
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis Econometrics & Operations Research

Integrating Neural Networks and Metaheuristics for

Volatility Forecasting: A Hybrid Approach

Finn van der Knaap (573834)

Abstract

Volatility forecasting is crucial to any participant in the financial market, as precise forecasts

are essential for financial decision-making and risk management. This paper investigates

the application of machine learning (ML) and metaheuristic approaches in order to improve

forecasting accuracy. We consider combining either particle swarm optimization or a genetic

algorithm with neural networks (NNs), as metaheuristic algorithms offer powerful optimiz-

ation opportunities in the context of parameter optimization. To be precise, we construct

hybrid approaches which implement metaheuristics to optimize the weights of a NN further

and compare these models to several NN algorithms and various heterogeneous autoregress-

ive models. Our dataset consists of 25 of the 30 Dow Jones Industrial Average constituents

from January 29, 2001, to December 31, 2021. We evaluate the forecasting performance

using both the mean squared error and the quasi-likelihood loss function. The findings high-

light the possibilities of hybrid models for the task at hand, as the hybrid models beat their

counterparts by 5-10%. However, performance is highly dependent on the data period, as

performance gain is only sometimes present. In addition, we discern that the hybrid model

struggle with high-dimensional input, indicating that perhaps feature selection is needed to

overcome this limitation.
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1 Introduction

Financial markets exhibit the phenomenon of volatility clustering (Bollerslev, 1986), implying

that large changes in returns are often followed by similar fluctuations and small changes in

returns by small fluctuations. Accurately predicting these fluctuations is of utmost importance

to investors, as volatility forecasts play a pivotal role in many applications, such as asset pricing

and risk management, thus highlighting the importance of obtaining precise forecasts. Most

statistical models, such as the heterogeneous autoregressive (HAR) model proposed by Corsi

(2009), only use past information to predict volatility, even though Ederington and Lee (1993)

show that news and volatility are strongly correlated. However, statistical models often rely

upon linear regressions, which are more prone to produce spurious results when extra forward-

looking variables are added. Another direction one could explore is the use of machine learning

(ML) approaches, which achieve promising results in a variety of tasks (Rahimikia & Poon,

2020; Petrozziello et al., 2022).

Christensen, Siggaard and Veliyev (2022) conduct an extensive out-of-sample analysis where

the authors compare numerous methods for volatility forecasting, making it a paper to build

upon. The authors investigate the performance of many baseline ML methods, leaving room to

delve into the performance of more sophisticated models. In addition, Christensen et al. (2022)

do not extensively optimize the parameters of the considered models due to capacity limitations,

which motivates the use of hybrid models in this paper. Hybrid models combine different

approaches, such as metaheuristics and ML models, to improve performance. Metaheuristics

are strategies or algorithms that guide a solution to a near-optimal solution in the search space

and are among others used for stock price prediction (Göçken, Özçalıcı, Boru & Dosdoğru, 2016)

and portfolio optimization (Doering, Kizys, Juan, Fito & Polat, 2019). The research question is

formulated as follows:

To what extent does the accuracy of volatility forecasts improve from utilizing metaheuristics for

parameter optimization of neural networks?

In this paper, inspired by the work of Christensen et al. (2022), we implement some of

the most well-known methods in the field of volatility forecasting and compare them against

several models which utilize hybrid models to optimize the weights of neural networks (NN).

In more detail, we compare the HAR model and its extensions against several variants of NN

approaches. Moreover, to mitigate a potential weight optimization problem, we propose using

metaheuristics, namely a genetic algorithm (GA) and particle swarm optimization (PSO), to

optimize the weights of the NNs further. To examine the effect of hybrid models, we use the

mean squared error (MSE) and quasi-likelihood (QLIKE) measures to evaluate predictions and

compare the performance of hybrid models against the aforementioned models. We base our

main analysis on the intraday returns of 25 of the 30 Dow Jones Industrial Average (DIJA)

constituents from January 29, 2001, to December 31, 2017, and further extend this analysis to

December 31, 2021. Extending the data period allows us to analyze the performance of the

above-mentioned models during the covid crisis.

The main contributions of this paper are as follows. First, we investigate the performance of

two different metaheuristics for NN optimization in the framework of volatility forecasting. The

first approach combines NNs and PSO to optimize the weights of NNs. The optimized weights
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by means of backpropagation are inputted into the PSO algorithm, enabling us to implement

an off-the-shelf (re-estimating the weights by incorporating new information) approach of a

NN whilst keeping computational costs relatively cheap. The second approach mimics the first

approach but implements a GA instead of PSO, allowing us also to compare the two hybrid

approaches.

Second, we investigate the performance of ML approaches compared to various HAR models.

We build upon Christensen et al. (2022) and extend their dataset to 2021, thus structuring the

in-sample and out-of-sample datasets differently, enabling us to qualitatively compare the impact

of using different data periods.

The rest of the paper is structured as follows. First, Section 2 presents an overview of

previous literature regarding volatility forecasting and the application of metaheuristics. Then,

Section 3 presents the proposed methods in this thesis, followed by, in Section 4, an overview

of the used data. Next, Section 5 discusses the forecasting results. Last, Section 6 presents

limitations and concluding remarks.

2 Literature

This section discusses previous literature regarding volatility forecasting, ML approaches, and

the use of metaheuristics. First, Section 2.1 gives an overview of volatility forecasting and

especially ML approaches in this framework. Then, in Section 2.2, we discuss metaheuristics

and their applications in the financial domain.

2.1 Volatility Forecasting and Machine Learning

Corsi (2009) laid the foundation for the concept of the by now well-known HAR model, which,

in contrast to previously proposed ARCH-type models, is able to capture the main empirical

features of financial returns. As the name suggests, it is an autoregressive model, using the

realized variance measured at numerous frequencies to predict volatility, and is able to partially

capture the heterogeneity of the data. Due to the promising performance of the HAR model, it

is seen as a benchmark, taking over the role of the by Bollerslev (1986) introduced GARCH(1,1)

model. However, due to its parsimonious structure and the complicated structure of financial

data, it is inadequate in certain situations. Therefore, many extensions of the baseline HAR

model try to tackle its shortcomings. Examples of such extensions use a leverage effect to

improve predictions (Corsi & Renò, 2012), allow for variation in negative and positive returns

(Patton & Sheppard, 2015), let the parameters vary explicitly with the degree of measurement

error, (Bollerslev, Patton & Quaedvlieg, 2016), or combine ARCH-type models and HAR models

to characterize time-varying volatility in realized variance (Qu, Duan & Niu, 2018).

