ErAasMUS UNIVERSITY ROTTERDAM
ErRASMUS SCHOOL OF ECONOMICS

Bachelor Thesis Econometrics & Operations Research

Integrating Neural Networks and Metaheuristics for

Volatility Forecasting: A Hybrid Approach

Finn van der Knaap (573834)

Abstract

Volatility forecasting is crucial to any participant in the financial market, as precise forecasts
are essential for financial decision-making and risk management. This paper investigates
the application of machine learning (ML) and metaheuristic approaches in order to improve
forecasting accuracy. We consider combining either particle swarm optimization or a genetic
algorithm with neural networks (NNs), as metaheuristic algorithms offer powerful optimiz-
ation opportunities in the context of parameter optimization. To be precise, we construct
hybrid approaches which implement metaheuristics to optimize the weights of a NN further
and compare these models to several NN algorithms and various heterogeneous autoregress-
ive models. Our dataset consists of 25 of the 30 Dow Jones Industrial Average constituents
from January 29, 2001, to December 31, 2021. We evaluate the forecasting performance
using both the mean squared error and the quasi-likelihood loss function. The findings high-
light the possibilities of hybrid models for the task at hand, as the hybrid models beat their
counterparts by 5-10%. However, performance is highly dependent on the data period, as
performance gain is only sometimes present. In addition, we discern that the hybrid model
struggle with high-dimensional input, indicating that perhaps feature selection is needed to

overcome this limitation.

Supervisor: Dr. Onno Kleen
Second assessor: Max Welz
Date final version: July 2, 2023

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.

1 Introduction

Financial markets exhibit the phenomenon of volatility clustering (Bollerslev, 1986), implying
that large changes in returns are often followed by similar fluctuations and small changes in
returns by small fluctuations. Accurately predicting these fluctuations is of utmost importance
to investors, as volatility forecasts play a pivotal role in many applications, such as asset pricing
and risk management, thus highlighting the importance of obtaining precise forecasts. Most
statistical models, such as the heterogeneous autoregressive (HAR) model proposed by Corsi
(2009), only use past information to predict volatility, even though Ederington and Lee (1993)
show that news and volatility are strongly correlated. However, statistical models often rely
upon linear regressions, which are more prone to produce spurious results when extra forward-
looking variables are added. Another direction one could explore is the use of machine learning
(ML) approaches, which achieve promising results in a variety of tasks (Rahimikia & Poon,
2020; Petrozziello et al., 2022).

Christensen, Siggaard and Veliyev (2022) conduct an extensive out-of-sample analysis where
the authors compare numerous methods for volatility forecasting, making it a paper to build
upon. The authors investigate the performance of many baseline ML methods, leaving room to
delve into the performance of more sophisticated models. In addition, Christensen et al. (2022)
do not extensively optimize the parameters of the considered models due to capacity limitations,
which motivates the use of hybrid models in this paper. Hybrid models combine different
approaches, such as metaheuristics and ML models, to improve performance. Metaheuristics
are strategies or algorithms that guide a solution to a near-optimal solution in the search space
and are among others used for stock price prediction (Gogken, Ozcalicr, Boru & Dosdogru, 2016)
and portfolio optimization (Doering, Kizys, Juan, Fito & Polat, 2019). The research question is
formulated as follows:

To what extent does the accuracy of volatility forecasts improve from utilizing metaheuristics for
parameter optimization of neural networks?

In this paper, inspired by the work of Christensen et al. (2022), we implement some of
the most well-known methods in the field of volatility forecasting and compare them against
several models which utilize hybrid models to optimize the weights of neural networks (NN).
In more detail, we compare the HAR model and its extensions against several variants of NN
approaches. Moreover, to mitigate a potential weight optimization problem, we propose using
metaheuristics, namely a genetic algorithm (GA) and particle swarm optimization (PSO), to
optimize the weights of the NNs further. To examine the effect of hybrid models, we use the
mean squared error (MSE) and quasi-likelihood (QLIKE) measures to evaluate predictions and
compare the performance of hybrid models against the aforementioned models. We base our
main analysis on the intraday returns of 25 of the 30 Dow Jones Industrial Average (DIJA)
constituents from January 29, 2001, to December 31, 2017, and further extend this analysis to
December 31, 2021. Extending the data period allows us to analyze the performance of the
above-mentioned models during the covid crisis.

The main contributions of this paper are as follows. First, we investigate the performance of
two different metaheuristics for NN optimization in the framework of volatility forecasting. The

first approach combines NNs and PSO to optimize the weights of NNs. The optimized weights

by means of backpropagation are inputted into the PSO algorithm, enabling us to implement
an off-the-shelf (re-estimating the weights by incorporating new information) approach of a
NN whilst keeping computational costs relatively cheap. The second approach mimics the first
approach but implements a GA instead of PSO, allowing us also to compare the two hybrid
approaches.

Second, we investigate the performance of ML approaches compared to various HAR models.
We build upon Christensen et al. (2022) and extend their dataset to 2021, thus structuring the
in-sample and out-of-sample datasets differently, enabling us to qualitatively compare the impact
of using different data periods.

The rest of the paper is structured as follows. First, Section 2 presents an overview of
previous literature regarding volatility forecasting and the application of metaheuristics. Then,
Section 3 presents the proposed methods in this thesis, followed by, in Section 4, an overview
of the used data. Next, Section 5 discusses the forecasting results. Last, Section 6 presents

limitations and concluding remarks.

2 Literature

This section discusses previous literature regarding volatility forecasting, ML approaches, and
the use of metaheuristics. First, Section 2.1 gives an overview of volatility forecasting and
especially ML approaches in this framework. Then, in Section 2.2, we discuss metaheuristics

and their applications in the financial domain.

2.1 Volatility Forecasting and Machine Learning

Corsi (2009) laid the foundation for the concept of the by now well-known HAR model, which,
in contrast to previously proposed ARCH-type models, is able to capture the main empirical
features of financial returns. As the name suggests, it is an autoregressive model, using the
realized variance measured at numerous frequencies to predict volatility, and is able to partially
capture the heterogeneity of the data. Due to the promising performance of the HAR model, it
is seen as a benchmark, taking over the role of the by Bollerslev (1986) introduced GARCH(1,1)
model. However, due to its parsimonious structure and the complicated structure of financial
data, it is inadequate in certain situations. Therefore, many extensions of the baseline HAR
model try to tackle its shortcomings. Examples of such extensions use a leverage effect to
improve predictions (Corsi & Reno, 2012), allow for variation in negative and positive returns
(Patton & Sheppard, 2015), let the parameters vary explicitly with the degree of measurement
error, (Bollerslev, Patton & Quaedvlieg, 2016), or combine ARCH-type models and HAR models
to characterize time-varying volatility in realized variance (Qu, Duan & Niu, 2018).

Yet, all of the aforementioned models utilize information regarding past returns, which might
not be optimal, as previous literature has shown that news and volatility are often heavily
correlated (Ederington & Lee, 1993; Jiang, Konstantinidi & Skiadopoulos, 2012; Bollerslev, Li
& Xue, 2018), indicating that perhaps just using past information is inadequate for volatility
forecasting. A supposedly straightforward solution is to add additional covariates to a model

to capture realized variance to a greater extent. However, the previously mentioned models

rely on linear regressions, which are prone to break down or produce spurious results when
the explanatory variables are strongly correlated, have a low signal-to-noise ratio, or have a
nonlinear relationship. Nonetheless, with the growing amount of available data, it is tempting
to seek models which can handle the limitations of these more statistical methods.

As Varian (2014) shows, ML approaches are a solution to the above problem, and at the
time of writing this paper, also thoroughly investigated in previous literature (Zhou, Pan, Wang
& Vasilakos, 2017; Kolisetty & Rajput, 2020). In the framework of volatility forecasting, vari-
ous ML techniques have been investigated and compared against the more conventional models
(e.g., ARCH-type models). For example, Liu (2019) examines the performance of Support Vec-
tor Machines (SVM) and NNs, showing that these approaches outperform the GARCH model.
Gavrishchaka and Banerjee (2006) propose to solely use SVMs to predict the S&P500 index,
finding that this technique captures long-memory volatility and is often superior to conven-
tional methods. Furthermore, Audrino and Colangelo (2010), Mittnik, Robinzonov and Spind-
ler (2015), and Déopke, Fritsche and Pierdzioch (2017) make use of several regression trees to
forecast volatility.

In contrast to the literature mentioned above, which mainly uses a single approach, Christensen
et al. (2022) conduct an extensive out-of-sample analysis, comparing many of the above-mentioned
models, such as HAR-type models, regression trees, and NNs. They aim not only to investigate
the performance of the considered models but also to understand why ML approaches improve
the accuracy of predictions. Christensen et al. (2022) find that ML approaches improve out-of-
sample forecasts and work better with the nonlinear structure of financial markets, especially
NNs and regression trees, where NNs perform better at shorter horizons and regression trees
at longer horizons. In more detail, even though nonlinearity, a feature NNs incorporate easily,
remains essential for longer horizons, functionality and interaction effects, something regression
trees trump NNs at, become vital for longer horizon predictions.

To this end, we take inspiration from Christensen et al. (2022) and compare numerous HAR
models and ML approaches for volatility forecasting. However, we propose the use of more
sophisticated hybrid models, instead of relatively simplistic ML methods. In Christensen et
al. (2022), the weights of the NNs are not extensively tuned due to computational capacity
problems, which motivates the use of metaheuristics in this paper. Metaheuristics are, as Blum
and Roli (2003) show, likely to find a feasible solution in less computation time when dealing
with limited capacity. Furthermore, compared to backpropagation, metaheuristics, such as PSO
(Kennedy & Eberhart, 1995) and GAs (Holland, 1992), have a fast convergence rate and often
provide near-global optimal solutions, therefore overcoming possible limitations of backpropaga-
tion (Pradeepkumar & Ravi, 2017).

2.2 Metaheuristics in the Financial Domain

Metaheuristics are strategies or algorithms that try to efficiently guide the input to a near-
optimal solution, using a trade-off of local and global exploration (Gandomi, Yang, Talatahari
& Alavi, n.d.). Many of such approaches use nature as the backbone of their algorithm (Yang,
2010a). For example, Dorigo and Stiitzle (2003) introduce ant colony optimization, an algorithm

based on the behavior of ants and their colony. Moreover, Yang (2010b) introduces a new

algorithm based on the echolocation behavior of bats. In this thesis, we implement adaptations
of two of the most well-known metaheuristics, namely PSO (Kennedy & Eberhart, 1995) and a
GA (Holland, 1992), as they often achieve state-of-the-art results (Zhu, Wang, Wang & Chen,
2011; Chung & Shin, 2018). Both metaheuristics are also based on natural phenomena, as PSO
is based on the social behavior of birds in a flock, and GAs are based on natural selection.
Metaheuristics are used for a wide range of applications. For example, Luo et al. (2018) apply
metaheuristics for financial stress prediction, whereas Zivkovic et al. (2021) utilize metaheuristics
to predict covid-19 cases.

The implementation of metaheuristics in the domain of finance and ML is not a new concept.
For example, Gocken et al. (2016) implement metaheuristics to determine the optimal structure
and input variables of a NN for stock price prediction. Ghasemiyeh, Moghdani and Sana (2017)
focus on optimizing the weights of a NN through metaheuristic optimization in the framework of
stock price prediction. Combining both of the above-mentioned literature, Shahvaroughi Fara-
hani and Razavi Hajiagha (2021) use metaheuristics to select technical indicators and to optimize
a NN its weights. Yet, all of the aforementioned works focus on stock price prediction. In the
framework of volatility forecasting, research regarding the fusion of NNs and metaheuristics is
scarce, and mostly focused on optimizing the corresponding hyperparameters (Ribeiro, Santos,
Mariani & dos Santos Coelho, 2021; Ji, Liew & Yang, 2021). Therefore, this thesis focuses on
the implementation of metaheuristics for the optimization of the weights of a NN, overcoming

possible limitations of a backpropagation approach.

