et al.

(2021a) are considered. Specifically, two data sets which correspond to macroeconomic data are

considered, referred to as Macro 1 and Macro 2 by Giannone et al. (2021a). In the rest of this

paper these data sets will be referred to in the same manner.

The first of these is a data set first used by Stock & Watson (2002) in order to forecast

US industrial activity using principal components. The dependent variable is the monthly

growth rate of industrial production in the United States and the set of possible explanatory

variables consists of 130 macroeconomic indicators. All the data have been transformed to obtain

stationarity. This data set is available at FRED-MD and is regularly updated, the most recent

version contains data up to April 2023. For the purpose of comparability, the same sample

period as in Giannone et al. (2021a) is used, which ranges from February 1960 to December

2014. We obtain the data set from the replication material of Giannone et al. (2021a).
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The second data set considered is a data set on the cross-country determinants of long-term

economic growth, a large range of which have been collected in the data set constructed by Barro

& Lee (1994). The data set contains data for 90 countries, the dependent variable is average GDP

growth over the period 1960-1985 and the 60 possible explanatory variables correspond to pre-

1960 values of varying measures of institutional, geographic and socio-economic characteristics.

We obtain this data set from the replication material of Giannone et al. (2021a), who in turn

obtain it from the replication material of Belloni, Chernozhukov & Hansen (2011).

3 Methodology

In this paper, the basic model proposed by Giannone et al. (2021a) is used and expanded

upon. In section 3.1 the model proposed in Giannone et al. (2021a) will be laid out. In section

3.2 different ways to adapt this basic framework in order to incorporate macroeconomic theory

and intuition will be explained and discussed.

3.1 Model Giannone et al. (2021a)

Giannone et al. (2021a) consider the following model to predict response variable yt:

yt = u′tϕ+ x′tβ + εt, (1)

where ut and xt are vectors of regressors with dimension l and k respectively, generally it holds

that l ≪ k, and variance is normalized to 1. εt denotes an i.i.d. normally distributed error term

with mean zero and variance equal to σ2. Here ut represents the set of variables that always

must be included in the model, thus ϕ is never exactly equal to zero. xt represents the set of

variables which may be useful as predictors, but are not necessarily so, thus some elements of β

may be zero.

The following priors are specified for the distribution of the unknown coefficients ϕ, β, σ2:

p(σ2) ∝ 1

σ2
, (2)

ϕ ∼ flat, (3)

βi|σ2, γ2, q ∼

N (0, σ2γ2) with pr. q,

0 with pr. 1− q,
i = 1, ..., k. (4)

The priors for σ2 and ϕ are relatively standard and uninformative. Each element of β is nor-

mally distributed with the same variance with probability q or zero with probability 1 - q. The

hyperparameter γ2 determines the level of shrinkage which is applied to the parameters included

in β. Giannone et al. (2021a) also propose a different formulation of the prior distribution of βi,

namely βi|σ2, γ2, q ∼ N (0, σ2γ2vi), i = 1, ..., k, with vi ∼ Bernoulli(q). This formulation high-

lights the relation between this model and alternative specifications adopted in earlier literature.
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Giannone et al. (2021a) state that for example, setting q = 1 corresponds to the Bayesian ridge

regression and replacing the Bernoulli distribution of vi with an exponential, shifted exponential,

half-Cauchy or truncated Gamma density allows us to get the Bayesian lasso, lava, horseshoe,

and elastic net methods respectively4.

To determine a prior on the hyperparameters q and γ2 the following mapping is defined:

R2(γ2, q) =
qkγ2v̄x

qkγ2v̄x + 1
. v̄x is the predictors’ average sample variance, in this scenario equal to

1 due to the standardization of regressors x. The independent priors on q and R2 are specified

as follows:

q ∼ Beta(a, b), (5)

R2 ∼ Beta(A,B). (6)

For q we set a = b = 1, which corresponds to the uniform distribution. The R2 is also assigned

a Beta distribution with A = B = 1, which again corresponds to the uniform distribution. The

posterior distributions of the different parameters are calculated using the Markov Chain Monte

Carlo algorithm proposed by Giannone et al. (2021a). This algorithm is described in detail in

the Appendix of Giannone et al. (2021a).

3.2 Incorporating economic theory and intuition

There are different methods to incorporate macroeconomic theory or intuition into the basic

model of Giannone et al. (2021a). The two methods which will be discussed and analyzed in this

paper are (i) changing the prior distributions of model parameters and (ii) forcing theoretically

relevant parameters to always be included in the model. In the rest of this section these two

approaches will be described in more detail.

3.2.1 Prior distribution of β

In their paper, Giannone et al. (2021a) note that a misspecification of the distribution of

non-zero coefficients may lead to a poor performance of their approach:

The drawback of this approach, however, is that it might perform poorly if our

parametric assumption is not a good approximation of the distribution of the non-

zero coefficients

Although in a supplement to their paper, Giannone et al. (2021b) perform a simulation ex-

periment on the effectiveness of their approach when the true DGP differs from the normal

distribution, they do not explore any alternative prior distributions for β applied to the actual

data. Imposing a normal distribution as a prior on β might have the effect of concentrating

the posterior distribution of β around zero and not allowing for any large values to ’escape’ the

shrinkage. Considering that there is usually a high degree of collinearity between the regressors

in macroeconomic data sets as mentioned by Hendry (2018) and Giannone et al. (2021a), it

might thus be interesting to impose a prior distribution with fatter tails on β. This allows for

4See Park & Casella (2008), Chernozhukov et al. (2017), Carvalho et al. (2010) and Li & Lin (2010) respectively.
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larger coefficient values to escape, which subsequently could lead to a denser specification if

these larger coefficients are still able to explain the data well. A suitable prior distribution to

allow for fatter tails is the t-distribution. An efficient method to incorporate this adapted prior

into the MCMC algorithm is the so-called latent variable representation of the t-distribution,

discussed by Van Erp et al. (2019) Chan (2017) and Griffin & Brown (2005) among others.

