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Abstract

In this thesis we develop two methods to identify simultaneous equation models, in partic-

ular systems such as mismeasured models. These methods relate to the method proposed by

Lewbel (2012), who uses heteroskedasticity to identify such models. Therefore, we combine

the method proposed by Lewbel (2012) with results from the field of robust statistics. By

distinguishing between different types of outliers, we have developed methods using vertical

outliers as defined by Rousseeuw and Van Zomeren (1990) for identification. We show that

by classifying these vertical outliers using Huber’s criterion (Huber, 1964) or using a binary

classification, we can construct variables that can be employed in the method of Lewbel

(2012). These methods work well in the simulated examples but show mixed results in a

real data study. We also replicate the results found in the appendix of Lewbel (2012) and

we extend the simulation study in Lewbel (2012) for set identification.

1 Introduction

Identification is an important topic in econometrics, it occurs in the setting of Simultaneous

Equation Models (SEM) where not all parameters can be estimated. These models were in-

troduced in the beginning of the 20th century due to economists’ interests to analyze supply

and demand settings (Angrist, Graddy & Imbens, 2000). However, beside supply and demand

settings, these models occur also in other situations such as in the presence of measurement

errors and endogenous variables. This often reduces the SEM to a triangular model such as in

equations 1 and 2:

y1 = X ′β10 + y2γ10 + ϵ1, (1)

y2 = X ′β20 + ϵ2, (2)

where y1 is the (n× 1) dependent variable, y2 the (n× 1) endogenous variable, X the (n×m)

matrix containing the exogenous variables and ϵi for i ∈ {1, 2} are (n × 1) the residuals. The

most important approach to identify these models is by use of instrumental variables. The effect

of an instrumental variable goes via y2 to y1, such that γ10 can be determined when we know

the relation between the instrumental variable and y2. However, finding adequate instruments

is difficult and not all instruments are sufficiently powerful. Therefore, recent developments

by Lewbel (2012) offer a new interesting perspective on instrumental variables. In the method

proposed by Lewbel (2012), instruments are constructed using the heteroskedasticity. We built

on this method introduced by Lewbel (2012) to explore whether the method can be extended

to provide identification in the triangular SEM model using outliers.

Thus, in this thesis we explore the identification of SEMs by use of outliers. Therefore, we

combine the method proposed by Lewbel (2012) and results from the field of robust statistics.

This field is specialized in coping with deviations from the standard assumptions regarding

statistical analyses (Huber, 1981). Especially distributional robustness, which concerns outliers,

is an important topic in robust statistics (Huber, 1981). Outliers can be the result of a different

generating distribution, where either location, scale or distributional shape is different from

the ‘good’ observations. We show how differences in the variance and more general in the

distributions generating outliers, can be exploited to obtain identification.
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In order to use outliers for identification, we first set-out to determine what outliers are for

our identification context. In this regard, we follow a classification of outliers as described in

Rousseeuw and Van Zomeren (1990). This leads to a tripartite classification of outliers into

vertical outliers, good leverage points and bad leverage points. Using this classification, we show

that vertical outliers can be used for identification. For vertical outliers where distribution and

scale differ from the good observations, we show that we can construct variables by means of

techniques from robust statistics which can then be employed as z variable in the method of

Lewbel (2012). We show the use of these techniques in a number of simulations and we apply the

method to a real data example. We find that using the Huber criterion (Huber, 1964) to assign

weights to observations on their ‘outlyingness’ is an efficient variable for the method proposed

by Lewbel (2012).

Another part of this thesis will focus more on the results in Lewbel (2012). We reproduce

the results of the Monte Carlo simulation in the appendix of Lewbel (2012). In addition we

extend the simulation study by simulations on the topic of set identification as discussed in

Lewbel (2012). We find that the bounds of the sets cannot always be computed and that

this leads to slightly biased set bounds. In this simulation we also include a model where the

assumption of cov(Z, ϵ1ϵ2) = 0 is actually relaxed. We show how this impacts the bounds of the

set identification by estimating the bounds and computing the theoretical values.

Considering the previous discussion, we formulate a main research question and several

subquestions to answer:

Can we use outliers in combination with the method proposed by Lewbel (2012) to obtain

identification in simultaneous equation models?

To answer to main research question, we pose the following sub-questions:

1. Can we reproduce the results presented in Lewbel (2012)? In particular can we replic-

ate the Monte Carlo simulation in the appendix and extend this with a simulation where

cov(Z, ϵ1ϵ2) ̸= 0 to verify the set bound results?

2. Can we obtain identification in simultaneous equation models with an adapted version of

the method proposed by Lewbel (2012) using vertical outliers?

3. Can we obtain identification in simultaneous equations models with an adapted version of

the method proposed by Lewbel (2012) using leverage points?

4. Can we obtain identification in an example with real data using outliers?

These questions contribute to the existing scientific literature by extending the possibilities

of constructing instrumental variables. We show that there are differences between heteroske-

dasticity as employed by Lewbel (2012) and the methods proposed in this thesis. Beside the

contribution to the scientific literature, the methods proposed in this thesis will extend the eco-

nometrician’s toolbox. Instrumental variables are notoriously hard to find and a broad arsenal

of methods to find instrumental variables is therefore useful for applied research encountering

models with endogeneity or mismeasured variables.

The remainder of this paper has the following structure, we first discuss the literature con-

cerning identification and robust statistics in section 2. Then, in section 3, we discuss the
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methodological framework of our methods and the techniques on which they are based. In sec-

tion 4, we present the results of the simulation studies and real application as described in the

methodology. Finally we present our conclusion and a discussion of the results in section 5. The

appendices contain a proof, discussion of the programming code used for obtaining the results

and additional tables to support the results.

2 Literature Review

2.1 Identification

Here we discuss the literature concerning identification and instrumental variables. We first give

a general overview of the issue and techniques employed to solve it. We especially focus on the

problem of finding adequate instruments, as instruments are the method to obtain identification.

Then we focus on the findings in Lewbel (2012) and shortly discuss his method as it will be used

further in this paper as a starting point.

2.1.1 Identification General

Simultaneous equation models were developed, among others, by Wright (1928), Tinbergen

(1930) and Haavelmo (1943) often in the context of supply and demand equations (Angrist et

al., 2000). In the case of supply and demand, we consider the fully simultaneous model as

presented in equations 3 and 4:

y1 = X ′β10 + y2γ10 + ϵ1, (3)

y2 = X ′β20 + y1γ20 + ϵ2. (4)

In general with G equations, there are G × (G − 1) unknown parameters γ and G × M un-

known parameters β (Hausman, 1983). With the reduced form we can get G ×M parameters

identified, thus in order to identify all structural parameters we need G× (G− 1) instrumental

variables (Hausman, 1983). Three types of instrumental variables are common, the exclusion

restriction, linear or nonlinear coefficient restrictions and covariance restrictions. With exclu-

sion restrictions, a variable y2 in equation 3 could be identified when one of the parameters in

β10 in equation 3 is set to be 0. For a linear or nonlinear coefficient restrictions, the system

can be identified when a combination of parameters needs to adhere to a prescribed constraint

(Hausman, 1983). Finally, when the residuals are uncorrelated, we can identify the variables

using the residuals as instruments. Because without correlation between the residuals, the effect

of ϵ2 goes exclusively through y2 into y1. In the methods proposed later it is important to check

whether the methods also work in the case that the residuals are correlated, to ensure that the

methods proposed do not actually exploit the covariance restriction type of identification that

arises with uncorrelated residuals.

The interest in estimating structural form equations instead of reduced form equations lies

in the economical modelling behind the studied phenomena. According to Nachtigall, Kroehne,

Funke and Steyer (2003), structural equations allow researchers to include latent variables in the

models. Structural equations represent the connections between latent variables and reduced
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form equations represent the connection between latent and observable variables (Nachtigall et

al., 2003). Modelling classical measurement errors is one example of using a SEM for modelling

latent variables, as the true value is a latent variable and the mismeasured variable the observed

variable. Therefore, mismeasured models can be estimated by means of a SEM. Although SEMs

are adequate for modelling effects between latent variables, in general SEMs do not measure

causal effects (Angrist, Imbens & Rubin, 1996). An acceptable fit does however indicate that

the modeled dependencies are supported by the data. As Nachtigall et al. (2003) points out,

we can conclude from a fitting SEM that the model is not rejected but we cannot conclude

causal relationships. Causal effects can be estimated in a SEM with additional assumptions as

discussed in Angrist et al. (1996). For more detail about causal inferences and how it fits in a

SEM, we refer to literature on causality such as Angrist et al. (1996).

We now discuss the literature concerning identification by use of outliers. The causal trans-

mission mechanism described in Bazinas and Nielsen (2022) uses catalysts to identify structural

equations via causal transmission. Catalysts are similar to instrumental variables which can be

found as natural experiment but can also be found searching for outliers in the data whilst also

implying causal relationships (Bazinas & Nielsen, 2022). In an empirical example, Bazinas and

Nielsen (2022) use oil shocks and fiscal expansions as catalysts which correspond to outlying ob-

servations. In this case we can consider the outlier observations to be dependent on additional

exogenous variables, that did not influence the good observations. The causal transmission

mechanism as described in Bazinas and Nielsen (2022) is therefore adequate when variables can

be found that explain the distributional differences between the outliers and good observations.

In our analysis we distinguish from the method proposed by Bazinas and Nielsen (2022) by

focusing on outliers generated by differences in the variance. Thus, we focus on cases where

no variables can be found to explain the outlier observations but where it is clear that the

observations have be generated via a different process than the good observations.

2.1.2 Identification using heteroskedasticity

We now discuss the method proposed by Lewbel (2012) to identify SEMs using heteroskedasti-

city. Lewbel (2012) constructs instruments by means of a variable z (we denote the random

variable corresponding to the variable z as Z), this variable needs to fulfill two important con-

ditions as given in equation 5:

cov(Z, ϵ1ϵ2) = 0, cov
(
Z, ϵ22

)
̸= 0. (5)

For a triangular model, such as in equations 1 and 2, the method uses instruments constructed

as given in equation 6 (Lewbel, 2012):

IV = (z − z̄)ϵ2, (6)

where IV is the instrumental variable, z the variable responsible for the heteroskedasticity and

ϵ2 the first stage residual. For an instrument, it is important that the effect goes to y1 only via

y2 and that it is correlated sufficiently with y2. We discuss the instrument presented in equation

6 and argue intuitively why it is a valid instrument. The heteroskedasticity in ϵ2 indicates
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that the variance of y2 is higher/lower for specific values of the variable z, this is guaranteed

by the condition cov
(
Z, ϵ22

)
̸= 0. The condition cov(Z, ϵ1ϵ2) = 0 ensures that ϵ1 has different

heteroskedasticity than ϵ2. Thus, conditional on z, y2 has unique additional or reduced variance.

Thus using ϵ2, which makes the value of y2 more extreme, and z, which is related to the more

extreme values of ϵ2, we can create a variable that explains y2 (namely when y2 is relatively

more extreme) but not y1.

