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Abstract

This research focuses on improving ensemble price prediction in multi-agent
market places to guide strategic sales decisions. The ensemble price predic-
tion mechanism is implemented in the MinneTAC agent. The MinneTAC
agent is an agent-based-computer model developed by the University of Min-
nesota in cooperation with the Erasmus University. The MinneTAC agent
is competing in the Trading Agent Competition for Supply Chain Manage-
ment (TAC SCM). The TAC SCM competition was developed to come to
the best solution of an agent-based-computer model capable of handling a
dynamic supply chain. The main goal of this research is to improve the en-
semble price prediction mechanism of the MinneTAC agent with techniques
like bootstrapping and dynamic economic regime transition probabilities.
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Chapter 1

Introduction

Globalization and the pressure to reduce cost are influencing companies to
further optimize their supply chains [1]. Like information on the internet,
goods are moving around the world with greater efficiency [1]. Supply chain
management is a set of approaches utilized to efficiently integrate suppliers,
manufactures, warehouses and stores, so that merchandize is produced and
distributed at the right quantities, to the right locations and at the right
time, in order to minimize system-wide costs while satisfying service level
agreements [2]. The supply chain ends when the finished products are de-
livered to the customer, through a distribution system that mostly includes
an inventory system[3]. Companies have to manage these complex logistic
networks.

The TAC SCM game was designed to come to the best solution for an
agent based computer model that is capable of dealing with the problems
of a flexible supply chain. The challenge of the TAC SCM game is that the
participating agent-based computer models have to make fully autonomous
decisions in a non-deterministic environment, that simulates a dynamic sup-
ply chain. Human intervention is not allowed during the game [4]. The TAC
SCM competition is an environment to test automated decision support sys-
tems. When companies are able to implement such an automated decision
support system, better decision making could improve their competitive po-
sition [4].

An agent based computer model is defined as a model implemented in a
computer that is able to make fully automated decisions without human in-
tervention. Flexibility is required to make fully automated decisions. Flex-
ibility is defined as the capability of the model to be responsive, proactive,
and social. Responsiveness means the ability to perceive the environment
and to react to changes that occur in the environment. Proactive stands
for the ability to exhibit opportunistic, goal-directed behavior and taking
the initiative where appropriate. The term social stands for the ability to
interact with other agents [5].

This research focuses on how to improve the price prediction mechanism
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of the MinneTAC agent. The MinneTAC agent is an agent-based computer
model, developed by the university of Minnesota in co-operation with the
Erasmus university. The MinneTAC agent competes with other agent based
computer models in the Trading Agent Competition for Supply Chain Man-
agement (TAC SCM) [6]. Besides winning the TAC SCM competition, the
MinneTAC research group is interested in implementing the techniques ap-
plied in the MinneTAC agent in real world applications. Important research
topics include economic modelling under uncertainty in environments where
the actions of other agents have a significant impact and where the actions
of the agents are only partly observable. To support the project, research in
software engineering is applied to support a dynamic research agenda [6].

1.1 A brief overview of the problem

In the Trading Agent Competition for Supply Chain Management, Agent
based computer models have to compete with each other in a complex re-
source allocation situation. In the game, the market conditions are con-
stantly changing. The agent has to take this into account. In the TAC SCM
game, Agent based computer models compete in a dynamic supply chain
setting. In the TAC SCM game, Artificial intelligence techniques are added
to the Agent based computer models. These techniques are used to enable
optimal decision making during the games. Figure 1.1 gives an overview of
the challenges of the TAC SCM game.

In the game scenario, there is only limited information available about the
state of the markets and the strategies of the competing agents. Based on
this limited information, the agent has to make decisions about resource
allocation and the pricing of the products produced. At the same time, the
agent has to compete with other agents in procurement of parts and in the
sales of finished products [4].

The goal of the TAC SCM game is to capture the challenges involved in
supporting dynamic supply chain practices [7]. In the game, it is essential
that the future market prices are correctly predicted. The agent which is
able to predict the future market prices better than its competitors will win
the game. By modeling the interactions that take place in a dynamic supply
chain, better insight is obtained [4]. These findings could be implemented
in an industrial environment.

The winner of the TAC SCM game is the agent that ends up with the
highest amount of money in its bank account. In the game, the agents have
to produce personal computers (PCs) and sell these produced PCs for the
highest possible price. The agent has five other competitors in the game.
Together with its competitors, the agent has to procure parts and sells its
produced PCs. In figure 1.1, an overview of the interactions in a TAC SCM
game is given. At the procurement stage, the agent has to bid for parts,
and the agent with the best bid obtains the parts. When the agent sells
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the produced PCs, the agent has to estimate the market demand to price
its PCs accordingly. The problem is that the market demand and prices
constantly change, which makes price prediction important.

Figure 1.1: A summary of the TAC SCM competition [8]

1.2 The research questions and the academic value

This research tries to improve the price prediction mechanism of the Min-
neTAC agent in two ways. In the first place, the concept of ensemble price
prediction is improved. Secondly, fuzzy economic regime transition proba-
bilities are implemented in the price prediction mechanism of the MinneTAC
agent.

1.2.1 The research related to improving ensemble price pre-
diction

Ensemble price prediction is a methodology that combines multiple price
prediction methods. Ensemble price prediction can lead to a better perfor-
mance because the disadvantages of the price predictors in the ensemble are
compensated by taking a weighted average price [9]. A weighting mecha-
nism takes an weighted average price based on the predictive performance
of each price prediction method. Therefore, the weighting mechanism is
an important part in the ensemble price prediction mechanism. In this re-
search, the weight for each price prediction method is based on the inverse
of the variance in past price predictions [9]. The variance measures how well
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the price prediction mechanism is able to predict the future market prices [9].

This research is divided in four research questions. Here below, the re-
search questions are explained. The methodology is explained in detail in
chapter five.

What is the optimal quantity of historical price predictions to calculate the

weight of each price prediction method as accurate as possible?

The ensemble price prediction mechanism of the MinneTAC agent combines
the price predictions of each price prediction method. A dynamic weighting
mechanism calculates the weight of each price prediction in the ensemble.
The weight of each price prediction method is based on the variance in pre-
viously predicted prices. The variance is based on the squared difference
between the actual prices in the game and the prices that are predicted
by the MinneTAC agent. How fast should the weights change to calculate
the future prices as accurately as possible? The MinneTAC agent can use
a block weighting or an exponential mechanism to calculate the variance.
The block weight horizon is the number of past price predictions to cal-
culate the variance of each price prediction method. With a small block
weight horizon, the weight of each price prediction method is more reactive
to changes in the variance. In the exponential weighting mechanism, the
smoothing parameter τ , determines the influence of past price predictions.
τ is pronounced as tau. A small τ value means that the variance is more
reactive to changes in the predictive performance of each price prediction
method. Hence, exponential smoothing applies a set of declining weighs to
all past data and the τ determines the speed of the decline. Experiments
are executed to determine the optimal values for the block weight horizon
and τ value.

What is the optimal weight of each price prediction method in the ensemble?

In this research question, the optimal weight of each price prediction method
in the ensemble is determined. The goal of ensemble price prediction is to
compensate the shortcomings of each price prediction method. A dynamic
weighting mechanism has to determine the optimal weight for each price
prediction method for price predictions up to 20 days ahead in the future.
The dynamic weighting mechanism is called dynamic because the weights
of every price predictor are constantly updated based on the predictive per-
formance of each price prediction method. This research tries to find the
optimal weights for each price prediction method during a TAC SCM game.
When the optimal weights are known, it can be determined if the ensemble
consists of a optimal mix of price prediction methods. The goal of ensemble
price prediction is that the shortcomings of each price prediction method
are compensated by taking a weighted average price. Is this achieved in the
MinneTAC agent? An understanding of the behaviour of each price predic-
tion method is acquired by calculating the weight of each price prediction
for every virtual game day.
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Did the ensemble price prediction mechanism outperform the individual price

prediction methods?

Ensemble price prediction is only effective if the weighted average ensem-
ble price is more accurate then the prices predicted by each individual price
prediction method. When the ensemble price is more accurate then the indi-
vidually predicted prices, the shortcomings of each price prediction method
are compensated. Is this happening in the MinneTAC agent?

What is the influence of bootstrapping on the performance of the MinneTAC

agent?

The MinneTAC agent has a dynamic learning mechanism that learns the
optimal weight of each price prediction method in the ensemble. When the
game starts, each price prediction method has an equal weight in the en-
semble. This does not optimally compensate the shortcomings of each price
prediction method. At the start of each TAC SCM game, the MinneTAC
agent has to learn the optimal weights. When the MinneTAC agent could
start with the optimal weights, a costly learning process is avoided. This
is called bootstrapping. In previously held TAC SCM competitions, the
MinneTAC agent under performed in the first phase of the game. With
bootstrapping, this under performance is avoided. This could significantly
improve the score of the MinneTAC agent in future TAC SCM competitions.
Experiments are performed to test the gain in the predictive accuracy of the
MinneTAC agent and to test if it is better to bootstrap the agent with
the optimal weight for the first phase of the game or to use the average
weight taken over the complete duration of the game. In the end, the gain
in the predictive performance of bootstrapping versus non-bootstrapping is
determined to establish the added value of bootstrapping.

1.2.2 Fuzzy economic regime transitions

Economic regimes are the foundation of the price prediction mechanism of
the MinneTAC agent. The intuition behind economic regimes is that prices
reflect future expectations in the demand and supply relationship. Research
has found that the relationship between demand and supply is not constant
during a TAC SCM game. Currently, the MinneTAC agent is implemented
with on set of regime transition probabilities. To improve the price pre-
diction mechanism of the MinneTAC agent, for every phase of the game,
customized economic regime transition probabilities are implemented. Re-
search has identified three different game phases. In the beginning of a TAC
SCM game, there is a shortage of components that results in higher market
prices for components. After approximately 30 days, this shortage is re-
solved. Component prices reach a normal level. At the end of the game, the
participating agents start dumping inventories. This results in significant
lower market prices.
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The customized regime transition probabilities can lead to an increase in
the predictive performance of the MinneTAC agent. A Fuzzy weighting
mechanism is implemented to enable a smooth transition between the dif-
ferent game phases. A Fuzzy weighting mechanism is used because Fuzzy
weighting enables a gradual change between the different economic regime
transition probabilities [10]. The MinneTAC agent makes strategic and tac-
tical decisions and changing the economic regime transition probabilities to
abruptly would embroil the strategic decisions of the MinneTAC agent. The
Fuzzy weighting mechanism enables a smooth transition without disturbing
the strategic decisions.

1.2.3 The academic value of the research

The MinneTAC agent uses ensemble price prediction to make accurate fu-
ture price predictions. The idea of ensemble price prediction is that the
shortcomings of each price prediction method are compensated by taking an
weighted average price. The shortcomings of each price prediction method
could only be compensated when each price prediction method performs op-
timal in a different time space. This research investigates if ensemble price
prediction is more accurate than the use of a single price prediction method.
Is ensemble price prediction able to give a significant increase in the predic-
tive performance? When ensemble price prediction results in a significant
gain in the predictive performance, this could be implemented in real world
applications.

Secondly, research is performed on the concept of bootstrapping. Boot-
strapping is a form of supervised learning in which training data is used to
avoid a learning process [11]. In the MinneTAC agent, bootstrapping has
to avoid the learning of the weights of each price prediction method in the
ensemble. How costly was the learning process of the optimal weights of
each price prediction method in the MinneTAC agent? Did bootstrapping
lead to a significant increase in the predictive performance of the MinneTAC
agent in the first phase of a TAC SCM game?

In the third place, Fuzzy economic regime transitions are implemented to
enable a smooth transition between the economic regime transition prob-
abilities of each game phase. This research investigates the importance of
customized economic regime transition probabilities for each game phase
and the effects of a gradually changing the customized economic regime
transition probabilities.

All the methods mentioned above could also be implemented in decision
support systems of real life applications. If the improvements are successful
in the MinneTAC agent, success could also be achieved in the real world.
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1.3 Methodology

This section gives a brief overview of the employed methodology. Empir-
ical research has to be performed to analyze the results from experiments
with the MinneTAC agent. There is started with a literature study to get
a good perspective about the background of the research. The literature
study evaluates price ensemble price prediction and price prediction based
on economic regimes.

The research questions related to ensemble price prediction and improv-
ing the Markov predictor are answered by carrying out experiments. These
experiments simulate TAC SCM games. In these games, the MinneTAC has
to compete with its rivals. Since the MinneTAC is one of the leading agents
in the TAC SCM competition, the competitors are agents that showed the
best performance during the recent TAC SCM competitions. This provides
a good benchmark for the performance of the MinneTAC agent. The uni-
versity of Minnesota developed a special game environment to perform the
experiments. In this environment, the TAC SCM games are simulated and
it is possible to analyze the game data.

In the experiments, game data is logged on the game servers of the uni-
versity of Minnesota. This game data is used to determine the pricing that
occurred during the game. The MinneTAC also logs important game data.
From the log files of the MinneTAC agent, the predicted prices are extracted.
This enables a comparison that indicates how well the MinneTAC is able to
predict the future market prices accurately. The Root mean square error is
used to indicate the predictive performance of the MinneTAC agent. The
root mean square error is a widely used method to determine the predictive
accuracy.

1.4 Outline

This section gives an overview of the content of the research that follows
hereafter. Here below, the content of each chapter is summarized.

Chapter 2 starts with a literature review. In the literature review, an
overview is given of related research. Topics like ensemble price predic-
tion, price prediction with economic regimes and price prediction by other
TAC SCM agents are evaluated.

Chapter 3 explains the working of the TAC SCM game and the software
architecture of the MinneTAC agent.

Chapter 4 explains the working of the price prediction mechanism of the
MinneTAC agent. The price prediction mechanism is composed of multiple
price prediction methods and a dynamic weighting mechanism. This chapter
also explains how the future market prices are used for tactical and strategic
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decision making.

Chapter 5 explains the methodology and experimental design the answer
the research questions related to improving ensemble price prediction with
block weighting variance error calculation.

In Chapter 6, the research questions related to improving price prediction
with Fuzzy regime transition probabilities are explained.

Chapter 7 evaluates the possibilities for future research and gives the con-
clusion.

11



Chapter 2

Price prediction

This chapter gives an overview of the related literature of ensemble and
economic regime price prediction. This research tries to improve the price
prediction mechanism of the MinneTAC agent. The MinneTAC agent uses
’economic regime’ and ’ensemble price’ prediction to make future price pre-
dictions as accurately as possible. This chapter explains economic regime
price prediction ensemble price predictions and gives and overview of the
related literature.

2.1 Ensemble price prediction

The main idea behind ensemble methods is that diverse perspectives on
different aspects could be combined to provide a high quality solution. En-
semble prediction aims to create a prediction or classification mechanism
that is more robust than a single method [12]. In the literature, there are
three methods proposed to compose an ensemble. These methods are Bag-
ging, Boosting and Stacking [13] [12].

Bagging creates an ensemble by using the same classification or prediction
methods for randomly generated training data [14]. Bagging trains each pre-
diction or classification separately and combines the results with a weighted
voting mechanism [14].

Boosting uses the same prediction or classification method to make pre-
dictions or classifications. The difference between Boosting and Bagging is
that Bagging trains each method independently while Boosting trains each
method dependently. Each prediction or classification is influenced by the
previous method. This is performed by enforcing a new method to train
each incorrectly handled input sample of the previous method [15].

The Stacking ensemble prediction approach is based on different predic-
tion methods. The method inherits the advantages but also suffers of the
disadvantages from each individual prediction or classification method [12].
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Therefore, the performance of this method is not always better than an in-
dividual prediction method [12]. Zou Wan et al. propose a concept that
selects suitable prediction or classification methods from a pool that per-
forms more effective then combining all classifiers simultaneously [16].

Cihli Hung and Jing-Hong Chen have implemented an ensemble classifi-
cation mechanism to predict bankruptcy [13]. The ensemble consisted of
a decision tree, a back propagation neural network and a support vector
machine. Based on the expected probabilities of both bankruptcy and non-
bankruptcy, this ensemble provided an approach which inherited the advan-
tages and compensated the disadvantages of the classification techniques. A
meta-learner, which selects suitable classifiers based on an expected proba-
bility of each individual classifier to replace the voting policy was used to
combine the individual classification methods. Consistently, the ensemble
performed better than other weighting or voting systems for bankruptcy
prediction [13].

Jau-Jia Guo and Peter Luh improved market Clearing Price Prediction by
using an ensemble of neural networks [17]. The most important reason to
use neural networks is that they are capable of inferring hidden relationships
in data [11]. The problem is that a single neural network often misrepresents
parts of the non-linear relationship in the data [11]. By using an ensemble of
neural networks, this misrepresentation of the input-output relationship in
the data is avoided. A weighting mechanism was used to combine the predic-
tions of each individual neural network. The weights for each neural network
are the probabilities that individual networks capture the true input-output
relationship at that prediction instantly. This ensemble method performed
better than individual neural networks and ensembles using weighted aver-
aging methods [17].

Paulo J.L. Adeodata et all developed an ensemble of neural networks to
forecast multiple time-series [18]. The results showed that the predictive
performance of the ensemble degraded less then any single multilayer per-
ceptron neural network [18].

Loris Nanni and Alessandra Lummi performed experiments with ensem-
ble classifiers for bankruptcy prediction and credit scoring [19]. The results
showed that the performance of the ensemble outperformed stand-alone clas-
sifiers [19]. The Random Subspace method was used to construct the ensem-
ble. With this method, each stand-alone classifier used only a subset of all
features for training and testing [20]. This method outperformed ensemble
methods like bagging [19].

Hong-Hee Wan et al. implemented an ensemble approach to predict tran-
scription start sites in human genomic DNA sequences [21]. Decoding of
human genomic sequences has been a difficult practise. The annotation
of enumerating DNA sequences is almost impossible without the support
of computational techniques [21]. To improve the predictive accuracy, an
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ensemble approach was implemented. The ensemble was build out of dif-
ferent neural networks. A majority voting, a weighted voting and Bayesian
approach were used to combine the individual predictors. The ensemble
performed better then the currently available single prediction methods [21].

Yong Seog Kim provided insight on the advantages and disadvantages of
ensembles based on sampling and feature selection for database marketing
[22]. The results showed that ensembles significantly improve the predictive
performance of single classifiers at the cost of interpretability and computa-
tional resources. Especially predictors with high variances like neural net-
works and tree learners make a strong ensemble. Classifiers utilizing prior
class distributions like support vector machines and naive Baysian classi-
fiers only marginally benefit from ensembles [22]. For data sets with skewed
distributions, ensemble predictors become useless [22].

2.2 Economic regime price prediction

Over the last 20 years, research is performed in forecasting methods based
on the characteristics of the business cycles. A business cycle is defined as
a succession of periods of rapid growth or slowdown or a decline in which
the output fluctuates around its long run trend [23]. A business cycle is also
called an economic regime [23]. J.D. Hamilton started with the develop-
ment of price predictions based on economic regimes. Hamilton developed
a model that was based on the idea that growth in the US gross domestic
product could be captured through a dynamic model that switches between
two regimes with different growth characteristics. The model had to reveal
the most likely regime for each predicted sample and was based on transition
probabilities. The transition probabilities are the probabilities of the new
regime given the current regime. Markov transition matrices were used to
determine the next regime [24].

The paper ’Business-cycle phases and their transitional dynamics’, written
by A.J. Filardo and J. Andrews extended the work done by J.D. Hamilton
[25]. In this research, the differences between expansion and contraction
phases of the business cycle were examined. This was performed with the
switching method of J.D. Hamilton which take into account the incorporate
time-varying probabilities of transitions between the phases. The marginal
benefit of the time-varying transition probability, Markov switching mode,
are also highlighted. This technique showed the high correlation between
the evolution of the regime phases inferred from the model and the tradi-
tional reference cycles for monthly output data [25]. Many of the economic
variables that determine the time-varying probabilities are helping to pre-
dict the turning points [25].

Wolfgang Ketter at all developed a prediction model based on economic
regimes to predict future market prices. Market conditions were character-
ized as statistical patterns in historical market data. These patterns were
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used to classify a range of economic environments that are expected in the
future. A Gaussian Mixture Model was used to calculate the price den-
sity function and to determine the economic regimes. The economic regime
model was tested in the MinneTAC agent [26]. The MinneTAC agent is an
agent-based computer model, developed by the University of Minnesota and
competes in the Trading Agent Competition for Supply Chain Management.
The MinneTAC agent is one of the best performing agents.

The semiconductor industry has been one of the fastest growing industries
in the past 20 years [27]. The semiconductor industry is also cyclical and
demand patterns change rapidly [27]. This makes it difficult to predict
turning points of business cycles. To deal with the cyclical behavior of
the semiconductor industry, Wen-Hsum Lu and Yih-Luan Chyi developed
a Markov Regime switching representing expansion and contracting of the
semiconductor industry. Empirical results showed that the regime model
successfully predicts the turning points in demand patterns. Data from
January 1990 until March 2003 was used to test the model [27].

