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Abstract

Forecasting bond risk premia is important for every investor. Forecasting bond risk

premia can be done with different types of data such as with forwarded bond rates but also

with macroeconomics. In this research three different principal component analysis (PCA)

methods are used to find the best forecasting method. For the in-sample forecast, scaling

PCA (sPCA) provided the best results. When we perform an out-of-sample forecast, normal

PCA performs the best. sPCA and PCA perform neck and neck. Sparse PCA (SPCA)

creates factors which makes variables too sparse, and thus misses too much information.

Although for SPCA improvement is achievable by making it less sparse and having access to

more computer power .

1 Introduction

Forecasting bond risk premia is of interest for a long time. Predicting the bond risk premia

is use full for portfolio management such that portfolios can be balanced in an optimal way.

Bond risk is also associated with economical situations. By accurately predicting the bond risk

premia, you may out smart the market and thus for example see an economical downturn before

the rest. Forecasting the bond risk premia is also important for the valuation of stocks, since

valuations are often discounted on the risk free bond returns.

Multiple papers have been written about this topic and used different methods. One of the

newest ways is by machine learning, but in this research we will focus on a rather classic method,

namely principal component analysis (PCA). PCA is an old technique which was proposed

by Karl Pearson in 1901. The aim of PCA is to create just a few new factors that include

information from multiple variables. There have been done multiple researches on bond risk

premia which make use of PCA such as the research of Ludvigson & Ng (2009). They use a

large macroeconomic dataset and try to forecast the bond risk premia, and found that their

estimated factors contain substantial predictive power.

The biggest drawback of PCA is that all variables are included in the principal components,

even though a variable might not explain anything. The research of Zou et al. (2006) introduced

a new variant of the PCA, namely sparse PCA (SPCA). SPCA can set loads to zero and thus

excludes variables from the estimated factors. As the name suggests the main difference between

PCA and SPCA is that some loads can become sparse. Next to that there is also a method

called scaling PCA (sPCA) which scales the data before performing PCA. The advantage is that

the data is centered, which could make the PCA computation more accurate.
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The research question is which PCA approach can most accurately explain the bond risk

premia? Where the researched approaches are SPCA, sPCA and PCA.

The hypothesis is that SPCA should perform the best since it is able to make loads zero for

variables with less or none predictive power. Also Goh et al. (2012) found that it is likely in a big

dataset to have certain types of variables with more predictive power than others. Furthermore,

did Huang & Shi (2011) also conclude that the predictability of the bond risk premia is mainly

explained by variables of the group employment, price indices and housing market. So previous

researches have clearly shown that there are a few variables with more predictive power, it makes

us wonder if the other variables have a substantial impact at all.

The used data contains 127 transformed macroeconomic variables, of the sample period

01:1964-12:2002. In addition the yield data used by Ludvigson & Ng (2009) contains small

inaccuracies, that is why in this research more accurate yield data will be used as created by

Liu & Wu (2021). The used yield data range is 01:1965-12:2003.

The exciting literature did already find some interesting results. The research of Rapach &

Zhou (2021) found that SPCA is especially better for cross-sectional asset pricing since it can

better recognise signals in macroeconomic data. Since asset pricing and bond risk premia are

somewhat correlated it is really interesting to see if the SPCA can also better forecast the bond

risk premia. Also the research of Zhu et al. (2023) found similar results, but they concluded that

macroeconomics alone might not include enough information to precisely forecast stock returns.

They suggest that more microeconomic information is needed for stock returns, since bond risk

premia relies heavily on macroeconomics it seems that extra microeconomic information is not

that important in case of predicting the bond risk premia. This is partly in contrast to the

research of Ludvigson & Ng (2009), they concluded that macroeconomic data have predictive

power and they find strong predictable variation in bond returns. Also did they conclude that

macroeconomic data has even without the factor of Cochrane & Piazzesi (2005) substantial

predictive power.

2 Data

Previous research of Cochrane & Piazzesi (2005) and Ludvigson & Ng (2009) is based on the

sample period 1964:1–2003:12. For this research, we examine the same sample period to make

sure that we can compare the researches. The period does include multiple recession and also

economically stable periods. This period includes all kinds of market changes, so we have a
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sample with different economical situations.

The monthly macroeconomic data will be collected from the economic research federal re-

serve bank of St. Louis by McCracken (2021). These 127 monthly economic series have to be

individually transformed to ensure stationarity. In order to perform these transformations we

use the code of McCracken (2021). This code also includes an algorithm to insert missing values.