So the constructed variable as presented in equation 6, follows the previous intuitive descrip-

tion. As we are interested in relative values of z (the average of z gets incorporated in the mean

value of the variance), we have the term (z − z̄), when z is included as explanatory variable as

well, which is possible in the method, these relative differences are necessary to distinguish from

the levels associated with the location of y2. The product with ϵ2 is necessary to establish the

relation between the residual and the variable z responsible for the heteroskedasticity.

The method proposed in Lewbel (2012) is presented for triangular models as in equations

1 and 2 and for fully simultaneous models as in equations 3 and 4. The focus is also on

latent variable modelling such as measurement errors or latent factor modelling. Similar to the

discussion about causal interpretation in SEMs in the forgoing section 2.1.1, also Baum and

Lewbel (2019) stress that with this identification method no average local treatment effects

are measured, i.e. it is not generally possible to perform causal inference with the method

proposed in Lewbel (2012). However, this is inherent to the SEMs in general and not a particular

disadvantage of the method proposed by (Lewbel, 2012). Lewbel (2012) also includes estimates

for parameter sets when the condition cov(Z, ϵ1ϵ2) = 0 is violated. Small violations of this

condition are no problem but will make the instrument weaker as there is less unique influence

of the instrument going via y2. Finally, Lewbel (2012) also provides a way to use the method in

non linear settings by piece wise linear approximations.

2.2 Outliers

We add a new method for identification to the existing literature. This method is based on the

method introduced by Lewbel (2012) with adaptations such that identification is obtained using

outliers. Therefore, we discuss the relevant literature concerning outliers in this section. We

consider how to define an outlier, which types of outliers can be distinguished and how outliers

can be detected. Most of the discussed literature comes from the field of robust statistics,

Huber (1981, p. 1) states that: ‘robustness signifies insensitivity to small deviations from the

assumptions’. In his work on robust statistics Huber (1981) focuses on distributional robustness,

which is when the shape of the underlying distribution and the shape of the assumed distribution

differ. We show how this connects to outliers, but first we define what an outlier is.

A definition of an outlier is given in Heij et al. (2004, p. 379) as: ‘the value of the dependent

variable yi differs substantially from what would be expected from the general pattern of the

other observations’. However, observations can deviate from the general pattern in multiple

ways. Many attempts have been made in the literature to make distinctions, Aguinis, Gottfred-

son and Joo (2013) found 14 outlier definitions in a literature review of 46 sources on outlier

methodology. We follow the outlier types distinguished in Rousseeuw and Van Zomeren (1990),

i.e. we consider vertical outliers, good leverage points and bad leverage points. Before elaborat-
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ing on these types of outliers, we go over the definition of a leverage point. However, first we

consider two effects that could occur in an outlier context, masking and swamping (Rousseeuw

& Hubert, 2011). The masking effect is the influence of outliers on a classical regression such

that the outlier data points are no longer detectable. When this leads to detection methods

labeling ‘good’ data points as outliers, it is called swamping.

Following the definition of an outlier, when for some data points the explanatory variables

in X differ substantially from the values of the explanatory variables of other data points,

these points are considered to be leverage points (Everitt & Skrondal, 2010). Often the hat-

matrix H = X(X ′X)−1X ′ is used to diagnose leverage points and Rousseeuw and Van Zomeren

(1990) note that many authors even define leverage as the diagonal elements of the hat-matrix.

However, according to Rousseeuw and Van Zomeren (1990) this is an improper practice as the

diagonal elements hii of the hat-matrix do not necessarily detect leverage points due to masking

and are therefore only (non-robust) diagnostics.

A good leverage point is a leverage point i such that the observation’s dependent variable

yi fits the linear trend of the non-outlier points. Such a data point is regarded an outlier as it

differs substantially from the other data points but fits in the linear pattern and is therefore

informative and improving the estimation. A bad leverage point is a leverage point i such that

the observation’s dependent variable yi does not fit in the linear trend of the non-outlier points,

therefore there is probably something else happening at this observation. The point could for

example be generated by a different data generating process (DGP), meaning that the parameters

of the DGP could differ in this instance, an omitted variable could have significant impact on this

particular observation or the randomness is different either in magnitude or distribution. Such a

bad leverage point can influence the estimation, especially as it has a certain amount of leverage,

such that a researcher should handle with such an observation. Finally we discuss the vertical

outliers, these points are outliers but non-leverage points, i.e. the explanatory variables do not

differ substantially from the non-outlier observations’ explanatory variables but the dependent

variable does differ substantially. The three types of outliers are visually depicted in figure 1

(Rousseeuw & Van Zomeren, 1990).
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Figure 1: The three types of outliers and good observations

We now look how these three types of outliers fit into the distributional robustness definition

stated by Huber (1981). For robust statistics the differences between the actual and assumed

distributions should not be too great. In an outlier context, we can define this as follows.

Let there be n total observations of which h ‘good’ observations, these observations follow

the assumed distribution and let there be n − h ‘bad’ observations, these observations have a

different distribution. Then, the distribution of a random yi is composed of the distribution

of the ‘good’ observations and the distributions of the ‘bad’ observations. For sufficiently large

h, this will mean that the distribution of a general yi is close to the assumed distribution but

slightly different. This shows how vertical outliers can be seen in the framework of distributional

robustness. This also corresponds to the definition of robust statistics provided by Rousseeuw

and Hubert (2011). They define robust statistics as the fit that would have been found without

outliers. Without outliers we only have the h ‘good’ observations and thus indeed the assumed

and actual distribution are equal. Thus, vertical outliers we can also define as observations with

a different underlying distribution in the generating process. This gives a definition that is based

on the generating process instead of the definition found in Heij et al. (2004) where the focus

is on realized data points. For good leverage points this definition is not applicable as they fit

the general pattern of the other observations, but with a substantially different set of exogenous

variables. Bad leverage points could also be seen as a combination of a vertical outlier and a

good leverage point.

We discuss a number of techniques used in robust statistics. These techniques are relevant for

our research, as we identify outliers and construct variables for identification based on methods

in robust statistics. One robust measure for location in the normal distribution is the median

(Rousseeuw & Hubert, 2011). A quantitative measure of robustness, the breakdown point, was

introduced by Hampel (1971). According to Huber (1981) the breakdown point gives the fraction

of outliers an estimator can handle. For the common arithmetic mean, the breakdown point

ϵ∗ = 1/n, meaning that in the limit the mean can handle 0 bad outliers (where bad outliers
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are either vertical outliers or bad leverage points), i.e. by changing one observation the mean

can change unlimited. The breakdown point of the median is ϵ∗ = 1
2 , indicating that it can

handle much more bad outliers. The scale estimate of the normal distribution can similarly be

estimated robustly, as the standard estimate s =
√∑n

i=1
(xi−x̄)2
n−1 also has a breakdown point of

0% in the limit (Rousseeuw & Hubert, 2011). Therefore, the Median of all absolute deviations

from the median (MAD) can be used:

MADi = 1.483 median
i=1,...,n

|ei −median
j=1,...,n

(ej)|, (7)

where the factor 1.483 is a correction to make the MAD unbiased for the normal distribution.

The median and MAD come at the cost of efficiency (Rousseeuw & Hubert, 2011). To find a

balance between bias and efficiency maximum-likelihood-estimators or M-estimators have been

proposed (Huber, 1964), this class of functions is characterized as follows for a linear model

yi = x′iβ + ϵi:

min
n∑
i=1

ρ(yi − x′iβ̂) = min
n∑
i=1

ρ(ei), (8)

as described in Heij et al. (2004). When choosing ρ(ei) = −log (f(ei)) with f the probability

distribution of the error term, it is clear that the maximum likelihood estimator is a specific

instance of a M-estimator, also for ρ(ei) = e2i we get the ordinary least squares (OLS) estimator

that equals the arithmetic mean and for ρ = |ei| we get an estimate that equals the median

estimate of location (Huber, 1964). To make the estimator scale invariant, an implicitly defined

form of the M-estimator can be denoted as:

n∑
i=1

ψ
(ei
s

)
xi = 0, (9)

where ψ = ∂
∂ei
ρ(ei) and s is an estimate of the standard deviation (Huber, 1981). To estimate the

M-estimators, both the standard deviation and the parameters must be estimated. To do this an

alternating procedure is described in Huber (1981). This procedure also requires an initial guess,

this could be provided by a robust method such as the least trimmed squares estimator (LTS),

introduced by Rousseeuw (1984), and for an initial guess of the standard deviation we could use

the median of all absolute deviation from the MAD as described in equation 7. Estimating the

standard deviation with the estimate s(m), in step m as in Huber (1981) we get:

(s(m+1))2 =
1

na

n∑
i=1

χH

( ei

s(m)

)2 (
s(m)

)2
, (10)

with χ(ei) = eiψ(ei) + ρ(ei) and a a bias correcting factor. Then, the parameters can be

estimated as in Huber (1981) by determining:

arg min
τ

n∑
i=1

(
e∗i − x′

iτ
)
, (11)

with e∗i = ψH

(
ri
s(m)

)
s(m) and then obtaining the new parameter estimate with an arbitrary
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relaxation factor 0 < q < 2 by β(m+1) = β(m) + qτ̂ . The interesting fact is that the parameter

estimation can also be rewritten in terms of weights, essentially giving more weight to ‘good’

observations and less weight to outliers. The weights for estimation are defined in Huber (1981)

as:

wi =
ψ
(
ei/s

(m)
)

ei/s(m)
, (12)

using the weights we can also determine the parameter estimation by:

τ = (XTWX)−1XTWe, (13)

where W is a diagonal matrix with elements wi such that β(m+1) = β(m) + τ .

We now explore the Huber criterion as described in Huber (1981). The Huber criterion is

a particular function designed by Huber (1964) for M-estimators (see equations 8 and 9) that

combines the efficiency of OLS, defined as ρ(ei) = e2i , and the robustness of the median, defined

as ρ(ei) = |ei|. The criterion is defined as follows in Huber (1981):

ρH(ei) =

1
2e

2
i +

1
2γ for |ei| < c

c|ei| − 1
2c

2 + 1
2γ for |ei| ≥ c,

(14)

where γ = γ(c) with γ(c) =
∫
min(c2, e2i ) Φ(dei) corrects for the bias in a normal distribution.

Then, it follows that:

ψH(ei) = max[−c,min(c, ei)], (15)

where ψH(ei) =
d
dei
ρH see equation 9. By obtaining the weight factors for every observation we

have a variable that indicates the ‘outlyingness’ of an observation and thereby can be employed

as the z variable in the method proposed by Lewbel (2012).

3 Methodology

3.1 Replication Lewbel

In this section we set out how we reproduce the results found in Lewbel (2012). We replicate

the results in the appendix of Lewbel (2012) and we extend section 5 in Lewbel (2012) with a

simulation study to show the theoretical findings obtained there.