Specifically, following Fava & Lopes (2021) the prior distribution of βi|σ2, γ2, q originally

proposed by Giannone et al. (2021a) and discussed in Section 3.1 is changed to the following:

βi|σ2, γ2, λ2
i , q ∼

N (0, σ2γ2λ2
i ) with pr. q,

0 with pr. 1− q,
i = 1, ..., k. (7)

Where the prior distribution of λ2
i is set to an Inverse-Gamma distribution such that:

λ2
i ∼ IG(

ν

2
,
ν

2
) (8)

It can then be shown that:

βi|σ2, γ2, q ∼

tν(0, σ
2γ2) with pr. q,

0 with pr. 1− q,
i = 1, ..., k. (9)

Following Fava & Lopes (2021), we redefine v̄x as:

v̄x ≡ E[σi,i]
ν

ν − 2
(10)

With this redefinition, the conditional posterior distributions of R2, q, ϕ, z and σ2 are unchanged

(Fava & Lopes (2021)). The conditional distribution of βi after incorporating these changes is

as follows:

βi√
λ2
i

:= β∗
i |Y, ϕ, σ2, R2, q, z ∼

tν(0, σ
2γ2) with pr. q,

0 with pr. 1− q,
i = 1, ..., k. (11)

Lastly, the conditional distribution of λ2
i is given by:

λ2
i |v, βi, σ2, R2 ∼ IG(

ν + 1

2
,
ν + β2

i /σ
2γ2

2
) (12)

We extend the algorithm proposed in the Appendix of Giannone et al. (2021a) using the

adaptations proposed above to set a t-distribution as prior distribution for β. Following Fava

& Lopes (2021), we do not try to learn an optimal value for ν, since the goal of this research

is to evaluate the effect of setting a different prior distribution on the conclusions regarding the

sparsity or density of the data rather than to find an optimal predictive model. Thus, as in Fava

& Lopes (2021) we present results for ν=4, 10, 30 and 100. An interesting avenue for further

research would be to leave ν as unknown and determine the optimal degrees of freedom for the

distribution of β through the data.
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3.2.2 Theoretically relevant variables

Within the model of Giannone et al. (2021a) it is relatively simple to ’force’ theoretically

relevant variables to always be included in the model. That is, by moving certain variables from

xt to ut these variables will always be included in the model. This allows us to investigate the

effects of always including these variables on the conclusions regarding the sparsity or density

of the data. As was discussed in Section 3.1, the parameter paired to the variables included

in ut is ϕ. The prior on ϕ in the model of Giannone et al. (2021a) is flat. For completeness,

we investigate the effects of changing the prior on ϕ in the scenario where more variables are

included in ut. Specifically the prior for ϕ is defined as follows:

ϕ ∼ N (1, σ2) (13)

We use this specification to stay close to the original model of Giannone et al. (2021a). We

choose a mean of 1 instead of zero for this specification, since we assume that the variables

included in ut are meaningful and thus should not be shrunk towards zero. However, we find

that using a normal prior instead of a flat prior on ϕ does not meaningfully change any of the

results, similarly so when the mean is set to zero. Therefore, the results using a normal prior on

ϕ are not included in this paper. For completeness and for possible future reference, we include

the derivation for the posterior distribution of ϕ using the above prior in Appendix A.

In this paper two different methods to determine which theoretically relevant variables should

always be included in the model are proposed. One method which is based on macroeconomic

theory and one method which uses insights and intuition from the field of Bayesian macroe-

conometrics. Both will be described below, starting with the method based on macroeconomic

theory.

Hendry & Johansen (2015), in the spirit of Haavelmo (1944), pose that a macroeconomic

model should always include certain explanatory variables which are based on economic theory

and should additionally include a set of explanatory variables which might be zero, and of which

the decision of inclusion is purely based on data. Following this line of reasoning, for both

data sets we determine the variables which should be moved from xt to ut based on theoretical

literature on the respective topics of these data sets.

We start by determining the theoretically relevant variables for the Macro 1 data set5. In

this data the US industrial production is considered as the dependent variable, and thus US

industrial production is also our variable of interest with respect to theoretical literature. Shi et

al. (2018) pose that the slope of the yield curve is a potentially important explanatory variable

with respect to explaining real economic growth and in predicting recessions6. They propose

using the following economic phenomena to explain real macroeconomic growth7: inflation,

monetary policy interest rate and yield curve spread. Following Shi et al. (2018) these general

macroeconomic effects can be proxied by the core consumer price index, effective federal funds

rate, and the difference between the 10-year rate and the federal funds rate respectively. Using

5see Section 2
6See also Stock & Watson (1989), Estrella & Hardouvelis (1991), Plosser & Rouwenhorst (1994)
7Here US industrial production is considered to be a proxy for real macroeconomic growth
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the findings of Shi et al. (2018), we thus choose to move the variables corresponding to the core

consumer price index, the effective federal funds rate and the difference between the 10-year

treasury note yield and the effective federal funds rate from xt to ut. These three variables and

their corresponding codes and column numbers in the Fred-MD index are shown in Table 1.

Table 1 This table shows ID’s, FRED Codes and descriptions for the variables of the Macro 1 data set which
are added to ut based on the results derived by among others Shi et al. (2018)

ID8 FRED Code Description9

83 FEDFUNDS Effective Federal Funds rate

97 T10YFFM
Difference between the 10-year rate and the

Federal Funds rate

111 CPIAUCSL Total consumer price index

To determine which variables should be added to ut for the Macro 2 data set, we use the

results obtained by Barro & Lee (1994). They find that a combination of (i) variables which

concern human capital, (ii) variables related to investment and government spending, and (iii)

variables related to political stability and corruption have a significant effect on cross-country

GDP growth. Building on the findings of Barro & Lee (1994), we choose to move the variables (i)

Total year of secondary education, Life expectancy, (ii) Ratio of total investment to GDP, Ratio

of total government expenditure to GDP, (iii) Black market premium and Political instability

from xt to ut. In Table 2 an overview of these variables, their place in the data set and a short

description is given.

