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Abstract

Comparing spare parts demand forecasting methods is an important part of the spare parts
demand forecasting field. Even more so, when newer methods are introduced. In this paper, new
methods are compared to older, widely-used methods. The methods compared in this paper are
Croston’s method, Syntetos-Boylan approximation (SBA), DLP, Light GBM, Long-short term
memory (LSTM), Multi-Layer-Perceptron (MLP), Random Forest (RF), Willemain’s method
and Quantile regression. Every method is applied to eight different data sets. The data sets
are grouped into simulated data sets or industrial data sets. The performance of the methods is
measured through forecasting accuracy measures and inventory performance measures. In terms
of forecasting accuracy Quantile regression was superior overall followed by MLP. Willemain’s
method was the overall best in terms of inventory performance. However, for lumpy demand,
LSTM outperforms Willemain in terms of inventory performance. For erratic demand MLP
outperforms Willemain. Whereas MLP was the second-best performer in terms of forecasting
accuracy, LSTM did not stand out in terms of forecasting accuracy. We then compared the re-
sults to the reviewed recent literature and found them to be comparable. Through this research,
several findings stand out, the performance measure used and the data set category have an
influence on the results. Data cleaning plays a crucial role and that hyper parameter tuning

takes time and requires prior knowledge.
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1 Introduction

Spare parts producing companies have a responsibility of being able to replace obsolete, defective
parts with new ones when needed. Some spare parts can take quite some time to be manufac-
tured. Furthermore, when the demand for such a spare part is spontaneous and of important
quantity, OEMs ! might be caught off-guard and the spare parts production takes time to get
going or if a higher amount is needed, to scale up. The waiting time for a spare part can be
costly as it can cause downtime of a production or a service (Haan, ). The obvious solution
to face the disruption of production caused by a lack of spare parts would be to have spare parts
at all times and in all places in stock. However, keeping inventory is also costly. Especially, if
the spare parts in the inventory are expensive and take away a considerable amount of space.
Silver ( ), as described in Willemain et al. ( ), states that the demand for spare parts
can be intermittent and variate between no demand at all for multiple periods to a very high
demand. In other words, the demand can be infrequent but also the demand quantity can highly
vary. For this reason, Willemain et al. ( ) and Syntetos et al. ( ) explain that demand
forecasting is not only difficult but also highly important so that the inventory can be managed
correctly. Durlinger and Paul ( ) and Callioni et al. ( ) found that in general, companies’

yearly inventory holding cost can make up between 5 to 45 per cent of the costs of the inventory.

Knowing the spare parts demand in advance is not only beneficial for the company’s stock
management but also for its finances. This is why spare parts forecasting is such an important
topic regarding a firm’s sales. It determines how much you need to order. Supplying spare
parts can be a vital sales advantage as the spare parts business is of high importance with
high margins. Suomala et al. ( ) elaborate that the spare parts business is economically
significant in many industries and can often even be considered the most profitable function of
a corporation. Some industries consider product sales as a positioning opportunity so that the
customers depend on the services and pull-through sales of the product company. For example,
Epson and Hewlett-Packard mainly profit from the sale of toner cartridges and not from the

initial printer sale, (Dennis and Kambil, ).

There are numerous methods for forecasting in general. However, the methods for spare parts
forecasting should be able to account for high intermittency and high variability. Furthermore,
as the machine learning domain is rising, ML ? methods for spare parts demand forecasting
have been developed. As for statistical methods, some ML spare parts forecasting methods

perform better than others depending on the situation (Haan, ). This research is important

! Original equipment manufacturers
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as Pinge et al. ( ) show that in the last five years, there were nearly no comparative studies
papers produced related to the spare parts forecasting field. Furthermore, the ML domain is
continuously advancing. So, what can new comparative papers add to the field of spare parts

forecasting?

In this comparative paper, different methods of spare parts forecasting will be compared to
each other with the goal of being able to deduce which method performs best for which type of
demand. To measure the accuracy of demand forecasting and inventory performance, different
measures for both will be used. This will allow us to also find out if different measures provide
different results. The data sets used for the comparison are four industrial data sets and four
simulated data sets, representing the demand, which first needs to be classified in one of the
following demand classes: FErratic, Lumpy, Smooth and Intermittent. More details about the
data sets and the classification process will be given in Section 4 Data. This leads us to the

main research question:
"Which methods perform best on what kind of demand respectively for which data set?”.

To answer this question, two other sub-questions come up: ”Is the performance of certain
methods due to the measure used?” and "Do ML methods perform better in general than statis-

tical methods?”.

In this empirical research, we first review existing spare parts demand forecasting literature
in Section 2. We then present Section 3, where the research design of the paper, the methods
used for the forecasting and the accuracy measures for the forecasts and inventory control
performances, are presented. The methods are applied to eight different data sets, which are
presented in Section 4. After applying the different methods to the data sets, the numerical
results are interpreted and analysed in Section 5. This section answers the research question
and its sub-questions. Last but not least, Section 6 concludes and discusses the findings and

future research opportunities regarding our paper.



2 Literature Review

The structure of the literature review is inspired by Pinge et al. ( )’s review. In their work,
they explain that the spare parts demand forecasting literature consists of three major groups
with several subcategories. The three major categories are Time-series methods, contextual

methods and comparative studies like this paper.

2.1 Time-series forecasting methods

The first literature category contains time-series forecasting method papers. Time-series fore-
casting method papers contain detailed explanations about time-series methods. Haan ( )
explains that time-series methods are built on historical data, from which they try to provide
a forecast of future data. Pinge et al. ( ) subgroups the time-series literature into three
sub-categories: parametric, non-parametric and forecast improvement strategies. The latter is
divided into two branches, demand classification and demand aggregation. The four demand
classifications are erratic, lumpy, smooth and intermittent. The categorization happens based on
multiple demand characteristics, which are explained in Section 4.1 Industrial data sets. In this
paper, the demand is analyzed and the best performing forecasting method is recommended.
Regarding data aggregation methods, they have for goal to reduce the variability of the demand
(Pinge et al., ).

Syntetos et al. ( ) explain that a parametric approach assumes that the lead-time de-
mand follows a certain known distribution. Whereas non-parametric approaches, explained by
Pinge, Turrini, and Meissner, observe their lead-time demand distribution from the data. Both
categories can be further sub-categorised. The parametric branch can be subdivided into Cros-
ton’s modification, whether demand obsolescence is incorporated, Bootstrapping, if statistical
bootstrapping is used for the parametric category. The non-parametric category is divided into
three sub-categories: Bootstrapping, Neural Network and Empirical method. Those different
categorizations of time-series methods are relevant for this research as they will also be used in
this paper. Furthermore, the grouping allows to give a general conclusion for each category and

their performance when compared.

It is noteworthy, that many forecasting methods exist and more methods are being developed,
as it is a challenging scientific topic. In the next subsections, the existing literature on the
methods used in this paper is reviewed. Some existing methods are briefly mentioned or not

mentioned at all in our literature review, as this would be too extensive for a master’s thesis.



2.1.1 Parametric approaches

The first parametric spare parts forecasting method is Croston’s method. Croston’s method was
developed to face the inaccuracies of traditional forecasting methods such as Simple Exponential
Smoothing (SES), which were caused by the predictions of periods of no demand or very low
demand (Croston, ). Croston ( ) solves this, by splitting the demand estimate into the
demand size part and inter-demand interval part. The two parts are predicted individually with
SES. Being the first spare parts forecasting method, Croston is used as a benchmark for the

performance comparison with other methods.

Later, Syntetos and Boylan ( ) introduced a new method named Syntetos-Boylan ap-
proximation (SBA), which is also based on SES as Croston’s method. As mentioned in Pinge
et al. ( ), Syntetos and Boylan ( ) explain that Croston’s method is biased. SBA corrects
for the bias. A formula of SBA and an explanation of how it is different from Croston’s method
can be found in Section 3.1, where the methods used in this paper are elaborated. Pince et al.
( ) concludes that in terms of accuracy measures, SBA outperforms Croston’s method for
industrial spare parts data sets. After SBA, other parametric approaches, like Teunter-Syntetos-
Babai (TSB) have been introduced. However, they are not used in this comparative study. The

reason for this is given in Section 3.1.

Last but not least, a more recent parametric approach named DLP was introduced by Pen-
nings et al. ( ). Pennings et al. ( ) presented a dynamic intermittent demand forecasting
method. DLP anticipates the incoming demand of spare parts by including the positive cross-
correlation between demand sizes and interarrival times (Haan, ; Pinge et al., ). In
Pennings et al. ( ), the performance of the method depends on the data set and forecast ac-
curacy measure used. Five different data sets are used (Electro, ElecInd, Raf, Auto and Navy)
and two forecast accuracy measures (MASE and GMAE). Most of the time, SBA performs best.
SBA outperforms the other methods in terms of MASE and GMAE when applied to the ElecInd
and Auto data sets. Furthermore, SBA outperforms the other methods in terms of MASE for
the Raf data set and the Navy data set. DLP is the best performer in terms of GMAE for the
Electro, Raf and Navy data set. TSB achieved the lowest (being the best performing) MASE
for the Electro data set.



2.1.2 Non-parametric approaches

Haan ( ) explains that bootstrapping is used to simulate the distribution of the missing data,
by resampling existing data. By doing this, more data is available to model. Bootstrapping was
first introduced by Efron ( ). A often used non-parametric bootstrapping approach, that is
also used in our comparative study, is the one by Willemain et al. ( ), short WSS. As ex-
plained in Pinge et al. ( ), Willemain et al. ( ) modify the existing bootstrapping method.
The new method takes into account three features of intermittent demand: autocorrelation, fre-
quently repeated values and relatively short time series, which were neglected by the classical
bootstrapping method. Haan ( ) sums up the detailed explanation given by Willemain et al.
( ). WSS uses a Markov model to first forecast a sequence of zero and non-zero values over
lead time periods based on past demand. After this, all the non-zero forecasts obtain specific
numerical values. The attributed numerical values are obtained from a random sample of past
non-zero values. Lastly, the jittering process starts. The jittering process is explained in detail

in Section 3.1.3. It allows to obtain new demand sizes and to smoothen the demand distribution.

Other non-parametric bootstrapping methods are those by Zhou and Viswanathan ( ),
Porras and Dekker ( ). Zhou and Viswanathan ( ) is seen as an improvement of WSS.
The difference to WSS is, that Zhou and Viswanathan ( ) generate the non-zero lead-time
demand by using a bootstrap of the past distribution of the inter-demand intervals. Pinge et al.
( ) and Haan ( ) explain that Porras and Dekker ( ) is referred to as an empirical

method and that it is simpler than bootstrapping.

The last non-parametric method used in this comparative study is quantile regression. Quan-
tile regression as a spare parts demand forecasting method, has not been applied a lot. This is
also why it is difficult to find good research papers on it. Trapero et al. ( ) use a quantile
combination scheme. First, they obtain the quantiles of the lead time forecast density function.
Then, they determine the safety stock. The researchers explain, that based on Boylan, Synte-
tos, et al. ( ), the whole forecast distribution is not needed. Boylan, Syntetos, et al. ( )

suggest, that only the upper quantiles should be taken into account.

2.1.3 Machine Learning methods

A newer category of methods is ML methods. ML in spare parts demand forecasting is still
new and not fully studied. Pinge et al. ( ) and Haan ( ) explain that ML methods used
in the field of spare parts demand forecasting are supervised learning methods. A supervised

learning method is an algorithm, that learns from one set of data (training set) and then tries



to predict the outcome of the other set of the data (test set) (Learned-Miller, ). Haan
( ) also correctly points out, that ML methods, such as neural networks are often difficult
to interpret. In the ML field, researchers speak of a black box, because the input and the
output are known, but the way of getting that result is unknown (Rudin, ). However, in
spare parts demand forecasting, the result is more important (high accuracy and good inventory
performance) (Haan, ). Another important aspect of ML methods is the hyper parameter
tuning part. Makridakis et al. ( ) refers to Makridakis et al. ( ), which state that there
are many adjustments possible for the hyper-parameters and that finding the best ones takes

time.

One of the first ML methods used in the field of spare parts demand forecasting is MLP 2 by
Gutierrez et al. ( ) (Haan, ; Spiliotis et al., ). MLP is a form of a neural network
approach. Gutierrez et al. ( ) find that neural network models generally perform better than
the traditional methods (Single exponential smoothing, Croston’s method and Syntetos-Boylan
approximation) in forecasting lumpy demand. This finding is backed by using three different
performance measures (MAPE 4, PB 5 and RGRMSE ©). Essentially, after Gutierrez et al.
( )’ neural network method, other neural network approaches are introduced. Kourentzes
( ) proposes his version of neural network method, that can handle intermittent time series.
In terms of performance accuracy, neural networks perform worse than the best performing
Croston’s method variation. Whereas, in terms of service level, neural networks achieved better
results. One less studied neural network method is LSTM 7. LSTM was introduced by Hochreiter
and Schmidhuber ( ) and has not been extensively studied in the field of spare parts demand
forecasting. Chandriah and Naraganahalli ( )’s paper is one of the few, that use the LSTM
method with a modified Adam optimizer for automobile spare parts demand forecasting. Their
method is superior to SES, TSB, SBA, Croston and Modified SBA, in terms of forecasting

accuracy and inventory management.

Other non-neural networks ML methods, that are used in the spare parts demand forecasting
field, are LightGBM and Random Forest ®. The former was the base of many of the best
performing models in the Makridakis et al. ( ) (Haan, ). LightGBM is a gradient
boosting algorithm. Haan ( ) uses Light GBM in his thesis. Light GBM is the worst performer

based on the Percentage Better comparison. However, Light GBM performs well, but not as well

3Multi-Layer-Perceptron

4Mean Absolute Percentage Error
Percentage Best

SRelative Geometric Root-Mean-Square Error
"Long Short Term Memory
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as MLP for extremely high intermittent data, based on inventory control performance. Overall,
SBA seems to be the best performer in Haan ( )’s paper. The latter is used by Spiliotis
et al. ( ). RF is the best performing method in general, before other ML methods, such
as Gradient Boosting Trees, MLP, Bayesian Neural Network, K-Nearest Neighbor Regression,
Support Vector Regression and Gaussian Processes. It is important to note that the ranking
slightly changes depending on the type of data. However, in general, Gradient Boosting Trees
and RF perform the best in respect to inventory performance and prediction accuracy. Another
paper, that applies RF to forecast spare parts demand is Choi and Suh ( ). They prove that
RF is superior to Support Vector Regression, Linear Regression and Neural Network based on

MAE Y and RMSE '° when applied to South Korean aircraft data.

2.1.4 Comparison between parametric, non-parametric and ML methods

Since the spare parts demand forecasting field is a challenging scientific topic, many new methods
are being introduced. Researchers and field experts compare the methods with each other. Based
on the reviewed literature, one can say that different outcomes have been found. Willemain et al.
( ) show that, in comparison to SES and Croston’s, their method yields a better forecast
accuracy of the demand distribution for a fixed lead time. So in this paper, non-parametric
methods are superior to parametric approaches. In Spiliotis et al. ( ), ML methods out-
perform statistical methods, except for SBA, which ranks 7 out of 18 methods. The top three
performing methods, based on RMSSE ' and AMSE '2 for all four types of data, are Support
vector regression, Gradient boosting trees and RF (order changing, depending on data type
and measure). Pinge et al. ( ) concludes, that in general, the non-parametric methods out-
perform the parametric methods. In Pennings et al. ( ), the parametric methods perform
much better than the non-parametric methods for the same data, where Lolli et al. ( ) con-
cludes the opposite. It is noteworthy, that both papers use different methods for parametric and

non-parametric approaches, which could explain the contradictory results.