3.1.1 Replication Appendix Simulation

In this section, we first discuss the replication of the results presented in the supplemental

appendix of Lewbel (2012). In the supplemental appendix of Lewbel (2012), a Monte Carlo

simulation is performed with the estimators introduced in the article. Data were generated as

follows (we present the reduced form of the data generating process):

Y1 =
1

1− γ1γ2
(β11 + β21γ1 +Xβ12 +Xβ22γ1 + ϵ2γ1 + ϵ1) , (16)
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Y2 =
1

1− γ1γ2
(β21 + β11γ2 +Xβ22 +Xβ12γ2 + ϵ1γ2 + ϵ2) , (17)

where the residuals were generated according to ϵ1 = U + eXS1 and ϵ2 = U + e−XS2 with X, U ,

S1 and S2 independent distributed standard normal scalars. The parameters are assigned the

following values to generate the data, β11 = β12 = β21 = β22 = γ1 = 1, for a triangular design the

parameter γ2 = 0 and z = X. For a fully simultaneous design γ2 = −0.5 and z =
(
X,X2

)
. We

replicated the Monte Carlo presented in Lewbel (2012) with a simulation in Python 3 using the

Numpy and Scipy libraries, setting Numpy random seed to 0 for generating the data. The data

were generated (for both the triangular design and the fully simultaneous design) as described

in equations 16 and 17, with the residuals generated as ϵ1 = U + eXS1 and ϵ2 = U + e−XS2.

To estimate the parameters in the triangular design we implemented the two stage least squares

estimator discussed in Lewbel (2012) and in accordance with his simulation we also perform

10,000 simulations with 500 observations each.

For the fully simultaneous model we use the moment conditions in section 3 of Lewbel

(2012) in combination with the standard Hansen (1982) estimator for the Generalized Method of

Moments (GMM) where the weighting matrix Ωn is an estimate of E
(
Q (θ0, S) (θ0, S)

′). To solve
the minimization problem in this set-up we use the python Scipy function optimize.minimize.

The ‘Powell’ method was used as it was the only method to always converge. As this algorithm

is rather slow, we first apply the ‘TNC’ algorithm (Truncated Newton Algorithm) and for the

non-converging simulations we afterwards apply the ‘Powell’ algorithm to guarantee that all

simulations converge. Again as in accordance with the simulation in Lewbel (2012), we perform

10,000 simulation of 500 observations each.

3.1.2 Set Identification Simulation

In section 5 of Lewbel (2012), the assumption of cov(Z, ϵ1ϵ2) = 0 is relaxed. With certain

conditions on the ratio between the covariance of the residuals and the heteroskedasticity of

the residuals, parameters can be set identified. For set identification, Lewbel (2012) creates a

bounded set Γ1 such that γ1 ∈ Γ1. In Lewbel (2012), this set identification is discussed in the

setting of the data generating process presented in equations 16 and 17. This data generating

process fulfills all assumptions, so the assumption cov(z, ϵ1ϵ2) = 0 is satisfied as well. However, a

researcher who is not aware of the data generating process may in this case still assume that the

|corr (z, ϵ1ϵ2) | ≤ τ |corr
(
z, ϵ22

)
| with a certain value of τ . In his paper, Lewbel (2012) works out

the analytical expression for the set bounds in the model of equations 16 and 17. For estimation,

Lewbel (2012) indicates that replacing the reduced form errors Wj with sample estimates and

using these estimates in the equation that defines the set. The equation is given as:

cov(W1W2, Z)
2

cov
(
W 2

2 , Z
)2 − var(W1W2)

var
(
W 2

2

) τ2 + 2

(
cov
(
W1W2,W

2
2

)
var
(
W 2

2

) τ2 − cov(W1W2, Z)

cov
(
W 2

2 , Z
) ) γ1

+
(
1− τ2

)
γ21 = 0. (18)

we perform a simulation study in the model of equations 16 and 17 to verify whether these

are in accordance with the analytical expression. The parameter values and residuals are the
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same as in the triangular model in section 3.1 and we again perform 10,000 simulations with

500 observations each. We also present an adjusted model that consists of equations 16 and 17

with the following new residuals:

ϵ1 = U + eaXS, (19)

ϵ2 = U + e−XS, (20)

with U and S standard normal distributed and a an adjustable parameter. Then, we have

E (Xϵ1) = 0, E (Xϵ2) = 0, cov
(
Z, ϵ22

)
= E

(
Xe−2X

)
= −2e2 and finally cov(Z, ϵ1ϵ2) = E

(
Xe(a−1)X

)
=

(a− 1)e
a2−2a+1

2 where Z = X, so that cov(Z, ϵ1ϵ2) is no longer zero (with a = 1 the expression

is 0). This can be used to generate data for which the ratio τ is known and we can develop

the analytical bounds for this particular data generating process. Thus, we generate the data

such that when we calculate bounds with τ = c, |corr(Z,ϵ1ϵ2)|
|corr(Z,ϵ22)|

= c, we can do this by picking

the right value for a in equation 19. We can then see how the set identification performs when

the assumption is actually violated. Apart from the different residuals, the parameters are the

same as in the triangular model in section 3.1 and we again perform 10,000 simulations with

500 observations each.

3.2 Extension

Here we discuss our extension on the method presented by Lewbel (2012). We show how outliers

can be regarded in the context of heteroskedasticity and how this leads to identification.

3.2.1 Vertical Outliers with Huber’s Criterion

As described in the section 2.2, vertical outliers are data points that differ substantially from

the value of the dependent variable of the other data points, while the explanatory variables

fit in with those of the other data points. We show that this type of outlier can be used for

identification and we specify the conditions that have to be met to ensure that identification is

successful. The approach we take combines the identification method proposed in Lewbel (2012)

with techniques from robust statistics, especially using the criterion proposed by Huber (1964)

for M-estimators.

We first discuss the conditions in which the identification method works. We assume that

there is no common heteroskedasticity between observations, i.e. the heteroskedasticity in the

outliers does no come from a model driven by a variable but we assume that the distribution

of each outlier differs randomly. Thus, a model as used in the original simulation described in

Lewbel (2012) with residuals generated as ϵ1 = U + eXS1 and ϵ2 = U + e−XS2, would therefore

not qualify as the heteroskedasticity is driven by the observable variable x. This leaves two

options to identify the model using the outlier, the first option is that we find a variable (e.g.

corresponding to a rare event) that can explain the extra vertical distance. Such variable can

be used for identification, similar to the causal transmission mechanism described in Bazinas

and Nielsen (2022). The second option is that there is no (observed) variable responsible for

the extra vertical distance. In this case, we can model the outlier as being drawn from a

different distribution than the good observations either because the distribution’s shape differs

or because the parameters defining the distribution differ. Then again, a non-zero location
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for such distribution could for example correspond to a (group of) unobserved variables that

define a causal transmission (Bazinas & Nielsen, 2022). In this second case, the approach as

described in Lewbel (2012) is no longer applicable as it will be impossible to find a variable z

that explains the heteroskedasticity. With techniques from robust statistics, we can construct a

variable that indicates whether a data point is an outlier. For these outlier points, we can regard

their ‘outlyingness’ with respect to the robust fit as the result of unique heteroskedasticity only

present at that observation. This variable can be constructed based on the Huber criterion

(Huber, 1964), basically giving an estimate to each outlier of how much its distribution differs

from the distribution of the ‘good’ observations. It is also possible to use a binary classification

such as used in the Least Trimmed Squared (LTS) estimator (Rousseeuw, 1984). We show that

this can then be used in the method of Lewbel (2012) to obtain identification. Therefore, we

first define outliers for our identification set-up in a data generating process. After all, the

definitions presented in section 2 where constructed to classify outliers in observed samples and

it is important to consider how these outlier observations are created.

Here we describe a model for generating outliers and explain how to distinguish it from

the heteroskedasticity as employed in the method of Lewbel (2012). We first consider Huber’s

contamination model or gross error model, as defined by Huber (1964) and discussed in Huber

(1981). Later we turn to the outlier generating model as presented in Berenguer-Rico, Johansen

and Nielsen (2021). Huber’s contamination model is an outlier model on which many concepts in

robust statistics, such as e.g. maximum bias and breakdown points are based (Mu & Xiong, 2023)

and plays an important role in robust statistics. The model assumes the following generating

process for any observation (Huber, 1981):

fi = (1− η)g + ηh, (21)

where η ∈ [0, 12 ], fi the distribution of observation i, g the distribution of the good observation

and h the distribution of the η fraction of outlier observations. This model provides a broad

interpretation of what drives the generation of an outlier. The fact that the outlier is generated

by the alternative distribution h is a versatile definition. As described in the previous paragraph,

the distribution could differ in multiple aspects. The outlier location could differ due to an

(unobserved) variable such as with the causal transmission as described in Bazinas and Nielsen

(2022). Another reason for an alternate location is that an outlier is not affected by one of the

explanatory variables in the DGP of the good observations (non-constant parameters). Then,

there could be differences in the variance, maybe outlier observations are generated with very

skewed or much larger variances (if they would be generated with smaller variances than the

good observations we would probably not be able to observe them in the data). Finally, there

could be higher moments on which the outlier generation depends. This could be captured

by allowing the outlier generation to be the result of another distributional function. For the

remainder of this section we focus on outliers that have been generated due to differences in the

variance or distributional function. As set out before, we also will assume that every outlier

is generated different, to distinct it from heteroskedasticity. In this context we mean that the

contamination distribution h differs for each outlier, either in parameters or shape. Therefore,
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we replace the distribution h with hi:

fi = (1− η)g + ηhi (22)

We now describe this in more detail, where we follow the notation as presented in Berenguer-Rico

et al. (2021). Let there be n observations, we say that the elements i ∈ ζ with ζ ⊆ {1, ..., n} and

|ζ| = h such that h ≤ n are the ‘good’ (non-outlier) observations and that the n−h observations

j /∈ ζ are the outliers. For the linear model yi =
′
i β + ϵi, with standard assumptions, we know

that the distribution of yi equals the distribution of ϵi with location µi = x′iβ. We assume that

the outliers j /∈ ζ are drawn from a different distribution, such that each outlier observations

j has its own distribution hj(y) different to the distribution g(y) of the good observations as

in equation 22. Further we stress that each outlier j /∈ ζ can have an unique distribution such

that for each j, k /∈ ζ we have in general that hj ̸= hk. We also make a distinction between

outliers that have a distribution sj(y) with a location parameter µyj = x′iβ and with a location

parameter µyj ̸= x′iβ. The difference is important, as outliers with µsj = x′iβ can be regarded

as observations where the outlier only has ‘pure’ heteroskedasticity because only the variance is

affected. For the other type of outliers, there is more to it than only heteroskedasticity as the

location of the outlier observation differs from that of the good observations. Non-zero location

distributions for outliers will lead to bias in first stage regressions, which has to be accounted for

(due the fact that non-zero locations in the residuals are absorbed in the constant). When these

location parameters differ due to an observable event, identification could be obtained using the

causal transmission mechanism described in (Bazinas & Nielsen, 2022).

