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Abstract

Deep learning has proven to be useful for predicting economic variables at fine spatial scales

using satellite imagery and can be used to predict data that is challenging to obtain, coarse,

or released infrequently. However, training and tuning these models have substantial com-

putational and time requirements. If transfer learning could be effectively applied to these

deep learning methods, this would allow various stakeholders to obtain accurate predictions

without the need for training models themselves. This paper explores this possibility, where

predictions of income per capita and population levels at fine spatial scales of England are

made using satellite images and a convolutional neural network trained on US data. The

predictions achieve negative R2 values, however, this paper further employs a robust model

stacking approach using an ordinary least squares regression, which results in R2 values of

0.051 and 0.460 for income per capita and population levels respectively. Furthermore, this

paper finds that the predictions are heteroskedastic, where the residuals increase as the actual

values increase. The implications of these results are that transfer learning has the potential

to be successfully applied to deep learning methods that predict economic variables, how-

ever, further research is required in finding improved model stacking approaches and more

adaptable deep learning methods for predicting economic variables in different geographic

contexts.
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1 Introduction

Information on economic variables such as Gross Domestic Product (GDP), inflation, or unem-

ployment is of crucial importance for various stakeholders. Accurate measures of these variables

facilitate informed decision-making across different sectors. Governments for instance can utilise

this information to predict economic trends and subsequently implement appropriate monetary

and/or fiscal policies. When an economic slowdown is predicted, policymakers can employ meas-

ures such as lowering interest rates or increasing government spending to stimulate the economy.

Similarly, businesses use economic data to mitigate risks associated with economic fluctuations.

By monitoring variables such as consumer spending, businesses can make pre-emptive adjust-

ments to inventory levels or operational costs in preparation for a potential decrease in revenue.

Moreover, investors rely on economic data to make informed capital allocation decisions. For

example, the anticipation of a decrease in interest rates might prompt investors to shift their

investments from bond markets to equity markets.

In addition to practical applications, economic data is crucial for academic research. It plays

a vital role in identifying patterns and relationships between variables, which contributes to the

development of economic theories, as well as empirically evaluating existing theories, determining

their validity. For instance, Holly and Jones (1997) hypothesized that real house prices are

cointegrated with real income using a dataset from 1939 to 1994 of the UK. However, Gallin

(2006) using a more extensive dataset consisting of panel data of 95 metro areas over 23 years

found was not able to reject the hypothesis of no cointegration.

Though economic data is crucial, obtaining this data is often challenging due to practical

limitations such as accessibility, costs, and time constraints. This leads to some economic

data being released infrequently, coarse, or unavailable altogether. In these cases, predictions

can be used as a substitute for actual measurements. Predictions are particularly useful in

situations where there is a lack of up-to-date or reliable data, such as in developing countries.

Predictions could provide valuable insights into economic conditions and trends, even when

actual measurements are not available.

Two such economic variables where data is released infrequently are income per capita and

population levels at fine spatial scales. This data mostly forms part of census data, which

is information collected through a census, a comprehensive survey conducted to gather demo-

graphic, social, economic, and housing data about a population. The census aims to provide a

detailed snapshot of the population within a specific geographic area, such as a country, region,

or city. While census data is crucial for countries to gather comprehensive information about

their population, monitor demographic changes, and employ policies, this data is often released

at a decadal frequency due to the costly nature of obtaining this data.

Satellite images offer an approach to be able to predict these variables. Satellite imagery

can provide detailed, real-time information on economic activities or shocks, that can be cum-

bersome or expensive to obtain otherwise. This is particularly useful since accessing satellite

1



imagery has become increasingly accessible to the public, researchers, and organizations due to

technological advancements and the availability of various data sources. Although fairly granu-

lar data is released annually, such as Eurostat releasing demographic and economic information

of each country in the European Union at a NUTS3 level, which are small administrative areas

within countries, there are several compelling reasons why various stakeholders may require

even more granular data on income and population levels that satellite imagery can provide.

Firstly, satellite imagery can be updated more frequently than annual reports. Having access to

more real-time data on population movements and economic activity can help governments and

businesses make more timely and informed decisions. Additionally, more granular data can help

in understanding specific areas within a region that are experiencing rapid growth or decline,

which can be crucial for governments in making decisions on where to invest in infrastructure

and how to plan urban development. Furthermore, highly granular data can be essential for

emergency response planning and resource allocation in times of natural disasters or pandem-

ics. Moreover, companies in the transportation or logistics sectors can benefit from granular

data by optimizing their transportation routes. On top of that, businesses understanding the

fine-grained economic and population data can be invaluable for market research, where this

data can help inform decisions regarding where to open new stores or offer new services. Also,

investors could use the granular data to identify areas experiencing population growth, which

could signal potential investment opportunities before they are recognized more widely. Lastly,

researchers in spatial economics can use granular data to study the economic interactions over

space and time, understanding patterns of trade, migration, and the development of economic

agglomerations.

Recent research has utilised satellite images as a data source, such as the study conducted

by Sutton et al. (2007), which obtains estimates of GDP at sub-national levels for 4 different

countries using nighttime satellite images. Elvidge et al. (2009) produced the first global poverty

map at a 1km2 resolution using nighttime satellite images, which previously was only available

at a national level. The poverty estimates were 2.2 billion globally, compared to the 2.6 billion

obtained from the World Development Indicators. Furthermore, Ghosh et al. (2009) estimated

the value of the informal economy of Mexico using satellite imagery, since informal transactions

in an economy serve as a large portion of the means of livelihood of populations, especially in

developing countries. This informal economy is often underestimated because of the problems

associated with producing these estimates and is thus not considered in the GDP value. Hence,

the authors estimate this informal economy by attributing its value to the surplus of the GDP

value estimated by spatial patterns of nighttime lights compared to the official estimate of

GDP. Moreover, Tingzon et al. (2019) predicted four socioeconomic indicators namely wealth

levels, years of education, access to electricity, and access to water through a combination

of volunteered geographic information and nighttime satellite imagery, where the best models

explained about 63% of the variation in asset-based wealth. This approach of using nighttime

satellite imagery is satisfactory over larger areas such as cities, states, and countries, however,

it becomes problematic when trying to study smaller areas, as high luminosity in city centers

saturates satellite images as well as surface reflectance leading to bleeding of light across space.
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To address this issue, research has been conducted using Convolutional Neural Networks

(CNN) to predict economic variables from daytime satellite imagery. Jean et al. (2016) used

a combination of nighttime maps and high-resolution daytime satellite images to accurately

estimate consumption expenditure and asset wealth from five African countries, where the model

was able to identify image features that explain up to 75% of the variation in local-level economic

outcomes. Another study that used a combination of nighttime and daytime satellite images

was done by Burke et al. (2021). This study quantitatively assesses the predictive performances

of a variety of approaches that are used to extract information from satellite imagery, in the

domains of smallholder agriculture, economic livelihoods, population, and informal settlements.