3 Methodology

This section contains a description of the models we use. First, Section 3.1 presents the setting for
forecasting volatility. Next, Section 3.2 discusses the HAR model and its considered extension.
Then, Section 3.3 goes in depth about ML approaches, followed by, in Section 3.4, a detailed
overview of the metaheuristics for parameter optimization. Last, in Section 3.5, we discuss the

forecast evaluation measures.

3.1 Realized Volatility

Let the log-price X = (X:):>0 be supported by a filtered probability space (€2, (F)t>0,F,P).
Then, X is a semimartingale process if the price is determined in an arbitrage-free frictionless

market, and X; is defined as follows:

t t N
Xo=Xo+ [s [adWor Yo gtz M)
0 0

s=1

where Xy is Fo-measurable, v = (u¢)¢>0 is a drift term, o = (0¢)¢>0 denotes the stochastic
volatility process, W = (W}):>0 is a standard Brownian motion, N = (NN¢);>¢ denotes a counting
process, which represents the number of jumps in X, and J = (Jy)s=1,... N, is a series of nonzero

random variables of jump sizes with jump times 7 = (75)s=1,... n,. In this paper, we aim to

predict the daily quadratic variation, which is defined as follows:

t
QVt—/ afds—i— Z JSQ, fort=1,...,T, (2)
t—1

t—1<7s<t

where t is the predicted observation, and 7' is the total number of days in the sample. However,
in practice, the quadratic variance is not observable, which motivates the use of the realized

variance as an estimator of the quadratic variance, which is defined as follows:

n

2
RV, = > [A7 X[(3)
j=1
where n is the number of intraday returns, and A:Ll’jX = Xt_1+1 — Xt—1+ﬂ' We opt to

use the realized variance as an estimator, as RV, 5 QV, when n — oo (Barndorff-Nielsen &

Shephard, 2002). It is thus a consistent estimator of the quadratic variance when n increases.

3.2 HAR Models

As a benchmark model, we consider the baseline HAR model proposed by Corsi (2009), which
uses past realized variance proxies computed at different frequencies to predict the present
volatility. The baseline HAR model is defined as follows:

RVy = 8o+ B1RVi—1 + B2RV 135 + B3RV 122 + €1, (4)

where RV;_y;_j, = % Zzh:1 RV;_p, and € is an error term, implying that we predict volatility at
time t using proxies of the average daily, weekly, and monthly lagged realized variance.

In the same paper, Corsi (2009) also proposed a logarithmic version of HAR, denoted by
logHAR, allowing for a nonlinear relationship between the dependent and explanatory variables.
The logHAR model is defined as follows:

log(RV¢) = Bo + B1log(RVi—1) + B2 log(RV;_y1);_5) + B31og(RV;_1};_22) + €t- (5)

The logHAR model, however, produces forecasts of log-realized variance. To obtain forecasts
of the realized variance, we need to apply a nonlinear transformation, which implies that the
realized variance forecasts are biased by Jensen’s inequality (Jensen, 1906). We, therefore, bias

the predictions as follows:
E[RV{] = exp (E[log(ﬁ\\/t)] + o.5var[1og(f§/t)]) , (6)

where Var[log(ﬁ\\/t)] is the variance of the residuals in the training and validation set. This bias
is applicable when the distribution of log-realized variance is Gaussian, which is approximately
true in practice (see Andersen, Bollerslev, Diebold and Ebens (2001)).

Besides the above three lagged realized variance explanatory variables, we consider a broader
selection of variables, as explained in Section 4. To ensure compatibility with the NNs, we con-
struct distributed lag-type versions of both HAR models. HAR-X is denoted as the distributed

lag-type version for the baseline HAR model, and logHAR-X is denoted as the distributed lag-
type version of the logHAR model. We estimate all HAR models by means of Ordinary Least

Squares, thus minimizing the sum of squared errors.

3.3 Neural Networks

Moving onto ML approaches, NNs are a subset of ML algorithms that mimic the way the human
brain operates. Due to their nonlinear and flexible structure, NNs are extensively investigated in
literature and show promising results, including in the area of volatility forecasting (Christensen
et al., 2022).

NNs are compromised of several node layers, containing an input layer, hidden layers, and an
output layer. First, the NN receives an input Z; in the input layer. Then, the data is transformed
through numerous hidden layers through an activation function g, which eventually produces

the desired output at the output layer. In general, the Ith layer in a NN is defined as follows:

N
al e =g | Yo 6a 460) 1<i<L (7)
j=1

where L is the total number of layers, g; is the activation function, 8% is the weight matrix, b()

0L o the predicted value.

is the bias, IN; is the number of hidden neurons, and af

The downside of the flexibility of a NN is the number of options for its structure, which de-
pends on the problem at hand and is determined through hypertuning. In line with Christensen
et al. (2022), we construct four models which are inspired by the geometric pyramid. NN; has
a single hidden layer accompanied by two neurons. Then, NNy is two-layered with four and
two neurons, respectively, and NN3 has three hidden layers with eight, four, and two neurons,
respectively. Last, NNy is four-layered with sixteen, eight, four, and two neurons, respectively.
We illustrate the NNy structure in Figure 1.

As an activation function, which adds non-linearity to the model, we opt to use the Leaky

Rectified Linear Unit (L-ReLU) from Maas, Hannun, Ng et al. (2013), which is defined as follows:

cx, ifz <0,
L-ReLU(z) =

x, otherwise,

(8)

where ¢ > 0. Its base version (ReLU) can result in dead neurons (Lu, Shin, Su & Karniadakis,
2019), something L-ReL.U attempts to fix by having a small negative slope (¢). We employ
Adaptive Moment Estimation (ADAM) (Kingma & Ba, 2014) as optimizer with default hyper-
parameters and initialize the weights of a NN using the glorot normal distribution from Glorot
and Bengio (2010), remaining in line with Christensen et al. (2022). We train the NNs through
backpropagation using 500 epochs and use the MSE as the corresponding loss function.

A rather often occurring problem with NNs is overfitting, which implies that the model
fits the training data exactly but performs modestly on the test data. Besides employing a

validation set, regularization is performed to overcome the issue of overfitting. In this work,

"'We set ¢ = 0.1.

Input layer Hidden layer Hidden layer Output layer

— \f’\

Zio / i \#/\
——”\7 _
- - 7\ R‘\/t +1
_

/

: a
. _/
Ly
NN

Figure 1: A two-layered feed-forward NN.

Notes: We illustrate the NNy structure described in this section. The input layer receives data Z;
with J explanatory variables. Each hidden layer transforms the input through the corresponding
activation function. The output layer returns the prediction.

we employ four of the most well-known regularization techniques: dropout, ensemble, learning
rate decay, and early stopping. Ensemble refers to combining predictions from different models,
which in this case comes down to implementing various NNs with different random seeds. We
combine the predictions based on the results of the validation set. We explore the performance
of ensembles of 1, corresponding to no averaging, and 10 out of 100, which is denoted as NN}
and NN10 for NNy, respectively. Next, dropout is a reduction technique that randomly drops
out nodes during training and is set to 0.9. Then, early stopping implies we stop the training
of a NN if the validation set MSE does not improve over a given number of epochs; in this case,
early stopping its patience is set to 100. Learning rate decay decreases the learning rate after a
specified number of iterations and is used to improve convergence. We employ step-wise learning
rate decay, implying that the learning rate is reduced by a fixed factor, 0.5, every 50 epochs.
The hyperparameter choice is partially in line with existing literature and partially set by
trial and error. In this work, we opt to use two different datasets (Mpgar and Marr), one
with a substantially higher dimension, thus leading to a higher dimensional NN. As employing
learning rate decay only seemed beneficial for the NNs with the input from Maz11,, we do not
employ learning rate decay for the Myagr dataset. Without learning rate decay, loss values were
exploding in some instances, thus motivating the use of a learning rate decay for M. All
other regularization techniques are employed for all frameworks. An overview of hyperparameter

choice can be found in Table 5 in the Appendix.

3.4 Metaheuristics

To further improve performance and avoid entrapment in local minima, we apply metaheuristics
to optimize the weights and biases of a NN, which efficiently explore the search space in order
to find a near-optimal solution. First, Section 3.4.1 gives an overview of PSO, followed by, in

Section 3.4.2, the explanation of the GA. Last, Section 3.4.3 discusses the implementation of

the considered metaheuristics in the framework of volatility forecasting.

3.4.1 Particle Swarm Optimization

PSO, introduced by Kennedy and Eberhart (1995), is an algorithm based on the behavior of
birds in their flock. Particles in a swarm move around in a search space and determine their best
position based on their current position and velocity. In the task at hand, a current position is
a list containing the weights and biases of a NN. The best positions of the swarm move it to an
optimal solution.

The algorithm starts with initializing the particles in a swarm, each particle receiving a cur-
rent position and velocity. In order to transfer information from the backpropagation algorithm,
we initialize the current position of all the particles uniformly near the optimal weights found
by the NN. Then, in each iteration, the fitness of the particles is calculated, which in this frame-
work is the in-sample MSE. With in-sample, we refer to the MSE over the specified training
set. If a particle’s current position is better than its best position, we update the best position
to its current position. In addition, if the current position is better than the global best-known
position, we also update the global best-known position.

The current position and velocity are defined as follows:
CPit = CPiy—1 + Vig, 9)

Viﬂg = wVi,t,l +c17r (PBPl — CPi,tfl) + CQ’/’Q(GBP — CPi,tfl)y (10)

where CP;; is the current position and V;; is the velocity of the ith particle at iteration ¢, w is
the inertia weight, which affects the local and global search, PBP; is the personal best position
of particle ¢, GBP is the global best position of the swarm, ¢; and ¢ influence the effect of the
personal best and global best position, and r; and re are randomly drawn variables between
0 and 1. To allow for a dynamic search, we use an adaptive inertia weight, local influence,
and global influence. Furthermore, to avoid non-convergence, we apply a maximum volatility
value, which sets any volatility value larger than the specified maximum to the maximum. A
detailed overview of hyperparameter choice is displayed in Table 5 in the Appendix, and further
information about the implementation can be found in Section 3.4.3. In addition, Algorithm 1
shows the pseudocode of PSO.

3.4.2 Genetic Algorithm

Holland (1992) first introduces GAs, which are heuristic search algorithms based on the idea
of natural selection and genetics. The evolutionary process consists of mutation, crossover,
and selection. In the algorithm, the population and its individuals (chromosomes) consist of
the weights of the corresponding NN, where each individual represents one variation of these
weights.

We initialize the algorithm similarly to PSO, such that the population is uniformly initialized
around the optimal solution found by backpropagation. Then, in each iteration, the population
is updated, partially with information from the old population and partially with new chromo-

somes. First, the best n (based on an elitism rate) performing individuals based on the fitness

Algorithm 1: Particle Swarm Optimization

Initiate: w, wy, ¢, c2, c1p, C2p, 11, 12 < set hyperparameters
n_iterations, n_particles <— set hyperparameters
Input: A list containing the weights and biases
Xin, Vin < Input data to calculate performance
Output: The optimized list with weights and biases

1 InitializeParticles(X;,,yin) // Initialize particles around optimal position
2 InitializeVelocity (X;,,yin) // Initialize velocity around O
3 for t in range(n_iterations) do
4 W =W — Wp // Update inertia weight each iteration
5 €1 =c1 +c1p // Update local influence each iteration
6 Cg = Cg + c2p // Update global influence each iteration
7 for i in range(n_particles) do
// Update velocity
8 Vii = wVii—1 + c171(PBP; - CP;y_1) + cor2(GBP - CP;y_1)
// Check maximum velocity rule
9 CheckVolatility (V; ;)
// Update current position
10 CPiyt = CPi,t_l + Vi,t

// Check whether the current position is better than the global best position or
its current best position

// Update these positions if that is true
11 CheCkBeSt(CPi’t, i, Xm,ym)

// Update weight of the NN to the global best-known position
12 SetWeight(GBP)

score are transferred over to the new population, where we again examine the training set MSE.
Then, we perform crossover on these parent chromosomes, or best n performing individuals,
which implies that we select two individuals, randomly select one layer of weights or biases from
the first individual, and switch this with the latter individual, resulting in a new chromosome.
Whilst one could also opt to perform crossover using a single weight or bias, swapping a whole
layer could increase diversity. As swapping weight matrices has a more considerable effect than
swapping just a bias vector, we pick weight matrices with 80%. Last, a mutation operator
selects part of the new population from the crossover operator, which is exposed to mutation
using a mutation probability. The mutation operator works in a similar fashion compared to the
crossover operator in the sense that we expose a whole weight matrix or bias vector (a whole
layer of weights or biases) to mutation. A detailed overview of hyperparameter choice can be
found in Table 5 in the Appendix. Algorithm 2 shows the pseudocode of the GA.

