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Abstract

This thesis examines the relationship between a country’s Olympic medal count and its socio-

economic factors, addressing four core research questions. Starting with an exploration of in-

fluential socio-economic factors, the measurement of the Olympic medals, and methodologies

utilized in existing literature. These influential socio-economic factors, including population,

GDP/GDP Per Capita, hosting and previously hosting the Olympics, and political regime, are

integrated into the analysis. The Olympic medal count is typically assessed based on solely the

number of Olympic medals earned by a country and the literature employs various machine learn-

ing models, such as Ordinary Least Squares, Tobit, Poisson, and Negative Binomial regression.

The second research question focuses on identifying the most effective machine learning model for

analyzing the influence of socio-economic factors on Olympic medal counts. In addition to ma-

chine learning models from previous literature, this study introduces Random Forest, Gradient

Boosting, and Extreme Gradient Boosting. Novel socio-economic factors are considered, in-

cluding income inequality, healthcare expenditures, technological development, and food supply

surplus. The Poisson regression stands out as the preferred machine learning model for its ability

to explain and quantify the relationship, primarily due to its interpretability. Conversely, XG-

Boosting excels in terms of predictive accuracy, forecasting the number of Olympic medals won

with an average deviation of 4.59 in comparison to the actual Olympic medal count. The third

research question employs the most explanatory Poisson model to quantify the relationship and

identify significant socio-economic factors. The study reveals that population, GDP per capita,

hosting the Olympics, autocratic regimes, and healthcare expenditures have positive influences,

while income inequality and food supply negatively influence the Olympic medal count. The

fourth research question delves into exploring variations in the influence of these socio-economic

factors across different contexts. Population has a more significant positive influence on female

athletes, while income inequality has a more significant negative influence on them compared to

their male counterparts. Population exerts a more significant positive influence on the Summer

Olympics than the Winter Olympics, while GDP per capita and autocratic regimes exhibit a

stronger positive influence in the Winter Olympics than in the Summer Olympics. Furthermore,

the influence of previous hosting and healthcare expenditures was absent in earlier years but

has become significant in more recent years.
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Chapter 1

Introduction

The Olympic Games, which originated in Athens, Greece, in 1896 (IOC, n.d.), represent one

of the most prestigious sporting events worldwide. They bring together diverse cultures and

have the power to influence diplomatic relations between nations. For instance, during the Cold

War, the Soviet Union and the United States used sports events as a means of expressing their

mutual aversion. While sports connections may not carry the same weight as economic or legal

relationships, they serve as effective political tools (Kanin, 2019). In 1931, Berlin was contro-

versially chosen to host the 1936 Olympic Games. The National Socialist regime in Germany

decided to proceed with the Games, using them to enhance their national image and present

themselves as a peaceful and virtuous nation to the world (Mackenzie, 2003). This underscores

the inherent connection between the Olympic Games and politics, highlighting their far-reaching

impact beyond the scope of the playing field.

The Olympic Games necessitate significant investment in infrastructure and sports facilities by

the host city and country. Scandizzo and Pierleoni (2018) categorize the impacts into economic,

physical, socio-cultural, psychological, and political aspects. Positive effects include job cre-

ation, tourism growth, improved infrastructure, heightened sports interest, and community and

national pride. Conversely, negative aspects are underestimated costs, increased taxes and pub-

lic debt, environmental degradation, social displacement, and post-Olympics underutilization of

facilities.

In addition to its impact on the residents of the host nation, the Olympic Games also exert

influence on a global audience. For example, the 2020 Olympic Games held in Tokyo garnered

a total of 3.05 billion individual viewers via television and digital media platforms, while inter-

net platforms generated approximately 28.0 billion views (IOC, 2021). These figures highlight

the immense reach and popularity of the Games, resonating with audiences across the world.

Furthermore, the substantial financial investments associated with organizing the 2020 Olympic

Games amounted to a total expenditure of 13.0 billion U.S. dollars (IOC, 2020). Such extensive

international participation and the significant flow of financial resources within the Olympic

process highlight its societal value.

The Dutch government has recently increased its investments in Olympic sports programs. One
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of the primary motivations behind this increased investment is to enhance national pride, foster

cohesion, and increase international prestige. Olympic success leads to a temporary surge in

national pride. However, the extent of this effect is somewhat limited because national pride

is a relatively stable sentiment influenced by numerous factors (Elling, Van Hilvoorde & Van

Den Dool, 2014). Haut, Prohl and Emrich (2016) found similar attitudes in the German pop-

ulation, where adherence to sports values was deemed more important than success, yet the

significance of Olympic medals couldn’t be dismissed, particularly among younger and less-

educated individuals.

Many Western countries base their elite sports development system on the idea that Olympic

success contributes, to increased sports participation. The higher demand for sports involve-

ment results in a healthier nation, which provides a larger pool of potential champions for major

sporting events. This phenomenon, referred to as the ”virtuous cycle of sports,” is of interest to

the government due to its potential to enhance sports participation and improve the well-being

of the population (Grix & Carmichael, 2012).

Olympic success is a valuable asset from a marketing perspective because it enhances collective

national pride. Marketing experts could utilize this emotional connection to create favorable

brand associations related to succesfull athletes or the Olympics as a whole, enhancing customer

engagement. Additionally, the extensive media coverage of the Olympic games presents oppor-

tunities for marketing experts to support successful Olympic athletes. This increased visibility

provides businesses with chances to elevate their brand exposure (Davis, 2012). Considering the

substantial financial resources and attention dedicated to the Olympic games, these marketing

opportunities are indeed of significant value.

The governments and other external sponsors face the subsequent question of how they can

specifically enhance Olympic performance and what other potential underlying causes of the

Olympic success could be. They must consider how to allocate their budgets effectively and

identify the opportunities and challenges that arise in this pursuit. These considerations have

shaped the primary research goal of this study.

Studying the influence of socio-economic factors on the Olympic medal count of a country.

The construction of the models that determine these influences relies on analyzing historical

data of previous performances and exploring the specific circumstances of the countries in-

volved. These two aspects are crucial because historical data allows us to understand the trends

and patterns of each country. By considering factors that could potentially affect the rate of suc-

cess, we can uncover relationships between the number of medals and country-specific variables.

To better understand the primary research objective, a series of research questions is formulated.

Olympic achievements and their associated factors have been extensively examined in the liter-

ature. What socio-economic factors explain them and how is this relationship captured? This
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question has led to the exploration of the first research question:

1. Which socio-economic factors are consistently associated with the Olympic medal count, what

models are commonly employed to investigate this relationship, and how is the Olympic medal

count measured in the existing literature?

The existing literature has explored how socio-economic factors relate to the number of Olympic

medals using various models. Each study justifies its choice of a particular model, although there

may be one model that performs better than the rest. Additionally, there is a question about

whether other socio-economic factors, not previously considered in the literature, might provide

valuable insights into the connection between the Olympic medal count and socio-economic

factors. Therefore, the second research question is considered:

2. What is the most effective model for analyzing the influence of socio-economic factors on

the Olympic medal count, and to what extent do these models differ in statistical significance

and predictive accuracy, while also exploring the added value of previously unconsidered socio-

economic factors?

After the selection of the most suitable model and determining the composition of socio-economic

variables, the next step involves interpreting the model and quantifying the influence of socio-

economic factors on Olympic medal counts. This leads to the formulation of the third research

question:

3. How can the influence of the socio-economic factors on the Olympic medal count be inter-

preted, and to which extent do the predictors exert influence?

It is important to acknowledge that the influence of these socio-economic factors may vary de-

pending on the context of the Olympic Games. Hence, the fourth and last research question

arises:

4. Do the influences of the socio-economic factors vary across the different genders, seasons and

years in relation to the Olympic medal count, and, if so, how?

This thesis holds significance for both the academic and practical domains. From an academic

standpoint, this thesis holds scientific value as it provides answers to research questions that

contribute to the existing body of knowledge concerning the factors influencing medal-winning

outcomes. This paper aims to contribute to the existing literature by examining the influence of

a novel combination of independent variables alongside established ones and comparing multiple

machine learning models.

In addition to its academic relevance, this research also offers practical implications for decision-

makers. Policymakers within national Olympic committees can gain insights into the underlying
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factors that influence Olympic success. These factors may vary in their influences across different

contexts, and understanding these variations can assist national Olympic committees in aligning

their investment and training programs effectively. Moreover, this knowledge of the causes of

Olympic success can be of interest to governments that invest in Olympic sports. Such invest-

ments contribute to the aforementioned ”virtuous cycle of sports,” promoting societal well-being

and enhancing athletic performances (Grix & Carmichael, 2012).

Lastly, commercial stakeholders and bookmakers may find this research of interest. Stakeholders

can utilize the conditions of a given country to make informed investment decisions and choose

which athletes to sponsor. Bookmakers can employ the model and its predictions to adjust their

odds in a manner that optimizes their profitability.

The paper is organized as follows. Section 2 provides a comprehensive literature review that

examines the current understanding of the association between socio-economic factors within

a country and its Olympic medal count. This section presents the existing knowledge on the

topic and summarizes the methodological approaches used to investigate these relationships. By

reviewing the existing literature, the paper identifies potential gaps in knowledge and highlights

opportunities for employing novel methodologies.

In Section 3, an examination of the data used in this study is presented. This section covers the

data collection process, including measurement details, followed by an explanation of the data

cleaning and merging procedures. Furthermore, it includes a discussion of descriptive statistics

related to the data, offering an analysis of the data set.

In Section 4, the paper outlines the chosen models, metrics, and the research approach employed

to derive relevant conclusions and answers to the research questions. This section provides in-

sights into the rationale behind selecting specific models and metrics and explains how they are

applied to the data set.

Section 5 focuses on presenting the outcomes of the study. It highlights the best-performing

models, analyzes the significance of socio-economic factors, and quantifies their influences based

on the results obtained. This section aims to provide a clear understanding of the findings and

their interpretation within the context of the research questions.

Finally, Section 6 serves as the conclusion and discussion section, summarizing the main findings

of the thesis. It addresses the recommendations and insights derived from the results, emphas-

izing their significance and potential applications. Furthermore, this section acknowledges the

limitations of the thesis and highlights areas for future research within this field, suggesting

potential approaches to further enhance the understanding of the relationship between socio-

economic factors and the Olympic medal count.
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Chapter 2

Literature review

2.1 Socio-economic factors

Several studies have been conducted to investigate the influence of socio-economic factors on

the Olympic medal count of countries. Within the existing literature, numerous independent

variables have been examined, with certain socio-economic factors recurring frequently and

demonstrating significant effects. This thesis aims to outline these specific socio-economic factors

and to identify areas that warrant further investigation.

2.1.1 Population

The influence of a country’s population on its Olympic performance has emerged as a repeated

theme in the literature. It is commonly argued that the number of inhabitants should play a

significant role in determining the extent of a country’s success in the Olympics. The rationale

behind this argument is that larger countries possess a larger pool of athletes and talent to

choose from, thereby increasing their chances of securing victories (Johnson & Ali, 2004).

An additional perspective in the literature suggests that a larger population size may decrease

the likelihood of qualifying for the Olympic Games, attributed to the limited number of avail-

able spots for participation. As a result, the selection process becomes highly competitive in

countries with larger populations compared to smaller nations. This heightened competition

can further enhance the probability of Olympic success (Emrich, Klein, Pitsch, Pierdzioch et

al., 2012).

According to Lui and Suen (2008), if athletes worthy of winning medals were distributed ran-

domly across the world, the proportion of medals obtained by a country in the Olympics would

be directly proportional to its share of the global population among the participating countries.

However, this assumption is limited in scope since it overlooks other significant factors influ-

encing Olympic success. For instance, solely relying on the population as a predictor would

lead to the expectation that countries like China, India, Bangladesh, and Indonesia, together

representing 43% of the world’s population, would have collected more than 6% of total Olympic

medals they won in 1996 (Bernard & Busse, 2004).
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2.1.2 GDP per capita

A country’s population is frequently combined with its GDP per capita, as these two factors

emerge as prominent determinants of a country’s success in the Olympics (Celik & Gius, 2014).

Building upon the example provided by Bernard and Busse (2004), which initially considered

population as the sole predictor, the inclusion of GDP per capita further enriches the analysis.

The availability of resources for each inhabitant and the government’s support significantly im-

pact a country’s capacity to invest in training programs, purchase equipment, and ultimately

participate in the Olympic Games. Moreover, individuals in wealthier countries have shorter

daily working hours to sustain their livelihoods compared to those in poorer countries. Their

working time is also expected to decrease as they age, affording them more opportunities to

engage in sports activities Emrich et al. (2012).

Historically, wealthier nations have displayed higher participation rates in the Olympics com-

pared to developing countries. Nevertheless, advancements in global travel have led to reduced

transportation costs, and improved accessibility to healthcare has contributed to enhanced par-

ticipation from economically disadvantaged countries (Kuper & Sterken, 2001). These changes

have leveled the playing field, allowing developing nations to increase their representation in the

Olympic Games.

Johnson and Ali (2000) conducted a study investigating the influence of population and GDP

per capita on medal success during the Summer Olympics in the aftermath of the World War.

Their findings revealed a noteworthy influence of both population and GDP per capita on medal

achievements. Similarly, Andreff (2001) conducted research focusing on the 1996 Atlanta and

2000 Sydney Summer Olympics. In this study, both population and GDP per capita were found

to be highly significant, with GDP per capita exhibiting an even greater influence on medal

success. These two socio-economic factors emerged as fundamental elements in predicting the

Olympic medal count. However, it is essential to acknowledge that other factors may also play

a role and should be considered in forecasting the Olympic medal count.

2.1.3 Host country

The act of hosting the Olympic Games can yield favorable outcomes for the Olympic medal

count of the participating nation. This potential advantage can be attributed to various factors,

including the influence of the home crowd, familiarity with the sporting context, reduced travel

fatigue, rule-related factors, refereeing decisions in favor of the home team, and the instinct-

ive sense of territoriality (Legaz-Arrese, Moliner-Urdiales & Mungúıa-Izquierdo, 2013). During

the 2000 Olympic Games held in Sydney, the host nation achieved a remarkable performance,

securing nearly 42 medals more than other participating countries exhibiting comparable char-

acteristics (Hoffmann, Ging & Ramasamy, 2004).
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Several studies have employed dummy variables to indicate whether a nation hosts the Olympic

Games in a given year. Bernard and Busse (2004) found that countries achieved more than

1.8 percent of medals beyond what would be predicted by their GDP alone. In a more com-

prehensive analysis, Bian et al. (2005) investigated the impact of hosting the Olympics while

considering a broader range of socio-economic factors. The findings revealed that being the host

nation positively influenced the Olympic performance of athletes from that country.