We point out that Huber’s contamination model as in equation 21 and the form in equation

22, are not necessarily detectable as outliers as defined in section 2.2. A vertical outlier as defined

in section 2.2, requires that the observation differs substantially from the good observations

given that the exogenous variables are similar. Of course, intuitively it makes sense to classify

undetectable observations with different distributions as outliers as well. However, because we

cannot distinct these observations in the sample, we pose certain restrictions on the distribution

hi in equation 22 to ensure that all generated outliers are detectable as outliers. Therefore,

we adapt the model for generating outliers as presented in Berenguer-Rico et al. (2021). Their

model ensures that outliers in the generation stage can later be classified as outliers as outliers

will always have larger residuals than the good observations. So let the outlier observations

j /∈ ζ have residuals according to the following generating process:

ϵj = (max
i∈ζ

ϵi + ξj)1(ξj>0) + (min
i∈ζ

ϵi + ξj)1(ξj<0), (23)

where ξj is drawn from a distribution sj which can have many forms. We can regard this

model as the contamination model in equation 22 where the distribution hj is replaced by the

distribution of yj = xjβ + ϵj . This model generates for some observations an unexplained

additional randomness and as shown in Berenguer-Rico et al. (2021) the LTS estimator is the

maximum likelihood for this model. Although this model unites the definition of a vertical outlier

as defined in section 2.2 with the DGP for outliers, there might be some objections about the

realism of the model. For many ‘real world’ economic processes it is questionable whether data
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are generated according to this process. An operation such as maxi∈ζ ϵi seems unrealistic for

‘real’ data as it defines a strict sequence between generating the good and outlier observations.

However, we deem the process to be realistic enough to continue our analysis with this model,

especially as it allows for a clear distinction between outlier and good observations.

Now we discuss the identification based on the method discussed in the foregoing paragraph.

Central in the procedure are the weights obtained from the M-estimator and in this specific case

from the Huber-criterion. These weights wi are influenced by the choice of c in the criterion and

are in the Huber criterion constructed such that ‘good’ observations have weights 1, these are

all the observation for which the error ei < |c| other observations get a declining weight. This

means that the largest outliers get a weight that is small, wj << 1 if observation j could be

considered a vertical outlier. We use the complement of the weights, thus pi = 1−wi such that

the variable has the interpretation such that larger values correspond to vertical outliers. We

state that the constructed measure based on Huber’s criterion fulfills the conditions set out by

Lewbel (2012) in proposition 1.

We show that this works by demonstrating that weights obtained with the Huber criterion

fulfill the conditions specified in Lewbel (2012). To use the method proposed by Lewbel (2012)

in a triangular model as described in equations 1 and 2, we need to ensure that cov(Z, ϵ1ϵ2) = 0

and cov(Z, ϵ22) ̸= 0. With Z = P where P is the random variable P = 1− ψH(ϵ2/σ)
ϵ2/σ

corresponding

to the realisations pi. This leads to proposition 1.

Proposition 1 Assuming the outlier generation model from Berenguer-Rico et al. (2021) as in

equation 23. The ‘outlyingness’ variable P = 1 − ψH(ϵ2/σ)
ϵ2/σ

based on Huber’s criterion, fulfills

the conditions cov(P, ϵ1ϵ2) = 0 and cov(P, ϵ22) ̸= 0 required for identification with the method as

presented in Lewbel (2012) in the model as shown in equations 1 and 2.

The proof of proposition 1 can be found in the appendix A.

3.2.2 Vertical Outliers with Binary Classification

In this section we describe a procedure similar to the one discussed in section 3.2.1, but with

a binary classification variable rather than the constructed weights. This is a simpler approach

and when outliers share a common generating process it might even be more efficient. Another

advantage is that the the classification variable does not have to be constructed algorithmically

but can also be constructed on e.g. visual inspection. The idea is to label outliers and use this

labeling variable as the z variable in the method proposed by Lewbel (2012). Although the

classification does not necessarily have to be performed algorithmically, we can label the outliers

with help of the (fast) Least Trimmed Squares (LTS) estimator (Rousseeuw & Van Driessen,

2000). This estimator is basically an OLS estimator but only considering h ‘good’ (non-outlier

observations). When providing the number of h good observations, the algorithm sorts the

observations into a group of n − h outliers and h good observations. This method allows for

a data driven binary classification of the outliers. This classification variable can then be used

to be employed as the z variable in the method proposed by Lewbel (2012). The (fast) LTS

algorithm is implemented as described in Rousseeuw and Van Driessen (2000) but without the
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enhancement for samples with more than 600 observations as all our simulation are for 500

observations. This enhancement is also only to increase computational efficiency.

3.2.3 Leverage points

The previous section shows how vertical outliers can be used for identification. In this section we

discuss why leverage points are not adequate for identification when using the method proposed

by Lewbel (2012). We focus on good leverage points because we regard bad leverage points as

untrustworthy points due to the fact that both that dependent variable and the explanatory

variables differ substantially. Bad leverage points could be considered as vertical outliers on

leverage points but there are many other reasons why these observations could be so different.

The leverage point itself is not useful, as the both the first stage equation and the second stage

equation will both have the same leverage points. The reason is that the leverage points are

defined by the exogenous variables that occur both in the first and second stage regression (X

variable in equations 1 and 2), both equations have leverage points at the same place. Therefore,

when we would construct an instrument based on the leverages in the first stage regression,

the effect will not only go through the endogenous variable y2 but also directly through the

exogenous variables on to y1. This excludes leverage points to be used for identification as

for an instrument the effect must on y1 must go via the endogenous variable y2. Also when

constructing an instrument as performed in Lewbel (2012), we still need to ensure that the

constructed instrument only influences y1 via y2. The heteroskedasticity used in the method of

Lewbel (2012) must therefore differ between y1 and y2 and as discussed leverage points do not

differ between the equations. Therefore, the leverage does not a provide an opportunity on lower

moment conditions as in usual instruments but also in higher moment conditions, as employed

in the method of Lewbel (2012), we cannot regard the usage of leverages as a new technique.

This is because leverage is defined by the extremes in the exogenous variables, using leverages in

higher moment conditions, like in the variance, would boil down exactly to the method described

in Lewbel (2012). Because when observations with extreme exogenous variable locations have

different variances, this can be regarded as heteroskedasticity and this heteroskedasticity can

then be modeled be use of the exogenous variables. Therefore, when encountering good leverage

points, a good idea is to consider the method described in Lewbel (2012). For bad leverage

points, due to the nature of their deviation from the good observations their seems not to be a

standard procedure to use these points for identification.

3.2.4 Simulation study

In this section we discuss an implementation of the method described in section 3.2.1. We

implement the method using the Huber criterion (Huber, 1964) and labeling the outliers binary

as classified by the Least Trimmed Square Estimator (LTS).

First we discuss the simulation set-up for identification with outliers using the Huber criterion

(Huber, 1964). Therefore, we generate data with the model as presented in the appendix of

Lewbel (2012) but with residuals generated as described by Berenguer-Rico et al. (2021) and

found in equation 23. We choose three different implementations of the variable ξj , namely (1)

ξj ∼ N(0, 1), (2) ξj ∼ N(1, 1) and (3) ξj ∼ N(0, A) with A ∼ U(0, 10) with U(0, 10) the uniform
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distribution from 0 till 10. These choices are for the following reasons, with model (1) we can

test the general idea whether we can obtain identification with outliers. With model (2) we

demonstrate the issues when the distribution has a non-zero location as in the first stage the

constant will not be estimated correctly as the location of the residual is absorbed in the constant.

In the model (3), we show that if every outlier has its own distribution the identification method

still works, i.e. the method works also if all distributions of ξj differ. We also control the number

of good observations h and let it differ between 90% and 99%. An important choice that we have

to make is the value of c in equations 14 and 15. This parameter controls which observations

are classified as outliers. In the model of Berenguer-Rico et al. (2021), we would ideally have

c = max (maxi∈ζ ϵi, |mini∈ζ ϵi|), such that only outliers are considered to be assigned weights.

We run 10,000 simulations with 500 observations each. If 80% is good, this means that 400

observations are distributed with a standard normal distribution. We would like to choose c

such that only the outlier generated observations get a non-zero pi value. However, we can

better include too many observations in the outlier pool, as the actual correct observations will

get small pi values. Therefore, we choose c = 2s with s the estimated standard deviation. It is

well known that for a normal distribution roughly two third of the observations are within two

standard deviations. This means that we expect that one third is included with the outliers.

We also perform a simulation where we classify the outliers binary, so an observations is

either an outlier or not. The data will be generated the same way as with the Huber criterion.

We expect that this approach will work more efficient for scenarios (1) and (2) as all ξj variables

have the same distribution and there is no need differentiate between the ‘outlyingness’ of obser-

vations. However, for scenario (3) we expect the approach with Huber’s criterion to work better,

as it allows to give weights to the different distributions, so that more extremely distributed ξj

variables get higher weights pi. Classifying the data as outlier or good observations will be done

as described in section 3.2.2 using the fast LTS as described by Rousseeuw and Van Driessen

(2000). Again we generate 10,000 simulations with 500 observations each.

3.2.5 Applied study

In this section we set out the framework for how to apply the method discussed in section 3.2.1,

using vertical outliers with Huber’s criterion to a real data example. Therefore, we investig-

ate whether our method can provide identification in the analysis performed by Alesina and

Zhuravskaya (2011). In their research Alesina and Zhuravskaya (2011) measured the effect of

segregation on government quality by regressing segregation with a set on control variables on

the World Bank’s Governance indicators. To overcome endogeneity, Alesina and Zhuravskaya

(2011) use an instrumental variable to obtain causal inference about the influence of segrega-

tion on the quality of government. The instrument uses a relation between the major groups

in neighbouring countries with the spatial distribution of population groups within a country

(Alesina & Zhuravskaya, 2011). The system of equations can therefore be represented as in

equations 24 and 25:

Qi = αQ + βQSi + γQFi + δ′QXi + ϵQi , (24)

Si = αS + βSS
p
i + γSFi + δ′SXi + ϵSi , (25)
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where Spi is the instrument, a variable for the predicted segregation, Si is a segregation index,

Fi an (ethnic) fractionalization index and X is a vector of additional covariates.

In their paper they conclude that influential observations, which we regard as outliers, do

not drive their results. However, the online appendix does discuss the influence of certain

observations on the first and second stage regressions. Chile and Zimbabwe turn out to be outlier

observations that enhance the results in favor of the hypothesis, excluding these observations

for linguistic segregation, makes the instrument weak in the second stage. Without Chile and

Zimbabwe, the USA are an outlier observation in the first stage regression, by excluding the USA

as well the instrument is sufficiently strong enough for identification. We are interested in the

model without Chile and Zimbabwe for linguistic segregation and we apply the method proposed

in section 3.2.1, using vertical outliers with the Huber criterion, to obtain identification. We

explore whether we can find significant effects on the government quality indicators ‘voice and

accountability’ and ‘political stability’ as these were identified without the USA. In the full

sample there were 4 outlier observations, Chile, Zimbabwe, Bulgaria and Russia. Therefore,

we also apply the method to the full sample to determine whether the outlier constructed

instruments can replace the instrumented used in Alesina and Zhuravskaya (2011) as it is clear

from the discussion in the online appendix that these four observations can be considered outliers.