3.4.3 Implementation and Hyperparameter Choice

Due to the results from Christensen et al. (2022), we only consider the NNg and NN3 formulation
for both metaheuristics. A two-layered NN without ensemble (NNJ) in combination with PSO is

Algorithm 2: Genetic Algorithm
Initiate: n_highest, mutation_probability <— set hyperparameters

n_iterations, n_chromosomes < set hyperparameters
Input: A list containing the weights and biases
Xin, Vin < Input data to calculate performance
Output: The optimized list with weights and biases
1 InitializeChromosomes(Xm,ym) // Initialize chromosomes around optimal position
2 for t in range(n_iterations) do
3 mse_ranked < {} // Create empty dictionary for loss values
4

for i in range(n_chromosomes) do
// Calculate fitness score and add to dictionary

5 mse; < FitnessScore(i,X;,,yin)
6 mse_ranked[i] = mse;

// Sort mse_ranked based on loss function and choose n_highest for next population,
and add these to the new population

7 SortOnLoss(mse_ranked)

8 new_population_n_highest <— HighestN(mse_ranked,n_highest)

// Fill remaining population using the crossover operator and the parent individuals,
which later are exposed to a mutation operator

9 new_population_rest <— Crossover(new_population_n_highest)

10 Mutation(new_population_rest)

referred to as PSOL. After obtaining the optimal weights from backpropagation, we implement
either PSO or GA to optimize the NN further. To be precise, the input of either metaheuristic
is the obtained weights through backpropagation. Then, we randomly initialize the particles
or chromosomes near the input and start iterating with the objective to minimize the training
set MSE. Similarly to the NNs, we employ an ensemble, implying that we again explore the
performance of 1 and 10 ensembles out of 100, where each ensemble is evaluated based on the
validation set MSE.

Whilst having a lower computational time compared to NNs, running the algorithms for all
considered stocks still takes time. One could perform a grid search for each stock to find the
optimal hyperparameters, but this would exceed the available resources in this study. We opt
for hyperparameters partially in line with existing literature and partially found by trial and
error. This is, however, only in favor of the other considered methods. Table 5 in the Appendix
shows a detailed overview of hyperparameter choice.

Starting with PSO, We use an adaptive inertia weight, decreasing exploration and increasing
exploitation throughout the iterations. We decrease w by 0.02 every iteration. Then, local
influence decreases, whereas we increase global influence after an iteration, implying that we
support exploration in the first iterations and slowly move all particles towards the best global
position throughout the iterations. We set init_vel to 3, implying that we initialize a particle’s
velocity uniformly between 1 and 3. To avoid the non-convergence and explosion of a particle’s

velocity, we set the maximum velocity to 15. For both metaheuristics, we set init_particles and

10

init_chromosomes to 3, implying that we add an uniformly drawn random number between -3
to 3 to every weight or bias.

For both algorithms, we let the same number of individuals explore the search space, whereas
we increase the number of iterations for GA by 10 as the convergence rate of the GA is often
slower than PSO (Panda & Padhy, 2008; Li, Liu, Duan & Huang, 2010). We specifically choose
to use a modest number of iterations in order to reduce overfitting. We select the 30% best-
performing individuals for the upcoming population for the GA. Then, crossover_choice =
0.8 implies that we select a layer of weights with 80% probability for the crossover operator,
whereas we select a layer of biases with 20% probability. Moving onto the mutation operator,
we expose an individual to mutation with a probability of 70%, allowing for more exploration in
the population. Like the crossover operator, we select a layer of weights with 80% probability,
which is subject to mutation. Each weight or bias in the layer is randomly mutated between -1
and 1.

3.5 Forecast Evaluation

To evaluate the obtained prediction, we opt to use the MSE and QLIKE as the out-of-sample 2

measures, which are defined as follows:

1 ~ 9
MSE; = T tEEOOS(RVtH —RVi1)7, (11)
1 ~ RVip
QLIKE, = — log(RV; 141) + = , 12
7 3 (on(@asa) + o) (12

where T, is the number of observations in the out-of-sample dataset, RV;;; the actual realized
variance at time t + 1, and f/{{/i’t+1 is the predicted realized variance of model ¢. To compare
the results for different models across numerous stocks, we report the relative MSE, which is a
cross-sectional average of the relative MSEs per stock: % Zjvzl %g;j, where N is the number
of considered stocks, MSE; ; is the MSE of model ¢ for stock j, and MSE; ; is the benchmark
model its MSE for stock j.

If a prediction is negative, we replace it with the minimum in-sample realized variance. In
addition, we construct the Model Confidence Set (MCS) of Hansen, Lunde and Nason (2011),
which constructs a collection of models containing the best performing one given a pre-specified

confidence level of either 75% or 90%.

4 Data

In our research, we consider high-frequency data from 25 of the 30 DIJA constituents, disregard-
ing Visa, JPMorgan Chase, UnitedHealth, Procter & Gamble, and Dow Chemical due to limited
data availability. To be precise, the following tickers are considered in this study: AAPL, AXP,
BA, CAT, CSCO, CVX, DIS, GE, GS, HD, IBM, INTC, JNJ, KO, MCD, MMM, MRK, MSFT,
NKE, PFE, RTX, TRV, VZ, WMT, and XOM. Partially in line with Christensen et al. (2022),

200s is used as an abbreviation for out-of-sample in Equation (11) and Equation (12).

11

we consider a sample period from January 29, 2001, to December 31, 2017, and extend this ana-
lysis until December 31, 2021, which includes highly-volatile periods, such as the covid crisis.
This results in a total of T' = 5264 observations. The high-frequency data is a subset of the data
in Kleen and Tetereva (2022), and the thesis supervisor provided it. Alike Bollerslev, Li and
Zhao (2020), we merge daily Center for Research in Security Prices (CRSP) data with New York
Stock Exchange (NYSE) Trade and Quote (TAQ) intraday data. We obtain daily open and close
prices from the daily CRSP data files and all other intraday transaction data from the NYSE
TAQ. We merge the two data sets via the Wharton Research Data Services (WRDS) linking
tables. The intraday data is cleaned according to Barndorff-Nielsen and Shephard (2002), and
we include only trades from the exchange that are referenced in the daily CRSP data.

We split the data up into a training set, validation set, and test set, containing 70% (3670
days), 10% (524 days), and 20% (1048 days) of the original data, respectively. Note that 22
observations are lost due to lagged variables. Moreover, the test set consists partially of the
covid crisis, making it intriguing to investigate the performance of the aforementioned models
during a generally highly-volatile period.

In the HAR models, we merge the training and validation set and allow for time-varying
parameters by constructing a rolling window approach consisting of 4194 observations, thus
resulting in an off-the-self approach for these models. On the contrary, we employ a fixed
estimation window for the NNs (and hybrid models), as the NNs are computationally heavier
compared to the HAR models, and we do not have the computational capacity to re-estimate
the weights of a NN for every observation. An important note is that this is only beneficial for
the HAR models because they incorporate new and potentially valuable information into their
framework.

To analyze the effect of adding extra covariates to the model, we construct two datasets,
namely Myar and Mapr,. Myar consists of the three explanatory variables in the baseline
HAR model: the average daily, weekly, and monthly lagged realized variance. My, includes
and extents Mpagr by including nine other variables that have been extensively researched by
other literature, and arguably been proven to be powerful predictors of volatility. We include
five macroeconomic variables: The CBOE volatility (VIX) index, the Hang Seng stock index
daily squared log-return (HSI)3, the Aruoba, Diebold and Scotti (2009) business index conditions
(ADS), the first-differenced US 3-month T-bill rate (US3M), and the economic policy uncertainty
(EPU) index* from Baker, Bloom and Davis (2016). We also include four firm-specific variables:
Model-free implied volatility (IV)®, an indicator for earnings announcements (EAs)%, 1-week
momentum (MI1W), and the first-differenced logarithm of dollar trading volume (VOL)7. In
addition, we log-transform the VIX and IV for the logarithmic HAR model discussed in Section
3.2. Missing observations for all return variables (i.e., HSI) are set to 0, whereas other missing
variables are set to the most recent available observation. Table 4 in the Appendix shows the

explanatory variables’ descriptive statistics.

3HSI originates from Yahoo Finance.

4US3M and EPU are from the federal reserve bank (FRED) of St. Louis, and ADS from FRED of Philadelphia.

5The implied volatility originates from OptionMetrics and is calculated as the average implied volatility of all
options with a 30-day expiration date.

SEAs are from the U.S. securities and exchange commissions.

"Both M1W and VOL originate from CRSP from the WRDS.

12

5 Results

Table 1 shows the obtained relative out-of-sample MSEs for the dataset Myagr. Each column
reports MSEs for the forecast model relative to the benchmark model in the corresponding row,
where the MSE is a cross-sectional average across all considered stocks. Note that the HAR-X
is identical to the baseline HAR model, as Mpagr only consists of lagged realized variances.

Contrary to Christensen et al. (2022), we observe that neither the logHAR nor all NNs
outperform the baseline HAR model. To be precise, the cross-sectional MSE of the logHAR
is 0.5% above one, whereas all NNs perform even worse. Amongst the NNs, the one-layered
NN obtains the worst MSE by far, whereas the difference between the other NN frameworks is
minuscule, observing a difference of at most 3%. However, compared to the baseline HAR model,
these NNs still obtain a cross-sectional MSE of at least 6.5% above one. Ensembles marginally
improve performance for NN2-NN3, but the difference is insignificant. An explanation behind
the performance could be the structure of the data split. While Christensen et al. (2022) evaluate
their models until 2017, we consider an extended dataset until 2021, thus including the covid
crisis, which is a rather highly-volatile period. As the validation set does not necessarily include
such an event, overfitting is a likely explanation behind the performance of the NNs. Although
we perform regularization, a configuration might fit great on the validation set, a relatively low
volatile period, but still perform weak on the test set.

Shifting focus on the metaheuristics, both PSO and GA perform significantly better than
their NN counterparts. The GA models beat their counterparts, on average, by 5-10%, whilst this
is marginally smaller for the PSO models. This highlights the limitations of backpropagation,
as the normal NNs seem find it more challenging to converge. Comparing the hybrid models
amongst themselves, performance is alike between different structured NNs incorporated with a
metaheuristic, while, in turn, the GA outperforms PSO by 1 to 2 percent. In addition, in line
with the NNs, we observe an insignificant difference between ensembles and a single model.

All hybrid models do not seem to outperform the baseline HAR model in this setting, ob-
serving an increase of at most 3.8%. Additionally, we perform a robustness check to ascertain
whether the results are consistent across different datasets. Therefore, we consider the same
data period as in Christensen et al. (2022), from January 29, 2001, to December 31, 2017. Table
9 in the Appendix shows the results of the robustness check.