2.1.5 Conclusion time series forecasting methods

In summary, one can say that many different time series forecasting methods exist. We presented
the three major categories (Parametric, non-parametric, ML methods). Parametric methods,
being the first developed methods, are most often used as benchmark methods. Namely, Croston

and SBA. Croston, being the first method developed for spare parts demand forecasting. (Cros-

9Mean Absolute Error

®Root Mean Squared Error
HRoot Mean Squared Scaled Error
12 Absolute Mean Scaled Error



ton, ). Non-parametric and ML methods have been developed more recently. ML methods,
especially, are being studied extensively as they yield promising results in other supply chain
management contexts (Pinge et al., ). Next to delivering high forecasting accuracy, solid
inventory performance, these methods also need to take into account the type of data. In fact,
spare parts data can show extremely high intermittency. Not every method performs well for
every forecasting accuracy measure, for every inventory performance measure and for every data
set. This literature review suggests, that the different strengths of the different methods should
be combined, such that the forecasting accuracy stays high and the improvement in inventory

management cuts the costs of stock keeping.

2.2 Performance measures

In the spare parts demand forecasting field, to measure the performance of the methods, two
categories of performance measures are mainly used, forecasting accuracy and inventory perfor-

mance.

2.2.1 Forecasting accuracy

Forecast accuracy measures allow to quantify the performance of the prediction made by the
model. It compares a historic value from the training set to the actual value from the prediction.
In the case of spare parts demand forecasting, the demand of a spare part is predicted and then

compared to the actual value from the test set.

Pinge et al. ( ) and Haan ( ) explain, that there are two types of forecasting accuracy
measures: relative accuracy measures and absolute accuracy measures. The former quantifies
the performance of different forecasting methods relative to each other, while the latter gives an
indication of the forecasting error. Haan ( ) and Syntetos and Boylan ( ). Pinge et al.
( ) show that 72.6% of the papers that they reviewed, use an absolute accuracy measure.
Pinge et al. ( ) provide the table below, which contains commonly used absolute accuracy

measures.



Table 1: Common absolute accuracy measures

ME, =1 Es 1 €5 Mean error (bias)
MAE, = f S 1 |es| Mean absolute error
MSE; = ZS L €2 Mean squared error
RMSE, = /5 1 Zt Le2 Root mean squared error
MAPE, = % Mean absolute percentage error

s=1
MASE; = l 1 Les| Mean absolute scaled error

=1 Zz 2 [Yi=Yizal

GMAE; = (1L =1 \es\) Geometric mean absolute error
GRMSE, = ([T'_, 62)% Geometric root mean squared error

2.2.2 Inventory control performance

A high forecast accuracy alone does not necessarily mean that the inventory is well managed
(Pinge et al., ; Syntetos & Boylan, ; Syntetos et al., ; Teunter & Duncan, ).
Therefore, inventory performance measures are also needed, as the cost implications of stock
holding are high and even higher for not having a stock at all. In comparison to forecasting
accuracy measures, inventory control measures do not compare the difference between the mean
and the forecast. Inventory control measures measure the effectiveness of the stock management
in terms of achieved cycle service level, trade-off curve, total cost, stock volume or shortage
volume. Therefore, a distribution of the demand needs to be assumed. In Section 3.3, the
choice of the assumed distribution for our paper is explained. Pinge et al. ( ) provide a
visualisation of the inventory performance measures used in spare parts demand forecasting,
where Service level and Trade-off curve are the two most used measures in front of Total cost,
Other (Average total cost, Average on-hand inventory or Stock-out volumes), Stock Volume and
Shortage Volume. Including inventory control measures allows to see the financial implications

of inventory management.

2.3 Comparative studies

Finally, the third major category of spare parts forecasting is Comparative studies. Different
spare parts forecasting methods will be benchmarked and compared to each other after being
applied to the different data sets. The methods used for this comparison study will be presented
in Section 3.1. The results of each method applied to each data set are then quantified to
be able to compare their performances (Pinge et al., ). The performance measures used
are forecasting accuracy measures or inventory performance measures. Both types of measures
will be used in this paper. Pinge, Turrini, and Meissner explain that most studies use forecast

accuracy measures, as there seems not to be a general convention on which methods to use as a



benchmark. However, inventory performance is described to provide more realistic benchmarks
in Teunter and Duncan ( ). A recent paper that takes both into account is Haan ( ).
This step is important for the field of spare parts demand forecasting as it allows to constantly
challenge the findings of researchers and compare them with each other. Furthermore, in the

last five years, there have not been many new comparative studies (Pinge et al., ).

More recent comparative studies are the Master thesis of Haan ( ) and the paper of
Aktepe et al. ( ). To our knowledge, the newest paper that compares spare parts demand

forecasting methods, are Ifraz et al. ( ) and Theodorou et al. ( ).

Haan ( ) compares seven methods with each other. Five conventional methods: Sim-
ple exponential smoothing (SES), Croston’s method, Syntetos-Boylan approximation (SBA),
Teunter-Syntetos-Boylan (TSB) and Willemain and two ML methods: Multi-Layer-Perceptron
(MLP) and LightGBM. The methods are applied to the same eight data sets (four industrial
data sets and four simulated data sets), that are used for our paper. De Haan concludes that
based on the Percentage Better '3 comparison, SBA performs best overall and Light GBM per-
forms worst. This relative measure allows to determine the superior methods. When comparing
the performances based on inventory control performance, Willemain is the best performing
method. This is only true for data that is not categorized as extremely intermittent. For such
demand, Haan ( ) concludes, that MLP and LightGBM are the best performer. Two cri-
tiques of this paper are, that De Haan includes the TSB method, although obsolescence is not
identified and that the Light GBM model is not tuned for the hyper parameters. In fact, for the
latter, De Haan relies on the parameter values of Kailex ( ). Obsolescence is explained as a
spare part no longer being needed, which means, that the demand for that item goes towards
zero (Van Jaarsveld & Dekker, ). TSB was introduced in 2011 by Teunter et al. ( ) as
an improvement to Croston’s method, as the latter yields poor performance for obsolescence.

Nonetheless, the obsolescence can be implicit and unidentified.

Ifraz et al. ( ) compare four different types of methods for spare parts demand forecast-

ing. The types of methods used are: Regression-based methods (multivariate linear regression'

multivariate nonlinear regression '°, Gaussian process regression 0, additive regression 7, re-

18

gression by discretion '®, support vector regression '?), Rule-based methods (Decision table,

13PB
MMLR
MNR
GPR
17AR
BRbD
9SVR
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M5Rule), Tree-based methods (Random Forest 2°, M5P, Random tree, Reduced Error Pruning
Tree 2') and Artificial neural networks ?2. This paper’s contribution is important to the spare
parts demand forecasting field, as it uses more ML methods than previous comparison studies.
The researchers apply the methods to a data set of an urban transport bus fleet of a metropolitan
municipality. The inventory type is classified using an Always Better Control method (ABC).
The ABC method follows two rules. The first rule states that items of low value should be amply
kept in stock. The second rule dictates that the quantity of the items of high value should be
sparse, but should be checked more frequently. Although the ABC classifier method is not used
in our paper, Ifraz et al. ( ) include multiple ML methods, which provide guidance for our

paper, as we are applying some of the ML methods to our data sets.

In Aktepe et al. ( ), four methods (Linear regression ?*, Nonlinear regression 24, ANN
and SVR) are used to predict the sales of a construction machinery company. Its business
consists of the sale of spare parts it produces for other companies. The researchers explain in
the Conclusion and Discussions part, that the ML methods are performing better than the linear
and nonlinear regression models in terms of forecasting accuracy. This is also a reason to analyze
the performance of ML methods in our paper, as ML methods look promising in the field of spare
parts demand forecasting. Nonetheless, they do not provide inventory performance measures,
which would allow to observe if the findings stay consistent. This is why, in our paper, next to
the forecast accuracy measures, inventory control measures are used to test for a difference in

the outcome.

Most recently, Theodorou et al. ( ) conducted a study on the connection between fore-
casting accuracy methods and inventory performance methods applied to the M5 competition
data set from Makridakis et al. ( ). The inventory performance measures used are trade-off
curves and monetary cost estimates (lost sales and holding inventory), as the cost variable is

available in the data set. 12 forecasting accuracy methods are used in this paper:

o Naive & seasonal Naive (sNaive) methods

o Moving Average (MA)

« Simple Exponential Smoothing (SES)

o Croston

o Syntetos-Boylan Approximation (SBA)

o Teunter-Syntetos-Babai (TSB)

o Automated selection of exponential smoothing models (ES)

QDRF
2IREPT
22ANN
23LR
2NLR

11



o Automated selection of ARIMA models (AutoRegressive Integrated Moving Average)
o Aggregate-Disaggregate Intermittent Demand Approach (ADIDA) & intermittent Multiple

Aggregation Prediction Algorithm (iMAPA)

e LightGBM

To measure the accuracy of the forecasts, Root Mean Squared Scaled Error (RMSSE) is
used. The performance of the models is related to the length of the review period. The ranking
of the performances of the methods is provided in Table 2. The researchers conclude, that the
optimal choice of forecasting method may vary depending on the assumed costs. Furthermore,
the choice of forecasting method should be connected to the target, as more accurate methods
do not necessarily show lower costs. Only one forecasting accuracy measure, namely RMSSE
is used in this paper, which does not allow to compare the performances of the methods based
on the choice of forecasting accuracy measure. This is why our paper uses next to RMSSE
also MSE and MASE. Regarding the inventory performance, the researchers assume a normal
distribution, which differs from our case, as we assume a gamma distribution. Nguyen ( )
compared the normal and gamma distribution for our data sets and concluded, that the gamma

distribution performs better.

The research question and the sub-questions of our paper are also of great importance in
Pinge et al. ( ). For the former, there is no simple answer to it. Pinge et al. ( ) explain
that the performances of the methods vary from one industrial data set to another. For the latter,
the inventory performance measure and accuracy measure used play a big role in the results as
they can yield different outcomes. Furthermore, the hand-in-hand use of inventory performance
measures and accuracy measures is advised as both do not necessarily show the same performance
results. Regarding the sub-question about the performance of ML methods compared to the
performance of statistical methods, Pinge et al. ( ) explain that, as mentioned in Baryannis
et al. ( ) and later by Kraus et al. ( ), ML methods are of good use in other supply chain

management contexts. This is why, they could work better in spare parts demand forecasting.

From this literature review, we conclude that, as there have not been a lot of comparative
studies in the spare parts forecasting field lately, this paper can contribute to this field. Fur-
thermore, we can conclude that ML methods have a lot of potential in the spare parts demand
forecasting field, as in two out of the four reviewed comparative papers, they perform better
than traditional methods. Nonetheless, this finding should not be trusted blindly. In fact, out of
the four comparative papers, only Haan ( ) uses multiple data sets. The other papers only
apply their methods to one single data set. Furthermore, when comparing the performances of

the methods, a lot of variability regarding the superior method is observed. In fact, the findings

12



of the papers, that use some of the same methods are not consistent with each other. Our
research question seems to be important in other papers too. The literature review provides
guidance on how other researchers approached the research questions. This can be taken into

consideration for this paper, however, also focusing on different forecasting methods.

Thus, the following methods are the most promising methods for our research: Croston,
SBA, MLP, Willemain, RF and Light GBM. Furthermore, as performance measures, we decide
on MSE, MASE, RMSSE and Trade-off curves. We also decided to use other methods and
measures that have not been used in the comparative papers from Table 2. Those methods are
DLP, Quantile regression and LSTM for forecasting and GMAE to measure the accuracy. The

reasons why we use those methods and measures are given in Section 3.1.

Table 2 and 3 on the next two pages, provide an overview of the literature review of recent

comparative studies in the spare parts demand forecasting field and their key findings.
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Table 2: This table gives an overview of the data, the methods, and the performance of the
comparative papers.

Paper Data Methods Forecasting Inventory
Accuracy Performance
Haan ( ) MAN Croston MSE Trade-off
BRAF SES MASE curves
AUTO SBA RMSSE Service lev-
OIL TSB els
SIM1 Willemain
SIM2 MLP
SIM3 Light GBM
SIM4
Efraz) et al g;;an bus MLR MAPE None
MNR
GPR
AR
RbD
SVR
Decision table
Mb5Rule
RF
M5P
Random tree
REPT
ANN
Aktepe et al. Construction None
( p) machinery LR MAPE
company in iii
Turkey SVR
Theodorou et M5. . con- Naive& sNaive RMSSE Trade-off
al. ( ) petition by
Makridakis MA curves
ot al. ( ) SES (].VorTnCLZ.
Croston distribution
SBA assumed for
TSB the  target
ES service
ARIMA level)
ADIDA Monetary
iMAPA cost
Light GBM
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Table 3: This table summarizes the key findings of the reviewed comparative studies.

Paper Key Findings

Haan ( ) According to the Percentage Better comparison, SBA
performs best overall. LightGBM performs worst.
Based on inventory control performance, Willemain’s
method performance is higher than other methods, ex-
cept for high intermittency demand data, where MLP
and Light GBM seem to perform best for the used in-
ventory control measures.

Ifraz et al. ( ) ANN outperforms every method. Decision Tree per-
forms better than M5Rule in the category of rule-
based methods. SVR is the best performing method
out of the regression-based methods. Out of the
tree-based methods category, M5P has the lowest
MAPE. Comparing all four categories, ANN performs
best, followed by rule-based methods, regression-based
methods and tree-based methods.

Aktepe et al. SVR is the best performing method. ANN outper-
( ) forms Nonlinear regression and Linear regression in
terms of MAPE and deviation (in pieces).

Theodorou et al. In terms of accuracy, the researcher differentiate based

( ) on the length of the forecast horizon (R € 1,3,7,14).
The best performing methods through forecast hori-
zons 1 to 7, are ADIDA and iMAPA. Light GBM per-
forms best for a forecast horizon of 14, followed by
ADIDA and iMAPA. Naive and sNaive are the worst
performer throughout all review periods. Croston’s
method and its variants highest performance is the
5th best performance out of the 12 methods for R =
1. Based on inventory performance, the findings are
generally in line with the forecasting accuracy findings.
However, ARIMA seems to stand out with Light GBM
for the higher review periods.
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3 Research design and methodology

This paper will be structured in two steps. The first step consists of setting up the experimental
design based on previous comparative studies like Haan ( ). The second step requires the
selection of several spare parts forecasting methods and a description of the technique of each
method. Furthermore, the measures of the results for the forecasting accuracy and the inventory
performance will be elaborated. By using different performance measures on the different applied
methods, we aim to be able to answer the research questions and analyse which methods perform

best for which performance measures.

In the experimental design, four industrial data sets and the four simulated data sets will
be explored and classified in one of the four demand classification categories. This allows us to

investigate whether certain methods perform better for certain types of demands.

The data sets have already been cleaned by de Haan ( ) and improved by Nguyen ( )
for efficiency. It is also noteworthy, that outliers have already been removed by the two mentioned
authors. Next, the data will be split into a train and test set. Then, the chosen methods will
be applied to the data sets, which will then allow us to compare the results of the forecasting
accuracy, the inventory performance and the differences in the results due to the different data
sets. Further explanations about why those data sets were picked and what their different

characteristics are, will be explained in Section 4.

Industrial Data Sets Simulated Data Sets
Data Wrangling, Data
Exploration and Exploration and

Classification Classification
Application of Application of
Forecasting Forecasting
Methods through R Methods
Evaluating all

Results based on:

VARV

Forecasting Differences Inventory Control
Accuracy between Data Sets Measures
Measures

Figure 1: The flow of the experimental design by Haan ( ).
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3.1 Methods for the comparison
The methods used can be grouped into three categories:

1. Category: Statistical methods
2. Category: ML methods
3. Category: Non-parametric methods

In the next step, we explain the reason behind using this method in this comparative study

and how the method works.