4 Results

4.1 Extension

Here we present the results of the simulation study and applied study using the method proposed

in sections 3.2.1 and 3.2.2. For the simulation study, every simulation was performed at with

10% and 1% outliers. Only one 10% table is included here, the other tables are in the appendix.

4.1.1 Simulation study

First we present the results for the simulation using the Huber criterion in section 3.2.1 for

identification. We present the results for model (1), i.e. with ξj ∼ N(0, 1) in table 1 and table

2. We note that the method indeed seems to work and using the outliers we can identify the

parameter γ1. As we can see, more outliers make the method more efficient in the second stage

but less efficient in the first stage. This is as we would expect, as with more outliers the first

stage is of lower quality. This means that the Huber criterion, interpreted in weights, has a lower

total weight distribution and thus lower efficiency. The fact that the second stage becomes more

efficient with more outliers is also as we would expect, as we have created a stronger instrument.

We now discuss the results of model (2), which can be found in tables 3 and 15. Again we see

that with less outliers the first stage is more efficient and the second stage is less efficient. We

also see that the fact that the location of the outliers is non-zero can be found in the first stage

constant. This is what we would expect, but of course the effect is stronger with more outliers

as we can see in the tables. A solution is to re-estimate the first stage regression with robust

statistics methods, which was not done in the current method. This would solve the problem

seen here, but ensures that the second stage can still be identified with the outliers.
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Table 1: Simulation Results Huber model (1) with 10% outliers
parameter TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

β11 1.00 1.00 0.060 0.960 1.00 1.04 0.060 0.048 0.040
β12 1.00 1.00 0.060 0.959 1.00 1.04 0.060 0.048 0.041
γ1 1.00 1.00 0.040 0.973 1.00 1.03 0.040 0.032 0.027
β21 1.00 1.00 0.077 0.949 1.00 1.05 0.485 0.130 0.091
β22 1.00 1.00 0.059 0.954 1.00 1.05 0.069 0.055 0.046

Note: MEAN and SD are the mean and standard deviation of the estimates across simulation. LQ,
MED and UQ are the 25%, 50% and 75% quantiles. RMSE, MAE and MDAE are the root mean
squared error, mean absolute error and median absolute error of the estimates.

Table 2: Simulation Results Huber model (1) with 1% outliers
parameter TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

β11 1.00 1.00 0.104 0.932 1.00 1.07 0.104 0.082 0.068
β12 1.00 1.00 0.104 0.933 1.00 1.07 0.104 0.082 0.069
γ1 1.00 1.00 0.093 0.937 1.00 1.06 0.093 0.074 0.062
β21 1.00 1.00 0.048 0.967 1.00 1.03 0.048 0.038 0.033
β22 1.00 1.00 0.048 0.968 1.00 1.03 0.048 0.038 0.032

Note: MEAN and SD are the mean and standard deviation of the estimates across simulation. LQ,
MED and UQ are the 25%, 50% and 75% quantiles. RMSE, MAE and MDAE are the root mean
squared error, mean absolute error and median absolute error of the estimates.

Table 3: Simulation Results Huber model (2) with 1% outliers
parameter TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

β11 1.00 1.00 0.102 0.932 1.00 1.07 0.102 0.082 0.069
β12 1.00 1.00 0.100 0.934 1.00 1.07 0.100 0.079 0.067
γ1 1.00 1.00 0.090 0.940 1.00 1.06 0.090 0.071 0.060
β21 1.00 1.03 0.047 0.999 1.03 1.06 0.056 0.045 0.038
β22 1.00 1.00 0.049 0.986 1.00 1.03 0.049 0.039 0.033

Note: MEAN and SD are the mean and standard deviation of the estimates across simulation. LQ,
MED and UQ are the 25%, 50% and 75% quantiles. RMSE, MAE and MDAE are the root mean
squared error, mean absolute error and median absolute error of the estimates.
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We present now the results for model (3) in tables 4 and 16, here we compare the results

with the findings for the simulations with the Huber criterion. As we can see table 4 has more

efficient results in the second stage than the simulations corresponding to tables 2 and 3. The

results in models (1) and (2) had very similar efficiencies, with slightly better uncertainties in

model (2) where the outliers were larger. In model (3) however, the outliers are considerably

larger than those in models (2) and (3). This shows that the the size of the outliers affects the

efficiency, as we would expect.

Table 4: Simulation Results Huber model (3) with 1% outliers
parameter TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

β11 1.00 1.00 0.081 0.949 1.00 1.05 0.081 0.063 0.052
β12 1.00 1.00 0.080 0.949 1.00 1.05 0.080 0.062 0.051
γ1 1.00 1.00 0.067 0.961 1.00 1.04 0.067 0.050 0.039
β21 1.00 1.00 0.059 0.961 1.00 1.04 0.059 0.047 0.039
β22 1.00 1.00 0.058 0.962 1.00 1.04 0.058 0.046 0.039

Note: MEAN and SD are the mean and standard deviation of the estimates across simulation. LQ,
MED and UQ are the 25%, 50% and 75% quantiles. RMSE, MAE and MDAE are the root mean
squared error, mean absolute error and median absolute error of the estimates.

We now present the results of the simulation models (1), (2) and (3) but with the binary

classification model. This classification was based on (fast) LTS estimation. We first present the

binary classification identification for model (1) in tables 5 and 17. We see that the results are

close to those with the Huber criterion in table 2 but slightly worse in efficiency. We had not

necessarily expected this, because all ξj were generated with the standard normal distribution

and therefore assigning different weights, as done in the Huber criterion, seemed redundant and

therefore only wasting efficiency. However, as we can see the Huber criterion is actually more

efficient. Perhaps, the fast LTS algorithm does assign some good observations to the outliers.

This would then definitely reduce the efficiency.

Table 5: Simulation Results Binary (1) with 1% outliers
parameter TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

β11 1.00 1.00 0.133 0.913 1.00 1.09 0.133 0.106 0.088
β12 1.00 1.00 0.133 0.912 1.00 1.09 0.133 0.106 0.089
γ1 1.00 1.00 0.126 0.916 1.00 1.08 0.126 0.100 0.083
β21 1.00 1.00 0.048 0.967 1.00 1.03 0.048 0.038 0.033
β22 1.00 1.00 0.048 0.968 1.00 1.03 0.048 0.038 0.032

Note: MEAN and SD are the mean and standard deviation of the estimates across simulation. LQ,
MED and UQ are the 25%, 50% and 75% quantiles. RMSE, MAE and MDAE are the root mean
squared error, mean absolute error and median absolute error of the estimates.

We now present the results for model (2) using the binary classification method. Again we

see that the results are slightly worse (less efficient) than those with the Huber criterion in tables

6 and 15. In this instance as well, we actually expected that the binary classification method

would work at least as good as the Huber criterion. But the reason for the fact that actual

results are worse could again be caused by the fact that the (fast) LTS method makes some

classification mistakes which would have significant impact on the efficiency.

Finally, we present the binary classification method for model (3) in tables 7 and 19. For this
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Table 6: Simulation Results Binary (2) with 1% outliers
parameter TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

β11 1.00 1.00 0.126 0.917 1.00 1.09 0.126 0.100 0.084
β12 1.00 1.00 0.123 0.922 1.00 1.08 0.123 0.097 0.081
γ1 1.00 1.00 0.115 0.922 1.00 1.07 0.115 0.091 0.076
β21 1.00 1.03 0.047 0.999 1.03 1.06 0.056 0.045 0.038
β22 1.00 1.00 0.049 0.986 1.00 1.03 0.049 0.039 0.033

Note: MEAN and SD are the mean and standard deviation of the estimates across simulation. LQ,
MED and UQ are the 25%, 50% and 75% quantiles. RMSE, MAE and MDAE are the root mean
squared error, mean absolute error and median absolute error of the estimates.

Table 7: Simulation Results Binary (3) with 1% outliers
parameter TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

β11 1.00 1.00 0.093 0.944 1.00 1.06 0.093 0.071 0.056
β12 1.00 1.00 0.092 0.946 1.00 1.05 0.092 0.070 0.055
γ1 1.00 1.00 0.081 0.958 1.00 1.04 0.081 0.059 0.043
β21 1.00 1.00 0.059 0.961 1.00 1.04 0.059 0.047 0.039
β22 1.00 1.00 0.058 0.962 1.00 1.04 0.058 0.046 0.039

Note: MEAN and SD are the mean and standard deviation of the estimates across simulation. LQ,
MED and UQ are the 25%, 50% and 75% quantiles. RMSE, MAE and MDAE are the root mean
squared error, mean absolute error and median absolute error of the estimates.

model, we had expected that the results would be worse than those using the Huber criterion as

in table 4. We see that this is indeed the fact, however as we noticed for models (1) and (2) this

was also the case. When we look at how much better the Huber criterion performed in model

(3) compared to models (1) and (2), we see that the Huber criterion actually seems to perform

better in models (1) and (2). We cannot spot an immediate striking effect of a joint worse LTS

performance and an advantage for the Huber criterion in taking the amount of ‘outlyingness’

into account. The results of the binary classification generally show that the Huber criterion is

performing better in all these three scenarios. We can consider the Huber criterion method as a

more sophisticated method, as both do basically the same but with the Huber criterion we are

not restricted to a binary classification.

4.1.2 Applied study

We estimated the regressions as described in section 3.2.5. We present the results in table 8,

where we present the results of four models. The model IV-Original, is the regression using

equations 24 and 25, with the instrument constructed in Alesina and Zhuravskaya (2011). The

OLS model presents the results as presented in Alesina and Zhuravskaya (2011) as well, for

equation 24 without use of the instrument. Then, we measure two models with the Huber

Criterion using vertical outliers.

The first model, IV-Outliers, is applied on the full sample and allows us to compare the

instrument constructed in Alesina and Zhuravskaya (2011) with the instrument constructed

in section 3.2.1. We see that for the two most interesting dependent variables, ‘voice and

accountability’ and ‘political stability’, the estimates obtained in Alesina and Zhuravskaya (2011)

are quite different from the estimates we obtain with our instrument. However, we also notice
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Table 8: Linguistic segregation and the quality of government for different models

Measure Model Voice
Political
stability

Government
effectiveness

Regulatory
quality

Rule of
law

Control of
corruption

S

IV-Original −2.65∗∗∗ −2.92∗∗∗ −1.54∗ −1.95 −1.80∗∗ −1.29
IV-Outliers −1.90∗∗∗ −2.03∗∗∗ −1.44∗ −2.07 −1.84∗∗ −1.53

OLS −1.38∗∗∗ −1.53∗∗∗ −0.57 −0.69 −1.15∗∗ −0.80
IV-Outliers-Red −1.22∗∗ −0.91∗∗ −1.17∗ −1.90 −1.22∗∗ −1.03

F

IV-Original 0.44∗ 0.24 0.44∗ 0.48 0.31 0.13
IV-Outliers 0.37∗ 0.12 0.45∗ 0.50 0.32 0.16

OLS 0.26 0.05 0.31 0.3 0.22 0.06
IV-Outliers-Red 0.23 −0.06 0.41∗ 0.18 0.24 0.11

Note: S is the segregation and F the fractionalization as in equation 24. All models use all control
variables as described in Alesina and Zhuravskaya (2011), three models use the full sample but the
IV-Outliers-Red excludes Chile and Zimbabwe. ∗∗∗ denotes a p-value of 1 percent, ∗∗ denotes a p-
value of 5 percent and ∗ denotes a p-value of 10 percent.

that using our instrument the estimates are considerably different from the results with only

OLS. We see that using our instrument, estimates are closer to the estimates with the instrument

used by Alesina and Zhuravskaya (2011) compared to OLS. For ‘Rule of law’ the estimates are

even very close and for the other non-significant variables the estimates with our instrument are

close to the estimates with the instrument used by (Alesina & Zhuravskaya, 2011) as well. We

therefore conclude that in the full sample our instrument seems to have limited power but does

also show that it could work.