Table 9 displays an entirely different story. In line with Christensen et al. (2022), all NNs
outperform the baseline HAR model, highlighting that nonlinearity does seem to be essential
for predicting volatility. However, whilst all hybrid models beat the HAR models, they do not
seem to improve the performance of regular NNs. Moreover, performance slightly deteriorates,
indicating that the metaheuristic approaches possibly overfit the training set. Furthermore,
it indicates that if NNs that use backpropagation quickly converge, the effect of using hybrid
models diminishes.

Table 7 in the Appendix displays the results of using the QLIKE results for the Mpyagr
dataset. An intriguing contradiction with the MSE results is that all models are highly similar
in terms of relative QLIKE value, observing a difference of at most 1.4% compared to the
HAR model. For the QLIKE, both the logHAR model and the GA model are able to beat the
HAR model, although the difference is a mere 0.1%. An explanation behind the contrasting

13

"8u11908 SIY) Ul YYH 0F [BOIIUSPI ST X-HVH UL 00IS [ord I10] SHSIN 9AIpe[aI ostmIred 1ons Jo oSeloAe [RUOIJISS-SSOID ® ST IOQUINT [ORG “MOI
PO30970S 9T} UI YILWDUI(9} 0} AIJR[DI UWIN[OD PIPII[s Y} Ul [9POUL YIed JO SN ISBIDI0J 9oURLIRA PazI[eal ojdures-Jo-1no oy} 110dal oA\ S0\

- G66'0 8IOT 8660 FIOT ¢IOT 0€0°T 6007 T90°'T 9S0°T L90°T ¢<€L0°T LLOT 980°T €PI'T TLT'T L66°0 966'0 9660 om<©

800°T - 9¢0'T L00'T TeO'T 610°T LEO'T LTO'T 690°T ¥90°'T 9L0°T 080T G80'T G60°'T TST'T 6LT°T G00'T ¥00°'T 7001 fvo
€860 LL6°0 - 1860 2660 966'0 <¢IOT 1660 ¢v0'T LEO'T 6V0°T €G0°'T 8SO'T 990°T GeT'T €ST'T 086°0 086°0 086°0 0FVO
700'T 000°T ¢co'T - 8T0'T 9T0'T 7¥EO'T @I0T ¥90'T 6S0°'T TL0'T GLO'T €80T 060°T 6FVI'T S8LI'T T00°T 000'T 000°T vo
986'0 186°0 V00T G86°0 - 8660 GTO'T ¥66°0 9%0'T T¥O'T @G0T LS0'T €90°T TL0T LeT'T 9ST'T €860 ¢86°0 €860 0b0Sd
6860 ¥86°0 L00'T 886°0 €00°T - 8I0'T 8660 0S0°'T ¢Gv0O'T 990'T 090°'T G90'T GLO'T O€T'T 6ST'T L8670 G86'0 986°0 fosd
¢L6'0 1960 6860 TL60 9860 ¥86°0 - 0860 TE€OT 9¢0°T LEOT TvO'T 9P0'T GSO'T 60T'T LET'T 04670 8960 8960 0;OSd
¥66'0 6860 <¢IO'T ¢66'0 800°'T 900°T €CO0'T - €80°'T 670°T 090'T S90'T T20T O80T O9ET'T 99T 166°0 0660 0660 fosd
7760 6€6°0 T96'0 <¢¥6'0 LS6'0 9960 <¢L6'0 <CS6°0 - G66'0 L00°T TIOT ALIOT Ge0'T 8L0T GOT'T 176°0 w60 T1¥6°0 o/ NN
¢G6'0 9¥6°'0 8960 6¥V6'0 9960 ¥96°0 6.6°0 0960 800°T - PIOT 8IOT ¥¢0'T TEO0'T LBO'T WII'T 8¥6°0 8¥6'0 8760 NN
8¢6'0 €€6°0 G960 9€6°0 T96°0 6760 9960 960 T66°0 6860 - 700°'T 600°T ®TO'T €L0°T TOT'T Ge6°0 GE6'0 G€6°0 0iNN
9€6'0 T€6'0 €960 7E6'0 6760 860 €960 Fr6'0 <660 9860 8660 - L00°'T GTO'T TLO'T 860°T €€6°0 €€6'0 €€6°0 INN
1€6'0 9¢6'0 €€6°0 0€6'0 ¥¥6'0 T¥P6'0 L9560 6E£6'0 L86'0 €860 ¢66°0 9660 - 600'T ¥90°'T T160°T 6¢6°0 Lc6'0 L1260 oENN
9¢6'0 T1¢6°0 1¥6'0 726’0 6€6°0 LE6O €460 FE6'0 &86°0 GL6'0 L86°0 1660 G660 - 8G0'T 80T €260 €¢6'0 €260 NN
8680 €68°0 GI6'0 8680 TI60 6060 €¢6'0 9060 €960 8760 6460 €960 L96°0 GL6°0 - 1¢0°'T 968°0 0680 0680 oINN
€88°0 LL8O 6680 €880 9680 €680 8060 1680 9€6'0 ¢E60 €¥V6'0 L¥6'0 0S6'0 8360 1860 - 1880 ¥.8°0 ¥.L80 INN
0TO'T G00'T 6¢0°'T 800'T ¥¢O'T €CO0'T Tv0'T 610T TL0T S90°T 8L0T ¢80T &80T L60'T PSIT'T €8T'T - 900'T 900'T WVHSO[
600°T €00'T LcO'T L0OT €20T 0cOT 8EO'T LIOT O0L0T G90°T LL0T 180T L8O'T L60'T 9VI'T CLT'T G00°T - 000'T X-YVH
600°T €00'T LcO'T L00T €20°T 0cO'T 8EO'T LIOT 0L0T G90°T LL0T 180T L8O'T L60'T 9¥VI'T GCLT'T S00'T 000°T - dVH

VD VD v tvn S0Sd fOSd f0Sd YOS oINN OINN O NN NN NN INN oINN INN YVHSOl X-UVH YVH

1202 ‘1€ Ioquuand(0} ‘100¢ ‘6¢ Arenuep porrod ojdures oI1jus oY) WOIJ 39S 1893 1) 19A0 UVH]A/ joseIReD 10 HSIN OAIYR[RI prayR-ARp-ou() :T O[qel,

14

results for the considered forecast evaluation measures is the difference in penalizing over- and
under-predictions. The MSE is symmetrical, implying that both over- and under-predictions
are penalized in the same way. However, the QLIKE function penalizes under-predictions more
than over-predictions (Patton, 2011). Therefore, the HAR model seems to produce relatively
more under-predictions, whereas the nonlinear models seem to produce more over-predictions.

Moving onto the Map1, dataset results displayed in Table 2, we first consider the inclusion
of the extra variables into the models. Performance increases by 8.1% for the HAR model if
additional covariates are included, indicating that these variables do contain helpful information
when predicting volatility. However, it seems that all nonlinear models perform significantly
worse compared to their counterparts in Table 1. First, even though the HAR-X model performs
better than its offset, the performance of the logHAR model deteriorates when including extra
variables, indicating that the logarithmic transformation does not improve performance. We
hypothesize that some important dynamics or patterns in the data are lost when applying this
logarithmic transformation, making it difficult to accurately fit the logHAR model.

Turning attention to the NNs and hybrid models, we observe a similar pattern. Whilst
performance is slightly better than the logHAR-X model, all models suffer from overfitting. It
seems that the NNs often fit exquisitely on the validation set, whereas these configurations obtain
modest test set MSEs. Although Table 1 indicates that hybrid models increase performance,
the effect evaporates in this framework. A possible explanation behind the performance of the
hybrid models might be that the input structure is too comprehensive (high-dimensional) for
the algorithms, making it difficult to accurately explore the search space and find an optimal
solution. Another explanation behind the weak performance of the hybrid models is that the
input itself is inadequate, implying that the used hyperparameter framework does not work well
in this situation. As the NNs are more prone to overfitting, the starting point of the algorithms
might be inappropriate. Herefore, the algorithms do not converge to a local optimum, indicating
that perhaps more hyperparameter optimization is needed. We perform the same robustness
check as for the Mg dataset, of which the results are shown in Table 10 in the Appendix.
The results for the period from January 29, 2001, to December 31, 2017, display completely
different results, indicating that the construction and split of the data seem to be the driving
factor behind the poor performance of the nonlinear models. The logHAR-X model performs
remarkably well, followed by the NNs. However, the hybrid models perform worse than the NNs,
a pattern we observed earlier.

An interesting observation is that, in contrast to Christensen et al. (2022), the inclusion of
extra variables seems to only marginally improve performance for some models. Moreover, the
performance of the HAR model actually worsens when adding extra variables. An explanation
behind these contrasting results could be the setup of the data. Christensen et al. (2022) shine
little light upon the extraction of the data, making it difficult to obtain the same results. They
find that the IV is one of the most influential variables when predicting volatility. We follow a
simplistic approach (averaging) when constructing the IV, whereas they do not explain in detail
how the construct the IV variable. It might be that IV loses some of its predictive power as a
result.

Table 8 in the Appendix shows the results using the QLIKE evaluation measure for the My,

15

0098 ord 10J SHSIN 2AIYe[RI ostmIred [ons Jo oFeloA® [RUOIJISS-SSOID ® ST IOqUINT [ORG “MOI
PO309T0S 9} UI YILWOUI(Y} 0} AIJR[DI UWIN[0D PIJII[S Y} Ul [9POUWL YO JO SN ISBIDI0J 9oURLIBA PzI[eal ojdures-Jo-jno oy} 310daI dA\ S0\

- 9G0'T STOT 8L6'0 GL60 92T 9L6°0 890'T TI6'0 LL80 FT60 T060 €160 FEOT 60T 6160 9SFT 8¢9°0 82L0 M)
090T - TgI'T SE0'T 6660 GOT'T LOOT LOT'T @S6°0 @880 TS6'0 FI60 0001 €60T SFPOT 988°0 ISP'T 099°0 8GL0 fvo
G660 690°T - L1960 9960 SOT'T 9960 FFOT L06°0 0880 SI60 9680 T96°0 SGEOT TE0T SH60 GSHT 969°0 ¥GL0 0GVD
890'T TETT 880T - TPOT S&T OFOT LITT ¥96°0 060 TL60 GE6'0 SZ0'T FOT'T G80'T 2860 G091 089°0 TGL0 ¢vo
660'T SOT'T 80T S€OT - SET'T gIOT SIT'T Gh6'0 €680 SS6°0 @260 S00'T S880°T €L0°T 9960 T6V'T 999'0 GEL0 0t0Sd
Ge0'T OFO'T L90T TGO'T €960 - @860 TLOT SG6'0 09%°0 0£6°0 6680 FL60 090T OVOT 960 GOF'T 9¥9'0 €120 fosd
960'T €IT'T €80T 820T 8007 TAT'T - LT 6860 F680 6V60 CI6°0 F66'0 IS0T 6G0T 8€6'0 T0CT €99°0 €€L°0 070Sd
¢90'T LeT'T e80T Tg0'T OI0T @9T'T @660 - SP6'0 G060 2S6'0 TI60 €860 €L0T SPOT SF60 G0S'T 6990 680 ¢osd
8GT'T 8€¢'T G6T'T SGT'T LOT'T Lg€T L0T'T TWGT - @960 9207 €660 F60'T 69T'T GST'T GEOT T99°T €0L°0 9LL0 oI NN
LEVT €8¢'T CPGT 6LET FLTT SSPT 08¢'T ITFT POTT - GLT'T S60'T 19T E€PET 6981 eSTT 96T 06L°0 280 NN
GET'T 06T'T €LT'T ¥60T T80T 6L5T SLOT €8T'T 6860 FE€60 - €960 ¢90T ST'T 6ET'T 900T 9291 889'0 650 RINN
GG¢'T LLET €TET 98TT OLT'T €681 FOTT €921 0L0T 9860 TL0T - 9eTT TPET LIZT FROT GLLT LILO L8L°0 ENN
PLOT 9¢T'T FOT'T 980T 020T SST'T 2IOT 980'T GP6'0 S68°0 FS6'0 ¥I60 - 680°T 690°T 6V60 &ag'l 199°0 82L0 0INN
680T SOT'T 090'T 8660 €660 €8T'T 6360 GL0'T 9060 FS80 L2600 ¥68°0 L.60 - T90T 2960 OLF'T 8€9°0 6690 NN
010T GFO'T OFO'T GL6'0 L1960 CIT'T 0960 FG0'T L060 F9%°0 6060 LS80 @S6°0 FROT - @880 GOp'T 079'0 S0L'0 OINN
6EF'T LTET 0SG'T T6ST 9821 @9%'T I8ET ¥6ET €6T'T 6V0T SST'T FOT'T 9561 00F'T 6€€T - 9e8'T 0920 9880 INN
L68°0 €98°0 T80 9280 09L0 €FS0 TLL0 €980 GTLO 990 TEL0 90L°0 LOLO GESO 8TS8O OFLO - Z6V0 6820 X-UVHSO[
0607 996'T €8¢C 096'T 6€8T 98T SPST T190C S8SOT 0€F'T 2891 LIGT TISLT TF6T GF6'T €FST GE9C - 960'T X-UVH
TI0C ET 61cc SL8T SELT 650T SRLT 9V6'T S9GT @e€T eSSl SOFT €491 ¥EST 6281 9K CChe 6160 - UVH
vD fvp fvh fvd fosd fosd f0Sd F0Sd INN INN oINN NN NN INN GINN NN X-4VHSOl X-MVH WUVH