Hoffmann et al. (2004) reported that hosting the Olympic Games represents a country’s affinity

with sports, capturing the cultural aspect related to sports participation. The use of a dummy

variable for hosting significantly and positively influenced the number of medals won by the host

country. Furthermore, the inclusion of lagged dummy variables for previous host countries also

yielded significant results, indicating that the benefits of hosting the Olympic Games extend to

subsequent events.

Balmer, Nevill and Williams (2003) research findings reveal that the extent of home advantage

varies depending on the type of sport. Their study highlighted a significant home advantage in

sports that relied on subjective judging by officials or judges. In contrast, sports governed by

specific rules with objective judgments showed little to no home advantage. While the advantage

of hosting the Olympic Games has been established through various studies, its influence is

context-specific and influenced by various factors.

2.1.4 Politics

Politics and the Olympic Games have historically been closely connected and are inseparable(Kanin,

2019). The presence of significant historical incidents such as the ’Nazi Olympics’ in 1936, the

ideological rivalry between the U.S. and the Soviet Union in 1952, and the Suez invasion in 1956

are not mere coincidences. These occurrences illustrate the evident and enduring link between

politics and the Olympic Games (Donald, 1972).

The presence of this relationship is clear but do the political landscape of a country influence

its performance? Donald (1972) states that a ‘successful nation-state’ in the Olympic Games

should be: “stable and homogeneous in population, literate, modern and western, with little

institutionalized domestic political competition, economically prosperous, characterized by a

strong central government staffed by the elite, and probably a member of the Communist Bloc”.

The aforementioned assertion was subsequently validated by Grimes, Kelly and Rubin (1974)

in their study, where they conducted a regression analysis of the number of medals won to the

GDP per capita and population. Notably, the communist countries emerged as outliers in this

analysis, as their actual number of medals surpassed the predicted number based on their eco-

nomic development and population.

In more recent research conducted by Bernard and Busse (2004), it was revealed that the Olympic

performance of the Soviet Union and Eastern Bloc countries exceeded their predicted medal share
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by more than 3 percentage points, considering their GDP and previous performances. Addition-

ally, Johnson and Ali (2004) also observed an over performance of communist and centralized

single-party governments in the Olympic Games.

In a communist country with a centralized government, there is a greater emphasis on special-

ization in sports, and resources are more readily allocated to athletes and training programs

compared to societies with open market systems. This prioritization of sports is driven by

the significance of Olympic performance in enhancing the national prestige of these communist

countries, which holds exceptional importance for them (Bian et al., 2005).

2.2 Gender, season, and year disparities

The importance of various socio-economic factors on the Olympic success has been acknowledged;

however, examining whether these influences can be universally applied across all contexts is

crucial. Notably, certain influences exhibit variations based on specific circumstances, such as

the gender of participants, the season of the Olympic Games, and the particular year in question.

Gender

Many studies exploring the determinants of Olympic success often overlook the distinction

between male and female performances. In this regard, the research conducted by Leeds and

Leeds (2012) stands out as they observe noteworthy patterns. Specifically, they find that fe-

male athletes from Arab countries tend to underperform compared to their counterparts from

other countries, while male athletes from Communist countries tend to outperform their peers,

whereas female athletes from Communist countries do not exhibit the same advantage. The

study seeks to assess the influence of established explanatory variables and incorporates addi-

tional gender-related variables into the analysis, namely, fertility rate and the date of women

obtaining voting rights.

Rewilak (2021) also researched the determinants of Olympic success, focusing on the separation

of data into male and female samples to investigate potential influences specific to each gender.

Hosting had a statistically significant positive influence on the performance of both male and

female athletes to the same extent. Similarly, the population size also had a statistically signific-

ant positive influence on Olympic success for both genders. However, an increase in population

size had a twofold influence on female athletes compared to male athletes.

Contrary to the findings of Leeds and Leeds (2012), certain variables such as GDP per capita,

political dummy variables, and gender inequality were deemed statistically insignificant in their

influence on Olympic success in the study by Rewilak (2021). This discrepancy suggests that the

influence of these independent variables might vary depending on the specific research context

or sample characteristics. It is important to note that the research in this field may not be

extensive enough to draw definitive conclusions, and for a more comprehensive understanding,
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additional socio-economic factors should be included to assess the differences in their influences

on male and female athletes’ performance.

Season

The nature of the Summer and Winter Olympics differs significantly from other sporting dis-

ciplines in terms of their organization. The Summer Olympics are characterized by a longer

duration, a greater number of sporting and non-sporting events, and being scheduled during

the holiday season. These factors contribute to a larger economic influence for the Summer

Olympics compared to the Winter Olympics, leading to a greater prevalence of research on the

Summer Olympics in the current literature (Wood & Meng, 2021).

In a comparative study conducted by Johnson and Ali (2004)), both editions of the Olympics

were examined to analyze their respective impacts and the underlying socio-economic factors.

The research aimed to investigate two main components: firstly, to explore the relationship

between a country’s ability to participate in the Olympics and various socio-economic factors,

and secondly, to determine the relationship between the Olympic medal count of participating

countries and socio-economic factors.

The findings revealed that nations with higher GDP are more likely to send a greater number of

athletes to the Olympics, with this effect being more pronounced in the Winter Olympics than in

the Summer Olympics. This effect may be because countries with warmer climates are less likely

to participate in the Winter Olympics. Additionally, Africa, which has the warmest climate near

the equator, is less developed and has limited Winter Olympics participation. Therefore, geo-

graphy could influence both the GDP and participation rate making it a confounding variable.

As a result, the impact of a country’s GDP is less significant in the Winter Olympics compared

to the Summer Olympics. The Summer Olympics involve more diverse countries, while the

Winter Olympics are mainly attended by wealthier nations, reducing the importance of GDP.

However, it is essential to note that a higher GDP is generally associated with more Olympic

medals in both the Summer and Winter Olympics.

Larger populations also positively influence the number of athletes a country sends, with a

stronger effect observed in the Summer Olympics. Interestingly, smaller nations tend to outper-

form larger nations more prominently in the Winter Olympics, and the population’s influence

on performance is also less pronounced in the Winter Olympics than in the Summer Olympics.

One potential reason for this could be that smaller countries often specialize more to maximize

their chances of winning Olympic medals.

Years

The composition of the Olympic Games has evolved significantly over time, particularly in the

post-World War II era. The percentage of European athletes participating in the first Olympic

Games after the war was as high as 83%, but this figure decreased to 68% during the 2012
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Olympic Summer Olympics in London. Furthermore, there has been a noteworthy increase in

the representation of women in the Olympics, accounting for nearly half of the athletes in con-

temporary games, compared to a mere 10% in the postwar games.

Moreover, the distribution of Olympic medals among countries has undergone substantial changes.

In the 1980 Olympic Games, the top ten countries accounted for more than 80% of the total

medals, but this proportion declined to around 55% for the London Olympics in 2012 (IOC,

2012). Such variations in the composition of the Olympic Games concerning participating coun-

tries, gender representation, and medal winners indicate the dynamic nature.

Noland and Stahler (2017) assert that this diversity in Olympic outcomes can be attributed

to changes in the underlying correlates, which implies that the socio-economic factors influen-

cing Olympic success have evolved. The significance of certain determinants such as welfare,

population size, host advantage, and political structure has been recognized; however, smaller

and economically disadvantaged countries have encountered fewer barriers to winning Olympic

medals as time has progressed. Hence, the importance of GDP per capita and population size

in determining Olympic success has diminished over time.

2.3 Potential socio-economic factors

The importance of socio-economic factors in shaping a country’s Olympic performance has

been emphasized and will be incorporated into the analysis to account for their influences.

Nevertheless, this thesis recognizes the existence of additional potential factors that may also

impact a country’s Olympic medal count and have not been used in the existing literature. To

ensure that no new socio-economic factors strongly correlated with a country’s size or wealth

are included, correlations will be tested, and socio-economic variables will be chosen based on

correlation criteria. The new potential socio-economic factors considered for this study are:

Income inequality

The association between income inequality and a nation’s economic condition has been the fo-

cus of numerous studies, revealing a negative correlation between higher income inequality and

economic growth (Buttrick & Oishi, 2017). Likewise, extensive research has explored the link

between income inequality and the overall health of a country, though thus far, evidence demon-

strating income inequality as a threat to public health remains non-existent (Subramanian &

Kawachi, 2004).

Veal (2016) states that a more equitable distribution of income within a country enhances

the well-being of its residents. However, no prior investigations have delved into the potential

relationship between income inequality and leisure time and sporting activities. The present

study examines this association and finds that countries with lower income inequality tend to

have more leisure time and greater participation in cultural and sports activities. Increased

sports participation may lead to improved athletes’ performance in the Olympic Games.
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Healthcare expenditures

GDP per capita is commonly used as an indicator of a country’s economic prosperity. However,

while this metric provides a useful overall measure, it does not reveal how financial resources

are allocated within the country. This paper argues that targeted government investments can

offer valuable insights into a nation’s specific priorities.

Jakovljevic et al. (2019) emphasize the importance of increased health spending and effective

policies in improving public health outcomes and reducing disease prevalence. This finding

underscores the significance of health-related investments for countries, particularly fast-growing

economies like the BRIC (Brazil, Russia, India, China) governments. Allocating a higher share

of the budget to health holds the potential to improve a country’s performance in international

sporting events like the Olympic Games.

Nutrition

Participating in sports is crucial for Olympic success, but achieving optimal performance relies

on proper food intake. Balanced nutrition aids athletes in recovery, effective training, and

injury prevention. Ensuring the right nutrients are consumed becomes especially vital to reach

the highest levels of the Olympic Games (Maughan, Burke & Coyle, 2004). Nevertheless, the

accessibility of nutritious foods for individuals varies across countries, potentially placing some

athletes at a disadvantage in their pursuit of Olympic excellence.

Technology

Technology and innovation are playing an increasingly important role in the sports industry.

Haake (2009) conducted a study analyzing four distinct disciplines featured in the Olympic

Games, investigating their performance improvements throughout history. Although the extent

of enhancement varied across disciplines, a significant improvement was observed in all sports,

which can be attributed to innovations in equipment. The findings of this research hold applic-

ability from the domain of amateur sports to that of elite athletics.

Also, various information technologies and wearable devices are now available to provide relevant

feedback to athletes. It is believed that these technologies can enhance the performance and

capabilities of both male and female athletes (Liebermann et al., 2002).

2.4 Employed research methods

Several studies have examined the influence of socio-economic factors, as mentioned in the pre-

ceding sections. The question then arises about the methods used and the contexts in which they

were applied. To address this, Table 2.1 below provides a summary of these methods employed.

In the response variable column, the aggregation of gold, silver, and bronze medals is indicated

by (A), while the differentiation between various types of medals is marked as (D).
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Table 2.1. Methods overview in existing literature

Date Author(s) Predictors Response variable Model

1972

Donald Population Weighed sum of medals Fisher’s exact test

GDP/GDP per capita

Political structure

1974

Grimes Population Medal integer count (A) OLS

Kelly GDP per capita

Rubin

2000

Johnson Population Individual: Probability (D) OLS

Ali GDP per capita Country: Medal count (A)

Host country

Neighboring country

Political structure

2001
Andreff Population Probability (A) Logistic regression

GDP per capita

2001

Kuper Population Medal integer count (D) OLS

Sterken GDP per capita

Host country

Political structure

2004

Bernard Population Medal integer count (A) Tobit

Busse GDP per capita

Host country

Neighboring country

Political structure

Climate

2004

Johnson Population Medal share count (A) OLS

Ali GDP per capita

Host country

Neighboring country

Political structure

2005

Bian Population Medal integer count (A) OLS

GDP per capita

Host country

Political structure

2008

Lui Population Weighed sum of medals Tobit

Sen GDP per capita Poisson

Host country

2012

Leeds Population Medal integer count (A & D) Negative Binomial Regression

Leeds GDP per capita

Host country

Political structure

Fertility rate

Date woman voting rights

2012

Emrich Population Medal integer count (A) OLS

Klein GDP per capita

Pitsch

Pierdzjoch

2014

Celik Population Medal integer count (A) OLS

Gius GDP per capita

Lagged medals won

2017

Nohland Population Medal share count(A) Tobit

Stahler GDP per capita

Host country / Post host country

Political structure

Education

2021

Rewilak Population Medal share count (A) Tobit

GDP per capita

Host country

Political structure
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Donald (1972) investigates the link between Olympic performance and national socio-economic

indicators. It categorizes countries’ Olympic outcomes as high or low scores based on a weighted

sum of medals, and national socio-economic indicators are similarly classified as high or low us-

ing thresholds. Fisher’s exact test is employed to assess differences between these categories,

examining whether high-scoring countries differ from low-scoring countries in terms of the socio-

economic indicators, and vice versa. This approach, however, conservatively establishes the

relationship, relying on thresholds that limit the representation of a precise relationship.

Ordinary Least Squares (OLS) regression is a widely employed technique in statistical analysis.

Nonetheless, when the dependent variable exhibits many values of zero, conventional statistical

methods can introduce downward biases into the estimates. In such cases, Tobit regression, as

applied by Lui and Suen (2008), Noland and Stahler (2017), and Rewilak (2021), offers a com-

parable alternative to OLS regression. The Tobit regression method is designed to accommodate

and address the limitations posed by the distribution of the dependent variable (McBee, 2010).

The Generalized Linear Model (GLM) transforms non-linear problems into linear ones. An-

dreff (2001) utilized logistic regression, a type of GLM, to predict binary outcomes, where the

dependent variable is categorical, indicating the presence or absence of an outcome (Walsh, 1987)

Lui and Suen (2008) study uses Poisson regression, a common GLM for count outcomes, mod-

eling the number of events within a fixed time frame. The dependent variable follows a Poisson

distribution, determined by the average event rate, and is transformed into a natural logarithm.

it is important to note that Poisson regression assumes equidispersion, where the variance equals

the mean. If this assumption is violated, Coxe, West and Aiken (2009) suggests Negative Bino-

mial Regression (NGB) as an alternative solution, which relaxes the equidispersion assumption.

The assessment of Olympic performance is influenced by the models utilized, as the choice of

the dependent variable determines the appropriateness of the analytical approach. The study

conducted by Donald (1972) was initiated by computing a weighted sum of medals, categorizing

them into two groups based on this criterion. Similarly, Lui and Suen (2008) employed a similar

approach to measure medal performance, with gold medals receiving the highest weight on a

scale of 1 to 3. In a different context, Andreff (2001) assessed the probability of winning any

Olympic medal, whereas Johnson and Ali (2000) investigated the likelihood of winning specific

types of Olympic medals for individuals.