The data sample used from this database is 11:1963-12:2002. The first two month of these data

are only included because we take first and second differences, after transforming the data the

first two months are than excluded. This data set does differ to the one of Ludvigson & Ng

(2009), for example their macroeconomic data set included five more variables. These differences

could influence the results.

The monthly bond yield data is gathered from Liu & Wu (2021), this is in contrast to the

research of Ludvigson & Ng (2009). The advantage of this data set is that there are less pricing

errors, which should make the bond data more accurate than the one used by Ludvigson &

Ng (2009). The used maturities are one, two, three, four, and five years. The used bond yield

return range is 01:1965-12:2003, this differs by a year of the sample for the macroeconomics.

The reason is that the excess return are forecasted a year ahead, this will be explained in section

3.2

3 Methodology

In this section the methods used for the research are discussed. First, the different PCA meth-

ods will be explained. Than the construction of the excess return and regression models are

presented. Lastly, the out-of-sample forecast including a test statistics will be discussed.

3.1 PCA

PCA is a dimension reduction method and is widely used. First certain variables in the data

are transformed to ensure stationarity, after which the all data is standardized. The covariance

matrix of the standardized data will be computed to find the relations between variables. Next we

find the eigenvalues (explained variance by eigenvector) and eigenvectors (principal componets)

of the covariance matrix by performing a eigendecomposition. In the research of Ludvigson &

Ng (2009) they chose to optimize the amount of factors by the BIC criteria, in this research

this is simplified by choosing the same amount of factors as Ludvigson & Ng (2009). After this

a projection is performed by multiplying the standardized data with the principal components.
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This research is based on the research of Ludvigson & Ng (2009), so for an in depth explanation

about PCA we refer to their paper.

3.1.1 Scaling PCA

The difference between sPCA and PCA is how the data is transformed. The idea is to scale

data instead of standardizing. The advantage of this method is that the data will centered.

This method is often used when the distribution of the data is not known. The disadvantage is

that scaling is more affected by outliers, which can occur during periods of recession. Also the

research of Palaniappan & Ravi (2006) found that the performance of PCA improved by 20%

when using scaled data compared to not scaling the data before hand.

Scaling the data is done in the following way

txti =
xti −mini

maxi −mini
(1)

where t stand for the monthly time form 1964:1 to 2002:12, i for the variable in the range of 1 to

127. The mini (maxi) is the lowest (highest) value of the variable, and x presents the value at

a certain time of variable that is than transformed to tx. After this PCA is used in the sameway

as in the research of Ludvigson & Ng (2009)

3.1.2 Sparse PCA

SPCA makes variables within a factor sparse, meaning that the influence of certain variables

can become zero within a factor. An elastic net problem is applied to compute new principal

component until the loads within the factor converge.

The SPCA method is based on the research of Zou et al. (2006). We will explain SPCA

shortly but for more in depth details we refer to this paper. To compute the SPCA we first have

to compute the ordinary principal components, which can be computed by PCA. This part can

be done on the same way as in the Ludvigson & Ng (2009) paper. These principal components

are the starting point of the SPCA approach.

On these first eight principal components an elastic net problem will be applied to com-

pute new principal components, this process will be repeated until the loading of the principal

components converge. The elastic net problem that will be applied is the following

βj = argmin
β

(αj − β)TXTX(αj − β) + λ∥β∥2 + λ1,j∥β1∥ j = 1, ..., 8 (2)

4



The betas that flow out of this elastic net problem will be used to construct the singular

value decomposition. In this equation the αj are the computed principal components. After the

principal components have been optimized they have to be normalised as a final step.

In theory this method is promising but in reality it has some bottlenecks. Computing the

principal components by the SPCA method requires a lot of computer power, especially for data

sets with a lot of variables. That is possibly also the reasons why there is a lack of research on

macroeconomical variables with SPCA. Performing SPCA as how it is intended is simply not

possible with the available equipment for this research. To still perform a SPCA variant we have

to simplify the procedure. We fix certain criteria such as how sparse the variables can be, we

choose a value of one for λ which is definitely more sparse than PCA but on the other hand does

not make the factor rely on one or two variables. This value was chosen after trying out some

different values for λ. Also do we make use of a so called mini-batch optimization. This takes

smaller subsets of the data to make the process compute faster. It takes the smaller subsets on

random bases but still this is not optimal, since certain data may not be included and thus this

method is less accurate. Even with this process it takes a lot of computer power to compute the

factors.