Without Chile and Zimbabwe, the USA turned out to be an outlier in the first stage re-

gression. Therefore, in the model IV-Outliers-Red, we estimated the model without Chile and

Zimbabwe with the knowledge that there is at least one outlier, the USA. We see that the res-

ults are again quite different for the dependent variables ‘voice and accountability’ and ‘political

stability’, only for regulatory quality is the estimate reasonably similar to the estimate obtained

with the instrument in Alesina and Zhuravskaya (2011). In this context the method proposed

in 3.2.1 does not seem to work well. Perhaps having only the USA as outlier is not enough

for identification or maybe the first stage and second stage outliers are correlated. This would

reduce the strength of the instrument using outliers.

We see that the applied study presents a mixed view on the application of the instrument

using Huber’s criterion. For the full sample, it did not work as well as the instrument constructed

by Alesina and Zhuravskaya (2011) but their instrument is dedicated to this problem whereas

the instrument we presented is a more generally applied method. Therefore, it is not remarkable

that our instrument gives some different results, although for most estimates the values are

quite close. For the model without Chile and Zimbabwe, we see that our method fails, it is often

quite close to the OLS estimates. Therefore, it is important to consider whether all assumptions

necessary for the method to work are fulfilled.

4.2 Replication Results Lewbel

In this section we present the results from the replication of the Monte Carlo simulation in the

appendix of Lewbel (2012) and we present a simulation study of the findings in section 5 of
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Lewbel (2012). We find that the results presented in Lewbel (2012) are very well reproducible

and that differences can be explained.

4.2.1 Replication Results Appendix Simulation

We first present the results of the simulation of the triangular model in table 9. As we can see

the results are similar and very close to the findings in Lewbel (2012).

Table 9: Simulation Results Triangular Model Two Stage Least Squares
parameter TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

β11 1.00 1.00 0.133 0.913 1.00 1.09 0.133 0.104 0.087
β12 1.00 1.00 0.272 0.835 1.00 1.17 0.272 0.206 0.166
γ1 1.00 1.00 0.034 0.981 1.00 1.02 0.034 0.025 0.019
β21 1.00 1.00 0.128 0.915 1.00 1.08 0.128 0.101 0.085
β22 1.00 1.00 0.267 0.835 1.01 1.17 0.267 0.205 0.167

Note: MEAN and SD are the mean and standard deviation of the estimates across simulation. LQ,
MED and UQ are the 25%, 50% and 75% quantiles. RMSE, MAE and MDAE are the root mean
squared error, mean absolute error and median absolute error of the estimates.

The results for the simultaneous model can be found in table 10. As we can see the results

are in some aspects different to the results in Lewbel (2012). First, the results for the quantile

statistics (LQ, MED, UQ and MDAE) are nearly the same, indicating that the distributions are

very close. Also the mean statistic is very close to the results in Lewbel (2012), although the

mean of γ2 is a bit worse in our results. Especially the results for the standard deviation (SD),

the root mean squared error (RMSE) and the mean absolute error (MAE) are different. As

the bias in our results and in Lewbel (2012) is very small compared to the standard deviation,

the root mean squared is for all cases very close to the standard deviation. We explain the

different results due to occurrence of a small group of extreme estimates, as Lewbel (2012) also

mentions when presenting his results. The quantile statistics are only very limited influenced

by these large outliers and therefore these statistics correspond very good to the results in

Lewbel (2012). However, in Lewbel (2012) the optimization seems to end more often at extreme

estimates (although this effect is probably limited otherwise the quantile statistics would be

influenced more) or at more extreme estimates for the parameter estimates. This explains the

much higher standard deviation and root mean squared and also the fact that the mean absolute

error is consistently higher in Lewbel (2012). As the standard deviation and root mean squared

pay more weight to the extreme observations than the mean absolute error we also see that

the SD and RMSE statistics are indeed more different than the MAE. So we conclude that

the differences are very likely to descend from differences in the extreme estimates from the

optimization.

Further the bias in the mean of γ2 is striking, as it is considerably higher than the bias in

Lewbel (2012). As the quantile distribution for this parameter is very close to the results in

Lewbel (2012), we expect that this stems from extreme estimates as well. A closer look at the

parameter estimates learns that there are more extreme estimates below the real value of γ2 than

above the real value of γ2. We think that this is also due to the optimization, the algorithm

might be more inclined to make extreme estimates below the true value of γ2 due to the shape
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of the objective function. The fact that the result in Lewbel (2012) is more accurate in the

mean is therefore probably due to the choice of optimization algorithm but we can also see that

the results in Lewbel (2012) are slightly biased in the same direction and that the quantiles are

more skewed towards higher values of γ2 (and thus lower value of −γ2).

Table 10: Simulation Results Simultaneous System GMM
parameter TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

β11 1.00 1.00 0.154 0.916 1.00 1.09 0.154 0.104 0.085
β12 1.00 1.00 0.280 0.839 1.01 1.17 0.280 0.208 0.167
γ1 1.00 1.01 0.234 0.973 1.00 1.02 0.234 0.044 0.026
β21 1.00 1.02 0.484 0.912 1.00 1.09 0.485 0.130 0.091
β22 1.00 1.02 0.567 0.833 1.00 1.18 0.567 0.232 0.172
−γ2 0.500 0.516 0.368 0.527 0.501 0.477 0.386 0.048 0.025

Note: MEAN and SD are the mean and standard deviation of the estimates across simulation. LQ,
MED and UQ are the 25%, 50% and 75% quantiles. RMSE, MAE and MDAE are the root mean
squared error, mean absolute error and median absolute error of the estimates.

Finally, we discuss the differences and similarities between the results in the triangular

design and the simultaneous design. We can regard the triangular design as a nested model

of the simultaneous design with γ2 = 0. So the simultaneous design estimates one additional

parameter in comparison with the triangular design. Therefore, we may expect that the bias

and standard deviations are not too different but slightly larger in the simultaneous design as

we estimate an additional parameter. We can see indeed that biases are slightly worse in the

simultaneous design for the parameters β11, β12, β21, β22, and γ1. Also the standard deviations

for these parameters are higher.

We expected that the estimation of equation 16 and 17 would not differ in precision and

efficiency as the set-up is ‘symmetric’ (the only difference is the value of the parameter γ2 and

the generation of the residuals). However, standard deviations in equation 17 are considerably

higher, something that Lewbel (2012) finds as well. The strength of the instruments using

Z =
(
X,X2

)
is as strong with the residuals of equation 16 as equation 17 (cov

(
X, ϵ21

)
= 2e2,

cov
(
X, ϵ22

)
= −2e2, cov

(
X2, ϵ21

)
= 1+ 5e2, cov

(
X2, ϵ22

)
= 1+ 5e2). Therefore, it is unlikely that

the generation of the residuals is of influence. The difference in the value of γ2 must therefore

be the cause of the difference in efficiency. We conclude that the optimization algorithm has

more difficulties with optimizing the parameters β21, β22 and γ2 due to the value of γ2 and its

impact on the optimization.

4.2.2 Set Identification Simulation Results

We first present the results for the data generated with the model in equations 16 and 17 and

the original residuals ϵ1 = U + eXS1 and ϵ2 = U + e−XS2. For each simulation we obtained

the lower bound and the upper bound of the set Γ1 (the set that contains the parameter γ1),

the results are shown in table 11. The TRUE parameters are calculated using the analytical

expression provided in Lewbel (2012) for this particular model. As we can see, the estimates

for the bounds lead to larger sets Γ1 than those provided by the analytical expression, as both

the lower bound is underestimated and the upper bound is overestimated. This is partially

explainable by the fact that roughly 13% (14% for τ = 0.1, 14% for τ = 0.5 and 12% for
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τ = 0.9) of the estimates results in functions that do not have roots (always > 0). The estimates

without roots would be the estimates with bounds lying close together, thus high lower bound

and low upper bounds. This results in poor estimates for the statistics as we use only 90% and

throw away an important 10%. However, the characteristics shown here could also be present in

applied econometric research, where especially for small sample sizes it will not be guaranteed

that the function presented in Lewbel (2012) has roots.

We also observe that estimates become worse for larger values of τ . The increase in bias

is probably because the estimates’ standard deviation increases, meaning more extremer points

while still a fraction of the estimates is thrown away. With the 13% of discarded estimates being

those that should counter balance the statistics’ estimates.

Table 11: Simulation Results Triangular Model Set Identification
τ parameter TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

0.1
Γ1LB 0.995 0.985 0.038 0.965 0.988 1.008 0.040 0.029 0.022
Γ1UB 1.005 1.012 0.036 0.991 1.010 1.032 0.037 0.027 0.020

0.5
Γ1LB 0.973 0.915 0.069 0.883 0.928 0.961 0.090 0.064 0.046
Γ1UB 1.023 1.069 0.055 1.033 1.061 1.095 0.070 0.051 0.038

0.9
Γ1LB 0.892 0.612 0.313 0.483 0.681 0.822 0.421 0.296 0.212
Γ1UB 1.084 1.224 0.194 1.105 1.186 1.294 0.240 0.159 0.106

Note: Γ1LB
denotes the lower bound of the identifying set Γ1 and Γ1UB

denotes the upper bound.
MEAN and SD are the mean and standard deviation of the estimates across simulation. LQ, MED
and UQ are the 25%, 50% and 75% quantiles. RMSE, MAE and MDAE are the root mean squared
error, mean absolute error and median absolute error of the estimates.

We now present the results from the simulation with the model of equations 16 and 17 with

residuals generated as 19 and 20. This is the model with an actual non-zero covariance between

Z and ϵ1ϵ2. The results for this adjusted model can be found in table 12.

Table 12: Simulation Results Adjusted Triangular Model Set Identification
τ parameter TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

0.1
Γ1LB 0.990 0.974 0.048 0.951 0.979 1.002 0.050 0.035 0.025
Γ1UB 1.000 1.006 0.043 0.983 1.005 1.029 0.043 0.031 0.023

0.5
Γ1LB 0.885 0.726 0.289 0.658 0.789 0.878 0.330 0.182 0.103
Γ1UB 1.016 1.119 0.220 1.024 1.072 1.153 0.243 0.118 0.063

0.9
Γ1LB 0.511 -0.223 1.369 -0.538 0.097 0.502 1.554 0.832 0.432
Γ1UB 1.081 1.484 0.925 1.137 1.270 1.523 1.009 0.417 0.189

Note: Γ1LB
denotes the lower bound of the identifying set Γ1 and Γ1UB

denotes the upper bound.
MEAN and SD are the mean and standard deviation of the estimates across simulation. LQ, MED
and UQ are the 25%, 50% and 75% quantiles. RMSE, MAE and MDAE are the root mean squared
error, mean absolute error and median absolute error of the estimates.