Bernard and Busse (2004), Noland and Stahler (2017) and Rewilak (2021) employed a ratio-

based count, which considers the number of medals won to the total number of medals available.

In contrast, Grimes et al. (1974), Kuper and Sterken (2001), Johnson and Ali (2004), Bian et

al. (2005), Emrich et al. (2012), Leeds and Leeds (2012) and Celik and Gius (2014) adopted an

integer count approach, focusing on the total number of medals secured by a particular country.

The latter method is more commonly employed and often does not differentiate between gold,

silver, or bronze medals, except for Kuper and Sterken (2001) and Leeds and Leeds (2012).
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Chapter 3

Data

This research investigates the relationship between socio-economic factors and a country’s Olympic

medal count. The utilization of data is essential in this investigation as it facilitates the quanti-

fication of this relationship. This section outlines the sources of data, the reasons for considering

this data representative, and the specifications associated with it. Finally, the process of cleaning

and merging the separate data sets is explained.

3.1 Data collection

3.1.1 Olympic performance

The data set employed in this study referred to as ’120 years of Olympic history: athletes and

results,’ has been sourced from Kaggle. This data set contains extensive information about

both Summer and Winter Olympic games achievements, covering events from the first Olympics

in 1896 to the 2016 edition. It was compiled by Rgriffin (2018), who collected the data by

scraping information from www.sports-reference.com and combining it into one comprehensive

data set. The data set consists of 271,116 rows and 15 columns, with each row representing an

individual athlete taking part in an Olympic discipline, accompanied by their respective personal

information contained within the columns. The columns of the data set are displayed in Table

A.1.

3.1.2 Socio-economic factors

All the socio-economic data used in this study was obtained from www.ourworldindata.org, a

trusted open-source website that compiles information from around the world. This website

focuses on key global challenges, including poverty, disease, hunger, climate change, war, exist-

ential risks, and inequality, all of which are closely related to the socio-economic state of our

planet. The website serves as a third-party platform by aggregating data from numerous offi-

cial databases (e.g. World Bank and United Nations) maintained by trusted institutions. The

socio-economic factors have been obtained individually as separate data sets, with each data set

primarily focused on a specific socio-economic variable.

16



GDP per capita

Gross Domestic Product (GDP) per capita serves as a metric for assessing the average standard

of living and financial resources available to individuals within a given country. To facilitate

the cross-country comparisons, GDP per capita values are standardized by converting them into

international dollars, a process based on Purchasing Power Parity (PPP) rates. These PPP

rates enable a relative assessment of the cost of living across different countries, making GDP

per capita data applicable and meaningful within a global context (OurWorldinData, 2021b).

Population

The population data set includes data points that record historical global population figures for

past decades and provide projections for future decades (OurWorldinData, 2022b).

Political regime

The state of democracy in a country is a measure of how much political freedom and participa-

tion its citizens enjoy. In the data set the global political regimes are classified into four distinct

categories, which serve as a categorical variable (OurWorldinData, 2022a).

Closed Autocracies: In these political systems, citizens do not have the right to elect their polit-

ical leaders or participate in multi-party elections. The level of political freedom is severely

restricted.

Electoral Autocracies: Within electoral autocracies, citizens do possess the formal right to par-

ticipate in elections and vote for their leaders. However, these rights are often constrained,

leading to elections that are less free and fair, and limitations on broader political freedoms.

Electoral Democracies: These political systems grant citizens the right to participate in legitim-

ate multi-party elections. While citizens have a significant degree of political agency, the level

of political rights and freedoms may still vary within this category.

Liberal Democracies: Representing the most advanced form of democracy, liberal democracies

not only provide individuals with extensive political rights but also ensure equality under the

law. Furthermore, they establish legal mechanisms to constrain the authority of elected leaders.

Income inequality

The GDP per capita serves as an indicator of a country’s average wealth; however, it does not

provide insights into how financial resources are distributed within the society. In contrast, the

Gini index, a coefficient that ranges from 0 to 1, offers a measure of income inequality, with a

higher coefficient signifying a greater degree of income inequality (OurWorldinData, 2021a).
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Healthcare expenditures

The state of a country’s healthcare system reflects its capacity to provide for its citizens’ well-

being. The allocation of funds to healthcare offers an insight into its prioritization. However,

absolute public healthcare investments are influenced by a country’s financial resources. There-

fore, healthcare expenditures are measured as a percentage of the GDP. Analyzing the connection

between this socio-economic indicator and the Olympic medal count may yield insights into the

importance of emphasizing such investments (OurWorldinData, 2019).

Technology

Technology and the internet have become deeply integrated into global society, with widespread

usage being the norm. Nevertheless, the percentage of the population that has accessed the

internet within the last three months remains a significant indicator of a country’s technolo-

gical development, reflecting the extent of active users and overall technological advancement

(OurWorldinData, 2021d).

Nutrition

To assess global access to nutritious food, one data set compared the minimum costs of a nutri-

tious diet to average food expenditures. However, this data is only available from 2017 onwards,

which does not align with the 2016 cutoff of the Olympic performance data set. As an alternat-

ive, data on daily caloric food supplies, including macronutrient composition like plant protein,

animal protein, fat, and carbohydrates, is used (OurWorldinData, 2020). Additionally, a separ-

ate data set outlines daily minimum caloric requirements for each (OurWorldinData, 2021c).

The socio-economic data sets obtained for this thesis are summarized in Table A.3.

3.2 Data cleaning

3.2.1 Olympic data

Firstly, the Olympic data set is examined and only the relevant variables that align with the

thesis objectives are retained. The variables ID, Name, Age, and Height are personal but this

study is focused on the relationship on a country-specific level thus these are removed from the

data set. Additionally, the redundant variables NOC and Games which duplicate information

found in Team, Year and Season are excluded. Also, the variable Team is renamed to Country

for better clarity in describing the values of this variable.

The Olympic data set has been limited to the years between 2000 and 2016 because data for

variables related to nutrition and healthcare expenditures is only available from the year 2000

onwards. The updated data set now includes events from the 2000 Olympic Games in Sydney

through the 2016 Olympic Games in Rio de Janeiro, encompassing a total of five Summer

Olympics and four Winter Olympics.
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The variable of interest, Medal, denotes whether an individual athlete has achieved a gold, silver,

bronze, or no medal. It is standardized such that all three types of medals are represented as 1,

while the absence of a medal is coded as 0. Furthermore, one year is subtracted from the Year

variable for each observation. This adjustment facilitates the merging of Olympic performance

data with socio-economic predictors from the year immediately preceding the Olympic Games.

This transformation is implemented to account for the fact that when merging data for identical

years, it assumes a retroactive impact during the 5- and 9-month intervals in the aftermath of

the respective Summer and Winter Olympics, which is not relevant. Additionally, any unneces-

sary numerical suffixes in the Country variable are eliminated.

Finally, the Olympic medal count is aggregated and summed for each year and country, result-

ing in the creation of the Total Medals variable. This variable represents the Olympic medal

count for every country in a specific year and edition of the Olympic Games. Olympic team

winners are considered as a single medal winner for the Olympic rankings, contrasting with the

initial data set where each team member is categorized as a medal winner and, thus, individual

athletes are aggregated with their respective teams. To conclude, the Maximum Medals vari-

able is created to show the total of all medals won for the involved edition of the Olympic Games.

The updated Olympic data set includes a total of 1377 observations and is composed of 6

variables: Year, Country, Season, City, Total Medals, and Maximum Medals.

3.2.2 Socio-economic data

The socio-economic data sets are loaded individually and undergo minor adjustments. Vari-

able names for all the socio-economic indicators are slightly modified to enhance clarity. The

Political Regime variable is assigned numerical codes ranging from 0 to 3, with each number

representing a distinct political context. These numerical codes are subsequently transformed

into corresponding strings that correspond to their respective numbers. However, these string

representations are not suitable for further analysis. Consequently, four dummy variables are

created, with each one denoting the presence (1) or absence (0) of a specific political regime for

the country in a given year.

The daily caloric food supply, referred to as Total Supply, for each country should be determined

by aggregating the caloric contributions of individual macronutrients. Subsequently, the separate

data set containing the minimum daily caloric requirements should be integrated with the caloric

supply data. Following this integration, a new variable termed Food Supply Surplus can be

computed by dividing the daily caloric supply by the daily minimum requirement. Lastly, the

absolute caloric content attributable to each macronutrient is transformed into a ratio by dividing

it by the Total Supply. In summary, the concept of Food Supply Surplus explains the capacity of

each country to meet its needs. Additionally, variables such as Plant Protein, Animal Protein,

Fat, and Carbohydrates contextualize these caloric values by showing their proportions relative

to the Total Supply.
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3.2.3 Merging, handling NA values and multicollinearity

The initial step involved merging the previously cleaned Olympics data set with the separate sets

of socio-economic variables. After this merging process, an adjustment was made to the Year

variable by incrementing it by 1, thereby restoring its original state. However, a noteworthy

point to mention is the absence of data for the Nutrition and Healthcare Expenditures variables

in the year 1999, which directly preceded the 2000 Sydney Olympics. To address this data gap,

the values for these variables were substituted with data from the year 2000. Additionally, a

novel independent variable was introduced to indicate whether a country hosted the Olympic

Games. Consequently, a lagged host variable was incorporated to denote hosting one of the

two preceding editions. The data set contains information from 101 countries across 9 Olympic

Games, giving a total of 1377 rows and 23 columns.

The merged data set is not yet suitable for analysis, primarily due to the presence of 4156 missing

values that require attention. To solve this issue, missing values in continuous socio-economic

variables will be replaced with the mean value of that variable across all available years of data

for the respective country. This imputation process reduces the number of missing values to

3653. Following imputation, rows containing these missing values are removed from the data

set. The data set has been reduced from its initial 1377 rows to 759 rows. This reduction

also resulted in a decrease in the total number of medals from 5458 to 4885. However, this

decrease in medal count is relatively minor compared to the removal of rows, indicating that

the removed rows mainly represent small countries without socio-economic data that do not win

many medals. It is important to note that the sum of all medal winners is accounted for in

the initial phase before the cleaning, resulting in the creation of the Maximum Medals variable.

When this variable is incorporated into the analysis, it considers the potential total number of

Olympic medals that could be won, thus offering insight into athlete achievements compared to

the other Olympic Games editions.

Ultimately, it is critical to evaluate multicollinearity, as it reveals strong correlations among

independent variables. This can result in enlarged standard errors for coefficients in regression

models, introducing uncertainty regarding the actual influence of each independent variable on

the dependent variable. The correlation matrix among the independent variables reveals their

relationships. Ratner (2009) defines a correlation coefficient exceeding an absolute value of 0.7

as a strong relationship. This criterion is consistently applied to determine whether to keep or

exclude independent variables. The correlation matrix is presented in Table A.2 where Animal

Protein, Plant Protein, Fat, and Carbohydrates, Share Internet Users and Liberal Democracy

also exceed this threshold concerning the GDP Per Capita. If all these independent variables

are retained, they may collectively capture some of the influence of GDP Per Capita obscuring

its true influences. Therefore only GDP Per Capita is kept and all other strongly correlated

independent variables are eliminated. The ultimate data set, aligned with the research goals of

this thesis, comprises 759 rows and 19 columns.
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3.3 Data descriptives

The data sets have been sourced, merged, and cleaned to make them ready for analysis. Before

executing the analyses, an examination of the statistical properties of the data set’s variables has

been conducted. This examination includes measures of central tendency (mean and median),

measures of dispersion (range and variance), and measures of shape (quantiles and skewness).

These descriptive statistics of the numerical variables are summarized in Table 3.1.

Table 3.1. Descriptive statistics

Variable Mean Median Variance (SD) Range 1st Quantile 3rd Quantile Skewness

Total Medals 6.44 1.00 188.26 (13.72) 0-110.00 0.00 6.00 3.83

Maximum Medals 685.00 879.00 99691 (316.73) 207.00-947.00 265.00 917.00 -0.72

GDP Per Capita 21359 14474 366,849,551 (19153) 698-120,648 6078 34788.8 1.39

Population 61,018,574 10,464,537 3.75 ×1016 (1.94 ×108) 78,848-1,393,715,456 4,521,640 38,601,774 5.68

Gini Coefficient 0.37 0.35 0.0065 (0.08) 0.24-0.65 0.31 0.41 1.07

Food Supply Surplus 1.580 1.589 0.043 (0.21) 1.062-2.011 1.425 1.745 -0.13

Healthcare Expenditures 6.67 6.56 6.14 (2.48) 1.85-20.41 4.80 8.33 0.69

Table 3.1 highlights notable aspects of the dependent variable Total Medals. A key observation

is the relatively low variance when considering the range of values, suggesting that a significant

portion of the data points cluster around the low-valued mean, having high-valued outliers. This

notion is further substantiated by the substantial skewness evident in the last column, which

measures the distribution’s asymmetry. Specifically, when the coefficient is positive, it signifies

right-skewed data, indicating that the tail and the minority of the distribution are located on

the right-hand side, the high-valued end of the distribution. Conversely, a negative coefficient

suggests left-skewed data, where this relationship is reversed. Data is considered highly skewed

if it falls below -1 or exceeds 1 (Groeneveld & Meeden, 1984).

In this context, GDP Per Capita and particularly the Gini Coefficient slightly exceed this

threshold, while Total Medals and Population exhibit extremely right-skewed distributions. The

right-skewed nature of the dependent variable Total Medals is visually represented in Figure A.1.

The descriptive statistics associated with categorical variables adhere to distinct standards and

are grounded in the fundamental concept of frequency analysis. Consequently, these categorical

variables are summarized in Table A.4. The occurrence of the three most tolerant regimes seems

to be fairly evenly distributed, while the Closed Autocracy is less common. The number of hosts

in the data set aligns with expectations since each edition could only be hosted by one country.
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Chapter 4

Methodology

The primary aim of this study is to investigate how the number of Olympic medals relates

to various socio-economic factors. The first section will describe the research type used to

establish this relationship. The second section will explain the research approach used to assess

the study’s reproducibility. Finally, the last section will provide a detailed examination of the

technical aspects of the models used

4.1 Research type

This paper employs a quantitative approach because it deals with variables that can be meas-

ured numerically, particularly counting variables. Unlike experimental research, where variables

are intentionally changed in different groups, this study merely observes these variables (Kamil,

2004). Therefore, this research can be defined as explanatory since it tries to explain the rela-

tionship between the dependent variable and independent variables without altering the data.