3.1.1 Statistical methods

Let’s start with presenting the methods from category 1, that will be used.

Croston

One method, that is commonly used as a benchmark method is the Croston’s method, which
is also the first method developed for spare parts demand forecasting. Croston’s method is
elaborated in detail in Croston ( ) and is built on the Simple Exponential Smoothing method
(SES). Kourentzes ( ) explains that Croston’s method focuses on two separate components.
zt, which is the non-zero demand size and x;, which stands for the inter-demand interval. SES
uses a smoothing parameter which puts more weight on the recent data (demand). However, for
intermittent demand where zero demand periods can happen, SES would take into account the
zero demand periods, which are extreme values that have an impact on the prediction. This is
why in Croston’s method, z; has to be non-zero as the estimates are only updated when demand
occurs. The prediction of Croston’s method is given by: Y, = x—i Croston’s method is included
in this paper, as it allows us to compare the newer methods to Croston’s method, a method

which is used as a benchmark in most spare parts demand forecasting papers.

Syntetos-Boylan approximation

Another statistical method, serving as a benchmark, is Syntetos and Boylan ( )’s method also
abbreviated as SBA. The decision to include SBA is due to the fact that SBA was developed to
prove that Croston’s method is biased. SBA corrects the bias. SBA proposes following estimator:
Y, =(01- %);—é, where (1 — §) is the bias correction coeflicient. « represents the smoothing
constant value, which is utilized to update the inter-demand intervals. Both Croston’s methods

and SBA can be applied through the use of the “tsintermittent” R-package by Kourentzes ( ).

17



DLP

The last statistical method is presented by Pennings et al. ( ). The DLP method is an
intermittent demand forecasting method and assumes a dependence between interarrival time
(elapsed time) and demand size to anticipate the incoming demand, which is not the case in

methods like Croston’s (Pinge et al., ).

The simplified formula of the DLP method is:
l—p
Dpy = plL+ (10— T)(l —(1=p)")]

The left part of the equation represents the expected total demand Dy ; at time period t for
an SKU for a lead time of L. The expected total demand is calculated proportionally to the
inter-arrival time (7p) with respect to the probability of non-zero demand (p). In other words,

the DLP method exploits the elapsed time (7p) to anticipate incoming demand. This part of the

1-p

o) (1= (11— p)¥) takes into account this elapsed time and adjusts the expected

equation: (19—
demand by the probability of non-zero demand (p). 1 — (1 — p)” represents the probability of

at least one demand occurring over the lead time period.

The reason for including this method is because Pennings et al. ( ) obtain encouraging
results. In fact, the researchers state that they are able to reduce unnecessary inventory invest-
ment by 14% for SKUs that exhibit cross-correlation, compared to Croston’s method. As no
package exists for the DLP method, some code has been provided by Dr Jan Van Dalen (one
of the three researchers, that introduced the method). The code is run on RStudio and will be

provided on a GitHub page, linked in subsection 6.6, dedicated to the master thesis.

3.1.2 Machine Learning methods

The methods in category 2 are the following ones.

Light GBM

The first method is Light GBM. As described in Haan ( ), Light GBM was the base of many of
the top methods in the M5 competition analyzed by Makridakis et al. ( ). Gradient Boosting
methods are also generally used for many Kaggle competitions, as they perform quite well and
are easy to use. This is also the reason, why it will be used in this paper. For this method, the
code from de Haan ( ) will be used. However, we will tune the hyper parameters differently,
to see if the findings improve. We set the learning rate to 0.01 (previously 0.075), increased

the number of rounds to 15000 (previously 12000) and got rid of the sub_feature and sub_row
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arguments. De Haan adapted the code for the same data sets that are used in this paper from
Kailex ( ) and did not try other values for the best hyper parameters. The functioning of
Light GBM can be found in the open source documentation Microsoft ( ) and the R package
used in this paper in Shi et al. ( ). Furthermore, the hyper parameters and their respective
roles can be found in Table 4. The description of the roles of the hyper parameters have been

obtained on the Microsoft ( ) page.

Long short-term memory

The next method is Long short-term memory (LSTM), which is a type of Recurrent Neural
Networks (RNN). LSTM has been proposed by Chandriah and Naraganahalli ( ) to forecast
automobile spare parts demand. As explained in Chandriah and Naraganahalli ( ), the dif-
ference between an RNN and a feed-forward Neural Network is that the RNN uses a feedback
connection to remember the prior time steps. This whole process is quite complicated in the
long term, which is why the function of LSTM comes in handy. The latter is able to resolve
the problem of vanishing gradient in RNN. The vanishing gradient problem means that with
every parameter update, the gradient becomes smaller. However, the gradient is carrying the
information. This means that a smaller gradient provides also less information. For long data
sequences, this becomes a problem as the updates of the parameter are not significant anymore.
In other words, there is no learning happening anymore. In this paper, LSTM will be used in
combination with Adam optimizer (Adaptive moment estimation) as in (Chandriah & Nara-
ganahalli, ). RNN functions by remembering the output of the previous data point and
re-using it for the next one (memory). The Adam algorithm allows to optimize the weights at

each level.

The technicalities of RNN and LSTM are explained in depth in Sherstinsky ( ). Or in the
seminal paper of Hochreiter and Schmidhuber ( ). I decided to include this method for the
comparison, as in the paper of Chandriah and Naraganahalli ( ), the researchers state, that,
the modified Adam optimizer performs well for their data set. Furthermore, one of the data sets
used in our study is also an automotive data set. However, Chandriah and Naraganahalli ( )’s
paper states that, "The Croston method forecasts the demand by separating the time intervals
and demand size. This method is better compared to conventional Simple Exponential Smooth-
ing (SES), Syntetos-Boylan-Approzimation (SBA), Croston, Teunter-Syntetos-Babai (TSB) and
Modified SBA. However, the performance of these methods is poor for intermittent demand.”.
This is not in accordance with findings from other papers such as Pinge et al. ( ), Teunter

et al. ( ) and other renowned papers. In fact, the TSB method was introduced to adjust for
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the lagging update of the variation of the new demand levels. Thus, TSB should perform bet-
ter than the previous methods (Croston and Croston’s modifications) for intermittent demand
spare parts forecasting in most cases (Pinge et al., ). Furthermore, although Chandriah and
Naraganahalli ( ) categorize this paper in the spare parts demand forecasting field, the data
consists of new cars and not spare parts. This is different from spare parts demand forecasting
and is not helpful for our paper. However, the paper guides us on how to apply the LSTM
method.

To run the model, the "keras” and "tensorflow” packages in R are used and the optimizer is
set to "optimizer_adam”. Furthermore, the learning_rate, beta_1 and beta_2 can be tuned. keras-
team ( ) provides insights into the implementation of the Adam optimizer. Tunable hyper
parameters, specifically to the Adam optimizer are the learning_rate,$1, B2 and epsilon. The
learning_rate controls the step size of the weight updates. 81 and B2, represent the exponential
decay rate for the 1st moment estimates and 2nd moment estimates, respectively. Simply put,
these hyper parameters control how much the optimizer "remembers” its previous moments.
epsilon, a small constant for numerical stability. In addition to these hyper parameters, there
are also hyper parameters to the LSTM model itself, such as the number of layers, the number
of units in each layer, the batch size and the number of epochs. Table 4 shows the parameters
that can be tuned in LSTM and what their role is. The description of the roles of the hyper
parameters have been obtained on the dedicated GitHub page of SciKit-Learn ( ). Further
details of the Adam optimizer can be found in the seminal paper of Kingma and Ba ( ).
Furthermore, the LSTM method needs some data pre-processing, i.e. setting: "lag”, "delay”
and "n” (next steps) to obtain the input sequences (X) and output sequences (Y). The "lag”
allows to set the number of previous time steps to use as input variables per sequence to predict
the next time period. "delay’ allows to set the step how far the model will predict into the
future. And ”n” allows us to set how many time steps ahead the model will predict. The
downside of the LSTM method is that due to the need to create sequences, the data becomes
scarcer, as the time series data is combined into smaller chunks. This causes an issue in our case,
as when the data is split into a training and test set, the test set has fewer time steps, which
are used to create the sequences. Hence, there are even fewer predictions generated out of those
test data sequences. This is why, when computing the accuracy measures, the test data input
is shortened, such that its length matches the length of the predictions. Regarding the hyper
parameter tuning, we decided to keep the model simple, i.e. two layers with 50 units each, a
dropout layer and 10 epochs to prevent overfitting, as training a model on not much data risks

overfitting.

20



Multi-layer perceptron

Another ML method is the Feed-forward neural network, which is based on the methodology
of Spiliotis et al. ( ) and can also be referred to as a Multi-Layer Perceptron (MLP). This
neural network consists of a single hidden layer. As Haan ( ) mentions from Smyl ( ),
all the ML methods are trained the same way, which is using constant size, rolling input and
output windows. Haan ( ) and Spiliotis et al. ( ) cite Zhang et al. ( ), which states
that because of the use of nonlinear activation functions by ML algorithms, the data should be
scaled in the range of 0 and 1 pre-training. By scaling the data, not only does the learning speed

improve, but also computational problems are avoided. The data should be linearly transformed

Yt —Ymin

Ymaz —Ymin

between 0 and 1 following 3/ = . The transformation is reversed after obtaining the
forecasts, to find out the final prediction and the forecasting accuracy. This method is included
in this comparative study, as it is easy to run, yet performs well in other papers. Furthermore,
it allows us to observe the performance of simple ML methods compared to statistical spare
parts forecasting methods. To run this method, the RSNNS package in R will be used and the
hyper parameters will be tuned until the optimal parameters are found for the training of the
model. Table 4 shows the parameters that can be tuned in MLP and what their role is. The
description of the roles of the hyper parameters have been obtained on the dedicated GitHub

page of SciKit-Learn ( ).

Random forest

The last ML method is based on the Random forest algorithm proposed by Breiman ( ).
Random Forest combines the predictions of multiple decision trees and averages their predic-
tions (Biau & Scornet, ). Spiliotis et al. ( ) used RF in their comparative study and
implemented it by using the R package randomForest by Liaw, Wiener, et al. ( ). We de-
cided to include this method, as Random Forest is easy to apply. Furthermore, Choi and Suh
( ) compare Random forest in their paper to Support Vector Regression, Linear Regression
and Neural Network. Random Forest yields the best results in their paper. The Random Forest
algorithm allows to tune several hyper parameters, which can be seen in Table 4. The descrip-
tion of the roles of the hyper parameters have been obtained on the dedicated GitHub page of
SciKit-Learn ( ) and in the paper of Probst et al. ( ). Throughout the implementation
of RF, several problems came to our attention. One problem is, that it is highly computational
intensive. This is why the method is run on Google Colab in an R script. The model itself is
built on the scorecardModelUtils and randomForest packages by Arya Poddar ( ) and Liaw,
Wiener, et al. ( ). We decided to use the scorecardModelUtils and randomForest packages
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for Random Forest, as the former package allows hyper parameter tuning and the latter package

is used to train the final model and the prediction.

It is important to know, that many hyper parameters can be tuned for ML methods. Not
every single tuneable hyper parameter is shown in Table 4, as this is beyond the scope of
this thesis. Furthermore, the used package also plays an important role for the used hyper

parameters, as some hyper parameters cannot be tuned in some packages.

The ML methods are expected to perform well. However, the hyper parameter tuning
of those methods will be an important part and the most difficult part of implementing ML
methods. By correctly tuning the model, the methods can be reproduced by others, which
allows standardization of the procedure. Another important point regarding ML methods is,
as already mentioned in Section 2.1.3, the lack of interpretability. The so-called Black box
problem can occur for some ML methods, that use complex mathematical operations and data
transformations. In our case, the Black box problem is mainly an issue for the MLP and LSTM
methods as these are Deep learning methods. Deep learning is a subset of ML, which requires
more amount of data and a longer training time. Although it requires less human intervention,
as Deep learning methods learn on their own, they make non-linear, complex correlations, which
are difficult to understand. LightGBM and RF, on the other hand, are easier to interpret, as

they are tree-based methods, that can be visualized.
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Table 4: This table summarizes the important hyper parameters of the used ML methods and their

minal node.

roles.
Parameter Light | MLP | LSTM RF Role
GBM

Nr. of leaves ‘ X ‘ ‘ Controls the complexity of the tree model.

Min. data in X Prevents over-fitting.

leaf

Max depth X X Limits the tree depth explicitly. (Not for RF
in R (only Python).

Objective ‘ X ‘ ‘ Specifies the application.

Boosting X Specifies the type of boosting algorithm to
use.

Learning rate X X X Controls the step size in updating the
weights.

Feature frac- X Controls the percentage of features used at

tion the beginning of each tree.

Bagging frac- X Specifies the fraction of the randomly se-

tion lected data for use in each training iteration.

Bagging freq. ‘ X ‘ ‘ Specifies the frequency for bagging.

AL1 ‘ X ‘ ‘ Adds a penalty term to the loss function.

Nr. of hidden X X Controls the complexity of the model.

layers

Nr. of neurons X X Controls the capacity of the model.

per layer

Activation X X Specifies the activation function.

func.

Optimizer ‘ X X ‘ ‘ Controls the solver for weight optimization.

Alpha X Controls the strength of the L2 regulariza-
tion term.

Batch size X X Controls the size of the minibatches for
stochastic optimizers.

Nr. of LSTM X Controls the nr. of LSTM units in each hid-

units per layer den layer.

Dropout rate X Controls the amount of regularization ap-
plied.

Nr. of trees ‘ ‘ ‘ ‘ X ‘ Nr. of trees in the forest.

Splitting rule ‘ ‘ ‘ ‘ X ‘ Splitting criteria in the nodes.

mtry X Number of drawn candidate variables in each
split.

node size X Minimum number of observations in a ter-
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3.1.3 Non-parametric methods
Willemain

Willemain et al. ( ) method is different from the statistical and ML forecasting methods
because they forecast a whole distribution of demand over a fixed lead time. It does this, by
using a bootstrap method in 7 steps, they are able to forecast the cumulative distribution of

demand over a fixed lead time. Willemain’s method can be summarised in 7 steps:

1. Step: Estimate transition probabilities for two-state Markov model for historical demand

2. Step: Utilize the Markov model to generate zero and nonzero sequences over the forecast

horizon conditional on the last observed demand.
3. Step: Replace nonzero demand with a random numerical value with replacement, from

the set of observed nonzero demands.
4. Step: Jitter the nonzero demand values. Jittering means to pick a different value, which is

located close to the selected value. This allows more variation and a more natural variation
of the demand size. (Example: Instead of using the randomly chosen non-zero demand of
7, a close-by value such as 6, 8, 9 or 10 is used.) The maximum value is the previous value

plus the jittering value.
5. Step: Summation of the predicted values over the forecast horizon, to get one single

predicted value of lead-time demand (LTD).
6. Step: Repeat steps 2-5 many times to obtain many LTD values.
7. Step: The obtained LTD values in step 6 are sorted, such that a distribution of LTD is

obtained.