1606 T_”M Ioquuoo9(J 03 THOON nmwN %Hdﬁgﬁﬁ UOC@Q Oﬁgadm Q111U 9YY} WOI] 39S 1593 93 I9AO AA<~\<. josejep 10} HSIN 2Al}e[ad U@@Q@u%@@u@go G 2l9el

16

dataset. Analogously to the results for Mary,, we observe that the difference in relative QLIKE
value to the HAR model shrinks compared to the relative MSE value, again indicating that the
HAR model is more prone to under-predictions compared to the other models. However, all
NN are unable to beat the HAR model, a task only the logHAR model is able to complete. Out
of the NNs, the more sophisticated structures perform better than more simplistic frameworks,
which is an observation present in all results for the data period until 2021.

Turning the attention to the hybrid models, we again observe that performance deterior-
ates in the Mayy, setting, which again suggests that the metaheuristics struggle with high-
dimensional input, implying that either proper hyperparameter tuning or feature selection is
needed.

To shed more light on the performance of the considered models, we construct boxplots of
a model’s performance compared to the HAR model for both the MSE and QLIKE, allowing
us to understand whether the performance is driven by a single stock, or consistent across the
cross-section of stocks. Figure 2 displays the obtained boxplots.

We first consider the MSE boxplots. For the Mpyagr dataset, it seems that the one-layered
NN produces many outliers, which is reflected in the relative MSE. All models seem to perform,
on average, just worse than the HAR model, even though many models are able to beat the
HAR model for several stocks. In the M1, dataset, the nonlinear models seem to suffer more
from outliers. All models produce steady MSEs for the majority of stock but seemingly overfit
much more for a few stocks. This shows that, even though all nonlinear models still perform
worse than the HAR model, the difference is not all that great for the majority of stocks.

The QLIKE boxplots display different results. The performance across stocks is more con-
centrated around the median, indicating that the performance seems robust across stocks. This
is especially the case for the Mpygagr dataset, where the largest outlier is a relative QLIKE value
of around 1.25. In contrast, the QLIKE values deviate more using My, which is in line with
the results when using MSE as the evaluation measure.

In addition to the per-stock performance, we construct MCSs from Hansen et al. (2011),
which are sets of models that contain the best-performing model with a given confidence level.
We compute the MCS at both a 75% and a 90% confidence level. The results are shown in Table
6 in the Appendix.

We first consider the Mar dataset. Using the MSE, it seems that most models are almost
always included, with the NN1 having the lowest inclusion rate of 52%. Considering the QLIKE
evaluation measure, we observe that the logHAR model and GA} have the highest inclusion
rate, which aligns with the results obtained from Table 7 in the Appendix. An explanation
behind the reason why all models are almost always included when using the MSE as the loss
function could be the variance of the losses. Models with larger variances may require larger loss
differences to establish statistical significance. Furthermore, the variance of the losses influences
the size of the MCS. A larger variance often leads to a wider MCS, allowing for more models to
be included in the final set. In addition, it implies more uncertainty in the estimates, resulting
in a broader range of models that cannot be distinguished as significantly worse.

For the M 11, dataset, we generally observe more considerable differences in relative MSE

compared to the Mpyagr dataset. This is also supported by the inclusion rates, which seem more

17

relative mse

relative mse

~
o

I
@

I
o

I
=

I
~

[
o

°
®

relative mse

P o
9) i 8 & °
° T -~ v T 8 . o 8° 7] 5 FR P Y
OQEQEHEéé‘?TEQ 1 64 5 ° o 8
- BE ! ToI T 54 o g 6 0 o o
R S e S A e T S e
+ H : +] : o o I
i o 1] + L |9 L IS L 1 1
8 ° o ¢ ¢ © T o o o I L2 P R = R e N - =S
\pc}‘@& SEFSSgasgagy Qﬁ” & QLPQ’ A Qv“‘* QQ\‘?‘**‘}‘ SFedagasy Qﬁ” & QLPQ’ &g PG
S
(a) MHAR - MSE (b) MALL - MSE
6.0
o}
5.0 1
[}
(o]
® [o]
w4.0
£
£
o] = 3.0 4
e 1 0
2.5+
2.0 g o
8 O@°°g-°§, ? 15 Ooo o °
L - 8 = - = < roo 8 o L 9 o 8
E%ge?????ﬁ%@%%?m% Y Lo N T Y- S NS0 PN - - N SN IS A - N
T T 5
— — T — T T T 77— 05 -+— — T T T 11—
@
(C) MHAR - QLIKE (d) MALL - QLIKE

Figure 2: Boxplots of relative MSEs and QLIKE values compared to baseline HAR model

Notes: The data consists of 25 samples. The central mark is the median MSE (QLIKE), while
the bottom and top edge of the box indicate the interquartile range. The whiskers are the
outermost observations not flagged as outliers (the latter are marked with a circle). Outliers are
points that fall below Q1 — 1.5IQR or above Q3 + 1.5IQR, where Q1 is the 25th percentile, Q3
75th percentile, and IQR is the interquartile range (Q3 -Q1). HAR-X is omitted from Panel (a)
and Panel (c), as it is identical to HAR in MpyaR.

conclusive compared to the inclusion rates for Myagr. For the MSE, all HAR models have an
inclusion rate of at least 60%, whereas the NNs and hybrid models have an inclusion rate of
at most 60%. The difference in inclusion rate becomes even more prominent when using the
QLIKE loss function. As observed by Table 8 in the Appendix, the logHAR-X model seems to
be the best, having an inclusion rate of 80%-90%. Besides the HAR model, all other models
obtain an inclusion rate of less than 25%, often near 0%. Figure 2 shows that all models, besides
the logHAR-X, consistently perform worse than the HAR model, which could explain the low
inclusion rates.

To get a better grasp of the poor performance of the NNs and hybrid models, we construct
extra models to find the main factor behind their weak performance. We turn our focus to the
two-layered hybrid models, as it appears that the metaheuristics struggle with high-dimensional
input. To be precise, we replace backpropagation with either metaheuristic when training the
model to investigate whether backpropagation is the problem. These models are referred to
as PSO-BP! for a two-layered structure using PSO. In addition, we construct an off-the-self

approach of the hybrid models, where we re-estimate the weights of the NN with either meta-

18

heuristic every half a trading year (i.e., 126 days). These models are referred to as PSO+BP-T}
and PSO-BP-T} for the hybrid models that first use backpropagation and for the hybrid models
without backpropagation, respectively. The off-the-shelf approaches of these models are calcu-

lated for their 10 best seeds, thus honoring the same ranking as their reported ensemble variants.

Table 3: One-day-ahead relative MSE and QLIKE over test set from entire sample period
January 29, 2001, to December 31, 2021, for models that either replace backpropagation or
implement time-varying weights

Panel A: Mpyagr

PSO-BP} PSO-BP}) GA-BP} GA-BPY PSO+BP-T} PSO+BP-TY GA+BP-T} GA+BP-TY PSO-BP-T} PSO-BP-TY GA-BP-T} GA-BPr}’

HAR (MSE) 1.158 1.125 1.110 1.126 1.044 1.033 1.046 1.027 1.114 1.075 1.059 1.077
HAR (QLIKE) 1.014 1.045 1.005 1.019 1.006 1.010 1.006 1.008 1.017 1.038 1.016 1.021
Panel B: Mup,1,

PSO-BP} PSO-BPYY GA-BP} GA-BP) PSO+BP-T, PSO+BP-TY GA+BP-T, GA+BP-TY PSO-BP-T} PSO-BP-TY GA-BP-T, GA-BP-TY

HAR (MSE) 2.222 2.585 2.473 2.468 2.003 2.055 3.769 2.931 1.769 2.050 3.250 3.115

HAR (QLIKE) 1.327 1.871 1.423 1.643 1.084 1.136 1.085 1.087 1.521 1.454 1.440 1.434

Notes: We report the out-of-sample realized variance forecast MSE (QLIKE) of each model in
the selected column relative to the benchmark in the selected row. Each number is a cross-
sectional average of such pairwise relative MSEs (QLIKE) for each stock. Panel A shows the
results for the Mpagr dataset, whereas panel B reports the results for the My, dataset.

The results of the extended models are displayed in Table 3. The first observation is that
using backpropagation does not seem to be the main problem, as training the NNs with the
metaheuristics does not improve performance for either dataset. However, the modest perform-
ance of the metaheuristics could also be attributed to no hyperparameter optimization. These
results are supported by the time-varying models, as using backpropagation first to train the
model does seem to help the convergence of the weights. In short, these results highlight the
fact that hyperparameter optimization seems essential for performance. The opted set of hyper-
parameters improves performance in one scenario, but even then, not all stocks benefit from it,
as is displayed in the boxplots in Figure 2.

A supposedly surprising result is that the off-the-shelf approaches do not necessarily improve
performance. Although off-the-shelf metaheuristics and backpropagation approaches are able to
beat a simplistic NN, they are unable to improve upon the hybrid models in Table 1 and Table
2. Furthermore, in the My, dataset, especially the GA produces poor results, whereas this
is not the case for the Mpyagr dataset. This again indicates that the algorithms struggle with
the dimension of the input variables (which are lists containing the weights of a NN), thus

highlighting a limitation of the metaheuristics.

19

6 Conclusion

In this paper, we build upon Christensen et al. (2022) and investigate the performance of different
ML approaches and metaheuristics in the framework of volatility forecasting. We develop two
hybrid models to enhance forecasting accuracy through metaheuristics. The first approach
combines particle swarm optimization (PSO) and a feed-forward neural network (NN) in order
to optimize the weights of a NN further. The second approach mimics the first approach with
one central difference: We replace the PSO algorithm with a genetic algorithm (GA). Both
metaheuristics are adapted to perform the task at hand. We compare the hybrid models against
HAR models and feed-forward NNs. We evaluate the performance of the considered models over
a period from January 29, 2001, to December 31, 2021, using the mean squared error (MSE)
and quasi-likelihood (QLIKE) evaluation measures.

The results of our forecast evaluation show that our proposed hybrid models are able to
beat the NNs considering both MSE and QLIKE when solely using lagged realized variances
as input variables. Despite these promising results, the effect diminishes when adding extra
forward-looking variables to the model, indicating that the metaheuristics struggle with high-
dimensional input. However, the modest performance could also be attributed to little to no
hyperparameter optimization. Nevertheless, no models beat the HAR model considering the
MSE, while only the GA is able to marginally beat the HAR model in view of QLIKE. The
robustness checks show that the dataset plays a pivotal role when performing volatility forecasts,
as using a smaller data period improves the performance of many nonlinear models, such that
the NNs are able to beat the HAR model. However, the importance of metaheuristics vanishes
in this setting, indicating that they are a great tool when NNs are more prone to overfit but
struggle to improve the performance of a well-fit NN.