Yet, all of the aforementioned models utilize information regarding past returns, which might

not be optimal, as previous literature has shown that news and volatility are often heavily

correlated (Ederington & Lee, 1993; Jiang, Konstantinidi & Skiadopoulos, 2012; Bollerslev, Li

& Xue, 2018), indicating that perhaps just using past information is inadequate for volatility

forecasting. A supposedly straightforward solution is to add additional covariates to a model

to capture realized variance to a greater extent. However, the previously mentioned models
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rely on linear regressions, which are prone to break down or produce spurious results when

the explanatory variables are strongly correlated, have a low signal-to-noise ratio, or have a

nonlinear relationship. Nonetheless, with the growing amount of available data, it is tempting

to seek models which can handle the limitations of these more statistical methods.

As Varian (2014) shows, ML approaches are a solution to the above problem, and at the

time of writing this paper, also thoroughly investigated in previous literature (Zhou, Pan, Wang

& Vasilakos, 2017; Kolisetty & Rajput, 2020). In the framework of volatility forecasting, vari-

ous ML techniques have been investigated and compared against the more conventional models

(e.g., ARCH-type models). For example, Liu (2019) examines the performance of Support Vec-

tor Machines (SVM) and NNs, showing that these approaches outperform the GARCH model.

Gavrishchaka and Banerjee (2006) propose to solely use SVMs to predict the S&P500 index,

finding that this technique captures long-memory volatility and is often superior to conven-

tional methods. Furthermore, Audrino and Colangelo (2010), Mittnik, Robinzonov and Spind-

ler (2015), and Döpke, Fritsche and Pierdzioch (2017) make use of several regression trees to

forecast volatility.

In contrast to the literature mentioned above, which mainly uses a single approach, Christensen

et al. (2022) conduct an extensive out-of-sample analysis, comparing many of the above-mentioned

models, such as HAR-type models, regression trees, and NNs. They aim not only to investigate

the performance of the considered models but also to understand why ML approaches improve

the accuracy of predictions. Christensen et al. (2022) find that ML approaches improve out-of-

sample forecasts and work better with the nonlinear structure of financial markets, especially

NNs and regression trees, where NNs perform better at shorter horizons and regression trees

at longer horizons. In more detail, even though nonlinearity, a feature NNs incorporate easily,

remains essential for longer horizons, functionality and interaction effects, something regression

trees trump NNs at, become vital for longer horizon predictions.

To this end, we take inspiration from Christensen et al. (2022) and compare numerous HAR

models and ML approaches for volatility forecasting. However, we propose the use of more

sophisticated hybrid models, instead of relatively simplistic ML methods. In Christensen et

al. (2022), the weights of the NNs are not extensively tuned due to computational capacity

problems, which motivates the use of metaheuristics in this paper. Metaheuristics are, as Blum

and Roli (2003) show, likely to find a feasible solution in less computation time when dealing

with limited capacity. Furthermore, compared to backpropagation, metaheuristics, such as PSO

(Kennedy & Eberhart, 1995) and GAs (Holland, 1992), have a fast convergence rate and often

provide near-global optimal solutions, therefore overcoming possible limitations of backpropaga-

tion (Pradeepkumar & Ravi, 2017).

2.2 Metaheuristics in the Financial Domain

Metaheuristics are strategies or algorithms that try to efficiently guide the input to a near-

optimal solution, using a trade-off of local and global exploration (Gandomi, Yang, Talatahari

& Alavi, n.d.). Many of such approaches use nature as the backbone of their algorithm (Yang,

2010a). For example, Dorigo and Stützle (2003) introduce ant colony optimization, an algorithm

based on the behavior of ants and their colony. Moreover, Yang (2010b) introduces a new
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algorithm based on the echolocation behavior of bats. In this thesis, we implement adaptations

of two of the most well-known metaheuristics, namely PSO (Kennedy & Eberhart, 1995) and a

GA (Holland, 1992), as they often achieve state-of-the-art results (Zhu, Wang, Wang & Chen,

2011; Chung & Shin, 2018). Both metaheuristics are also based on natural phenomena, as PSO

is based on the social behavior of birds in a flock, and GAs are based on natural selection.

Metaheuristics are used for a wide range of applications. For example, Luo et al. (2018) apply

metaheuristics for financial stress prediction, whereas Zivkovic et al. (2021) utilize metaheuristics

to predict covid-19 cases.

The implementation of metaheuristics in the domain of finance and ML is not a new concept.

For example, Göçken et al. (2016) implement metaheuristics to determine the optimal structure

and input variables of a NN for stock price prediction. Ghasemiyeh, Moghdani and Sana (2017)

focus on optimizing the weights of a NN through metaheuristic optimization in the framework of

stock price prediction. Combining both of the above-mentioned literature, Shahvaroughi Fara-

hani and Razavi Hajiagha (2021) use metaheuristics to select technical indicators and to optimize

a NN its weights. Yet, all of the aforementioned works focus on stock price prediction. In the

framework of volatility forecasting, research regarding the fusion of NNs and metaheuristics is

scarce, and mostly focused on optimizing the corresponding hyperparameters (Ribeiro, Santos,

Mariani & dos Santos Coelho, 2021; Ji, Liew & Yang, 2021). Therefore, this thesis focuses on

the implementation of metaheuristics for the optimization of the weights of a NN, overcoming

possible limitations of a backpropagation approach.

3 Methodology

This section contains a description of the models we use. First, Section 3.1 presents the setting for

forecasting volatility. Next, Section 3.2 discusses the HAR model and its considered extension.

Then, Section 3.3 goes in depth about ML approaches, followed by, in Section 3.4, a detailed

overview of the metaheuristics for parameter optimization. Last, in Section 3.5, we discuss the

forecast evaluation measures.

3.1 Realized Volatility

Let the log-price X = (Xt)t≥0 be supported by a filtered probability space (Ω, (Ft)t≥0,F ,P).
Then, X is a semimartingale process if the price is determined in an arbitrage-free frictionless

market, and Xt is defined as follows:

Xt = X0 +

∫ t

0
µsds+

∫ t

0
σsdWs +

Nt∑
s=1

Js, t ≥ 0, (1)

where X0 is F0-measurable, u = (ut)t≥0 is a drift term, σ = (σt)t≥0 denotes the stochastic

volatility process, W = (Wt)t≥0 is a standard Brownian motion, N = (Nt)t≥0 denotes a counting

process, which represents the number of jumps in X, and J = (Js)s=1,...,Nt is a series of nonzero

random variables of jump sizes with jump times τ = (τs)s=1,...,Nt . In this paper, we aim to
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predict the daily quadratic variation, which is defined as follows:

QVt =

∫ t

t−1
σ2
sds+

∑
t−1≤τs≤t

J2
s , for t = 1, ..., T, (2)

where t is the predicted observation, and T is the total number of days in the sample. However,

in practice, the quadratic variance is not observable, which motivates the use of the realized

variance as an estimator of the quadratic variance, which is defined as follows:

RVt =

n∑
j=1

|∆n
t−1,jX|2, (3)

where n is the number of intraday returns, and ∆n
t−1,jX = Xt−1+ j

n
− Xt−1+ j−1

n
. We opt to

use the realized variance as an estimator, as RVt
P→ QVt when n → ∞ (Barndorff-Nielsen &

Shephard, 2002). It is thus a consistent estimator of the quadratic variance when n increases.