R. Ahrens, of Deka Investments GmbH, developed a regime model to predict
recessions with interest rate spreads [28]. This research used Markov-regime
switching models to evaluate the informal content of the interest rate term
structure as a predictor of recessions in eight OECD countries. The empiri-
cal results suggested that the term spread is modelled as a two-stage regime
switching process for all countries. The main advantage of this technique
is that the lead times for forecasting discrete events like the ending of re-
cessions are determined endogenously [28]. This implied, that compared to
regression based techniques, the optimal forecasting horizon was free. The
term spread of interest rates proved to be a good predictor. However, the
results showed that the Markov regime switching probability as explanatory
variable, did not significantly improved the forecasting ability of interest
rate spreads [28]. This implied that there is a trade-off between sharp prob-
abilities calculated by the regime model and accuracy of fitting independent
recession data. The results showed that forecasters who prefer unambiguous
signals could use this model [28].

For investors, the asset allocation decisions are a key determinant of their
portfolio performance [29]. Massim Guidolin and Allain Timmermans de-
veloped a regime-switching model for stock and bond returns [29]. Four
regime states were used in the regime-switching model. These were ’crash’,
’slow growth’, ’bull market’ and ’the recovery state’. The regime states had
different investment opportunities. Therefore, asset allocation varied signif-
icantly over time as the regime states changed and investors reversed their
belief about the underlying regime state probabilities [29]. The conclusion of
the research was that optimal asset allocation varies significantly across the
regimes as the weights of the various asset types were strongly dependent on
which state the economy was. Therefore, asset allocation varied significantly
in the absence of outside predictor values such as dividend yield [29].
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Timotheos Angelides and Nikolaos Tessaromafis developed a regime switch-
ing approach to determine the risk of price changes due to unique circum-
stances of a specific security, as opposed to the overall market risk [30]. This
risk is called the idiosyncratic risk [30]. The evidence on the inter-temporal
relation between idiosyncratic risk and future stock returns is conflicting
and confusing. A first order Markov process modelled the regime transition
probabilities. A Gaussian distribution was used to determine the transi-
tion probabilities. The regime model allowed the conditional distribution of
stock returns to vary across two volatility states. The evidence suggested
that in the US, idiosyncratic risk is a predictor of future stock prices only
during the low variance regime state. In the high volatility regime state,
the relation between idiosyncratic risk and stock returns is not statistically
significant [30].

Timothy D. Mount et all predicted price spikes in electricity markets using
a regime-switching model with time-varying parameters [31]. The research
showed that a stochastic regime-switching model with time-varying param-
eters can capture the type of volatile priced behavior observed in many
deregulated spot markets for electricity. The mean prices are divided in two
regimes and the transaction probabilities are specified as functions of the
offered reserve margin and the system load. Markov-switching in the model
allowed the high price regime to be more persistent than in a simple binomial
jump process [31]. The regime model replicated the observed price volatility
well. This implied that the regime model is potentially useful for evaluating
forward contracts and investment decisions in energy markets[31].
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Chapter 3

A description of the TAC

SCM game and the

MinneTAC agent

The MinneTAC agent successfully competes in the Trading Agent Compe-
tition for Supply Chain Management (TAC SCM). This chapter describes
the TAC SCM game, the software architecture of the MinneTAC agent and
the future price predictions systems of competing TAC SCM agents. This
chapter is divided in three sections. The first part of this chapter evaluates
the TAC SCM game. The second part of this chapter explains the software
architecture of the MinneTAC agent. The third part of this chapter gives
an overview of the price prediction systems of competing TAC SCM agent.

3.1 The Trading Agent Competition for Supply

Chain Management

The Trading Agent Competition is an international forum with the goal to
promote and encourage highly qualitative research agent-based computer
models in complex dynamic environments [32]. The first Trading Agent
Competition was organized in 2000. Since 2003, the Trading Agent Compe-
tition was extended wit a supply chain management game scenario and the
initial game scenario was called TAC Classic. The supply chain management
scenario was called the Trading Agent Competition for Supply Chain Man-
agement (TAC SCM) [4]. The TAC SCM game scenario and the working
of the TAC SCM game are described in the next sections. Below is a brief
overview of the TAC Classic game.

In the TAC Classic game scenario, each agent-based computer model is
a travel agency that has to compose travel packages. The agent is acting on
behalf of its customers. Every agent has eight customers. The agent has to
take specific preferences of its clients into account. The primary objective
of the agent is to maximize the satisfaction of its customers. The agent that
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has the most satisfied customers wins the game. Human intervention is not
allowed during the game [32].

3.1.1 The TAC SCM game scenario

The TAC SCM game was developed by a team of researchers from the
e-Supply Chain Management Lab at Carnegie Mellon University, the Uni-
versity of Minnesota, and the Swedish Institute of Computer Science (SICS)
[4]. The TAC SCM game was developed to deal with the implementation
of dynamic supply chain management practices [4]. Today’s supply chains
are getting more and more dynamic to match market demands in a glob-
alizing economy. The globalizing economy and the increase in customer
expectations regarding costs and services have forced manufacturers to im-
prove processes within their supply chains [33]. The implementation of dy-
namic supply chain management has proven to be a difficult and highly
complex procedure. The TAC SCM competition provides an ideal testing
environment for decision support systems that are able to facilitate more
dynamic supply chains. A dynamic supply chain is characterized by short
term contracts between different contractors. The contracts are constantly
re-negotiated to get better prices and to match market demand without
building up large inventories. This compared to today’s more static supply
chains, that depend on long term relations among key trading partners [4].

A TAC SCM game consists of 220 virtual game days in which six agent-
based computer models have to produce personal computers (PCs). In the
first place, the agents have to compute for customer orders. The agent that
offers the best price gets the deal. In the second place, the agents have to
procure parts to produce the PCs. In this case, the agents have to compete
to get the best prices from the suppliers. When the game starts, the par-
ticipating agents have no inventories and no money in their bank account.
To buy inventories, money has to be lent by the bank. The agents can have
a negative balance on their bank account. Interest has to be paid over the
money borrowed at the bank. During the game, agents have to make as
much profit as possible. The agent with the highest amount of money in its
the bank account is declared the winner at the end of the game. In figure
3.1, the TAC SCM game interactions between the agents, suppliers and cus-
tomers are displayed [4].

The TAC SCM game presents a broad range of supply chain situations.
At the end of the game, the agent with the highest amount of money on its
bank account is declared the winner [4]. The TAC SCM game has a com-
plexity that prohibits any realistic attempt to win the game from a game
theoretic perspective. This implies that it is not possible for strategies that
can be described as ’in equilibrium’ in any way will to emerge. Thus a suc-
cessful TAC SCM agent has to be robust to a wide variety of opponents
and different game situations. Ideally, a good TAC SCM agent has to be
adaptive to the environment and to the strategies of its competitors [32].
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Figure 3.1: An overview of the tasks in the TAC SCM game [4].

The next sections explains the working of the TAC SCM game.

3.1.2 The working of the TAC SCM game

This section explains the working of the TAC SCM game. During a TAC
SCM game, each agent has four tasks. These are the negotiation with sup-
pliers, bidding for customer orders, managing the daily production and as-
sembly of PCs in the factory and shipping the finished PCs to the customers.
These tasks have to be performed every virtual game day without human
intervention.

The game-server is responsible for customer and the supplier simulation.
The game-server also manages the bank accounts, the factory and the ware-
housing for all the participating agents [4]. These functions do not have
to be implemented in the agents software. The TAC SCM agent-ware is a
software package that enables a smooth communication between the agent
and the game-server. The packages have to be implemented in every agent.
The game-server saves all important information generated during the game.
This information could be used to analyze the performance of the agent after
the game is completed [4].

The participating agents communicate with the game server using messages.
These messages contain important information about the state of the game.
At the beginning of each game day, the agent receives messages from sup-
pliers, customers, the bank and the factory [4].

The messages from the suppliers contain offers for components in response
to request for quotes. A request for quotation is a standard business pro-
cess with the purpose to invite suppliers into bidding on specific products
or services. Secondly, these messages state the supplies to satisfy previously
made orders. The supplies are used for the production in the next day [4].
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The messages from the bank have a statement about the amount of money
in the agents bank account.

The factory sends a message that contains an inventory report and the
number of finished PCs that are ready to be shipped to customers [4].

During every game day, every agent has to make five important decisions.

Figure 3.2: An overview of the major decisions that every TAC SCM agent
faces during the game [4].

The five major decisions during the TAC SCM game

1. The agent has to decide how to bid on the request for quotes sent by
potential customers.

2. The agent has to procure new components by sending request for
quotes to the suppliers.

3. Suppliers send offers to the request for quotes sent by the agent the
previous day. The agent has to decides which request for quotes to
accept.

4. The agent has to allocate the components

5. The agent has to decide which finished PCs to ship to the customers.
The customers are able to send penalties for late deliveries. This could
be specified in the request for quotation. Therefore it is important that
the agent delivers the finished PCs on time.

Before the end of the day, the agent has to make the above mentioned de-
cisions. At the end of the day, the agent needs to respond to the customers
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and suppliers. The decisions are communicate by messages send to the game
server [4].

In the TAC SCM competition, the suppliers keep track of the reputation
of the agents. The suppliers prefer to do business with reliable and loyal
agents. The customers are also offering better prices to agents that have a
good reputation. Every supplier measures the reputation of all the agents
in the game. The reputation is based on the quantity of purchased products
divided by the total number of request for quotes send by the agent [4].

Below is explained how the agents customers, suppliers, the bank account,
daily production and inventory management are modeled in the TAC SCM
game.

The customers

The customers request PCs during the game. The customer demand has a
random distribution. The customers can buy sixteen different types of PC
in three market segments during the game. In the game, the customers send
request for quotes to the participating agents. In the request for quotes, the
number of PCs, the reserve price and the due date are specified. Customers
take offers from Agents, that are able to deliver the requested quantity of
PCs before the due date with a price that is a least equal to the reserve
price, in consideration. The agent that offers the best price gets the offer.
This agent has to deliver the order before the due date. When the agent
can not deliver the order before the due date, the customer sends a financial
penalty to the agent. The penalty is specified in the request for quotation.
A finished PC has to be shipped at least one day before the due day date
in order to arrive on time [4].

The suppliers

In a TAC SCM game, there are eight distinct suppliers. There are two sup-
pliers for each component type. Each supplier produces multiple types of
each component. During the game, the suppliers operate an a make to order
basis. The suppliers are revenue maximizing entities [4].

Each game day, the agents can place only a limited number of request for
quotes. An agent may send five request for quotes for a component produced
by a supplier. The agent may not send more then ten request for quotes
to a supplier. A request for quotation consists of a specified quantity of a
component, a maximum price the agent is willing to pay and a due date
before the components have to be delivered to agent. At the end of each
game day, the suppliers collect the request for quotes. The market prices
for the components are determined based on the ratio between demand and
supply. Each supplier tries to maximizes its revenue. The suppliers respond
to the agents with offers at the beginning of the next game day. The agents
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have to decide which offers to accept. When an agent accepts an offer, it
has to send a message to the supplier at the end of game day [4].

The bank account function

The game-server manages the bank accounts for the agents. At the be-
ginning of each virtual game day, the server sends messages to the agents
with information over the amount they have in the bank account. At the
beginning of the game, none of the agents has money in its bank account.
In order to procure parts, the agents have to borrow money from the bank.
The agents have to pay interest over the borrowed money. Money enters
the bank account when customers pay for the shipped PCs. Money is de-
ducted from the bank account for the procured parts and penalties for late
deliveries to customers [4].

Daily production and inventory management of the agents

In the TAC SCM game, all agents are equipped with an identical simplistic
PC factory that is managed by the game-server. The factory has one as-
sembly cell that is capable to produce any type of PC. The factory has also
a warehouse that stores the components and the finished PCs. The factory
can only produce PCs for which the required number of components are
available. PCs in the production schedule are processed sequentially until
the capacity has been exhausted. At the end of each game day, the finished
PCs are moved to the inventory, ready to be shipped to the customer the
next day.

In the warehouse are stored PCs and components that are not shipped to
the customers or used in production the next day. Holding costs have to be
paid over the inventories. The agents have to minimize the inventories to
reduce costs. An agent that is not able to fulfill customer demand will miss
potential revenue. This makes the TAC SCM game a realistic supply chain
management game. The game scenario is challenging but compact enough
to model in a agent-based computer model [4].

The above section explained the game. The next section evaluates the soft-
ware architecture of the MinneTAC agent.

3.2 The software architecture of the MinneTAC

agent

This section explains the software architecture of the MinneTAC agent.
The MinneTAC agent is successfully participating in the competition since
2003[34]. The next chapter explains the price prediction mechanism of the
MinneTAC agent.
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The software of the MinneTAC agent is developed in such a way that the
interactions with the game-server and the behavioral components are clearly
separated. This enables individual researcher to work separately. The Min-
neTAC agent has minimal dependencies among the individual components.
The basis of the MinneTAC agent are the agent-ware software packages,
distributed by the TAC SCM game organization, and the Apache Excalibur
component framework. The Apache Excalibur framework provides the tools
and standards to build the MinneTAC agent [34].

The Apache Excalibur is a general purpose component framework. Servers
and middle-ware use this software as a foundation. In the MinneTAC agent,
the Apache Excalibur framework provides the basis for a set of role-based
configurable components. The components have well defined dependencies
on the framework itself. A component is composed of a number of classes.
Each Excalibur component is designed to fulfill a specific role. Every role is
assigned to a specific Java class in the MinneTAC agent. A role has a set of
responsibilities, a name and a well defined interface. When the agent starts
the a TAC SCM game the configuration files load the specific roles and the
Java classes and parameter settings.

The MinneTAC agent is a set of components layered on the Excalibur con-
tainer. The Procurement, Sales, Production and Shipping components are
responsible for the major decisions in the game. The Oracle component
hosts a number of smaller components that are responsible future price pre-
diction, market reports and inventory models. The Repository component is
responsible for the communication between the components. The architec-
ture of the MinneTAC agent completely separates the major decision making
mechanisms. Evaluators are used to communicate between the components
of the MinneTAC agent. The Evaluators are accessible through the Repos-
itory. The components of the MinneTAC agent have to make decisions,
therefore the available data is inspected and an utility maximization has
to determine the optimal decisions. The data is stored in the Repository.
Repository data is encapsulated in the form of Evaluations. These Evalua-
tions are used by the components to perform analysis and make decisions.
The components are explained below [34].

The Communication component

The Communication component is responsible for the communication with
the game-server. This component implements the software classes from the
TAC SCM agent-ware packages that are responsible for the communication
with the game server. The Communication component sends the incoming
messages from the game-server to the Repository component. The Reposi-
tory is responsible for the internal communication in the MinneTAC agent
[34].
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The Repository component

The Repository component is responsible for storing all the data that has to
be shared among the components in the MinneTAC agent. Therefore, the
Repository is visible to all other components in the agent. At the beginning
of each game day, incoming messages from the game-server are placed in the
Repository. The Procurement, Sales, Production and Shipping component
retrieve the message from the Repository. The components perform an anal-
ysis, make decisions and communicate the decisions back to the Repository.
The Repository sends the messages containing all the decisions made by the
components to the Communications component [34].

The Oracle component

The Oracle component is a framework to set up a set of small configurable
components. These components are used to perform analysis and future
price prediction tasks [34].

The Sales component

The Sales component is responsible for selling the PCs to the customers.
The agent has a limited factory capacity. Therefore, the agent has to bid
on requests for quotes that maximize the expected profit. The allocation
Evaluator in the MinneTAC agent calculates sales quotas for every PC type
that maximizes the expected profit. A second price evaluator calculates,
given the sales quotes, an order probability function that determines the
prices the MinneTAC agent has to offer to the request for quotes from the
customers to sell the PCS [34].

The Procurement component

The Procurement component is responsible for the procurement of new
parts. Target inventory levels have to be maintained to meet customer
demand. The procurement component has to anticipate future customer
demand in order to have enough components available for production. The
Procurement component sends RFQs to the suppliers and has to decide
which offers to accept [34].

The Shipping component

The Shipping component is responsible for the delivery of finished PCs to
the customers. PCs have to arrive on time to avoid penalties. Each game
day, the Shipping component decides which finished PCs have to be shipped
to the customers [34].
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The production component

The Production component manages the factory. The production com-
ponent has to maintain target inventory levels in order to meet customer
demand[34].

3.3 Price prediction in TAC SCM agents

This section gives an overview of the price prediction mechanism of compet-
ing TAC SCM agents. The MinneTAC research team is testing techniques
that can be implemented in real world decision support systems. Therefore,
the MinneTAC agent is equipped with a flexible price prediction mechanism
based on economic regimes [35]. Since the beginning of the TAC SCM game,
the MinneTAC agent is consistently reaching the finals. On the other side,
there are TAC SCM agents with more tailored price prediction mechanisms
researching the finals. This section shows how competing agents are pre-
dicting the future market prices and how the MinneTAC agent differentiates
itself from its main competitors.

The Botticelli TAC SCM agent

The Botticelli TAC SCM agent, developed by the Brown university, uses
stochastic models to predict the future prices of the 16 different computer
types it sells [36]. In other words, the sample average approximation method
for stochastic discrete optimization is used. This is a Monte Carlo simulation
based approach to stochastic discrete optimization problems. The basic
idea of such methods is that a random sample is generated and also the
corresponding sample averages function. When the obtained sample average
function is solved, the procedure is repeated several times until a stopping
condition is satisfied [36].

The Cmieux TAC SCM agent

The Cmieux TAC SCM agent is developed by the Carnegie Mellon univer-
sity. The agent is build out of five modules. These modules are bidding,
procurement, scheduling, strategy and forecasting [37]. The forecasting and
bidding module are responsible for predicting the future demand and deter-
mining the offer price for customer orders. The first responsibility of the
forecasting module is to predict the future customer demand. The strategy
module uses this data to determine the target demand of the agent. The
forecasting module uses the mean and trend values of the customer demand
from past observations. The actual daily demand is drawn from a Poisson
distribution. A separate Poisson distribution is used for each product. The
forecasting module attempts to predict the changing mean and trend values
from the different products governing demand separately. This is done with
a linear least squares fit of observations form past game days [37]. The sec-
ond responsibility of the forecasting module is to forecast the selling prices
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of each product and the purchase price of the components of each product.
This information is used by the other modules to make decisions based on the
new market conditions. A linear least squares fit is calculated as well for the
selling prices of each product over past game days. For every supplier, the
purchasing prices are predicted with a nearest-neighbour technique based
on historical prices. The forecasting module predicts the supplier prices for
a particular day in the future by averaging the observed quotes with the
nearby due dates[37]. The bidding module is for responding to the customer
request for products. The goal of the bidding module is to sell the prod-
ucts for an as high as possible price. The bidding module has a probability
distribution for each product that specifies the likelihood of winning the or-
der. The distributions are learned off-line with data from previously played
games to build a modified regression three called the distribution tree [37].

The RedAgent

RedAgent is developed by the School of Computer Science of the McGill
University, Montreal, Canada. RedAgent is based on a multi-agent design,
in which many simple heuristic-based agents manage tasks such as fulfilling
customer orders or procuring particular resources [38]. The main idea is the
usage of internal markets as the main decision making mechanism. Examples
of decisions made are: what products are to be procured and how the existing
resources are allocated. The internal agents communicate through a market
mechanism in order to determine, collectively; which components are to
be procured, which type of PCs are to be produced, how are the available
components and production cycles allocated and what offers are to be send
to the customers [38].