3.2 Regression

To forecast the excess return we create multiple regressions. The generalised form of the regres-

sion is

rx
(n)
t+12 = β0 + β

′
1F̂t + β2CPt + ϵt+1 (3)

where rx
(n)
t+12 is the excess return of a n-year bond a year later. How the excess return is exactly

calculated is explained in section 3.2.1. F̂t contains the estimated factors which can be
→
F6t =

(F̂1t, F̂
3
1t, F̂2t, F̂3t, F̂4t, F̂8t) or

→
F5t = (F̂1t, F̂

3
1t, F̂3t, F̂4t, F̂8t). Also can it included the single

factor F6t or F5t as explained in section 3.2.2. Finally the CPt factor can also be included, which

estimation is explained in the section 3.2.2. A constant is always included in each regression.

Since there is serial correlation in the standard errors, we make use of an 18 lag Newey and West

structure which is also used by Cochrane & Piazzesi (2005).

3.2.1 Excess return

The yield data is gathered from Liu & Wu (2021), to obtain the excess return from this data we

have to transform the data. The data used contains only zero coupon bonds. First we calculate
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the log price by applying this formula

logPt(n) = −nyt(n) (4)

where n is the bond maturity in years and yt the yield at time t, t is in months. After this we

calculate the return on this bond when we hold it for one year and then sell it. We do this by

subtracting the log price of a bond from the log price of a bond one year later which thus has

one year of maturity less. This equation shows this holding period return

rt+12(n) = logPt+12(n− 1)− logPt(n) (5)

where rt+12(n) is return of the one year holding period. To correct this return and obtain the

excess return we have to subtract the yield of an one year bond in the following way

rxt+12(n) = rxt+12(n)− yt(1) (6)

where rxt+12(n) is the excess return that is used in this paper.

3.2.2 Single factor

To find out if a linear combination can also forecast the excess return, we create a single factor

for the subset
→
F6t in the following way

1

4

5∑
n=2

rx
(n)
t+12 = γ0 + γ1F̂1t + γ2F̂

3
1t + γ3F̂2t + γ4F̂3t + γ5F̂4t + γ6F̂8t + ut+1

F6t ≡ γ̂
′ →
F6t (7)

where γ̂
′
contains the six estimated coefficients. The same is done for

→
F5t,

1

4

5∑
n=2

rx
(n)
t+12 = δ0 + δ1F̂1t + δ2F̂

3
1t + δ3F̂3t + δ4F̂4t + δ5F̂8t + vt+1

F5t ≡ δ̂
′ →
F5t (8)

where δ̂
′
contains the five estimated coefficients.

We also construct the CP model by Cochrane & Piazzesi (2005). For this model the forwarded
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rates have to be calculated. In contrast to research of Cochrane & Piazzesi (2005) and Ludvigson

& Ng (2009), we use again the revised yield data of Liu & Wu (2021). The n-year forwarded

rate at time t is calculated in the following way

ft(n) = logPt(n− 1)− logPt(n) (9)

where logPt(n) represents the log price of the n-year bond. With these forwarded rates, we can

than construct a single factor in the same procedure as done for the other single factors

1

4

5∑
n=2

rx
(n)
t+12 = θ0 + θ1y

(1)
t + θ2f

(2)
t + θ3f

(3)
t + θ4f

(4)
t + θ5f

(5)
t + wt+1

CPt ≡ θ̂
′ →
CPt (10)

where θ̂
′
contains the five estimated coefficients.

3.3 Out of sample forecasting

An out of sample forecast can tell us more if the bond risk premia can be predicted. There

are two forecast samples we use, namely 01:1985-12:2003 and 01:1995-12:2003. The data before

the start of this sample is used the construct the starting factors and are then updated every

iteration. For example, the forecast of the excess return of 04:1985 uses the variable data of

01:1960-04:1984 and the excess return data of 01:1961-03:1985. The forecast is recursively and

adds every month newly available data, this also means that each month the factors have to be

re-estimated.

Forecast are done with an unrestricted model (
→
F5t and

→
F5t + CP) and compared to a

restricted model (constant and constant + CP).
→
F5t is the subset of the factors, note that this

is not the linear combination. CP is the linear combination as presented in 10. This makes

the forecasts including CP a little bit more complex. Since we first have to forecast the average

excess return, before we can forecast the excess return with the model
→
F5t + CP and constant +

CP. To overcome this issue we first forecast the average excess return for the CP model (lineair

combination as in 10), afterwards we can forecast the model as specified. Essentially meaning

we do a double forecast. All the above mentioned out-of-sample forecast variants are done for

the PCA variant.

We also compare different PCA methods, but only for the 2- and 5-year excess return variant
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with
→
F5t as the unrestricted model and the constant as the restricted model. The forecast sample

is the short one, 01:1995-12:2003. The reason for this select comparison is that performing SPCA

takes a lot of computing power, especially when the factors have to be re-estimate every iteration.