The lead time for Willemain is set to 1 instead of 0 because a lead time of zero would mean
that only the current period is being forecasted. This is because Willemain’s bootstrapping
method forecasts a cumulative distribution of the demand over a certain lead time. If the lead
time is 0, there is no delay between the decision to replenish and when the stock is available.
This means that as there is no delay to account for, the method is forecasting the demand for
the current period. As Haan ( ) mentions that Willemain et al. ( ) successfully proves
that his method outperforms SES and the methods based on SES, such as Croston’s method,
Willemain’s bootstrapping method is also included. However, Willemain’s method has a critique
point. In fact, when sampling for one single period ahead, the Markov chain is reduced as it
can only have one of the two states, zero demand or non-zero demand. To run the method, the

code from Nguyen ( ) is used.
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Quantile regression

The last method, quantile regression, is also categorised as a distribution-focused method as the
quantile function is the inverse of the distribution function (Taylor, ). Furthermore, quantile
regression estimates the conditional quantile function as a linear combination of the predictors
and does not make assumptions about the distribution of the target variable. Koenker and
Hallock ( ) explain that quantile regression is suited for cases when the conditions of linear
regression are not met (i.e. linearity, homoscedasticity, independence and normality). In the
spare parts forecasting domain, quantile regression would allow to find a specific quantile that
suggests, for example, taking the 25th quantile, there is a 25% chance that the actual demand
for a spare part is below the forecast and there is a 75% chance that the demand is above. The
quantile regression model is given by: Q- (yi) = Bo(7) + f1(T)xin + ... + Bp(T)zip i = 1,...,n
and 7 € (0,1). Q-(y;) represents the 7-th quantile of the dependent variable 'y’ for the i-th
observation. fBy(7), Bi(7), B2(T), ..., Bp(T) are the quantile-specific coefficients of the intercept
and independent variables at the 7-th quantile. z;, are the independent variables for item i and
period p. 7 represents the quantile level of interest. For every wanted quantile, in our case from
50% to 99%, we fit a quantile regression for every period to predict the next demand "y’ based

on the previous predictions.

As we are focusing more on the upper quantiles (i.e. from 50% to 99%), the values need to
be converted into percentages. For this, no extra package is needed. In fact, after establishing
the quantile regression model with the existing rq function in R, predictions for the desired
quantiles can be made through the predict function, by setting the ’level” argument to a vector
of desired values. The rq function takes as input the formula, the data and the 7 (quantiles)
levels of interest. In our case, general insights into the overall performance of the model across
the pre-determined range of quantiles can be made through this. Quantile regression is included
in this comparative study, as there are not many papers that use this method for spare parts

forecasting (Syntetos et al., )

3.2 Selected forecasting accuracy measures

After training the model, the model needs to be tested. Therefore, accuracy measures are
required, that allow us to compare the predictions with the actual values. For this, the most,
widely used accuracy measures are used (Pinge et al., ). As Haan ( ) describes from
Pinge et al. ( ), the most commonly used accuracy measures are absolute accuracy measures.
In this comparative study, Mean Absolute Scaled Error (MASE) is one of the absolute accuracy

measures. MASE is quite important as it allows a scale-free measurement across all time series of
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different items (Pinge et al., ). The other absolute accuracy measure is Mean Squared Error
(MSE), which has been proposed by Hyndman and Koehler ( ). These accuracy measures

are defined respectively as follows:

IR Ly IV Y,
MSE:—Z(Y;’_Y%)?,MASE: n Zt—T}l‘ t f
nt:l (m,l)zi:g\Yi—Yi_ﬂ

The third accuracy measure is the Root Mean Squared Scaled Error (RMSSE), which has
been elaborated by Hyndman and Koehler ( ) and used in many papers, such as Haan ( ),
Spiliotis et al. ( ), and Theodorou et al. ( ). Again, as the MASE measure, the RMSSE

also allows a scale-free measurement across all time series of different items. It is defined as

follows:
1 xn+h Y
RMSSE — ?Zt?nﬂ(yt ) :
o1 ot (Y — Y1)
Theodorou et al. ( ) describe from Kolassa ( ), that Squared errors measures, such as

RMSSE, are suitable when it comes to estimating the average demand for intermittent data.

Last but not least, the less used Geometric Mean Absolute Error (GMAE) is the fourth
applied absolute accuracy measure in this thesis. GMAE is used in the paper of Pennings et al.
( ) next to MASE. Pennings et al. ( ) claim that GMAE and MASE are two recently
proposed and widely used metrics. The former does not scale the errors, whereas the latter does.
As we are also using the DLP method, we want to be able to compare the performance of the

method with Pennings et al. ( )’s results. GMAE is defined as follows:

GMAE = ([] les])

s=1

1
t

es is the prediction error, between the actual value (demand in our case) and the predicted value.
To obtain the GMAE, the absolute errors of each observation are multiplied by each other.
After that, the t-th root of this product is taken. t being the total number of observations.
However, the GMAE is not well-suited for data containing a lot of zeros. This goes for the
data set containing the predictions and the test data set. In fact, in the context of GMAE, if
the predicted value is zero and the actual value is also zero, then the absolute error for that
prediction is zero. Since GMAE is the geometric mean of these absolute errors, if any of the
absolute errors are zero, then the GMAE will be zero. The Table 5 below provides a small

example of the sensitivity of GMAE for 0 values.
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Predicted Actual Absolute error

4 3 3—4|=1

0 1 [1-0]=1

0 0 [0—-0]=0
Geometric mean (Ix1 *0)% =0

t = the total number of observations

Table 5: Example of GMAE with a 0 value as absolute error.

Now, to be able to compare the performance of the accuracy measure of the different methods
on different data sets, a new measure is needed. Pinge et al. ( ) use the Percentage Better
(PB) and Percentage Best (PBt) and explain that both "rank the performance of different
methods based on the percentage of time they perform better or best according to an underlying
measure.”. PB and PBt are relative accuracy measures. Given that Haan ( ) uses PB, we
are also going to use PB as this allows us to compare our findings to their findings on the same

data sets.

3.3 Selected inventory control measures

As already mentioned in Section 2.3 Comparative studies, two types of performance measures
are used. Next to the forecasting accuracy measures, inventory performance measures are also
important, as the former does not necessarily mean that the inventory performance for spare
parts is high. While most forecasting methods estimate the mean, inventory control measures
need an assumption of the demand distribution. In our case, we rely on Nguyen ( )’s findings,
which show that a gamma distribution performs better than a normal distribution. However,
this is only the case for when the mean is not too small compared to the variance. In fact, a
company prefers to have too much stock rather than too little, as it can then at least minimize
downtime. This means, that the loss function is considered to be asymmetrical. Pince et al.
( ) present a distribution plot (Figure 5 on page 13) that shows the two most commonly used
inventory performance measures are the Service level and the Trade-off curve. In our paper, as
in Haan ( )’s paper, the trade-off curves show the trade-off between the achieved fill rate

(AFR) and the holding costs.

Before determining the AFR, an inventory policy needs to be set (Haan, ). In this
paper, the approach by Van Wingerden et al. ( ), which is also used by Haan ( ) is used.
Herefore, a base stock level R is determined by evaluating previous demand. Each period, the

Inventory Position (IP) is updated. Back ordering is allowed. IP is defined as:

1P = stock on hand + outstanding orders — back orders
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Van Wingerden et al. ( ) state, that if IP drops to the stock level (R) or below, new stock
is ordered. Although a minimum order quantity can be specified, we rely on Haan ( )’s
paper and decide to also not include it, for simplicity reasons. Furthermore, a zero lead time
is assumed. Zero lead time indicates that the replenishment order arrives immediately after an

order is placed.

By picking the same Inventory control measures as Haan ( ), the comparison of the inven-
tory performance of the same data sets used with different methods across different comparative
studies is possible. As in this paper, the trade-off curves visualize the trade-off between the
AFR and the holding cost, a target fill rate (TFR) needs to be set. The fill rate targets used
for this paper are 75%, 80%, 85%, 90%, 95%, 99% and 99,9999%, which are the same as Haan
( ) used.

3.4 Demand classification and data training

Before training a model, the data is split into a training set and a test set. For this, we will
apply the same training procedure as Haan ( ), which is shown in Nguyen ( ). The data
is split into a 70% and 30% split. This means, that 70% of the data are used for training the
model and the other 30% for testing the model, to see how accurate the model is. The training

is done on a single SKU ?° basis.

The industrial data sets need to be classified first into one of the four categories: Erratic,
Lumpy, Smooth and Intermittent. The classification is done by respecting the classification
scheme of Boylan et al. ( ), which is based on Syntetos and Boylan ( ). Boylan et al.
( ) suggest that the classification is done based on two criteria, the mean inter-demand

interval p and C'V?2, the squared coefficient of variation of the demand sizes.

Total number of time periods

Count of the non zero demands and

The mean inter-demand interval ”p” for every item =

Standard deviation of the non zero demands

oV = ( ?

Mean of the non zero demands

%5Stock Keeping Unit
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Figure 2: Demand-based categorization for forecasting by Boylan et al. ( ).

4 Data

The data sets for this paper are divided into four industrial data sets and four simulated data
sets. The reason behind using industrial data sets and simulated data sets is, that the latter
allow to control the environment. This means that by having a complete intermittent demand
data set, this allows to see the impact of the demand class on the method, which allows us to
answer the main research question of this study. Including industrial data, allows to observe
the reality, how the methods perform in practice when used in an industry. All data sets can be
found on the GitHub page of Nguyen ( ). The data sets have been cleaned and the outliers
have been removed by Nguyen ( ). An important aspect of the data sets is whether they
include lead time or not (Haneveld & Teunter, ). In case, lead time is not included in the
data set, a lead time of 0 is assumed. This means that the spare parts are immediately ready and
no waiting time is required until the spare part is delivered. The data sets are not continuous

in time. They have discrete timestamps.

4.1 Industrial data sets
A table summarizing the description of the data sets can be found below.

The first data set includes sales of 1392 (3451 before cleaning) % items of a dutch manufac-
turing company and will be named "MAN”. The collection of the data started in the first week
of 2012 until the 16th November of 2014 (150 weeks). It includes variables like prices, inventory

26 Cleaning consists of dropping items which do not have > 1 demand occurrence in the train and test set, which
are required for a forecast.
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costs, the lead time , demand frequency and demand size, the minimum order quantity, the fixed

order costs and the demand dates (per week).

The second industrial data set is gathered over seven years (1996-2002) and contains in-
formation about the demand of 5000 aircraft spare parts of the British Royal Air Force. The
variables of this data set are nearly identical to the ones for the first data set, except for the

inventory costs, which are not included in the "BRAF” data.

The third data set contains data from the "OIL” industry. It contains data about 7644
(14523 before cleaning) spare parts of an oil refinery for a period of 56 months (January 1997

to August 2001). This data set includes the prices and lead times.

Last but not least, a data set from the automotive industry. It contains, for instance, sales of
3000 items during 2 years. Again, the included variables are identical to the previous data sets,
except that it does not contain price or lead time information. This is why the provided prices
for 7JAUTO” in Table 6, have been calculated, by examining the relationship between pricing
and monthly order frequency in the other data sets. Haan ( ) provides the formula for the
ratio RPS (Ratio Price Sales), which allows to examine the relationship, but also the way to

calculate the other price statistics of the Auto data set.

Average item price

RPS =
Average monthly item sales

The RPS of the AUTO data set is set as the average of the RPS of the other data sets, which
can be found in Table 7. The average product price is obtained by multiplying the RPS by the
monthly sales. Haan ( ) and Nguyen ( ) also calculate the RMS (Ratio Monthly Sales),

which is used to obtain the individual item price. The RMS is calculated as follows:

RMS — Average monthly individual item sales

Average monthly item sales
The Individual item price is calculated as follows:

Average item price
RMS

Individual item price =

As Haan ( ) correctly points out, the mean product price for the AUTO data set is very
high compared to the other data sets. This is due to the fact that the average product price is
affected by the higher frequency portions, that can be found in the data set next to the relatively
low average monthly item sales. A small, negative correlation is observed between the monthly

average demand (item sales) and the average product price for the MAN, BRAF and OIL data
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sets. The AUTO data set shows a higher negative correlation. This is due to the fact that the
prices of the AUTO data set have been calculated by respecting the ratios (RPS & RMS) of the

other data sets. All the correlations are of a significance level of at least 5%.

Data set Nr. Sales Duration Prices g;;?;l tory Lead time E:g:;r:(l:y & size g/lllglﬁt;;der f(l))s(tesd order
MAN 1392 items 150 weeks Yes Yes Yes Yes Yes Yes
BRAF 5000 items 7 years Yes No Yes Yes Yes Yes
Automotive industry 3000 items 2 years No Yes No Yes Yes Yes
OIL 7644 items 56 months Yes No Yes No No Yes

Table 6: This table summarizes the description of the industrial data sets.

Data . Monthly item sales . Product price RPS Corr. coeff.
min mean max SD min mean max SD

MAN 0 24.22  4599.65 139.29 | € 0.09 € 19.96 € 297.54 € 31.36 0.824 -0.0839%**

BRAF | 0.04 1.44 65.08 3.62 £ 0.001 £ 102.32 £ 9131.99 £ 373.33 | 70.943 -0.0885**

AUTO | 0.54 4.45  129.17 7.57 | €32.60% € 946.18% € 7772.86% € 1369.32* | 212.633* | -0.4777**

OIL 0.04 0.63 232.73 4.02 € 0.01 € 355.85 € 20493.17 € 1076.12 | 566.132 -0.0417**

*Added by using the RPS and RMS calculations described above. (213.633 = (0.824 + 70.943 + 566.132) / 3).

**p-value < 5%

Table 7: Descriptive statistics for the MAN, BRAF, AUTO and OIL data sets

4.2 Simulated data sets

Simulated data sets allow to replicate a certain behaviour. In our case, every simulated data set
replicates one of the four data categories (Erratic, Lumpy, Smooth, Intermittent). By having a
clear dominating class of items, it is easier to conclude which method performs best for which
data set. This facilitates the control of the environment and whether they have an impact on
the performance. The four simulated data sets are generated in R, through the R package
‘tsintermittent’ by Kourentzes ( ). Furthermore, we rely on Haan ( )’s procedure. The
package requires three input arguments. The three input arguments are:

1. Number of time series (1 per item)

2. Number of observations per time series

3. CV? and the average interval of the non-zero demand p
To resemble the industrial data sets, Haan ( ) sets the number of time series to 60 months,
and the number of observations per time series to 6500 items. To be able to replicate every
data category, the squared coeflicient of variation, CV?, and the mean inter-demand interval
of non-zero demand, p, need to be chosen for every data set. This is done according to the
cut-off values set by Boylan et al. ( ) in Section 3.4. Table 8 shows the settings for the four
simulated data sets. Same as Haan ( ), we observe that average monthly demand decreases
when p increases. The average product price is determined by using the average RPS of 212.633

by following the process in Section 4.1. A negative, significant correlation between monthly
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average demand and average product price is observed in all simulated data sets. This means,

that the items of high demand are also cheaper items.

Furthermore, it is noticeable, that the negative correlation coefficient is much stronger for the
simulated data sets (See Table 8) than for the industrial data sets (See Table 7. The industrial
data sets include more non-zero demand occurrences than the simulated data sets. This can
also be seen, when comparing the mean inter-demand interval, p in Table 9. In other words,
the intermittency effect is much stronger in the industrial data sets, as there are nearly no zero
demand occurrences in the simulated data sets. This raises the question if the simulated data
sets are really replicating the behaviour of the industrial data sets, as the simulated data sets

do not take into account the price as an input during the simulation process.

Data Intended demand pattern CV? Monthly demand Product price” Corr. coeff.
mean SD mean SD

SIM1 Erratic 0.75 1.00 10.01 1.12 € 2129.30 € 246.06 -0.9872%**

SIM2  Lumpy 0.80 1.50 6.66 1.12 € 1416.52 € 254.80 -0.9706***

SIM3  Smooth 0.30 1.05 9.50 0.74 € 2019.21 € 159.06 -0.9938***

SIM4 Intermittent 0.25 145 6.90 0.81 € 1466.48 € 180.19 -0.9848%***

*Added by using the RPS and RMS calculations described above. ***p-value = 2.2e-16

Table 8: Settings for the simulated data sets

4.3 Classification of the data sets

As previously mentioned, the industrial and simulated data sets need to be classified. For this,
the classification scheme of Boylan et al. ( ) is used. The scheme provides the important
cut-off values of p = 1.32 and CV? = 0.49. The formulas that are used to calculate CV? and p

for every individual item can be found in Section 3.4.