3.2 HAR Models

As a benchmark model, we consider the baseline HAR model proposed by Corsi (2009), which

uses past realized variance proxies computed at different frequencies to predict the present

volatility. The baseline HAR model is defined as follows:

RVt = β0 + β1RVt−1 + β2RVt−1|t−5 + β3RVt−1|t−22 + ϵt, (4)

where RVt−1|t−h = 1
h

∑h
i=1RVt−h and ϵt is an error term, implying that we predict volatility at

time t using proxies of the average daily, weekly, and monthly lagged realized variance.

In the same paper, Corsi (2009) also proposed a logarithmic version of HAR, denoted by

logHAR, allowing for a nonlinear relationship between the dependent and explanatory variables.

The logHAR model is defined as follows:

log(RVt) = β0 + β1 log(RVt−1) + β2 log(RVt−1|t−5) + β3 log(RVt−1|t−22) + ϵt. (5)

The logHAR model, however, produces forecasts of log-realized variance. To obtain forecasts

of the realized variance, we need to apply a nonlinear transformation, which implies that the

realized variance forecasts are biased by Jensen’s inequality (Jensen, 1906). We, therefore, bias

the predictions as follows:

E[R̂Vt] = exp
(
E[log(R̂Vt)] + 0.5var[log(R̂Vt)]

)
, (6)

where var[log(R̂Vt)] is the variance of the residuals in the training and validation set. This bias

is applicable when the distribution of log-realized variance is Gaussian, which is approximately

true in practice (see Andersen, Bollerslev, Diebold and Ebens (2001)).

Besides the above three lagged realized variance explanatory variables, we consider a broader

selection of variables, as explained in Section 4. To ensure compatibility with the NNs, we con-

struct distributed lag-type versions of both HAR models. HAR-X is denoted as the distributed
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lag-type version for the baseline HAR model, and logHAR-X is denoted as the distributed lag-

type version of the logHAR model. We estimate all HAR models by means of Ordinary Least

Squares, thus minimizing the sum of squared errors.

3.3 Neural Networks

Moving onto ML approaches, NNs are a subset of ML algorithms that mimic the way the human

brain operates. Due to their nonlinear and flexible structure, NNs are extensively investigated in

literature and show promising results, including in the area of volatility forecasting (Christensen

et al., 2022).

NNs are compromised of several node layers, containing an input layer, hidden layers, and an

output layer. First, the NN receives an input Zt in the input layer. Then, the data is transformed

through numerous hidden layers through an activation function g, which eventually produces

the desired output at the output layer. In general, the lth layer in a NN is defined as follows:

a
θl+1,bl+1

t = gl

 Nl∑
j=1

θ
(l)
j aθl,blt + b(l)

 , 1 ≤ l ≤ L, (7)

where L is the total number of layers, gl is the activation function, θ(l) is the weight matrix, b(l)

is the bias, Nl is the number of hidden neurons, and a
θl+1,bl+1

t is the predicted value.

The downside of the flexibility of a NN is the number of options for its structure, which de-

pends on the problem at hand and is determined through hypertuning. In line with Christensen

et al. (2022), we construct four models which are inspired by the geometric pyramid. NN1 has

a single hidden layer accompanied by two neurons. Then, NN2 is two-layered with four and

two neurons, respectively, and NN3 has three hidden layers with eight, four, and two neurons,

respectively. Last, NN4 is four-layered with sixteen, eight, four, and two neurons, respectively.

We illustrate the NN2 structure in Figure 1.

As an activation function, which adds non-linearity to the model, we opt to use the Leaky

Rectified Linear Unit (L-ReLU) from Maas, Hannun, Ng et al. (2013), which is defined as follows:

L-ReLU(x) =

cx, if x < 0,

x, otherwise,
(8)

where c ≥ 01. Its base version (ReLU) can result in dead neurons (Lu, Shin, Su & Karniadakis,

2019), something L-ReLU attempts to fix by having a small negative slope (c). We employ

Adaptive Moment Estimation (ADAM) (Kingma & Ba, 2014) as optimizer with default hyper-

parameters and initialize the weights of a NN using the glorot normal distribution from Glorot

and Bengio (2010), remaining in line with Christensen et al. (2022). We train the NNs through

backpropagation using 500 epochs and use the MSE as the corresponding loss function.

A rather often occurring problem with NNs is overfitting, which implies that the model

fits the training data exactly but performs modestly on the test data. Besides employing a

validation set, regularization is performed to overcome the issue of overfitting. In this work,

1We set c = 0.1.
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Figure 1: A two-layered feed-forward NN.

Notes: We illustrate the NN2 structure described in this section. The input layer receives data Zt

with J explanatory variables. Each hidden layer transforms the input through the corresponding
activation function. The output layer returns the prediction.

we employ four of the most well-known regularization techniques: dropout, ensemble, learning

rate decay, and early stopping. Ensemble refers to combining predictions from different models,

which in this case comes down to implementing various NNs with different random seeds. We

combine the predictions based on the results of the validation set. We explore the performance

of ensembles of 1, corresponding to no averaging, and 10 out of 100, which is denoted as NN1
1

and NN10
1 for NN1, respectively. Next, dropout is a reduction technique that randomly drops

out nodes during training and is set to 0.9. Then, early stopping implies we stop the training

of a NN if the validation set MSE does not improve over a given number of epochs; in this case,

early stopping its patience is set to 100. Learning rate decay decreases the learning rate after a

specified number of iterations and is used to improve convergence. We employ step-wise learning

rate decay, implying that the learning rate is reduced by a fixed factor, 0.5, every 50 epochs.

The hyperparameter choice is partially in line with existing literature and partially set by

trial and error. In this work, we opt to use two different datasets (MHAR and MALL), one

with a substantially higher dimension, thus leading to a higher dimensional NN. As employing

learning rate decay only seemed beneficial for the NNs with the input from MALL, we do not

employ learning rate decay for theMHAR dataset. Without learning rate decay, loss values were

exploding in some instances, thus motivating the use of a learning rate decay for MALL. All

other regularization techniques are employed for all frameworks. An overview of hyperparameter

choice can be found in Table 5 in the Appendix.