The study found that the predictive performance of the satellite-based approaches is fairly strong.

Moreover, Yeh et al. (2020) predicted survey-based estimates of asset wealth over 20000 African

villages using multispectral satellite imagery, where the models explained 70% of the variation

in wealth. The study also finds that daytime imagery is particularly useful in explaining district-

aggregated changes in wealth over time, explaining about 50% of the variation. Furthermore,

Engstrom et al. (2017) used daytime high-resolution satellite imagery to estimate poverty rates

and consumption of administrative units in Sri Lanka, showing how the features extracted

explain 60% of the variation of these variables using a simple linear regression model, compared

to 15% when using features extracted from nighttime satellite imagery. A ’task-agnostic’ learning

approach was developed using daytime satellite imagery by Rolf et al. (2021), which can be

used for a diverse set of prediction tasks with accuracy competitive with deep neural networks,

all while having far lower computational costs. Predictions for income and population levels

achieved R2 values of 0.42 and 0.75 respectively.

Daytime satellite imagery has so far been proven useful for extracting latent economic inform-

ation through the use of CNNs, which enabled researchers to accurately estimate or predict a

diverse set of economic variables where previous data sources were scarce. However, the training

and tuning of these models have substantial computational and time requirements. If transfer

learning could be effectively applied to these CNN models, this could prove to be a powerful tool

for governments, businesses, investors, and researchers going forward since the need for training

these models are not required. This leads to the main research question of this paper:

What is the potential for using transfer learning with CNNs trained on high-resolution daytime

satellite imagery to advance economic theory and policy?

In contrast to Rolf et al. (2021), Khachiyan et al. (2022) developed a learning approach using

a CNN that was specifically made for predicting income and population at a fine spatial scale

of the United States (US) using daytime satellite imagery of the US, with accuracy levels that

far exceed existing approaches in both the cross-section and time series. Population and income

levels were predicted for the years 2000 and 2010, using both large (2.4km x 2.4km) and small

(1.2km x 1.2km) satellite images, achieving R2 values far greater than 0.75 for both variables.

The small 1.2km images are similar in dimension to the 1km images that Piaggesi et al. (2019)

and Rolf et al. (2021) used in their approaches. The R2 values are greater than those obtained

by the model created by Rolf et al. (2021), since that model aims for generality rather than
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specificity in predicting outcomes from satellite imagery. Population and income changes from

2000 and 2010 were also predicted using large and small images, achieving R2 values greater

than 0.30 and 0.26 respectively. This was the first study to develop a model that predicts

changes in local income and population levels at this fine spatial scale, hence there are no

estimates in the literature to benchmark these predictions. Khachiyan et al. (2022) acknowledge

that there is potential for predicted values having some measurement errors, and to remove

any potential correlation between prediction errors and initial conditions, controls are included

for local economic characteristics from Census data in their models. Doing this, Khachiyan

et al. (2022) find minimal correlations between predictions and initial conditions in their data.

Including initial conditions in the model improves R2 values moderately, with the largest increase

being 0.12 when compared to a model without initial conditions. Khachiyan et al. (2022) also

trained a CNN on nighttime satellite images to compare with their daytime-trained CNN and

found that daytime imagery outperformed nighttime lights significantly. The R2 values for

income levels were 0.33 higher for 2.4km images (0.90 versus 0.57) and 0.35 higher for 1.2km

images (0.85 versus 0.50), and similar results were shown for population levels. Furthermore, the

difference was even more significant when looking at the predictions for income changes, where

the R2 values were 0.30 higher for 2.4km images (0.40 versus 0.10) and 0.26 higher for 1.2km

images (0.32 versus 0.06). Once again, similar results were obtained for population changes.

From these results, it is also clear to see that the large 2.4km images achieved consistently

higher R2 values compared to the small 1.2km images. Since the model was trained on images

in the 2000 - 2010 period, Khachiyan et al. (2022) predicted population and income levels for the

years 2020 and 2017 respectively to see how the model performs out-of-sample which resulted

in R2 being larger than 0.87 and 0.83 respectively. Population and income changes were also

predicted out-of-sample, and achieved R2 values greater than 0.51 and 0.37 for the periods 2000

- 2020 and 2000 - 2017 respectively. However, for the periods 2010 - 2020 and 2010 - 2017,

lower R2 values of 0.17 and -0.1 were obtained for population and income changes respectively.

The authors argue that this is due to the model performing best over long time periods and in

periods without large business cycle fluctuations such as the Great Recession in the 2007 - 2009

period. Finally, Khachiyan et al. (2022) examined the robustness of their results to changes in

the satellite imagery and machine-learning methods used in the analysis. Limiting the satellite

images to only the 3 RGB bands, compared to the 7 spectral bands (3 visible, 2 near-infrared,

1 thermal, and 1 mid-infrared) used in the initial analysis, resulted in R2 values decreasing by

0.04 for both the population and income levels predictions, and a decrease of 0.11 and 0.06

for population and income changes respectively. Furthermore, increasing the resolution of the

satellite images to 15 meters, compared to 30 meters used in the initial analysis, only resulted

in R2 values increasing by at most 0.005 for all models.

This paper will replicate part of Khachiyan et al. (2022) results, which will be presented in

section 4. The predictions that will be replicated are in-sample population and income level

predictions of the US for the years 2000 and 2010 obtained from the CNNs trained on large

(2.4km x 2.4km) images, low (30m) resolution, 7 spectral bands, and without initial conditions.
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While the model developed by Khachiyan et al. (2022) achieved high predictive accuracy in

the context of the US, its performance across different countries remained unexplored. There are

several reasons why the CNN model could perform differently in England compared to the US.

For instance, England has a larger population density, which could affect how well the model

captures population distribution. England’s smaller size compared to the US also means that

more areas are commutable, which could have implications for income distribution as people have

more flexibility in choosing where to live relative to their workplace. Additionally, the sectoral

composition of the economy is different, with England having a different mix of industries which

could influence both income and population patterns. Khachiyan et al. (2022) has made their

trained model publicly available and it would be of interest to see, despite these differences, if

this model performs similarly when applied to a new dataset without the need to be trained from

the ground up using this new dataset since training and tuning the model is computationally

demanding. If the model proves to exhibit similar accuracy in estimating income and population

levels for England, it would not only signify the potential for transfer learning to be applied more

widely in economic analysis, but also highlight the model’s adaptability in accounting for regional

differences such as population density, geographic size, and economic structure. This leads to

the two research sub-questions of this paper:

1. What is the predictive power of a CNN trained on US satellite images, to estimate income

per capita levels of England?