The results from the classification of Nguyen ( ) can be seen in Table 9. We observe that
the inter-demand interval p of the industrial data sets is much higher than for the simulated
data sets, except for the AUTO data set. The AUTO data set is the only data set, that cannot
be classified as a single category, as it seems to have items for every demand type. However,
the majority are classified as smooth and intermittent. The low inter-demand interval can be
explained due to the high number of smooth items. Smooth items have frequent demand with
low demand size variability (Boylan et al., ). The same is observed for SIM3, where nearly
all the items are classified as being smooth items. SIM3 also shows the lowest inter-demand
interval. Regarding the simulated data sets, we observe that they have been correctly classified.
Nonetheless, we also observe that the simulated data sets do not only consist of purely one
type of demand. SIM1 has mostly erratic items, SIM2 mostly lumpy items and SIM4 mostly

intermittent items. With this classification, we will be able to answer which methods perform
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best on what kind of demand respectively for which data set.

Data CV? P Erratic items Lumpy items Smooth items Intermittent items Total items
MAN 0.92 16.41 23 806 1 562 1392
BRAF 0.63 11.14 0 2095 0 2905 5000
AUTO 041 1.32 378 307 1241 1074 3000
OIL 0.18 14.52 0 814 0 6830 7644
SIM1 0.75  1.00 6198 0 302 0 6500
SIM2 0.80 1.50 410 5614 25 451 6500
SIM3 0.30 1.05 36 0 6464 0 6500
SIM4 0.25 145 1 7 786 5706 6500

Table 9: Classification of the data sets by Nguyen ( )

5 Results and analysis

In this section, we first compare the performance of each method for the different data sets and
forecasting accuracy measures. Then, in a second stage, the inventory performance is analysed

and compared to the forecasting accuracy results.
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Data set

Method Measure —erm——cm o SIM3  SIM4 MAN BRAF AUTO  OIL 7 bost
Croston MSE 79002 70138 34730 40510 12040104 199.690 86.344 138605 1
MASE 0673  1.027 0487  0.780 2.499 2080 0788 1998 0
RMSSE 2722 3.346  1.878 2412 5.329 3300 1721 1.666 0
GMAE 4605 4725 3138  3.793 6.481 1669 2422 0852 0
SBA MSE 78.623 78831 34.620 40435 12921.667 190807 83.080 132.321 3
MASE 0664  1.012 0484  0.778 2.439 2001 0777 1849 0
RMSSE 2712 3.337  1.874 2409  5.304* 3289  1.710  1.635  2.5*
GMAE 4503 4.592 3.102  3.792 6.236 1534 2.362 0781 3
DLP MSE 80679 S5.074  44.220 15.850  13002.323  203.685 112.859 148310 0
MASE 0748 1104 0559  0.824 2.589 9218 0938 2212 0
RMSSE 2918 3488 2126 2.562 5.372 3362 2.031 1740 0
GMAE 5305 5227 3671  3.970 6.903 1872 303 0987 0
MLP MSE 78.087  77.406 34812 39.718 13227733 201303 82.672 153535 3
MASE 0679  1.027 0493 0.776  3.121 2301  0.822 2066 1
RMSSE  2.708 3.316 1881  2.388  5.494 3355 1736 1.674 3
GMAE 4729 4763 3200 3.783  6.214 2087 2686 0988 1
LSTM MSE §7170  86.052 70132 53216 865142.462 020221 108.998 137.520 0
MASE 0661 1121 0698 0856  19.087 5816 0866 1730 0
RMSSE 2791  3.436 2651 2720 30689 6.064 1820  1.465 1
GMAE 4.174 5.459 4.591 4.330 112.417 9.369 2.648 1.067 1
TightGBM  MSE S1014 81705 35957 41700 13584090 202.644 95428 156.013 0
MASE  0.692  1.053 0498  0.790 2.974 9336 0857 2077 0
RMSSE 2772 3410  1.909  2.454 5.602 3375 1.866  1.68 0
GMAE 4727 4756 3200  3.841 5.958 1807 2612 0926 0
RF MSE S1.012 82816 35060 42761  133%5.095 201.351 88.078 154925 0
MASE 0699  1.073 0501  0.800 9.042 2332 0838 2072 0
RMSSE 2761  3.436 1011 2476 5.544 3372 1790 1683 0
GMAE 4893 4922 3247  3.808 6.064 1950 2578 0.940 0
Willemain  MSE  77.928 78.606 34880 40755 13111750 199775 84182 132039 1
MASE 0600  1.045 0497  0.783 9,594 9344 0899 2319 0
RMSSE 2714 3.348  1.886 2420  5.304 3365  1.863 1726 0.5*
GMAE 4909 4904 3273 3786  4.392 1.082 2648  0.613 3
Quantile reg, MSE §3241 87017 34757 40800 14104492  202.800 88.210 139344 0
MASE  0.638 0.956 0.477 0779  1.586 1.167  0.746  0.956 7
RMSSE 2779 3512 1877 2421 5.371 3253 1724 1487 0
ok GMAE 1715  1.698  0.95/  1.689 0.479 0.000  1.366  0.000  *8

Results rounded to three decimals. The best accuracy is highlighted for each data set and measure.

*0.5, because only 50% is accounted to the method, as the place is shared with another method.

** The GMAE results of the QR need to be analyzed with caution.

Table 10: Forecasting accuracy of all the methods on each data set.

5.1 Forecasting accuracy measures

The values of the forecasting accuracy measures of all the methods applied to the data sets can
be found in Table 10 with the best accuracy score highlighted for each method. The column #
Best shows how many times the method is the best performer for the given accuracy measure
and across all the data sets. The row of the Quantile regression method showing the GMAE

accuracy is in italics as these results need to be analyzed with caution.

When blindly comparing all the results with each other, the quantile regression method is
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the best performer by far. It outperforms every other method in terms of GMAE and MASE,
except for the MASE metric applied to the SIM4 data set. Here, MLP is the superior method.
However, the GMAE results of the Quantile regression method show 0 values twice. This is due
to the sensitivity of GMAE towards 0 absolute errors. In fact, as described in Subsection 3.3 and
visualized in Table 5, GMAE equals zero as soon as one single observation has an absolute error
of 0. As can be seen in Table 10, Quantile regression shows zero error for the BRAF data set and
the OIL data set in terms of GMAE. For the other data sets, the GMAE is also low compared
to the GMAE computed by the other methods. The low GMAE is due to the prediction of
the Quantile regression method. The method predicts a lot of zeros when in fact there is some
demand. Due to these particular results for Quantile regression in terms of GMAE, we decided
to not include the GMAE accuracy performance of the QR method to calculate the Percentage

Better score.

The quantile regression method is the best performer for the given accuracy measures and
across all the data sets. It outperforms every other method in terms of MASE, except for the
MASE metric applied to the SIM4 data set. Here, MLP is the superior method. The worst
performing methods are DLP, Light GBM and RF as, in our experiment, they fail to outperform

all the other methods in one instance.

MLP shows the best performance for the simulated data sets, whereas SBA outperforms the
other methods in most instances of the industrial data sets. In fact, the superiority is due to the
fact that the GMAE accuracy measures are not included for the QR method in the comparison

for the previously given reasons.

The second best performing method is SBA. It performs well on both data sets types, es-
pecially in terms of MSE and GMAE. MLP ranks 3rd. It is superior in terms of MSE and
RMSSE. When focusing on the data sets, MLP outperforms all the other methods for the SIM4
data set in terms of MSE, MASE, RMSSE and GMAE. It outperforms every other method in 8

instances.

Following MLP, in fourth place, Willemain can be found. Willemain outperforms the other
methods in 4.5* instances, i.e. MSE for SIM1 and shares the place with SBA for the RMSSE for
MAN. Furthermore, in terms of GMAE; it is superior for the MAN, BRAF and OIL data sets.
In fifth place is LSTM showing superiority in two instances, followed by Croston (superiority
in one instance). It is noteworthy that LSTM has not been extensively tuned due to fear of
overfitting. In fact, as the data becomes scarce when creating the sequences, there is less data

available for tuning and testing. Hence, the model is kept simple.
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The only methods, that do not outperform the other methods in one instance, are DLP,

LightGBM and RF.

The Percentage Better score is computed by dividing the number of times a method outper-
forms every other method by the total number of times the method has been used. For example,
Croston is the best performer once. We divide 1 by 32 (as we have 32 instances) *100 and obtain
3.125%. The same calculation is done for every method. Quantile regression is superior to the
other methods in 29.167% of the comparisons (for MSE, MASE and RMSSE), followed by SBA
with 26.563% and MLP with 25%.

Another observation that is made while running the methods is, that the ML methods take
much longer time to run. Especially RF and Light GBM, nevertheless, they do not perform well
in terms of forecasting accuracy. Another computing time consuming method is Willemain’s
method, which is due to the bootstrapping. The run-times of the methods have not been

measured in RStudio, however, the duration has been observed.

Croston SBA DLP MLP LSTM LightGBM RF Willemain Quantile regression

3.125% 26.563% 0%  25%  6.25% 0% 0%  14.063% 29.167%

Table 11: Percentage Better score of the methods.

5.2 Inventory performance
5.2.1 Inventory performance of the simulated data sets

Figure 3a and Figure 3b show the trade-off curves between the achieved fill rate (AFR) and
the inventory holding costs for the SIM1 data set. Plot (a) shows the average achieved fill rate,
whereas plot (b) shows the total achieved fill rate. The SIM1 data set consists mostly of erratic
items and a small part of smooth items. When comparing both plots, the trade-off curves show
a similar pattern. In Plot (a), the quantile regression (QR) method shows higher inventory
holding costs for the same average AFR as the other methods. The other methods are bundled
together and behave similarly. When looking at the total AFR vs inventory holding costs trade-
off curves, LSTM and QR stand out from the other methods, as their inventory holding costs
are higher for the same total AFR. In fact, up to 83% total AFR, they behave similarly to the
other methods. From 83% to 97%, they decouple. In the Appendix 7.1, the table with all the

values for the average AFR, total AFR and the inventory holding costs is provided.
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Figure 3: Trade-off curves for the inventory control measures on SIM1

The inventory performance results of the SIM2 data set, which consists mostly of lumpy
items, are shown in Figure 4. Both plots, 4a and 4b show that Quantile regression has higher
costs for the same AFR compared to the other methods. This is the case for the average AFR
and total AFR. One method that stands out for the higher AFR, is LSTM. LSTM performs
slightly worse for 75% AFR (total and average) as the other methods except QR, but decouples
from the bundle (from 90% average AFR onwards and from 86% total AFR onwards), and

outperforms all the other methods in terms of costs and AFR.
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(a) Average achieved fill rate vs Inventory holding (b) Total achieved fill rate vs Inventory holding
costs costs

Figure 4: Trade-off curves for the inventory control measures on SIM2

The results of the SIM3 data set, which is dominated by smooth demand, show that all
the methods display a similar behaviour between AFR and Inventory holding costs, except for
LSTM. LSTM consistently achieves the same fill rates (total and average) for a higher cost

compared to the other methods.

The trade-off curves for the SIM4 data set can be found in the Appendix 7.1, as they do not

provide more insights. Their behaviour is similar to the curves for SIM3.
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Figure 5: Trade-off curves for the inventory control measures on SIM3

5.2.2 Inventory performance of the industrial data sets

The MAN data set is characterized by lumpy and intermittent items. Plot 6a shows that Wille-
main presents the lowest costs for the same AFR as the other methods. In general, Willemain
also achieves higher fill rates than the other methods. LSTM seems to provide the highest costs
for the range of 0.71% AFR to 0.77%. However, this is not the case for the total AFR. In plot
11b, Willemain is outperformed by all the other methods. Especially, the ML methods perform
very well. QR has been removed from this plot, as due to its low performance in terms of AFR,

it was twisting the plot. The plot including QR can be found in the Appendix 7.1 Figure 11.
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Figure 6: Trade-off curves for the inventory control measures on MAN

The BRAF data set is characterized lumpy items and intermittent items. The average AFR
plot 7a and the total AFR plot 7b differ. Plot 7a shows the highest costs for LSTM for the
range of 70% to 85% average AFR. LSTM does not achieve higher average fill rates than that.
Another method that stands out, is Willemain. Willemain provides the highest average AFR.
Willemain starts standing out from the other methods from the average AFR of 93%, where the

costs increase exponentially. The other methods do not stand out, except for MLP, which in
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the range of 83% average AFR to 87% provides the same average fill rate for lower costs. When
comparing the total AFR to the Inventory holding costs, LSTM stands out for having the lowest
costs. However, the total AFR caps at 80% for LSTM. Whereas all the other methods achieve
higher fill rates. Especially Willemain achieves the highest total fill rates (85%) but for much

higher costs.

In both plots, QR has been removed as it does not provide any insights at all. In fact, it does
not show a curve at all, average AFR, total AFR and the inventory holding costs are 0. This is
due to the predictions of the QR method for the BRAF data set and the test BRAF data set
(actual demand). The prediction data frame consists of only zeros, which then has an impact
on the fill rate and the holding costs. The fill rate is calculated as the total supply divided by
the total demand, and the holding costs are proportional to the inventory level, which would
be zero if there is no demand at all. Another argument could be that the test data contains
mostly zero demand. This means that the achieved fill rates would also be zero since there is
no demand to fulfil. The same logic for the inventory holding costs, which would also be zero

since there is no need to hold inventory.

The same is observed for the OIL data set. Both, the OIL and BRAF data sets consist of
lumpy and intermittent items only with lots of 0 demand values. In Appendix 7.1 Table 17
summarizes the behaviour of the QR method for the BRAF data set.
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Figure 7: Trade-off curves for the inventory control measures on BRAF

The AUTO data set consists of items out of the four categories, with the majority being
smooth items and intermittent items as shown in Table 9. Willemain achieves the highest fill
rates for the average AFR and total AFR. However, for those higher AFR, the costs are also
higher. The other methods fail to achieve the same fill rates. When looking at the figures 8a and

8b separately, it is visible that for the former all the methods, except LSTM are clumped together
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up to the average AFR of 96%. Above those fill rates, only Willemain succeeds. Furthermore,
LSTM has higher inventory holding costs, but also a lower average AFR (only up to 90%).
When looking at the total achieved fill rate, Willemain is outperformed by every other method
in terms of inventory holding costs. However, in terms of total AFR, Willemain achieves slightly

higher fill rates (1.7% higher) compared to the other methods.
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Figure 8: Trade-off curves for the inventory control measures on AUTO

Last, but not least, the results of the inventory performance of the OIL data set are shown.
The OIL data set is characterized by lumpy and intermittent items. Two aspects that jump out
when looking at Figure 9, are the performance of LSTM in Figure 9a. LSTM performs badly
in terms of average AFR compared to the other methods for the same inventory holding costs,
except compared to Willemain. The second aspect that jumps out is, that Willemain achieves
the highest average AFR at 60%. However, the costs are also much higher. The other methods
are bundled together and perform similarly. Figure 9b shows the same behaviour as in Figure
9a, except that this time, LSTM does not stand out on its own. This time, LSTM performs
similarly to the other methods. This difference in the behaviour of LSTM for the average AFR
and total AFR can be attributed to the nature of the OIL data set. The OIL data set contains
lots of 0 demand. Furthermore, the average interval of the non-zero demands p is high, meaning
that the intermittency effect is much stronger in the OIL data set. Hence, the different behaviour
on average for the highly intermittent data set, consisting of slow-moving items, which can be

observed in Table 6 (average monthly item sales of 0.63 items).
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Figure 9: Trade-off curves for the inventory control measures on OIL

6 Discussion and Conclusion

In this section, first, the findings of this paper are discussed. Next, the findings are compared
to other existing papers. Followed by linking the findings to the research questions. Finally, a

conclusion and further possible research are brought up.