Table 2 This table shows ID’s, Codes and Descriptions for the variables of the Macro 2 data set which are added
to ut based on the results derived by Barro & Lee (1994).

ID Code Description10

3 bmp1l Black market premium

17 lifee065 Life expectancy

21 invsh41 Total investment to GDP ratio

26 govsh41 Goverment expenditure to GDP ratio

43 pinstab1 Political instability

54 syr65 Total years of secondary education (male and female)

Another method, using intuition from Bayesian macroeconometrics, to determine which vari-

ables should always be included in the model is based on the intuition behind prior selection

for GGSE models, as described by Del Negro (2011). Del Negro (2011) notes that a common

practice to obtain prior information in a more literal way is to look at the data in the period

before the sample period. Taking the intuition behind this approach we want to include the

8These ID’s do not perfectly match the ID’s denoted in the Appendix of McCracken & Ng (2016) as some
columns are removed due to lack of data.

9Based on the Appendix of McCracken & Ng (2016).
10Data on codes and descriptions is obtained from a readme on the Barro & Lee (1994) data set provided by

the NBER, see http://www2.nber.org/pub/barro.lee/readme.txt.

10

http://www2.nber.org/pub/barro.lee/readme.txt


variables which were overall most likely to be included in the original model. Specifically, we

look at the posterior probabilities of inclusion of the predictors obtained through the results of

the original model. If a variable has a large posterior probability of inclusion, it was included

into the model a large amount of time. If a variable is included often, it is intuitive to say that

these variables, based on the data, should be informative. Using this line of reasoning, we will

select which variables to move from xt to ut based on the posterior probability of inclusion of

that particular variable in the results of the original model of Giannone et al. (2021a). To get

these posterior probabilities of inclusion, which are also shown in the heatmap of Figure 3, we

evaluate z̄i, the average of the values of zij over the total number of draws of predictor i. For

each predictor and each draw, zij is defined as follows:

zij =

1 if variable i is included in the model in draw j,

0 otherwise
i = 1, ..., k, j = 1, ...,M −N. (14)

Thus z̄ has the intuitive interpretation as the percentage of times a certain variable is included

in the model, for example a value of z̄ of 0.85 would mean that a variable was included in the

model in 85% of the total number of runs of the model. To determine which variables should

be included as elements of ut, a benchmark for z̄i is determined. If z̄i is above this benchmark,

variable i will be added to ut. In this research we evaluate four benchmarks for z̄i, namely 0.80,

0.90, 0.95 and 0.99. The latter three of these benchmarks correspond to the significance levels

generally considered in the literature, namely 10%, 5% and 1% respectively. As the data of the

Macro 2 data set only has one variable which has a value for z̄ above 0.95 and none above 0.99,

we also analyze the results using a benchmark for z̄i of 0.80. Table 3 and Table 4 show for the

Macro 1 and Macro 2 data sets respectively which variables are included in ut for the different

benchmarks.

Table 3 This table shows ID’s, FRED Codes, descriptions and values for z̄ for the variables of the Macro 1 data
set which are added to ut based on the determined benchmarks for z̄. *, **, *** and **** show that a value is
larger than the benchmark of 0.80, 0.90, 0.95 and 0.99 respectively.

ID CODE Description z̄

39 NDMANEMP All employees - non-durable goods 0.9933****

61 NAPMNOI ISM: New Orders Index 0.9695***

125 CES2000000008 Avg Hourly earnings: Construction 0.9102**

109 NAPMPRI ISM Manufacturing: Prices Index 0.9012**

32 CLAIMSx Initial Claims 0.8532*

92 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 0.8157*
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Table 4 This table shows ID’s, Codes, and values for z̄ for the variables of the Macro 2 data set which are added
to ut based on the determined benchmarks for z̄. ·, ·· show that a value is larger than the benchmark of 0.80 or
0.95 respectively.

ID Code Description z̄

1 bmp1l Black market premium 0.9759··
7 p65 Total enrolment primary education 0.8100·
22 gde1 Ratio of government spending to defense expenditure 0.8009·

4 Results

The results obtained will be laid out in two parts. First, the results related to the prior

and posterior distribution and values of q and γ obtained by Giannone et al. (2021a) will be

replicated for the data sets Macro 1 and Macro 2, discussed in Section 2. These results are

shown in Section 4.1. Then, the results obtained by applying the different methods discussed in

Section 3.2 are shown in Section 4.2

4.1 Replication

In Figure 1 the prior and posterior distribution of q and log(γ) for the Macro 1 and Macro

2 data sets is shown. These results are obtained using the model specifications as discussed in

Section 3.1 and are thus a replication of the results obtained by Giannone et al. (2021a). By

construction, q and log(γ) are negatively correlated a priori. This reflects the prior belief that

shrinkage and sparsity are substitutes when it comes to dealing with dimensionality. In Figure 1

it becomes clear that the posterior joint distribution of q and γ is much more concentrated than

the prior distribution and that the negative correlation which was implied a priori is also present

a posteriori and even seems to be more strongly present. Furthermore, it is interesting to note

that the posterior distribution of the Macro 1 data set is concentrated around lower values for

q than the Macro 2 data set. These results corroborate the conclusions drawn by Giannone et

al. (2021a).
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Figure 1. Contours of the prior and posterior distribution of q and log(γ).

The difference between the posterior distributions of q of the Macro 1 and Macro 2 data sets

becomes even more clear when looking at Figure 2. The curve of the posterior distribution of

q for the Macro 1 data set has a nice bell shape which peaks at values for q between 0.2 and

0.3. On the other hand, the curve of the posterior distribution for the Macro 2 data set trends

steadily upwards and peaks at q = 1. Thus, it seems that a denser model in which (almost) all

variables are included is more suitable when explaining the Macro 2 data, while the Macro 1

data is better explained by a smaller – though still sizable – subset of the explanatory variables.