By selecting the closest and furthest excess return we try to get an image of the accuracy of the

the other PCA variants.

To test the significance of the models we use the ENC-NEW test statistic of Clark & Mc-

Cracken (2001). This statistic is calculated as following

ENC-NEW = P
P−1

∑
(û2u,t+1 − ûu,t+1ûr,t+1)

MSEr
(11)

where P is the amount of forecasts and û the estimated error. The subscript u stands for

the unrestricted model (
→
F5t,

→
F5t + CP) and subscript r notes the restricted model (constant,

constant + CP)

4 Results

In this section the results are presented and discussed. First the summary statistics will be

explained. Then the in-sample forecast will presented. Afterwards the factors will discussed and

the out-of-sample forecast will be presented.

4.1 Summary statistics

PCA sPCA SPCA

i AR1 R2 AR1 R2 AR1 R2

1 0.692 0.157 0.841 0.184 0.785 0.155

2 0.698 0.232 0.900 0.282 0.918 0.226

3 -0.216 0.288 0.656 0.355 0.001 0.281

4 0.548 0.340 0.321 0.400 0.115 0.329

5 0.345 0.386 0.476 0.439 0.949 0.372

6 0.554 0.419 0.229 0.475 0.061 0.403

7 0.254 0.451 -0.240 0.509 0.383 0.433

8 -0.335 0.478 0.277 0.537 -0.337 0.453

Table 1: This table reports the summary statistics for each factor using different PCA. The used data
contains 127 variables in the time period 01:1964-12:2002 after transformation. The AR1 model gives
information about the persistence and the R2 explains the variation.
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In table 1 the summary statistics of the different pca methods are presented. For the normal

PCA method the R2 results are similar to the ones of Ludvigson & Ng (2009). There is a small

difference in the first factor, where the first factor of Ludvigson & Ng (2009) captures 0.02 more

variation. Next to that we see that the sPCA captures around 10% more variation compared to

PCA. In contrast SPCA seems to perform the worst. This can be argued by the fact that SPCA

makes variables sparse within a factor. A lot of variables could be missing in a factor which

might explain the lack of explained variation. For the first five factors the variation is between

37-44%. For the AR1 coefficient we see that the PCA and SPCA give results in a similar way. In

both cases the 8th factor is negative, the main difference is for the 5th factor. sPCA does have

some considerably different AR1 coefficients but for all three models the range of the coefficients

is around the same.

4.2 In-sample forecast

We compare each n-year excess return of a treasury bond by different PCA methods. Since

CP is constructed by the forwarded rates and does not involve PCA computations it is noted

separately in table 2. The coefficient of CP is significant and can explain 27% of two-year excess

return of next year. For the PCA methods we see that sPCA tends to predict the excess return

the best by explaining 26% when including all the presented factors. PCA follows closely but

performs a bit less. SPCA give way worse results, and is only able to explain 10%. Also none

of the coefficients of SPCA are significant when all factors are included (row b of SPCA). When

making a linear combination of the factors we see that the explanation of all models decreases

by around 1%. What we also see is that the CP factor can influence the significance of other

factors, this can come due to the fact that the CP factor already captures the information that

is also presented in a certain factor. Surprisingly it also has this effect the other way around,

we see this in row e of SPCA. Including CP turns factor 1 and 3 significant. The explanation

behind this could be that the CP factor overestimated it and that this is correct by the other

factors.
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Table 2: Results for rx
(2)
t+1. The coefficient are presented in bold if they are significant at a 5%

level, and the corresponding t-statistics are presented in parentheses. CPt, F5t and F6t are
linear combinations as explained in the mythology. The used data is from 1964:1 till 2003:12

F̂ 1t F̂ 3
1t F̂ 2t F̂ 3t F̂ 4t F̂ 8t CPt F5t F6t R2

a 0.45 0.27
(7.033)

b 0.18 -0.00 -0.10 -0.06 0.19 0.08 0.22
(4.13) (-2.22) (-1.83) (-3.03) (3.73 (2.29)

c 0.15 -0.00 0.03 -0.00 0.12 0.03 0.41 0.38
(4.05) (-2.16) (0.69) (-0.01) (2.75) (1.11) (4.92)