This underlines a notable limitation of our research. We observe that the performance is
highly dependent on the used data period. The weak performance of the nonlinear models could
partially be explained by the fact that no hyperparameter optimization was conducted, which
could significantly hinder the optimization process of the NNs and metaheuristic algorithms.
Combined with no hyperparameter optimization, we observe that the performance of the me-
taheuristics is contingent on the input, which could explain the alternating performance of the
hybrid models.

Further research regarding the implementation of metaheuristics in the framework of volat-
ility forecasting is therefore needed. An exciting avenue could be analyzing the performance of
different dataset configurations (i.e., using different training and test sets) in order to improve
the convergence of NNs and metaheuristics. In addition, future research could explore per-stock
hyperparameter optimization. A hyperparameter setting is not guaranteed to work well for
every stock and dataset, therefore discrediting possible performance. However, this might prove
challenging as much computational power is needed for thorough hyperparameter optimization.
Alternatively, one might investigate the effect of feature selection on the performance of hybrid
models, as not all variables are necessarily helpful when predicting volatility, and especially not
helpful for the optimization process of the metaheuristics. Last, using different metaheuristics,
or a combination of metaheuristics, could enhance forecasting accuracy. One could develop me-

taheuristics that work well with high-dimensional input or include volatility-specific attributes.

20

References

Andersen, T. G., Bollerslev, T., Diebold, F. X. & Ebens, H. (2001). The distribution of realized
stock return volatility. Journal of Financial Economics, 61(1), 43-76.

Aruoba, S. B., Diebold, F. X. & Scotti, C. (2009). Real-time measurement of business conditions.
Journal of Business & Economic Statistics, 27(4), 417-427.

Audrino, F. & Colangelo, D. (2010). Semi-parametric forecasts of the implied volatility surface
using regression trees. Statistics and Computing, 20(4), 421-434.

Baker, S. R., Bloom, N. & Davis, S. J. (2016). Measuring economic policy uncertainty. The
Quarterly Journal of Economics, 131(4), 1593-1636.

Barndorff-Nielsen, O. E. & Shephard, N. (2002). Econometric analysis of realized volatility and
its use in estimating stochastic volatility models. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 64(2), 253-280.

Blum, C. & Roli, A. (2003). Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison. ACM computing surveys (CSUR), 35(3), 268-308.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of
Econometrics, 31(3), 307-327.

Bollerslev, T., Li, J. & Xue, Y. (2018). Volume, volatility, and public news announcements.
The Review of Economic Studies, 85(4), 2005-2041.

Bollerslev, T., Li, S. Z. & Zhao, B. (2020). Good volatility, bad volatility, and the cross section
of stock returns. Journal of Financial and Quantitative Analysis, 55(3), 751-781.

Bollerslev, T., Patton, A. J. & Quaedvlieg, R. (2016). Exploiting the errors: A simple approach
for improved volatility forecasting. Journal of Econometrics, 192(1), 1-18.

Christensen, K., Siggaard, M. & Veliyev, B. (2022, 06). A machine learning approach to volatility
forecasting. Journal of Financial Econometrics.

Chung, H. & Shin, K.-s. (2018). Genetic algorithm-optimized long short-term memory network
for stock market prediction. Sustainability, 10(10), 3765.

Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of
Financial Econometrics, 7(2), 174-196.

Corsi, F. & Reno, R. (2012). Discrete-time volatility forecasting with persistent leverage effect
and the link with continuous-time volatility modeling. Journal of Business & FEconomic
Statistics, 30(3), 368-380.

Doering, J., Kizys, R., Juan, A. A., Fito, A. & Polat, O. (2019). Metaheuristics for rich portfolio
optimisation and risk management: Current state and future trends. Operations Research
Perspectives, 6, 100121.

Dépke, J., Fritsche, U. & Pierdzioch, C. (2017). Predicting recessions with boosted regression
trees. International Journal of Forecasting, 33(4), 745-759.

Dorigo, M. & Stiitzle, T. (2003). The ant colony optimization metaheuristic: Algorithms,
applications, and advances. Handbook of Metaheuristics, 250-285.

Ederington, L. H. & Lee, J. H. (1993). How markets process information: News releases and
volatility. The Journal of Finance, 48(4), 1161-1191.

Gandomi, A. H., Yang, X.-S., Talatahari, S. & Alavi, A. H. (n.d.). Metaheuristic algorithms in

modeling and optimization. Metaheuristic Applications in Structures and Infrastructures.

21

Gavrishchaka, V. V. & Banerjee, S. (2006). Support vector machine as an efficient framework for
stock market volatility forecasting. Computational Management Science, 3(2), 147-160.

Ghasemiyeh, R., Moghdani, R. & Sana, S. S. (2017). A hybrid artificial neural network with
metaheuristic algorithms for predicting stock price. Cybernetics and Systems, 48(4), 365
392.

Glorot, X. & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the 13th International Conference on Artificial Intelligence and
Statistics (pp. 249-256).

Gocken, M., Ozcalici, M., Boru, A. & Dosdogru, A. T. (2016). Integrating metaheuristics
and artificial neural networks for improved stock price prediction. Faxpert Systems with
Applications, 44, 320-331.

Hansen, P. R., Lunde, A. & Nason, J. M. (2011). The model confidence set. Econometrica,
79(2), 453-497.

Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66-73.

Jensen, J. L. W. V. (1906). Sur les fonctions convexes et les inégalités entre les valeurs moyennes.
Acta Mathematica, 30(1), 175-193.

Ji, Y., Liew, A. W.-C. & Yang, L. (2021). A novel improved particle swarm optimization
with long-short term memory hybrid model for stock indices forecast. IEEE Access, 9,
23660-23671.

Jiang, G. J., Konstantinidi, E. & Skiadopoulos, G. (2012). Volatility spillovers and the effect of
news announcements. Journal of Banking & Finance, 36(8), 2260-2273.

Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95-
International Conference on Neural Networks (Vol. 4, pp. 1942-1948).

Kingma, D. P. & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kleen, O. & Tetereva, A. (2022). A forest full of risk forecasts for managing volatility. Available
at SSRN: 4161957.

Kolisetty, V. V. & Rajput, D. S. (2020). A review on the significance of machine learning for
data analysis in big data. Jordanian Journal of Computers and Information Technology
(JJCIT), 6(01), 155-171.

Li, Z., Liu, X., Duan, X. & Huang, F. (2010). Comparative research on particle swarm optim-
ization and genetic algorithm. Computer and Information Science, 3(1), 120-127.

Liu, Y. (2019). Novel volatility forecasting using deep learning—long short term memory recurrent
neural networks. Ezpert Systems with Applications, 132, 99-109.

Lu, L., Shin, Y., Su, Y. & Karniadakis, G. E. (2019). Dying relu and initialization: Theory and
numerical examples. arXiv preprint arXiv:1903.06733.

Luo, J., Chen, H., Xu, Y., Huang, H., Zhao, X. et al. (2018). An improved grasshopper op-
timization algorithm with application to financial stress prediction. Applied Mathematical
Modelling, 64, 654-668.

Maas, A. L., Hannun, A. Y., Ng, A. Y. et al. (2013). Rectifier nonlinearities improve neural
network acoustic models. In Proceedings of the 30th international conference on machine
learning (Vol. 30, p. 3).

22

Mittnik, S., Robinzonov, N. & Spindler, M. (2015). Stock market volatility: Identifying major
drivers and the nature of their impact. Journal of Banking & Finance, 58, 1-14.

Panda, S. & Padhy, N. P. (2008). Comparison of particle swarm optimization and genetic
algorithm for facts-based controller design. Applied soft computing, 8(4), 1418-1427.
Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal

of Econometrics, 160(1), 246-256.

Patton, A. J. & Sheppard, K. (2015). Good volatility, bad volatility: Signed jumps and the
persistence of volatility. Review of Economics and Statistics, 97(3), 683—-697.

Petrozziello, A., Troiano, L., Serra, A., Jordanov, I., Storti, G., Tagliaferri, R. & La Rocca, M.
(2022). Deep learning for volatility forecasting in asset management. Soft Computing,
26(17), 8553-8574.

Pradeepkumar, D. & Ravi, V. (2017). Forecasting financial time series volatility using particle
swarm optimization trained quantile regression neural network. Applied Soft Computing,
58, 35-52.

Qu, H., Duan, Q. & Niu, M. (2018). Modeling the volatility of realized volatility to improve
volatility forecasts in electricity markets. Energy Economics, 74, 7167-776.

Rahimikia, E. & Poon, S.-H. (2020). Machine learning for realised volatility forecasting. Available
at SSRN, 3707796

Ribeiro, G. T., Santos, A. A. P., Mariani, V. C. & dos Santos Coelho, L. (2021). Novel hybrid
model based on echo state neural network applied to the prediction of stock price return
volatility. Expert Systems with Applications, 184, 115490.

Shahvaroughi Farahani, M. & Razavi Hajiagha, S. H. (2021). Forecasting stock price using
integrated artificial neural network and metaheuristic algorithms compared to time series
models. Soft Computing, 25(13), 8483-8513.

Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of Economic Perspectives,
28(2), 3-28.

Yang, X.-S. (2010a). Nature-inspired metaheuristic algorithms. Luniver press.

Yang, X.-S. (2010b). A new metaheuristic bat-inspired algorithm. Nature Inspired Cooperative
Strategies for Optimization (NICSO 2010), 65-74.

Zhou, L., Pan, S., Wang, J. & Vasilakos, A. V. (2017). Machine learning on big data: Oppor-
tunities and challenges. Neurocomputing, 237, 350-361.

Zhu, H., Wang, Y., Wang, K. & Chen, Y. (2011). Particle swarm optimization (pso) for
the constrained portfolio optimization problem. Expert Systems with Applications, 38(8),
10161-10169.

Zivkovic, M., Bacanin, N., Venkatachalam, K., Nayyar, A., Djordjevic, A., Strumberger, 1. &
Al-Turjman, F. (2021). Covid-19 cases prediction by using hybrid machine learning and
beetle antennae search approach. Sustainable Cities and Society, 66, 102669.