Additionally, the study also explores predictive aspects by assessing how well the models can

make predictions. However, it is crucial to distinguish between explanatory and predictive mod-

eling when it comes to evaluating their performance, potential issues, and overall objectives

(Sainani, 2014).

A primary concern regarding the model validity is the risk of overfitting to the training data.

Overfitting occurs when the model becomes excessively fitted to the data set, capturing noise and

random fluctuations instead of the genuine underlying patterns or relationships. This overfit-

ting issue significantly worsens the model’s capability to provide accurate predictions for unseen

data and apply these predictions effectively in real-world scenarios. This problem becomes more

pronounced when dealing with a relatively small data set, as the limited information available

makes it harder to accurately represent the true underlying patterns. (Sainani, 2014).

4.2 Research approach

The models utilized in this research align with the models employed in the various studies sum-

marized in Table 2.1. These models include Ordinary Least Squares (OLS), Tobit, Negative
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Binomial (NGB), and Poisson regression, which are consistent with the literature.

In addition to the regression models, other methods will also be applied. Ensemble methods,

which combine multiple models to improve results will be used (Dietterich, 2000). Specific-

ally, ensemble methods based on decision trees, including Random Forest, Gradient Boosting,

and XGBoosting, will be employed. Detailed technical specifications for these models will be

provided in Section 4.3.

Before proceeding with the analysis, the data set will be randomly divided into an 80% training

sample and a 20% test sample. The training sample will be used to train the model, with sub-

sequent predictions made on the unseen test set. Given the limited data set size, the allocation

of data points to these subsets may substantially influence the analysis outcome. Therefore, the

training set is divided into 10 equal folds, enabling cross-validation within the model training

process. In a repeated procedure of 10 iterations, each fold serves as the validation set once, while

the remaining nine folds constitute the training set. This technique proves particularly valuable

in cases with a limited number of observations, as it ensures that every data point is utilized

for both training and validation purposes. The performance of each fold out of the 10 will be

investigated, aiming for a narrower range of performance metrics across these folds to enhance

consistency and increase generalizability to real-world scenarios. Furthermore, the average of

these performance metrics obtained through the 10-fold cross-validation on the observed training

data will be compared to the performance metrics when applying the cross-validated model to

unobserved test data in the out-of-sample predictons. When the performance metrics are nearly

equal, it suggests that the model can generalize its predictions effectively, thereby guaranteeing

external validity and confirming the potential consistency in the 10-fold cross-validation.(Berrar

et al., 2019).

The Root Mean Squared Error (RMSE) serves as a commonly employed statistical measure for

assessing a model’s error rate and predictive efficacy (Chai & Draxler, 2014). The mathematical

expression of this metric involves the summation of errors across all data points, their squared

values, and subsequently, the extraction of the square root (4.5).

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4.5)

In this context, yi represents the observed value for the i-th data point, ŷi is the predicted

value for the i-th data point, and n is the total number of data points in the data set. In this

study, this metric serves as an indicator of the extent to which the average deviation between

the predicted and actual medal counts can be observed. Furthermore, apart from assessing the

models’ predictive capabilities, additional metrics are employed to shed light on their explanat-

ory aspects.

One such metric is the R-squared (R²) coefficient. R² is utilized to assess the goodness of

fit, offering insights into how effectively the independent variables explain the variation in the
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dependent variable. On a scale that ranges from 0 to 1, a higher R² value indicates a more robust

fit, meaning that the model is better at handling outliers, providing more accurate estimates

for its parameters, and ultimately enhancing its ability to explain the observed variations in the

data. In simpler terms, a higher R² suggests that the model does a better job of capturing the

underlying patterns in the data (Miles, 2005). The formula for the R² is presented in (4.6).

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(4.6)

In this formula, yi represents the observed value for the i-th data point, ŷi is the predicted value

for the i-th data point, ȳ is the mean of the dependent variable and n is the total number of

data points in the data set. Both RMSE and R² will be computed for both cross-validation and

out-of-sample predictions.

The specific relationship between the independent variables and the dependent variables is es-

tablished by analyzing the magnitude of coefficients associated with socio-economic predictors.

However, it is important to note that the magnitude of coefficients alone does not provide in-

sights into the statistical significance of the predictors. To assess the significance of each seperate

predictor, null hypothesis testing is employed.

H0 : The coefficient is equal to zero

H1 : The coefficient is not equal to zero

The null hypothesis (H0) asserts that the coefficient is equal to zero, indicating it does not influ-

ence the dependent variable. If the null hypothesis is rejected, the alternative hypothesis (H1)

is confirmed, signifying that the coefficient is not equal to zero and indeed exerts an influence

on the dependent variable.

The null hypothesis is evaluated using the t-value for each coefficient, calculated by dividing

the estimated coefficient by its standard error. A high t-value indicates a significant coefficient

estimate, while a t-value close to zero implies insignificance. The t-value also aids in computing

the associated p-value, using the fixed t-distribution and the degrees of freedom specific to the

analysis. Degrees of freedom indicate the number of independently varying parameters, with a

higher value indicating greater analysis stability (James, Witten, Hastie, Tibshirani et al., 2013).

The p-value reflects the probability of obtaining a t-value as extreme as or more extreme than

the calculated t-value, assuming the null hypothesis is true. If a coefficient of zero could yield a

larger t-value, it implies the coefficient estimate is not statistically significant. The significance

threshold, typically set at p < 0.05, determines the maximum allowable probability for insigni-

ficance. When the p-value is below this threshold, it indicates rejecting the null hypothesis in

favor of the alternative hypothesis, signifying the coefficient’s significance. A stricter threshold

at p < 0.01 signifies a higher level of significance, while the highest significance is at p < 0.001

(Schervish, 1996).
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The model employs Sequential Backward Elimination (SBE) to select independent variables. It

begins with the full set of variables and assesses their statistical significance based on a pre-

defined p-value threshold of p < 0.05. The least significant variable is then iteratively removed

until all remaining independent variables are statistically significant. This approach simplifies

the model, enhances interpretability, and improves performance and efficiency by eliminating

irrelevant features (Mao, 2004). It is important to note that this method is not suitable for

ensemble models since ensemble models do not yield coefficients. Instead, ensemble models de-

pend on variable importance scores, which quantify how much these models utilize independent

variables to formulate predictions and explain the variance in the dependent variable. These

scores are typically expressed on a scale spanning from 0 to 100. (Grömping, 2009).

Skewed socio-economic predictors in Table 3.1 will undergo a natural logarithmic transformation

for multiple reasons. This transformation normalizes their distribution, aligning them with other

independent variables. It also stabilizes variance, reduces outlier influence, and enhances model

performance. Furthermore, it simplifies the interpretation of regression coefficients, particu-

larly for the Population variable with a wide range of values. Ensemble models, while handling

complex relationships, may not substantially benefit from this transformation, but it will not

adversely affect their results. Thus, the natural logarithm is applied consistently to these vari-

ables in both regression and ensemble models.

For each individual model, SBE is performed, and the model is selected based on the criterion

that all independent variables must be significant at p < 0.05. Subsequently, a comparison of the

different models is carried out. The RMSE for cross-validation and out-of-sample predictions

will help identify the best predictive model, while the R² for cross-validation and out-of-sample

predictions will indicate the best-explaining model. However, to ensure the internal and external

validity of the results, it is essential to consider whether the assumptions of each specific model

are satisfied or violated. Finally, the best model will be chosen, and the entire data set will

be used to explain the relationship between the Olympic medal count and the socio-economic

factors.

The preceding steps are replicated for the research question that examines variations in socio-

economic influence across gender, season, and year, where the best explanatory model is selected.

The pre-processed data set will be divided into subsets based on these categories, and distinct

analyses will be conducted for each, aiming to demonstrate their respective causal relationships

within their specific contexts. The coefficients of the socio-economic predictors are extracted for

the regression models and compared to assess whether there exist differences between them.

A confidence interval is established for the coefficient of a socio-economic predictor within differ-

ent contexts. This interval is associated with a confidence level, reflecting the likelihood that if

a series of confidence intervals were constructed from different random samples drawn from the

same population, a certain percentage of these intervals would encompass the true value of the

parameter, and thus, the coefficient. Hence, it signifies the probability that the provided confid-

ence interval contains the true coefficient parameter. The confidence interval (CI) is calculated
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as follows (4.7) (Hazra, 2017).

CI = Coefficient estimate ± Critical value (z)× SE of coefficient estimate (4.7)

The z-value is determined by the chosen confidence level, where higher z-values correspond to

increased confidence but also wider confidence intervals. Critical z-values are consistent for each

confidence level. In this study, a 95% confidence interval is used, resulting in z ≈ 1.96 (Hazra,

2017). Two separate 95% confidence intervals for the same socio-economic predictor will be

constructed for different contexts, and the presence of any overlap between these intervals will

be assessed. Keeping in mind that there is a 95% probability for the true coefficient to fall within

each individual confidence interval, it can be inferred that the likelihood of the true coefficients

differing is 95% · 95% ≈ 90% for two non-overlapping 95% confidence intervals.

4.3 Method specifications

4.3.1 Regression models

OLS

The Ordinary Least Squares (OLS) method is a frequently utilized technique employed for

estimating the coefficients within a linear regression equation, and it is grounded in the principle

of minimizing the Residuals Sum of Squares (RSS). The RSS is computed as the sum of the

squares of the differences between the predicted and observed values for all data points. This

minimization process yields a fitted regression equation, represented as (4.8).

ŷi = β̂0 + β̂1 · xi1 + β̂2 · xi2 + . . .+ β̂p · xip + ei (4.8)

In this equation ŷ signifies the predicted dependent variable for i-th data point, β̂ represents the

fitted coefficients for the p-th independent variable, x denotes the value of the p-th independent

variables for the i-th data point, and e accounts for the error term of the i-th data point, repres-

enting the disparities between predictions and observations (Montgomery, Peck & Vining, 2021).

The OLS regression method is underpinned by a set of fundamental assumptions. Violation of

these assumptions can potentially introduce bias into parameter estimates, thereby impacting

the validity of subsequent statistical inferences. These critical assumptions are outlined by Long

(2008) as follows:

• Linearity: The relationship between the dependent and independent variables is linear.

The change in the dependent variable remains constant with a one-unit change in the

independent variable.

• Independence of errors: Residuals, representing the gaps between predicted and actual

values, are independent across observations. The residual of an observation should not

influence the prediction of another observation.
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• Homoscedasticity: The variance of the residuals remains consistent, regardless of the

predicted values of the dependent variable.

• No multicollinearity: Independent variables are not highly correlated with each other.

Tobit

Tobit regression is much like OLS regression and adheres to most of the same assumptions. How-

ever, there is a key distinction: Tobit regression is specifically designed for situations where the

dependent variable is censored and hence only partially observed based on predefined thresholds.

Tobit regression is particularly useful when dealing with data that has a significant number of

censored observations, allowing researchers to model and analyze relationships between variables

while accounting for the censoring process. While Tobit retains the assumptions from OLS, it

introduces an extra assumption to address this censoring.

• Censoring mechnanism: The censoring mechanism and hence the threshold at which

censoring occurs is assumed to be known

The threshold for censorship is indeed specified in this study, and the constraint is defined as

(4.9).

Total Medals =

Total Medals∗ if Total Medals∗ > 0

0 if Total Medals∗ ≤ 0
(4.9)

The variable Total Medals represents the number of medals won, and Total Medals* represents

a latent variable describing the number of medals won. When a country has earned more than

zero medals, their data is fully observed, along with their underlying socio-economic factors.

Conversely, for countries with zero medals or fewer, their data is censored and less weight is at-

tributed to these data points when estimating the model parameters, as noted by Rewilak (2021).

In the study conducted by Noland and Stahler (2017), the same decision was made to censor the

countries that did not win any medals. This decision was based on the observation that there

was a relatively high occurrence of these non-winning countries in the data set. Employing the

Tobit regression model enabled the researchers to assign greater emphasis to the explanatory

capacity of countries that achieved Olympic medal success.

Censoring in the data limits the feasibility of calculating R², as the variance explained by

the independent variables in the dependent variables cannot be assessed through the censored

data points. In the context of Tobit regression, the log-likelihood is employed as a metric,

estimating the probability that the model effectively describes the observed data, given the

model’s parameters.

Poisson and Negative Binomial

The subsequent models employed are Poisson and Negative Binomial (NGB) regression, each

introducing distinct assumptions compared to the two previous models discussed. The key
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assumptions of Poisson regression, as outlined by James et al. (2013), include:

• Count dependent variable: The dependent variable signifies counts, such as the number

of occurrences happening within a designated period.

• Non-negative: The dependent count variable should be whole numbers, non-negative,

and mutually independent.

• Poisson distribution: The dependent count variable follows a Poisson distribution.

• Equidispersion: The mean and variance of the dependent count variable should be equal

to each other.

• Log-linear: The natural logarithm of the dependent count variable is a linear function of

the predictor variables.

The dependent count variable undergoes a logarithmic transformation following the log-linear

assumption. This leads to the formulation of a Poisson regression model (4.10). (James et al.,

2013).

ln(µi) = β̂0 + β̂1 · xi1 + β̂2 · xi2 + . . .+ β̂p · xip (4.10)

ln(µ) represents the natural logarithm of the number of Olympic medals for the i-th data point.

β corresponds to the coefficients associated with the p-th predictor variable, while x denotes the

values of the p-th predictor variable for the i-th data point.

The crucial assumption of Poisson regression is the equidispersion, where the mean and variance

of the dependent variable are equal. When this assumption is violated, the NGB regression, an

extension of Poisson regression, is a suitable alternative. The NGB regression permits a more

flexible modeling approach and relaxes the assumption of equidispersion.

Both Poisson regression and NGB regression fall within the category of Generalized Linear

Models (GLM), which represents an expansion of conventional linear regression models designed

to accommodate a wider spectrum of data types and distributions, where non-linear problems

are transformed into linear ones (James et al., 2013).

4.3.2 Ensemble models

Decision trees

Ensemble models, which are explored next, are based on the foundation of decision trees. De-

cision trees known for their interpretability, start at the root with the entire data set. At each

internal node, a predictor and split point are chosen to divide the data into two subsets, minim-

izing the difference between actual and predicted values (RSS). The predicted value is typically

the mean of observations in a node. This process continues until specific stopping conditions,

like reaching maximum tree depth or minimal RSS improvement, are met. Terminal nodes, or
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leaves, emerge when these conditions are satisfied, holding the predicted value—either the mean

of the data points in that leaf or a specific observation’s value. Although decision trees are

user-friendly and transparent for tracing predictions, they can overfit with excessive depth and

complexity. Therefore, ensemble models are introduced to mitigate these issues and enhance

overall model performance (Loh, 2011).