3.4 Metaheuristics

To further improve performance and avoid entrapment in local minima, we apply metaheuristics

to optimize the weights and biases of a NN, which efficiently explore the search space in order

to find a near-optimal solution. First, Section 3.4.1 gives an overview of PSO, followed by, in

Section 3.4.2, the explanation of the GA. Last, Section 3.4.3 discusses the implementation of
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the considered metaheuristics in the framework of volatility forecasting.

3.4.1 Particle Swarm Optimization

PSO, introduced by Kennedy and Eberhart (1995), is an algorithm based on the behavior of

birds in their flock. Particles in a swarm move around in a search space and determine their best

position based on their current position and velocity. In the task at hand, a current position is

a list containing the weights and biases of a NN. The best positions of the swarm move it to an

optimal solution.

The algorithm starts with initializing the particles in a swarm, each particle receiving a cur-

rent position and velocity. In order to transfer information from the backpropagation algorithm,

we initialize the current position of all the particles uniformly near the optimal weights found

by the NN. Then, in each iteration, the fitness of the particles is calculated, which in this frame-

work is the in-sample MSE. With in-sample, we refer to the MSE over the specified training

set. If a particle’s current position is better than its best position, we update the best position

to its current position. In addition, if the current position is better than the global best-known

position, we also update the global best-known position.

The current position and velocity are defined as follows:

CPi,t = CPi,t−1 +Vi,t, (9)

Vi,t = wVi,t−1 + c1r1(PBPi − CPi,t−1) + c2r2(GBP− CPi,t−1), (10)

where CPi,t is the current position and Vi,t is the velocity of the ith particle at iteration t, w is

the inertia weight, which affects the local and global search, PBPi is the personal best position

of particle i, GBP is the global best position of the swarm, c1 and c2 influence the effect of the

personal best and global best position, and r1 and r2 are randomly drawn variables between

0 and 1. To allow for a dynamic search, we use an adaptive inertia weight, local influence,

and global influence. Furthermore, to avoid non-convergence, we apply a maximum volatility

value, which sets any volatility value larger than the specified maximum to the maximum. A

detailed overview of hyperparameter choice is displayed in Table 5 in the Appendix, and further

information about the implementation can be found in Section 3.4.3. In addition, Algorithm 1

shows the pseudocode of PSO.

3.4.2 Genetic Algorithm

Holland (1992) first introduces GAs, which are heuristic search algorithms based on the idea

of natural selection and genetics. The evolutionary process consists of mutation, crossover,

and selection. In the algorithm, the population and its individuals (chromosomes) consist of

the weights of the corresponding NN, where each individual represents one variation of these

weights.

We initialize the algorithm similarly to PSO, such that the population is uniformly initialized

around the optimal solution found by backpropagation. Then, in each iteration, the population

is updated, partially with information from the old population and partially with new chromo-

somes. First, the best n (based on an elitism rate) performing individuals based on the fitness
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Algorithm 1: Particle Swarm Optimization

Initiate: w, wp, c1, c2, c1p, c2p, r1, r2 ← set hyperparameters

n iterations, n particles ← set hyperparameters

Input: A list containing the weights and biases

Xin, yin ← Input data to calculate performance

Output: The optimized list with weights and biases

1 InitializeParticles(Xin,yin) // Initialize particles around optimal position

2 InitializeVelocity(Xin,yin) // Initialize velocity around 0

3 for t in range(n iterations) do

4 w = w − wp // Update inertia weight each iteration

5 c1 = c1 + c1p // Update local influence each iteration

6 c2 = c2 + c2p // Update global influence each iteration

7 for i in range(n particles) do
// Update velocity

8 Vi,t = wVi,t−1 + c1r1(PBPi - CPi,t−1) + c2r2(GBP - CPi,t−1)

// Check maximum velocity rule

9 CheckVolatility(Vi,t)

// Update current position

10 CPi,t = CPi,t−1 + Vi,t

// Check whether the current position is better than the global best position or

its current best position

// Update these positions if that is true

11 CheckBest(CPi,t, i, Xin,yin)

// Update weight of the NN to the global best-known position

12 SetWeight(GBP)

score are transferred over to the new population, where we again examine the training set MSE.

Then, we perform crossover on these parent chromosomes, or best n performing individuals,

which implies that we select two individuals, randomly select one layer of weights or biases from

the first individual, and switch this with the latter individual, resulting in a new chromosome.

Whilst one could also opt to perform crossover using a single weight or bias, swapping a whole

layer could increase diversity. As swapping weight matrices has a more considerable effect than

swapping just a bias vector, we pick weight matrices with 80%. Last, a mutation operator

selects part of the new population from the crossover operator, which is exposed to mutation

using a mutation probability. The mutation operator works in a similar fashion compared to the

crossover operator in the sense that we expose a whole weight matrix or bias vector (a whole

layer of weights or biases) to mutation. A detailed overview of hyperparameter choice can be

found in Table 5 in the Appendix. Algorithm 2 shows the pseudocode of the GA.

3.4.3 Implementation and Hyperparameter Choice

Due to the results from Christensen et al. (2022), we only consider the NN2 and NN3 formulation

for both metaheuristics. A two-layered NN without ensemble (NN1
2) in combination with PSO is
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Algorithm 2: Genetic Algorithm

Initiate: n highest, mutation probability ← set hyperparameters

n iterations, n chromosomes ← set hyperparameters

Input: A list containing the weights and biases

Xin, yin ← Input data to calculate performance

Output: The optimized list with weights and biases

1 InitializeChromosomes(Xin,yin) // Initialize chromosomes around optimal position

2 for t in range(n iterations) do

3 mse ranked ← {} // Create empty dictionary for loss values

4 for i in range(n chromosomes) do
// Calculate fitness score and add to dictionary

5 msei ← FitnessScore(i,Xin,yin)

6 mse ranked [i] = msei

// Sort mse ranked based on loss function and choose n highest for next population,

and add these to the new population

7 SortOnLoss(mse ranked)

8 new population n highest ← HighestN(mse ranked,n highest)

// Fill remaining population using the crossover operator and the parent individuals,

which later are exposed to a mutation operator

9 new population rest ← Crossover(new population n highest)

10 Mutation(new population rest)

referred to as PSO1
2. After obtaining the optimal weights from backpropagation, we implement

either PSO or GA to optimize the NN further. To be precise, the input of either metaheuristic

is the obtained weights through backpropagation. Then, we randomly initialize the particles

or chromosomes near the input and start iterating with the objective to minimize the training

set MSE. Similarly to the NNs, we employ an ensemble, implying that we again explore the

performance of 1 and 10 ensembles out of 100, where each ensemble is evaluated based on the

validation set MSE.