2. What is the predictive power of a CNN trained on US satellite images, to estimate popula-

tion levels of England?

Answering the two research sub-questions, this paper will deviate from Khachiyan et al. (2022)

in the following manner. Firstly, this paper restricts the predictions to population and income

levels for the years 2010, 2011, and 2014 and will not consider predictions of population and

income changes, since extracting satellite images over multiple periods requires considerable

amounts of storage. Secondly, this paper will only consider the model trained on large (2.4km)

daytime satellite images, since this model achieved the highest R2 values for both population

and income levels in Khachiyan et al. (2022). The predictions of England will be compared to

predictions of California which serves as a benchmark, where the choice of this benchmark is

further explained in the methodology section.

The ability to transfer knowledge from one dataset to another has significant implications for

research and policymaking. It enables researchers to use the knowledge gained from a specific

dataset, such as the US in this case, and apply them to different countries or regions. Not

only does this save time and lower computational costs, but it also enables researchers to make

accurate estimations and predictions for other countries or regions without the need for costly

specialized computers. Transfer learning thus enhances the scalability and generalizability of the

predictive models, enabling researchers to investigate a wider range of socioeconomic dynamics

and contribute towards understanding global economic phenomena. In addition, the application

of transfer learning facilitates cross-country comparisons. By utilising a trained model that
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demonstrated high predictive accuracy in one country, researchers can establish meaningful

comparisons between economic variables in different countries or regions. This comparative

analysis can provide useful insights into the similarities, differences, and underlying factors

influencing economic growth and development across different countries. Hence, by investigating

the transfer learning ability of the model developed by Khachiyan et al. (2022) to estimate

income per capita and population levels in England, this research contributes to the existing

literature on transfer learning in economic analysis. This advancement in transfer learning has

the potential to shape the future of economic research, policy formulation, and decision-making.

This paper finds that the CNN trained on US data has a lower predictive capacity when applied

to England. The R2 value for predicting income per capita levels is -5.612, whereas California

has a value of 0.246. This paper then further addresses potential systematic biases and scaling

issues in the predictions through the use of a model stacking approach, and finds improved R2

values of 0.051 and 0.318 for England and California respectively. This indicates that the model

still isn’t able to predict income per capita levels for England, while it is able to partially predict

income per capita levels for California from which the model was partially trained. However,

the model performs better when predicting population levels for both England and California.

The R2 values for predicting population levels are -1.673 and 0.808 for England and California

respectively, where the values increase to 0.460 and 0.850 after systematic biases and scaling

issues are addressed. This suggests that the model has some predictive capacity for population

levels of England given the moderate R2 value, however, the model performs significantly better

for population levels of California where it obtains highly accurate predictions.

Overall, the findings of this paper contribute to the existing literature by providing empirical

evidence on the limitations and potential of transfer learning in the domain of economic pre-

diction. By showcasing the varying levels of performance of a CNN trained on US data when

applied to England, this paper provides real-world evidence that emphasizes the necessity for

careful consideration of regional specificity in transfer learning. Another significant contribu-

tion lies in distinguishing between different economic variables, namely income per capita and

population levels. This paper demonstrates that transfer learning models may exhibit varied

performance depending on the economic variable in question. This introduces a new perspect-

ive in the literature, encouraging researchers to not only consider specificity in the geographic

context but also the economic variables being predicted.

The rest of the paper is structured as followed: Section 2 describes what data was extracted

and used for the analysis, and presents brief summary statistics. Section 3 presents the method-

ology used for the extraction of images, predicting population and income levels, and evaluating

these predictions. Section 4 presents the replication of Khachiyan et al. (2022), then examines

the predictive power of a CNN trained on US images when predicting population and income

levels of England. Section 5 concludes.
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2 Data

To predict income per capita and population levels of England, satellite imagery of England

detected by the United States Geological Survey (USGS) Landsat 7 satellite was used and

obtained using Google Earth Engine (GEE) (Gorelick et al., 2017) for the year 2010. The images

have a spatial resolution of 30m and are constructed of 7 spectral bands (3 visible, 2 near-infrared,

1 thermal, and 1 mid-infrared). To ensure that the images are without irregularities such as

persistent clouds or snow, images are taken from the May-August median (summer months).

To compare these predictions to actual income per capita and population levels, census data

of England was obtained from the Office for National Statistics (ONS) (Office for National

Statistics, 2020, 2021). The dataset comprises of two administrative areas, namely Lower Layer

Super Output Areas (LSOA), and Middle Layer Super Output Areas (MSOA) for the year 2010.

LSOAs consist of 400 to 1200 households and have a resident population between 1000 and 3000

persons, whereas MSOAs are built of multiple LSOAs and consist of 2000 to 6000 households

and have a resident population between 5000 and 15000 persons. Population predictions are

compared to actual population levels of LSOAs, whereas income predictions are compared to

actual income levels of MSOAs since the ONS does not provide income data at the level of

LSOAs. A visualisation of the different administrative areas for England is provided in Figure

1.

Figure 1: Administrative Areas Visualisation: England

Note. From LSOAs, LEPs and lookups: A beginner’s guide to statistical geographies. OCSI

(https://ocsi.uk/2019/03/18/lsoas-leps-and-lookups-a-beginners-guide-to-statistical-geographies/).

Predicting income and population levels of the US in 2010 was done using the same type

of satellite imagery described above, only covering the US in this case. To compare these

predictions to actual population and income levels, census data were obtained from the National

Historical Geographic Information System (Manson et al., 2022). The dataset comprises of two

administrative areas, namely Census Blocks and Census Block Groups for the year 2010. These

are the US equivalent of LSOAs and MSOAs in England. Census Blocks are the smallest

administrative area for which the Census Bureau collects decennial data. Census Block Groups

are above Blocks in the administrative hierarchy and consist of a resident population between 600

and 3000 persons, and in 2000 had a mean of 39 Blocks per Block Group. Once again, population
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predictions are compared to actual population levels of Blocks, whereas income predictions are

compared to actual income levels of Block Groups since income data are published at the Block

Group level. A visualisation of the different administrative areas for the US is provided in Figure

2.

Figure 2: Administrative Areas Visualisation: US

Note. From Documentation. ESRI (https://learn.arcgis.com/en/related-concepts/united

-states-census-geography.htm).