In the case of the Macro 1 data set, where optimally a subset of the explanatory variables is

included, it is thus particularly interesting whether it can be determined which variables should

actually be included. Again, these results corroborate the analysis of Giannone et al. (2021a).
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Figure 2. Posterior density of q.

In Figure 3 the probabilities of inclusion for each predictor are plotted. A lighter colour

means that a specific predictor is included relatively less often in the model. Figure 3 shows

that there is a lot of uncertainty about which variables should actually be included in the

model. For example, in the Macro 1 case there is not even a single variable which is (almost)

never included, as no predictor shows a white bar, which would suggest a posterior probability

of inclusion close to zero. Some predictors do seem to be included most of the times, shown by

the darker bars Figure 3. For the Macro 2 data, the posterior q’s are all relatively large and

no clear pattern arises on predictors which are included significantly more often, except for the

first variable. As was stressed by Giannone et al. (2021a), these figures show that the level of

model uncertainty is very large, which makes the use of model averaging methods over model

selection methods even more relevant in predictive exercises.
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Figure 3. Heat map of the probabilities of inclusion of each predictor.

Finally, Figure 4 shows the probability of inclusion of each predictor conditional on every

possible value for q. Again, darker colours signify a larger probability of inclusion, the white-

and-black dotted line corresponds to the posterior mode of q. The graphs in Figure 4 show

quite clearly that assuming a priori that a model is sparse – and thus that q is low – induces

sparser results a posteriori. It is interesting to note that even with very harsh assumptions on

the sparsity of a model, there is still relatively much uncertainty with regards to which variables

should be included, which is again in line with the conclusions drawn by Giannone et al. (2021a).
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Figure 4. Heat map of the probabilities of inclusion of each predictor, conditional on q. The horizontal dashed
line denotes the posterior mode of q.

4.2 Extension

In this section the results are shown for the approaches laid out in Section 3.2. Specifically,

in Section 4.2.1 the results corresponding to the changes made to the prior of β proposed in

Section 3.2.1 are discussed. In Section 4.2.2 the results of always including theoretically relevant

variables as explained in Section 3.2.2 will be shown. In order to compare the results of these

different implementations and the original results of Giannone et al. (2021a), the figures shown

in Section 4.1 are recreated for the newly applied methods. The figures relevant for discussion

and interpretation are shown in the paper, the full set of resulting figures is shown in Appendices

B and C.

4.2.1 Prior distribution of β

The contours of the prior and posterior density of q and log(γ) for the model in which the

prior distribution of β is a t-distribution are shown in Figure 5 for the Macro 1 data set and in
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Figure 6 for the Macro 2 data set. Note that in Figure 5 the results for degrees of freedom ν

equal to 4, 10, 30 and 100 are shown while in Figure 6 results for degrees of freedom ν equal

to 4, 30, 100 and 2000 are shown. This is due to the fact that the results for the Macro 2 data

set with a prior t-distribution show extreme sparsity for lower degrees of freedom and thus the

figures for ν equal to 4, 10 and 30 are the same. As this does not lead to a very interesting

analysis, the results for ν equal to 2000 are shown for comparison with the original results of

Giannone et al. (2021a) with a normal prior distribution on β, as the t-distribution tends to a

normal distribution when the degrees of freedom become large.
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Figure 5. Contours of the prior and posterior density of q and log(γ) for the model in which a prior with
t-distribution with degrees of freedom ν equal to 4, 10, 30 and 100 in Subfigure 5a, 5b, 5c and 5d respectively.

In Figure 5 we see that setting a prior t-distribution on β leads to a sparser representation

when compared to the results shown in Figure 1. Furthermore, the negative relation between the

probability of inclusion q and the level of shrinkage γ becomes less negative. Finally, the plots

are more concentrated towards the bottom right side of the figure. We can see from Figure 5

that setting the t-distribution as a prior on β leads to a sparser representation and relatively less

shrinkage when compared to the original model of Giannone et al. (2021a). When comparing

the subfigures, it becomes clear that as ν becomes larger, the model becomes less sparse, the

negative relation between q and γ becomes more pronounced and more shrinkage is applied. In

short, as the degrees of freedom of the prior t-distribution increase, the figures start tending

towards the original results shown in Figure 1, which is to be expected, since the t-distribution

tends towards the normal distribution when the degrees of freedom become larger. Looking at

the results for the Macro 2 data set, shown in Figure 6, we see an even more extreme effect of
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setting a prior t-distribution on β. In the original model of Giannone et al. (2021a), the Macro 2

data set had a relatively dense representation, which can still be seen in Figure 6d. However, for

smaller values of ν the data tends to extreme sparsity, in the sense that no variables are selected

into the model at all. This becomes abundantly clear in Figure 10. The results for ν equal to

100, shown in Figure 6c are also very interesting, as the results for the Macro 2 data set for this

value of ν resemble the figures of the Macro 1 data set shown in Figure 5. The posterior density

of q is concentrated around 0.2 and there is clear negative relationship between q and log(γ).
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(c) ν = 100
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(d) ν = 2000

Figure 6. Contours of the prior and posterior density of q and log(γ) for the model in which a prior with
t-distribution with degrees of freedom ν equal to 4, 30, 100 and 2000 in Subfigure 6a, 6b, 6c and 6drespectively.

Looking at Figure 8 we can confirm the observations made based on the prior and posterior

densities shown in Figure 5. We see that the bell shape of the posterior distribution which was

also observed in the results of Giannone et al. (2021a) in Figure 2 is still present, but that it is

steeper. Although the posterior distribution of q with a prior t-distribution on β looks similar

to the case with a normal prior on β, it becomes clear that the posterior densities of q shown

in Figure 5 are more concentrated in general and are concentrated around smaller values of q

than the posterior density of the original Giannone et al. (2021a) model shown in Figure 2.