PCA d 0.17 -0.00 -0.06 0.19 0.08 0.19
(4.02) (-2.24) (-2.96) (3.44) (2.20)

e 0.15 -0.00 -0.00 0.12 0.03 0.39 0.38
(4.16) (-2.18) (-0.18) (2.97) (1.13) (5.02)

f 0.53 0.19
(4.99)

g 0.49 0.21
(5.46)

h 0.38 0.39 0.37
(4.91) (4.15)

b 1.33 -0.24 -1.29 -0.32 1.19 -1.23 0.26
(3.58) (-1.78) (-3.16) (-0.78) (4.06) (-2.09)

c 1.25 -0.28 -0.19 -0.25 0.98 -0.63 0.39 0.39
(3.96) (-1.99) (-0.47 (-0.75) (3.25) (-1.34) (4.52)

sPCA d 1.32 -0.24 0.33 1.19 -1.24 0.17
(3.34) (-1.51) (0.70) (3.16) (1.99)

e 1.24 -0.28 0.24 0.97 -0.59 0.41 0.39
(3.93) (-1.94) (0.75) (3.14) (-1.34) (5.73)

f 0.54 0.16
(4.99)

g 0.48 0.25
(6.55)

h 0.40 0.44 0.38
(5.92) (5.09)

b -0.09 0.00 0.06 -0.7 0.44 0.21 0.10
(-1.67) (-1.42) (1.66) (-1.65) (-1.60) (-1.56)

c -0.11 0.00 -0.04 -0.09 0.11 0.06 0.45 0.35
(-2.99) (1.72) (-0.92 (-2.23) (-1.53) (-1.30) (6.56)

SPCA d -0.10 0.00 -0.05 -0.19 -0.07 0.10
(-1.83) (1.47) (-1.32) ((-1.66) (-1.27)

e -0.11 0.00 -0.10 0.11 0.07 0.44 0.35
(-2.65) (1.66) (-2.35) (-1.50) (1.76) (6.68)

f 0.55 0.09
(2.48)

g 0.53 0.10
(2.84)

h 0.42 0.45 0.34
(6.17) (3.03)
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For the other n-year returns we see similar patterns, these tables can be found in the Ap-

pendix A. Row c, which includes the presented factors and CP, explains most of the excess return

for every model. sPCA performs the best and is closely followed by PCA. SPCA performs the

worst and misses a bit of explanation compared to the other models. This is probably the case

because the variables within the factors become too sparse. It is also worth noting that when

the maturity of the bonds increases, SPCA seems to perform relatively more worse than the

other methods.

Comparing the results to the results of Ludvigson & Ng (2009), we see that Ludvigson & Ng

(2009) performs slightly better. Since the used variables as well as the bond yield is gathered

from different sources, this could explain the small differences.

4.3 Interpretation of factors

To provide a more in dept explanation of the factors, we use the variable groups as constructed by

McCracken (2021). We calculated the marginal R2 of each variable within a factor. The figures

below presented these marginal R2 for the factors that are also used for the in-sample forecast.

The presented figures contain the results of the normal PCA method. Since the interpretation

for the different PCA methods is similar we do not present them. The marginal R2 of factor

one by the SPCA method is also presented to visualize how the SPCA method functions.

Figure 1: Marginal R2 for factor 1 by using PCA
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In figure 1 we see that R2 are the highest for the output and income group. Variables as

IP growth and manufacturing score the highest. Also some variables of the labor market group

are included, such as total employment and good producing industries. The factor also contains

some variables of the consumption and orders group and stock market group but this is relatively

less presented.

Figure 2: Marginal R2 for factor 1 by using SPCA

In figure 2 we see a more extreme effect of the PCA. We see that by using SPCA the load

shifts to the group output and income. By making the other variables sparse, the factor is more

focused on a certain group but the trade off is that there is possibly useful information missing.

As we saw in figure 1, the labor market group contains some significant explanation but is not

included in the SPCA variant, and thus might miss some important information.
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Figure 3: Marginal R2 for factor 2 by using PCA

Factor 2 explains mainly variables of the interest rate and exchange rates group as can been

seen in figure 3. It explains a huge portion of the bond spread variation, the same was concluded

by Ludvigson & Ng (2009). Besides that we see that almost all variables explain a bit of the

variation. Since it explains so less it could also cause some noise in the regression and a preferred

choice could be the SPCA factor.

Figure 4: Marginal R2 for factor 3 by using PCA
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Factor 3 almost explains 70% of the variation of some variables in the group prices. The

highest marginal R2 is the variable of oil spot price. Factor 3 also includes some high CPI and

PPI variables, which is inline with Ludvigson & Ng (2009). Again we see also in figure 4 that

the other variables do not explain much of the variation.