Table 1 provides descriptive statistics of the income per capita and population levels of Eng-

land and the US at fine geographic areas. The number of observations is substantially lower

for England than the US due to England having a smaller geographic area, as well as having

larger granularity of data. The number of observations is also substantially lower for income

per capita levels than population levels, given that income per capita levels are provided at a

larger geographic area compared to population levels. Furthermore, the mean income per capita

in England in 2011 is almost double that of the mean in the US in both 2000 and 2010, which

could be due to differences in economic conditions or purchasing power parities. These values

have been normalized to 2012 US dollars, which will be further explained in the methodology

section. Additionally, the mean population is much larger in England in 2011 compared to the

US in 2000 and 2010, which is likely due to the different geographic levels of data being used.

Each LSOA in England encompasses a larger population than each Block in the US.
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Table 1: Descriptive Comparison of Income per Capita and Population Levels: England (2011)
vs. US (2000 & 2010)

England 2011 US 2000 US 2010

Income Population Income Population Income Population

Count 7201 34753 208790 8164718 219040 11007990
Mean 61492 1616 31031 34 28523 28
St. Dev. 15979 306 17536 92 16579 78
Min 25224 987 0 0 49 0
25% 49607 1435 21066 0 18505 0
50% 59696 1564 27348 8 24953 3
75% 70626 1738 36214 36 33932 27
Max 145457 8159 666146 23373 366888 19352

Note. Income represents income per capita levels, and is presented in 2012 US dollars.
Income per capita levels is at MSOA level and Block Group level for England and US
respectively. Population levels is at LSOA level and Block level for England and US re-
spectively.

3 Methodology

3.1 Satellite imagery extraction

This paper predicts income and population levels of England and California from satellite

imagery using the trained CNN model of Khachiyan et al. (2022), where California will serve as

a benchmark to evaluate the performance of the England predictions. To obtain these predic-

tions of England and California, a satellite imagery extraction process is required. This paper

deviates from Khachiyan et al. (2022) with the satellite imagery extraction process, where the

satellite data files of Khachiyan et al. (2022) contain label information used in the training and

tuning of the CNN model. This paper does not aim to retrain the model and thus the satellite

data files do not require the added label information. Thus, to accurately benchmark the pre-

dictions done on England satellite imagery, this paper extracts US satellite imagery without the

added label information. However, extracting satellite imagery over the entirety of the US at a

spatial resolution of 30m requires large amounts of storage and runtime requirements. To limit

these requirements, only the state of California is chosen to serve as a benchmark. California

was specifically selected since it has the largest population level of all states in the US, which

most closely reflects England’s population level. In addition, both regions are characterized by

significant cultural diversity, with a mix of different ethnicities and backgrounds. Furthermore,

when compared to all other U.S. states, California has the largest GDP and is closest to that of

England.

To ensure that the image data isn’t populated with uninhabited areas, images are only extrac-

ted over urban areas. For England, this was done by creating a shapefile (a common geospatial

vector data format used in geographic information system software) which contains boundaries

for the built-up areas (BUA) of England. BUAs refer to densely developed areas with buildings

and infrastructure which include cities, towns, suburban regions, and urbanized regions. To

once again limit the amount of storage and runtime requirements, the BUAs were ranked ac-
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cording to their shape areas from highest to lowest, and the top 400 were used in the extraction

of urban area images for England. For California, an urban area shapefile of the US created

by Khachiyan et al. (2022) was used and adjusted to only include the state of California. The

original shapefile was created by ranking the Block Groups according to population density and

identifying the Block Groups that comprise of 85% of the US population. A 1-mile buffer was

then drawn around these Block Groups, leading to the data covering 93% of the US population

in the year 2000.

Khachiyan et al. (2022) extracted images with varying characteristics (large/small images, 7

spectral bands, RGB, night-lights, low/high-resolution, with/without initial conditions). It was

found that model fit was consistently higher on the sample of larger images (2.4km x 2.4km)

than on smaller images (1.2km x 1.2km), thus this paper will only consider the former. The

RGB, night-light, and high-resolution images were used as robustness exercises and comparison

reasons. Since the 7 spectral bands out-performed the other two satellite images significantly

when considering the R2 values, and the high-resolution (15m) images only moderately improved

the R2 values, this paper will only consider low-resolution (30m) images with 7 spectral bands

(3 visible, 2 near-infrared, 1 thermal, 1 mid-infrared). Moreover, Khachiyan et al. (2022) made

predictions on images with initial conditions (label data) which performed consistently better

than predictions on images without initial conditions, however, these conditions are quite ex-

tensive and require a substantial amount of time to obtain, hence this paper will only focus on

model predictions without initial conditions. Furthermore, Khachiyan et al. (2022) extracted

images over multiple years (2000 to 2019), which was used in predicting population and income

levels as well as changes over 10-year periods. This requires substantial storage and runtime

requirements, leading to this paper focusing on predicting population and income levels for 3

years, namely 2010, 2011 and 2014 (which is used as part of a robustness exercise).

For the replication of Khachiyan et al. (2022), the satellite images of the urban areas of the

US were provided in the replication package and were directly used as input in the prediction

model.

3.2 Convolutional Neural Network

Khachiyan et al. (2022) make use of a CNN to predict income and population levels of the

US given its ability to process pixel data. This model was trained using satellite imagery of the

US obtained from the USGS Landsat 7 satellite. The CNN is a 7-band version of the VGG16

network model created by Simonyan and Zisserman (2014). The model architecture is defined

as having an input layer, three convolutional blocks, a “flatten” layer that vectorizes the output

of the convolutional blocks, and a fully connected block. The output of the fully connected

block is passed through a final linear layer which produces a scalar value that is the predicted

output. The weights in all layers in the model are initialized using the Glorot Normal random

initialization. The weight of each layer is initialized by drawing random values from a Gaussian

distribution with zero mean and a variance that is calculated based on the number of input

and output connections to that layer. The purpose of this is to prevent the activations from
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exploding or vanishing.

Each convolutional block contains three two-dimensional convolution layers which is then

followed by a max-pooling layer. The final convolutional block’s output is vectorized, which

is used as input to the fully connected block. The number of filters is constant within each

convolutional block but doubles for each subsequent block. In this case, the first block has 32

filters, whereas the second and third blocks have 64 and 128 filters respectively. The convolution

layers perform convolutions with a stride of 1, a kernel size of 3, and apply the Rectified Linear

Unit (ReLU) activation function. The stride refers to the step size at which the convolution

kernel moves across the input data. Thus, a stride of 1 means that the kernel moves 1 pixel at a

time, ensuring that the kernel covers the entire input spatially without skipping any pixels. The

kernel size determines the dimensions of the square-shaped filter that moves across the input

data, thus a kernel of size 3 suggests that the filter is a 3 × 3 matrix. The ReLU activation

function applies an element-wise operation, replacing all negative values with zero while keeping

positive values unchanged. Furthermore, the convolution kernels are regularized using an L2

norm penalty which helps prevent overfitting, where cross-validation is used to determine the

strength of the penalty. The max-pooling layer is used to reduce the spatial dimensions of the

feature maps and does this by dividing the feature maps into 2 × 2 regions, and within each

region selecting the maximum value. This downsampling helps reduce computation complexity,

extract the most prominent features, and prevent overfitting.