The DeepMaze agent

DeepMaze, a well performing TAC SCM agent, is developed by the uni-
versity of Michigan. The price prediction mechanism consists of a nearest-
neighbour machine learning algorithm. The algorithm identifies historical
instances with similar economic indicators. This is augmented with an online
learning procedure that transforms the predictors by an optimizing scoring
rule [39]. This allows the selection of more relevant historical context using
additional information available during individual games. For each day, the
DeepMaze agent forecasts the price the customer market faces. On the cur-
rent day, the request for orders from the customers is known and therefore
the probability of winning an order can be calculated. To make predictions
for future days, the agent combines the prediction of the distributions of the
selling prices. The distributions are combined with the requests for orders
that are generated from prices that the agent expects to receive for selling
each additional PC on each possible day. The selling price distributions
are based on a Bayesian network. The DeepMaze agent learns form histor-
ical data by clustering the indicators of certain market conditions with the
likely distributions of current and future market prices with the k-nearest
neighbours algorithm [39].
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The TacTex agent

The TacTex agent is developed by the department of computer sciences of
the university of Texas at Austin. TacTex is one of the best performing TAC
SCM agents. The TacTex agent has two modules, that are responsible for
performing all the tasks. The supply manager module is responsible for the
procurement of the parts and whether to accept the offers from the suppliers.
The demand manager module is responsible for bidding for customer orders,
sending the daily production schedule to the factory and for the deliveries of
the finished computers to the customers [40]. The Supply Manager handles
all planning related to component inventories and purchases, and requires
no information about computer production except for a projection of future
component use, which is provided by the Demand Manager. The Demand
Manager, in turn, handles all planning related to computer sales and pro-
duction. The only information about components required by the Demand
Manager is a projection of the current inventory and future component de-
liveries, along with an estimated replacement cost for each component used.
This information is provided by the Supply Manager [40]. The TacTex agent
uses machine learning techniques to train the price prediction mechanism
with historical price data, collected from previous TAC SCM tournaments.
The selected machine learning techniques was an additive regression with
decision stumps, an iterative method in which a decision stump is repeatedly
fit to the residual from the previous step [40]. Before the start of the game,
the price prediction mechanism of the agent is bootstrapped. During the
game, the agent uses an off-line learning mechanism what enables the agent
to adapt to changing market conditions. The future customer demand is
predicted with a Bayesian approach [40].

The Mertacor agent

The Mertacor agent is developed by the electrical and computer engineer-
ing of the Aristotle university, Thessaloniki, Greece. The agent uses the
integration of techniques from the Operations Research literature, adaptive
algorithms and statistical modelling [8]. The agent consists of four mod-
ules. The four modules are the inventory, procurement, factory and bidding
module. Before the beginning of the game, the price prediction mechanism
is trained with historical data. The training data for predicting the winning
price of a bid came from the two 2005 TAC SCM semi-finals and the test
data from the two 2005 TAC SCM finals. There were 38 attributes consid-
ered for predicting the future market prices and the probability of winning
an order. Feature selection was performed to determine the best attributes
to use for a predictor. The feature selection was done with multiple linear
regression and backward elimination based on the f-statistic. Out of the
Nine of the 38 initial predictors were used. Thereafter, neural networks,
support vector machines and the m5 method were used to compare the pre-
dictive performance of the multiple linear regression model on the training
set. The m5 method performed best and was therefore selected in the TAC
SCM competition [8]. The future market prices were calculated on-line. The
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agent uses two predictors. The first predictor is based on linear interpola-
tion, with the assumption that the maximum paid price corresponds to the
maximum customer offer reserve price. The second predictor is a scheme
using the k-nearest neighbours algorithm. This method is used to calculate
the probability of each bid place by the agent[8].

The PhantAgent agent

The PhantAgent is developed by the department of computer-science of the
”Politehnica” university Bucharest, Romania. In the agent architecture,
each task is assigned to a different module. The modules are the Computer
Module, Component Module, and Factory Module. The Component Mod-
ule handles component buying and estimation of component costs and does
not need any information from the other modules. However, the component
cost estimation strategy will greatly influence the way the Computer Module
behaves. The Computer Module handles computer sales and depends on the
Factory Module for knowing how crowded the factory is, on the Component
Module for estimating the profit margin and on both modules for calculating
how many computers can be offered. The Factory Module allocates the com-
puter production and does not need information from the other modules,
but its strategy must be compatible with the selling strategy implemented
by the Computer Module[41]. PhantAgent employes a more practical selling
strategy, which aims to keep the maximum factory utilization at all times.
This strategy is executed as long the profit is positive. An major advantage
of this strategy is that by bidding on a large number of customer offers, the
agent becomes an important presence in the market, forcing other competi-
tors to adopt a similar price policy in order to get orders[41]. PhantAgent
calculates its offer price by starting from the best highest price of the past
three days, and adjusting it with a factor that depends on the current fac-
tory utilization. In short, this factor will increase when the factory is too
crowded since this is a sign of too many won bids and it will decrease when
the factory is not utilized well enough [41].
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Chapter 4

The ensemble price

prediction mechanism of the

MinneTAC agent

The price prediction mechanism of the MinneTAC agent is explained in this
chapter. The MinneTAC agent uses observable microeconomic conditions
to predict the future market prices. These observable microeconomic condi-
tions are called economic regimes [42].

This chapter is divided in two parts. A general overview of the price pre-
diction mechanism of the MinneTAC agent is given in the first part. The
building blocks of the price prediction mechanism are explained in the sec-
ond part.

4.1 An overview of the price prediction mecha-

nism of the MinneTAC agent

Regression based price prediction approaches are widely applied in general.
These approaches assume that the functional form of the relationship be-
tween the response and the explanatory variables has the same structure
throughout the planning horizon [43]. The price prediction mechanism of
the MinneTAC agent extends the functional form of the relationship between
the response and explanatory variables throughout the planning horizon.
The MinneTAC agent is able to detect changes in the relationship between
the prices and sales volume over time and this enables the MinneTAC agent
to forecast a broader range of market conditions. The improvements in the
price predictions of the MinneTAC agent are worked out by the variability
in market conditions and the non-functional relationship between prices and
sales volume [44].

Economic regimes are the basis of the price prediction mechanism of the
MinneTAC agent. The intuition behind economic regimes is that prices re-
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flect future expectations in the demand and supply relationship [23]. This
definition is extended with the property that economic regimes are distin-
guishable statistical patterns of historical sales data [42]. These statistical
distinguishable patterns are used to identify the economic regimes [42]. The
MinneTAC agent uses historical sales data from previous TAC SCM tour-
naments to identify the economic regimes [42].

There are three economic regimes in the economic literature [23]. These are
scarcity, balance and oversupply. Scarcity indicates that there is more de-
mand than supply for a commodity and balance means that demand equals
supply. When oversupply occurs, there is more supply then demand for a
product. The MinneTAC agent uses five economic regimes. These are ex-
treme scarcity, scarcity, balance, oversupply and extreme oversupply. The
economic regimes extreme scarcity and extreme oversupply were added to
prevent outliers [42].

The MinneTAC agent uses the price prediction mechanism to make strategic
and tactical decisions during the TAC SCM games. The MinneTAC agent
determines the probability that customers will accept an offer. Furthermore,
the MinnetAC agent has to allocate its resources in an as optimal as possible
way. The economic regimes change during the game and this influences the
tactical and strategic decisions of the MinneTAC agent. In the figure below,
this is illustrated.

Regime Identification

Regime Prediction

Tactical
Decision
Process

Strategic
Decision
Process

Determining
maximum

offer prices for
each product

Resource
Allocation

Figure 4.1: Strategic and tactical decisions during the TAC SCM game.

Strategic decisions include procurement of new components and schedul-
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ing the available production capacity of the factory. Tactical decisions are
concerned with determining the maximum prices the customers are willing
to pay for the finished products. These tactical decisions have to be made
within a certain time range determined by the strategic decisions [42].

An example is the procurement strategy. Procurement decisions are based
on the expected future economic regimes. When customer demand is ex-
pected to grow in the future, new parts have to be procured to meet the fu-
ture demand. When an increase in sales prices is expected, it is a thoughtless
decision to sell aggressively with lower margins. A more intelligent approach
is to keep the finished products in stock and wait for higher prices. This
approach will increase the margin made on the products and the bottom
line is that the profitability will increase.

An brief overview of the price prediction mechanism of the MinneTAC agent
is given in figure 4.2., There is explained how the historical price data is pro-
cessed to determine the economic regimes in the next section. A explanation
is given how the MinneTAC agent predicts the future market prices during
the game in the last section.
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Off-line: processing the
historical sales data

Online: at the beginning of
each game day, yesterdays minimum

and maximum sales prices of each
product are given

Normalizing the
historical sales data

The mean sales prices of each
product are calculated by

double exponential smoothing
the minimum and maximum prices

of the previous day

Estimating a price density function
with Gaussian Mixture models

The posterior probabilities
for each Gaussian are calculated

with Bayes rule

The probabilities are clustered
with the k-means algorithm

The price prediction methods
predict the future prices for each product

up to 20 days ahead

The dynamic weighting mechanism 
combines the predictions of each price predictor. A 

weighted avarage price is calculated for each 
proudct up to 20 days ahead. The variance in

past price predictions is used to
determine the weigths of each price predictor

Figure 4.2: On overview of the price prediction mechanism.

4.2 The identification of the economic regimes

An explanation is given how the MinneTAC agent learns the economic
regimes from historical sales data in this section. The historical sales is
obtained from previously played TAC SCM tournaments.

The historical sales data is normalized in the first place. Normalization
is applied because the sales data is obtained from 16 products that have
different price ranges. Normalization also enables a comparison between
different price ranges. The normalization is applied in (4.1),.

np =
price

assemblyCost +
∑numParts

j=1 nominalPartCostj

(4.1)

np is the normalized price. The normalized price is based on the price of
the product divided by the sum of the production and material costs.

After the normalization of the historical price data, a Gaussian Mixture
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Model (GMM) is used to calculate the price density function and to de-
termine the economic regimes. A Mixture Model is a useful method for
density estimation. Gaussian Mixture Models are a very popular Mixture
Model [45]. The Expectation Maximization (EM) algorithm is used to cal-
culate the Gaussian components of the GMM. The EM algorithm is one
of the most known statistical algorithms to find the mode of a marginal
likelihood estimation or posterior distribution function [46]. A GMM is a
semi-parametric estimation method since it defines a general class of func-
tional forms for a density model. The goal of probability density estimation
is to model a given set of training samples which approximates the true
probability density function. Probability density estimation could be used
for clustering, classification and novelty detection in addition to estimating
a density function [47]. Other advantages of the semi-parametric approach
of GMM models are fast computations and efficient memory usage [42].

The density of the normalized price is calculated in (4.2):

p(np) =
N∑

i=1

p(np|ci)P (ci). (4.2)

p(np|ci) is the i-th Gaussian from the GMM and P (ci) is the prior proba-
bility of the i-th Gaussian in this formula.

In (4.3), the p(np|ci) is calculated:

p(np|ci) = p(np|µi, σi) =
1

σi

√
2π

e

[
−(np−µi)

2

2xσ2
i

]

. (4.3)

µi is the mean and σi is the standard deviation of the i-th Gaussian from
the GMM.

The choice of the number of Gaussians should reflect a balance between the
predictive accuracy of the model and the computational overhead. Gaussian
models are sensitive to over-fitting. Increasing the degree of freedom in the
model leads to a higher change of over-fitting the data.

Bayes’ rule is used to determine the posterior probability. This is performed
in (4.4) [42]:

P (ci|np) =
p(np|ci)P (ci)

∑N
i=1 p(np|ci)P (ci)

∀i = 1, . . . ,N. (4.4)

P (np|ci) stands for the posterior probability of the i-th Gaussian. The poste-
rior probabilities given the normalized price np are stored in a N-dimensional
vector for all Gaussians. This is shown in (4.5) [42]:

$η(np) = [P (c1|np), P (c2|np), . . . , P (cN |np)] (4.5)
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$η(np) is the N-dimensional vector of posterior probabilities for the P (ci|np).

For each normalized price npj, the vector of posterior normalized price prob-
abilities, $η(npj), is calculated. $η is evaluated for each normalized price npj

The economic regimes are obtained by clustering the price distributions
across days with the k-means algorithm with a similarity measure on the
probability vector $η(npj) and the normalized prices np [42].

The clusters that are found represent the frequently occurring price distri-
butions. The center of each cluster is a probability vector that correspond
to a regime r = Rk for k = 1,..., M , where M is the number of regimes. A
conditional probability matrix, P (c|r) is created by combining the probabil-
ity vectors for each regime. This matrix has N rows for each component of
the GMM and M columns for every regime [42].

The density of the normalized price np, dependent on the regime Rk is
calculated in (4.6). p(np|Rk) is the density of the normalized price np given
a regime Rk, and P (ci|Rk) is the probability of the i-th Gaussian given the
k-th regime [42]:

p(np|Rk) =
N∑

i=1

p(np|ci)P (ci|Rk). (4.6)

The probability of regime Rk dependent on the normalized price np is com-
puted with Bayes’ rule in (4.7).

P (Rk|np) =
p(np|Rk)P (Rk)

∑M
k=1 p(np|Rk)P (Rk)

∀k = 1, . . . ,M (4.7)

In (4.7), M represents the number of economic regimes and the prior proba-
bilities, P (Rk) of the different regimes are calculated by a counting process
over past data.

A Markov transition matrix is computed to predict the future economic
regimes during a TAC SCM game in the last step. This matrix represents
the posterior probability of transitions at time step t+1 to regime rt+1 given
the current regime rt at time step t [42].

The economic regimes were identified with historical sales data. The Min-
neTAC agent has to identify the dominant economic regime in the TAC
SCM games. By calculating the normalized prices for the current time step
t in the game, the dominant economic regime is identified. The estimated
normalized price at time step t is indicated by npt. The MinneTAC agent
selects the economic regime with the highest probability. This is shown in
(4.8):

argmax

1 ≤ k ≤ M
P (Rk|npt). (4.8)
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4.3 How the game data is processed online

New information becomes available that affects the future market prices
during TAC SCM games. The game server sends each participating agent
a market report each game day. This is the most important information
source of each agent. The market report gives the maximum and minimum
sales prices for every product. This information is used by the price pre-
diction mechanism of the MinneTAC to calculate the future prices of each
product.

The price prediction mechanism of the MinneTAC agent requires the mean
sales prices of each product to forecast the future prices. The problem is
that the market report has no information about the quantities sold of each
product. This makes it very difficult to accurately calculate the average
prices of each product. A weighted average price based on the minimum
and maximum prices has serious drawbacks [42]. The lack of accuracy of
this method is a problem. This is caused by fluctuations in minimum and
maximum prices of each product. Outliers could occur that are not within
the true distribution of the prevailing prices. Therefore this method is not
used by the MinneTAC agent [42]. Double exponentially smoothing the min-
imum and maximum sales prices of each product solves the lack of accuracy
of taking a weighted average price [42].The double exponential smoothing is
performed in 4.9) and (4.10).

A Brown linear i.e. double exponential smoothing method smoothes min-
imum and maximum prices to lower the impact of sudden price changes.
Equations (4.9) through (4.11) show how to smooth npmin

d−1 using double ex-
ponential smoothing with an α of 0.5. The result of exponentially smoothing
is referred as ñpmin

d−1. The same procedure is applied to npmax
d−1 as well, which

results in ñpmax
d−1 .

ñpmin′

d−1 = α · npmin
d−1 + (1 − α) · ñpmin′

d−2 (4.9)

ñpmin′′

d−1 = α · ñpmin′

d−1 + (1 − α) · ñpmin′′

d−2 (4.10)

ñpmin
d−1 = 2 · ñpmin′

d−1 − ñpmin′′

d−1 (4.11)

Because the quantities of the products are not given the average of the
smoothed maximum and minimum price is taken. With the preceding day’s
normalized minimum price ñpmin

d−1 and normalized maximum price ñpmax
d−1 :

ñpd−1 =
ñpmin

d−1 + ñpmax
d−1

2
. (4.12)

In this formula:

• α is the smoothing constant and has a value of 0.5

• ñpmin
d−1 is the minimum price of the previous day
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• ñpmax
d−1 is the maximum price of the previous day

• ñpmin
d−2 is the minimum price of the day before yesterday

• ñpmax
d−2 is the maximum price of the day before yesterday

It proved that this approach is more accurate than taking the smoothed
average of the minimum and maximum prices [44].

4.4 The ensemble price prediction mechanism of

the MinneTAC agent

The concept of ensemble price prediction was developed to improve price
predictions. Ensemble price prediction combines multiple price prediction
methods with different properties. The combination of multiple price predic-
tion methods has to compensate the shortcomings of each individual price
prediction method. A dynamic weighting mechanism has to determine the
weights of each price prediction method in such a way that the shortcom-
ings of each prediction method are compensated. The weights of each price
prediction method are based on the inverse of the variance between previ-
ously predicted prices in the MinneTAC agent. The variance measures the
accuracy of the price prediction mechanism of the MinneTAC agent [48].

The dynamic weighting mechanism is an important part of the ensemble
price prediction mechanism of the MinneTAC agent. The dynamic weight-
ing mechanism has to determine the weights for each price prediction method
for multiple time horizons [49].

4.4.1 The price prediction methods

The MinneTAC agent uses a Markov, a Markov-correction, an Exponential
smoother and Exponential-2C-adapter price prediction methods.

These price prediction methods are explained in the next sections.

The Markov price predictor

Stochastic processes evolve over time in a probabilistic manner. Markov
chains are a special kind of stochastic processes. Markov chains have a spe-
cial property that probabilities involving the future process only depends on
the present state of the process and are independent of events in the past. In
other words, this property says that the conditional probability of any future
event given any past events and the present state is independent of the past
events and depends only on the present state. The conditional probabilities
for a Markov chain are called transition probabilities. When this probabili-
ties are fixed, these are called stationary transition probabilities. Each time
when a Markov chain is observed, the chain can be in any of the states.
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Given the current state, a transition matrix gives the probabilities which
state will be next [3]. In the case of the MinneTAC agent, the transition
matrix is created by an off-line counting process [35]. This matrix contains
the posterior probabilities of transition from day N , to day N + 1 given
the current economic regime on day N [35]. There are two different types of
Markov prediction methods. The first is a Markov interval prediction (4.13).
The interval is based on training a separate Markov transition matrix for
each day in the planning horizon [42]. The second method is repeated one
day prediction (4.14) and (4.15). This is done by repeating a single day
prediction matrix. The MinneTAC agent is able to work with both methods.

Interval prediction:

$P ($rd+h|ñpd−1) =
∑

rd+h

. . .
∑

rd+h

{
$P ($rd+h|ñpd−1) · Tn(rd+n|rd+n−1)

}
. (4.13)

Repeated one-day prediction:

$P ($rd+h|ñpd−1) =
∑

rd+h

. . .
∑

rd+h

{
$P ($rd+h|ñpd−1) · Th+1

n (rd|rd−1)
}

. (4.14)

where:

Th+1
n (rd|rd−1) =

h∏

n=0

T1(rd|rd−1). (4.15)

The Markov-correction price prediction method

This price prediction method is used for long term, strategic, prediction of
future economic regimes. The prediction part is the same as the above men-
tioned Markov predictor, but the entire price history is taken into account.
So instead of the normalized yesterdays price ñpd−1 we use $P ($rd−1|ñp1, . . . , ñpd−1}),
to indicate a vector of the posterior probabilities of all the regimes on day
d − 1.

This method is based on two distinct operations. The first operation is a
recursive Bayesian update of the posterior probabilities for regimes based on
the historical measurements of smoothed mid-range normalized price since
the time of measurement until the previous day. The second distinct oper-
ation is a prediction of the posterior distribution of regimes N days in the
future. This is done recursively as in the Markov predictor [44].

The Exponential smoother price predictor

The exponential smoother predictor is an alternative for the Markov based
price prediction methods [42]. In the first step, the price trend, t̃rd−1, is
calculated.

t̃rd−1 =
a

1 − a
· (ñp

′

d−1 − ñp
′′

d−1) (4.16)

in this formula:
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• a = the exponential smoothing constant.

• ñp
′

d−1 = the single smoothed mid-range normalized price series ob-
tained by applying simple exponential smoothing to the normalized
mid-range prices.

• ñp
′′

d−1 = the double-smoothed normalized price series obtained by ap-

plying simple exponential smoothing to ñp
′

d−1.

After calculating the smoothed mid-range price using the daily minimum
and maximum price, this step is also applied for the price trend.

t̃rd−1 =
t̃r

min

d−1 + t̃r
max

d−1

2
(4.17)

• t̃r
min

d−1 is the exponentially smoothed minimum normalized trend.

• t̃r
max

d−1 is the exponentially smoothed maximum normalized trend from
the previous day.

The maximum smoothed price is calculated in the same way. The mid-range
price range is calculated in the same way as the mean price with (4.12).

Using the calculated mid-range trend and yesterdays price estimate we es-
timate today’s and the future daily smoothed prices as:

ñpd+n = ñpd−1 + (1 + n) · t̃rd−1 ∀n = 1, . . . , h. (4.18)

The density of the normalized price dependent on the regime Rk is obtained
with the formula below:

p(ñpd+n|R̂k) =
N∑

i+1

p(ñpd+n|ζi)P (ζi|Rk). (4.19)

Then we use the formula:

P (R̂k|ñpd+n) =
p(ñpd+n|R̂k)P (Rk)

∑M
k=1 p(ñpd+n|R̂k)P (Rk)

∀k = 1, . . . ,M. (4.20)

to compute the predicted probability dependent on the predicted exponen-
tially smoothed normalized price n days into the future npd+n..