Random Forest

The random forest algorithm is based on bagging, or bootstrap aggregating. In this technique,

the original training data set is randomly resampled to create B subsets. Each of these B sub-

sets is used to build a decision tree, introducing increased diversity among the resulting trees.

The final predictive outcome is obtained by averaging the predictions from all the constructed

decision trees, which helps reduce variance. Notably, the assessment of predictive performance

during the training of the bagged model does not have to rely solely on cross-validation; it can

also be accomplished through out-of-bag error estimation. In this process, each decision tree

is constructed using a bootstrapped subset containing most of the original observations. The

remaining data, not used in the bootstrapped subset, can be used to make predictions for the

decision tree on which it was not trained. Subsequently, these predictions are compared to the

actual values to evaluate the accuracy of the model’s training.

This model provides a valuable feature: assessing variable importance by analyzing the mean

decrease in RSS for each variable’s split. The higher the average decrease, the more crucial the

predictor is considered. Compared to decision trees, Random Forests offer a subtle improvement.

Traditional decision trees often place the most influential predictors near the tree’s top, leading to

high similarity among the constructed trees. This similarity can undermine the goal of combining

diverse models to reduce variance. To address this, Random Forests use a strategy where only

a subset of predictors is used at each split, increasing dissimilarity among the B decision trees

and ultimately enhancing predictive performance. A notable advantage of Random Forest is

its flexibility, not being bound by strict statistical assumptions as traditional regression models

(Loh, 2011).

Gradient Boosting and Extreme Gradient Boosting

Boosting algorithms work by building decision trees one after another, where each new tree aims

to correct the mistakes of the previous one. This involves creating multiple decision trees, each

using the errors from the predictions of the preceding tree.

Gradient boosting initiates with an initial decision tree, where each data point’s initial predic-

tion is the average of the response variable. Subsequent decision trees follow as weak learners,

adjusting their predictions to minimize residuals. This process involves a specific loss function,

often the Mean Absolute Error (MAE), and a learning rate that scales adjustments. A lower

learning rate provides a slower learning process, necessitating more decision trees for reduced

residuals but offering computational efficiency. Conversely, a higher learning rate demands fewer

trees for efficient performance. The iterative process of diminishing residuals and growing new
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decision trees continues until the loss function and residuals become negligible or predefined

stopping conditions are met. The final prediction combines outputs from all decision trees. One

remarkable feature of Gradient Boosting is its flexibility, not confined by strict statistical as-

sumptions about data distribution or relationships. Nonetheless, achieving optimal performance

necessitates tuning specific hyperparameters, such as the learning rate, decision tree depth, and

minimum node observations.(Natekin & Knoll, 2013).

Extreme Gradient Boosting, often abbreviated as XGBoosting, is an advanced variant of Gradi-

ent Boosting. While the core concepts are similar, XGBoost introduces subtle adjustments that

impact its operational behavior. Initially, all data points receive identical predictions, set to

the average value. However, the formation of decision trees is regularized by the introduction

of the parameter λ. Its presence leads to the pruning of the decision tree, which means that

the decision tree becomes less complex and deep by removing the leaves from the bottom to the

top. The higher the value of λ, the quicker the decision trees get pruned. Regularization here

thus functions as a mechanism to reduce tree complexity, making it less sensitive to outliers and

mitigating the risk of overfitting. By default, λ is set to 1, a value consistent with this research.

XGBoosting does not adhere to strict assumptions but involves tuning several hyperparameters,

including: the learning rate, maximum depth of decision trees, γ the minimum reduction in

the loss function, fraction of columns subsampled at each level, and the minimum number of

observations in a leaf.

Both boosting algorithms, XGBoosting and Gradient Boosting, are employed in this study.

While XGBoosting is known for its robustness in handling outliers, there remains the possibility

of excessive pruning in the decision tree. Hence, it is of interest to empirically evaluate its

superior performance. The optimization of hyperparameters for both boosting algorithms is

carried out via random search within predefined parameter value ranges (Chen & Guestrin,

2016).
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Chapter 5

Results

5.1 Regression results

The SBE process starts with the OLS regression model, aiming to determine the optimal set

of independent variables for evaluating regression outcomes and performance metrics. Initially,

all socio-economic predictors are included in the analysis. Through cross-validation, coefficients

of predictors with p-values exceeding the 0.05 threshold are systematically removed. The first

to be eliminated is the variable Electoral Democracy, with a p-value of 0.520. Subsequently,

the model undergoes another round of cross-validation, resulting in the exclusion of ln(Gini

Coefficient) with a p-value of 0.413. The process is reiterated with the remaining variables,

leading to the removal of Food Supply Surplus at a p-value of 0.128. Following another cycle of

cross-validation, all socio-economic predictors exhibit p-values lower than 0.05. Predictors that

exceed the threshold are excluded from the analysis and performance evaluation, as they fail to

reject the null hypothesis, indicating that their coefficients are statistically equal to zero.

The second model employed is the Tobit regression, and like the OLS regression, it begins with

the inclusion of all socio-economic predictors. Through cross-validation, the model provides coef-

ficient estimates, with Electoral Democracy having the highest p-value of 0.613 for its coefficient.

Upon cross-validating the Tobit regression with the reduced set of socio-economic predictors, all

these remaining predictors are found to be statistically significant at the 0.05 significance level.

In other words, every coefficient, except that of Electoral Democracy is found to be different from

zero, thus rejecting their null hypothesis. Consequently, these significant coefficients and hence

predictors are included in the final model used for assessing the relationship and performance

metrics.

Then the Poisson regression model is cross-validated using a similar approach as the previous

models. In this process, Electoral Democracy is the first predictor to be eliminated, as it has a

p-value of 0.110. After this removal, the Poisson regression model is cross-validated again, and

it is found that all the remaining socio-economic predictors are statistically significant at the

0.05 significance level. Therefore, in the final model used for assessment, Electoral Democracy

is the only socio-economic predictor that cannot reject the null hypothesis that its coefficient is

equal to zero.
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The last regression model, NGB regression undergoes cross-validation, initially with all socio-

economic predictors. Past Host is removed first due to its p-value of 0.538. Subsequently,

Electoral Democracy is eliminated with a p-value of 0.357 in the next cross-validation round.

In the following iteration, Closed Autocracy is removed, having a p-value of 0.211. When cross-

validating the reduced model, all remaining coefficients are statistically significant at the 0.05

level. As a result, the socio-economic predictors that exceeded the significance threshold of 0.05

cannot reject the null hypothesis that their coefficient is equal to zero and are therefore excluded

from the final model.

The SBE process has been carried out for various regression models, leading to the identification

of the significant socio-economic predictors included in their respective final models. The re-

gression outcomes of these models and the corresponding composition of independent variables

are summarized in Table 5.1.

Table 5.1. Regression results

Variable OLS Tobit Poisson NGB

Intercept -114.30*** -264.10*** -22.86*** -23.49***
(7.10) (14.50) (0.46) (1.09)

ln(GDP Per Capita) 4.28*** 11.86*** 1.16*** 1.05***
(0.52) (13.67) (0.04) (0.10)

ln(Population) 3.73*** 7.50*** 0.64*** 0.71***
(0.28) (0.51) (0.01) (0.04)

ln(Gini Coefficient) -12.54** -1.32*** -2.22***
(3.91) (0.11) (0.32)

Closed Autocracy 6.16** 10.52** 0.83***
(2.29) (3.79) (0.09)

Electoral Autocracy 3.96*** 7.06*** 0.75*** 0.40*
(1.17) (2.04) (0.05) (0.16)

Electoral Democracy

Healthcare Expenditures 1.46*** 1.78*** 0.03*** 0.06*
(0.21) (0.34) (0.008) (0.03)

Food Supply Surplus -11.90* 0.59*** 1.00*
(5.34) (0.14) (0.43)

Host 23.00*** 30.59*** 0.82*** 0.95*
(4.13) (6.15) (0.07) (0.45)

Past Host 10.65*** 8.22* 0.22***
(3.11) (4.02) (0.06)

Maximum Medals 0.01*** 0.03*** 0.002*** 0.002***
(0.001) (0.04) (0.001) (0.001)

N 609 609 609 609

R² (Cross-validation) 0.45 0.70 0.67
RMSE (Cross-validation) 10.82 16.71 7.38 8.92
R² (Out-of-sample) 0.40 0.61 0.31
RMSE (Out-of-sample) 8.10 15.77 6.51 8.67
Log-likelihood -1254

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

32



In both the OLS and NGB regressions, three independent variables were excluded, while in

the Tobit and Poisson regressions, only one independent variable was removed. The variable

Electoral Democracy showed no significance in any of the models and was excluded from all.

The RMSE values observed during cross-validation showed the lowest for the Poisson model (=

7.38), followed by the NGB model (= 8.92), the OLS model (= 10.82), and the Tobit model (=

16.71). RMSE for out-of-sample predictions serves as an indicator of the model’s generalization

performance. For all models, the RMSE decreased, with the lowest for the Poisson model (=

6.51), followed by the OLS model (= 8.10), the NGB model (= 8.67), and lastly, the Tobit

model (= 15.77). In the cross-validation, the R² was highest for the Poisson model (= 0.70),

followed by the NGB model (= 0.67), and lastly, the OLS model (= 0.45). For the out-of-sample

predictions, the Poisson model also had the highest R² (= 0.61), followed by the OLS model (=

0.40), with the NGB model explaining the least well (= 0.31).

It is important to note that the Tobit model could not provide an R² value due to the censored

nature of the model, which resulted in the log-likelihood metric remaining at -1254. This metric

is challenging to interpret and cannot be directly compared to the R². However, the very high

RMSE in both cross-validation and out-of-sample predictions for the Tobit regression, indicates

a lack of explanatory power and accuracy in the Tobit model. Interestingly, the OLS and NGB

models switched their ranks for both the RMSE and R² in cross-validation when compared to

out-of-sample predictions. A closer examination of the cross-validation results presented in Table

B.1 reveals notable differences between the performance of various models. Specifically, when

we focus on the R² values, the OLS model demonstrates a more consistent range (= [0.22-0.58])

in comparison to the NGB model, which exhibits a wider and less consistent range (= [0.38-

0.92]). Similarly, for RMSE, OLS shows a narrower and more consistent range (= [8.45-14.80])

compared to the broader and less consistent range of RMSE values for NGB (= [4.92-16.29]).

While, on average, the NGB model yields better performance metrics, it is essential to consider

the reliability of these metrics. The broader range of NGB performance metrics indicates lower

reliability. This is evident from the decline in R² from 0.67 during cross-validation to less than

half of 0.31 in out-of-sample predictions, highlighting the model’s limited generalizability.

In contrast, the Poisson regression model exhibits a more consistent range for both R² and

RMSE in Table B.1. The Poisson regression model retains the most socio-economic predictors,

all of which are highly significant. Moreover, it achieves the most favorable values for both

R² and RMSE in both cross-validation and out-of-sample predictions. The detailed analysis of

the 10-fold cross-validation suggests that the Poisson regression model demonstrates a higher

reliability of cross-validation metrics compared to the second-best performing NGB regression.

5.2 Ensemble results

Ensemble models automatically determine the importance of independent variables and do not

necessitate manual selection. The variable importance for Random Forest, Gradient Boosting,

and Extreme Gradient Boosting, along with their corresponding performance metrics and tuned
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hyperparameters, are presented in Table 5.2.

Table 5.2. Ensemble results

Variable Random Forest Gradient Boosting XGBoosting

lm(Population) 100.00 100.00 100.00
Healthcare Expenditures 48.62 28.47 36.21
ln(GDP Per Capita) 46.89 37.48 43.75
ln(Gini Coefficient) 16.43 10.50 33.42
Food Supply Surplus 18.89 17.87 14.79
Host 7.39 9.36 2.90
Past Host 2.00 1.35 0.00
Maximum Medals 41.10 36.90 61.85
Electoral Democracy 1.70 1.04 5.79
Closed Autocracy 1.25 0.69 2.78
Electoral Autocracy 0.00 0.00 0.34

N 609 609 609

R² (Cros-validation) 0.71 0.75 0.80
RMSE (Cross-validation) 7.67 6.82 6.18
R² (Out-of-sample) 0.84 0.79 0.81
RMSE (Out-of-sample) 4.20 4.77 4.59

Number of decision trees 175 863
Tree depth 9 6
Learning rate 0.07 0.16
Minimum observations in node 5 4
Subsample of predictors 1.00 0.85
Subsample of observations 0.98
Gamma 0.56

The variable importance analysis for all three ensemble models highlights that ln(Population)

is the most influential in constructing the models and explaining the Olympic medal count,

serving as the baseline score of 100.00. ln(GDP Per Capita) is the second most important in-

dependent variable in Gradient Boosting (= 37.48) and XGBoosting (= 43.75) models, while it

takes the third position in the Random Forest model (= 46.89). Healthcare Expenditures is the

second most influential independent variable in the Random Forest model (= 48.62) but ranks

third in both the Gradient Boosting (= 28.47) and XGBoosting models (= 36.21). Notably, the

Maximum Medals variable is excluded from this ranking as it functions as a control variable in

the analysis. However, its relatively high importance in all ensemble models underscores the

importance of controlling for the number of Olympic medals that could potentially be won in

each edition. It is worth highlighting that in all ensemble models, the regime of Electoral Auto-

cracy consistently emerges as the least important, while Electoral Democracy stands out as the

most significant among the regime categories. In contrast, all regression models eliminate the

Electoral Democracy.

In the cross-validation metrics for the ensemble models, Random Forest achieved the lowest R²
(= 0.72) and the highest RMSE (= 7.67). In contrast, Gradient Boosting performed better for

the R² (= 0.75) and RMSE (= 6.78), while the XGBoosting model excelled in cross-validation
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for the R² (= 0.80) and the RMSE (= 6.18). However, in the out-of-sample predictions, a dif-

ferent picture emerges. The R² of the Random Forest was the highest (= 0.84), and the RMSE

was the lowest (= 4.20). Gradient Boosting, on the other hand, performed the least well in both

R² (= 0.75) and RMSE (= 5.23). XGBoosting improved its performance in the R² (= 0.81) and

RMSE (= 4.59) compared to cross-validation. When observing Table B.1, it becomes evident

that the Random Forest model exhibits a wider range of R² values (= [0.44-0.90]) in comparison

to XGBoosting (= [0.59-0.94]). However, the ranges of RMSE values are nearly equal, with

[4.21-12.18] for Random Forest and [3.10-11.46] for XGBoosting. Therefore, the slightly higher

out-of-sample performance of Random Forest compared to XGBoosting is not conclusive. This

lack of conclusiveness is attributed to the differing nature of cross-validation consistency and

hence generalizeability, particularly in terms of R².