Figure 5: Marginal R2 for factor 4 by using PCA

Just as factor one, also factor four explains the variation in the consumption and orders

group. What is interesting is that the R2 is around the same level for this group. The difference

is that factor four does not explain the variation in the groups output and income, and the

group labor market. One could argue that factor four is a subset of factor one, since factor one

is so similar in terms of R2 for certain variables but factor one also include high R2 for the some

other groups.
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Figure 6: Marginal R2 for factor 8 by using PCA

Factor eight is completely different compared to the one of Ludvigson & Ng (2009). Their

eight factor included mainly the stock market. Also did their other variables not explain much

variation. Their other variables were not complete spars but were close to 0. When we look

at figure 6 we see that factor eight loads mostly on the variables business inventories, which is

quite a difference.

To give a more in dept explanation of the impact of the factors, the results of F6t are

presented

1

4

5∑
n=2

rx
(n)
t+12 = 0.98

(2.08)
+ 0.31

(3.74)
F̂1t −0.00

(-2.37)
F̂ 3
1t

−0.28
(-2.19)

F̂2t −0.14
(-3.06)

F̂3t + 0.37
(3.31)

F̂4t + 0.18
(2.16)

F̂8t + ut+1 (12)

R2 = 0.193

where the t-statistics are presented in the parentheses. From this result we can conclude

that F̂4t is the most important factor followed by F̂1t and F̂2t. Interestingly this differs from

the results of Ludvigson & Ng (2009) where F̂8t has a high impact and F̂4t not. There are of

course multiple reasons for this difference. The most logical reason is the difference data that is

used, maybe that is also the reason why our F̂8t includes different variables than Ludvigson &
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Ng (2009). The yield curves of Liu & Wu (2021) which we use, are calculated more accurately

and could also cause a difference in the estimated coefficients.

4.3.1 Correlation between factor and IP growth

For the first factor in figure 7 we see a high correlation of 0.92 with the IP growth. It does

have sometimes trouble following the spikes precisely but it is really close. We see that in 1983

and 1992 when the IP growth decreases, that factor one overestimates this. Although it is clear

that factor one follows growth and it goes counter cyclic with the excess return. This makes

sense since excess return is often high during periods of negative IP growth. For the linear

combination of F5 we see the opposite. We see also that the correlation between IP growth and

F5 is negative, but it is also less correlated. Probably due to the fact that are more factors

included and not only factor one that is already heavy loaded on the output and income group.
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Figure 7: 12 months moving average of the IP growth compared to the first factor and F5. Correlation
between the first factor and IP growth is 0.922 and for F5 and IP growth -0.583

4.4 Out-of-sample forecasting

We will first only look at the result of the out-of-sample forecast by PCA, which are presented

in table 3. We see that for every n-year excess return the unrestricted model outperforms the

constant model. We see that the forecasts are the most impressing for the 2-year excess return,

by only having 80% of the MSE of the constant model. We also see that when n increases
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that the MSE comes closer to that of the constant model. More interestingly we see that when

the forecast sample becomes smaller the performance increases. The difference is not huge, but

what is makes interesting is that Ludvigson & Ng (2009) had worse results for all models with

smaller sample compared to bigger sample. It seems more logical to perform better when the

forecast sample is smaller, since the forecast can be based on more historical data. So predicting

in the near future is most valuable when using PCA. Next to that, all test statistics using the

ENC-NEW are significant at a 1% level.

Table 3: This table presents the results of the out-of-sample forecast for the PCA method. The unres-

tricted model included the factors of
→
F5t and can also include the CP factor. This is then compared with

the restricted model that contains a constant and can also include the CP factor. The test statistic is
the ENC-NEW and the 95% asymptotic CV is also given.

Row Forecast sample Comparison MSEu/MSEr Test statistic 95% Asymptomatic. CV

rx
(2)
t+1

1 01/1985-12/2003
→
F5t vs const 0.82 35.34 3.18

2 01/1995-12/2003
→
F5t vs const 0.81 16.81 2.47

3 01/1985-12/2003
→
F5t + CP vs const + CP 0.84 25.89 2.30

4 01/1995-12/2003
→
F5t + CP vs const + CP 0.84 9.70 1.40

rx
(3)
t+1

5 01/1985-12/2003
→
F5t vs const 0.85 27.65 3.18

6 01/1995-12/2003
→
F5t vs const 0.82 14.14 2.47

7 01/1985-12/2003
→
F5t + CP vs const + CP 0.87 19.27 2.30

8 01/1995-12/2003
→
F5t + CP vs const + CP 0.87 7.88 1.40

rx
(4)
t+1

9 01/1985-12/2003
→
F5t vs const 0.87 22.83 3.18

10 01/1995-12/2003
→
F5t vs const 0.84 12.63 2.47

11 01/1985-12/2003
→
F5t + CP vs const + CP 0.89 14.96 2.30

12 01/1995-12/2003
→
F5t + CP vs const + CP 0.89 6.54 1.40

rx
(5)
t+1

13 01/1985-12/2003
→
F5t vs const 0.89 18.88 3.18

14 01/1995-12/2003
→
F5t vs const 0.86 10.60 2.47

15 01/1985-12/2003
→
F5t + CP vs const + CP 0.92 11.87 2.30

16 01/1995-12/2003
→
F5t + CP vs const + CP 0.91 5.40 1.40

In table 4 we see the comparison of the different PCA methods. In contrast to the in-sample

forecast, PCA now outperform sPCA. The difference are again close, similarly as in the in-

sample forecast. Not surprisingly the SPCA does just barely outperform the constant model.