Whilst having a lower computational time compared to NNs, running the algorithms for all

considered stocks still takes time. One could perform a grid search for each stock to find the

optimal hyperparameters, but this would exceed the available resources in this study. We opt

for hyperparameters partially in line with existing literature and partially found by trial and

error. This is, however, only in favor of the other considered methods. Table 5 in the Appendix

shows a detailed overview of hyperparameter choice.

Starting with PSO, We use an adaptive inertia weight, decreasing exploration and increasing

exploitation throughout the iterations. We decrease w by 0.02 every iteration. Then, local

influence decreases, whereas we increase global influence after an iteration, implying that we

support exploration in the first iterations and slowly move all particles towards the best global

position throughout the iterations. We set init vel to 3, implying that we initialize a particle’s

velocity uniformly between 1 and 3. To avoid the non-convergence and explosion of a particle’s

velocity, we set the maximum velocity to 15. For both metaheuristics, we set init particles and
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init chromosomes to 3, implying that we add an uniformly drawn random number between -3

to 3 to every weight or bias.

For both algorithms, we let the same number of individuals explore the search space, whereas

we increase the number of iterations for GA by 10 as the convergence rate of the GA is often

slower than PSO (Panda & Padhy, 2008; Li, Liu, Duan & Huang, 2010). We specifically choose

to use a modest number of iterations in order to reduce overfitting. We select the 30% best-

performing individuals for the upcoming population for the GA. Then, crossover choice =

0.8 implies that we select a layer of weights with 80% probability for the crossover operator,

whereas we select a layer of biases with 20% probability. Moving onto the mutation operator,

we expose an individual to mutation with a probability of 70%, allowing for more exploration in

the population. Like the crossover operator, we select a layer of weights with 80% probability,

which is subject to mutation. Each weight or bias in the layer is randomly mutated between -1

and 1.

3.5 Forecast Evaluation

To evaluate the obtained prediction, we opt to use the MSE and QLIKE as the out-of-sample 2

measures, which are defined as follows:

MSEi =
1

To

∑
t∈oos

(RVt+1 − R̂Vi,t+1)
2, (11)

QLIKEi =
1

To

∑
t∈oos

(log(R̂Vi,t+1) +
RVt+1

R̂Vi,t+1

), (12)

where To is the number of observations in the out-of-sample dataset, RVt+1 the actual realized

variance at time t + 1, and R̂Vi,t+1 is the predicted realized variance of model i. To compare

the results for different models across numerous stocks, we report the relative MSE, which is a

cross-sectional average of the relative MSEs per stock: 1
N

∑N
j=1

MSEi,j

MSEb,j
, where N is the number

of considered stocks, MSEi,j is the MSE of model i for stock j, and MSEb,j is the benchmark

model its MSE for stock j.

If a prediction is negative, we replace it with the minimum in-sample realized variance. In

addition, we construct the Model Confidence Set (MCS) of Hansen, Lunde and Nason (2011),

which constructs a collection of models containing the best performing one given a pre-specified

confidence level of either 75% or 90%.

4 Data

In our research, we consider high-frequency data from 25 of the 30 DIJA constituents, disregard-

ing Visa, JPMorgan Chase, UnitedHealth, Procter & Gamble, and Dow Chemical due to limited

data availability. To be precise, the following tickers are considered in this study: AAPL, AXP,

BA, CAT, CSCO, CVX, DIS, GE, GS, HD, IBM, INTC, JNJ, KO, MCD, MMM, MRK, MSFT,

NKE, PFE, RTX, TRV, VZ, WMT, and XOM. Partially in line with Christensen et al. (2022),

2oos is used as an abbreviation for out-of-sample in Equation (11) and Equation (12).

11



we consider a sample period from January 29, 2001, to December 31, 2017, and extend this ana-

lysis until December 31, 2021, which includes highly-volatile periods, such as the covid crisis.

This results in a total of T = 5264 observations. The high-frequency data is a subset of the data

in Kleen and Tetereva (2022), and the thesis supervisor provided it. Alike Bollerslev, Li and

Zhao (2020), we merge daily Center for Research in Security Prices (CRSP) data with New York

Stock Exchange (NYSE) Trade and Quote (TAQ) intraday data. We obtain daily open and close

prices from the daily CRSP data files and all other intraday transaction data from the NYSE

TAQ. We merge the two data sets via the Wharton Research Data Services (WRDS) linking

tables. The intraday data is cleaned according to Barndorff-Nielsen and Shephard (2002), and

we include only trades from the exchange that are referenced in the daily CRSP data.

We split the data up into a training set, validation set, and test set, containing 70% (3670

days), 10% (524 days), and 20% (1048 days) of the original data, respectively. Note that 22

observations are lost due to lagged variables. Moreover, the test set consists partially of the

covid crisis, making it intriguing to investigate the performance of the aforementioned models

during a generally highly-volatile period.

In the HAR models, we merge the training and validation set and allow for time-varying

parameters by constructing a rolling window approach consisting of 4194 observations, thus

resulting in an off-the-self approach for these models. On the contrary, we employ a fixed

estimation window for the NNs (and hybrid models), as the NNs are computationally heavier

compared to the HAR models, and we do not have the computational capacity to re-estimate

the weights of a NN for every observation. An important note is that this is only beneficial for

the HAR models because they incorporate new and potentially valuable information into their

framework.

To analyze the effect of adding extra covariates to the model, we construct two datasets,

namely MHAR and MALL. MHAR consists of the three explanatory variables in the baseline

HAR model: the average daily, weekly, and monthly lagged realized variance. MALL includes

and extentsMHAR by including nine other variables that have been extensively researched by

other literature, and arguably been proven to be powerful predictors of volatility. We include

five macroeconomic variables: The CBOE volatility (VIX) index, the Hang Seng stock index

daily squared log-return (HSI)3, the Aruoba, Diebold and Scotti (2009) business index conditions

(ADS), the first-differenced US 3-month T-bill rate (US3M), and the economic policy uncertainty

(EPU) index4 from Baker, Bloom and Davis (2016). We also include four firm-specific variables:

Model-free implied volatility (IV)5, an indicator for earnings announcements (EAs)6, 1-week

momentum (M1W), and the first-differenced logarithm of dollar trading volume (VOL)7. In

addition, we log-transform the VIX and IV for the logarithmic HAR model discussed in Section

3.2. Missing observations for all return variables (i.e., HSI) are set to 0, whereas other missing

variables are set to the most recent available observation. Table 4 in the Appendix shows the

explanatory variables’ descriptive statistics.