In the Random Forest model, the only tuning hyperparameter involved adjusting the number

of predictors considered at each split. This resulted in the use of the full set of predictors at

every split. In the case of the Gradient Boosting model, it utilized fewer decision trees (= 175)

compared to the XGBoosting model (= 863). However, the decision trees within the Gradient

Boosting model were deeper (= 9) than those in the XGBoosting model (= 6). This difference

in tree depth may be attributed to the regularization and pruning characteristics of the XG-

Boosting model. The learning rate in the Gradient Boosting model (= 0.07) is less than that in

the XGBoosting model (= 0.16), a notable observation. This difference is noteworthy because

a lower learning rate typically suggests a requirement for a greater number of weak learners to

construct the model effectively. However, in this case, the Gradient Boosting model employs

fewer decision trees compared to the XGBoosting model.

5.3 Assumption testing

The regression and ensemble models were trained, and predictions along with performance met-

rics were obtained. However, the validity of these findings depends on whether the assumptions

are met or violated. In this section, the focus is solely on testing the assumptions of the regression

models since the ensemble models are not constrained by these statistical assumptions.

5.3.1 OLS and Tobit

The OLS and Tobit regression models adhere to the same assumptions, except for the censoring

mechanism that is added to the Tobit model.

• Censoring mechanism: The censoring mechanism and hence the threshold at which

censoring occurs is assumed to be known.

This assumption is met in the Tobit regression model since the threshold is determined based

on censoring for observations where the Olympic medal count is zero.

• Linearity: The relationship between the dependent and independent variables is linear.
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The change in the dependent variable remains constant with a one-unit change in the

independent variable.

• Homoscedasticity: The variance of the residuals remains consistent, regardless of the

predicted values of the dependent variable.

Residual plots illustrate the relationship between residuals (y-axis) and fitted values (x-axis) in

regression models. Ideally, they should display a straight, horizontal line at y=0, indicating a

well-fitted model. However, curved lines in the residuals suggest non-linearity (Tsai, Cai & Wu,

1998). To assess homoscedasticity, it is essential to ensure that residuals’ variance is randomly

distributed across fitted values. Deviations from this random pattern or funnel shapes may in-

dicate heteroscedasticity. Residual plots are valuable for testing linearity and homoscedasticity

assumptions in regression. Figure B.1 and Figure B.2 display the residual plots for OLS and

Tobit regressions, respectively.

In both the OLS and Tobit models, the trend lines, highlighted in red, exhibit a curved shape,

which suggests non-linearity in both regression models. Additionally, the variance in these

models varies with respect to the fitted values. Notably, negative fitted values correspond to high

positive residuals, while fitted values around zero yield residuals close to zero. This observation

aligns with the constraint that the observed Olympic medal count cannot be negative, causing

predictions below zero to result in highly positive residuals. In summary, the linearity and

homoscedasticity assumptions are violated for the OLS and Tobit regression models.

• No multicollinearity: Independent variables are not highly correlated with each other.

In Section 3.2.3, the exclusion of socio-economic predictors in the data set was based on their

high correlations with each other, as observed in Table A.2. This action was taken to ensure the

absence of highly correlated variables which satisfies the assumption.

• Independence of errors: Residuals, representing the gaps between predicted and actual

values, are independent across observations. The error term of an observation should not

influence the prediction of another observation

This represents the last assumption tested for both regression models. Autocorrelation evaluates

the extent to which preceding residuals influence succeeding residuals. Autocorrelation among

residuals can be determined by constructing an autocorrelation plot. Figure B.3 and Figure B.4

present the autocorrelation plots for the OLS and Tobit regression models, respectively.

The dashed line in the plot represents the autocorrelation threshold of 0.05, serving as the

confidence interval indicating autocorrelation in the model at a specific lag. The first lag holds

particular significance as it reveals whether the current residual is correlated with the preceding

one. In the case of the OLS regression model, it marginally exceeds the 0.05 treshold, while for

the Tobit regression model, it falls between the threshold and zero for the first lag. Consequently,

the independence error assumption is met for the Tobit regression but not for the OLS regression.
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5.3.2 Poisson and NGB

Both the Poisson and NGB models share the same assumptions, although there is a relaxation

of one assumption in the NGB model.

• Count dependent variable: The dependent variable signifies counts, such as the number

of occurrences happening within a designated period

Each specific edition and year of the Olympic Games indeed represents a count, and as such,

this assumption is met for both the Poisson and Negative Binomial (NGB) models.

• Non-negative: The dependent count variable should be whole numbers and non-negative.

The count of Olympic medals is inherently composed of whole numbers, and a country can not

win a negative number of Olympic medals. Therefore, this assumption is also valid for both the

Poisson and NGB models.

• Poisson distribution: The dependent count variable follows a Poisson distribution

The observed counts of the dependent variables are compared to the expected count of the

variables according to the Poisson distribution and the given mean of the number of Olympic

medals won, which is equal to 6.44 in this study. The observed versus the expected counts are

visualized in Figure B.5.

In an ideal scenario, a perfectly matching Poisson distribution would result in a plot where the y

and x-axes share the same scale, forming a straight diagonal line, signifying equivalence between

observed and expected counts based on the distribution. However, the Poisson distribution is

constrained, assuming a maximum of 16 Olympic medals based on the average medal count,

while the observed data set records more than 100 Olympic medals awarded. Consequently, the

scaling of both axes differs significantly. This discrepancy can be attributed to the distinctive

nature of the observed Olympic medal distribution, characterized by numerous zero-medal win-

ners and a few outliers with exceptionally high medal counts.

The Poisson distribution also reveals extreme outliers, with the majority of Olympic medal

recipients clustered toward the distribution’s beginning and center. Consequently, the Poisson

distribution exhibits right-skewness, a characteristic shared with the visualized distribution of

Olympic medal recipients in Figure A.1 and confirmed by the positive skewness measure in

Table 3.1. The Poisson distribution assumption is not satisfied based on Figure B.5, indicating

a disparity. However, it is noteworthy that both the observed and Poisson distributions exhibit

right-skewness with long tails, implying some similarity in this regard.

• Equidispersion: The mean and variance of the dependent count variable should be equal

to each other.

Table 3.1 presents the statistics for the number of Olympic medals won, revealing a mean of

6.44 and a variance of 188.26. These statistics highlight a notable difference between the mean
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and variance, suggesting that the Poisson regression assumption of equidispersion is not met.

The NGB regression, by relaxing this assumption, ensures that such differences in mean and

variance do not exert any influence on the interpretation of the model.

• Linearity: The natural logarithm of the dependent count variable is a linear function of

the predictor variable.

The relationship between the natural logarithm of the dependent count variables and the socio-

economic predictors is revealed through residual plots. Residual plots for both Poisson and NGB

regression models are generated to illustrate the distribution of residual values along the range

of fitted values. These residual plots are visualized in Figure B.6 for the Poisson regression and

in Figure B.7 for the NGB regression.

For both the Poisson and NGB regression models, the trend line appears relatively flat, po-

sitioned close to a straight horizontal line starting at y=0. The lower fitted values exhibit a

fairly random distribution in both regression models, with a mix of high positive and negative

values. On the other hand, higher fitted values tend to have smaller residuals, being closer to

zero. This suggests that the models effectively capture and fit outliers, particularly related to

high Olympic medal winners. Notably, the range of residuals is more extensive for the Poisson

regression compared to the NGB regression. In summary, the consistent flatness of the trend

line indicates that the natural logarithm of the count is indeed a linear function of the predictor

variable, satisfying this assumption for both the Poisson and NGB regression models.

5.4 Final model selection and interpretation

In the preceding sections, various models underwent cross-validation, followed by predictions on

the test data set. The coefficients, importance of independent variables, and performance met-

rics for models were obtained. Furthermore, the assumptions for the specific regression models

were tested to provide context for the model’s output. All these steps contribute to the selection

of the final machine learning model used to explain the relationship between the Olympic medal

count and socio-economic factors, as well as to make predictions for the future.

The Tobit regression produced the lowest RMSE for both cross-validation and out-of-sample

predictions and used the log-likelihood metric as a measure of goodness of fit, which may not be

the preferred choice over R². The OLS regression displayed the lowest R² and the second lowest

RMSE in cross-validation. Both the Tobit and OLS models failed to meet the assumptions of

linearity and homoscedasticity. Additionally, the OLS model could not satisfy the independence

of errors assumption.

In contrast, Poisson regression excelled in terms of performance metrics, achieving the highest

R² and the lowest RMSE for both cross-validation and out-of-sample predictions while main-

taining consistency within the cross-validation process. However, it faced challenges in adhering
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to the Poisson distribution assumption and maintaining equality of mean and variance. Simil-

arly, the NGB model did not adhere to the Poisson distribution assumption but allowed for the

relaxation of the mean and variance equality assumption. Nonetheless, the reduced generaliz-

ability of the NGB model, as evidenced by the decline in R² from cross-validation (= 0.67) to

out-of-sample predictions (= 0.31), outweighed the benefits of relaxing the mean and variance

equality assumption. Consequently, among the regression models, the Poisson model emerged

as the most favorable choice.

The XGBoosting model exhibited the highest R² and the lowest RMSE during cross-validation,

whereas the Random Forest model displayed the least favorable performance metrics, manifest-

ing the lowest R² and RMSE. Notably, in out-of-sample predictions, the Random Forest model

outperformed both the Gradient Boosting and XGBoosting models. Nonetheless, the disparity in

out-of-sample performance between Random Forest and XGBoosting was less pronounced than

the notable consistency advantage of XGBoosting during cross-validation. As a result, XGBoost-

ing is the preferred choice for generalizability and real-world scenario predictions. Collectively,

the ensemble models demonstrated superior performance metrics in comparison to the best-

performing regression model, the Poisson. However, it is essential to note that the assessment

of relative variable importance in the construction of these models failed to explain the precise

relationship between Olympic medal counts and socio-economic factors. This limitation results

in a lack of interpretive and explanatory value crucial for a more comprehensive understanding of

this relationship. Consequently, the Poisson regression model is preferred for quantifying these

influences, leveraging the retrieved coefficients of the socio-economic predictors. Conversely, the

XGBoosting model is the recommended choice for making predictions concerning unseen data

in real-world scenarios, where it exhibits the ability to predict with an average deviation of 4.59

Olympic medals from the actual count.

The Poisson regression model is employed to explain the association between the Olympic medal

count and the socio-economic determinants. This interpretation encompasses all gender categor-

ies and encompasses both the Summer and Winter Olympics spanning the years 2000 to 2016.

The Poisson regression undergoes cross-validation on the entire data set, yielding the outcomes

outlined in Table 5.3.
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Table 5.3. Poisson regression

Variable

Intercept -22.260***
(0.410)

ln(GDP Per Capita) 1.113***
(0.035)

ln(Population) 0.627***
(0.012)

ln(Gini Coefficient) -1.383***
(0.107)

Closed Autocracy 0.728***
(0.075)

Electoral Autocracy 0.712***
(0.048)

Healthcare Expenditures 0.035***
(0.007)

Food Supply Surplus -0.412***
(0.118)

Host 0.844***
(0.059)

Past Host 0.260***
(0.053)

Maximum Medals 0.002***
(0.001)

N 759

R² 0.73
RMSE 6.95

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In the hypothetical scenario where all independent variables are set to zero, the projected num-

ber of Olympic medals won approximates -22.260. However, this scenario is highly implausible

given the nature of the independent variables involved. Specifically, for each 1% increase in a

country’s GDP Per Capita, the expected Olympic medal count rises by approximately 1.113%,

all other variables being held constant (SE = 0.035). Likewise, a 1% growth in a country’s

Population corresponds to a 0.627% increase in the expected Olympic medal count, while main-

taining other variables at constant levels (SE = 0.012). Conversely, a 1% increase in the Gini

Coefficient, indicative of greater income equality, results in a 1.383% reduction in the expected

Olympic medal count, assuming all other factors remain unchanged (SE = 0.107).

In the context of this analysis, it is observed that the presence of a Closed Autocracy within a

country leads to an increase in the number of Olympic medals obtained by a factor of e0.728−1 =

2.0709−1 = 1.0709 ≈ 107% compared to both the Liberal Democracy and Electoral Democracy,

all other factors being held constant (SE = 0.075). Similarly, the presence of an Electoral Auto-

cracy within a nation results in an expected increase of e0.712−1 = 2.0381−1 = 1.0381 ≈ 104%

in the number of Olympic medals secured compared to both the Liberal Democracy and Electoral

Democracy, while controlling for all other relevant variables (SE = 0.048).
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When Healthcare Expenditures increase by 1% as a share of the GDP, the estimated number of

Olympic medals won experiences a rise of e0.035 − 1 = 1.0356 − 1 = 0.0356 ≈ 3.6%, under the

condition that all other variables remain constant (SE = 0.007). Conversely, when a country’s

Food Supply Surplus increases by one unit, there is a decrease of e−0.412 − 1 = 0.6623 − 1 =

−0.3378 ≈ 34%, in the projected number of Olympic medals obtained, holding all other factors

constant (SE = 0.118). Additionally, hosting the Olympics is associated with an increase of

e0.844 − 1 = 2.3257− 1 = 1.3257 ≈ 133% in the expected number of Olympic medals won while

controlling for all other factors (SE = 0.059). Furthermore, having organized the Olympics in one

of the four preceding years is linked to an expected increase of e0.260−1 = 1.2969−1 = 0.2969 ≈
30% in the number of Olympic medals won while keeping all other factors constant (SE = 0.058).

Lastly, for each additional medal that can be earned in the entire Olympic Games, the expected

number of Olympic medals won by a country increases by e0.002−1 = 1.0020−1 = 0.0020 ≈ 0.2%,

under the assumption that all other factors remain constant (SE = 0.001).

5.5 Gender, season and year interpretation

The preceding section has explained the influences of socio-economic predictors on the total

number of Olympic medals won. It is important to note that this model is applicable across

various genders, seasons, and years. Consequently, the same Poisson regression model is em-

ployed to assess this relationship within different gender categories, across various seasons, and

over different years, enabling the evaluation of variations in the extent of these influences. 95%

confidence intervals are established for the coefficients in all Poisson models, utilizing the stand-

ard errors, enabling a comparison of differences in coefficients.