Although all models are significant at an 1% level, the effort for SPCA does not seem worth

it. This can come due to the fact that the optimization for SPCA is not done optimal since we

used a less accurate but faster method.
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Table 4: In this table the different out-of-sample forecast for different PCA approaches can be found.
See for more details about the table the note of table 3.

Row Forecast sample Comparison MSEu/MSEr Test statistic 95% Asymptomatic. CV

rx
(2)
t+1

PCA 01/1995-12/2003
→
F5t vs const 0.81 16.81 2.47

sPCA 01/1995-12/2003
→
F5t vs const 0.81 15.26 2.20

SPCA 01/1995-12/2003
→
F5t vs const 0.97 8.84 1.73

rx
(5)
t+1

PCA 01/1995-12/2003
→
F5t vs const 0.86 10.60 2.47

sPCA 01/1995-12/2003
→
F5t vs const 0.88 9.83 2.20

SPCA 01/1995-12/2003
→
F5t vs const 0.99 4.69 1.73

5 Conclusion

Forecasting the bond risk premia on macrovariables with different PCA methods, in the period

01:1964-12:2003 is studied in this paper. First we constructed factors on three different PCA

variants. Then we also constructed two single factors based on the other factors and the CP

factor was constructed. The sPCA and PCA method performed very closely in the in-sample

forecast, but sPCA could slightly better explain the excess return of the bonds. Next to that,

SPCA was implemented as a method to construct factors. SPCA had as problem that the

computing time of the factors take a long time before they are optimized. Besides that were the

factors too sparse and thus contain not enough information to explain the excess return.

By making histograms of the marginal R2 we could conclude which variables had high loads

in a factor. We found that most factors contain different groups of variables. Except factor one

and four, it looks like factor four is a subset of factor one.

Lastly we performed an out-of-sample forecast. The PCA method with the smallest forecast

sample and the largest training data performed the best compared to the constant model. Also

forecasting bonds with a longer maturity makes the forecast stands less out compared to the

constant model. Unfortunately the comparison between the different PCA variants is limited

because of the computing power that is necessary for SPCA. Surprisingly we saw that PCA

performed better than sPCA, which is in contrast with the in-sample forecast result. SPCA

performed again disappointingly.
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5.1 Limitations and extensions

Before hand SPCA seemed to be a very interesting method, since it can make variables sparse.

Since the data used contains many variables of which some are not related to the bond risk

premia, it seemed logical to completely exclude those variables. It turned out that the way the

SPCA was implemented made the variables way too sparse, meaning that useful information

was missing from the factors. This also came due tot the fact that computing SPCA demands

a lot of computer power, because of this the SPCA could not be performed 100% correctly and

was not as accurate as it should be. For future research it would be interesting to see if a faster

computer can perform the SPCA completely and if the results differ.

Next to that is the out-of-sample forecast procedure for the CP factor not done in a great

way. First the average return on the CP factor had to forecasted after which the final forecast

was performed. So there is done a double forecast which includes different forecasted values for

the same variables. For future research it would be interesting to rethink this process, and try

to find a procedure that does not involve a forecast on a forecast.
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A Appendix

Table 5: Results for rx
(3)
t+1. The coefficient are presented in bold if they are significant at a 5%

level, and the corresponding t-statistics are presented in parentheses. CPt, F5t and F6t are
linear combinations as explained in the mythology. The used data is from 1964:1 till 2003:12

F̂ 1t F̂ 3
1t F̂ 3t F̂ 4t F̂ 8t CPt F5t F6t R2

a 0.84 0.29

(6.78)

b 0.29 -0.00 -0.11 0.33 0.15 0.16

(3.81) (-2.41) (-2.85) (3.10) (2.11)

c 0.25 -0.00 -0.01 0.20 0.05 0.75 0.38

(3.96) (-2.34) (-0.29) (2.67) (1.240 (5.14)