The Exponential-2C-adapter

The exponential-2C-adapter is a price prediction method, based on expo-
nential smoothing. The exponential-2C-adapter is independent of economic
regimes. The main function of this price prediction method is to predict
prices for one day ahead. The main reason for implementing the exponential-
2c adapter price predictor is the accuracy for one day ahead price predictions.
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4.4.2 The dynamic weighting mechanism

The dynamic weighting mechanism of the MinneTAC agent was developed
by Wolfgang Ketter et al. [50]. The dynamic weighting mechanism has to
combine the predictions of each price predictor. The weighting mechanism
is called dynamic because the weights of each price predictor are constantly
updated during the game. The weights are based on the inverse of the vari-
ance in past price predictions. The variance indicates how accurately each
price prediction method predicts the future prices. A low variance means
accurate price predictions. The MinneTAC agent predicts the future mar-
ket prices for one up to 20 days ahead. This procedure is performed for
each product at each game day. The weighting mechanism calculates the
optimal weights of each price prediction method up to 20 days ahead. Price
prediction methods that performs optimal for short term predictions obtain
a higher weight for short term predictions compared to predictors that are
more suitable for further ahead predictions [42].

The price prediction methods have an equal weight in the ensemble when
TAC SCM games starts. The dynamic weighting mechanism starts learning
the optimal weights of each price predictor after the second game day.

An explanation is given how the dynamic weighting mechanism calculates
the weight of each price prediction method in the sections below.

The MinneTAC agent is configured with a block weighting and an exponen-
tial smoothing variance calculation method. These methods are explained
in the sections below.

The block weighting variance calculation method

The block weighting variance calculation method is comparable with a mov-
ing average of the most recent N number of price predictions. The number of
past price predictions is called the block weight horizon and is configurable
in the MinneTAC agent. The configuration file is shown in the appendix.
The size of the number of previously calculates variances determines the
influence of new observed variances on the weights of each price prediction
method. A small block weight horizon is more reactive to new observed
variances than a large block weight horizon [33].

σ2
i,n =

1

N

T∑

j=T−N+1

(n̂pi,n(j) − ñpi,n(j))2 (4.21)

In this formula:

• T = current day.

• N = Block length, i.e. number of past predictions.

• n̂pi,n = predicted value of np forecasted by predictor i.
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• ñpi,n = real time estimated value of np.

The exponential smoothing variance calculation method

Exponential smoothing is a widely applied method to predict stationary
time-series [33]. The current variance is the weighted average of the new
calculated variance and the past variances. The smoothing constant τ de-
termines the relative weight placed on the current variance. The τ value is
also configurable in the configuration file of the MinneTAC agent. A small τ
value means that the variance is more reactive to changes in the predictive
performance of each price prediction method. Hence, exponential smoothing
applies a set of declining weighs to all previously calculated variances. In
(4.22) and (4.23), the variance is calculated [42].

σ2
i,n = C ·

T∑

j=1

exp(−
T − j

τ
)(n̂pi,n(j) − ñpi,n(j))2 (4.22)

C =
1

∑T
j=1 exp(−T−j

τ )
(4.23)

In this formula:

• T = current day.
• τ = Smoothing constant.
• n̂pi,n = predicted value of np forecasted by predictor i.
• ñpi,n = real time estimated value of np.

The weighting mechanism

After calculating the variance of each price prediction method, the optimal
weights are determined. In (4.24) and (4.25), the optimal weights of each
price predictor are calculated, where n̂pn is the normalized market price on
day n over a planning horizon h. n̂p1, n is the predicted normalized price for
predictor 1 on day n, and ω1,n presents the normalized weight for predictor
1 on day n.

n̂pn = ω1,n · n̂p1,n +ω2,n · n̂p2,n + . . .+ωS,n · n̂pS,n, ∀n = 1, . . . , h (4.24)

The confidence of individual predictions, i, on day ,n, with the variance
error resulting from formula (4.21), is determined by the following formula:

ψi,n =
1

σ2
i,n

(4.25)
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Summing the individual weights ψi,n, and dividing them by the sum of
the weights Ωn, resulting from formula (4.26):

Ωn =
1

σ2
1,n

+
1

σ2
2,n

+ . . . +
1

σ2
S,n

(4.26)

results in the normalized weights:

ω1,n =

1

σ2
1,n

Ωn
(4.27)

4.5 Summary

The main purpose of this chapter was to provide an insight in the the price
prediction mechanism of the MinneTAC agent. The next chapter explains
the experimental design and methodology to improve the price prediction
mechanism of the MinneTAC agent. The knowledge of this chapter enables
a better understanding of research explained in chapter 5 and 7.
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Chapter 5

The improvements in the

ensemble price prediction

mechanism of the MinneTAC

agent

The research related to improving ensemble price prediction in the Min-
neTAC agent is explained in this chapter. The concept of ensemble price
prediction was developed to improve price predictions [48]. Ensemble price
prediction tries to make more accurate price predictions by compensating
the disadvantages of individual price prediction methods. A weighting mech-
anism has to determine the weights of each price prediction method in such
a way that the shortcomings are compensated. In the MinneTAC agent,
the weights of each price prediction method are based on the inverse of the
variance between previously predicted prices. The variance measures how
well the prices were predicted. The variance can be calculated with a block
weighting or an exponential smoothing method [48].

Experiments and empirical research are used to answer the research ques-
tions. The outline of the experimental design is as follows. There is started
with an explanation of the experiments that are performed to benchmark
the predictive performance of the MinneTAC. Thereafter, the methodology
to answer the research questions is explained.

5.1 The experimental design

The experiments are performed in a special computer environment, devel-
oped by the university of Minnesota [51]. This computer environment sim-
ulates TAC SCM games. The MinneTAC agent is competing with the best
performing TAC SCM agents in these experiments. A special feature of this
computer environment is the option to control the market conditions during
TAC SCM games. This enables a more profound comparison of the price
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prediction mechanism of the MinneTAC agent. The game server environ-
ment is therefore called a controlled game server. During these games, the
performance of the MinneTAC agent is measured. After each change in the
price prediction mechanism, new games are performed to benchmark the
performance of the MinneTAC agent.

The experiment manager is a software tool to manage and orchestrate the
experiments. The experiment manager is located on the game servers of
the university of Minnesota[51]. In figure 5.1, an overview of the TAC SCM
game environment is given.

Experiment manager to setup and manage experiments

Game server running TAC SCM game

Game server
Agent 1

Game server
Agent 2

Game server
Agent 3

Game server 
Agent 4

Game server 
Agent 5

Game server
Agent 6

Figure 5.1: An overview of the TAC SCM game environment, developed by
the university of Minnesota.

The game environment consists of seven servers. Each participating agent
requires a separate server and one server is used to run the TAC SCM game.
The working of the TAC SCM game was explained in chapter 3.

The experiments are configured in the experiment manager. To setup an
experiment, the following settings have to be made:

• The name of the experiment.

• The number of TAC SCM games the agents have to play.

• The configuration of the MinneTAC agent that is used.

• Which game servers to use for the experiments.

• The competitors of the MinneTAC agent

• The game seeds to play the games or to randomly select the game
seeds.

When the TAC SCM games are finished, log files are stored on the servers of
the university of Minnesota. Valuable information about the game and the
participating agents is stored in these log files. The MinneTAC also makes
log files in which specific information about the performance of the Min-
neTAC agent is stored. The information in the log files of the MinneTAC
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agent is used to analyze the predictive performance of the price prediction
mechanism.

Multiple games are performed to measure the performance of the MinneTAC
agent. Section 5.1.1 explains the required number of experiments to come
to statistically significant results.

Multiple configurations of the MinneTAC are available. The preferred con-
figuration of the MinneTAC agent has to be selected before each experiment.
Currently, there are multiple configurations of the MinneTAC agent avail-
able.

A feature of the experiment manager is to manually assign servers to each
participating agent. Some agents have a more complex software architecture
and need a more powerful server to run optimally. The MinneTAC agent has
a relative complex price prediction mechanism and needs a powerful server
to function optimally.

In advance, the competitors of the MinneTAC agent have to be selected.
The MinneTAC agent is competing with the best performing agents in the
recent TAC SCM competitions in the experiments. The same competitors
are chosen to minimize the profile variability between the experiments. In
the experiments, the MinneTAC agent is competing with the TAC TEX
agent developed by the university of Texas in 2007, DeepMaze2007 devel-
oped by the university of Michigan, Mercator2008 developed by the Aristotle
University of Thessaloniki, Crocodile2005 developed by the University of Za-
greb and PhantAgent2007 developed by the University of Bucharest.

Game seeds are repeatable pseudo-random sequences of any individual mar-
ket factor or combinations of market factors that influence the market vari-
ability in TAC SCM games [51]. In other words, game seeds are market
situations that occur in TAC SCM games and the sequence in which they
occur. A special feature of the TAC SCM game environment is to specify
the game seeds in advance of an experiment. The game seeds have to be
specified for each TAC SCM game. In the experiments with the MinneTAC
agent, for each game, the same game seed is used to overcome the random-
ness between the experiments. The experiment manage could also executed
experiments with random game seeds [51].

5.1.1 The required number of experiments

The simulations of dynamic markets like the TAC SCM game have a high
complexity and a high variability. The performance of the MinneTAC agent
is dependent on the market conditions and the strategies of its competi-
tors. Because the space for possible strategies and market conditions is very
large, it is difficult to evaluate the performance of the MinneTAC agent. The
TAC SCM game environment of the university of Minnesota, with predefined
game seeds, enables a comparison between different experiments. With 40

44



games per experiment, an accurate and statistically significant comparison
is made [51].

Figure 5.2 shows the differences between the Regular game server for TAC
SCM games, a demand controlled game server and the controlled game server
of the university of Minnesota. The demand controlled game server is a game
server that is also able to reduce the differences between different TAC SCM
experiments [51]. The demand controlled game server is used to benchmark
the game server of the university of Minnesota. 5.2 visualizes how many
games per experiment have to be performed to come to a certain profit dif-
ference. The actual profit difference measures the difference between the
games. As already described in chapter three, a TAC SCM game consists of
220 virtual days, each game day has a length of 15 seconds. Performing 40
games takes 55 hours. Because of this time constraint, in this research, for
every change in parameter settings not more than 40 games are performed.
This does not compromises the accuracy of the outcomes.

The game data is analyzed to measure the performance of the price predic-
tion mechanism of the MinneTAC agent after the experiments are finished.
The next sections explains how the game data is extracted from the log files.

Figure 5.2: The difference between the regular, demand controlled and con-
trolled game sever developed by the University of Minnesota [51].

5.1.2 How the game data is obtained and analyzed

Valuable game data is logged in TAC SCM games. The observed prices of
each product during the games are an example of logged information. All
the game data, generated by the MinneTAC agent and the game server are
stored in zip files, located in the user directory on the Caesar server of the
university of Minnesota. The game server saves game specific data including
the real prices of each product on each virtual game day. These prices are
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used to asses the predictive performance of the price prediction mechanism
of the MinneTAC agent.

All valuable information specific to the performance of the MinneTAC agent
is logged by the MinneTAC agent. This logged data contain information
about the actions and performance of the MinneTAC agent. The Min-
neTAC agent writes all this information to a log file. This log file is also
stored in a zip file in the user directory on the Caesar server of the university
of Minnesota. The problem is how to obtain the required values out of the
log file. In the first place, the zip file has to be unzipped. Because there are
40 games per experiment, a shell script automatically extracts the log files.
Thereafter the required data needs to be extracted from the log file. This is
done with the help of regular expressions, implemented in Python scripts.
Again, a shell script is used to automate this extraction process. The ex-
tracted game data is converted to comma separate values that can be read
easily by statistical or mathematical computer programs to analyze the data.

Matlab is a matrix based mathematical computer program to analyze the
game data [52]. For each experiment, all the price data is read into Matlab.
The price data is converted into matrices in Matlab. With these matri-
ces, the mathematical analysis is performed. This process is implemented
in Matlab scripts that are able to automatically perform these above men-
tioned steps. The outcomes of the analysis are in turn saved in a new matrix.
With this matrix, it is possible to make tables and plot graphs to visualize
the outcomes from the experiments.

To extract the required game data from the log file of the game server,
a similar approach is used. The required data is obtained after these steps.
This data is ready to process in a statistical or mathematical computer pro-
gram.

The next section explains how the performance of the price prediction mech-
anism is measured.

5.1.3 The performance measures

The performance of the MinneTAC agent is measured between the predicted
future prices of the price prediction mechanism and the prices occurred
during the TAC SCM games. The root mean square error (RMSE) is used.
The RMSE is also called the root mean square deviation (RMSD) [53]. The
RMSE is a frequently used measure to determine the differences between
predicted values of a model and the values actually observed from real data
[53]. The RMSE is calculated between the predicted normalized price, n̂pn

and the actual normalized price, npn, over a prediction interval n between
the current day and the end of the planning horizon, h, to determine the
accuracy of the price prediction. The values of the RMSE have to be as
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small as possible[51].

RMSE(n̂pn,npn) =

√√√√√√

NG∑

γ=1

ND−n∑

d=1

(n̂pn,γ
d − npn,γ

d )2

NG · (ND − n)
, ∀n = 1, . . . , h (5.1)

• ND = the length of the TAC SCM game in days.

• NG = the number of test games.

• n̂pn = the predicted normalized price.

• npn = the actual normalized price.

• n = prediction interval.

5.2 The methodology to improve ensemble price

prediction

The methodology to improve the price prediction mechanism of the Min-
neTAC agent is explained in this section. The methodology is divided in
four parts. The experiments with the aim to find optimal quantity of his-
torical price predictions to calculate the variance as accurately as possible
are explained in the first part. The experimental design was explained in
the previous section. The variance could be calculated with two methods
based on moving averages or exponential smoothing. The optimal weights
of each price prediction method in the ensemble are calculated after finding
the optimal τ value of the exponential variance calculation method, and the
optimal number of historical price predictions of the block weighting vari-
ance calculation method. With the optimal weights of each price predictor,
the MinneTAC agent can be bootstrapped. Bootstrapping is explained in
the third part. Bootstrapping is a form of supervised learning [11]. Boot-
strapping tries to avoid the costly learning process of the optimal weights of
each price predictor in the beginning of the TAC SCM games. During re-
cent TAC SCM competitions, the MinneTAC agent’s performance increased
during the games after the optimal weights were learned. The ensemble
prices predicted by the MinneTAC agent are benchmarked with the prices
predicted by the individual price prediction methods in the last part of
the methodology. Ensemble price prediction tries to predict more accurate
prices by compensating the disadvantages of the individual price predictors.
Are the disadvantages of each price predictor correctly compensated in the
MinneTAC agent?

5.2.1 The optimal quantity of historical price predictions

The weights of each price prediction method are based on the variance in
past price predictions. How many past price predictions are needed to cal-
culate to calculate the variance as accurately as possible? Experiments with
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different quantities of historical price data are executed to answer these re-
search questions.

When to much historical price predictions are used, the price prediction
mechanism is over-fitted. The problem with using too little historical price
data is that price predictors are not well enough trained and therefore lack
accuracy. Over-fitting means that a statistical model describes the random
error or noise in the data instead of the underlying relationship. Over-fitting
is important when a learning algorithm is trained with samples for which
the desired output is known. The algorithm may adjust to specific random
features in the data that have no causal relation to the training data [45].

The variance can be calculated with a block weighting method based on
moving averages or an exponential smoothing method. An explanation is
given how the experiments with these methods are performed below.

The exponential smoothing method

In section 4.4.2, formulas (4.22) and (4.23) explained the exponential vari-
ance calculation method. The exponential smoothing parameter τ deter-
mines to optimal quantity of historical price predictions to calculate the
variance. The τ determines the relative weight placed on the current ob-
served variance compared to the previously calculated variances. In other
words, with a small τ , the variance is more reactive the changes in the accu-
racy of each price prediction method. This implies that the weights of each
price predictor change more rapidly. What is the optimal reactivity of the
variance to calculate the future prices as accurate as possible?

The block weighting method

In section 4.4.2, formula 4.21 explains the block weight variance calculation
method. The block length N is varied in the block weighting formula. The
block length is the number of historical price predictions that are taken into
account to calculate the variance of each price predictor.

Which value of the block weight horizon leads to the most accurate future
price predictions? The block weight horizon is varied between an interval
of 5 to 30 days of historical price predictions in the experimentes. With a
low value for the block weight horizon, the weights of each price prediction
method are more reactive to changes in the predictive accuracy. With a high
value for the block weight horizon, the weights of each price predictor are
less reactive to changes in the predictive performance. How reactive has to
price prediction mechanism to be to calculate the future prices as accurate
as possible?

The MinneTAC agent has to possibility to configure which variance calcu-
lation method is used during the experiments. This is done in a xml-based
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configuration file. The configuration file is included in the appendix. The ex-
periments could be executed after selecting the variance calculation method
and the optimal value of historical prices to calculate the variance. When
the games are finished, the steps explains in section 5.1.2 are performed.
This section explained how the game data is extracted from the log files of
the game server and the MinnetAC agent.

The MinneTAC agent logs the price predictions of each price predictor and
the ensemble price calculated by the weighting mechanism. The prices are
predicted for and up to 20 days ahead for each virtual game day. The game
server logs the real prices that occurred on each virtual game day. When
the experiment is finished and the prices are extracted from the log files
of the MinneTAC agent and the game server, the data is loaded in Matlab
to determine the predictive accuracy of the MinneTAC agent. The Root
Mean Square Error (RMSE) is used to determine the accuracy of the price
prediction mechanism of the MinneTAC agent. The RMSE is calculated for
each individual price predictor and the ensemble price determined by the
weighting mechanism of the MinneTAC agent. The RMSE was explained in
section 5.1.3.

The RMSE is calculated for each price predictor and the ensemble prices
for one up to 20 days ahead in the future. The RMSE values are plotted in
a graph to make a comparison between the accuracy of the price prediction
methods. This graph has to show which price prediction method showed
the best performance and if the ensemble price is more accurate than the
price predicted by the individual prediction methods.

After the experiment is analyzed and the performance is determined, the
τ and block weight horizon are changed and a new experiment is started.
This procedure is repeated until the optimal values for the τ and block
weight horizon are determined.

When the optimal values of the block weight horizon and τ parameter are
found, the optimal weights can be calculated.

5.2.2 The optimal weights for each price prediction

The optimal weights of each price prediction method are calculated for three
purposes:

1. The weights are calculated to determine if the ensemble consists of the
optimal combination of price prediction methods. Are the disadvan-
tages of each price prediction method compensated?

2. The optimal weights are used to bootstrap the MinneTAC agent.

3. The optimal weights are calculated to check if the price prediction
mechanism of the MinneTAC agent is correctly working.
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The weights of each price predictor are based on the inverse of the variance
calculated with the exponential variance calculating method in formulas 4.22
and 4.23 or with the block weight variance calculation method in formula
4.21. In formulas 4.24, 4.25 and 4.26, the optimal weights are calculated
with the variances from the exponential or the block weight method.

The weights of each price prediction method are calculated in Matlab by
implementing the exponential and block weight variance calculating meth-
ods and formulas 4.24, 4.25 and 4.26. The prices predicted by the MinneTAC
agent for 20 days ahead on each virtual game day and the real prices, ex-
tracted from the game server, are loaded in Matlab. The weights of each
price prediction method are calculated for each game day. The weights are
calculated for one up to 20 days ahead. These weights are stored and this
procedure is repeated for each game day until the end of the game. Because
there are 40 games performed at each experiment, these procedure is ap-
plied for each game. A weight matrix is built with the average weights of
all experiments.

The MinneTAC agent predicts the future prices up to 20 days ahead. There-
fore, the weight matrix will have 21 columns and four rows for each price
predictor. The sum of the weights of each price predictor have to sum up
to one in each column. In the TAC SCM competition, the agents trade 16
types of PCs. A separate weight matrix is calculated for each type of PC.
This is done to obtain insight if there are difference between the different
market segments of each PC type. The weight matrixes of each game are
averaged in the last step. An example of an weight matrix is given in the
table below.

Price predictor day T day T + 1 day T + N − 1 day T + N

1 0.6 0.4 0.3 0.2
2 0.2 0.4 0.3 0.3
3 0.2 0.2 0.4 0.5

sum of the weights 1 1 1 1

The weight matrices are plotted to obtain insight in the weight movements
of each price predictor during the games. The weight matrixes containing
the averages weights of each price predictor for all the 16 products. There-
after, plots are made of the weights of each price predictor for the individual
products.

A comparison is made between the weights calculated by the MinneTAC
agent and the theoretically calculated weights in the last step. This step
is performed to look if the weighting mechanism of the MinneTAC agent is
correctly working. The weights assigned to each price predictor are logged
in the MinneTAC agent for each game day. The weights are extracted from
the logs files with regular expression implemented in Python scripts. This
procedure is the same as obtaining the price data from the logs files of the
MinneTAC agent. Plots are made to visualize the differences between the
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weights calculated in Matlab and the weights calculated by the MinneTAC
agent.