Again the same problem arises as in the simulation that was discussed in table 11, a fraction

of the estimates (11% for τ = 0.1, 3% for τ = 0.5 and 2% for τ = 0.9), cannot be used as

the expression to determine the set bounds does not have roots. This means again that the

estimates presented in table 12 are biased towards too large sets. We do also see that in this

model with actual violation of the assumption that cov(Z, ϵ1ϵ2) = 0, both the analytical bounds

and the estimated bounds are larger than in the model used in Lewbel (2012). For τ = 0.9 we

see that the estimates indicate a very large set (although this is still influenced by the fact that
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counter balancing estimates could not be used). But also the analytical bounds of the set are

much larger in this instance than those presented in Lewbel (2012), such that in models where

the violation is actually violated for large values of τ (close to 1) the set might become rather

large after all. Also, we see that in this particular model for τ = 0.1 the true parameter γ1 = 1

is only included at the very boundary of the set, actually for every value of τ we see that the

true value is closer to the upper bound. We assume this is a property of this particular set-up

but it does show that for large set intervals it is really uncertain what the true parameter is as

the value could be anywhere in the interval.

We also present the following tables to support our claim that the bias is largely due to the

fact that a certain fraction of estimates is unusable. We re-estimated the models above with only

100 simulations and 500,000 observations in the original model used for the triangular design in

Lewbel (2012) and 100 simulations and 50,000 observations in the adjusted model with residuals

as in equations 19 and 20. The results for the triangular model as described in Lewbel (2012)

can be found in table 13, with this number of observations 0% of estimates is thrown away.

We see indeed that biases are much smaller, but of course in practice data sets with 500,000

observations are not the standard and 100 simulations are rather few to make strong statements

about the distribution.

Table 13: Simulation Results Triangular Model Set Identification With Increased Observations
τ parameter TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

0.1
Γ1LB 0.995 0.995 0.001 0.994 0.995 0.996 0.001 0.001 0.001
Γ1UB 1.005 1.005 0.001 1.004 1.005 1.006 0.001 0.001 0.001

0.5
Γ1LB 0.973 0.970 0.006 0.966 0.970 0.973 0.007 0.005 0.005
Γ1UB 1.026 1.028 0.006 1.025 1.029 1.032 0.006 0.005 0.004

0.9
Γ1LB 0.892 0.884 0.025 0.867 0.882 0.900 0.027 0.021 0.020
Γ1UB 1.083 1.093 0.019 1.082 1.096 1.105 0.021 0.017 0.016

Note: Γ1LB
denotes the lower bound of the identifying set Γ1 and Γ1UB

denotes the upper bound.
MEAN and SD are the mean and standard deviation of the estimates across simulation. LQ, MED
and UQ are the 25%, 50% and 75% quantiles. RMSE, MAE and MDAE are the root mean squared
error, mean absolute error and median absolute error of the estimates.

Table 14: Simulation Results Adjusted Triangular Model Set Identification With Increased
Observations
τ parameter TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

0.1
Γ1LB 0.990 0.988 0.004 0.986 0.988 0.991 0.004 0.004 0.003
Γ1UB 1.000 1.002 0.004 0.999 1.002 1.005 0.004 0.003 0.003

0.5
Γ1LB 0.885 0.863 0.030 0.851 0.865 0.878 0.037 0.029 0.024
Γ1UB 1.016 1.035 0.023 1.020 1.032 1.047 0.030 0.022 0.017

0.9
Γ1LB 0.511 0.426 0.125 0.371 0.430 0.488 0.151 0.116 0.098
Γ1UB 1.081 1.139 0.070 1.094 1.132 1.172 0.091 0.065 0.053

Note: Γ1LB
denotes the lower bound of the identifying set Γ1 and Γ1UB

denotes the upper bound.
MEAN and SD are the mean and standard deviation of the estimates across simulation. LQ, MED
and UQ are the 25%, 50% and 75% quantiles. RMSE, MAE and MDAE are the root mean squared
error, mean absolute error and median absolute error of the estimates.

In table 14 we present the results for the adjusted model with 100 simulations and 50,000

observations, again all estimates could be used. We see again that biases are much smaller.
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Overall we can conclude that, at least with this model set-up, only with large number of obser-

vations roots can with great certainty be found. But the results in tables 13 and 14 should be

taken interpreted with cause as the number of simulations was very low.

5 Conclusion

In order to answer our main research question we will first treat the sub-questions posed in the

introduction. Our first sub-question was: ‘Can we reproduce the results presented in Lewbel

(2012)? In particular can we replicate the Monte Carlo simulation in the appendix and extend

this with a simulation where cov(Z, ϵ1ϵ2) ̸= 0 to verify the set bound results?’. We conclude

that the results in Lewbel (2012) can be replicated. There are some differences, especially in the

simultaneous design but these differences can be explained. We also extended the simulation in

Lewbel (2012) with simulation concerning the set identification theory. We find that indeed set

identification is a strong technique to cope with violated assumptions but that bounds for the

sets cannot always be found. In addition we also found that the true parameter values can be at

the very border of the sets, indicating that when sets are very large their usage is only limited.

Our second sub-question was: ‘can we obtain identification in simultaneous equation models

with an adapted version of the method proposed by Lewbel (2012) using vertical outliers?’.

Therefore, we proposed two methods to obtain identification using vertical outliers. The first

method used Huber’s criterion (Huber, 1964) to construct weights determining the ‘outlyingness’

of observations. This method is fully data-driven and assigns higher weights to more aberrant

observations. The other method was a binary classification, that could either be used in a

set-up where outliers are identified by the researcher or by a data-driven process based on the

fast-LTS algorithm (Rousseeuw & Van Driessen, 2000). The methods are distinct from those in

Lewbel (2012) by introducing a data-driven variable for explaining the heteroskedasticity and

by not explicitly assuming a common variable responsible for common heteroskedasticity. The

simulations showed that in the outlier model as presented by Berenguer-Rico et al. (2021), the

methods are adequate in obtaining identification. The method using Huber’s criterion (Huber,

1964) seems to be the most efficient method. We expect that this method is more efficient

because it can assign larger weights to more outlying observations.

Our third sub-question was: ‘Can we obtain identification in simultaneous equations models

with an adapted version of the method proposed by Lewbel (2012) using leverage points?’. We

concluded that we think it is unlikely to construct instruments based on leverage for identific-

ation. At least not in a set-up similar to the method as presented in Lewbel (2012). This is

because the exogenous variables show up in both the first and second stage regression. Leverage

points are therefore by their definition present in both the first and second stage. Because the

leverage points are also present at the same locations (the exogenous variables are the same),

there is no unique effect going through y2 to y1. However, we do not exclude the possibility that

leverages could be used in another way to obtain identification. Therefore, it could be interesting

for future research to investigate whether leverage points can be used for identification.

Our final sub-question was: ‘Can we obtain identification in an example with real data using

outliers?’. We applied our method to the data in the research by Alesina and Zhuravskaya

(2011) and we found mixed results. We had expected that by excluding Chile and Zimbabwe,
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we could perhaps obtain identification as there was an outlier in the form of the USA. However,

in this regression the estimation method based on Huber’s criterion performed rather bad.

However, in the full sample without the instrument used by Alesina and Zhuravskaya (2011)

the method seemed to outperform OLS and was often close to the estimates found in Alesina

and Zhuravskaya (2011). Only for the two most significant results, the estimates were more off.

However, although Chile and Zimbabwe were outliers in the full sample, they were not explicitly

outliers in the first stage. Therefore, the results obtained with our method should be seen in a

more positive setting. It would be interesting for future research to use the method in a data

set with a SEM analysis where outlier are clearly present in the first stage. This would learn

whether the method is useful in applied settings.

Now we will answer the main research question posed: ‘Can we use outliers in combination

with the method proposed by Lewbel (2012) to obtain identification in simultaneous equation

models?’. We conclude that the simulations show that the methods proposed using Huber’s

criterion and the binary classification are adequate in particular outlier generating settings.

However, it remains the question how ‘realistic’ these outliers model are in the real world.

The applied setting could not yet give conclusive evidence on this matter but did show some

promising results. Therefore, we think it is very dependent on the situation whether the method

can be useful. When outliers have a strong presence in the first stage and a SEM model is used,

the methods proposed in this paper could be used. However, to give a conclusive advice, we

think future research should first find stronger evidence in real data application before using the

methods described in this paper. We also focused predominantly on triangular models, therefore

we cannot generalize the results yet to larger systems of SEM variants. However, the triangular

model is frequently present, e.g. in mismeasured models. Therefore, the methods described here

should be considered for such triangular models and future research could see how the methods

fit in a more general simultaneous set-up.
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A Proofs

In this section we demonstrate the claims made in the thesis.

A.1 Proof of proposition 1

We set P is the random variable P = 1− ψH(ϵ2/σ)
ϵ2/σ

corresponding to the realisations pi, we show

that conditions stated in the proposition are fulfilled. We start with the first condition that

cov(P, ϵ1ϵ2) = 0:

cov(P, ϵ1ϵ2) = E(Pϵ1ϵ2)− E(P ) E(ϵ1ϵ2)

indep.
= E(ϵ1) E(Pϵ2)− E(P ) E(ϵ1) E(ϵ2)

= 0− 0 = 0,

and for the other condition that cov(P, ϵ22) ̸= 0:

cov(P, ϵ22) = E(Pϵ22)− E(P ) E(ϵ22)

= E

((
1− ψH(ϵ2/σ)

ϵ2/σ

)
ϵ22

)
− E

(
1− ψH(ϵ2/σ)

ϵ2/σ

)
E(ϵ22),

from here we show it first for ϵi with i ∈ ζ (these are standard normal distributed) and then for

ϵj with j /∈ ζ and let Φ(z) be the cumulative distribution function of the normal distribution:

cov(P, ϵ22) = E

((
1− ψH(ϵ2/σ)

ϵ2/σ

)
ϵ22

)
− E

(
1− ψH(ϵ2/σ)

ϵ2/σ

)
E(ϵ22)

= (1− 2Φ(−c/σ)) E (0) + Φ(−c/σ) E
((

1 +
c

ϵ2

)
ϵ22

)
+

(1− Φ(c/σ)) E

((
1− c

ϵ2

)
ϵ22

)
−
(
Φ(−c/σ) E

(
1 +

c

ϵ2

)
+ (1− Φ(c/σ)) E

(
1− c

ϵ2

)
E(ϵ22)

= Φ(−c/σ)
(
E(ϵ22) + cE (ϵ2)

)
+Φ(−c/σ)

(
E(ϵ22)− cE (ϵ2)

)
−
(
Φ(−c/σ)

(
1 + E

(
c

ϵ2

))
+Φ(−c/σ)

(
1− E

(
c

ϵ2

)))
E
(
ϵ22
)

= 2Φ(−c/σ) E
(
ϵ22
)
− 2Φ(−c/σ) E

(
ϵ22
)

= 0.