The fully connected block consists of three fully connected layers, each of which is separated by

a dropout layer. The fully connected layers also make use of ReLU activations and regularization

using an L2 norm penalty. This penalty strength is again determined using cross-validation

and grid search. The number of neurons in each fully connected layer is set as li ∗ n, where

l1 = l2 = 16, l3 = 8, and n is the number of filters in the first convolutional block (in this case

n = 32). Dropout layers are used as a regularization technique to combat overfitting and achieve

this by randomly setting a fraction of the input units to zero during training. The fraction of

units dropped is determined by the dropout probability, which is fixed at 0.5.

Since training a CNN is very time intensive and requires specialized computers made for

machine learning models, this paper does not attempt to train a CNN on England satellite

imagery. Instead, predictions of income per capita and population levels of England will be

made using the model parameters obtained from the already trained CNN model of Khachiyan

et al. (2022).

3.3 Evaluating Predictions

The predictions are evaluated on an image level and not geographic area level, since the model

predicts income and population levels over 2.4 x 2.4 km images. These images potentially contain

multiple geographic areas (LSOA/MSOA for England, and Blocks/Block Groups for California).

Interpolation of these predictions to the geographic areas would lead to less reliable results, as

the predictions would be distributed across the geographic areas based on the percentage area
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covered by these areas within an image, and not based on economic information that is latent in

the spectral data. Thus, the actual values of images are obtained in the following manner: For

population levels, the actual values of the geographic areas within an image will be summed up

to obtain the actual value of the image. For example, if a satellite image of England contains

20 LSOAs, the population levels of each LSOA will be summed up to give one population level

for the image. For income per capita levels, the average of the actual values of the geographic

areas within an image will be computed to obtain the actual value of the image. For example, if

a satellite image of England contains 4 MSOAs, the average of the 4 MSOA income per capita

levels will be calculated to give one income per capita level for the image. Note that this leads

to one of the limitations of this paper since the reported actual population values of images

are likely to be larger than the true population values since a geographical area can have a

spatial overlap over multiple images, resulting in this geographical area’s population value being

added multiple times. Furthermore, the reported actual income per capita levels are likely to

be different (both larger or smaller) than the true income per capita levels, for the same reason

as population levels, resulting in the geographical area’s income per capita value being used

multiple times for computing averages.

Adjustments for both inflation and exchange rates are needed to compare the income per

capita levels predictions with the actual values, since the model predicts these values in 2012

US dollars, whereas the actual values for England are in 2011 British pound sterling, and for

California, the actual values are in 2011 US dollars. The adjustments are done using equations

(1) and (2) for England and California respectively.

y12$ = y11£ ∗ (1 + π11−12) ∗ x12 $
£

(1)

y12$ = y10$ ∗ (1 + π10−12) (2)

where y11£ , y10$ and y12$ are the actual income per capita levels measured in 2011 British

pound sterling, 2010 US dollars and 2012 US dollars respectively. π11−12 and π10−12 are the US

dollar inflation rates from 2011 to 2012 and 2010 to 2012 respectively, and x12 $
£
is the average

2012 British pound sterling to US dollar exchange rate.

R2 values will be calculated to assess the performance of the predicted values from the CNN

using equation (3).

R2 = 1− SST

TSS
(3)

with:

SST =
n∑

i=1

(yi − ŷi)
2

TSS =
n∑

i=1

(yi − ȳ)2

where yi and ȳ are the observed values and mean of observed values of the dependent variable

12



respectively, n is the number of observations, and ŷi is the predicted values of the dependent

variable.

Furthermore, regression analysis is used to fit the predictions from the CNN with the actual

values using Ordinary Least Squares (OLS) to address potential model misspecifications. The

presence of heteroskedasticity is tested using the Breusch-Pagan test. Under the null hypothesis,

homoskedasticity is present, while under the alternative hypothesis, heteroskedasticity is present.

The test is conducted by first fitting a regression model, then the squared residuals are calculated

and used as the dependent variable in a new regression model with the original regressors. The

Chi-Square test statistic χ2 is then calculated as n ∗ R2
new, where n is the total number of

observations and R2
new is the R2 value of the regression model with the squared residual as the

dependent variable. The null hypothesis is rejected when the p-value corresponding to the χ2

test statistic with p degrees of freedom is less than a 5% significance level, where p corresponds

to the number of regressors.

4 Results

The results section is divided into three subsections, where the first subsection presents partial

replicated results of Khachiyan et al. (2022) analysing the predictive performance of the CNN

for the US. The second subsection presents the extension to Khachiyan et al. (2022), where the

predictive performance of the CNN is analysed when using a dataset from which the model is

not trained, namely England. The final subsection presents the results of a robustness exercise.

4.1 Replication

R2 values are presented in Table 2 for the large 2.4km x 2.4km, 7 spectral band model

predictions of income per capita, population, log-income per capita, and log-population levels

for the years 2000, 2010, and 2000 & 2010 combined.

Table 2: Comparison of R2 Values for CNN Model Predictions: US (2000, 2010, and 2000 &
2010 Combined)

2000 2010 2000 & 2010

Income per Capita 0.381 0.424 0.405
Population 0.773 0.701 0.737
Log Income per Capita 0.447 0.454 0.455
Log Population 0.889 0.891 0.891

Note. The number of observations for income per capita
and population is 112932 for both the years 2000 and 2010,
and 225864 for the years combined.

Looking at Table 2, the R2 values of income per capita predictions are 0.381, 0.424, and 0.405

for the years 2000, 2010, and 2000 & 2010 combined respectively. The log-transformed income

predictions have slightly improved values, with values of 0.447, 0.454, and 0.455 for the three
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periods respectively. This suggests that the model fits the data somewhat well, where income

levels might have a moderate linear or exponential relationship with the features extracted from

the satellite images. On the other hand, the R2 values of population predictions are significantly

higher when compared to income predictions, with values of 0.773, 0.701, and 0.737 for the

years 2000, 2010, and 2000 & 2010 combined respectively. A strong linear relationship between

population levels and the features extracted could be argued, though transforming the population

levels to a log scale substantially increases the R2 values to 0.889, 0.891, and 0.891 for the years

2000, 2010, and 2000 & 2010 combined respectively. Due to this, the relationship between the

features and population levels might be exponential rather than linear, and transforming the

population levels to a log scale linearizes this relationship.