Bootstrapping the MinneTAC agent

Bootstrapping is a form of supervised learning [11]. The goal of bootstrap-
ping is to avoid a costly learning process at the beginning of TAC SCM
games. The performance of the MinneTAC agent increased during recent
TAC SCM competitions after the optimal weights were learned.

Research in private communication with dr. Wolf Ketter, has identified
that the first phase of the game ends after approximately 30 virtual game
days. Start-up effects occur during the first 30 days of TAC SCM games.
Start-up effects are characterized by insufficient supplies of computer parts
from the suppliers. The participating agents are generally not able to meet
the demand of the customers. This results in higher market prices for each
type of PC traded. The start-up effects disappear after approximately 30
game days. The MinneTAC agent is bootstrapped with the weights for the
first 30 days of the game to incorporate the start-up effects.

The weights of each price prediction method are calculated on exactly the
same way as of weights for the whole length of the game. The difference is
that only the first 30 days of each game are used instead of the whole game
of the game to calculate the weights.

The price prediction mechanism of the MinneTAC is extended to incor-
porate bootstrapping. The current version of the MinneTAC agent’s Java
code is extended. A matrix is programmed with the optimal weights of
each price predictor in the Java code of The MinneTAC agent. The optimal
weights are loaded and assigned to each price prediction method when the
MinneTAC agent starts.

A linear transition mechanism was build in the MinneTAC agent to enable
a smooth transition between the bootstrap weights and the weights calcu-
lated by the weighting mechanism. This mechanism slowly starts to mix the
bootstrap weights with the weights calculated by the weighting mechanism.
The transition phase takes 10 virtual game days. Thereafter, the weights
are exclusively calculated by the weighting mechanism.

The performance of the MinneTAC agent, with bootstrapping, is compared
with the performance of the MinneTAC agent without bootstrapping. Ex-
periments are performed with bootstrap weights calculated with the expo-
nential variance and the block weighting variance calculation method.

The RMSE is used to measure the performance of the MinneTAC agent
[43]. The RMSE values of bootstrapping the MinneTAC agent are compared
with the RMSE values without bootstrapping. A comparison between boot-
strapping with exponentially calculated weights and weights calculated with
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block weighting variance calculation is also performed.

This chapter explained the experimental design and methodology to im-
prove ensemble price prediction in the MinnTAC agent. The next chapter
explains the results from improving ensemble price prediction in the Min-
neTAC agent.
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Chapter 6

The outcomes of improving

ensemble price prediction.

The outcomes from the experiments to improve ensemble price prediction
in the MinneTAC agent are discussed in this chapter. The outline of this
chapter is as follows. The optimal quantities of historical price predictions
for the exponential and block weighting variance calculation methods are
explained in the first section. The optimal weights of each price prediction
method in the ensemble are evaluated in the next part. The results from
bootstrapping the MinneTAC agent with the optimal weights for the first
phase of the TAC SCM game are explained in the last part.

6.1 The optimal variances calculations

The predictive performance of the MinneTAC agent is measured with the
variance between the predicted and the real prices during the experiments.
The dynamic weighting mechanism uses the variance to determine the weights
of each price predictor in the ensemble. An exponential and a block weight-
ing variance calculation method were used by the MinneTAC agent. Section
4.4.2 explained the exponential and block weighting variance calculation
methods. The outline of this section is as follows. A discussion of the out-
comes from experiments with the exponential variance calculation method
is below. An evaluation of the block weighting variance calculation method
is given at the end of this section.

6.1.1 The exponential variance calculation method

The τ parameter determined the emphasis on the current observed variance
compared to previously calculated variances. Experiments with τ values
between 1 and 10 were executed. The weights of each price predictor did
not change with τ values higher then 10. This implied that the τ parame-
ter places to less emphasis on the current observed variance to change the
weights of each price predictor in the ensemble. 6.1 shows the RMSE values

53



of the ensemble price calculated by the dynamic weighting mechanism of the
MinneTAC agent. The RMSE values were calculated for each experiments
with τ values varying between 1 and 10.
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Figure 6.1: The RMSE values of the ensemble price with different τ values.

The y-axis shows the RMSE values of each experiment. The smaller the
RMSE value, the more accurate the future prices were predicted. The RMSE
was determined for price predictions from one day up to 20 days ahead. 40
TAC SCM games were performed with each τ value to come to statistically
significant answers . The average RMSE value was used to determine the
optimal τ . The x-axis shows the number of days ahead the future prices
were predicted. There can be concluded that the experiments with a τ value
of 5 showed the best performance. An overview of the standard deviations
between the different τ values can be found in the appendix. The differences
between the different τ values are marginal. The optimal τ values have a
smoothing factor in the range between 4 and 10. Although the differences
between τ values 1 and 5 are significant. An ANOVA analysis between the
RMSE values of the experiments with τ 1 and 5, to test if the differences
between the RMSE values were significant, are in the table below.

Source SS df MS F Prob F

Columns 0.00126 1 0.00126 44.73 0.000005
Error 0.00112 40 0.00003
Total 0.00238 41

The RMSE values of each price predictor, for all experiments, are shown
in the next graphs. An insight is provided in the differences between the
predictive performance of the individual price prediction methods for all τ
values.

The RMSE values of the experiments with all τ values for the Exponen-
tial price prediction method are shown in 6.2.The main findings is that
there is not a clear τ value performing significantly better. This implies
that the emphasis on historical price data did not influenced the predictive
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performance of the exponential price prediction method.
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Figure 6.2: The RMSE values of the exponential price prediction method
with exponential variance calculation.

The RMSE values of the exponential-2c-adapter are shown in 6.3. The differ-
ences between the different τ values are modest but there can be concluded
that a τ of 5 showed the best performance.
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Figure 6.3: The RMSE values of The exponential-2c price prediction method
with exponential variance calculation

The RMSE values from the experiments with the Markov price prediction
method are shown in 6.4. The differences between the experiments are mod-
est. The experiments with τ values of 1 and 7 showed the best performance.
The relationship between these experiments is not clear and there can be
concluded that the optimal τ values are in the range between 1 and 10. Fur-
thermore, the decline in the predictive performance of the Markov predictor
compared to exponential and exponential-2c-price predictors is smaller. This
indicates that the Markov predictor performed more accurately for further
ahead price predictions.
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Figure 6.4: The RMSE values of the Markov price prediction method with
exponential variance calculation.

The RMSE values of the Markov-correction price predictor are shown in 6.5.
The outcomes are comparable with the outcomes of the Markov predictor.
The main finding is that the optimal τ value is in the range between 1 and
10 days of historical price predictions.
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Figure 6.5: The RMSE values of the Markov-correction price prediction
method with exponential variance calculation.

The conclusion of the experiments with exponential variance calculation is
that the optimal τ values are in the interval between 1 and 10 and that on
average a τ value of 5 showed the best performance. Although the differ-
ences are not statistically significant. Furthermore, a τ value of 5 lies in the
middle of the range of τ values. The RMSE values of each price predictor
with a τ value of 5 are shown in 6.6. The ensemble price, calculated by
the dynamic weighting mechanism, is compared with the individual price
prediction methods. The idea of ensemble price prediction is that the en-
semble price has to compensate the disadvantages of each individual price
prediction method. This has to lead to more accurate price predictions.
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Figure 6.6: The RMSE values of each price predictor and the results of
benchmarking the ensemble price.

The average RMSE values of 40 TAC SCM games, performed with τ 5, are
shown on the y-axis. The x-axis shows the number of days ahead the Min-
neTAC agent predicted the prices. There main finding is that the Markov
and Markov-correction price prediction methods showed the best perfor-
mance for price predictions for one up to 20 days ahead. Furthermore, the
price predictions of the Markov and Markov-correction predictors were more
accurate then the ensemble price calculated by the dynamic weighting mech-
anism. This outcome is contrary to the expected outcomes and theory of
ensemble price prediction.

In the next section, the theoretical weights of each price predictor are com-
pared with the weights calculated by the dynamic weighting mechanism
of the MinneTAC agent. A comparison between the theoretical and real
weights has to provide insight why the ensemble price is less accurate than
the prices predictions of the Markov and Markov-correction predictors.

6.1.2 The block weighting variance calculation method

The block weight horizon was varied between 5 and 30 days of historical
price predictions in the experiments. The block weighting variance calcula-
tion method was explained in 5.2.1. The block weight horizon is the number
of historical price predictions to calculate the variance. The weights of each
price prediction method are more reactive to changes in the predictive per-
formance with a low block weight horizon. Experiments with a block weight
horizon higher then 30 days of historical price data were not executed. Ex-
periments, with a block weight horizon higher than 30, showed no significant
changes in the weights of each price predictor. The results of the experi-
ments with block weight horizon values between 10 and 30 days of historical
price data are below. The RMSE values of the ensemble price are in 6.7.
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Figure 6.7: The RMSE values of the experiments with the block weighting
variance calculation method.

The y-axis shows the average RMSE values of each experiment. 40 games
per experiment were executed to come to statistically significant answers.
The x-axis displays the number of days ahead the future prices were pre-
dicted.

Although the differences between the experiments are marginal and not sta-
tistically significant, the outcomes from the experiments show that a block
weight horizon of 10 resulted in the most accurate future price predictions.
An overview of the standard deviations between the different block weight
horizon values can be found in the appendix. A significance test proved
that there were no significant differences between the RMSE values of the
experiments with a block weight horizon of 10 and 15 days of historical
price predictions. The performance of block weight horizons of 10 and 15
days of price data differed the most. No statistically significant differences
were found between these experiments. An Anova analysis was performed to
measure the differences between the RMSE values of block weight horizons
10 and 15. The results from the Anova analysis are in the table below.

Source SS df MS F Prob > F

Columns 0.00017 1 0.00017 1.66 0.2049
Error 0.00402 40 0.0001
Total 0.00419 41

The predictive performance of each price predictor was separately analyzed
for each value of the block weight horizon. Insight was obtained in the dif-
ferences between the individual price prediction methods. The exponential
price predictor with different values of the block weight horizon is shown in
6.8. The values of the block weight horizon did not had a significant impact
on the exponential smoother price predictor. There were only marginal dif-
ferences between the experiments. There can be concluded that any value in
the range of 5 to 30 days of historical data can be chosen for the exponential
price predictor.
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Figure 6.8: The RMSE values of the exponential price prediction method
for all experiments the Block weighting variance calculation method.

The RMSE values of the exponential-2c-price prediction method are shown
in 6.9. Although the differences between the experiments are marginal, a
block weight horizon of 10 showed the best performance.
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Figure 6.9: The RMSE values of the exponential-2c-price prediction method
with the Block weighting variance calculation.

The RMSE values of the Markov price prediction method are in 6.10. The
differences between the experiments are very marginal and statistically not
significant. A block weight horizon of 15 showed the best performance for
short term price predictions. A block weight horizon of 10 showed the best
performance for price predictions from 8 up to 20 days ahead. The main
finding is that the differences between the values of the block weight horizon
are marginal. This implies that using a block weight horizons between 5
and 30 days of historical price predictions could not lead to large deviations
in the predictive performance of the MinneTAC agent. A block weight
horizon of 10 days of historical price predictions showed the most consistent
performance.
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Figure 6.10: The RMSE of the Markov prediction method with the Block
weighting variance calculation.

The experiments with the block weight horizon were initially performed
with the exponential, exponential2c-adapter and Markov price prediction
method. The Markov-correction price predictor was added to the ensemble.
The Markov-correction price predictor had a very marginal influence on the
predictive performance of the price prediction mechanism. 6.12 show the
difference in the predictive performance of the ensemble with and without
the Markov-correction price predictor. The predictive performance is mea-
sured with the RMSE and the experiments were performed with a block
weight horizon of 10 days of historical price predictions.
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Figure 6.11: The results from benchmarking the ensemble price prediction
system with block weighting variance calculation.

The ensemble price, calculated by the dynamic weighting mechanism, is
benchmarked with the individual price prediction methods in 6.12. The
Markov and Markov-correction price prediction methods showed a better
predictive performance than the ensemble price. This is not conform the
theory of ensemble price prediction. The ensemble price also did not out-
perform the individual price prediction methods with exponential variance
calculation. After analyzing the theoretically calculated weights and the
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weights calculated by the dynamic weighting mechanism, an analysis is made
of possible causes of the performance of the ensemble price.
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Figure 6.12: The results from benchmarking the ensemble price prediction
system with block weighting variance calculation.

6.2 A discussion of the weights of each price pre-

dictor

A discussion of the theoretically calculated weights of the individual price
predictors are given in this section. The theoretical weights of each price
predictor were calculated with exponential and block weighting variance
calculation. A block weight horizon of 10 day of historical price predictions
and a τ of 5 were used. The formulas of the block weight and exponential
variance calculation method were explained in 4.4.2. The prices, predicted
by the MinneTAC agent, were compared with the real prices during these
games. The theoretical weights were calculated to asses the mix of price
prediction methods in the ensemble of the MinneTAC agent. Furthermore,
the weights calculated by the MinneTAC agent were compared with the the-
oretical weights to assure that the weighting mechanism worked correctly.

6.13 shows the theoretical mean weights calculated with the exponential
variance calculation method with a τ of 5. The number of days ahead the
prices were predicted are shown on the x-axis. The mean weights of each
price predictor, averaged over 40 TAC SCM games, are shown on y-axis.
The y-axis shows the mean weights of each price predictor averaged over
all 16 types of PCs in the TAC SCM game. The weights were averaged
for each type of PC. The weights for each individual product are plotted in
graphs in the appendix. The weights of each price predictor had only very
marginal differences between the products. The weights of each price pre-
dictor are based on the inverse of the variance. The patterns in the weights
movements of each price predictor are in line with the inverse of the RMSE
calculated between the prices predicted by the MinneTAC agent, and the
real prices during the TAC SCM games. The price predictors that had a
better predictive performance had a higher weight in the ensemble. This
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corresponds with the aim of the dynamic weighting mechanism. The less
performing price predictors like the exponential-2c-adapter and the expo-
nential price predictor still had a significant weight. This is contrary to the
logic of ensemble price prediction.
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Figure 6.13: The mean weights with τ 5.

The theoretical weights, calculated with the exponential variance calcula-
tion method, are compared with the weights calculated by the MinneTAC
agent in 6.14. The weights of each price predictor are logged for each game
day for price predictions from one up to 20 days ahead in the MinneTAC
agent. The theoretically calculated weights were compared with the weights
of the MinneTAC agent. The theoretical weights and the average weights of
the MinneTAC agent for game days 80, 100 and 160 are on the y-axis. The
x-axis shows the number of days ahead the prices were predicted.

Large deviations between the weights of the MinneTAC agent and the theo-
retical weights were observed. The theoretical weights were more reactive to
changes in the accuracy of each price predictor, with the same τ value. The
weights of the MinneTAC agent changed only marginally from the stan-
dard weights assigned to each price predictor in the begin of each game.
This means that there are differences between the weights calculated by the
MinneTAC agent and the theoretical weights.
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Figure 6.14: A comparison between the theoretical weights and the weights
of the MinneTAC agent on the same days with τ 5

An explanation why the ensemble price did not outperform the Markov
and Markov-correction price prediction methods could be that the and
the exponential-2c-adapter had a significant weight. The exponential and
exponential-2c-adapter predictors negatively influenced the ensemble price.
The exponential and exponential-2c-adapter price prediction methods also
had a significant weight in the theoretically calculated weights averaged over
the whole length of the game. The ensemble price could also not outperform
the prices predicted by the most accurate price prediction methods theoret-
ically.

The theoretical weights calculated with the block weighting variance cal-
culation method are shown in the next graphs. The mean theoretically
calculated weights by the block weighting variance calculation method are
in 6.15. The mean weights of each price predictor are on the y-axis. The
mean weights of each price prediction method were separately calculated for
each PC type over 40 TAC SCM games. A block weight horizon of 10 days
of historical price predictions was used. The average weights of all 16 type
of PCs traded in the TAC SCM games are on the y-axis. The weights for
each individual PC type are plotted in the appendix. Only marginal differ-
ences between the weight movements were observed between the products.
The number of days ahead the prices were predicted are shown in the x-axis.

The weights of each price predictor correspond with the predictive perfor-
mance measured by the RMSE values. The weights of each price predictor
reflect the predictive performance. This is corresponds with the concept of
the dynamic weighting mechanism.
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Figure 6.15: The theoretically calculated weights with a block weight horizon
of 10.

The theoretical weights are compared with the weights calculated by the
dynamic weighting mechanism of the MinneTAC agent in 6.16. The weights
were compared on the same manner as with the exponentially calculated
weights. The weights of each price prediction method are on the y-axis and
the x-axis shows the number of days ahead the prices were predicted.
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Figure 6.16: A comparison between the weights calculated by the MinneTAC
agent and the theoretically calculated weights, with Blockweight 10

The weights calculated by the MinneTAC agent were more reactive than the
theoretical weights. The weights, calculated by the MinneTAC agent with
the block weighting method, also differed from the theoretical weights. The
exponential-2c-adapter price predictor was assigned a higher weight than
the Markov and Markov-correction predictor. The Markov and Markov-
correction predictor outperformed the exponential-2c-adapter and this is
contrary to the logic of the dynamic weighting mechanism. The predic-
tive performance of the Markov and Markov-correction predictor is better
than the exponential-2c-adapter for price prediction from 12 up to 20 days
ahead. Future research has to investigate if the block weighting method was
incorrectly implemented in the MinneTAC agent. The theoretical weights
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show the same pattern as the weights calculated by the exponential vari-
ance calculation method. The exponential and exponential-2c-adapter price
predictor had a significant weight while their performance lags behind the
Markov and Markov-correction predictors in the theoretical weights. The ex-
ponential and exponential-2c adapter price predictors also had a significant
weights in the exponentially calculated weights. The main finding is that
the theoretical weights deviates from the weights calculated by the weighting
mechanism of the MinneTAC agent. The weighting mechanism needs to be
revised. A solutions is a weighting mechanism based on a voting mechanism.
The most accurate price predictor is only used with a voting mechanism.
A price predictor, that performs optimal for short term price predictions,
is only used for short term price predictions. This weighting mechanism
could use the exponential or block weighting variance calculation method
to determine the predictive performance of each price prediction method in
the ensemble.

An optimally composed ensemble has price prediction methods that per-
form optimal on different time frames and each prediction method has
different characteristics. The exponential, Markov and Markov-correction
prediction methods are based on economic regime price prediction. A so-
lution is to add a price prediction method with more distinctive charac-
teristics. Support Vector Machines or Neural Networks are able to handle
large non-linear patterns [11]. The Markov-correction price predictor is an
extension of the Markov predictor for further ahead price predictions. The
Markov-correction predictor did not make more accurate price predictions
for further ahead price predictions. This implies that the added value of the
Markov-correction predictor is very marginal. Since the performance of the
exponential-2c-adapter lags so far behind the other predictors, this predictor
has to be replaced.

6.3 The discussion of the bootstrapped results

The outcomes from bootstrapping the MinneTAC agent with the optimal
weights of each price predictor for the first game phase of TAC SCM games
are discussed in this chapter.

The differences between the Minne TAC agent with and without bootstrap-
ping with exponentially calculated weights are in 6.17. A modest increase
in the predictive performance of the MinneTAC agent with bootstrapping
is observed, although the increase in the predictive performance is not sta-
tistically significant. The average RMSE values of 40 TAC SCM games are
on the y-axis. The number of days ahead the MinneTAC agent predicted
the future prices is on the x-axis.
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Figure 6.17: A comparison between the ensemble RMSE of bootstrapped
and non-bootstrapped MinneTAC agent with exponential variance calcula-
tion.

The differences between bootstrapping and non-bootstrapping the MinneTAC
agent over different game periods are in 6.18. The performance of the boot-
strapped version of the MinneTAC agent was better at the beginning and
end of the TAC SCM games. In the middle of the TAC SCM games, no ma-
jor differences between the bootstrapped and non-bootstrapped versions of
the MinneTAC agent were observed. The predictive performance of the Min-
neTAC agent slowly decreases during the TAC SCM games. Possible causes
for the decrease in the predictive performance of the MinneTAC agent could
be calculation of the weights of each price predictor and differences between
the trained economic regime transition probabilities and the real economic
regime transition probabilities in the games.
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Figure 6.18: The differences between the MinneTAC agent with and without
bootstrapping for different game phases. The exponential variance calcula-
tion method was used.