3HSI originates from Yahoo Finance.
4US3M and EPU are from the federal reserve bank (FRED) of St. Louis, and ADS from FRED of Philadelphia.
5The implied volatility originates from OptionMetrics and is calculated as the average implied volatility of all

options with a 30-day expiration date.
6EAs are from the U.S. securities and exchange commissions.
7Both M1W and VOL originate from CRSP from the WRDS.
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5 Results

Table 1 shows the obtained relative out-of-sample MSEs for the dataset MHAR. Each column

reports MSEs for the forecast model relative to the benchmark model in the corresponding row,

where the MSE is a cross-sectional average across all considered stocks. Note that the HAR-X

is identical to the baseline HAR model, asMHAR only consists of lagged realized variances.

Contrary to Christensen et al. (2022), we observe that neither the logHAR nor all NNs

outperform the baseline HAR model. To be precise, the cross-sectional MSE of the logHAR

is 0.5% above one, whereas all NNs perform even worse. Amongst the NNs, the one-layered

NN obtains the worst MSE by far, whereas the difference between the other NN frameworks is

minuscule, observing a difference of at most 3%. However, compared to the baseline HAR model,

these NNs still obtain a cross-sectional MSE of at least 6.5% above one. Ensembles marginally

improve performance for NN2-NN3, but the difference is insignificant. An explanation behind

the performance could be the structure of the data split. While Christensen et al. (2022) evaluate

their models until 2017, we consider an extended dataset until 2021, thus including the covid

crisis, which is a rather highly-volatile period. As the validation set does not necessarily include

such an event, overfitting is a likely explanation behind the performance of the NNs. Although

we perform regularization, a configuration might fit great on the validation set, a relatively low

volatile period, but still perform weak on the test set.

Shifting focus on the metaheuristics, both PSO and GA perform significantly better than

their NN counterparts. The GAmodels beat their counterparts, on average, by 5-10%, whilst this

is marginally smaller for the PSO models. This highlights the limitations of backpropagation,

as the normal NNs seem find it more challenging to converge. Comparing the hybrid models

amongst themselves, performance is alike between different structured NNs incorporated with a

metaheuristic, while, in turn, the GA outperforms PSO by 1 to 2 percent. In addition, in line

with the NNs, we observe an insignificant difference between ensembles and a single model.

All hybrid models do not seem to outperform the baseline HAR model in this setting, ob-

serving an increase of at most 3.8%. Additionally, we perform a robustness check to ascertain

whether the results are consistent across different datasets. Therefore, we consider the same

data period as in Christensen et al. (2022), from January 29, 2001, to December 31, 2017. Table

9 in the Appendix shows the results of the robustness check.

Table 9 displays an entirely different story. In line with Christensen et al. (2022), all NNs

outperform the baseline HAR model, highlighting that nonlinearity does seem to be essential

for predicting volatility. However, whilst all hybrid models beat the HAR models, they do not

seem to improve the performance of regular NNs. Moreover, performance slightly deteriorates,

indicating that the metaheuristic approaches possibly overfit the training set. Furthermore,

it indicates that if NNs that use backpropagation quickly converge, the effect of using hybrid

models diminishes.

Table 7 in the Appendix displays the results of using the QLIKE results for the MHAR

dataset. An intriguing contradiction with the MSE results is that all models are highly similar

in terms of relative QLIKE value, observing a difference of at most 1.4% compared to the

HAR model. For the QLIKE, both the logHAR model and the GA model are able to beat the

HAR model, although the difference is a mere 0.1%. An explanation behind the contrasting
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results for the considered forecast evaluation measures is the difference in penalizing over- and

under-predictions. The MSE is symmetrical, implying that both over- and under-predictions

are penalized in the same way. However, the QLIKE function penalizes under-predictions more

than over-predictions (Patton, 2011). Therefore, the HAR model seems to produce relatively

more under-predictions, whereas the nonlinear models seem to produce more over-predictions.

Moving onto theMALL dataset results displayed in Table 2, we first consider the inclusion

of the extra variables into the models. Performance increases by 8.1% for the HAR model if

additional covariates are included, indicating that these variables do contain helpful information

when predicting volatility. However, it seems that all nonlinear models perform significantly

worse compared to their counterparts in Table 1. First, even though the HAR-X model performs

better than its offset, the performance of the logHAR model deteriorates when including extra

variables, indicating that the logarithmic transformation does not improve performance. We

hypothesize that some important dynamics or patterns in the data are lost when applying this

logarithmic transformation, making it difficult to accurately fit the logHAR model.

Turning attention to the NNs and hybrid models, we observe a similar pattern. Whilst

performance is slightly better than the logHAR-X model, all models suffer from overfitting. It

seems that the NNs often fit exquisitely on the validation set, whereas these configurations obtain

modest test set MSEs. Although Table 1 indicates that hybrid models increase performance,

the effect evaporates in this framework. A possible explanation behind the performance of the

hybrid models might be that the input structure is too comprehensive (high-dimensional) for

the algorithms, making it difficult to accurately explore the search space and find an optimal

solution. Another explanation behind the weak performance of the hybrid models is that the

input itself is inadequate, implying that the used hyperparameter framework does not work well

in this situation. As the NNs are more prone to overfitting, the starting point of the algorithms

might be inappropriate. Herefore, the algorithms do not converge to a local optimum, indicating

that perhaps more hyperparameter optimization is needed. We perform the same robustness

check as for the MHAR dataset, of which the results are shown in Table 10 in the Appendix.

The results for the period from January 29, 2001, to December 31, 2017, display completely

different results, indicating that the construction and split of the data seem to be the driving

factor behind the poor performance of the nonlinear models. The logHAR-X model performs

remarkably well, followed by the NNs. However, the hybrid models perform worse than the NNs,

a pattern we observed earlier.

An interesting observation is that, in contrast to Christensen et al. (2022), the inclusion of

extra variables seems to only marginally improve performance for some models. Moreover, the

performance of the HAR model actually worsens when adding extra variables. An explanation

behind these contrasting results could be the setup of the data. Christensen et al. (2022) shine

little light upon the extraction of the data, making it difficult to obtain the same results. They

find that the IV is one of the most influential variables when predicting volatility. We follow a

simplistic approach (averaging) when constructing the IV, whereas they do not explain in detail

how the construct the IV variable. It might be that IV loses some of its predictive power as a

result.

Table 8 in the Appendix shows the results using the QLIKE evaluation measure for theMALL
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dataset. Analogously to the results forMALL, we observe that the difference in relative QLIKE

value to the HAR model shrinks compared to the relative MSE value, again indicating that the

HAR model is more prone to under-predictions compared to the other models. However, all

NNs are unable to beat the HAR model, a task only the logHAR model is able to complete. Out

of the NNs, the more sophisticated structures perform better than more simplistic frameworks,

which is an observation present in all results for the data period until 2021.

Turning the attention to the hybrid models, we again observe that performance deterior-

ates in the MALL setting, which again suggests that the metaheuristics struggle with high-

dimensional input, implying that either proper hyperparameter tuning or feature selection is

needed.