Figure 3 shows scatter plots of the actual values of income per capita and population levels

against the model-predicted values. For illustration purposes, the 20 biggest outliers are excluded

from both scatter plots.

Figure 3: Scatter Plots of US Predictions and Actual Values with OLS Fitted Lines (Years 2000
& 2010 Combined)

Note. The scatter plots are presented with the 20 biggest outliers excluded for illustration purposes.

The plot of income per capita levels exhibits a positive correlation between predicted and

actual income levels, which is consistent with the R2 values presented in Table 2. This positive

correlation indicates that as the actual income per capita increases, the predicted values generally

also increase, suggesting that the model is capturing some of the underlying trends. However, it

is worth noting that there is a presence of heteroskedasticity, as evidenced by the fanning out of

the scatter plot for higher income levels. This implies that the model’s accuracy varies depending

on the income level, with predictions becoming less reliable as income levels increase. This can

also be seen from the OLS line fitted in the scatter plot, where the deviations from the line are

larger for large income levels. Another observation is that the model did not provide predictions

lower than 17076.53, suggesting that the model fails to predict low income levels. The plot

of population levels exhibits a larger positive correlation between predicted and actual values

compared to the plot of income levels, which is in line with the higher R2 values presented in

Table 2. Thus, the model is able to better capture the underlying trends in population levels than

income levels. The model also performed better in predicting low population levels compared
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to predicting low income levels, which can be seen from the observations being tightly grouped

around the origin in the population scatter plot. As with income levels, the model’s predictions

become less reliable for larger population levels. This is due to the presence of heteroskedasticity

in the model, as evidenced by the deviations from the fitted OLS line increasing as actual

population levels rise.

4.2 Extension

R2 values are presented in Table 3 for the large 2.4km x 2.4km, 7 spectral band model

predictions of income per capita, population, log-income per capita, and log-population levels

for the year 2010 for California, and 2011 for England.

Table 3: Comparison of R2 Values for CNN Model Predictions: England (2011) & California
(2010)

England 2011 California 2010

Income per Capita -5.612 0.246
Population -1.673 0.808
Log Income per Capita -12.248 0.383
Log Population -13.135 0.674

Note. The number of observations for income per capita is 3680
for England and 10963 for California. For population, there are
3746 observations for England and 20803 for California.

Table 3 shows that the R2 values for predictions in England are negative for both income

per capita and population levels, with values of -5.612 and -1.673 respectively. These negative

values mean that a horizontal line at the mean of the actual income is a better predictor than the

model trying to predict income. The log-transformed versions of income and population levels

also show negative R2 values, with values of -12.248 and -13.135 respectively, suggesting that

the model struggles regardless of the scale of the target variable. In contrast, the R2 values for

predictions in California are positive for both income and population levels, with corresponding

values of 0.246 and 0.808. This indicates that the model performed relatively well on California

data, which is to be expected since California is part of the US on which the model is trained on.

Interestingly, the model performs slightly worse for the log-transformed population levels, with

a value of 0.674, which is in contrast with the findings from Table 2, where the log-transformed

predictions performed better than the standard predictions for the US. This is not the case for

log-transformed income levels, which see an increase to 0.383 and is in line with the findings

from Table 2.

These results indicate that the model, which was trained on US data, does not generalize well

to England. This could be due to differences in geographical and socio-economic features between

the US and England, which the model has not been trained to recognize. One difference between

the US and England is the population density, where England is more densely populated than

most parts of the US. The trained model might not have learned features that are relevant to
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highly dense areas if it was predominantly trained on less dense areas. Furthermore, the size and

scale of the buildings and plots might be different between the two countries, causing the model

to misinterpret the data. Moreover, the satellite images for England may have different spectral

characteristics than the US due to the different geographic regions, for example, differences

in vegetation, soil, and water bodies might affect the features that the model has learned to

associate with income or population levels. Additionally, the urban infrastructure is different in

the US and England, where the US tends to have more sprawled-out suburban areas, whereas

England has more compact cities. This can cause the model to misinterpret land-use features,

for instance, in the US, large houses with big lawns may be an indicator of wealth, whereas in

England wealth may be less directly correlated with property size. Finally, the model might be

trained on a certain scale of economic disparities in the US, which might not translate well when

trying to predict income levels in England.

In light of the geographical and socio-economic disparities between the US and England iden-

tified above, it is evident that adjustments are needed for the model to be effective in the context

of England. One such measure is to employ an OLS regression in a model stacking approach,

where the predictions of the initial model are used as inputs to the OLS regression for calibration

against the actual values. Model stacking, in this case, serves the purpose of bias correction

and scaling adjustments. Specifically, by employing an OLS regression, it is possible to address

the systematic biases that might arise due to the differences between the regions, by correcting

the intercept (adding or subtracting a constant term), and to handle scaling issues by adjusting

the slope (applying a scaling factor). However, while this approach can enhance the model’s

performance, there is potential for overfitting, which could lead to a model that performs well

on the calibration data but does not generalize well to new, unseen data. Table 4 presents the

R2 values obtained after the OLS model is fitted as part of the model stacking process.

Table 4: Comparison of R2 Values for OLS-Calibrated CNN Model Predictions: England (2011)
& California (2010)

England 2011 California 2010

Income per Capita 0.051 0.318
Population 0.460 0.850
Log Income per Capita 0.060 0.402
Log Population 0.530 0.717

Note. The number of observations for income per capita is 3680
for England and 10963 for California. For population, there are
3746 observations for England and 20803 for California.

Upon fitting the OLS regression to the model’s predictions, there is a significant improvement

in the R2 values for England compared to the initial values before the OLS fitting (as shown in

Table 3). In Table 4, the values for both income per capita and population levels in England

are now positive, with values of 0.051 and 0.460 respectively. The same improvement is present

for the log-transformed income and population levels, which now have values of 0.060 and 0.530
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respectively. These positive values indicate that the OLS fitting has corrected some of the

systematic biases and scaling issues that were present in the original predictions. For population

levels, there is now a moderate linear as well as exponential relationship between the features

extracted from the images and the actual population levels, suggesting that the model has

some predictive capacity for England. On the other hand, the model still struggles to predict

income levels as well as log-transformed income levels for England given the low R2 values. For

California, the R2 values in Panel A also exhibit improvements, however, these improvements

are only slight since the model already performed relatively well and did not have the same

systematic biases or scaling issues in predictions.

Figure 4 shows scatter plots of the actual values of income per capita and population levels

against the original model predicted values for both England and California, as well as the fitted

OLS lines, where the top 20 outliers are excluded for illustration purposes.