An ANOVA analysis was performed to test the statistical significance be-
tween the RMSE values of bootstrapping and non-bootstrapping the Min-
neTAC agent with the optimal weights calculated with the exponential vari-
ance calculation method. No statistically significant differences were found.
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Source SS df MS F Prob > F

Columns 0.00002 1 1.6389e-05 0.58 0.4515
Error 0.00113 40 .83448e-05
Total 0.00115 41

The results from bootstrapping the MinneTAC agent, with the weights cal-
culated by the block weighting variance calculation method, for the first
game phase of TAC SCM games are below.

The bootstrapped and non-bootstrapped version of the MinneTAC agent,
with block weighting variance calculation, are compared in 6.19. The Min-
neTAC agent with bootstrapping showed a better predictive performance
during the TAC SCM games although the differences are very small. Boot-
strapping had a marginal effect on the predictive performance of the Min-
neTAC agent.
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Figure 6.19: A comparison between the MinneTAC agent with and without
bootstrapping with block weighting variance calculation. The performance
was measured with the RMSE.

The predictive performance of bootstrapping and non-bootstrapping the
MinneTAC agent, with block weighting variance calculation, for each games
phase is in 6.20. The analysis was performed on the same way as with
exponential variance calculation. The predictive performance also slowly
decreased during the game with block weighting variance calculation. The
outcomes were in line with the outcomes of exponential variance calculation.
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Figure 6.20:

The RMSE values of bootstrapping and non-bootstrapping with the op-
timal block weights did not resulted in statistically significant differences.
An ANOVA analysis was used to indicate the statistical significance of the
results in the table below.

Source SS df MS F Prob > F

Columns 0.00001 0.00001 0.11 0.7449
Error 0.00446 0.00011 .8
Total 0.00447 41

The performance of bootstrapping the MinneTAC agent with exponentially
calculated weights and the weights calculated with the block weight variance
calculation method is shown in 6.21.
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Figure 6.21: A Comparison between the RMSE values of bootstrapping with
exponential and block weighting variance calculation.

The exponential variance calculation method outperformed the block weight-
ing variance calculation method. This was in line with the differences in the
predictive performance between exponential and block weighting variance
calculation without bootstrapping.
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Weight tables with the optimal weights of each price predictor with expo-
nential and block weighting variance calculation are shown in the appendix
in 8.3 till 8.10.
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Chapter 7

Fuzzy economic regime

transition probabilities in the

MinneTAC agent

Fuzzy economic regime transition probabilities are implemented in this chap-
ter. The MinneTAC agent uses economic regimes to predict the future
market prices. An explanation how the economic regime transition prob-
abilities were calculated was given in chapter four. The MinneTAC agent
uses economic regime transition probabilities that are calculated over the
whole length of a TAC SCM game. Previous research has shown that there
are three distinctive game phases [54]. The price prediction mechanism of
the MinneTAC agent is further improved with the optimal economic regime
transition probabilities for each game phase. A Fuzzy smoothing mechanism
has to enable smooth transitions between the different economic regime tran-
sition probabilities.

Fuzzy logic, developed by L.A. Zadeh in the mid-1960s, was developed for
representing approximate knowledge that cannot be represented by conven-
tional crisp Boolean logic [10]. Fuzzy logic is an extension of crisp bivalent
logic since it is able to handle approximate knowledge. Fuzzy logic is based
on fuzzy set theory. This enables an element to belong to a set at some
degree and simultaneously not being part of the set at a complementary
degree [10]. This allows a non-crisp (Fuzzy) relationship [10]. A fuzzy set
is a set without clear or sharp boundaries or without a binary membership
function. Partial membership of an element is possible in a Fuzzy set [10].
An example are old people. When could a person be defined as old? In a
crisp set, an element belongs or does not belongs to the set. A Fuzzy set is
represented by a membership function [10]. A particular element or value
in the range of the fuzzy set has a grade of membership that indicates the
degree of membership to the set [10].

This chapter is ordered as follows. An explanation about the different game
phases is given in the first part. The fuzzy economic regime transition
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mechanism is explained in the second part. The experimental design and
methodology are explained in the third part. An evaluation of the results is
in the last part.

7.1 The different game phases during the TAC

SCM competition

Research has identified three game phases [54]. The economic regime tran-
sition probabilities may vary significantly during these game phases [54].
Start-up effects occur during the first 30 days of the game. The start-up
effects are characterized by insufficient supplies of computer parts from the
suppliers. The participating agents start with no inventories and in order
to build PCs, the agent have to procure components. The suppliers also
stat with no inventories. The participating agents are generally not able to
meet the demand of the customers. This results in higher market prices for
each type of PC. The start-up effects disappear after approximately 30 game
days. The economic regime transition probabilities will change afterwards.

The market for PCs reaches a situation in which customer demand fluc-
tuates randomly after 30 game days.

The end game effects start to occur after approximately game day 190.
The participating agents start to reduce their inventories. The winner is the
agent with the highest amount of money in its bank account. Inventories are
not taken into account and have no value at the end of the game. The agents
start to reduce their inventories by aggressively selling PC. This means that
the market prices will be lower and the economic regime probabilities will
inevitably change. The economic regime probabilities are recalculated to
incorporate the excess of supply.

7.2 The Fuzzy economic regime transition mech-

anism

A fuzzy economic regime transition mechanism enables smooth transitions
between the different economic regime probabilities. The economic regime
transition process is described in figure 7.1. The economic regime transition
probabilities change gradually over a period of 20 virtual game days.
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Figure 7.1: The gradual transition process between the different economic
regime transition probabilities. The length of the TAC SCM game is dis-
played on the x-axis. The economic regime transition probabilities are shown
on the y-axis. The blue line are the economic regime transition probabilities
for the first game phase and the red and green line for the mid en end game
phases.

A period of 20 days was used to change the economic regime probabilities.
A gradual transition is required to enable the strategic and tactical deci-
sions of the MinneTAC agent to adapt to the new transition probabilities.
Strategic decisions include the procurement of new components and schedul-
ing the available production capacity in the factory. Tactical decisions are
concerned with determining the maximum prices the customers are willing
to pay for the finished products. These decisions have to be made within a
certain time range determined by the strategic decisions [42].

A linear and a sigmoid function are implemented in the MinneTAC agent to
gradually change the economic regime transition probabilities. In advance,
it is possible to select which is method is used during a TAC SCM game.
These methods are explained below.

The sigmoid economic regime transition mechanism

A Sigmoid weighting functions is used to smooth the transitions between
the different economic regime transition probabilities. The formula of the
Sigmoid function is as follows:

f(x) =
1

1 + e−α∗x
(7.1)

In 7.2: f(x) are the economic regime transition probabilities, and α is the
slope parameter. An α greater than one makes the slope sharper and an α
smaller than one makes the slope more smooth. An α of 1 was used in the
experiments.

Figure 7.2 gives an overview of the transition process. On the x-axis, The
length of the transition process is displayed between the different economic
regime transition probabilities. The weights of each set op regime transition
probabilities is displayed on the y-axis.
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Figure 7.2: The Sigmoid function

The linear economic regime transition mechanism

The linear transition mechanism uses linear weights to provide a gradual
transition between the economic regime transition probabilities. The tran-
sition process is explained in 7.3.
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Figure 7.3: The linear economic regime transition mechanism.

On the x-axis, the length of the transition process is displayed between the
different economic regime transition probabilities. The weights of each set
op regime transition probabilities is displayed on the y-axis.

7.3 The experimental design and methodology

The economic regime mixer was implemented in 3 steps:
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1. The economic regime transition probabilities were calculated for each
game phase.

2. The Java code of the MinneTAC agent was extended with a Java class
which mixes the economic regime transition probabilities.

3. The configuration file of the MinneTAC agent was adapted to select
which fuzzy transition function the MinneTAC agent had to use during
the TAC SCM games

The economic regimes of the MinneTAC agent are trained with historical
sales data from previous TAC SCM tournaments. Section 4.2 explained how
the economic regime transition probabilities were calculated. The training
data was divided in three parts. The first part contained the historical sales
data for the first 30 days, the second contained the sales data from day 30
until day and 190, and the third part the remaining sales data. The eco-
nomic regimes were separately calculated with the formulas from section 4.2
to obtain the regimes for each game phase. This training data was loaded
in a new version of the MinneTAC agent in order to execute the experiments.

The software of the MinneTAC agent was extended with a java class called
RegimeTrendCombiner, and was implemented in the Oracle component of
the MinneTAC agent. The sigmoid and the linear economic regime transi-
tion functions were implemented in this Java class.

The configuration file of the MinneTAC agent was adapted to configure
which mixing function to use and to select the mixing period between the
different game phases. The configuration file is in the appendix. Ex-
periments were performed to asses to increase in the predictive accuracy
of the price prediction mechanism of the MinneTAC with the customized
economic regime transition probabilities. Experiments were executed with
block weighting and exponential variance calculation.

The performance of the MinneTAC was measured with the Root Mean
Square Error (RMSE) [43]. The RMSE was calculated between the prices
predicted by the MinneTAC agent and the real price during the games. The
procedure was performed on the same way as with the experiments to de-
termine the predictive performance of the MinneTAC agent with different
values of the block weight horizon and τ parameter value in section 5.2.1.
The RMSE was explained in section 5.1.3 on page 46. The experimental
design was explained in section 5.1 on page 42.

7.4 The results

This section is ordered as follows. A discussion of the results with expo-
nential variance calculation is in the first section. The results with block
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weighting variance calculation are in the next section. A comparison be-
tween the exponential and block weighting variance calculation methods are
in the last section.

7.4.1 Dynamic economic regime transitions with exponential
variance calculation

Exponential variance calculation was used to determine the weights of each
price predictor in the ensemble. A sigmoid and linear transition function
were used for the transitions between the different game phases. The per-
formance of the MinneTAC agent, with dynamic economic regime transi-
tions, was compared with a version of the MinneTAC agent without eco-
nomic regime transitions. The MinneTAC agent without dynamic economic
regime showed a better predictive performance. This is contrary to the ex-
pectations. The dynamic economic regime probabilities were implemented
to increase the performance of the MinneTAC agent. Future research has
to identify why the performance lagged behind. A possible cause is the
training data of the different game phases. The training data was obtained
from games of TAC SCM competitions from 2005. Training data from re-
cent TAC SCM competitions could influence the predictive performance of
the MinneTAC agent with dynamic economic regime transition probabil-
ities. Furthermore, the transition length between the different economic
regime transition probabilities and the game phases could be varied. These
experiments were out of the scope of this research.
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Figure 7.4: The outcomes from the experiments with dynamic economic
regime transitions probabilities with exponential variance calculation.

The y-axis shows the average RMSE values of 40 TAC SCM games, with
each version of the MinneTAC agent. The x-axis show the number of days
the MinneTAC agent predicted the future prices. The predictive perfor-
mance of the MinneTAC agent was measured with the RMSE.
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An ANOVA analysis between the experiments of 7.4 is in the table below.
The MinneTAC agent versions with dynamic regime transition probabilities
had a significant difference in the predictive performance compared with the
MinneTAC without dynamic regime probabilities.

Source SS df MS F Prob > F

Columns 0.02754 1 0.02754 819.88 0
Error 0.00134 40 0.00003
Total 0.002888 41

7.4.2 Dynamic economic regime transitions with block weight-
ing variance calculation

The experiments with dynamic economic regime transition with block weight-
ing variance calculation are in 7.5. The MinneTAC agent with dynamic
regime transition probabilities was not able to outperform the MinneTAC
agent without dynamic economic regime transitions. This was in line with
the results with exponential variance calculation.
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Figure 7.5: The outcomes from the experiments with dynamic economic
regime transitions probabilities with block weighting variance calculation.

An ANOVA analysis between the experiments of 7.5 are in the table below.
With block weighting variance calculation, the price prediction mechanism
of the MinneTAC agent also showed a significantly less accurate predictive
performance compared to the version of the MinneTAC agent without dy-
namic economic regime transitions.

Source SS df MS F Prob > F

Columns 0.00272 1 0.00272 18.1 0.001
Error 0.006 40 0.00015
Total 0.00872 41
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7.4.3 A comparison between block weighting and exponen-
tial variance calculation

7.6 shows the differences in the predictive performance of the MinneTAC
agent, configured with linear economic regime transition probabilities with
exponential and block weighting variance calculation.
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Figure 7.6:

The block weighting variance calculation method showed a better predic-
tive than the exponential variance calculation method. This could mean the
dynamic economic regime transition probabilities work better with block
weighting variance calculation. Another option is the variance between ex-
periments. Because 40 TAC SCM games for each experiment were per-
formed, this option is not likely.

The table below shows a significant difference between the experiments with
exponential and block weighting variance calculation, with linear economic
regime probability transitions.

Source SS df MS F Prob > F

Columns 0.00891 1 0.00891 79.9 0.00004
Error 0.00446 40 0.00011
Total 0.01337 41

An overview between the price predictions of the block weighting and ex-
ponential variance calculation method are in 7.7 to give an overview of the
differences in the predictive performance. There can be concluded that there
are no differences between the sigmoid and linear transition functions for ex-
ponential and block weighting variance calculation. The main finding is that
there are no differences in the predictive performance of linear and sigmoid
economic regime transition probabilities.
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Figure 7.7: A comparison between the experiments with block weighting
and exponential variance calculation

78



Chapter 8

Conclusion and future

research

This research was conducted with the aim to improve the ensemble price
prediction mechanism of the MinneTAC agent. The conclusion is divided
in three parts. The main findings of improving ensemble price prediction in
the MinneTAC agent are discussed in the first part. The outcomes of im-
plementing dynamic economic regime transition probabilities are discussed
in the second part. The vision of the authors is given in the last part.

8.1 Improving ensemble price prediction

The main outcome of this research is a better insight in the ensemble price
prediction mechanism of the MinneTAC agent. The goal of ensemble price
prediction is to combine multiple price prediction methods in such a way that
the disadvantages of each price predictor are compensated. This should re-
sult in an ensemble price that is more accurate than the price predictions of
the individual price predictors. The ensemble price prediction mechanism
of the MinneTAC agent did not outperform the individual price predic-
tors. This implies that the dynamic weighting mechanism of the MinneTAC
agent was not able to optimally compensate the disadvantages of each price
predictor. This research identified two causes why the performance of the
ensemble price did not outperform best performing price predictors.

In the first place, the weighting mechanism has to be revised. Weights
are assigned to each price predictor based the predictive performance. Price
predictors, with a less accurate performance, are still assigned a substantial
weight. This negatively influences the predictive performance of the ensem-
ble. A voting system could provide a solution, in which the best performing
price predictor is only used.

In the second place, a potential deficiency of distinctive properties between
the price prediction methods in the ensemble of the MinneTAC agent could
have preclude more accurate price predictions. Only the exponential-2c
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adapter is not based on economic regimes and was added to improve short
term ahead price predictions. The Markov, Markov-correction and expo-
nential price predictor are all using economic regimes to predict the future
prices. The idea of ensemble price prediction is to use price predictors with
different characteristics. The ensemble could be extended with new price
predictors without economic regimes. Support Vector Machines or Neural
Networks are well suited to extend the ensemble of price predictors in the
MinneTAC agent. The advance of these techniques is the capability the
handle large non-linear relationships [11] [10].

The Markov-correction predictor could be removed from the ensemble. The
Markov and Markov-correction predictor did not had any significant differ-
ences in the predictive performance of the ensemble. This means that the
Markov-correction predictor could be removed without influencing the pre-
dictive performance of the MinneTAC agent.

The dynamic weighting mechanism of the MinneTAC agent assigns weights
to each price predictor based on the predictive performance. The predictive
performance is based on the variance in past price predictions. The variance
could be calculated with an exponential and block weighting variance calcu-
lation method. The number of historical price predictions had only a very
marginal influence on the predictive performance of the price predictions
with block weighting variance calculation. The emphasis on the current ob-
served variance compared to previously calculated variances had only a very
modest influence in the predictive performance of the exponential variance
calculation method.

Bootstrapping is a form of supervised learning and was implemented to
further improve the predictive performance of the MinneTAC agent in the
first part of TAC SCM games [11]. The results from bootstrapping the Min-
neTAC agent, with the optimal weights of each price predictor for the first
game phase, did only had a very marginal increase in the predictive per-
formance. The increase in the predictive performance was not statistically
significant. This means that the differences between assigning equal weights
to each price predictor or the weights calculated by the dynamic weighting
mechanism for the first game phases did not had a significant difference.
This leads to the question of how large the differences in the predictive per-
formance are between equal weights or the weights of the dynamic weighting
mechanism.

8.2 The implementation of dynamic economic regime

transition probabilities

Dynamic economic regime transition probabilities, for each game phase, were
implemented in the MinneTAC agent to further improve price predictions.
The main goal of this research was to implement the mechanism to enable
dynamic economic regime transition probabilities. The dynamic economic
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regime transition probabilities did not result in an increase in the predic-
tive performance of the MinneTAC agent. Three causes were identified that
could explain the outcomes from the experiments.

In the first place, economic regime transition probabilities were calculated
with old game data from previously held TAC SCM competitions. New
training data could influence the performance of the MinneTAC agent.

In the second place, the optimal settings of the mechanism that changes
the economic regime transition probabilities of each game phase could be
further investigated. In the last place, a possibilities is that the differences
between the three games phase are very marginal and that implementing
dynamic economic regime transition probabilities will not increase the pre-
dictive performance of the MinneTAC agent.

8.3 Vision of the authors

The vision of the authors on the working of the price prediction mechanism
of the MinneTAC agent is given in this section. The MinneTAC agent is
one of the best performing TAC SCM agents during the recent competitions.
Last year, the MinneTAC reached the third position. We tried to further
improve the price prediction mechanism of the MinneTAC agent. Predicting
the future prices is a crucial part in the TAC SCM competition. The agent
that is able to predict the future market prices as accurately as possible is
most likely to win the most customer orders. A major breakthrough in the
predictive performance of the MinneTAC agent was not discovered. We are
convinced that the predictive performance of this price prediction mecha-
nism could not be significantly improved. We propose to further developed
the price prediction mechanism with a strong focus on flexibility and simplic-
ity. The price prediction mechanism of the MinneTAC agent is relatively
complex compared to the price prediction mechanism of the most direct
competitors. We propose an ensemble price prediction mechanism based on
a voting mechanism instead of the complex system currently implemented.
This means that less accurate price predictors are not used without the
complex calculations performed by the dynamic weighting mechanism.
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Appendix

BW/Days 1 2 3 4 5 6 7 8 9 10 11
5 0.088 0.0878 0.089 0.0905 0.0922 0.094 0.0959 0.0979 0.0999 0.1019 0.1039

(0.0460) (0.0444) (0.0439) (0.0433) (0.0428) (0.0425) (0.0424) (0.0426) (0.0431) (0.0436) (0.0443)
10 0.0868 0.0866 0.0879 0.0894 0.0911 0.093 0.095 0.097 0.099 0.1009 0.1029

(0.0451) (0.0436) (0.0432) (0.0428) (0.0424) (0.0423) (0.0424) (0.0428) (0.0432) (0.0438) (0.0445)
15 0.094 0.0935 0.0946 0.0959 0.0973 0.0989 0.1005 0.1022 0.104 0.1057 0.1073

(0.0543) (0.0527) (0.0524) (0.0519) (0.0515) (0.0511) (0.0511) (0.0512) (0.0513) (0.0516) (0.0521)
20 0.085 0.0847 0.0864 0.0886 0.091 0.0934 0.0959 0.0985 0.1011 0.1037 0.1062

(0.0455) (0.0442) (0.0439) (0.0436) (0.0436) (0.0437) (0.0442) (0.0448) (0.0456) (0.0466) (0.0476)
25 0.0891 0.0882 0.0896 0.0912 0.093 0.095 0.0968 0.0987 0.1006 0.1024 0.1042

(0.0451) (0.0430) (0.0425) (0.0419) (0.0414) (0.0412) (0.0412) (0.0414) (0.0417) (0.0424) (0.0433)

BW/Days 12 13 14 15 16 17 18 19 20 21
5 0.1058 0.1078 0.1097 0.1115 0.1131 0.1146 0.116 0.1175 0.1189 0.1202

(0.0449) (0.0459) (0.0469) (0.0481) (0.0492) (0.0502) (0.0512) (0.0523) (0.0533) (0.0543)
10 0.1049 0.107 0.1089 0.1108 0.1124 0.1138 0.1152 0.1167 0.1182 0.1196

(0.0453) (0.0465) (0.0479) (0.0493) (0.0507) (0.0520) (0.0535) (0.0549) (0.0563) (0.0577)
15 0.109 0.1105 0.1119 0.1131 0.1143 0.1154 0.1164 0.1176 0.1187 0.1197

(0.0527) (0.0534) (0.0540) (0.0546) (0.0550) (0.0552) (0.0557) (0.0563) (0.0569) (0.0573)
20 0.1087 0.1113 0.1136 0.1158 0.1179 0.1199 0.1218 0.1235 0.1251 0.1266