To shed more light on the performance of the considered models, we construct boxplots of

a model’s performance compared to the HAR model for both the MSE and QLIKE, allowing

us to understand whether the performance is driven by a single stock, or consistent across the

cross-section of stocks. Figure 2 displays the obtained boxplots.

We first consider the MSE boxplots. For the MHAR dataset, it seems that the one-layered

NN produces many outliers, which is reflected in the relative MSE. All models seem to perform,

on average, just worse than the HAR model, even though many models are able to beat the

HAR model for several stocks. In theMALL dataset, the nonlinear models seem to suffer more

from outliers. All models produce steady MSEs for the majority of stock but seemingly overfit

much more for a few stocks. This shows that, even though all nonlinear models still perform

worse than the HAR model, the difference is not all that great for the majority of stocks.

The QLIKE boxplots display different results. The performance across stocks is more con-

centrated around the median, indicating that the performance seems robust across stocks. This

is especially the case for theMHAR dataset, where the largest outlier is a relative QLIKE value

of around 1.25. In contrast, the QLIKE values deviate more usingMALL, which is in line with

the results when using MSE as the evaluation measure.

In addition to the per-stock performance, we construct MCSs from Hansen et al. (2011),

which are sets of models that contain the best-performing model with a given confidence level.

We compute the MCS at both a 75% and a 90% confidence level. The results are shown in Table

6 in the Appendix.

We first consider theMHAR dataset. Using the MSE, it seems that most models are almost

always included, with the NN1 having the lowest inclusion rate of 52%. Considering the QLIKE

evaluation measure, we observe that the logHAR model and GA1
2 have the highest inclusion

rate, which aligns with the results obtained from Table 7 in the Appendix. An explanation

behind the reason why all models are almost always included when using the MSE as the loss

function could be the variance of the losses. Models with larger variances may require larger loss

differences to establish statistical significance. Furthermore, the variance of the losses influences

the size of the MCS. A larger variance often leads to a wider MCS, allowing for more models to

be included in the final set. In addition, it implies more uncertainty in the estimates, resulting

in a broader range of models that cannot be distinguished as significantly worse.

For the MALL dataset, we generally observe more considerable differences in relative MSE

compared to theMHAR dataset. This is also supported by the inclusion rates, which seem more
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(a) MHAR - MSE (b) MALL - MSE

(c) MHAR - QLIKE (d) MALL - QLIKE

Figure 2: Boxplots of relative MSEs and QLIKE values compared to baseline HAR model

Notes: The data consists of 25 samples. The central mark is the median MSE (QLIKE), while
the bottom and top edge of the box indicate the interquartile range. The whiskers are the
outermost observations not flagged as outliers (the latter are marked with a circle). Outliers are
points that fall below Q1− 1.5IQR or above Q3 + 1.5IQR, where Q1 is the 25th percentile, Q3
75th percentile, and IQR is the interquartile range (Q3 -Q1). HAR-X is omitted from Panel (a)
and Panel (c), as it is identical to HAR inMHAR.

conclusive compared to the inclusion rates for MHAR. For the MSE, all HAR models have an

inclusion rate of at least 60%, whereas the NNs and hybrid models have an inclusion rate of

at most 60%. The difference in inclusion rate becomes even more prominent when using the

QLIKE loss function. As observed by Table 8 in the Appendix, the logHAR-X model seems to

be the best, having an inclusion rate of 80%-90%. Besides the HAR model, all other models

obtain an inclusion rate of less than 25%, often near 0%. Figure 2 shows that all models, besides

the logHAR-X, consistently perform worse than the HAR model, which could explain the low

inclusion rates.

To get a better grasp of the poor performance of the NNs and hybrid models, we construct

extra models to find the main factor behind their weak performance. We turn our focus to the

two-layered hybrid models, as it appears that the metaheuristics struggle with high-dimensional

input. To be precise, we replace backpropagation with either metaheuristic when training the

model to investigate whether backpropagation is the problem. These models are referred to

as PSO-BP1
2 for a two-layered structure using PSO. In addition, we construct an off-the-self

approach of the hybrid models, where we re-estimate the weights of the NN with either meta-
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heuristic every half a trading year (i.e., 126 days). These models are referred to as PSO+BP-T1
2

and PSO-BP-T1
2 for the hybrid models that first use backpropagation and for the hybrid models

without backpropagation, respectively. The off-the-shelf approaches of these models are calcu-

lated for their 10 best seeds, thus honoring the same ranking as their reported ensemble variants.

Table 3: One-day-ahead relative MSE and QLIKE over test set from entire sample period
January 29, 2001, to December 31, 2021, for models that either replace backpropagation or
implement time-varying weights

Panel A:MHAR

PSO-BP1
2 PSO-BP10

2 GA-BP1
2 GA-BP10

2 PSO+BP-T1
2 PSO+BP-T10

2 GA+BP-T1
2 GA+BP-T10

2 PSO-BP-T1
2 PSO-BP-T10

2 GA-BP-T1
2 GA-BPT

10
2

HAR (MSE) 1.158 1.125 1.110 1.126 1.044 1.033 1.046 1.027 1.114 1.075 1.059 1.077

HAR (QLIKE) 1.014 1.045 1.005 1.019 1.006 1.010 1.006 1.008 1.017 1.038 1.016 1.021

Panel B:MALL

PSO-BP1
2 PSO-BP10

2 GA-BP1
2 GA-BP10

2 PSO+BP-T1
2 PSO+BP-T10

2 GA+BP-T1
2 GA+BP-T10

2 PSO-BP-T1
2 PSO-BP-T10

2 GA-BP-T1
2 GA-BP-T10

2

HAR (MSE) 2.222 2.585 2.473 2.468 2.003 2.055 3.769 2.931 1.769 2.050 3.250 3.115

HAR (QLIKE) 1.327 1.871 1.423 1.643 1.084 1.136 1.085 1.087 1.521 1.454 1.440 1.434

Notes: We report the out-of-sample realized variance forecast MSE (QLIKE) of each model in
the selected column relative to the benchmark in the selected row. Each number is a cross-
sectional average of such pairwise relative MSEs (QLIKE) for each stock. Panel A shows the
results for theMHAR dataset, whereas panel B reports the results for theMALL dataset.

The results of the extended models are displayed in Table 3. The first observation is that

using backpropagation does not seem to be the main problem, as training the NNs with the

metaheuristics does not improve performance for either dataset. However, the modest perform-

ance of the metaheuristics could also be attributed to no hyperparameter optimization. These

results are supported by the time-varying models, as using backpropagation first to train the

model does seem to help the convergence of the weights. In short, these results highlight the

fact that hyperparameter optimization seems essential for performance. The opted set of hyper-

parameters improves performance in one scenario, but even then, not all stocks benefit from it,

as is displayed in the boxplots in Figure 2.