In this paper, nine different methods from three categories were compared. Namely, Cros-
ton, Syntetos-Boylan approximation (SBA) and DLP grouped into statistical methods. Ma-
chine learning methods consisting of Multi-Layer Perceptron (MLP), Long-Short term memory
(LSTM), Light GBM and Random Forest (RF). The third category, Non-parametric methods is
formed, by Willemain’s bootstrapping method and Quantile regression. The nine methods were
applied to eight different data sets. Four industrial and four simulated data sets, simulate a
certain demand behaviour. To measure the performance of the methods, forecasting accuracy
measures (MSE, MASE, RMSSE and GMAE) and inventory control measures (Achieved fill rate

and Inventory holding costs) were used.

6.1 Findings
Finding 1
Differences in results based on the performance measure used and data set category.

Throughout this paper, we have demonstrated, that the performance of the method depends
on the performance measures used. In fact, the best performing methods in terms of forecasting
accuracy are not necessarily the best performing methods in terms of inventory performance.
The Percentage Better comparison has shown, that Quantile regression outperformed the other

methods followed by SBA. DLP, LightGBM and RF were overall the worst methods. Based
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on Inventory control measures, Willemain outperforms the other methods. However, for lumpy
demand LSTM outperforms Willemain. MLP stands out as the best performer for erratic
demand. DLP outperforms the other methods for the AUTO data set in terms of total AFR

and inventory holding costs.

Finding 2
Data cleaning plays a crucial role.

The handling of the data is very important. The results can differ because of the different
data cleaning. For example, Pennings et al. ( ) cleans the BRAF data differently compared
to us. In their paper, the BRAF data set consists of only 1131 SKUs, whereas in our paper, it
consists of 5000 SKUs. No explanation was given on how the data was cleaned by Pennings et al.
( ). This results in different accuracy measures for the same methods. For Croston and SBA,
Pennings et al. ( ) reports better results in terms of MASE compared to us. However, the
opposite is noted for GMAE. Furthermore, the DLP method performs better in both instances
(MASE and GMAE) compared to Pennings et al. ( ) for the BRAF data set.

Finding 3
The cost of hyper parameter tuning of the ML methods.

Machine learning methods are represented in the top performer rankings of both performance
measures, i.e. for forecasting accuracy and inventory performance. One major point of ML
methods is the tuning of the hyper parameters, which can improve the performance of the
model. For example, by adding a hyper parameter tuning grid and trying multiple combinations
of values for the parameters, we obtained better results for Light GBM for all data sets and all

metrics compared to Haan ( ), who does not try multiple values.

However, the problem with hyper parameters tuning is that it is time-consuming and requires
knowledge about the different parameters and how their values have an on the model, which is
an important point for the reproducibility of the methods.

Finding 4
GMAFE sensitivity for values of 0.

As observed in Table 10, in two instances the GMAE metric equals 0. This is the case for
the BRAF and OIL data set when the QR method is applied. As previously explained, the QR

method predicts many 0 demands for many periods, items and quantiles. In combination with

42



0 actual demand, this causes the absolute errors to equal 0. Due to these 0 absolute errors, the
geometric mean becomes automatically 0 even if other absolute errors are > 0. This is only
observed for the quantile regression method, as it is the only method that predicts 0 demand
when there actually is 0 demand. Therefore, the sensitivity of GMAE for 0 values is a finding

that should be always considered in combination with the used method.

6.2 Comparison of the findings with the reviewed literature

Haan ( ) review

In the paper of Haan ( ) 27., seven methods are run across eight data sets. Namely, Croston,
SES, SBA, TSB, Willemain, MLP and Light GBM. Out of those seven methods, we also run
Croston, SBA, Willemain, MLP and LightGBM. In fact, our paper is an extension of Haan
( )’s paper as it takes some of their methods plus new methods (LSTM, RF, DLP and
Quantile regression) and runs them on the same eight data sets. The performance measures are
the same. In both papers, MSE, MASE and RMSSE are used as forecasting accuracy measures
and the trade-off curves of service levels are used as inventory performance measures. Our
paper goes one step further and adds a new forecasting accuracy measure, namely GMAE. In
Haan ( )’s study, SBA is superior overall based on the Percentage Better comparison. SBA
performs second best after Quantile regression based on the Percentage Better score in our paper.
This shows that in both papers SBA proves itself as a reliable method. In terms of inventory
performance, our paper draws the same conclusion as Haan ( ). Willemain’s bootstrapping
method is overall superior. Regarding the ML methods, Light GBM is outperformed by every
method in both papers, although tuned differently, in terms of forecasting accuracy. MLP is the

second best performing method in Haan ( ) for forecasting accuracy and the third best, in

this paper. This proves that Haan ( )’s findings are reproducible.

Theodorou et al. ( ) review

In the recent, yet not published paper of Theodorou et al. ( ), they conduct a comparison
study with eleven methods. Three methods are also used in our paper, namely, Croston, SBA
and Light GBM. These methods are applied to one single data set (retail sales from Makridakis
et al. ( )). The data set consists of mostly intermittent (73%) and lumpy (17 %) items (3%
erratic and 7% smooth). In our paper, the OIL data set, BRAF data set and SIM4 show similar
demand characteristics. Light GBM stands out for both RMSSE and trade-off curves for the

2T A newer version of this paper is the working paper in progress, submitted to the International Journal of
Production Economics; October 2, 2023
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higher review periods. Croston and SBA do not show significant superiority compared to the
other methods. The performance of Light GBM in this paper complies with that in ours. In
fact, we do not analyze the behaviour for higher review periods. However, the low performance

of Light GBM in general is in accordance with our findings.

6.3 Conclusion

In this section, the findings are linked to the research questions of this paper. The first question
is as follows: ”Which methods perform best on what kind of demand respectively for which data

set?”

Throughout this paper, the performance of 9 different spare parts demand forecasting meth-
ods from 3 different categories have been studied. The methods are categorized as Statistical
methods, Machine learning methods and Non-parametric methods. 8 data sets characterized by
certain demand behaviours are used to run the methods. The demand is classified as either
lumpy, erratic, intermittent or smooth. The findings suggest that there is no consistent supe-
rior method based on the data set. SBA shows superiority in 3 out of 4 accuracy metrics for
the SIM3 data set (Smooth demand), and 2 out of 4 accuracy metrics for the AUTO data set.
However, these findings are not consistent in terms of inventory performance measures. For the
same data sets, different methods are superior. The SIM3 data set shows the best results for
Willemain’s method. Whereas the OIL data set provided the best results for the MLP method
in terms of average achieved fill rate and LSTM in terms of total achieved fill rate. SIM4 on the
other hand shows superiority in all four accuracy metrics when the MLP method is applied to
it. Again, this is not consistent with the findings based on the inventory performance measure.
Willemain is superior here. Therefore, no definitive answer can be given to this research question

as consistency is lacking.

The second question of this paper is as follows: ”Is the performance of certain methods due

to the measure used?”

This question is aimed at the use of forecasting accuracy measures and how they impact
prediction accuracy. Table 10 shows indeed that some accuracy measures perform consistently
well for a method throughout most data sets. The most eye-catching example is the performance
of the quantile regression (QR) method for the MASE accuracy measure. In fact, the MASE
accuracy measure for quantile regression provides the lowest MASE in 7 out of 8 instances.
Another noteworthy example is GMAE, which provides superior performance for Willemain on

3 out of 4 industrial data sets. Or the RMSSE performance for MLP on 3 out of 4 simulated
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data sets. The reason for this is out of this paper’s scope. However, future research can be

conducted on this.

The third and final research question of this paper is: ”Do machine learning methods perform

better in general than statistical methods?”

Machine learning methods are widely used in other domains as they seem to perform well.
In the spare parts demand forecasting field, machine learning methods are not widely used
as their performance is not yet fully studied. Furthermore, some ML methods are not easily
understandable as they include a black box problem. In this paper, a total of four ML methods
have been used. Namely, Multi-layer perceptron (MLP), Long-short term memory (LSTM),
LightGBM and Random forest (RF). Furthermore, 3 out of the 9 methods are categorized as
statistical methods in Section 3.1. When looking at Table 10, the statistical methods are superior
in 9.5 out of 96 instances, whereas the ML methods are superior in 10 out of 128 instances.
Furthermore, Light GBM and RF, both fail to show superiority in at least one instance. For the
statistical methods, DLP does not perform best for one accuracy metric. This shows that in
terms of forecasting accuracy, the statistical methods perform better on average than the ML

methods.

However, when looking at the inventory performance measure, the opposite is observed. In
fact, only DLP from the statistical methods achieves the highest fill rate for the total AFR.
ML methods on the other hand, are more often the best performing method when it comes
to inventory performance. Consequently, no general conclusion can be drawn from our paper.
Although ML methods provide promising results in terms of inventory performance, they lag

behind statistical methods in terms of forecasting accuracy.

6.4 Discussion

For future research, ML methods in spare parts demand forecasting should further be studied
as there are many aspects of the implementation that can be analysed. One is the training of
the model. Do models, that have been trained through single SKU 2® training perform better
than cross SKU trained models. Furthermore, the hyper parameter tuning of the ML methods
plays a big role. One could pay more attention to the behaviour of the hyper parameters in
the spare parts demand forecasting domain, to be able to determine which methods are easy to
implement, i.e. not complicated to build and tune, do not require much computational power

and work with little data.

28Stock keeping unit
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6.6 Data and programming code

The methods have been implemented in RStudio and on Google Colab. The code and the
data sets can be found on GitHub. The URL for the GitHub repository is https://github.com/
YllorH/SpareParts_MasterThesis.
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7.1 Appendix
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Figure 10: Trade-off curves for the inventory control measures on SIM4
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Figure 11: Trade-off curves for the inventory control measures on MAN

Table 12: IPM values for SIM1

AchievedFillRates_Avg | AchievedFillRates_Total | HoldingCosts | TargetFillRates | Method
0.75 0.7704023 0.7582062 44089758 0.75 | Croston
0.76 0.7793947 0.7673392 45274896 0.76 | Croston
0.77 0.7884249 0.7765073 46503867 0.77 | Croston
0.78 0.7973634 0.7856070 47774748 0.78 | Croston
0.79 0.8062552 0.7946872 49115174 0.79 | Croston
0.8 0.8152954 0.8039277 50512524 0.80 | Croston
0.81 0.8243103 0.8131350 51982631 0.81 | Croston
0.82 0.8331705 0.8222331 53525921 0.82 | Croston
0.83 0.8422245 0.8315214 55153978 0.83 | Croston
0.84 0.8510582 0.8406075 56882390 0.84 | Croston
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0.85 0.8601456 0.8499658 58717018 0.85 | Croston
0.86 0.8690436 0.8591961 60673700 0.86 | Croston
0.87 0.8780400 0.8684938 62774485 0.87 | Croston
0.88 0.8869076 0.8777531 65034573 0.88 | Croston
0.89 0.8959089 0.8871233 67490448 0.89 | Croston
0.9 0.9047939 0.8964278 70176271 0.90 | Croston
0.91 0.9137951 0.9058731 73138289 0.91 | Croston
0.92 0.9227515 0.9153346 76448445 0.92 | Croston
0.93 0.9317090 0.9248242 80187117 0.93 | Croston
0.94 0.9406200 0.9343156 84492457 0.94 | Croston
0.95 0.9495341 0.9438683 89568942 0.95 | Croston
0.96 0.9585362 0.9535636 95769427 0.96 | Croston
0.97 0.9675876 0.9633944 103681310 0.97 | Croston
0.98 0.9766502 0.9733371 114274391 0.98 | Croston
0.99 0.9839135 0.9814686 127721141 0.99 | Croston
0.751 0.7685158 0.7559839 43815499 0.75 | SBA
0.761 0.7776036 0.7652483 45016455 0.76 | SBA
0.771 0.7867333 0.7745349 46249440 0.77 | SBA
0.781 0.7957577 0.7837106 47526081 0.78 | SBA
0.791 0.8047352 0.7928983 48875023 0.79 | SBA
0.810 0.8139508 0.8023410 50283278 0.80 | SBA
0.811 0.8229913 0.8116029 51758591 0.81 | SBA
0.821 0.8320161 0.8208869 53317173 0.82 | SBA
0.831 0.8411305 0.8302529 54953671 0.83 | SBA
0.841 0.8500691 0.8394644 56699636 0.84 | SBA
0.851 0.8592817 0.8489626 58545823 0.85 | SBA
0.861 0.8682740 0.8583097 60523307 0.86 | SBA
0.871 0.8773621 0.8677166 62635120 0.87 | SBA
0.881 0.8863351 0.8770894 64923736 0.88 | SBA
0.891 0.8954767 0.8866166 67400304 0.89 | SBA
0.910 0.9044731 0.8960567 70118141 0.90 | SBA
0.911 0.9135439 0.9055950 73104393 0.91 | SBA
0.921 0.9225841 0.9151495 76447867 0.92 | SBA
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0.931 0.9316229 0.9247355 80233527 0.93 | SBA
0.941 0.9406152 0.9343267 84585923 0.94 | SBA
0.951 0.9496027 0.9439605 89726450 0.95 | SBA
0.961 0.9586340 0.9536983 96004812 0.96 | SBA
0.971 0.9677646 0.9636188 104018014 0.97 | SBA
0.981 0.9768570 0.9735955 114727117 0.98 | SBA
0.991 0.9840319 0.9816119 128165348 0.99 | SBA
0.752 0.7873648 0.7759118 46537876 0.75 | DLP
0.762 0.7955550 0.7842353 47692393 0.76 | DLP
0.772 0.8037482 0.7925682 48893333 0.77 | DLP
0.782 0.8120004 0.8009701 50148510 0.78 | DLP
0.792 0.8200476 0.8091981 51438621 0.79 | DLP
0.812 0.8282985 0.8176316 52806185 0.80 | DLP
0.813 0.8364487 0.8259841 54227484 0.81 | DLP
0.822 0.8445130 0.8342478 55719342 0.82 | DLP
0.832 0.8526930 0.8426626 57297410 0.83 | DLP
0.842 0.8607545 0.8509562 58959353 0.84 | DLP
0.852 0.8689410 0.8594042 60718886 0.85 | DLP
0.862 0.8769697 0.8677226 62594719 0.86 | DLP
0.872 0.8852444 0.8762841 64607311 0.87 | DLP
0.882 0.8932913 0.8846690 66759923 0.88 | DLP
0.892 0.9015035 0.8932237 69101715 0.89 | DLP
0.912 0.9095615 0.9016666 71641418 0.90 | DLP
0.913 0.9177436 0.9102451 74441608 0.91 | DLP
0.922 0.9259539 0.9189073 77562812 0.92 | DLP
0.932 0.9341353 0.9275728 81070764 0.93 | DLP
0.942 0.9423636 0.9363263 85092823 0.94 | DLP
0.952 0.9506704 0.9452025 89831087 0.95 | DLP
0.962 0.9589796 0.9541317 95574033 0.96 | DLP
0.972 0.9674741 0.9633364 102885846 0.97 | DLP
0.982 0.9761112 0.9727749 112757190 0.98 | DLP
0.992 0.9835301 0.9810395 125993925 0.99 | DLP
0.753 0.7929721 0.7804459 46818397 0.75 | Willemain
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0.763 0.8017884 0.7894467 48078462 0.76 | Willemain
0.773 0.8104588 0.7983648 49388375 0.77 | Willemain
0.783 0.8190186 0.8071413 50768368 0.78 | Willemain
0.793 0.8276664 0.8160500 52189948 0.79 | Willemain
0.814 0.8362949 0.8249322 53696521 0.80 | Willemain
0.815 0.8447889 0.8337232 55264826 0.81 | Willemain
0.823 0.8532402 0.8424672 56923391 0.82 | Willemain
0.833 0.8617314 0.8512812 58667771 0.83 | Willemain
0.843 0.8700370 0.8599152 60523158 0.84 | Willemain
0.853 0.8784730 0.8687045 62485717 0.85 | Willemain
0.863 0.8866964 0.8772976 64591255 0.86 | Willemain
0.873 0.8949321 0.8859179 66836966 0.87 | Willemain
0.883 0.9031510 0.8945442 69270895 0.88 | Willemain
0.893 0.9111328 0.9029692 71898563 0.89 | Willemain
0.914 0.9190149 0.9113021 74777592 0.90 | Willemain
0.915 0.9268683 0.9196367 77940140 0.91 | Willemain
0.923 0.9345870 0.9278612 81465324 0.92 | Willemain
0.933 0.9422222 0.9360311 85427875 0.93 | Willemain
0.943 0.9497273 0.9440953 89942949 0.94 | Willemain
0.953 0.9570820 0.9520366 95185636 0.95 | Willemain
0.963 0.9643109 0.9598772 101412257 0.96 | Willemain
0.973 0.9715041 0.9677306 109031640 0.97 | Willemain
0.983 0.9786343 0.9755900 118824750 0.98 | Willemain
0.993 0.9859330 0.9837284 132943380 0.99 | Willemain
0.754 0.7671551 0.7543221 43936948 0.75 | QR