(0.0488) (0.0503) (0.0518) (0.0534) (0.0548) (0.0561) (0.0578) (0.0593) (0.0609) (0.0622)
25 0.1061 0.1081 0.1101 0.1119 0.1136 0.1153 0.1169 0.1185 0.12 0.1215

(0.0443) (0.0458) (0.0473) (0.0488) (0.0501) (0.0513) (0.0526) (0.0541) (0.0556) (0.0571)

Table 8.1: Block weight RMSE and standard deviation

tau/Days 1 2 3 4 5 6 7 8 9 10 11
1 0.0994 0.0987 0.0995 0.1004 0.1013 0.1023 0.1033 0.1041 0.1049 0.1055 0.1062

(0.055) (0.0532) (0.0527) (0.0523) (0.0518) (0.0514) (0.0512) (0.0513) (0.0515) (0.0516) (0.0519)
2 0.0965 0.0962 0.097 0.098 0.099 0.1001 0.1011 0.1022 0.1032 0.1042 0.1051

(0.0499) (0.0484) (0.0479) (0.0476) (0.0473) (0.0471) (0.047) (0.047) (0.0472) (0.0476) (0.0481)
4 0.0918 0.0936 0.0945 0.0955 0.0965 0.0975 0.0985 0.0996 0.1006 0.1017 0.1026

(0.045) (0.0456) (0.0453) (0.045) (0.0449) (0.0448) (0.0449) (0.0452) (0.0456) (0.0461) (0.0468)
5 0.0877 0.0874 0.0881 0.089 0.0899 0.0909 0.0917 0.0927 0.0936 0.0945 0.0953

(0.0428) (0.0402) (0.0396) (0.0391) (0.0386) (0.0383) (0.0382) (0.0382) (0.0384) (0.0387) (0.0392)
7 0.087 0.0866 0.0875 0.0886 0.0896 0.0907 0.0918 0.0929 0.0939 0.0948 0.0957

(0.0436) (0.0414) (0.0409) (0.0405) (0.0401) (0.04) (0.04) (0.0403) (0.0407) (0.0412) (0.0418)
10 0.0862 0.0859 0.087 0.0883 0.0896 0.091 0.0923 0.0936 0.0949 0.096 0.0971

(0.0423) (0.0395) (0.0389) (0.0384) (0.0381) (0.0379) (0.0378) (0.0378) (0.038) (0.0383) (0.0387)

tau/Days 12 13 14 15 16 17 18 19 20 21
1 0.1069 0.1078 0.1086 0.1094 0.1103 0.1111 0.1122 0.1132 0.114 0.1148

(0.0523) (0.0533) (0.0543) (0.0554) (0.0564) (0.0575) (0.059) (0.0598) (0.0608) (0.0617)
2 0.1059 0.107 0.1081 0.1092 0.1103 0.1114 0.1126 0.1135 0.1143 0.115

(0.0488) (0.0501) (0.0516) (0.0528) (0.054) (0.0553) (0.0568) (0.0577) (0.0586) (0.0595)
4 0.1035 0.1045 0.1057 0.1069 0.108 0.1091 0.1103 0.1113 0.1122 0.113

(0.0475) (0.0488) (0.05) (0.0511) (0.0522) (0.0533) (0.0552) (0.0563) (0.0574) (0.0585)
5 0.0961 0.0971 0.0981 0.099 0.0999 0.1008 0.1017 0.1027 0.1036 0.1045

(0.0397) (0.0409) (0.0422) (0.0435) (0.0451) (0.0466) (0.0488) (0.0501) (0.0515) (0.0528)
7 0.0966 0.0975 0.0985 0.0995 0.1006 0.1015 0.1026 0.1036 0.1045 0.1054

(0.0424) (0.0438) (0.0453) (0.0467) (0.0478) (0.049) (0.0508) (0.0518) (0.0528) (0.0538)
10 0.0981 0.0994 0.1004 0.1014 0.1023 0.1031 0.104 0.1048 0.1055 0.1063

(0.0392) (0.0405) (0.0418) (0.043) (0.0441) (0.0454) (0.0471) (0.0483) (0.0496) (0.0508)

Table 8.2: TAU 5 RMSE and standard deviation
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Exponential Day 01 Day 02 Day 03 Day 04 Day 05 Day 06 Day 07 Day 08 Day 09 Day 10 Day 11
Product 1 0.169 0.174 0.147 0.129 0.116 0.101 0.096 0.092 0.086 0.084 0.084
Product 2 0.170 0.199 0.172 0.149 0.133 0.114 0.104 0.097 0.088 0.086 0.085
Product 3 0.209 0.227 0.196 0.174 0.156 0.141 0.135 0.126 0.120 0.115 0.112
Product 4 0.249 0.253 0.229 0.206 0.182 0.160 0.146 0.134 0.125 0.119 0.115
Product 5 0.143 0.204 0.178 0.159 0.143 0.128 0.121 0.117 0.111 0.110 0.111
Product 6 0.180 0.201 0.166 0.143 0.125 0.109 0.100 0.095 0.092 0.091 0.091
Product 7 0.148 0.224 0.195 0.171 0.153 0.136 0.128 0.120 0.112 0.109 0.107
Product 8 0.178 0.266 0.241 0.212 0.187 0.173 0.161 0.154 0.146 0.140 0.138
Product 9 0.179 0.180 0.154 0.133 0.116 0.099 0.091 0.087 0.083 0.083 0.084
Product 10 0.169 0.166 0.143 0.127 0.113 0.103 0.099 0.097 0.096 0.099 0.101
Product 11 0.172 0.190 0.167 0.143 0.126 0.112 0.104 0.099 0.091 0.091 0.094
Product 12 0.173 0.191 0.165 0.145 0.130 0.118 0.111 0.104 0.096 0.095 0.096
Product 13 0.227 0.266 0.239 0.212 0.194 0.177 0.166 0.159 0.153 0.151 0.149
Product 14 0.163 0.187 0.162 0.141 0.127 0.111 0.107 0.105 0.102 0.104 0.105
Product 15 0.213 0.265 0.232 0.207 0.187 0.174 0.166 0.160 0.154 0.150 0.148
Product 16 0.180 0.246 0.211 0.182 0.161 0.149 0.141 0.136 0.130 0.126 0.124

Exponential Day 12 Day 13 Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20 Day 21
Product 1 0.079 0.077 0.076 0.074 0.073 0.074 0.074 0.074 0.075 0.078
Product 2 0.080 0.078 0.077 0.076 0.076 0.076 0.075 0.075 0.075 0.077
Product 3 0.110 0.109 0.109 0.108 0.108 0.109 0.108 0.108 0.110 0.113
Product 4 0.114 0.116 0.118 0.121 0.125 0.126 0.127 0.127 0.128 0.130
Product 5 0.108 0.106 0.106 0.105 0.105 0.105 0.104 0.105 0.105 0.107
Product 6 0.089 0.089 0.090 0.089 0.088 0.088 0.089 0.088 0.089 0.090
Product 7 0.103 0.102 0.102 0.100 0.099 0.099 0.100 0.101 0.101 0.105
Product 8 0.136 0.136 0.137 0.136 0.138 0.138 0.138 0.138 0.139 0.141
Product 9 0.081 0.082 0.083 0.083 0.085 0.086 0.087 0.087 0.088 0.089
Product 10 0.101 0.105 0.108 0.110 0.112 0.117 0.120 0.121 0.122 0.126
Product 11 0.093 0.095 0.096 0.096 0.095 0.097 0.097 0.096 0.097 0.100
Product 12 0.094 0.094 0.095 0.094 0.094 0.095 0.096 0.099 0.100 0.102
Product 13 0.147 0.145 0.144 0.143 0.144 0.145 0.143 0.141 0.141 0.141
Product 14 0.103 0.103 0.104 0.104 0.106 0.107 0.108 0.108 0.109 0.113
Product 15 0.146 0.146 0.145 0.143 0.144 0.143 0.142 0.141 0.141 0.142
Product 16 0.120 0.119 0.118 0.117 0.117 0.117 0.117 0.117 0.117 0.119

Table 8.3: Exponential predictor weights with exponential variance calcula-
tion

Markov Day 01 Day 02 Day 03 Day 04 Day 05 Day 06 Day 07 Day 08 Day 09 Day 10 Day 11
Product 1 0.303 0.307 0.325 0.340 0.350 0.360 0.367 0.370 0.376 0.377 0.377
Product 2 0.317 0.312 0.329 0.345 0.357 0.369 0.376 0.378 0.385 0.385 0.386
Product 3 0.288 0.287 0.300 0.316 0.328 0.338 0.344 0.348 0.352 0.354 0.356
Product 4 0.261 0.266 0.277 0.293 0.307 0.322 0.331 0.338 0.344 0.347 0.347
Product 5 0.371 0.347 0.359 0.374 0.384 0.390 0.397 0.400 0.404 0.405 0.405
Product 6 0.362 0.356 0.377 0.390 0.400 0.408 0.412 0.415 0.418 0.419 0.420
Product 7 0.377 0.346 0.359 0.369 0.379 0.390 0.395 0.398 0.403 0.405 0.406
Product 8 0.367 0.330 0.342 0.357 0.371 0.379 0.384 0.386 0.389 0.391 0.390
Product 9 0.310 0.317 0.337 0.355 0.369 0.382 0.391 0.395 0.401 0.403 0.404
Product 10 0.327 0.335 0.350 0.364 0.374 0.382 0.389 0.392 0.393 0.396 0.395
Product 11 0.314 0.312 0.328 0.344 0.356 0.367 0.377 0.385 0.391 0.394 0.395
Product 12 0.315 0.311 0.329 0.343 0.353 0.364 0.371 0.378 0.383 0.386 0.388
Product 13 0.301 0.287 0.299 0.315 0.327 0.338 0.344 0.347 0.349 0.350 0.351
Product 14 0.353 0.347 0.361 0.376 0.385 0.399 0.404 0.406 0.409 0.409 0.407
Product 15 0.335 0.312 0.325 0.339 0.349 0.358 0.362 0.366 0.368 0.369 0.368
Product 16 0.358 0.330 0.345 0.361 0.373 0.382 0.387 0.389 0.390 0.390 0.390

Markov Day 12 Day 13 Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20 Day 21
Product 1 0.381 0.383 0.382 0.383 0.382 0.381 0.380 0.379 0.378 0.376
Product 2 0.388 0.391 0.391 0.392 0.392 0.391 0.392 0.393 0.393 0.393
Product 3 0.358 0.360 0.361 0.362 0.363 0.364 0.364 0.366 0.365 0.364
Product 4 0.348 0.345 0.341 0.338 0.334 0.333 0.331 0.332 0.331 0.330
Product 5 0.408 0.410 0.410 0.411 0.411 0.411 0.412 0.412 0.412 0.411
Product 6 0.422 0.422 0.421 0.422 0.422 0.421 0.420 0.420 0.420 0.419
Product 7 0.410 0.412 0.412 0.414 0.414 0.413 0.412 0.412 0.411 0.409
Product 8 0.390 0.391 0.390 0.390 0.389 0.388 0.388 0.388 0.387 0.386
Product 9 0.406 0.407 0.406 0.406 0.406 0.406 0.406 0.406 0.406 0.406
Product 10 0.396 0.395 0.393 0.392 0.391 0.389 0.388 0.387 0.386 0.384
Product 11 0.398 0.398 0.397 0.398 0.398 0.397 0.397 0.398 0.399 0.398
Product 12 0.392 0.393 0.393 0.395 0.396 0.396 0.396 0.396 0.396 0.396
Product 13 0.354 0.356 0.357 0.359 0.360 0.361 0.363 0.366 0.367 0.368
Product 14 0.409 0.409 0.407 0.408 0.407 0.406 0.406 0.405 0.405 0.404
Product 15 0.369 0.369 0.369 0.370 0.369 0.369 0.370 0.371 0.371 0.371
Product 16 0.392 0.393 0.393 0.394 0.393 0.392 0.393 0.393 0.392 0.391

Table 8.4: Markov predictor weights with exponential variance calculation
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Markov-cor. Day 01 Day 02 Day 03 Day 04 Day 05 Day 06 Day 07 Day 08 Day 09 Day 10 Day 11
Product 1 0.367 0.368 0.379 0.387 0.391 0.397 0.397 0.394 0.392 0.389 0.387
Product 2 0.367 0.352 0.361 0.372 0.378 0.386 0.388 0.391 0.395 0.396 0.397
Product 3 0.318 0.310 0.321 0.334 0.342 0.351 0.352 0.355 0.358 0.361 0.362
Product 4 0.284 0.285 0.294 0.308 0.322 0.336 0.345 0.351 0.355 0.358 0.358
Product 5 0.431 0.396 0.404 0.407 0.413 0.422 0.421 0.419 0.420 0.418 0.415
Product 6 0.377 0.369 0.383 0.394 0.403 0.412 0.417 0.419 0.419 0.417 0.416
Product 7 0.418 0.377 0.386 0.398 0.406 0.412 0.415 0.417 0.420 0.419 0.418
Product 8 0.379 0.336 0.343 0.356 0.368 0.375 0.380 0.383 0.386 0.389 0.389
Product 9 0.375 0.376 0.385 0.395 0.401 0.408 0.409 0.409 0.407 0.404 0.402
Product 10 0.374 0.377 0.386 0.393 0.400 0.405 0.404 0.403 0.402 0.397 0.394
Product 11 0.380 0.371 0.378 0.388 0.396 0.403 0.404 0.402 0.402 0.399 0.395
Product 12 0.377 0.366 0.373 0.381 0.389 0.393 0.393 0.393 0.395 0.394 0.392
Product 13 0.326 0.309 0.317 0.331 0.340 0.350 0.355 0.358 0.361 0.361 0.361
Product 14 0.394 0.379 0.387 0.394 0.401 0.406 0.405 0.403 0.401 0.398 0.397
Product 15 0.337 0.313 0.324 0.336 0.346 0.354 0.358 0.360 0.363 0.364 0.365
Product 16 0.372 0.339 0.353 0.366 0.376 0.381 0.383 0.383 0.386 0.388 0.388

Markov-cor. Day 12 Day 13 Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20 Day 21
Product 1 0.389 0.390 0.390 0.392 0.392 0.392 0.391 0.391 0.390 0.387
Product 2 0.401 0.401 0.400 0.400 0.399 0.399 0.399 0.399 0.399 0.398
Product 3 0.364 0.366 0.366 0.368 0.368 0.368 0.369 0.371 0.370 0.369
Product 4 0.357 0.353 0.348 0.343 0.339 0.338 0.336 0.337 0.336 0.335
Product 5 0.415 0.415 0.415 0.416 0.416 0.416 0.416 0.415 0.414 0.412
Product 6 0.417 0.418 0.418 0.419 0.420 0.421 0.422 0.423 0.423 0.422
Product 7 0.419 0.419 0.418 0.419 0.420 0.419 0.418 0.418 0.417 0.414
Product 8 0.391 0.391 0.390 0.390 0.389 0.389 0.389 0.389 0.387 0.386
Product 9 0.402 0.402 0.400 0.400 0.400 0.399 0.399 0.400 0.400 0.400
Product 10 0.393 0.390 0.387 0.386 0.384 0.381 0.380 0.379 0.379 0.376
Product 11 0.395 0.393 0.392 0.393 0.395 0.395 0.396 0.397 0.397 0.395
Product 12 0.392 0.391 0.390 0.391 0.392 0.391 0.392 0.390 0.389 0.389
Product 13 0.363 0.364 0.365 0.366 0.365 0.366 0.368 0.369 0.370 0.371
Product 14 0.397 0.397 0.397 0.397 0.397 0.398 0.398 0.399 0.398 0.397
Product 15 0.367 0.368 0.368 0.369 0.369 0.370 0.371 0.372 0.371 0.372
Product 16 0.392 0.393 0.393 0.393 0.394 0.394 0.394 0.394 0.395 0.394

Table 8.5: Markov-cor. predictor weights with exp. variance calculation

Exp-2c Day 01 Day 02 Day 03 Day 04 Day 05 Day 06 Day 07 Day 08 Day 09 Day 10 Day 11
Product 1 0.161 0.151 0.149 0.144 0.143 0.141 0.140 0.144 0.146 0.149 0.152
Product 2 0.146 0.137 0.138 0.135 0.133 0.132 0.132 0.133 0.133 0.132 0.132
Product 3 0.186 0.177 0.183 0.177 0.175 0.171 0.170 0.170 0.170 0.171 0.170
Product 4 0.206 0.197 0.200 0.194 0.188 0.183 0.179 0.178 0.176 0.177 0.180
Product 5 0.055 0.053 0.059 0.059 0.060 0.060 0.062 0.064 0.066 0.067 0.069
Product 6 0.081 0.075 0.074 0.073 0.072 0.071 0.071 0.072 0.072 0.073 0.073
Product 7 0.057 0.054 0.060 0.062 0.062 0.061 0.063 0.065 0.066 0.067 0.068
Product 8 0.077 0.068 0.075 0.075 0.074 0.074 0.075 0.077 0.079 0.081 0.083
Product 9 0.136 0.127 0.124 0.118 0.114 0.111 0.109 0.109 0.109 0.110 0.111
Product 10 0.130 0.123 0.121 0.117 0.113 0.110 0.109 0.109 0.109 0.109 0.110
Product 11 0.135 0.128 0.128 0.124 0.122 0.118 0.115 0.115 0.115 0.116 0.116
Product 12 0.135 0.131 0.134 0.131 0.129 0.125 0.124 0.125 0.126 0.125 0.124
Product 13 0.147 0.138 0.146 0.142 0.139 0.135 0.135 0.136 0.137 0.139 0.139
Product 14 0.090 0.087 0.090 0.089 0.087 0.084 0.084 0.086 0.088 0.090 0.091
Product 15 0.116 0.110 0.119 0.118 0.118 0.114 0.114 0.115 0.116 0.116 0.118
Product 16 0.091 0.085 0.091 0.091 0.090 0.089 0.090 0.092 0.094 0.096 0.097

Exp-2c Day 12 Day 13 Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20 Day 21
Product 1 0.152 0.151 0.153 0.152 0.152 0.153 0.155 0.156 0.158 0.159
Product 2 0.131 0.130 0.132 0.133 0.133 0.134 0.134 0.133 0.133 0.133
Product 3 0.167 0.165 0.165 0.163 0.161 0.159 0.158 0.156 0.156 0.155
Product 4 0.182 0.186 0.193 0.198 0.202 0.204 0.205 0.204 0.205 0.205
Product 5 0.069 0.068 0.069 0.068 0.068 0.068 0.068 0.068 0.069 0.070
Product 6 0.072 0.071 0.071 0.071 0.070 0.069 0.069 0.068 0.069 0.069
Product 7 0.068 0.067 0.068 0.068 0.068 0.069 0.070 0.070 0.071 0.073
Product 8 0.083 0.083 0.084 0.084 0.084 0.085 0.086 0.086 0.087 0.088
Product 9 0.110 0.109 0.110 0.110 0.109 0.108 0.108 0.107 0.106 0.106
Product 10 0.110 0.111 0.112 0.113 0.113 0.113 0.113 0.113 0.113 0.113
Product 11 0.115 0.114 0.115 0.114 0.113 0.111 0.110 0.109 0.108 0.107
Product 12 0.123 0.122 0.122 0.121 0.119 0.118 0.116 0.115 0.115 0.114
Product 13 0.136 0.135 0.135 0.132 0.131 0.129 0.126 0.124 0.122 0.120
Product 14 0.091 0.091 0.092 0.091 0.089 0.089 0.089 0.088 0.088 0.087
Product 15 0.117 0.117 0.118 0.118 0.118 0.118 0.118 0.117 0.117 0.116
Product 16 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.096 0.097 0.097