Appendices

A Tables

23

"SO1YSTYR)S
oA1}d1I0sop $91 110d01 J0U Op oM ‘O[(RLIRA IOJRIIPUL UR ST Y Sy "SYD09S 91[} SSOIdR UWN[OD e[} I0] dNeA WNUWIXRU pUe WNWIUI o) Ae[dsIp sjoxpelq
9} Pu® ‘Y20)s AIoAd JO soFeIoAR [RUOIPIAS-SSOID oIe sonfes pajrodar oy, "o[qelres Arojeue[dxo oed Jo so13S1IR)S OATIAIIOSOp o1} 110doT OAN S0\

TLG°68 €eG°L- 090'C 887°92- 6£1°6 ov1°0- G0g0- sav
[1zTvveeT] 860z [6L9°0°080°0) @20 [692°68799°8G] L09FE [66C°GGT-8L9°90T7] G6ELLT- [0G8°L0ESFFLGT) LS8LTT [6L0°0-CF6'T] 92TT- [990°0°6£0°0] 9100 TOA

[Toree6o8Lz] #8709 [0ST0€L£0°6-] 6F0°0- [eLo'1g'oeLel 9€9% (2P 9T-198°6¢8-] €68°2¢- [FOTLOL'TOSFT] 1.6 [pLL°0°680°0-] 0FT0 [9€9°0°CH0°0] 681°0 MTIN

£9€°€6. 175°€2 0000 000°0 S10°0 0000 000°0 ISH

£26°¢8 6951 c0g'v 00018~ 000°9. 0000 960°0- INESN

1996 8LV'T 06728 028°e 99°L08 0£0°68 06°011 ndd

8L°L 652°C zz6's 071°6 06928 epe LT 79L°61 XIA

4c

[882°8z°L62°T) 189°L [188°€GeTT) L6TT [0LT0°L90°0] L0T°0 [L¥1°0°980°0] PIT0 [c21°2'¢99°0] 880'T [62€0'9¢T°0] ¥2z0 [L8€0°LLT0] GST0 Al
[e60'20T'6LT€T] L2926 [eoT6'L6e€] TEES [€oTLFTLLT] 99¢°€ [T9¢°0°T6T°0] 61€°0 [886'96'G9'8T] ¥STLle [992°¢Te90] e6TT [poL€ ‘Clel] 1¢ge INAY
[7L0982°6,6°82] 608°06 [T€0FT'6eeF] LFLL [098'8°991°C] S61F (98¢ 0°FTT°0] €020 [11¢706'998°9¢] 1L IL [681°G'929°0] 2veT [18L°€CIoT] 8¥€T MAY
[L08°2e1T°929°FL] 9L¥'8ze [268'92°T9¢9] 29z'eT [SGT'11°299'C] 8¥0'S [€21°0°290°0] SI1'0 [PL0'eevisrsel] 267091 [¢16'T°2e90] LLTT [g6L€TieT] 16€T asy
SIS0YIN Y| SSOUMYG UOIYRIAD(] pIepUR]S WNWIUTA WNWIXeA URIPIIN uRON WAUOIDY

S9[(RLIBA %HOP@Q@TMN@ JO SoT1js13R)S @xﬁpﬁﬁuommg ¥ 9lqeT,

24

Table 5: Hyperparamaters of the NN and both algorithms

Neural Network Particle Swarm Optimization Genetic Algorithm
Learning rate = 0.01 n_iterations = 20 n_iterations = 30
Step-wise decay = 0.5 every 50 epochs n_particles = 40 n_chromosomes = 40
Epochs = 500 init_particles = 3 init_chromosomes = 3
Patience = 100 w=0.9 n_highest = 0.3
Drop-out = 0.1 wp = 0.02 mutation_probability = 0.7
Initializer: Glorot normal c1 =3 mutation_choice = 0.8
ADAM = default cip = —0.1 mutation_amount = 1
Ensebmle € {1,10} =1 crossover_choice = 0.8

Cop = 0.1

init_vel = 3
max_vel = 15

Notes: Step-wise learning rate decay is only employed for M a1, for the considered data period.

Table 6: Inclusion rate in the MCS using the test set

Panel A: Mygar Panel B: My
MSE QLIKE MSE QLIKE

75% Moos 75% Mooz 75% Mooz 75% Mooz
HAR 96% 100% 44% 60% 92% 100% 36% 48%
HAR-X 96% 100% 4% 60% 100% 100% 4% 12%
logHAR ~ 92% 92% 64% 68% 60% 96% 84% 88%
NN} 52% 2% 48% 60% 40% 52% 0% 4%
NN10 52% 84% 28% 44% 8% 8% 0% 0%
NN} 92% 92% 52% 64% 12% 20% 0% 4%
NNi0 80% 96% 12% 20% 0% 4% 0% 0%
NN 96% 100% 40% 60% 24% 40% 4% 4%
NN2O 100% 100% 24% 32% 12% 16% 0% 4%
NN} 100% 100% 52% 2% 36% 60% 8% 24%
NNJO 100% 100% 12% 24% 2% 28% 0% 0%
PSO! 68% 92% 56% 60% 16% 28% 0% 0%
PSOL° 64% 88% 0% 16% 4% 8% 0% 0%
PSO! 80% 92% 36% 48% 24% 36% 12% 12%
PSOL° 56% 88% 8% 8% 4% 12% 0% 0%
GAl 84% 96% 6% 84% 16% 28% 0% 0%
GAL° 56% 92% 8% 12% 4% 8% 0% 8%
GAl 88% 96% 52% 16% 28% 40% 4% 16%
GAY 80% 84% 24% 44% 0% 0% 0% 0%

Notes: We report the inclusion rate for both Mpar and Marr. The inclusion rate is the
percentage a model was retained in the final set of the MCS (Hansen et al., 2011) across all
stocks. We compute the MCS at both a 75% and 90% confidence level using a moving block
bootstrap, a block size of [= 2, and 1000 bootstrap repetitions. For Mar1,, logHAR presents
the values of its distributed lag-type version logHAR-X.

25

"8u11308 SIY) Ul YV H 0F [BOIIUSPI ST X-HVH Y0018 [oed 10] SHIMITC) oA1e[ol asimired 7ons Jo a8eIoAr [RUOIIDVS-SSOID B SI IOQUINU DR “MOI
P9999[0s 91} UI YIRWIYDU(] Y} O} dAI}R[I UTIN[0D PIJIS[s Y[} Ul [9POW YIed JO ITTC) 1SBIDI0J 90URLIRA PazZI[eal ojdures-Jo-jno o} 310dal oA\ 1S90\

- 866'0 <¢00'T 6660 €00T <¢00T S00T TOOT ¢00'T ¢00T <¢00T TOOT ¥OO'T TOO'T ¥IOT &I0'T 666°0 000°'T 000°T om<©

00T - ¥00°'T 000°T G00'T ¥00°T 200°T €00°T ¥0O'T ¥0O'T %OO'T €00°T €S00'T €00 T GI0O'T VIO T00°T T00°T TOO'T fvo
8660 966°0 - 9660 TOO'T 000'T €00'T 6660 000T 000°T 000T 6660 TOOT 6660 TIOT 600T L66°0 1660 L66°0 oSV
T00°T 000°T ¥00°T - G00'T €00'T 900°T €00'T €00T €00T POOT €00T GOOT €00T GTIO'T €I0°T 000°T T00'T TOO'T vo
L66'0 9660 6660 G660 - 6660 TO00'T 866'0 6660 6660 6660 8660 000T 8660 OTO'T 800'T 966°0 9660 966°0 0b0Sd
8660 966°0 000°T L1660 T00'T - €00'T 6660 000°T 000'T 000T 6660 ¢O0'T 6660 ¢IO'T OI0OT 1660 866'0 866°0 fosd
G660 ¥66'0 8660 7660 6660 L660 - 966'0 L66'0 L4660 8660 9660 6660 L66°0 600°T L0OOT ¥66°0 g66'0 9660 0;OSd
666'0 1660 TO00'T L1660 <¢00T TOOT ¥0O'T - T00°T T0O0'T TOO'T 000°T <¢00°T 000°T ¢€I0T TIOT 866°0 866'0 8660 fosd
866'0 9660 000'T 1660 TO0O'T 000T €00'T 6660 - 000°T 000°T 6660 <00'T 6660 <¢IOT OTIOT 660 866'0 8660 o/ NN
866'0 9660 000°'T L1660 TOO'T 000T €00T 6660 000T - 000°'T 6660 <¢O0'T 000T ¢IO'T OI0T L6670 866'0 8660 NN
8660 966°0 000°T 9660 TO0'T 000T €00°T 6660 000T 0007 - 6660 TO0'T 6660 TIOT OIOT 1660 1660 L6670 0iNN
6660 L1660 TOO'T L66°0 @<00'T TOO'T 7¥OO'T 000°T TOO'T TOOT TOO'T - ¢00'T 000°T @IOT TIOT 866°0 8660 866°0 INN
966'0 G66'0 6660 G66°0 000'T 866°0 TO0'T 8660 8660 8660 6660 8660 - 866'0 0T0'T 800°T G66°0 966'0 966°0 oENN
6660 L166°0 TOO'T L66°0 @O0'T TOO'T €00'T 000°T TOO'T 000T TOOT O000T <001 - ¢I0'T 0I0°T 1660 8660 866°0 NN
8860 1860 T66'0 L4860 <¢66'0 0660 €660 0660 0660 0660 71660 0660 <660 0660 - 8660 1860 8860 8860 oINN
066'0 6860 €660 6860 V660 <660 G660 <¢660 €660 <C66°0 €660 ¢66'0 ¥660 <¢660 <c00'T - 686°0 066'0 0660 INN
T00°'T 000°T ¥#00°T 000T SO0'T €00°T 900°T €00T €00°T €00°T ¥OOT €00°T €S00T €00 T GI0'T €101 - 00T T00'T YVHSO[
000°T 6660 €00'T 6660 V00T @<00'T SO0T <¢O0T €00T €001 €00T <00 T ¥0OT ¢<00T ¥IOT ¢IO'T 666°0 - 000'T X-YVH
000'T 6660 €00°T 6660 TOO'T <OOT SO0T <¢O0OT €00°T ¢<00'T €00T <00T ¥00T <¢00T VIOT ¢<I0'T 6660 000°T - dVH

VD VD v tvn S0Sd fOSd f0Sd YOS oINN OINN O NN NN NN INN oINN INN YVHSOl X-UVH YVH

1202 ‘1§ I9quIeda(03 ‘1007 ‘6¢ Arenuer porrod ojdures aI1yuo oY) WOIJ 39S 1S9} I0A0 UVH]A, josejep 10 fMITE) QAIYe[ol peare-Aep-ou() :2 9[qel,

26

0098 oed 10§ ST 2AIe[al astmired oNS Jo aFeIoAR [RUOI}ISS-SSOID € ST IDQUINU [ORG] "MOI
Po399[0s 91} Ul YIBRWIYDU] Y} O} dAI}R[DI UTWIN[0D PIJIIS [} Ul [OPOW I3 JO ITC) 1SBIDI0J 90URLIRA PazZI[eal ojdures-Jo-jno o} 310dal 9\ 590N

- PPOT €LTT TITT 00T EI0T OFO'T 920'T €36°0 GL60 886'0 686'0 6T0T ¥EOT CETT SIGT ¥G6°0 VLV 0960 M)
0,60 - SPT'T 980T TL60 860 2OOT 1660 9960 SF60 0960 0960 G860 8860 60T FITT 860 ZEFT V€60 fvo
PP6'0 €860 - T€0T LP6'0 8S6°0 SL6'0 L96°0 6260 GE6'0 FE6'0 FE60 6560 €960 FFOT 0STT T06°0 607'T 8060 VD
VL6'0 6660 TFTT - 0860 1660 00T T66'0 2960 €960 9960 9960 L86'0 9860 660'T 0T €£6°0 GGF'T 6£6°0 ¢vo
0001 6VO'T 9LT'T O0ST'T - 0I0T @hO'T SG0'T @860 FL6'0 886'0 886'0 6I0T 930'T €€I'T €11 €560 TLVT 69670 0t0Sd
P66'0 TPOT €AT'T GET'T ¥660 - 9E0T 20T 9L6°0 8960 7860 @86'0 FIOT 020T LZTT 00GT P60 €OV'T FS60 fosd
9960 T00'T SZT'T FPOT 6960 6460 - S86'0 GS6'0 FF60 996°0 9960 T86'0 G86'0 SS0T OLT'T €360 06F'T 0£60 070Sd
6L6'0 9T0'T ST'T @90'T 1860 @660 FI0T - €960 G960 8960 8960 S66'0 660 SOT'T FSTT GEGD SV TF60 ¢osd
8TO'T 90T 96T 0ST'T 6T0T 080T @90T LWOT - @660 900T 900T 80T FHOT 9STT €721 0460 86V T LL60 oI NN
LZ0T LLOT S0Z'T SST'T 80T 8€0T 0L0T GSOT 800T - FIOT SIOT LPOT €S0°T 99T'T GSTT 8L60 TIGT 68670 NN
ZIOT 090T SST'T LET'T €I0T F20'T ¥GOT OFO'T G660 9860 - 000T CE€O'T SEOT SPI'T €861 G960 687’1 TL60 RINN
CIOT 6S0°T SST'T L8T'T ¥IOT ¥@0'T SSO'T OWO'T S66'0 2860 000T - g€0'T SE0'T 9FT'T €221 G960 SSF'T GL60 NN
€86'0 €0'T LPT'T LLOT 9860 9660 0Z0T L00'T 8960 0960 L60 €60 - FOOT 60TT G6T'T 6860 CSF'T GP6°0 0INN
Z86°0 0z0'T TIST'T T90T G860 9660 LIOT F00T L96°0 6560 @L60 &L6'0 8660 - TIITT G0GT 8€6°0 SSH'T FF60 NN
906'0 6860 OTO'T 6860 6060 6160 LE6'0 LZ6'0 €680 988°0 L6800 9680 0360 9260 - cSOT 99870 686 €180 OINN
6160 GS6'0 680T TFO'T SI6°0 Lg6'0 ¥G6'0 TV6'0 F06'0 L6%0 8060 9060 FE&6'0 ¥¥6'0 9T0T - LL80 PEET FSS0 INN
060'T 2OT'T T€CT LST'T TSOT 90T G60'T 080T TE0'T €80T LEOT LE0T TLOT LLOT 6T'T 6LTT - GPe T L2001 X-UVHSO]
0VL'0 6LL°0 1060 998°0 OFL0 6FL0 GLLO F9L°0 92L0 TEL0 040 0€L0 9SL°0 G9L0 THS0 LSO GOLO - 0120 X-UVH
€F0'T 60T LgTT LLTT FROT PGOT SSO'T GLOT FGOT 9T0T 0€0T TE0T F90T 0L0T S8TT 9T €660 Peg'T - UVH
vD fvp fvh fvd fosd fosd f0Sd F0Sd INN INN oINN NN NN INN GINN NN X-4VHSOl X-MVH WUVH
1606 T_”m. JoquUILo9(J O} nﬂOON amm \m.ﬁmﬂgdﬁ @OE@Q QMQE@W QII1Uo 97J} WO} 308 1897 I9AO0 AA<~\<. josejlep I10J MMHQ@ OATYR[aI U@@Qdu%ﬁ@u@go ‘R 9[qeT,