5.5.1 Gender

In this context, the analysis focuses on investigating whether the influences of specific socio-

economic factors differs between male and female athletes. The results are summarized in Table

5.4.
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Table 5.4. Poisson regression: Male and Female

Variable Male Female 95% CI Male 95% CI Female

Intercept -21.530*** -23.990*** [-25.572,-20.508] [-25.322,-22.700]
(0.527) (0.669)

ln(GDP Per Capita) 1.072*** 1.097*** [0.982,1.162] [0.991,1.204]
(0.046) (0.54)

ln(Population) 0.563*** 0.679*** [0.532,0.594] [0.641,0.716]
(0.016) (0.029)

ln(Gini Coefficient) -1.162*** -1.787*** [-1.434,-0.893] [-2.138,-1.440]
(0.138) (0.178)

Closed Autocracy 0.555*** 0.909*** [0.342,0.764] [0.694,1.125]
(0.108) (0.110)

Electoral Autocracy 0.789*** 0.633*** [0.663,0.914] [0.483,0.784]
(0.064) (0.077)

Healthcare Expenditures 0.040*** 0.046*** [0.021,0.058] [0.024,0.068]
(0.001) (0.011)

Food Supply Surplus -0.280. -0.649*** [-0.586,0.027] [-1.004,-0.294]
(0.156) (0.181)

Host 0.927*** 0.746*** [0.769,1.079] [0.565,0.919]
(0.079) (0.090)

Past Host 0.265*** 0.276*** [0.121,0.405] [0.121,0.426]
(0.072) (0.078)

Maximum Medals 0.003*** 0.004*** [0.0029, 0.0034] [0.0031,0.0039]
(0.001) (0.001)

N 746 705 746 705
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Through an examination of the 95% confidence intervals, it becomes evident that the Intercept,

ln(Population), and ln(Gini Coefficient) exhibit non-overlapping intervals. Consequently, there

exists a distinction in the influence of these socio-economic factors on the Olympic medal count

when considering male and female athletes. The true coefficients for these independent variables

are not equivalent between the two genders, with a level of confidence estimated to be approx-

imately 90%, derived from the product of two 95% confidence intervals.

In the hypothetical scenario wherein all independent variables are set to zero, the projected

number of Olympic medals achieved is estimated to be approximately -21.53 for male athletes

and -23.99 for female athletes. For every 1% increase in a country’s Population, there is a

corresponding 0.563% increase in Olympic medals for male athletes, and a higher increase of

0.679% for female athletes, with all other factors held constant. Moreover, an increase in the

Gini Coefficient by 1% is associated with a decrease in the number of Olympic medals won by

1.162% for male athletes and 1.787% for female athletes, under the condition of all other factors

remaining constant.

5.5.2 Season

In this context, the analysis examines whether the influence of particular socio-economic factors

varies between the Summer and Winter Olympics. The findings are presented in Table 5.5.
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Table 5.5. Poisson regression: Season

Variable Summer Winter 95% CI Summer 95% CI Winter

Intercept -15.370*** -35.730*** [-16.691,-14.042] [-39.482,-32.156]
(0.676) (1.868)

ln(GDP Per Capita) 1.087*** 2.414*** [1.012,1.163] [2.144,2.706]
(0.037) (0.141)

ln(Population) 0.650*** 0.530*** [0.626,0.687] [0.469,0.603]
(0.013) (0.036)

ln(Gini Coefficient) -1.136*** -3.164*** [-1.364,-0.91] [-3.872, -2.472]
(0.114) (0.359)

Closed Autocracy 0.708*** 3.344*** [0.551,0.877] [2.736,3.965]
(0.082) (0.312)

Electoral Autocracy 0.804*** 1.841*** [0.701,0.917] [1.482,2.216]
(0.053) (0.185)

Healthcare Expenditures 0.042*** 0.055*** [0.026,0.057] [0.014,0.096]
(0.008) (0.020)

Food Supply Surplus -0.505*** 0.035 [-0.768,-0.253] [-0.601,0.679]
(0.130) (0.323)

Host 0.880*** 0.664*** [0.741,1.027] [0.419,0.914]
(0.071) (0.126)

Past Host 0.297*** 0.009 [0.185,0.419] [-0.283,0.266]
(0.058) (0.138)

Maximum Medals -0.006*** -0.006*** [-0.007,-0.005] [-0.009,-0.003]
(0.001) (0.002)

N 510 249 510 249
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The Intercept, ln(GDP Per Capita), ln(Population), ln(Gini Coefficient), Closed Autocracy, and

Electoral Autocracy all manifest non-overlapping 95% confidence intervals. Consequently, the

true coefficients for these independent variables vary between the two seasons of the Olympic

games, with a confidence level estimated to be approximately 90%.

An 1% increase in GDP Per Capita results in a 1.087% increase in the count of Olympic medals

for the Summer Olympics and a 2.414% increase for the Winter Olympics, with all other factors

held constant. Furthermore, a 1% increase in the Population is expected to yield a 0.650%

increase in the count of Summer Olympic medals and a 0.530% increase in the count of Winter

Olympic medals, while holding all other factors constant. Participating in the Summer Olympics

under a Closed Autocracy leads to an e0.708 − 1 = 2.0299 − 1 = 1.0299 ≈ 103% increase in

Olympic medal count compared to Liberal Democracy and Electoral Democracy, while in the

Winter Olympics, this increase is higher at e3.344 − 1 = 28.3322− 1 = 27.3322 ≈ 2733%, hold-

ing all factors constant. For an Electoral Autocracy, the expected number of Summer Olympic

medals won is estimated to increase by e0.804−1 = 2.2345−1 = 1.2345 ≈ 123% and the Winter

Olympic medal count is projected to increase by e2.058 − 1 = 6.3028− 1 = 5.3028 ≈ 530% com-

pared to both the Liberal Democracy and Electoral Democracy, with all factors held constant.
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5.5.3 Year

This section explores variations in the influences of socio-economic factors over time. It focuses

on the analysis of the first and last two available Olympic Games editions in the data set, en-

compassing both the Summer and Winter Olympics. The findings are outlined in Table 5.6.

Table 5.6. Poisson regression: Year

Variable 2000 & 2002 2014 & 2016 95% CI 00 & 02 95% CI 14 & 16

Intercept -22.930*** -22.230*** [-24.763,-21.186] [-24.239,-20.312]
(0.912) (0.998)

ln(GDP Per Capita) 1.082** 1.079*** [0.923,1.247] [0.925,1.244]
(0.081) (0.083)

ln(Population) 0.636*** 0.548*** [0.583,0.698] [0.492,0.609]
(0.027) (0.028)

ln(Gini Coefficient) -1.970*** -1.756*** [-2.475,-1.483] [-2.289, -1.254]
(0.252) (0.263)

Closed Autocracy 0.997*** 0.991*** [0.616,1.385] [0.663,1.327]
(0.197) (0.170)

Electoral Autocracy 0.910*** 0.501*** [0.691, 1.132] [0.295,0.727]
(0.113) (0.110)

Healthcare Expenditures 0.022 0.080*** [-0.019, 0.062] [0.049,0.111]
(0.021) (0.016)

Food Supply Surplus -0.329 -0.100 [-0.843,0.185] [-0.622,0.438]
(0.262) (0.267)

Host 0.831*** 1.385*** [0.565,1.086] [1.043,1.719]
(0.131) (0.170)

Past Host -0.693 0.818*** [-2.492,0.451] [0.624,1.012]
(0.713) (0.099)

Maximum Medals 0.002*** 0.002*** [0.0018,0.0023] [0.0015,0.0019]
(0.001) (0.001)

N 158 169 158 169
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Upon examining the 95% confidence intervals, only Past Host exhibits non-overlapping intervals.

However, it’s important to note that its coefficient is not statistically significant in the context

of the Poisson regression for the years 2000 and 2002, with a significance level of p < 0.05.

Consequently, the null hypothesis cannot be rejected, indicating that the coefficient of Past

Host for the years 2000 and 2002 is equal to zero, exerting no influence on the number of

Olympic medals won. Conversely, being a Past Host in the years 2014 and 2016 resulted in

an e0.818 − 1 = 2.2660 − 1 = 1.2660 ≈ 127% increase in the number of Olympic medals won,

holding all other factors constant. The Healthcare Expenditures does show overlap in the 95%

confidence intervals; however, the coefficient estimate in the years 2000 and 2002 is not significant

at the level of p < 0.05, making the constructed 95% confidence interval insignificant too. In

these years, the null hypothesis cannot be rejected, indicating that the influence of Healthcare

Expenditures is effectively zero. Conversely, in the years 2014 and 2016, for every 1% increase

in Healthcare Expenditures, the Olympic medal count is projected to increase by e0.080 − 1 =

1.0833− 1 = 0.0833 ≈ 8.3%, while holding all other factors constant.
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Chapter 6

Conclusion & Discussion

6.1 Conclusion

This thesis investigates the relationship between a country’s Olympic medal count and its socio-

economic factors, addressing four research questions. The first research question explores the

influential socio-economic factors, the measurement of the Olympic medals, and the methodo-

logies employed in existing literature. The literature review confirms the favorable influences

of socio-economic factors such as population, GDP/GDP per capita, hosting the Olympics,

and political regime on the Olympic medals won. These factors have been integrated into the

analysis, with population representing the number of residents, GDP per capita measured in

international dollars (2017), and regime classification as either closed/electoral autocracy or

electoral/liberal democracy. Furthermore, the analysis takes into account the influence of past

Olympic hosting. In the existing literature, Olympic success is typically assessed based on the

total number of Olympic medals earned, with the majority of studies favoring the Olympic

medals measured as integers rather than shares. In this approach, gold, silver, and bronze

medals are frequently aggregated. To explore this relationship, the literature employed a range

of machine learning models, including Ordinary Least Squares (OLS), Tobit, Poisson, and Neg-

ative Binomial (NGB) regression.

The second research question delved into identifying the most effective machine learning model

for analyzing the influences of socio-economic factors on the Olympic medal count. In addition

to the machine learning models found in the existing literature, this study also incorporated the

Random Forest, Gradient Boosting, and Extreme Gradient Boosting (XGBoosting). Further-

more, novel socio-economic factors were introduced, encompassing income inequality, healthcare

expenditures, technological development, and nutrition. These factors were evaluated through

metrics such as the Gini coefficient, healthcare expenditures as a percentage of GDP, internet

user proportions, and the supply versus demand of food in a country.

Among the machine learning models utilized in prior research, the Poisson regression outper-

formed the others in explaining the variance of the Olympic medal count, achieving the highest

R-squared (R²) values of 0.70 in cross-validation and 0.61 in out-of-sample scenarios. The R²
values for the OLS regression were 0.45 in cross-validation and 0.40 in the out-of-sample scenario,
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while the NGB regression achieved R² values of 0.67 in cross-validation and 0.31 in out-of-sample

predictions. Furthermore, the Poisson regression exhibited the lowest Root Mean Square Error

(RMSE) and the highest predictive accuracy, with an RMSE of 7.38 in cross-validation and 6.51

for out-of-sample predictions. In contrast, the OLS, Tobit, and NGB regressions yielded RMSE

values of 10.82, 16.71, and 8.92, respectively, in cross-validation, and 8.10, 15.77, and 8.67 for

out-of-sample predictions. The OLS and Tobit regression models failed to meet their linearity

and homoscedasticity assumptions, and in the case of OLS, the independence of errors assump-

tion was also not satisfied. Both the Poisson and NGB regression models did not conform to

the Poisson distribution assumption, and the equality of mean and variance was not met for the

Poisson regression either. However, the advantage of relaxing the equality of mean and variance

for the NGB regression is considered less significant than the lack of generalizability, as demon-

strated by the decrease in R² between cross-validation and the out-of-sample scenario, and the

detailed examination of the cross-validation. Therefore, the Poisson regression is the preferred

choice among the regression models. In the Poisson regression, only the Electoral Democracy

variable was removed based on Sequential Backward Elimination (SBE). Consequently, all the

coefficients of the other socio-economic factors, including those previously unconsidered, were

found to be statistically significant at the level of p < 0.05.

The ensemble models, which were not taken into account in the prior literature, demonstrated

more favorable performance metrics compared to the earlier regression models. XGBoosting

exhibited the highest R² and the lowest RMSE in cross-validation, with values of 0.80 and 6.18,

respectively. Among the ensemble models, Random Forest performed the least effectively during

cross-validation, achieving an R² of 0.71 and an RMSE of 7.67. However, in the out-of-sample

scenario, Random Forest excelled with an R² of 0.84 and the lowest RMSE of 4.20. In contrast,

XGBoosting and Gradient Boosting yielded R² values of 0.81 and 0.79, with RMSE values of

4.59 and 4.77, respectively. Despite the superior performance metrics of Random Forest in out-

of-sample predictions, the consistency advantage of XGBoosting in terms of R² within the cross-

validation was notably more substantial. As a result, XGBoosting emerged as the most effective

model for predicting Olympic medal counts based on socio-economic factors, with an average

deviation of 4.59 Olympic medals from the actual achievements. Notably, the variable Healthcare

Expenditures, which had not been considered in previous literature, ranked as the second most

influential independent variable in the construction of the Random Forest model and the third

most influential in both Gradient Boosting and XGBoosting. However, the relative importance

of independent variables does not provide a precise understanding of the relationship between

socio-economic factors and Olympic medal counts. Consequently, the Poisson regression model

is preferred for explaining this relationship due to its ability to provide interpretable coefficients.

The third research question focuses on interpreting the influence of socio-economic factors on the

Olympic medal count and evaluating the extent of the predictors’ influences. This was achieved

using the Poisson regression model on the full set of observations. The model’s interpretation

applies to athletes of both genders, across Summer and Winter Olympics, spanning all editions

from 2000 to 2016.
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Almost all socio-economic variables, except for Electoral democracy, displayed a significant in-

fluences on the Olympic medal count, yielding coefficients with p-values lower than 0.05. For

instance, a 1% increase in GDP Per Capita and Population corresponded to approximately

1.113% and 0.627% increases in Olympic medals. Conversely, a 1% increase in the Gini Coef-

ficient, representing income inequality, resulted in about a 1.383% reduction in the expected

number of Olympic medals. Being in a Closed Autocracy or Electoral Autocracy correlated with

roughly 107% and 104% increases in the number of Olympic medals won, compared to living in

both the Liberal Democracy and Electoral Democracy. Furthermore, a 1% increase in Healthcare

Expenditures led to a 3.6% increase in Olympic medals for a country. For every unit increase

in the Food Supply Surplus, the number of Olympic medals won decreased by 34%. Hosting the

Olympic Games had a substantial positive influence, resulting in a significant increase of 133%

in the number of Olympic medals won. Additionally, having hosted the Olympic Games in the

previous four years was associated with an increase of 30% in the expected number of Olympic

medals won. These individual interpretations of the independent variables assume that all other

factors in the analysis remain constant.