Table 8.6: Exp-2c predictor weights with exponential variance calculation
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Exponential Day 01 Day 02 Day 03 Day 04 Day 05 Day 06 Day 07 Day 08 Day 09 Day 10 Day 11
Product 1 0.236 0.245 0.252 0.261 0.268 0.274 0.279 0.282 0.284 0.289 0.294
Product 2 0.242 0.250 0.258 0.265 0.273 0.281 0.284 0.287 0.291 0.294 0.294
Product 3 0.233 0.249 0.258 0.269 0.278 0.286 0.291 0.293 0.294 0.296 0.298
Product 4 0.226 0.238 0.248 0.257 0.268 0.274 0.282 0.287 0.292 0.296 0.298
Product 5 0.355 0.330 0.333 0.336 0.338 0.341 0.342 0.340 0.342 0.343 0.342
Product 6 0.359 0.338 0.343 0.345 0.346 0.347 0.345 0.346 0.349 0.351 0.352
Product 7 0.380 0.349 0.355 0.362 0.365 0.368 0.369 0.369 0.370 0.371 0.371
Product 8 0.332 0.306 0.309 0.313 0.317 0.319 0.321 0.321 0.323 0.325 0.326
Product 9 0.316 0.314 0.320 0.325 0.328 0.332 0.335 0.337 0.338 0.338 0.338
Product 10 0.289 0.301 0.302 0.304 0.304 0.304 0.304 0.304 0.305 0.305 0.304
Product 11 0.339 0.321 0.327 0.331 0.336 0.339 0.341 0.342 0.343 0.343 0.341
Product 12 0.328 0.315 0.321 0.326 0.329 0.333 0.337 0.339 0.340 0.339 0.339
Product 13 0.293 0.279 0.284 0.292 0.302 0.307 0.312 0.313 0.314 0.314 0.313
Product 14 0.261 0.276 0.278 0.279 0.281 0.279 0.279 0.276 0.274 0.274 0.272
Product 15 0.356 0.315 0.318 0.324 0.328 0.330 0.329 0.329 0.327 0.325 0.324
Product 16 0.352 0.316 0.321 0.325 0.327 0.329 0.329 0.327 0.326 0.324 0.321

Exponential Day 12 Day 13 Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20 Day 21
Product 1 0.298 0.300 0.302 0.303 0.303 0.303 0.303 0.303 0.303 0.302
Product 2 0.297 0.299 0.300 0.300 0.298 0.297 0.296 0.295 0.295 0.294
Product 3 0.299 0.299 0.299 0.298 0.297 0.295 0.295 0.296 0.296 0.295
Product 4 0.300 0.300 0.298 0.296 0.295 0.295 0.297 0.299 0.300 0.301
Product 5 0.344 0.346 0.347 0.350 0.352 0.352 0.352 0.352 0.352 0.352
Product 6 0.354 0.356 0.357 0.360 0.362 0.362 0.360 0.361 0.362 0.361
Product 7 0.373 0.376 0.376 0.377 0.379 0.380 0.380 0.380 0.380 0.379
Product 8 0.328 0.330 0.333 0.336 0.337 0.337 0.338 0.338 0.339 0.339
Product 9 0.337 0.339 0.340 0.341 0.340 0.340 0.339 0.339 0.341 0.341
Product 10 0.304 0.304 0.304 0.304 0.304 0.304 0.304 0.305 0.306 0.306
Product 11 0.339 0.338 0.338 0.337 0.337 0.336 0.335 0.335 0.334 0.333
Product 12 0.338 0.338 0.338 0.337 0.337 0.337 0.337 0.338 0.340 0.340
Product 13 0.312 0.312 0.313 0.314 0.315 0.317 0.318 0.318 0.319 0.320
Product 14 0.271 0.271 0.270 0.271 0.273 0.273 0.273 0.274 0.274 0.274
Product 15 0.326 0.325 0.323 0.322 0.321 0.322 0.322 0.322 0.322 0.323
Product 16 0.320 0.320 0.321 0.322 0.324 0.326 0.324 0.323 0.326 0.327

Table 8.7: Exponential predictor weights with block weighting

Markov Day 01 Day 02 Day 03 Day 04 Day 05 Day 06 Day 07 Day 08 Day 09 Day 10 Day 11
Product 1 0.259 0.264 0.271 0.277 0.281 0.282 0.284 0.285 0.291 0.297 0.302
Product 2 0.232 0.237 0.241 0.249 0.256 0.260 0.263 0.266 0.271 0.275 0.279
Product 3 0.250 0.262 0.271 0.281 0.286 0.289 0.290 0.290 0.291 0.293 0.294
Product 4 0.255 0.266 0.274 0.278 0.285 0.289 0.295 0.298 0.300 0.303 0.306
Product 5 0.354 0.330 0.327 0.327 0.329 0.331 0.332 0.329 0.332 0.334 0.333
Product 6 0.339 0.314 0.316 0.320 0.325 0.329 0.327 0.330 0.336 0.340 0.344
Product 7 0.350 0.316 0.323 0.332 0.336 0.343 0.344 0.344 0.349 0.352 0.354
Product 8 0.292 0.269 0.273 0.280 0.290 0.298 0.300 0.299 0.301 0.306 0.311
Product 9 0.319 0.315 0.319 0.325 0.329 0.333 0.336 0.339 0.341 0.340 0.339
Product 10 0.289 0.302 0.302 0.304 0.304 0.304 0.304 0.303 0.306 0.305 0.303
Product 11 0.344 0.325 0.329 0.334 0.338 0.342 0.345 0.346 0.346 0.344 0.343
Product 12 0.342 0.326 0.326 0.331 0.334 0.336 0.336 0.338 0.341 0.341 0.340
Product 13 0.287 0.270 0.271 0.280 0.290 0.298 0.303 0.306 0.306 0.306 0.305
Product 14 0.264 0.275 0.275 0.274 0.273 0.272 0.270 0.266 0.265 0.265 0.264
Product 15 0.312 0.276 0.282 0.290 0.300 0.305 0.308 0.310 0.311 0.311 0.312
Product 16 0.312 0.277 0.279 0.286 0.292 0.297 0.300 0.303 0.306 0.308 0.307

Markov Day 12 Day 13 Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20 Day 21
Product 1 0.307 0.309 0.310 0.311 0.309 0.308 0.307 0.307 0.306 0.305
Product 2 0.285 0.289 0.292 0.293 0.292 0.291 0.291 0.291 0.291 0.291
Product 3 0.293 0.294 0.293 0.292 0.290 0.287 0.287 0.289 0.291 0.292
Product 4 0.308 0.307 0.305 0.302 0.300 0.302 0.303 0.305 0.306 0.306
Product 5 0.335 0.338 0.341 0.345 0.348 0.348 0.348 0.349 0.349 0.349
Product 6 0.348 0.352 0.353 0.358 0.361 0.361 0.359 0.361 0.362 0.361
Product 7 0.359 0.367 0.368 0.371 0.376 0.376 0.377 0.377 0.378 0.377
Product 8 0.317 0.321 0.326 0.329 0.331 0.332 0.333 0.333 0.334 0.334
Product 9 0.339 0.340 0.342 0.342 0.341 0.340 0.340 0.339 0.340 0.340
Product 10 0.304 0.305 0.305 0.304 0.304 0.304 0.304 0.304 0.305 0.306
Product 11 0.343 0.342 0.342 0.342 0.341 0.339 0.337 0.337 0.336 0.334
Product 12 0.340 0.342 0.341 0.339 0.339 0.339 0.339 0.340 0.342 0.341
Product 13 0.303 0.304 0.308 0.310 0.312 0.314 0.315 0.316 0.316 0.317
Product 14 0.264 0.265 0.265 0.267 0.269 0.271 0.271 0.273 0.273 0.273
Product 15 0.313 0.314 0.314 0.314 0.313 0.316 0.317 0.317 0.318 0.318
Product 16 0.308 0.309 0.313 0.315 0.320 0.322 0.321 0.321 0.324 0.325

Table 8.8: Markov predictor weights with block weighting
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Markov-cor Day 01 Day 02 Day 03 Day 04 Day 05 Day 06 Day 07 Day 08 Day 09 Day 10 Day 11
Product 1 0.218 0.221 0.213 0.202 0.196 0.193 0.193 0.189 0.182 0.177 0.172
Product 2 0.229 0.228 0.222 0.213 0.204 0.199 0.194 0.187 0.184 0.185 0.184
Product 3 0.214 0.207 0.193 0.182 0.177 0.171 0.168 0.167 0.166 0.166 0.169
Product 4 0.217 0.214 0.202 0.194 0.181 0.174 0.167 0.162 0.161 0.158 0.156
Product 5 0.257 0.305 0.305 0.300 0.294 0.286 0.283 0.287 0.279 0.275 0.276
Product 6 0.273 0.320 0.312 0.302 0.295 0.288 0.290 0.284 0.272 0.264 0.258
Product 7 0.248 0.315 0.301 0.284 0.275 0.264 0.259 0.258 0.251 0.245 0.241
Product 8 0.220 0.282 0.274 0.264 0.250 0.242 0.242 0.243 0.237 0.231 0.226
Product 9 0.273 0.282 0.272 0.257 0.248 0.237 0.228 0.220 0.214 0.212 0.210
Product 10 0.319 0.288 0.285 0.277 0.274 0.271 0.267 0.265 0.259 0.258 0.258
Product 11 0.234 0.277 0.266 0.254 0.244 0.233 0.226 0.223 0.220 0.220 0.219
Product 12 0.245 0.278 0.271 0.257 0.247 0.237 0.230 0.222 0.214 0.213 0.213
Product 13 0.228 0.272 0.263 0.245 0.226 0.211 0.203 0.198 0.197 0.198 0.200
Product 14 0.278 0.242 0.237 0.234 0.231 0.228 0.233 0.237 0.239 0.240 0.243
Product 15 0.192 0.287 0.277 0.259 0.241 0.229 0.224 0.217 0.215 0.214 0.210
Product 16 0.206 0.294 0.284 0.270 0.261 0.249 0.242 0.236 0.232 0.231 0.233

Markov-cor Day 12 Day 13 Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20 Day 21
Product 1 0.164 0.159 0.158 0.155 0.154 0.152 0.151 0.150 0.150 0.149
Product 2 0.177 0.172 0.169 0.169 0.170 0.170 0.169 0.168 0.169 0.170
Product 3 0.169 0.166 0.165 0.166 0.167 0.168 0.167 0.167 0.166 0.168
Product 4 0.157 0.160 0.164 0.166 0.169 0.168 0.168 0.167 0.170 0.169
Product 5 0.270 0.263 0.256 0.247 0.240 0.239 0.236 0.234 0.233 0.231
Product 6 0.249 0.240 0.236 0.227 0.219 0.218 0.219 0.215 0.211 0.211
Product 7 0.232 0.219 0.217 0.211 0.203 0.200 0.198 0.197 0.195 0.196
Product 8 0.220 0.213 0.207 0.202 0.201 0.200 0.198 0.199 0.198 0.198
Product 9 0.209 0.203 0.198 0.195 0.196 0.196 0.195 0.197 0.194 0.194
Product 10 0.256 0.253 0.252 0.252 0.252 0.251 0.249 0.250 0.247 0.246
Product 11 0.221 0.220 0.219 0.218 0.218 0.220 0.222 0.220 0.221 0.223
Product 12 0.214 0.210 0.210 0.212 0.212 0.210 0.209 0.207 0.203 0.204
Product 13 0.202 0.199 0.191 0.187 0.185 0.184 0.184 0.186 0.186 0.185
Product 14 0.245 0.243 0.243 0.240 0.238 0.237 0.241 0.240 0.241 0.245
Product 15 0.203 0.202 0.201 0.203 0.203 0.199 0.199 0.201 0.200 0.199
Product 16 0.231 0.228 0.221 0.217 0.209 0.204 0.207 0.210 0.204 0.200

Table 8.9: Markov-correction predictor weights with block weighting

Exp-2c Day 01 Day 02 Day 03 Day 04 Day 05 Day 06 Day 07 Day 08 Day 09 Day 10 Day 11
Product 1 0.287 0.270 0.265 0.260 0.255 0.251 0.244 0.244 0.243 0.238 0.233
Product 2 0.297 0.285 0.279 0.274 0.268 0.260 0.259 0.261 0.254 0.247 0.243
Product 3 0.304 0.282 0.278 0.269 0.259 0.254 0.250 0.251 0.250 0.245 0.240
Product 4 0.302 0.282 0.276 0.270 0.266 0.263 0.257 0.253 0.248 0.243 0.240
Product 5 0.035 0.034 0.035 0.037 0.039 0.042 0.044 0.045 0.047 0.048 0.050
Product 6 0.029 0.028 0.030 0.032 0.035 0.037 0.038 0.040 0.043 0.045 0.047
Product 7 0.022 0.020 0.021 0.023 0.024 0.026 0.027 0.029 0.030 0.032 0.034
Product 8 0.157 0.143 0.143 0.143 0.143 0.141 0.137 0.138 0.139 0.138 0.137
Product 9 0.092 0.089 0.090 0.093 0.095 0.098 0.101 0.105 0.108 0.111 0.114
Product 10 0.104 0.109 0.111 0.116 0.118 0.121 0.125 0.128 0.131 0.133 0.135
Product 11 0.083 0.077 0.078 0.081 0.083 0.086 0.088 0.090 0.092 0.094 0.096
Product 12 0.084 0.081 0.083 0.087 0.090 0.094 0.098 0.102 0.105 0.107 0.108
Product 13 0.192 0.180 0.182 0.183 0.182 0.184 0.182 0.183 0.182 0.182 0.182
Product 14 0.197 0.207 0.211 0.214 0.216 0.221 0.218 0.221 0.222 0.222 0.220
Product 15 0.141 0.122 0.124 0.127 0.132 0.136 0.139 0.144 0.147 0.149 0.155
Product 16 0.130 0.114 0.117 0.119 0.120 0.125 0.129 0.134 0.136 0.137 0.139

Exp-2c Day 12 Day 13 Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20 Day 21
Product 1 0.231 0.231 0.231 0.231 0.234 0.237 0.239 0.239 0.241 0.244
Product 2 0.241 0.240 0.239 0.238 0.240 0.242 0.244 0.245 0.245 0.245
Product 3 0.239 0.241 0.243 0.245 0.246 0.250 0.251 0.249 0.247 0.246
Product 4 0.235 0.233 0.233 0.236 0.236 0.235 0.232 0.229 0.225 0.224
Product 5 0.051 0.054 0.056 0.058 0.060 0.062 0.064 0.065 0.066 0.068
Product 6 0.049 0.051 0.054 0.056 0.058 0.060 0.062 0.064 0.065 0.067
Product 7 0.036 0.038 0.039 0.041 0.042 0.044 0.045 0.046 0.048 0.049
Product 8 0.136 0.135 0.134 0.133 0.132 0.131 0.131 0.130 0.130 0.130
Product 9 0.116 0.118 0.121 0.122 0.123 0.124 0.125 0.125 0.125 0.125
Product 10 0.137 0.138 0.139 0.140 0.141 0.141 0.143 0.142 0.142 0.143
Product 11 0.098 0.100 0.101 0.103 0.104 0.105 0.107 0.108 0.109 0.109
Product 12 0.109 0.111 0.112 0.112 0.112 0.114 0.115 0.115 0.116 0.116
Product 13 0.183 0.185 0.188 0.189 0.189 0.186 0.184 0.180 0.178 0.179
Product 14 0.220 0.221 0.222 0.222 0.221 0.219 0.215 0.214 0.212 0.208
Product 15 0.158 0.160 0.162 0.163 0.163 0.163 0.162 0.160 0.160 0.160
Product 16 0.141 0.143 0.146 0.147 0.148 0.148 0.148 0.146 0.147 0.148

Table 8.10: Exponential-2c predictor weights with block weighting method
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Figure 8.1: The weights for product 1 with block weighting variance calcu-
lation.

Figure 8.2: The weights for product 2 with block weighting variance calcu-
lation.
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Figure 8.3: The weights for product 3 with block weighting variance calcu-
lation.

Figure 8.4: The weights for product 4 with block weighting variance calcu-
lation.
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Figure 8.5: The weights for product 5 with block weighting variance calcu-
lation.

Figure 8.6: The weights for product 6 with block weighting variance calcu-
lation.
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Figure 8.7: The weights for product 7 with block weighting variance calcu-
lation.

Figure 8.8: The weights for product 8 with block weighting variance calcu-
lation.
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Figure 8.9: The weights for product 9 with block weighting variance calcu-
lation.

Figure 8.10: The weights for product 10 with block weighting variance cal-
culation.
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Figure 8.11: The weights for product 11 with block weighting variance cal-
culation.

Figure 8.12: The weights for product 12 with block weighting variance cal-
culation.
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Figure 8.13: The weights for product 13 with block weighting variance cal-
culation.

Figure 8.14: The weights for product 14 with block weighting variance cal-
culation.
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Figure 8.15: The weights for product 15 with block weighting variance cal-
culation.

Figure 8.16: The weights for product 16 with block weighting variance cal-
culation.
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Figure 8.17: The weights for the Markov, Markov-correction, Exponential
and Exponential 2c adapter calculated with the exponential variance method
with a tau of 5 for product 1.

Figure 8.18: The weights for the Markov, Markov-correction, Exponential
and Exponential 2c adapter calculated with the exponential variance method
with a tau of 5 for product 2.
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Figure 8.19: The weights for the Markov, Markov-correction, Exponential
and Exponential 2c adapter calculated with the exponential variance method
with a tau of 5 for product 3.

Figure 8.20: The weights for the Markov, Markov-correction, Exponential
and Exponential 2c adapter calculated with the exponential variance method
with a tau of 5 for product 4.
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Figure 8.21: The weights for the Markov, Markov-correction, Exponential
and Exponential 2c adapter calculated with the exponential variance method
with a tau of 5 for product 5.

Figure 8.22: The weights for the Markov, Markov-correction, Exponential
and Exponential 2c adapter calculated with the exponential variance method
with a tau of 5 for product 6.
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Figure 8.23: The weights for the Markov, Markov-correction, Exponential
and Exponential 2c adapter calculated with the exponential variance method
with a tau of 5 for product 7.

Figure 8.24: The weights for the Markov, Markov-correction, Exponential
and Exponential 2c adapter calculated with the exponential variance method
with a tau of 5 for product 8.
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Figure 8.25: The weights for the Markov, Markov-correction, Exponential
and Exponential 2c adapter calculated with the exponential variance method
with a tau of 5 for product 9.

Figure 8.26: The weights for the Markov, Markov-correction, Exponential
and Exponential 2c adapter calculated with the exponential variance method
with a tau of 5 for product 10.
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Figure 8.27: The weights for the Markov, Markov-correction, Exponential
and Exponential 2c adapter calculated with the exponential variance method
with a tau of 5 for product 11.

Figure 8.28: The weights for the Markov, Markov-correction, Exponential
and Exponential 2c adapter calculated with the exponential variance method
with a tau of 5 for product 12.
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Figure 8.29: The weights for the Markov, Markov-correction, Exponential
and Exponential 2c adapter calculated with the exponential variance method
with a tau of 5 for product 13.

Figure 8.30: The weights for the Markov, Markov-correction, Exponential
and Exponential 2c adapter calculated with the exponential variance method
with a tau of 5 for product 14.
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Figure 8.31: The weights for the Markov, Markov-correction, Exponential
and Exponential 2c adapter calculated with the exponential variance method
with a tau of 5 for product 15.

Figure 8.32: The weights for the Markov, Markov-correction, Exponential
and Exponential 2c adapter calculated with the exponential variance method
with a tau of 5 for product 16.

In this part of the tac.xconf file the variance calculation method can be set
to ”block” of ”exponential” with respectively its horizon or tau value:r

<!-- SALES setup -->

<selector

class="edu.umn.cs.tac.oracle.eval.ModelSelectionConfiguredObject"
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name="model-selection">

<parameters

planning-horizon = "20"

block-weight-horizon = "10"

first-day-of-calculations = "2"

number-of-segments = "16"

days-in-game = "220"

tau = "1.0"

variance-calculation-method = "block"

smoothed-min-max-price = "smoothed-min-max-price"/>

<predictors name = "exponential-smoother-regime-prediction"/>

<predictors name = "markov-prediction"/>

<predictors name = "markov-correction-prediction"/>

<predictors name = "exps2c-adapter"/>

<order-pricers name = "probability-of-acceptance"/>

<order-pricers name = "probability-of-acceptance"/>

<order-pricers name = "probability-of-acceptance"/>

<order-pricers name = "probability-of-acceptance"/>

</selector>

This is the part of the tac.xconf file where the transition method with its
alpha and the transition-length can be changed:

<evaluator

class="edu.umn.cs.tac.oracle.eval.RegimeTrendCombiner"

name="markov-prediction">

<source name="markov-prediction-0" start="0"/>

<source name="markov-prediction-30" start="25"/>

<source name="markov-prediction-200" start="195"/>

<parameters

transition-length="10"

method="sigmoid"

alpha=1.0/>

</evaluator>

<evaluator

class="edu.umn.cs.tac.oracle.eval.RegimeTrendCombiner"

name="markov-prediction">

<source name="markov-prediction-0" start="0"/>

<source name="markov-prediction-30" start="25"/>

<source name="markov-prediction-200" start="195"/>

<parameters

transition-length="10"

method="sigmoid"

alpha=1.0/>

</evaluator>
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<evaluator

class="edu.umn.cs.tac.oracle.eval.RegimeTrendCombiner"

name="markov-correction-prediction">

<source name="markov-correction-prediction-0" start="0"/>

<source name="markov-correction-prediction-30" start="25"/>

<source name="markov-correction-prediction-200" start="195"/>

<parameters

transition-length="10"

method="sigmoid"

alpha=1.0/>

</evaluator>
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