Figure 4: Scatter Plots of England (2011) & California (2010) Predictions and Actual Values
with OLS Fitted Lines

(a) England 2011

(b) California 2010

Note. The scatter plots are presented with the 20 biggest outliers excluded for illustration purposes.

The income plot for England shows a very slight positive correlation but with a wide spread of

observations. This is consistent with the small R2 values reported in Table 4 and confirms that

the model isn’t effectively capturing income trends in England. On the other hand, the popu-

lation plot for England shows a stronger positive correlation, where the observations are more

tightly grouped around the OLS line compared to the income plot. Given that the two plots’

observations do not start from the origin and that there is a difference in scale between the two
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axes, suggests that the OLS calibration accounted for this by adding a constant term and having

a coefficient value different than 1, addressing some of the systematic bias and scaling issues

which caused the negative R2 values reported in Table 3. The presence of heteroskedasticity is

observed through the higher spread in predictions for higher values, indicating that the model’s

reliability varies with the level of population. For California, the positive correlation in the

income plot is stronger than in England, however, there is still a presence of heteroskedasticity,

meaning that the model’s reliability is inconsistent across different income levels. Interestingly,

the model once again did not predict values lower than 17076.54 for both England and Califor-

nia, which was also the case for the whole US in Figure 3. The population plot for California

shows a large positive correlation and observations are tightly grouped around the OLS line.

This indicates that the model is highly effective in predicting population levels in California,

however, there is a slightly larger spread of observations for larger values of population levels.

The fact that observations start from the origin and the scales of the axes are the same suggests

that there were fewer systematic bias and scaling issues in the predictions for California com-

pared to England. This is to be expected since the model was trained to predict these values

and is consistent with the slight increase in R2 values in Table 4 after an OLS regression was

fitted.

The heteroskedasticity observed in the scatter plots in Figure 4 is formally tested using the

Breusch-Pagan test, where the results are presented in Table 5. In the scatter plots, it was

observed that for England there was a higher spread in predictions for higher population levels,

and for California, there was a higher spread in predictions for higher income and population

levels. These visual observations are consistent with the statistical evidence provided by the

Breusch-Pagan test. The χ2 values are significantly high and the p-values are very close to

zero for income per capita and population levels, for both England and California. This leads

to a rejection of the null hypothesis of homoskedasticity with a 1% significance level. The

presence of heteroskedasticity suggests that the model’s prediction errors are not constant across

different levels of income or population. In practice, it means that the model may not be equally

reliable for different ranges of income and population levels. This information is important for

researchers and policymakers who might consider using this model for decision-making purposes,

as it indicates areas where the model’s predictions may be less reliable.

Table 5: Breusch-Pagan Test for OLS-Calibrated CNN Model Predictions: England (2011) &
California (2010)

England 2011 California 2010
χ2 p-value χ2 p-value

Income per Capita 14.702 0.000*** 215.100 0.000***
Population 234.029 0.000*** 3745.180 0.000***

Note. *, **, *** indicates significance at the 90%, 95%, and 99%
level, respectively.
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To gain some insight into the systematic biases and scaling issues previously mentioned, Table

6 presents the regressions of income per capita and population predictions fitted to the actual

values using OLS, for both England and California. Analysing the constant terms and coefficients

leads to a further understanding of the nature of corrections required to improve the model’s

predictions. It’s important to note that White standard errors are presented in parentheses,

which is appropriate given the presence of heteroskedasticity, as confirmed in Table 5. These

standard errors are robust to heteroskedasticity and thus provide a more reliable statistical

inference.

Table 6: Regression Analysis of Income per Capita and Population CNN Predictions Using OLS:
England (2011) & California (2010)

England 2011 California 2010

Panel A: Income per Capita

Constant 37574.020*** -2975.590***
(1564.664) (560.569)

Income per Capita prediction 0.838*** 1.240***
(0.056) (0.020)

R2 0.051 0.318
Observations 3680 10963

Panel B: Population

Constant 15291.110*** 931.502***
(309.234) (46.538)

Population prediction 3.461*** 1.138***
(0.096) (0.021)

R2 0.460 0.850
Observations 3746 20803

Note. *, **, *** indicates significance at the 90%, 95%, and 99% level,
respectively. White standard errors are presented in parenthesis.

Table 6 shows that there are stark differences in the regression results between England and

California. Beginning with Panel A, which focuses on income per capita as the dependent vari-

able, the constant term for England is positive and highly significant with a value of 37574.020,

whereas for California the constant term is negative and also significant with a value of -2975.590.

This indicates that there is a systematic bias in both regions, although this bias is significantly

greater for England than for California. The positive constant term for England implies that

the model tends to underpredict income per capita, requiring an upward adjustment to align

the predictions with the actual values. Conversely, the negative constant term for California

suggests that the model overpredicts income per capita, requiring a downward adjustment. The

difference in magnitude of the constant terms suggests that the systematic biases vary signific-
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antly between the two regions, with England needing a more substantial correction. Continuing

with the coefficients corresponding to the income predictions for England and California, con-

trasting behaviour is observed. The coefficient for England has a value of 0.838, which is smaller

than California’s coefficient, which has a value of 1.240. For England, this indicates an over-

scaling issue, where the model overestimates the effect of changes in income. For California,

this indicates a slight under-scaling issue. Additionally, it is important to consider the R2 value

associated with the regression for income per capita in England, which equals 0.051. The R2

value is notably small, which implies that despite the adjustments made through the OLS re-

gression, the model still explains only a tiny fraction of the variability in income per capita in

England. This suggests that the regression results for England may not be very informative in

practice and that the model may lack the ability to capture the underlying dynamics of income

per capita in this region. Moreover, the model also struggles somewhat in predicting income per

capita accurately for California, from which the model is partially trained, as evidenced by the

need for downward adjustments, scaling corrections, and relatively low R2 value.

Moving to Panel B, which focuses on population as the dependent variable, the constant term

for England, much like in Panel A, is positive and significantly large with a value of 15291.110.

In contrast, California’s constant term is significantly smaller at 931.502. These values, again,

indicate the presence of a systematic bias in the model’s predictions for both regions, albeit to

different extents. The large positive constant for England suggests that the model generally

underpredicts population, requiring an upward adjustment. The smaller positive constant for

California implies that the adjustment needed is considerably lower in magnitude. Regarding

the coefficients for population predictions, England has a value of 3.461, whereas California’s

coefficient has a value of 1.138. England’s coefficient is significantly larger than 1, which indicates

an under-scaling issue for population predictions in England. On the other hand, California’s

coefficient is closer to 1, indicating that the model’s predictions are more proportionate to

actual values, though still slightly under-scaled. In Panel B, the R2 value for population in

England is moderate, suggesting that the adjusted model captures some of the variability in

the population, but not all. This indicates that the model has some predictive capacity for

population in England, although not highly accurate. For California, the R2 value is large,

suggesting that the model performs much better in predicting population for the region it was

trained on.