A supposedly surprising result is that the off-the-shelf approaches do not necessarily improve

performance. Although off-the-shelf metaheuristics and backpropagation approaches are able to

beat a simplistic NN, they are unable to improve upon the hybrid models in Table 1 and Table

2. Furthermore, in the MALL dataset, especially the GA produces poor results, whereas this

is not the case for the MHAR dataset. This again indicates that the algorithms struggle with

the dimension of the input variables (which are lists containing the weights of a NN), thus

highlighting a limitation of the metaheuristics.
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6 Conclusion

In this paper, we build upon Christensen et al. (2022) and investigate the performance of different

ML approaches and metaheuristics in the framework of volatility forecasting. We develop two

hybrid models to enhance forecasting accuracy through metaheuristics. The first approach

combines particle swarm optimization (PSO) and a feed-forward neural network (NN) in order

to optimize the weights of a NN further. The second approach mimics the first approach with

one central difference: We replace the PSO algorithm with a genetic algorithm (GA). Both

metaheuristics are adapted to perform the task at hand. We compare the hybrid models against

HAR models and feed-forward NNs. We evaluate the performance of the considered models over

a period from January 29, 2001, to December 31, 2021, using the mean squared error (MSE)

and quasi-likelihood (QLIKE) evaluation measures.

The results of our forecast evaluation show that our proposed hybrid models are able to

beat the NNs considering both MSE and QLIKE when solely using lagged realized variances

as input variables. Despite these promising results, the effect diminishes when adding extra

forward-looking variables to the model, indicating that the metaheuristics struggle with high-

dimensional input. However, the modest performance could also be attributed to little to no

hyperparameter optimization. Nevertheless, no models beat the HAR model considering the

MSE, while only the GA is able to marginally beat the HAR model in view of QLIKE. The

robustness checks show that the dataset plays a pivotal role when performing volatility forecasts,

as using a smaller data period improves the performance of many nonlinear models, such that

the NNs are able to beat the HAR model. However, the importance of metaheuristics vanishes

in this setting, indicating that they are a great tool when NNs are more prone to overfit but

struggle to improve the performance of a well-fit NN.

This underlines a notable limitation of our research. We observe that the performance is

highly dependent on the used data period. The weak performance of the nonlinear models could

partially be explained by the fact that no hyperparameter optimization was conducted, which

could significantly hinder the optimization process of the NNs and metaheuristic algorithms.

Combined with no hyperparameter optimization, we observe that the performance of the me-

taheuristics is contingent on the input, which could explain the alternating performance of the

hybrid models.

Further research regarding the implementation of metaheuristics in the framework of volat-

ility forecasting is therefore needed. An exciting avenue could be analyzing the performance of

different dataset configurations (i.e., using different training and test sets) in order to improve

the convergence of NNs and metaheuristics. In addition, future research could explore per-stock

hyperparameter optimization. A hyperparameter setting is not guaranteed to work well for

every stock and dataset, therefore discrediting possible performance. However, this might prove

challenging as much computational power is needed for thorough hyperparameter optimization.

Alternatively, one might investigate the effect of feature selection on the performance of hybrid

models, as not all variables are necessarily helpful when predicting volatility, and especially not

helpful for the optimization process of the metaheuristics. Last, using different metaheuristics,

or a combination of metaheuristics, could enhance forecasting accuracy. One could develop me-

taheuristics that work well with high-dimensional input or include volatility-specific attributes.
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Table 5: Hyperparamaters of the NN and both algorithms

Neural Network Particle Swarm Optimization Genetic Algorithm

Learning rate = 0.01 n iterations = 20 n iterations = 30
Step-wise decay = 0.5 every 50 epochs n particles = 40 n chromosomes = 40
Epochs = 500 init particles = 3 init chromosomes = 3
Patience = 100 w = 0.9 n highest = 0.3
Drop-out = 0.1 wp = 0.02 mutation probability = 0.7
Initializer: Glorot normal c1 = 3 mutation choice = 0.8
ADAM = default c1p = −0.1 mutation amount = 1
Ensebmle ∈ {1, 10} c2 = 1 crossover choice = 0.8

c2p = 0.1
init vel = 3
max vel = 15

Notes: Step-wise learning rate decay is only employed forMALL for the considered data period.

Table 6: Inclusion rate in the MCS using the test set

Panel A:MHAR Panel B:MALL

MSE QLIKE MSE QLIKE

M̂∗
75% M̂∗

90% M̂∗
75% M̂∗

90% M̂∗
75% M̂∗

90% M̂∗
75% M̂∗

90%

HAR 96% 100% 44% 60% 92% 100% 36% 48%

HAR-X 96% 100% 44% 60% 100% 100% 4% 12%

logHAR 92% 92% 64% 68% 60% 96% 84% 88%

NN1
1 52% 72% 48% 60% 40% 52% 0% 4%

NN10
1 52% 84% 28% 44% 8% 8% 0% 0%

NN1
2 92% 92% 52% 64% 12% 20% 0% 4%

NN10
2 80% 96% 12% 20% 0% 4% 0% 0%

NN1
3 96% 100% 40% 60% 24% 40% 4% 4%

NN10
3 100% 100% 24% 32% 12% 16% 0% 4%

NN1
4 100% 100% 52% 72% 36% 60% 8% 24%

NN10
4 100% 100% 12% 24% 12% 28% 0% 0%

PSO1
2 68% 92% 56% 60% 16% 28% 0% 0%

PSO10
2 64% 88% 0% 16% 4% 8% 0% 0%

PSO1
3 80% 92% 36% 48% 24% 36% 12% 12%

PSO10
3 56% 88% 8% 8% 4% 12% 0% 0%

GA1
2 84% 96% 76% 84% 16% 28% 0% 0%

GA10
2 56% 92% 8% 12% 4% 8% 0% 8%

GA1
3 88% 96% 52% 76% 28% 40% 4% 16%

GA10
3 80% 84% 24% 44% 0% 0% 0% 0%

Notes: We report the inclusion rate for both MHAR and MALL. The inclusion rate is the
percentage a model was retained in the final set of the MCS (Hansen et al., 2011) across all
stocks. We compute the MCS at both a 75% and 90% confidence level using a moving block
bootstrap, a block size of l = 2, and 1000 bootstrap repetitions. For MALL, logHAR presents
the values of its distributed lag-type version logHAR-X.
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B Programming Code

The code is written in Python 3.9.12. In addition, Excel is used to obtain the relative MSE and

QLIKE values for all models. A detailed explanation can be found in the README file.
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