27

"8ur1308 SIY) Ul YYH 03 [BIIJUSPI ST X-HVH "Y009S 1oed 10J SHSIN 2AIR[1 ostmired [ons Jo o8eIoAr [RUOI}ISS-SSOID € ST IDQUINU [ORG] "MOI
PO30970S 9T} UI YILWDUI(9} 0} AIJR[DI UWIN[OD PIPII[s Y} Ul [9POUL YIed JO SN ISBIDI0J 9oURLIRA PazI[eal ojdures-Jo-1no oy} 110dal oA\ S0\

- 986'0 900°T G660 OIOT G660 900°T L86'0 8860 ¢86'0 9660 €860 0660 V.60 <660 LL6O VIOT TT0°'T TIO'T om<©

G101 - T¢0'T OT0O°'T G¢0°'T OTI0O'T Tg0'T ¢00T €00°T L1660 TIOT 8660 ¥00'T 8860 L00°T €660 0€0T Le0'T Le0'T fvo
7660 086°0 - 6860 T00'T 6860 000'T 1860 €860 9.6°0 0660 8L6°0 ¥86'0 8960 L8O ¢L60 600°T 900'T 900°T 0FVO
900'T 1660 TIO'T - 910'T 000'T TIOT @660 €660 L1860 TO0'T 6860 G660 6.L6°0 8660 €860 0C0'T LT0°T LT0°T vo
0660 9.6°0 9660 G86°0 - G86'0 966°0 LL6°0 8L6'0 ©TL6'0 986°0 €460 0860 ¥96°0 ¢86°0 8960 V00T 100°T T00°T 0b0Sd
900'T T166°0 ¢IO'T T00'T 9101 - I10°T €66'0 7¥66°0 L1860 <COO'T 6860 G660 6.6°0 8660 €860 0C0'T L10°T L10°T fosd
G66'0 0860 000T 0660 GO0O'T 6860 - 186°0 ¢86°0 9460 0660 8L6°0 %860 8960 L8O ¢TL6'0 600°T 900°'T 900°T 0;OSd
¥I0'T 6660 0CO'T 600°T ¥cO'T 600T 6I0°T - ¢00°'T 6660 OIOT 21660 €00T L8860 G00T 0660 6¢0°T Gco'T G201 fosd
€10°T 866°0 6T0°T 800'T €cO°T L00'T SIO'T 000°T - ¥66°0 800'T G660 <00'T 9860 G00T 0660 Lc0'T ye0'T ¥¢0'T o/ NN
610°T Q00T G¢cO'T ¥IOT 00T V¥IOT G¢0'T 900°T LOO'T - GI0'T ¢00°'T 600°T €660 <IOT L660 €E€0°T T€0'T T€O'T NN
G00'T 1660 TIOT 000°T SIOT 6660 OIOT €660 ¢T660 9860 - 1860 ¥66'0 8L6'0 L66°0 <860 6101 910'T 910°T 0iNN
8I0'T 700'T ¥#cO'T €T0'T 80T <I0OT ¥¢0'T S00'T GO0'T 6660 €T0°T - L00°T 1660 OTO'T G660 CEO'T 6¢0'T 620°T INN
TT0°T 966°0 LATO'T 900°'T TeO'T S00'T 9T0T 8660 6660 €660 900°T ¥66°0 - 7860 €00°'T 8860 92¢0°T ¢c0'T ¢a0'T oENN
8¢0'T €I0T ¥e0'T €g0'T 8EO'T @e0'T €E0'T ¥IOT GTIO0O'T 600T €20°T OTI0OT LIO'T - 610'T 700°'T €701 6€0'T 6E0°T NN
600°T ¥66'0 GTIO'T %00T 6I0T €00°T F¥IOT G660 L66°0 0660 G00'T <660 8660 <860 - @860 Ta¢0'T 0c0'T 0201 oINN
¥¢0°'T 600°T 0€0'T 6I0T ¥E€OT SQIOT 6¢0°T OIOT ¢<SIOT S00T 0¢0'T 2L00°T €T0°T 9660 STIO'T - 6€0°T Ge0'T CE0'T INN
066'0 960 9660 G860 000T G860 9660 LL6°0 8L6°0 TL6'0 G86°0 €L6'0 0860 7960 €860 8960 - 00T T00'T YVHSO[
686°0 GL6°0 G660 ¥86'0 6660 V860 G660 9.L6°0 LL6°0 TL6°0 G860 €L6'0 6460 €960 1860 2L96°0 V0O'T - 000'T X-YVH
6860 GL6°0 G660 T86'0 6660 V860 G66°0 9L6°0 LL60O TL6°0 G860 €L6°0 6460 €960 1860 L960 ¥0O'T 000°T - dVH

VD VD v tvn S0Sd fOSd f0Sd YOS oINN OINN O NN NN NN INN oINN INN YVHSOl X-UVH YVH

2702 ‘T€ Ioquuaod(03 ‘T00¢ ‘6g Lrenuer porrad ojdures o9I1jus oy} WOIJ 39S 1593 I9A0 UVH]A/ jose)ep I0] SN QAIYe[ol peae-Aep-ou() :6 9[qel,

28

0098 ord 10J SHSIN 2AIYe[RI ostmIred [ons Jo oFeloA® [RUOIJISS-SSOID ® ST IOqUINT [ORG “MOI
PO309T0S 9} UI YILWOUI(Y} 0} AIJR[DI UWIN[0D PIJII[S Y} Ul [9POUWL YO JO SN ISBIDI0J 9oURLIBA PzI[eal ojdures-Jo-jno oy} 310daI dA\ S0\

- 8660 086'0 G960 6660 0860 660 LS6'0 0360 1960 986'0 9960 TL6O OF6'0 1960 FI60 ¥E60 €80T €00°T M)

600T - 0660 TL60 S00T 1660 TOOT 9960 L86'0 8960 S66°0 9L60 T86'0 6V6'0 0L60 GL60 GE6O 9v0'T 010°T fvo
20T 00T - 1860 6I0T 0007 GIOT LL60 000 1860 900'T 986°0 T66'0 6360 T86'0 €860 €760 2501 €20'T VD
ZFOT OFOT 00T - OFOT 00T @EO'T 9660 TE0T TOOT 20T 900T TIOT 8460 T00T €00T T96°0 CL0T EV0T ¢vp
Z00'T T00T 860 ¥960 - I86'0 660 6560 GS6°0 FI60 LS60 8960 FL60 THE60 960 G960 ST60 €80T F00'T 0t0Sd
GZ0'T SZ0'T T00'T F86'0 Ga0'T - 9T0T 0860 SOO'T 9860 600T 6860 G660 G960 €360 0860 SFE0 960'T ST0'T fosd
600T 600T 6860 0L60 S00T 6860 - G960 6860 TL60 ¥66'0 GL6'0 0860 6F6'0 0L60 €L60 GE6°0 650T TIOT 070Sd
SFO'T 9V0'T 920'T 900'T 9V0'T 930'T SE0'T - 60T L00T 2€0T TI0T LTOT ¥86'0 S00T OT0T 99670 80T SWO'T ¢osd
€60'T 020'T €00T S86'0 @Z0'T FOO'T STOT 0860 - I86°0 S00T 686'0 G660 G960 €360 LS60 SFE0 8G0'T ¥E0'T oI NN
PPO'T OFO'T FZOT S00T €P0T FGOT 980T 000T T20T - 60T 600°T SIOT @86'0 €00'T 900T G96°0 080T SFO'T NN
9T0'T STOT G66'0 LL60 €I0T G660 00T TL60 G660 960 - 0860 L86'0 GS6'0 GL60 6L6°0 S€6°0 LW0T LT0°T RINN
9¢0'T GE0'T 9TOT 9660 FEOT STOT Lg0'T 1660 9T0T 9660 T120T - 00T TL60 ¥66'0 6660 LS60 890'T LE0'T NN
080T 60T 600T 0660 820'T 800T 0Z0T G860 6007 0660 SIOT S66'0 - 2960 6860 0660 1960 190T 1€0°T 0INN
G90'T F90T €F0T €20T €90T €FOT 9S0T STOT FROT FOT 0S0T 620T FEOT - €80T SG0T €860 860'T 990°T NN
€F0T TFOT €20T €00T TFOT T¢0T FEOT L66'0 &Z0'T €00T 20T 900T €T0T 0860 - FOOT G960 90T THO'T OINN
PCO'T GCOT €€0T €T0T TSOT L20T SPOT 800T €E0'T €I0T 6£0°T STOT €80T 0660 TIOT - zL60 680T €901 INN
680'T ZSO'T 90T OFO'T LZSO'T 990°T 080T TPO'T 990'T LPO'T €07 TSOT 8S0T €80T THOT LFO'T - PeT'T 980T X-UVHSO[
G86'0 986'0 F96'0 SP60 €860 FI60 GLEO OF6'0 9960 SF6'0 0L60 0960 9560 G600 9¥6'0 TS6°0 80670 - 8860 X-UVH
900'T €00'T 1860 1960 FOOT ¥86'0 8660 1960 FS6'0 9960 1660 TL60 LL60 SPE0 960 L960 ST60 o' - UVH
vD fvp fvh fvd fosd fosd f0Sd F0Sd INN INN oINN NN NN INN GINN NN X-4VHSOl X-MVH WUVH

2106 T_HM Ioquuooa(J O3 JHOON nmN %Mdﬁgdﬁ —UOEQQ oﬁgaﬁmm 9JI1Uo 9YY} WOIJ 198 1S9} I9A0 AA<H\<. josejep 10} HSIN 2Ale[ad U@@Q@u%ﬁ.@u@gc 0T 2[9el

29

B Programming Code

The code is written in Python 3.9.12. In addition, Excel is used to obtain the relative MSE and
QLIKE values for all models. A detailed explanation can be found in the README file.

30