PCA d 0.91 0.16

(4.85)

e 0.88 0.20

(5.52)

f 0.72 0.64 0.37

(5.01) (4.07)

b 2.18 -0.43 -0.48 2.12 -2.17 0.14

(3.15) (-1.66) (-0.56) (2.91) (-1.99)

c 2.01 -0.53 -0.31 1.72 -0.94 0.77 0.38

(3.76) (-2.16) (-0.54) (2.84) (1.22) (5.65)

sPCA d 0.91 0.14

(4.72)

e 0.86 0.25

(6.57)

f 0.76 0.72 0.38

(5.70) (4.81)

b -0.44 0.00 -0.01 0.09 0.05 0.12

(-3.31) (2.36) (-0.77) (1.14) (0.74)

c -0.32 0.00 -0.02 0.16 -0.08 0.80 0.36

(-2.85) (2.00) (-0.65) (1.92) (-1.56) (5.65)

SPCA d 0.92 0.12

(3.27)

e 0.86 0.21

(6.92)

f 0.75 0.65 0.35

(5.55) (2.61)
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Table 6: Results for rx
(4)
t+1. The coefficient are presented in bold if they are significant at a 5%

level, and the corresponding t-statistics are presented in parentheses. CPt, F5t and F6t are
linear combinations as explained in the mythology. The used data is from 1964:1 till 2003:12

F̂ 1t F̂ 3
1t F̂ 3t F̂ 4t F̂ 8t CPt F5t F6t R2

a 1.22 0.32
(6.77)

b 0.37 -0.00 -0.18 0.44 0.21 0.15
(3.51) (-2.49) (-2.98) (2.88) (2.03)

c 0.31 -0.00 -0.02 0.24 0.07 1.12 0.39
(3.63) (-2.41) (-0.39) (2.40) (1.19) (5.26)

PCA d 1.19 0.15
(4.66)

e 1.20 0.19
(5.56)

f 1.08 0.79 0.38
(5.13) (3.83)

b 2,66 -0.55 0.66 3.01 -3.08 0.12
(2.80) (-1.61) (0.54) (2.84) (-2.04)

c 2.42 -0.69 0.42 2.38 -1.25 1.15 0.40
(3.36) (-2.19) (0.54) (2.88) (1.25) (5.69)

sPCA d 1.18 0.12
(4.51)

e 1.20 0.24
(6.88)

f 1.13 0.90 0.39
(5.60) (4.61)

b 0.00 0.02 0.00 -0.11 0.09 0.10
(0.00) (1.59) (0.01) (-0.91) (-0.71)

c -0.02 0.01 -0.00 -0.08 -0.16 1.16 0.36
(-0.07) (1.33) (-0.09) (-0.80) (-1.44) (5.78)

SPCA d 1.18 0.10
(3.85)

e 1.18 0.12
(3.72)

f 1.12 0.65 0.35
(5.27) (2.62)
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Table 7: Results for rx
(5)
t+1. The coefficient are presented in bold if they are significant at a 5%

level, and the corresponding t-statistics are presented in parentheses. CPt, F5t and F6t are
linear combinations as explained in the mythology. The used data is from 1964:1 till 2003:12

F̂ 1t F̂ 3
1t F̂ 3t F̂ 4t F̂ 8t CPt F5t F6t R2

a 1.49 0.31
(6.20)

b 0.41 -0.00 -0.22 0.52 0.26 0.13
(3.29) (-2.35) (-2.92) (2.71) (1.93)

c 0.34 -0.00 -0.03 0.27 0.08 1.38 0.37
(3.32) (-2.29) (-0.47) (2.18) (1.13) (4.92)

PCA d 1.38 0.13
(4.49)

e 1.43 0.18
(5.73)

f 1.34 0.89 0.36
(4.81) (3.60)

b 2.88 -0.61 0.79 3.71 -3.72 0.11
(2.53) (-1.44) (0.53) (2.77) (-1.99)

c 2.58 -0.78 0.50 2.94 -1.48 1.41 0.38
(2.95) (-1.99) (0.51) (2.79) (1.19) (5.27)

sPCA d 1.18 0.12
(4.51)

e 1.20 0.24
(6.88)

f 1.13 0.90 0.39
(5.60) (4.61)

b -0.25 0.01 -0.01 -0.12 0.49 0.16
(-1.12) (0.96) (-0.28) (-0.66) (2.28)

c -0.32 0.01 -0.02 0.23 0.24 1.50 0.33
(-1.08) (0.95) (-0.29) (1.61) (1.13) (6.38)

SPCA d 1.65 0.06
(2.21)

e 1.48 0.10
(2.93)

f 1.43 0.56 0.32
(5.83) (0.77)
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