The last research question aimed to distinguish the influence of socio-economic variables with

respect to gender, season, and year, employing a Poisson regression model. To achieve this, 95%

confidence intervals were established for the coefficients within the regression. These intervals

facilitated the identification of overlapping or non-overlapping 95% confidence intervals for the

same independent variable in different contexts. This analysis enabled to infer that when two

95% confidence intervals do not overlap, there is approximately a 90% probability that the true

coefficients of the independent variable differ in another context.

Female athletes exhibited stronger influences, both positive and negative. For instance, a 1%

increase in the Population led to a 0.563% increase in expected Olympic medals for male ath-

letes, while female athletes saw a 0.679% increase. When the Gini Coefficient increased by 1%,

indicating higher income inequality, male athletes experienced a 1.162% decrease in Olympic

medals won, while female athletes faced an even greater 1.787% reduction. These individual in-

terpretations of the independent variables are made under the assumption that all other factors

in the analysis remain unchanged.

A 1% increase in GDP Per Capita corresponds to a 1.087% increase in expected Olympic medals

for the Summer Olympics and a 2.414% increase for the Winter Olympics. A 1% Population

increase leads to a 0.650% rise in Olympic medals for the Summer Olympics and a 0.530%

increase for the Winter Olympics. Closed Autocracies boost Olympic medal counts by 103%

for the Summer Olympics and a staggering 2733% for the Winter Olympics compared to both

the Liberal Democracy and Electoral Democracy. Electoral Autocracies also have significant in-

fluences, increasing medal counts by 123% for the Summer Olympics and 530% for the Winter

Olympics, compared to inhabitants from both the Liberal Democracy and Electoral Democracy.

These individual interpretations of the independent variables are based on the assumption that

47



all other factors in the analysis remain unchanged.

When contrasting the early Olympic editions (2000 and 2002) with the more recent ones (2014

and 2016), a significant contrast becomes apparent regarding the influences of Past Host status

and the role of Healthcare Expenditures. In the earlier years, Past Host status and Healthcare

Expenditures had no influence, as evidenced by the coefficients lacking statistical significance at

the p ¡ 0.05 level. However, in recent editions, this influence became pronounced, resulting in

a 127% increase in Olympic medal count for countries that had previously hosted the Olympic

Games, assuming all other factors remained constant. Furthermore, for every 1% increase in

Healthcare Expenditures, the number of Olympic medals won saw an 8.3% boost in the more

recent editions, holding all other factors constant.

6.2 Discussion

6.2.1 Implications

The study’s outcomes align with its research objective. Established socio-economic factors

showed the expected positive influence, and previously unexamined variables revealed signific-

ant influences. By comparing different models, this research effectively identified these influences

and evaluated their additional contributions.

The study had both similarities and differences compared to prior research. The study confirmed

Poisson regression’s superiority over Tobit and Negative Binomial regression in the goodness of

fit, aligning with (Lui & Suen, 2008). Like Rewilak (2021) his study, this research examined the

influence of socio-economic factors on both male and female athletes. Both studies revealed sim-

ilar findings, indicating that the host influence affects both genders similarly and emphasizing

the greater influence of population size on female athletes’ Olympic medal counts. Furthermore,

this study introduced a distinctive perspective by uncovering a more substantial negative in-

fluence of income inequality on female athletes’ Olympic medal counts, enriching the existing

literature.

Johnson and Ali (2004) stressed the financial aspect of the Winter Olympics and the population

for the Summer Olympics, aligning with this study. This research, however, introduced a unique

perspective by highlighting a stronger host advantage in the Summer Olympics, not discussed in

Johnson and Ali (2004) their work. Additionally, this study uncovered the heightened influence

of residing in an autocracy as opposed to a democracy in the context of the Winter Olympics,

providing new insights. Analyzing changes over time, it found that the positive influences of

the population did not differ over time, contrary to the diminishing positive influences found by

Noland and Stahler (2017). Furthermore, the influence of prior Olympic Games hosting and a

higher allocation of GDP to healthcare expenditures on Olympic medal counts did not manifest

in earlier years but became evident in more recent years.
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The enhanced Poisson regression model, with its inclusion of new variables, provides valuable in-

sights for National Olympic Committees and governments. It deepens the understanding of the

link between Olympic succes and socio-economic factors, enabling informed actions. This model

quantifies the necessary adjustments to achieve specific increases in Olympic medal counts. It

also guides the emphasis on socio-economic variables for those targeting factors like gender or

season, making it a useful tool. Improving the relative Olympic performance of female athletes

compared to male athletes could be achieved by mitigating income inequality and promoting

population growth. Over time, the role of healthcare expenditures has become increasingly ap-

parent, emerging as an influential independent variable in ensemble models. This underscores

the importance of prioritizing healthcare improvement for enhancing Olympic performance for

athletes of both genders and across various Olympic seasons. This research also benefits sports

organizations, bookmakers, and gamblers alike. The selection of the XGBoosting model, driven

by its predictive capabilities, allows bookmakers and gamblers to make more accurate predic-

tions, enhancing their odds and betting strategies. Furthermore, marketing professionals have

the opportunity to adjust their marketing campaign and target audience following the predicted

successful nations.

6.2.2 Limitations

While this study has provided valuable insights into the relationship between socio-economic

factors and Olympic medal success, it is essential to recognize its limitations. Access to addi-

tional data would be preferable, but it is not always available. Currently, healthcare expenditures

serve as an indicator of a country’s health prioritization. However, having a variable reflecting

targeted sports investments would be more meaningful. Unfortunately, such data is often com-

plex to obtain due to many external subsidies from different parties. Moreover, using the ease of

maintaining a nutritious diet may better represent a country’s food status compared to dividing

the food supply by the minimum requirement, as it does not account for nutritional quality.

Expanding the sample size over a longer period could enhance reliability, but socio-economic

data availability is limited to a specific time frame.

The data cleaning process had some undesirable consequences. Removing countries with no

available socio-economic data also meant removing some Olympic medal winners, albeit a small

number due to the relatively small size of those countries. In an ideal scenario, it would be

preferable to retain all Olympic medal winners. Excluding liberal democracy, which was strongly

correlated with GDP Per Capita, affected the interpretation of the remaining regime categories.

In the Sequential Backward Elimination (SBE) process, electoral democracy was consistently

removed from all regression models. In this instance, liberal and electoral democracy were

manually designated as the reference category, rather than allowing the model to select it. This

manual selection might explain the notably high coefficient for the closed autocracy regime in

Table 5.5 for the Winter Olympics.

In the Tobit regression, obtaining R² values was not possible due to the censored nature of

the data. This limitation made it more challenging to make consistent comparisons across all
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methods. However, it was evident that the RMSE for both cross-validation and out-of-sample

predictions was significantly higher for Tobit compared to Poisson, clearly distinguishing their

performance. The interpretation of the Poisson regression model has several limitations. First,

the assumptions of Poisson distribution and equal mean variance were not fully met, despite

some resemblance in the distribution of Olympic medal winners. Although the performance

metrics for the Poisson regression were the most favorable and all coefficients exhibited high

significance levels, not all assumptions were satisfied, potentially leading to biased parameter

estimates. Furthermore, the Poisson models were applied to different contexts using distinct

data sets with varying sample sizes. Smaller sample sizes in some cases could introduce biases

into the parameter estimates. Consequently, the comparison across different subsets was not

always as straightforward as it would have been with consistent sample sizes. Finally, the as-

sessment of model accuracy was relative, and the best-performing models were chosen. However,

it is worth noting that the average deviation of 4.59 Olympic medals from the actual achieve-

ments in XGBoosting, while promising, falls short of perfection and could potentially be further

improved for greater precision.

6.2.3 Further research

In terms of future research, there is room to expand the scope and deepen the understanding

of the factors influencing the Olympic medal count. The analysis could benefit from the in-

clusion of additional socio-economic variables that might have an influences on the number of

Olympic medals. Moreover, it may be valuable to explore how altering the measurement of

specific socio-economic factors affects the extent of their influence. Furthermore, the application

of alternative machine learning models could offer valuable insights, enhancing both explanatory

and predictive modeling in this context.

In addition to exploring variations in socio-economic influence based on gender, season, and

year, it would be worthwhile to investigate the influence of an athlete’s specific sport or other

more specific contexts. This analysis can reveal how socio-economic factors may differ based on

the unique characteristics of each sport or context.

Finally, the XGBoosting model developed in this study could find practical application in making

predictions for the 2024 Olympic Games in Paris. To achieve this, socio-economic data from

the year 2023 would be required, even though the year is ongoing. The availability of such data

would allow the model to generate predictions that could be valuable for external stakeholders

and decision-makers.
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Appendix A

Appendix A: Data

Table A.1. Variable overview of Olympic performance data set

Variable Type Description

ID Integer Unique number for each athlete

Name String Full name of athlete

Sex String Gender of athlete (Male or Female)

Age Integer Age of athlete

Height Integer Height of athlete

Weight Integer Weight of athlete

Team String Country represented by athlete

NOC String National Olympic Committee 3-letter code

Games Integer + String Year and season

Year Integer Year of Olympic Games

Season String Season of organizing (Winter or Summer)

City String Host city

Sport String The type of sport the athlete participated in

Event String Specific discipline within the sport

Medal String Medal won (Gold, Silver, Bronze, or NA)
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Table A.2. Correlation matrix
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Total Medals X

GDP Per Capita 0.30 X

Population 0.29 -0.12 X

Closed Autocracy 0.07 -0.19 0.34 X

Electoral Autocracy -0.09 -0.42 -0.08 -0.14 X

Liberal Democracy 0.23 0.76 -0.13 -0.18 -0.50 X

Electoral Democracy -0.19 -0.33 0.06 -0.14 -0.38 -0.50 X

Share Internet Users 0.26 0.77 -0.10 -0.13 0.37 0.62 -0.25 X

Gini Coefficient -0.10 -0.40 0.05 0.05 -0.04 -0.27 0.32 -0.39 X

Healthcare Expenditures 0.32 0.57 -0.13 -0.21 -0.35 0,57 -0.17 0.55 -0.16 X

Animal Protein 0.25 0.75 -0.16 -0.23 -0.43 0.68 -0.21 0.68 -0.37 0.51 X

Plant Protein -0.22 -0.68 0.17 0.26 0.46 -0.60 0.06 -0.59 0.20 -0.50 -0.79 X

Fat 0.29 0.76 -0.12 -0.25 -0.42 0.68 -0.20 0.66 -0.35 0.59 0.82 -0.80 X

Carbohydrates -0.29 -0.78 0.12 0.24 0.42 -0.70 0.23 -0.68 0.38 -0.58 -0.88 0.76 -0.99 X

Food Supply Surplus 0.30 0.63 -0.05 -0.08 -0.29 0.52 -0.24 0.58 -0.31 0.46 0.54 -0.41 0.58 -0.60 X

Host 0.24 0.07 0.10 0.03 -0.04 0.06 -0.04 0.06 0.01 0.08 0.07 -0.05 0.09 -0.09 0.09 X

Past Host 0.24 0.12 0.14 0.06 -0.07 0.12 -0.09 0.12 -0.02 0.13 0.10 -0.06 0.14 -0.14 0.14 -0.16 X

Table A.3. Variable overview of socio-economic factors

Socio-economic Variable Measure Observations Time Span

GDP Per Capita GDP (in 2017 international

dollars) / Population

6364 1990-2021

Population Number of inhabitants 38.355 1950-2100

Political regime Closed autocracy 30.766 1789-2022

Electoral autocracy

Electoral democracy

Liberal democracy

Income inequality Gini index (0-1) 2125 1967-2021

Healthcare expenditures % of GDP 3974 2000-2019

Technology % of internet users in last

three months

6570 1960-2021

Nutrition Daily calorie supply (includ-

ing nutrient composition)

3596 1961-2020

Daily minimum calorie re-

quirement

4972 2000-2021
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Figure A.1. Olympic medal distribution

Table A.4. Categorical variables frequency table

Variables Frequency

Regime
Closed Autocracy 36 (4.8%)
Electoral Autocracy 210 (28.0%)
Electoral Democracy 211 (28.1%)
Liberal Democracy 293 (39.1%)
Host / Past Host
Yes 8 (1.1%) / 13 (1.7%)
No 742 (98.9%) / 737 (98.3%)
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Appendix B: Results
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Table B.1. Cross-validation results

Fold
OLS Tobit Poisson NGB

R² RMSE R² RMSE R² RMSE R² RMSE
1 0.58 9.14 NA 16.51 0.59 8.18 0.64 10.35
2 0.55 14.80 NA 18.78 0.76 7.35 0.69 10.35
3 0.38 11.29 NA 14.56 0.91 6.42 0.54 8.11
4 0.48 10.19 NA 17.81 0.55 5.02 0.65 10.31
5 0.22 13.25 NA 17.21 0.44 7.45 0.38 16.29
6 0.50 11.80 NA 16.31 0.67 6.75 0.60 7.95
7 0.42 10.45 NA 17.85 0.84 6.43 0.92 6.97
8 0.51 8.77 NA 15.51 0.71 10.64 0.71 4.92
9 0.48 10.02 NA 14.52 0.75 8.63 0.80 11.30
10 0.37 8.45 NA 17.47 0.79 6.94 0.81 5.99

Range [0.22-0.58] [8.45-14.80] NA [14.52-18.78] [0.44-0.91] [6.42-10.64] [0.38-0.92] [4.92-16.29]

Fold
Random Forest Gradient Boosting XGBoosting
R² RMSE R² RMSE R² RMSE

1 0.64 7.66 0.47 11.18 0.59 5.56
2 0.44 12.18 0.79 4.60 0.72 11.46
3 0.74 9.14 0.73 4.57 0.70 5.77
4 0.64 6.95 0.89 7.28 0.94 3.10
5 0.61 7.14 0.86 8.57 0.83 4.61
6 0.90 7.25 0.85 5.14 0.85 6.73
7 0.77 7.21 0.90 4.29 0.72 8.71
8 0.68 9.97 0.68 4.81 0.90 3.58
9 0.92 4.21 0.64 10.05 0.81 6.49
10 0.74 5.25 0.47 7.28 0.87 3.75

Range [0.44-0.90] [4.21-12.18] [0.47-0.90] [4.29-11.18] [0.59-0.94] [3.10-11.46]

Figure B.1. Residual plot: OLS regression
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Figure B.2. Residual plot: Tobit regression

Figure B.3. Autocorrelation plot: OLS regression
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Figure B.4. Autocorrelation plot: Tobit regression

Figure B.5. Data distribution vs Poisson distribution
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Figure B.6. Residual plot: Poisson regression

Figure B.7. Residual plot: NGB regression
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