As became clear from Figure 5 the posterior densities tend to move more towards the original

figure of Giannone et al. (2021a) when ν becomes larger. That is, as ν increases, the graphs

concentrate around larger values of q and have larger tails.

The posterior densities of q of the Macro 2 data set are shown in Figure 7. As for the Macro

1 data set, the findings drawn from Figure 6 translate well into this figure. Thus, logically, the

histogram of the posterior distribution of q for lower values of ν is simply a straight bar at 0.
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Again, we see that the results for ν equal to 100 shown in Subfigure 7c show resemblance to the

figures of the Macro 1 data set in shape and concentration, while the results for ν equal to 2000

in Subfigure 7d resemble the results of the original model of Giannone et al. (2021a).
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Figure 7. Posterior density of q for the model in which a prior with t-distribution with degrees of freedom ν
equal to 4, 30, 100 and 2000 in Subfigure 7a, 7b,7c and 7d.
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Figure 8. Posterior density of q for the model in which a prior with t-distribution with degrees of freedom ν
equal to 4, 10, 30 and 100 in Subfigure 8a, 8b, 8c and 8d respectively.

In Figure 9 and 10 the heatmaps of the probabilities of inclusion of each predictor are shown

for the Macro 1 and Macro 2 data set respectively. Starting with the results of the Macro 1 data

set shown in Figure 9, it becomes clear that changing the prior distribution of β from a normal

distribution to a t-distribution does not only impact the level and concentration of sparsity,

but it also significantly impacts the pattern of sparsity. The heatmap for the original model

in Figure 3 shows almost no white or light-yellow bars. Consequently, Giannone et al. (2021a)

conclude that there is a lot of uncertainty about which regressors should actually be included in

the model and accordingly they stress the importance of (weighted) model averaging to combat

this uncertainty. Looking at Figure 9, it can clearly be seen that the heatmap is significantly

more lightly coloured than in the case of the original Giannone et al. (2021a) model and thus

there is less uncertainty about which regressors should be included in the model. This does not

mean that for example the model with a prior t-distribution with ν equal to 4 immediately allows

for a truly sparse representation with specifically selected variables, but model uncertainty does

not seem to be as pronounced for this model specification compared to the original Giannone

et al. (2021a) model. As was seen in the previous figures, the heatmaps tend more towards the

heatmaps of the original model as ν becomes larger.
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Figure 9. Heat map of the probabilities of inclusion of each predictor for the Macro 1 data set with a prior with
t-distribution with degrees of freedom ν equal to 4, 10, 30 and 100 in Subfigure 9a, 9b, 9c and 9d respectively.

The first feature to be noticed in Figure 10 is of course the fact that Subfigures 10a and 10b

are completely white. This is probably the clearest indication that no variables are included at

all when a prior t-distribution with lower degrees of freedom is considered for β in the Macro

2 data set. Subfigure 10c shows the heatmap for ν equal to 100. As was seen in the previous

figures, the model for the Macro 2 data set for ν equal to 100 shows relatively similar behaviour

to the Macro 1 models. It can clearly be seen that some variables are included almost every single

time, but that most variables are included only around 30% of the time, which is apparent from

the large number of yellow bars and the occasional dark bar in the heatmap. Thus, for ν equal

to 100, there is a lot of uncertainty with respect to which variables should be included in the

model, and thus model averaging would be a suitable technique to deal with this issue. Finally,

Subfigure 10d shows the heatmap for ν equal to 2000. This heatmap, as is to be expected, looks

very similar to Figure 3. All variables are included most of the time, but there are no specific

variables which are always selected. The conditional heatmaps for the Macro 1 and Macro 2

data sets with a prior t-distribution, similar to Figure 4 do not provide any further insights and

are thus not discussed. These can be found in Appendix B.
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Figure 10. Heat map of the probabilities of inclusion of each predictor for the Macro 2 data set with a prior
with t-distribution with degrees of freedom ν equal to 4, 30, 100 and 2000 in Subfigure 10a, 10b, 10c,and 10d.

In conclusion, it becomes clear that changing the prior distribution of β from a normal

distribution to a t-distribution has large effects on the inference with respect to the sparsity or

density of the data and with respect to the patterns in this sparsity. For the Macro 1 data set

these effects are relatively nuanced, it becomes clear that the model with a prior t-distribution on

β leads to sparser specifications, a less pronounced negative relationship between the probability

of inclusion and the level of shrinkage and in particular to a clearer pattern of sparsity. It also

becomes clear that as the degrees of freedom ν increase, the results start tending towards the

original results of Giannone et al. (2021a). In contrast to the relatively nuanced effects on the

results for the Macro 1 data set, the effects of changing the prior distribution of β on the results

of the Macro 2 are extreme. The results of Giannone et al. (2021a) show that the Macro 2 data

set tends towards the densest representation and thus that all variables should be included in

the model for this data set. However, when the prior distribution of β is set as a t-distribution,

for values of ν up to at least 30, the Macro 2 data tends to the sparsest representation possible:

no variables included at all. For values of ν around 100 the Macro 2 data set still has a rather

sparse representation, specifically when compared to the original results of Giannone et al.