0.764 0.7768702 0.7642477 45233793 0.76 | QR

0.774 0.7865767 0.7741792 46586465 0.77 | QR

0.784 0.7964057 0.7842182 48011932 0.78 | QR

0.794 0.8061412 0.7942257 49502054 0.79 | QR

0.816 0.8158010 0.8041299 51059958 0.80 | QR

0.817 0.8255758 0.8142065 52719836 0.81 | QR

0.824 0.8351476 0.8240689 54455113 0.82 | QR

0.834 0.8448005 0.8340405 56290511 0.83 | QR
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0.844 0.8543435 0.8439422 58253504 0.84 | QR
0.854 0.8639401 0.8538882 60334198 0.85 | QR
0.864 0.8734554 0.8637908 62571655 0.86 | QR
0.874 0.8828659 0.8735918 64974262 0.87 | QR
0.884 0.8922247 0.8833919 67566541 0.88 | QR
0.894 0.9015667 0.8931912 70404823 0.89 | QR
0.916 0.9108323 0.9029394 73514690 0.90 | QR
0.917 0.9199892 0.9126201 76953836 091 | QR
0.924 0.9290625 0.9222522 80815138 0.92 | QR
0.934 0.9380243 0.9317964 85192921 0.93 | QR
0.944 0.9469203 0.9413202 90245689 094 | QR
0.954 0.9555617 0.9506256 96198018 0.95 | QR
0.964 0.9641515 0.9599079 103381977 0.96 | QR
0.974 0.9724961 0.9689804 112190302 097 | QR
0.984 0.9799693 0.9771699 122622409 0.98 | QR
0.994 0.9850041 0.9827712 132663548 0.99 | QR
0.755 0.7692692 0.7571381 43938281 0.75 | MLP
0.765 0.7780679 0.7660920 45097226 0.76 | MLP
0.775 0.7869775 0.7751457 46296959 0.77 | MLP
0.785 0.7958922 0.7842396 47555896 0.78 | MLP
0.795 0.8048261 0.7933709 48866399 0.79 | MLP
0.818 0.8137341 0.8024707 50237147 0.80 | MLP
0.819 0.8227285 0.8116737 51680141 0.81 | MLP
0.825 0.8315459 0.8207291 53191583 0.82 | MLP
0.835 0.8406011 0.8300157 54784670 0.83 | MLP
0.845 0.8494932 0.8391974 56482725 0.84 | MLP
0.855 0.8584899 0.8484533 58268325 0.85 | MLP
0.865 0.8674373 0.8577433 60195235 0.86 | MLP
0.875 0.8764976 0.8670973 62236987 0.87 | MLP
0.885 0.8854234 0.8764069 64452384 0.88 | MLP
0.895 0.8944261 0.8857669 66851649 0.89 | MLP
0.918 0.9033954 0.8951499 69467750 0.90 | MLP
0.919 0.9124162 0.9046148 72352974 0.91 | MLP
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0.925 0.9214632 0.9141403 75580178 0.92 | MLP

0.935 0.9304432 0.9236444 79214019 0.93 | MLP

0.945 0.9395246 0.9332876 83410815 0.94 | MLP

0.955 0.9485171 0.9428890 88340473 0.95 | MLP

0.965 0.9575290 0.9525800 94365374 0.96 | MLP

0.975 0.9666443 0.9624484 102031541 0.97 | MLP

0.985 0.9756505 0.9722946 112192574 0.98 | MLP

0.995 0.9832762 0.9807682 125137273 0.99 | MLP

0.756 0.7810572 0.7596223 44858704 0.75 | LSTM
0.766 0.7907242 0.7696558 46208624 0.76 | LSTM
0.776 0.8002454 0.7795570 47597280 0.77 | LSTM
0.786 0.8097337 0.7894819 49051164 0.78 | LSTM
0.796 0.8191963 0.7993650 50580929 0.79 | LSTM
0.820 0.8285261 0.8091617 52181247 0.80 | LSTM
0.8110 0.8379734 0.8191437 53876163 0.81 | LSTM
0.826 0.8473185 0.8289989 55660621 0.82 | LSTM
0.836 0.8565389 0.8388375 57549172 0.83 | LSTM
0.846 0.8657833 0.8486704 59555536 0.84 | LSTM
0.856 0.8748942 0.8584143 61688287 0.85 | LSTM
0.866 0.8839981 0.8682096 63980975 0.86 | LSTM
0.876 0.8929203 0.8778574 66424947 0.87 | LSTM
0.886 0.9018305 0.8874996 69085715 0.88 | LSTM
0.896 0.9104753 0.8969189 71953216 0.89 | LSTM
0.920 0.9192111 0.9064831 75102304 0.90 | LSTM
0.9110 0.9277719 0.9159164 78573478 0.91 | LSTM
0.926 0.9361696 0.9252244 82442717 0.92 | LSTM
0.936 0.9444181 0.9344502 86788852 0.93 | LSTM
0.946 0.9525138 0.9435604 91726249 0.94 | LSTM
0.956 0.9603088 0.9523991 97404493 0.95 | LSTM
0.966 0.9676687 0.9608464 104006744 0.96 | LSTM
0.976 0.9745747 0.9688648 111697828 0.97 | LSTM
0.986 0.9806791 0.9760366 120323556 0.98 | LSTM
0.996 0.9849631 0.9811989 128997167 0.99 | LSTM
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0.757 0.7762886 0.7641197 44990067 0.75 | LightGBM
0.767 0.7852212 0.7732110 46194497 0.76 | LightGBM
0.777 0.7939690 0.7821401 47428598 0.77 | LightGBM
0.787 0.8027587 0.7911333 48728191 0.78 | LightGBM
0.797 0.8115432 0.8001213 50076824 0.79 | LightGBM
0.827 0.8203414 0.8091520 51489504 0.80 | LightGBM
0.8111 0.8292687 0.8183030 52986798 0.81 | LightGBM
0.828 0.8379237 0.8272287 54545347 0.82 | LightGBM
0.837 0.8467798 0.8363524 56195527 0.83 | LightGBM
0.847 0.8554617 0.8453216 57943954 0.84 | LightGBM
0.857 0.8643057 0.8544777 59798025 0.85 | LightGBM
0.867 0.8730713 0.8635639 61787758 0.86 | LightGBM
0.877 0.8817786 0.8726278 63903660 0.87 | LightGBM
0.887 0.8904983 0.8817122 66198529 0.88 | LightGBM
0.897 0.8991815 0.8907898 68679779 0.89 | LightGBM
0.927 0.9079074 0.8999399 71400639 0.90 | LightGBM
0.9111 0.9165818 0.9090653 74386932 0.91 | LightGBM
0.928 0.9252623 0.9182504 77728583 0.92 | LightGBM
0.937 0.9338691 0.9273732 81496091 0.93 | LightGBM
0.947 0.9424723 0.9365344 85826467 0.94 | LightGBM
0.957 0.9510094 0.9456700 90910155 0.95 | LightGBM
0.967 0.9596220 0.9549413 97051693 0.96 | LightGBM
0.977 0.9682396 0.9642714 104740078 0.97 | LightGBM
0.987 0.9766659 0.9734812 114649946 0.98 | LightGBM
0.997 0.9836525 0.9812118 126842666 0.99 | LightGBM
0.758 0.7762886 0.7641197 44990067 0.75 | RF

0.768 0.7852212 0.7732110 46194497 0.76 | RF

0.778 0.7939690 0.7821401 47428598 0.77 | RF

0.788 0.8027587 0.7911333 48728191 0.78 | RF

0.798 0.8115432 0.8001213 50076824 0.79 | RF

0.829 0.8203414 0.8091520 51489504 0.80 | RF

0.8112 0.8292687 0.8183030 52986798 0.81 | RF

0.8210 0.8379237 0.8272287 54545347 0.82 | RF
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0.838 0.8467798 0.8363524 56195527 0.83 | RF
0.848 0.8554617 0.8453216 57943954 0.84 | RF
0.858 0.8643057 0.8544777 59798025 0.85 | RF
0.868 0.8730713 0.8635639 61787758 0.86 | RF
0.878 0.8817786 0.8726278 63903660 0.87 | RF
0.888 0.8904983 0.8817122 66198529 0.88 | RF
0.898 0.8991815 0.8907898 68679779 0.89 | RF
0.929 0.9079074 0.8999399 71400639 0.90 | RF
0.9112 0.9165818 0.9090653 74386932 0.91 | RF
0.9210 0.9252623 0.9182504 77728583 0.92 | RF
0.938 0.9338691 0.9273732 81496091 0.93 | RF
0.948 0.9424723 0.9365344 85826467 0.94 | RF
0.958 0.9510094 0.9456700 90910155 0.95 | RF
0.968 0.9596220 0.9549413 97051693 0.96 | RF
0.978 0.9682396 0.9642714 104740078 0.97 | RF
0.988 0.9766659 0.9734812 114649946 0.98 | RF
0.998 0.9836525 0.9812118 126842666 0.99 | RF
Table 13: IPM values for SIM2