Now we present the derivation for the outlier observations. Let the distribution of the max ϵ2i
for i ∈ ζ be Φh and similarly for min ϵ2i let it be distributed as 1− (1−Φ)h with h = |ζ| as these
are order statistics. Then the CDF of max ϵ2i + ξj for j /∈ ζ is given by h+ = Φh ∗ sj (sj is the
PDF of ξj) and similarly the CDF for min ϵ2i + ξj is given by h− = (1− (1− Φ)h) ∗ sj with H
denoting the CDF. Beside this, we define Sj to be the CDF of the probability density function

sj . Also we define ϵ2 > 0 as ϵ+2 and ϵ2 ≤ 0 as ϵ−2 , then:
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cov(P, ϵ22) = E

((
1− ψH(ϵ2/σ)

ϵ2/σ

)
ϵ22

)
− E

(
1− ψH(ϵ2/σ)

ϵ2/σ

)
E(ϵ22)

= Sj (0)

(
(1−H−(c/σ))

(
E

((
1− c

ϵ−2

)
ϵ−2

2
)
− E

(
1− c

ϵ−2

)
E
(
ϵ−2

2
))

+

(H−(−c/σ))
(
E

((
1 +

c

ϵ−2

)
ϵ−2

2
)
− E

(
1 +

c

ϵ−2

)
E
(
ϵ−2

2
))

+

(1− (1−H−(c/σ))−H−(−c/σ))
(
E
(
0ϵ−2

2
)
− E ((0)) E

(
ϵ−2

2
))

+

(1− Sj(0))

(
(1−H+(c/σ))

(
E

((
1− c

ϵ+2

)
ϵ+2

2
)
− E

(
1− c

ϵ+2

)
E
(
ϵ+2

2
))

+

(H+(−c/σ))
(
E

((
1 +

c

ϵ+2

)
ϵ+2

2
)
− E

(
1 +

c

ϵ+2

)
E
(
ϵ+2

2
))

+

(1− (1−H+(c/σ))−H+(−c/σ))
(
E
(
(0)ϵ+2

2
)
− E (0)E

(
ϵ+2

2
))

= Sj(0)

(
(1−H−(c/σ))

(
E
(
ϵ−2

2 − cϵ−2

)
−
(
1− E

(
c

ϵ−2

))
E
(
ϵ−2

2
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+

(H−(−c/σ))
(
E
(
ϵ−2

2
+ cϵ−2

)
−
(
1 + E

(
c

ϵ−2

))
E
(
ϵ−2

2
))

+ (1− Sj(0))

(
(1−H+(c/σ))

(
E
(
ϵ+2

2 − cϵ+2

)
−
(
1− E

(
c
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E
(
ϵ+2

2
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(
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(
ϵ+2

2
+ cϵ+2

)
−
(
1 + E

(
c
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(
(1−H−(c/σ)−H−(−c/σ))

(
−cE

(
ϵ−2
)
+ cE

(
1

ϵ−2

)
E
(
ϵ−2

2
)))

+

(1− Sj(0))

(
(1−H+(c/σ)−H+(−c/σ))

(
−cE

(
ϵ+2
)
+ cE

(
1

ϵ+2

)
E
(
ϵ+2

2
)))

We now assess whether this expression will not equal zero. The term Sj(0) is bounded by

0 < Sj < 1 or else equals either Sj = 0 or Sj = 1. Such that always one of the two terms in

the last expression is non-zero. More important are the terms (1−H+(c/σ)−H+(−c/σ)) and
(1−H−(c/σ)−H−(−c/σ)), in symmetric cases these expressions will equal zero. However, we

know that H− and H+ must generally be non-zero. This is due to the set-up of the H distribu-

tion. For H−, the CDF of mini∈ζ ϵi+ξj , we know that it is composed of the first order statistic of

the normal distribution and another unknown distribution. At least for the first order statistic

of the normal distribution (and similarly for the largest order statistic), we know the distribution

is non-symmetric. So only in a specific case is the sum of this order statistic with ξj symmetric.

Therefore, in general H− and H+ are non-symmetric. We should impose a condition on the sj

distributions to prevent the result of a symmetric distribution. Thus, therefore we impose that

the distribution of sj must be such that (1− (1−Φ)h) ∗ sj is non-symmetric. Then, we can con-

clude that (1−H+(c/σ)−H+(−c/σ)) and (1−H−(c/σ)−H−(−c/σ)) are non-zero. Finally,

we address the terms
(
−cE

(
ϵ−2
)
+ cE

(
1
ϵ−2

)
E
(
ϵ−2

2
))

and
(
−cE

(
ϵ+2
)
+ cE

(
1
ϵ+2

)
E
(
ϵ+2

2
))

, the

expectation of E
(
ϵ−2
)
and E

(
ϵ+2
)
is again generally non-zero. This due to the fact of the or-

der statistics again. Without ξj (thus distribution sj) exactly counterbalancing the expected

value of the first/largest normal order statistic the expectation is non-zero, see also (Harter,
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1961). So, we should also assume that distribution sj is such that µ(1−(1−Φ)h) + µsj ̸= 0. The

last terms cE
(

1
ϵ−2

)
E
(
ϵ−2

2
)

and cE
(

1
ϵ+2

)
E
(
ϵ+2

2
)

are more complex to analyze. In general

they will not be zero, but the main concern is that they exactly cancel out with −cE
(
ϵ−2
)
and

−cE
(
ϵ+2
)
respectively. However, it is safe to state that in general E

(
1
ϵ+2

)
E
(
ϵ+2

2
)
̸= E

(
ϵ+2
)
and

E
(

1
ϵ−2

)
E
(
ϵ−2

2
)
̸= E

(
ϵ−2
)
. So that cov(P, ϵ22) ̸= 0, at least in general (in some specific cases it

might turn out to be 0).

B Programming code

The programming code used for the thesis was coded in Python 3, using the numpy and scipy

libraries as well as the pandas library for the applied study and matplotlib for figure 1. The

code is provided in a Jupyter Notebook and by running the cells sequentially, all results can be

obtained. For the replication, all code until the markdown block ‘extension’ can be run and this

will supply all the results presented in the thesis. For the extension, the same applies for the

simulation study. But to run the different models, you should run everything from ‘extension’

till applied study again with another uncommented model in the block ‘Outlier generation code’.

This will be clear in the Jupyter Notebook. For the applied study, run everything after ‘applied

study’ until ‘outlier picture’. The results are obtained in the last cell before ‘outlier picture’, by

commenting the exclusion of Chile and Zimbabwe the full model can be run. To run the model

for the different dependent variables, change the dependent variable in the line indicated by the

comment.

C Other result tables

Here we present tables with other results that were not relevant for the main text. We start

with the results of the Huber and Binary simulation studies and their 10% outlier simulations.

Table 15: Simulation Results Huber model (2) with 10% outliers
parameter TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

β11 1.00 1.00 0.067 0.957 1.00 1.05 0.067 0.053 0.044
β12 1.00 1.00 0.059 0.961 1.00 1.04 0.059 0.047 0.040
γ1 1.00 1.00 0.038 0.974 1.00 1.03 0.038 0.030 0.025
β21 1.00 1.31 0.070 1.258 1.30 1.35 0.313 0.305 0.305
β22 1.00 1.00 0.072 0.952 1.00 1.05 0.072 0.058 0.049

Note: MEAN and SD are the mean and standard deviation of the estimates across simulation. LQ,
MED and UQ are the 25%, 50% and 75% quantiles. RMSE, MAE and MDAE are the root mean
squared error, mean absolute error and median absolute error of the estimates.
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Table 16: Simulation Results Huber model (3) with 10% outliers
parameter TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

β11 1.00 1.00 0.052 0.966 1.00 1.03 0.052 0.041 0.034
β12 1.00 1.00 0.052 0.966 1.00 1.04 0.052 0.041 0.035
γ1 1.00 1.00 0.025 0.986 1.00 1.01 0.025 0.018 0.013
β21 1.00 1.00 0.126 0.925 1.00 1.08 0.126 0.097 0.077
β22 1.00 1.00 0.125 0.924 1.00 1.07 0.125 0.095 0.074

Note: MEAN and SD are the mean and standard deviation of the estimates across simulation. LQ,
MED and UQ are the 25%, 50% and 75% quantiles. RMSE, MAE and MDAE are the root mean
squared error, mean absolute error and median absolute error of the estimates.

Table 17: Simulation Results Binary (1) with 10% outliers
parameter TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

β11 1.00 1.00 0.060 0.960 1.00 1.04 0.060 0.048 0.040
β12 1.00 1.00 0.060 0.959 1.00 1.04 0.060 0.048 0.041
γ1 1.00 1.00 0.040 0.973 1.00 1.03 0.040 0.032 0.027
β21 1.00 1.00 0.077 0.949 1.00 1.05 0.077 0.061 0.051
β22 1.00 1.00 0.069 0.954 1.00 1.05 0.069 0.055 0.046

Note: MEAN and SD are the mean and standard deviation of the estimates across simulation. LQ,
MED and UQ are the 25%, 50% and 75% quantiles. RMSE, MAE and MDAE are the root mean
squared error, mean absolute error and median absolute error of the estimates.

Table 18: Simulation Results Binary (2) with 10% outliers
parameter TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

β11 1.00 1.00 0.066 0.956 1.00 1.04 0.066 0.053 0.044
β12 1.00 1.00 0.059 0.961 1.00 1.04 0.059 0.047 0.039
γ1 1.00 1.00 0.038 0.974 1.00 1.02 0.038 0.030 0.025
β21 1.00 1.31 0.070 1.258 1.30 1.35 0.313 0.305 0.305
β22 1.00 1.00 0.072 0.952 1.00 1.05 0.072 0.058 0.049

Note: MEAN and SD are the mean and standard deviation of the estimates across simulation. LQ,
MED and UQ are the 25%, 50% and 75% quantiles. RMSE, MAE and MDAE are the root mean
squared error, mean absolute error and median absolute error of the estimates.

Table 19: Simulation Results Binary (3) with 10% outliers
parameter TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

β11 1.00 1.00 0.052 0.966 1.00 1.04 0.052 0.041 0.034
β12 1.00 1.00 0.052 0.966 1.00 1.03 0.052 0.041 0.034
γ1 1.00 1.00 0.025 0.986 1.00 1.01 0.025 0.018 0.013
β21 1.00 1.00 0.126 0.925 1.00 1.08 0.126 0.097 0.077
β22 1.00 1.00 0.125 0.924 1.00 1.07 0.125 0.095 0.074

Note: MEAN and SD are the mean and standard deviation of the estimates across simulation. LQ,
MED and UQ are the 25%, 50% and 75% quantiles. RMSE, MAE and MDAE are the root mean
squared error, mean absolute error and median absolute error of the estimates.
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