(2021a). Thus, it must be concluded that the specification of the prior distribution of β has a

very large impact on the conclusions which can be drawn with respect to the sparsity or density

of these particular data sets.
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4.2.2 Theoretically relevant variables

In Figure 11 the plots of the prior and posterior distribution for different benchmarks of z̄ are

shown, where intuitively in Subfigure 11a a larger number of variables is always included than

in for example Subfigure 11d. As discussed before and shown in Figure 1, in the original model

of Giannone et al. (2021a), where no variables are switched to ut, the Macro 1 data set has a

relatively sparse representation. It is very interesting to see that when more than 1 variable is

switched to ut, as in Subfigures 11a, 11b and 11c, the model becomes significantly denser, with

larger values for q and smaller values for γ. Only Subfigure 11d shows a reasonable resemblance

to the figure of the original model. Thus, always including variables based on the criterium

of a large posterior probability of inclusion leads to a denser representation. The results for

the Macro 2 data set were not impacted much by always including some of the variables, the

relevant figures are all shown in Appendix C. As the Macro 2 data set already has a very

dense representation in the original model of Giannone et al. (2021a), it is difficult to say if in

the Macro 2 data set always including certain variables based on the z̄ benchmark also leads

to a denser representation. An explanation for this interesting effect may lie in the negative

relationship between q and γ. Due to this relationship, the variables with large posterior values

of q would also have relatively low variance and thus would be shrunk quite heavily. Moving

these variables to ut and thus allowing them to escape this heavy shrinkage could force more

shrinkage for other variables, allowing for more variables to be included and thus for a denser

representation of the data.
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(c) z̄ ≥ 0.95
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Figure 11. Contours of the prior and posterior density of q and log(γ) for the model in which variables with values
for z̄ greater or equal than 0.80, 0.90, 0.95 and 0.99 are shown in Subfigure 11a, 11b, 11c and 11d respectively.
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We have seen that always including certain variables into the model based on a benchmark

for z̄ has great effects on the density of the model for the Macro 1 data set, which raises the

question whether this is a consequence of ’fixing’ these variables as a whole or that variable

choice is influential in this respect. To evaluate this, we make a comparison to the model in

which we always include certain variables based on theoretical macroeconomic results. The plot

of the prior and posterior distribution of q and γ is shown in Subfigure 12b, with the original plot

of the Giannone et al. (2021a) model in Subfigure 12a for comparison. Specifically, keeping in

mind the very large effects shown in Figure 11, it is very interesting to see that always including

the variables based on theory leads to only minor changes in the posterior distribution when

compared to the original model. The effects of always including variables based on theoretical

arguments on the prior and posterior distribution of q and γ are more pronounced for the Macro

2 data set, as can be seen in Figure 13. Where the density plot of the original model is relatively

concentrated around large values for 1, the plot in Subfigure 13b is drawn out over basically the

full spectrum of values for q. This suggests that always including these variables seems to allow

for sparser specifications, but that there is no real consistency in the level of sparsity or density.
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(b) Model always including theoretical variables

Figure 12. Contours of the prior and posterior density of q and log(γ) for the original model of Giannone et al.
(2021a) and the model in which the theoretically relevant variables are always included are shown in Subfigure
12a and 12b respectively
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Figure 13. Contours of the prior and posterior density of q and log(γ) for the original model of Giannone et al.
(2021a) and the model in which the theoretically relevant variables are always included are shown in Subfigure
13a and 13b respectively.

The odd behaviour of posterior distribution of q for the Macro 2 data when including theor-
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etically relevant variables is clearly visible in Subfigure 14b. Firstly, the posterior density of q

is relatively large for all values of q, specifically when compared to for example Subfigure 14a.

The posterior density then increases with q up to a value of q of around 0.4, after which it levels

out. It is hard to say what this means for the sparsity or density for this particular model, other

than that all specifications which are at least somewhat dense seem to be suitable.

Figure 15 very clearly shows that always including variables based on the z̄ benchmark leads

to a very dense representation of the Macro 1 data set. For example Subfigures 15a and 15b are

more reminiscent of the plot of the posterior distribution of q of the Macro 2 data set, which is

decidedly dense.
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Figure 14. Posterior density of q for the original model of Giannone et al. (2021a) and the model in which the
theoretically relevant variables are always included are shown in subfigure 14a and 14b respectively.
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Figure 15. Posterior density of q for the model in which variables with values for z̄ greater or equal than 0.80,
0.90, 0.95 and 0.99 are shown in Subfigure 15a, 15b, 15c and 15d respectively.
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The heatmap of the probabilities of inclusion shown in Figure 16 further substantiates the

findings regarding the Macro 1 data set with variables always included based on benchmark z̄.

For a lower benchmark, and thus for larger numbers of variables always included, the posterior

probabilities of inclusion are relatively large for all variables and no clear pattern appears. As the

benchmark becomes stricter, as in Subfigure 16d, the results more closely resemble the results

obtained for the original model of Giannone et al. (2021a).
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Figure 16. Heat map of the probabilities of inclusion of each predictor for the Macro 1 data set with values for
z̄ greater or equal than 0.80, 0.90, 0.95 and 0.99 are shown in Subfigure 16a, 16b, 16c and 16d respectively.

In conclusion, always including certain variables based on a benchmark of the average pos-

terior probability of inclusion of a variable z̄ does not very much affect the results obtained for

the Macro 2 data set. However, the effect on the results of the Macro 1 data set is quite pro-

nounced. Including only the one variable with the largest posterior value for z̄ has a limited effect

and does not affect the posterior of q or γ overly much when compared to the original model

of Giannone et al. (2021a). However, when a lower benchmark for z̄ is used, the Macro 1 data

set strongly tends towards a very dense rather than sparse representation. Model uncertainty

remains an issue in all cases.

The significant effect that always including these variables has on the conclusions regarding

the density of the Macro 1 data set, makes the conclusions which result from always including

certain variables selected based on macroeconomic theory even more interesting. Namely, when

these variables – selected based on theory — are always included, the figures and conclusions
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concerning the Macro 1 data set hardly change when compared to the original model. Always

including these theoretical variables in the Macro 2 model does rather affect the results compared

to the original model, leading to a posterior distribution which is dense in the broadest sense

of the word, where the histogram of the posterior distribution of q is practically flat for values

ranging from 0.4 up to 1.