4.3 Robustness Exercise

To examine the robustness of the OLS fitted results of England, income per capita and pop-

ulation levels of England are predicted for the year 2014 and calibrated using the England 2011

OLS regression constant terms and coefficients found in Table 6. Both the R2 values for original

and calibrated predictions are presented in Table 7.

Applying the OLS regression calibration to the predictions made by the model for the year 2014

demonstrates a notable level of robustness. This is evidenced by the significant improvement

in the R2 values for the year 2014 when comparing the values obtained from original model
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Table 7: Comparison of R2 Values for 2011 OLS-Calibrated CNN Model Predictions: England
(2011 & 2014)

England 2011 England 2014

Panel A: Original predictions

Income per Capita -5.612 -5.940
Population -1.673 -1.734

Panel B: Calibrated predictions

Income per Capita 0.051 0.013
Population 0.460 0.407

Note. The number of observations for income per capita
is 3680 and 3992 for the years 2011 and 2014 respect-
ively. For population, there are 3746 and 4058 for the
years 2011 and 2014 respectively.

predictions in Panel A, to the values obtained from OLS-calibrated predictions in Panel B.

The R2 values increased from -5.940 and -1.734 to 0.013 and 0.407 for income per capita and

population levels respectively. These improvements signify that the OLS calibration method

was effective in correcting systematic biases and scaling issues in a manner that generalized to

a different time period. Since the calibrated model’s performance remained relatively stable

between 2011 and 2014, this indicated that concerns regarding overfitting have been addressed.

By successfully enhancing the model’s performance on an independent 2014 dataset without

further tuning, suggests that the OLS calibration is capturing underlying relationships rather

than fitting noise specific to the 2011 dataset. This supports the validity of employing an OLS

calibration being a moderately robust method for enhancing the performance of the CNN when

predicting income per capita and population levels for regions outside of the US.

5 Conclusion

This paper has been an exploration of the potential of using transfer learning with CNNs.

Specifically, it investigated the application and limitations of transfer learning in predicting

economic variables, including income per capita and population levels, using a CNN model

trained on US data from Khachiyan et al. (2022). A fundamental research question that this

paper addressed was: What is the potential for using transfer learning with CNNs trained on

high-resolution daytime satellite imagery to advance economic theory and policy?

To help answer this research question, two sub-questions were presented in this paper. The

first sub-question was: What is the predictive power of a CNN trained on US satellite images, to

estimate income per capita levels of England? The second sub-question was: What is the pre-

dictive power of a CNN trained on US satellite images, to estimate population levels of England?

The investigation of this paper centered around answering these two sub-questions to assess how

the CNN model performs when applied to a new geographical context, in this case, England,

where California served as a benchmark. This examination was vital in understanding the ad-
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aptability and limitations of CNN models in making predictions across different geographical

contexts.

A finding of this paper was that the CNN model had a poor predictive performance for

both income per capita and population levels in England. However, with the integration of an

OLS regression in a model stacking approach, there was a noticeable improvement in predictive

performance for population levels, though the model still struggled with income per capita levels

predictions. This improvement in predictive performance could have potentially been caused by

overfitting. Due to this, the robustness of the model stacking approach was tested by applying

the OLS calibration of England for the year 2011 to the model’s predictions of England for the

year 2014. There was a significant improvement in the R2 values for both income per capita

and population levels in 2014, as compared to the original model predictions, which suggests

that the model stacking approach was fairly robust and that the improvements are not a result

of overfitting. These results lead to answering the two research sub-questions of this paper. For

the first sub-question, the model failed to estimate income per capita levels of England, even

after the predictions were calibrated using OLS. For the second sub-question, the model initially

was unable to estimate population levels, however after the predictions were calibrated using

OLS, the model was able to moderately estimate population levels of England.

Additionally the analysis revealed the presence of heteroskedasticity in model predictions for

both England and California, through scatter plots and using the Breusch-Pagan test. This

indicates a limitation of the model, as the reliability decreases for larger values of income per

capita and population levels for both England and California. This highlights the need for further

refinement of the model to account for the varying distribution and spread of data across the

range of predicted values.

Furthermore, the contrast between the constant terms and coefficients in the OLS regression

results for England and California provides further insights into the systematic biases and scaling

issues inherent in the model’s predictions. The large positive constant terms for England meant

that the model notably underestimated both income per capita and population levels. Moreover,

the size of the coefficient for income per capita predictions for England was slightly lower than

1, indicating that there was a small over-scaling issue, while for the population predictions, the

coefficient was particularly larger than 1, demonstrating a large under-scaling issue.

Practically, these findings hold implications for governments, businesses, investors, and re-

searchers alike. For governments, understanding the potential and limitations of transfer learn-

ing in predicting socio-economic indicators like income and population levels is crucial for making

informed decisions and formulating policies. The CNN model alongside the OLS calibrations, as

demonstrated by its robustness across different time periods, can be a valuable tool for govern-

ments to utilise in allocating resources more efficiently, monitoring urbanization patterns, and

designing targeted interventions for economic development. Nonetheless, governments should

also recognize the model’s limitations in predicting income per capita levels. For businesses

and investors, predictive models using transfer learning can be useful for market analysis and
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making investment decisions. For instance, businesses looking to expand or investors looking

for opportunities might use such models to identify areas with rapid population growth or in-

creasing income levels. However, this paper’s findings imply that they need to exercise caution

and critically evaluate the reliability of such models, especially when they are being applied to

different regions. For researchers working in the field of transfer learning and predictive mod-

eling, these findings offer a path to explore methods that further minimize biases and improve

model accuracy across different geographic contexts. This includes addressing the remaining

challenges in predicting income per capita levels and refining calibration techniques. Future

research should focus on developing methodologies that are more adaptive in accounting for re-

gional differences in economic variables, which may include employing more sophisticated model

stacking approaches that can better account for the diversity in geographical and socio-economic

characteristics.

This paper has made strides toward answering the research question by examining the cap-

abilities and limitations of transfer learning using CNN models in predicting economic variables

with satellite imagery. The findings suggest that while there is potential, especially in predicting

population levels, there are also inherent challenges and limitations that need to be addressed.

This paper paves the way for future research to build upon these findings, aiming toward the

development of more robust, adaptable, and reliable predictive models for economic analysis

using satellite imagery.
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