5 Conclusion

In this we replicate the results of Giannone et al. (2021a) and we confirm their original

findings regarding both the density or sparsity of two macroeconomic data sets and the high

degree of uncertainty with respect to variable selection, warranting the use of model averaging

techniques in predictive exercises. We find that the prior distribution which is chosen for β in

the framework of Giannone et al. (2021a) has a very large impact on the conclusions regarding

the sparsity or density of these data sets. For example, setting a t-distribution with relatively

low values for ν leads to models which show significantly more sparsity than the results found

by Giannone et al. (2021a). Furthermore, we find that always including specific variables in the

model by moving them from xt to ut has effects on the results depending on the decision rule

used for variable selection. Choosing variables based on the posterior probability of inclusion

of those specific variables leads to a dense representation, with the level of density increasing

with the number of variables included. However, choosing variables to always include based

on theoretical macroeconomic arguments has a negligible impact on the conclusions regarding

sparsity or density for one of the data sets, while having indefinite effects on the other data set.

Thus, always including certain variables into the model does not lead to more sparsity, and can

rather induce a denser representation of the data.

Possible avenues for further research are evaluating the effects of setting other, theoretically

sound, priors on β on the conclusions regarding sparsity or density of the data. Furthermore, not

fixing the degrees of freedom ν of the prior t-distribution, but rather learning this value through

the data would be an interesting topic to investigate. The effects of making changes in the prior

distributions of the other parameters and hyperparameters and evaluating the effect of doing so

on the conclusions are also noteworthy avenues for future research. Specifically defining a prior

on ϕ which is not flat or normal in combination with moving certain variables to ut could be

interesting. Also, testing the effects of other decision rules for variable selection in this procedure

and evaluating the differences in results is an interesting topic for future research.

Giannone et al. (2021a) concluded that there was an ’Illusion of sparsity’. In this paper

we show that their results are sensitive to the relatively arbitrary prior choice on parameter β,

casting doubt on the conclusions Giannone et al. (2021a) draw on the general sparsity or density

of these macroeconomic data sets. Further research is necessary to reach a final and conclusive

outcome in this discussion.
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Appendix A Derivation of posterior distribution ϕ with normal

prior

Building on the Appendix of Giannone et al. (2021a), the posterior distribution of the un-

known objects in the model with this new prior on ϕ is given by

p(ϕ, β, σ2, R2, z, q|Y,U,X)

∝ p(Y |U,X, ϕ, β, σ2, R2, z, q) · p(ϕ, β, σ2, R2, z, q)

∝ p(Y |U,X, ϕ, β, σ2) · p(β|σ2, R2, z, q) · p(z|q, σ2, R2) · p(ϕ|σ2) · p(q) · p(σ2) · p(R2)

∝
( 1

2πσ2

)T
2
e−

1
2σ2 (Y−Uϕ−Xβ)′(Y−Uϕ−Xβ)·

( 1

2πσ2

) k
2
e−

1
2σ2 (ϕ−1)′(ϕ−1)·

k∏
i=1

[
(

1

2πσ2γ2
)
1
2 e

− β2i
2σ2γ2

]zi
[δ(βi)]

1−zi

·
k∏

i=1
qzi(1− q)1−zi · qa−1(1− q)b−1 ·

( 1

σ2

)
· (R2)A−1(1−R2)B−1,

with γ2 = 1
kv̄xq

· R2

1−R2 , and δ(·) is the Dirac-delta function. We sample from the posterior

of (ϕ, β, σ2, R2, z, q)with a Gibbs sampling algorithm with blocks (i) (R2, q), (ii) ϕ and (iii)

(z, β, σ2). The conditional posteriors of (R2, q) and (z, β, σ2) do not change as a result of the

new prior on ϕ and are thus the same as described in the appendix of Giannone et al. (2021a).

The conditional posterior of ϕ is now given by

p(ϕ|Y,U,X, z, β,R2, q, σ) ∝ e−
1

2σ2 (Y−Uϕ−Xβ)′(Y−Uϕ−Xβ) · e−
1

2σ2 (ϕ−1)′(ϕ−1) ,

which implies that

ϕ|Y,U,X, z, β, γ, q, σ ∼ N ((U ′U + I)−1(U ′Y − U ′Xβ + I), σ2(U ′U + I)−1)

As was shown by Giannone et al. (2021a), the posterior of ϕ|Y, U,X, z, β, γ, q, σ with a flat

prior on ϕ can be sampled from the normal distribution. The conjugate prior for the normal

likelihood is a normal distribution, thus it is no surprise that the posterior of ϕ|Y, U,X, z, β, γ, q, σ

using a normal distribution as prior on ϕ can also be sampled from a normal distribution. In

practice the difference between sampling from these two posterior distributions is marginal,

having no significant effect on the results.
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Appendix B Figures with results using a t-distribution as prior

on β
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Figure 17. Heat map of the probabilities of inclusion of each predictor, conditional on q. The horizontal dashed
line denotes the posterior mode. Results for the Macro 1 data set with a prior with t-distribution with degrees of
freedom ν equal to 4, 10, 30 and 100 in subfigure 17a, 17b, 17c and 17d respectively.
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Figure 18. Heat map of the probabilities of inclusion of each predictor, conditional on q. The horizontal dashed
line denotes the posterior mode. Results for the Macro 2 data set with a prior with t-distribution with degrees of
freedom ν equal to 4, 30, 100 and 2000 in subfigure 18a,18b, 18c and 18d respectively.
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Appendix C Figures with results when theoretically relevant

variables are always included
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Figure 19. Posterior density of q for the model in which variables with values for z̄ greater or equal than 0.80
and 0.95 are shown in subfigure 19a and 19b respectively.
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Figure 20. Contours of the prior and posterior density of q and log(γ) for the model in which variables with
values for z̄ greater or equal than 0.80 and 0.95 are shown in subfigure 20a and 20b respectively.
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Figure 21. Heat map of the probabilities of inclusion of each predictor for the Macro 1 data set with values for
z̄ greater or equal than 0.80 and 0.95 are shown in subfigure 21a and 21b respectively.
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Figure 22. Heat map of the probabilities of inclusion of each predictor, conditional on q. The horizontal dashed
line denotes the posterior mode. Results for the Macro 2 data set with values for z̄ greater or equal than 0.80
and 0.95 are shown in subfigure 22a and 22b respectively.
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Figure 23. Heat map of the probabilities of inclusion of each predictor for the original model of Giannone et al.
(2021a) and the model in which the theoretically relevant variables are always included are shown in subfigure
23a and 23b respectively.
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Figure 24. Heat map of the probabilities of inclusion of each predictor for the original model of Giannone et al.
(2021a) and the model in which the theoretically relevant variables are always included are shown in subfigure
24a and 24b respectively.
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Figure 25. Heat map of the probabilities of inclusion of each predictor for the original model of Giannone et al.
(2021a) and the model in which the theoretically relevant variables are always included are shown in subfigure
25a and 25b respectively.
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Figure 26. Posterior density of q for the original model of Giannone et al. (2021a) and the model in which the
theoretically relevant variables are always included are shown in subfigure 26a and 26b respectively.
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(c) z̄ ≥ 0.95
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(d) z̄ ≥ 0.99

Figure 27. Heat map of the probabilities of inclusion of each predictor, conditional on q. The horizontal dashed
line denotes the posterior mode. Results for the Macro 1 data set with values for z̄ greater or equal than 0.80,
0.90, 0.95 and 0.99 are shown in subfigure 27a, 27b, 27c and 27d respectively.
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(a) Original Model
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(b) Model always including theoretical variables

Figure 28. Heat map of the probabilities of inclusion of each predictor for the original model of Giannone et al.
(2021a) and the model in which the theoretically relevant variables are always included are shown in subfigure
28a and 28b respectively.
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Appendix D Description of Matlab code

All coding and all runs are done in Matlab version R2020b on Windows.

D.1 Data

The raw data of the Macro 1 and Macro 2 data set is obtained from the replication ma-

terial of Giannone et al. (2021a) and transformed using the files generate freddataGLP.m and

GenCvMacro2.m for the Macro 1 and Macro 2 data set respectively. The input files for these

codes are csv file 2016-04.csv and excel file GrowthChern.xlsx and output files are FredMDlarge-

Hor1.mat and GrowthData.mat respectively. These Matlab data files are used to obtain the

estimation results.

D.2 Estimation

All code used to obtain estimation results loads the FredMDlargeHor1.mat and Growth-

Data.mat files explained in section D.1 for results relevant to the Macro 1 and Macro 2 data set

respectively.

To obtain the replication results of the work of Giannone et al. (2021a) for the results pertain-

ing to the Macro 1 and Macro 2 data sets, macro1.m and macro2.m are run, which results in the

output files macro1 PosteriorDraws 474613bb.mat and Macro2 PosteriorDraws 474613bb.mat

respectively. These codes make use of the algorithm of SpikeSlabGLP.m

To obtain the extension results in which certain variables are moved from xt to ut the

files macro1 fix variables.m and macro2 fixvariables.m are run. These codes make use of the

algorithm of SpikeslabGLP.m

macro1 fix variables.m is run five times, each time a different set of variables is moved

from xt to ut and the results are saved under a different name accordingly. This results in out-

put files macro1 PosteriorDraws 474613bb fixvariables 80.mat, ... 90.mat, ... 95.mat, ... 99.mat

and ... theory.mat for the benchmarks of z̄ equal to 80, 90, 95 and 99 and the theoretically se-

lected variables respectively.

macro2 fixvariables.m is run three times, again each time a different set of variables is moved

from xt to ut and the results are saved under a different name accordingly. This results in output

files Macro2 PosteriorDraws 474613bb fixvariables 80.mat, ... 95.mat and ... theory.mat for the

benchmarks of z̄ equal to 80, 95 and the theoretically selected variables respectively.

To obtain the extension results in which the prior of β is changed to the t-distribution, the

files macro1 tdistribution.m and macro2 tdistribution.m are run. These codes make use of the

algorithm of SpikeslabGLP tDistribution.m.

macro1 tdistribution.m is run four times, where each time a different value for ν is set

and the results are saved under a different name accordingly. This results in output files

macro1 PosteriorDraws 474613bb tDistribution nu4.mat, ... nu10.mat, ... nu30.mat and ... nu100.mat

for values of ν equal to 4, 10, 30 and 100 respectively.

macro2 tdistribution.m is run five times, where each time a different value for ν is set

and the results are saved under a different name accordingly. This results in output files

38



macro2 PosteriorDraws 474613bb tDistribution nu4.mat, ... 10.mat, ... 30.mat, ... 100.mat and

... 2000.mat for values of ν equal to 4, 10, 30, 100 and 2000 respectively.

D.3 Figures

We use four types of figure in this paper. For the figures used in the replication the follow-

ing codes are used: Figure41 PriorPosterior.m, Figure42 qPosterior.m, Figure43 heatmap.m

and Figure44 ConditionalHeatmaps.m, which correspond to the plots of the prior and posterior

density of q and log(γ), the posterior density of q, the heatmap of the probability of inclu-

sion of variables and the heatmap of the probability of inclusion of variables conditional on q

respectively. As an input the estimation results of the replication discussed above are used.

The figures for the extension in which certain variables are moved from xt to ut are generated

by running the files Figure41 PriorPosterior fixVariables.m, Figure42 qPosterior fixVariables.m,

Figure43 heatmap fixVariables.m and Figure44 ConditionalHeatmaps fixVariables.m.For the fig-

ures of Macro 1 and Macro 2 these files are are run respectively five and three times using the

different input files discussed in section D.2.

The figures for the extension in which the prior of β is changed to the t-distribution are gener-

ated by running the files Figure41 PriorPosterior tDistribution.m, Figure42 qPosterior tDistribution.m,

Figure43 heatmap tDistribution.m and Figure44 ConditionalHeatmaps tDistribution.m. For the

figures of Macro 1 and Macro 2 these files are run respectively four and five times using the

different input files discussed in section D.2.
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