AchievedFillRates_Avg | AchievedFillRates_Total | HoldingCosts | TargetFillRates | Method
0.75 0.7734392 0.7506230 30121950 0.75 | Croston
0.76 0.7834493 0.7609711 31052328 0.76 | Croston
0.77 0.7933339 0.7712286 32022249 0.77 | Croston
0.78 0.8031410 0.7814656 33033949 0.78 | Croston
0.79 0.8127568 0.7915096 34090417 0.79 | Croston
0.8 0.8227712 0.8020162 35221779 0.80 | Croston
0.81 0.8322854 0.8120373 36387481 0.81 | Croston
0.82 0.8419696 0.8223075 37638906 0.82 | Croston
0.83 0.8514241 0.8323029 38949549 0.83 | Croston
0.84 0.8611721 0.8427099 40358422 0.84 | Croston
0.85 0.8703950 0.8525840 41850122 0.85 | Croston
0.86 0.8798418 0.8627251 43446526 0.86 | Croston
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0.87 0.8891434 0.8727577 45172927 0.87 | Croston
0.88 0.8983514 0.8827953 47038137 0.88 | Croston
0.89 0.9074671 0.8927422 49066961 0.89 | Croston
0.9 0.9165969 0.9027875 51304620 0.90 | Croston
0.91 0.9254899 0.9126540 53766695 0.91 | Croston
0.92 0.9342878 0.9224744 56509143 0.92 | Croston
0.93 0.9429518 0.9322373 59614606 0.93 | Croston
0.94 0.9513941 0.9418225 63164591 0.94 | Croston
0.95 0.9595037 0.9511267 67262659 0.95 | Croston
0.96 0.9670272 0.9599223 71966832 0.96 | Croston
0.97 0.9732783 0.9673901 77144466 0.97 | Croston
0.98 0.9774876 0.9725629 82175566 0.98 | Croston
0.99 0.9792701 0.9748286 85667213 0.99 | Croston
0.751 0.7786980 0.7558367 30844404 0.75 | SBA
0.761 0.7886454 0.7661720 31809899 0.76 | SBA
0.771 0.7985167 0.7764257 32817133 0.77 | SBA
0.781 0.8082953 0.7866959 33873332 0.78 | SBA
0.791 0.8180043 0.7968587 34972473 0.79 | SBA
0.810 0.8277624 0.8071852 36142031 0.80 | SBA
0.811 0.8373763 0.8173008 37357624 0.81 | SBA
0.821 0.8469456 0.8275007 38654094 0.82 | SBA
0.831 0.8563242 0.8374694 40017721 0.83 | SBA
0.841 0.8658440 0.8476450 41466323 0.84 | SBA
0.851 0.8749839 0.8575089 43014235 0.85 | SBA
0.861 0.8842620 0.8674903 44660816 0.86 | SBA
0.871 0.8933760 0.8773695 46440005 0.87 | SBA
0.881 0.9024576 0.8872678 48348782 0.88 | SBA
0.891 0.9113564 0.8970448 50428971 0.89 | SBA
0.910 0.9202034 0.9068256 52704191 0.90 | SBA
0.911 0.9288281 0.9164007 55212462 0.91 | SBA
0.921 0.9373184 0.9259118 57992966 0.92 | SBA
0.931 0.9456530 0.9353348 61121982 0.93 | SBA
0.941 0.9537351 0.9445252 64672367 0.94 | SBA
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0.951 0.9614604 0.9534332 68728671 0.95 | SBA
0.961 0.9684522 0.9616282 73306884 0.96 | SBA
0.971 0.9741418 0.9684635 78237588 0.97 | SBA
0.981 0.9778891 0.9730805 82867496 0.98 | SBA
0.991 0.9793255 0.9749078 85870569 0.99 | SBA
0.752 0.7721011 0.7497451 29906492 0.75 | DLP
0.762 0.7814869 0.7594121 30768160 0.76 | DLP
0.772 0.7909622 0.7692159 31677233 0.77 | DLP
0.782 0.8003352 0.7789788 32614858 0.78 | DLP
0.792 0.8096011 0.7886127 33605259 0.79 | DLP
0.812 0.8190319 0.7984931 34642020 0.80 | DLP
0.813 0.8282796 0.8081870 35730107 0.81 | DLP
0.822 0.8375585 0.8179614 36883295 0.82 | DLP
0.832 0.8468012 0.8277358 38102262 0.83 | DLP
0.842 0.8558670 0.8373748 39387131 0.84 | DLP
0.852 0.8651571 0.8472450 40768650 0.85 | DLP
0.862 0.8742393 0.8569773 42240649 0.86 | DLP
0.872 0.8833292 0.8667197 43822009 0.87 | DLP
0.882 0.8925125 0.8766398 45536790 0.88 | DLP
0.892 0.9015101 0.8864104 47395087 0.89 | DLP
0.912 0.9103865 0.8961388 49431691 0.90 | DLP
0.913 0.9192532 0.9059158 51682619 0.91 | DLP
0.922 0.9281215 0.9157451 54202358 0.92 | DLP
0.932 0.9369352 0.9255796 57055432 0.93 | DLP
0.942 0.9456900 0.9354511 60318872 0.94 | DLP
0.952 0.9542884 0.9452268 64138599 0.95 | DLP
0.962 0.9626022 0.9548172 68670081 0.96 | DLP
0.972 0.9701646 0.9637303 73983599 0.97 | DLP
0.982 0.9759253 0.9706857 79781247 0.98 | DLP
0.992 0.9789727 0.9744644 84794589 0.99 | DLP
0.753 0.7979339 0.7767975 32265859 0.75 | Willemain
0.763 0.8064843 0.7857362 33153347 0.76 | Willemain
0.773 0.8149731 0.7946429 34079332 0.77 | Willemain
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0.783 0.8233149 0.8034206 35045434 0.78 | Willemain
0.793 0.8317315 0.8122737 36052001 0.79 | Willemain
0.814 0.8398839 0.8209235 37107404 0.80 | Willemain
0.815 0.8481409 0.8296475 38225619 0.81 | Willemain
0.823 0.8561960 0.8382616 39391950 0.82 | Willemain
0.833 0.8643491 0.8469524 40633114 0.83 | Willemain
0.843 0.8723453 0.8555333 41940647 0.84 | Willemain
0.853 0.8802615 0.8640758 43340342 0.85 | Willemain
0.863 0.8881237 0.8725673 44827188 0.86 | Willemain
0.873 0.8959379 0.8810485 46420457 0.87 | Willemain
0.883 0.9036952 0.8895054 48138755 0.88 | Willemain
0.893 0.9114588 0.8980160 50008126 0.89 | Willemain
0.914 0.9189687 0.9063055 52016642 0.90 | Willemain
0.915 0.9263919 0.9144915 54233516 0.91 | Willemain
0.923 0.9337438 0.9226942 56673408 0.92 | Willemain
0.933 0.9409545 0.9307537 59387820 0.93 | Willemain
0.943 0.9480558 0.9387518 62428678 0.94 | Willemain
0.953 0.9550607 0.9466797 65889497 0.95 | Willemain
0.963 0.9620216 0.9546242 69889112 0.96 | Willemain
0.973 0.9688411 0.9624767 74637368 0.97 | Willemain
0.983 0.9757934 0.9705375 80581997 0.98 | Willemain
0.993 0.9831190 0.9791439 89025356 0.99 | Willemain
0.754 0.8548612 0.8375422 45093494 0.75 | QR
0.764 0.8629740 0.8462496 46486328 0.76 | QR
0.774 0.8707824 0.8546771 47931190 0.77 | QR
0.784 0.8783978 0.8628810 49419711 0.78 | QR
0.794 0.8858104 0.8709610 50984129 0.79 | QR
0.816 0.8931884 0.8789834 52600509 0.80 | QR
0.817 0.9002238 0.8867030 54275722 0.81 | QR
0.824 0.9070945 0.8942348 56017038 0.82 | QR
0.834 0.9137435 0.9015659 57815257 0.83 | QR
0.844 0.9202007 0.9086926 99677752 0.84 | QR
0.854 0.9263261 0.9155138 61588677 0.85 | QR
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0.864 0.9322037 0.9220616 63563293 0.86 | QR
0.874 0.9377317 0.9282925 65591887 0.87 | QR
0.884 0.9429651 0.9341911 67674637 0.88 | QR
0.894 0.9478852 0.9397907 69803317 0.89 | QR
0.916 0.9525468 0.9450926 71986997 0.90 | QR
0.917 0.9568289 0.9499971 74182125 0.91 | QR
0.924 0.9607623 0.9545233 76371099 0.92 | QR
0.934 0.9643205 0.9586252 78493640 0.93 | QR
0.944 0.9672862 0.9621023 80502607 0.94 | QR
0.954 0.9696622 0.9649213 82313444 0.95 | QR
0.964 0.9714094 0.9670349 83805159 0.96 | QR
0.974 0.9725118 0.9683613 84893058 0.97 | QR
0.984 0.9730613 0.9690104 85513928 0.98 | QR
0.994 0.9731770 0.9691536 85712795 0.99 | QR
0.755 0.7679743 0.7458425 29429718 0.75 | MLP
0.765 0.7781350 0.7563274 30325278 0.76 | MLP
0.775 0.7881142 0.7666691 31267554 0.77 | MLP
0.785 0.7981095 0.7770071 32246083 0.78 | MLP
0.795 0.8078955 0.7872045 33269491 0.79 | MLP
0.818 0.8179177 0.7976727 34363196 0.80 | MLP
0.819 0.8277943 0.8080081 35492762 0.81 | MLP
0.825 0.8373122 0.8180586 36696758 0.82 | MLP
0.835 0.8473200 0.8285639 37969772 0.83 | MLP
0.845 0.8568882 0.8386910 39326433 0.84 | MLP
0.855 0.8665407 0.8489523 40775124 0.85 | MLP
0.865 0.8761096 0.8591727 42331736 0.86 | MLP
0.875 0.8855213 0.8692934 43996553 0.87 | MLP
0.885 0.8948348 0.8793502 45806164 0.88 | MLP
0.895 0.9039983 0.8892945 47780048 0.89 | MLP
0.918 0.9132451 0.8994012 49948210 0.90 | MLP
0.919 0.9221422 0.9092050 52346978 0.91 | MLP
0.925 0.9309851 0.9190190 55024601 0.92 | MLP
0.935 0.9396366 0.9286899 58043270 0.93 | MLP
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0.945 0.9480125 0.9381538 61461310 0.94 | MLP
0.955 0.9560298 0.9473212 65323000 0.95 | MLP
0.965 0.9635367 0.9560286 69642628 0.96 | MLP
0.975 0.9700924 0.9637559 74356107 0.97 | MLP
0.985 0.9753704 0.9700724 79258678 0.98 | MLP
0.995 0.9786032 0.9740222 83830841 0.99 | MLP
0.756 0.7800323 0.7689542 332568734 0.75 | LSTM
0.766 0.7925745 0.7817538 34314804 0.76 | LSTM
0.776 0.8050678 0.7944884 35420910 0.77 | LSTM
0.786 0.8170601 0.8067432 36563134 0.78 | LSTM
0.796 0.8291345 0.8191205 37767676 0.79 | LSTM
0.820 0.8411632 0.8314963 39032626 0.80 | LSTM
0.8110 0.8527397 0.8433938 40367390 0.81 | LSTM
0.826 0.8641216 0.8551364 41756588 0.82 | LSTM
0.836 0.8754236 0.8668375 43247513 0.83 | LSTM
0.846 0.8862378 0.8780619 44798658 0.84 | LSTM
0.856 0.8967369 0.8889806 46462964 0.85 | LSTM
0.866 0.9071293 0.8998580 48234576 0.86 | LSTM
0.876 0.9169026 0.9100991 50115337 0.87 | LSTM
0.886 0.9264457 0.9201571 52119492 0.88 | LSTM
0.896 0.9354749 0.9296926 54289378 0.89 | LSTM
0.920 0.9441483 0.9388929 56602570 0.90 | LSTM
0.9110 0.9524408 0.9477256 59103538 0.91 | LSTM
0.926 0.9600420 0.9558571 61785933 0.92 | LSTM
0.936 0.9670912 0.9634571 64675928 0.93 | LSTM
0.946 0.9735336 0.9704474 67782153 0.94 | LSTM
0.956 0.9791851 0.9766242 71065986 0.95 | LSTM
0.966 0.9839443 0.9818740 74516871 0.96 | LSTM
0.976 0.9878332 0.9862025 77943260 0.97 | LSTM
0.986 0.9905127 0.9892215 81050177 0.98 | LSTM
0.996 0.9919008 0.9908056 83304288 0.99 | LSTM
0.757 0.7934391 0.7735172 33433219 0.75 | LightGBM
0.767 0.8027891 0.7832290 34442956 0.76 | LightGBM
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0.777 0.8122043 0.7929472 35498297 0.77 | LightGBM
0.787 0.8215161 0.8026820 36601382 0.78 | LightGBM
0.797 0.8306075 0.8121548 37749801 0.79 | LightGBM
0.827 0.8399048 0.8218704 38959709 0.80 | LightGBM
0.8111 0.8486324 0.8310161 40219457 0.81 | LightGBM
0.828 0.8575872 0.8404864 41546917 0.82 | LightGBM
0.837 0.8663898 0.8497509 42954461 0.83 | LightGBM
0.847 0.8750841 0.8589976 44425497 0.84 | LightGBM
0.857 0.8836362 0.8681292 45991273 0.85 | LightGBM
0.867 0.8919949 0.8770743 47647170 0.86 | LightGBM
0.877 0.9002805 0.8860206 49423611 0.87 | LightGBM
0.887 0.9084203 0.8948328 51313598 0.88 | LightGBM
0.897 0.9163689 0.9034789 53343521 0.89 | LightGBM
0.927 0.9242755 0.9121390 55537920 0.90 | LightGBM
0.9111 0.9318860 0.9205499 57911663 0.91 | LightGBM
0.928 0.9393460 0.9288356 60491391 0.92 | LightGBM
0.937 0.9465356 0.9368861 63296431 0.93 | LightGBM
0.947 0.9535051 0.9447220 66365835 0.94 | LightGBM
0.957 0.9600844 0.9522052 69715939 0.95 | LightGBM
0.967 0.9662383 0.9593076 73338837 0.96 | LightGBM
0.977 0.9716232 0.9655896 77194609 0.97 | LightGBM
0.987 0.9759321 0.9707292 81073317 0.98 | LightGBM
0.997 0.9784623 0.9738369 84532894 0.99 | LightGBM
0.758 0.7868137 0.7642859 31596342 0.75 | RF
0.768 0.7963612 0.7741919 32562416 0.76 | RF
0.778 0.8060163 0.7842373 33581384 0.77 | RF
0.788 0.8154367 0.7941075 34639510 0.78 | RF
0.798 0.8248611 0.8039458 35754610 0.79 | RF
0.829 0.8342336 0.8138416 36932108 0.80 | RF
0.8112 0.8434690 0.8236122 38156565 0.81 | RF
0.8210 0.8525917 0.8332971 39458993 0.82 | RF
0.838 0.8616822 0.8429770 40830026 0.83 | RF
0.848 0.8705407 0.8524549 42291750 0.84 | RF
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0.858 0.8794923 0.8620824 43840349 0.85 | RF
0.868 0.8881598 0.8714453 45494962 0.86 | RF
0.878 0.8967872 0.8808006 47267254 0.87 | RF
0.888 0.9053413 0.8901737 49173983 0.88 | RF
0.898 0.9136860 0.8993335 51225961 0.89 | RF
0.929 0.9219028 0.9084587 53451614 0.90 | RF
0.9112 0.9298652 0.9173322 55863290 0.91 | RF
0.9210 0.9376190 0.9260332 58500987 0.92 | RF
0.938 0.9451538 0.9345975 61392625 0.93 | RF
0.948 0.9523533 0.9428436 64585206 0.94 | RF
0.958 0.9592372 0.9507932 68103720 0.95 | RF
0.968 0.9655485 0.9582355 71954560 0.96 | RF
0.978 0.9711746 0.9649686 76083061 0.97 | RF
0.988 0.9758178 0.9705733 80319265 0.98 | RF
0.998 0.9787146 0.9741475 84230049 0.99 | RF
Table 14: IPM values for SIM3

AchievedFillRates_Avg | AchievedFillRates_Total | HoldingCosts | TargetFillRates | Method
0.75 0.7764167 0.7712013 31909257 0.75 | Croston
0.76 0.7859988 0.7808508 32623913 0.76 | Croston
0.77 0.7954365 0.7903327 33367340 0.77 | Croston
0.78 0.8050072 0.7999813 34141501 0.78 | Croston
0.79 0.8143336 0.8093938 34941166 0.79 | Croston
0.8 0.8237397 0.8188920 35768473 0.80 | Croston
0.81 0.8331264 0.8283433 36638853 0.81 | Croston
0.82 0.8424798 0.8378063 37551626 0.82 | Croston
0.83 0.8517458 0.8471991 38513701 0.83 | Croston
0.84 0.8610118 0.8565685 39520696 0.84 | Croston
0.85 0.8702430 0.8659405 40578409 0.85 | Croston
0.86 0.8794284 0.8752819 41718506 0.86 | Croston
0.87 0.8886272 0.8846234 42922362 0.87 | Croston
0.88 0.8976902 0.8938657 44211578 0.88 | Croston
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0.89 0.9067094 0.9030621 45605771 0.89 | Croston
0.9 0.9158223 0.9123585 47121343 0.90 | Croston
0.91 0.9246198 0.9213757 48780882 0.91 | Croston
0.92 0.9335335 0.9305126 50619271 0.92 | Croston
0.93 0.9423695 0.9395901 52694090 0.93 | Croston
0.94 0.9510337 0.9485307 55049540 0.94 | Croston
0.95 0.9595865 0.9573705 57809151 0.95 | Croston
0.96 0.9680613 0.9661723 61152449 0.96 | Croston
0.97 0.9763094 0.9747788 65395646 0.97 | Croston
0.98 0.9842215 0.9830961 71157310 0.98 | Croston
0.99 0.9905401 0.9897993 79021834 0.99 | Croston
0.751 0.7715539 0.7660419 31522100 0.75 | SBA
0.761 0.7812129 0.7757427 32235660 0.76 | SBA
0.771 0.7909262 0.7855084 32980310 0.77 | SBA
0.781 0.8006677 0.7953407 33759996 0.78 | SBA
0.791 0.8102762 0.8050524 34557734 0.79 | SBA
0.810 0.8196747 0.8145487 35379848 0.80 | SBA
0.811 0.8292887 0.8242333 36257131 0.81 | SBA
0.821 0.8390436 0.8341107 37179642 0.82 | SBA
0.831 0.8484619 0.8436647 38131868 0.83 | SBA
0.841 0.8578139 0.8531214 39139565 0.84 | SBA
0.851 0.8673125 0.8627862 40214595 0.85 | SBA
0.861 0.8766907 0.8723221 41346428 0.86 | SBA
0.871 0.8860910 0.8818743 42555603 0.87 | SBA
0.881 0.8954217 0.8913995 43857270 0.88 | SBA
0.891 0.9046510 0.9008157 45254618 0.89 | SBA
0.910 0.9139054 0.9102715 46778274 0.90 | SBA
0.911 0.9230122 0.9196201 48451923 0.91 | SBA
0.921 0.9321340 0.9289760 50297960 0.92 | SBA
0.931 0.9411951 0.9383021 52388689 0.93 | SBA
0.941 0.9500611 0.9474562 54765529 0.94 | SBA
0.951 0.9588657 0.9565688 57548350 0.95 | SBA
0.961 0.9675399 0.9655932 60920821 0.96 | SBA
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0.971 0.9759374 0.9743608 65207888 0.97 | SBA
0.981 0.9840616 0.9829114 71043416 0.98 | SBA
0.991 0.9905248 0.9897795 79014784 0.99 | SBA
0.752 0.8130700 0.8084985 35334420 0.75 | DLP
0.762 0.8214010 0.8168960 36068986 0.76 | DLP
0.772 0.8296141 0.8251710 36834676 0.77 | DLP
0.782 0.8377148 0.8333369 37614282 0.78 | DLP
0.792 0.8458380 0.8415516 38425623 0.79 | DLP
0.812 0.8537729 0.8495644 39263120 0.80 | DLP
0.813 0.8617147 0.8576088 40148451 0.81 | DLP
0.822 0.8696389 0.8656469 41062952 0.82 | DLP
0.832 0.8774560 0.8735742 42019827 0.83 | DLP
0.842 0.8854000 0.8816248 43025877 0.84 | DLP
0.852 0.8928940 0.8892540 44088536 0.85 | DLP
0.862 0.9006480 0.8971389 45211824 0.86 | DLP
0.872 0.9083729 0.9049951 46405022 0.87 | DLP
0.882 0.9158215 0.9126017 47675371 0.88 | DLP
0.892 0.9233365 0.9202696 49044104 0.89 | DLP
0.912 0.9307104 0.9278285 50520906 0.90 | DLP
0.913 0.9379783 0.9352748 52133898 0.91 | DLP
0.922 0.9452327 0.9427265 53909330 0.92 | DLP
0.932 0.9523637 0.9500530 55887788 0.93 | DLP
0.942 0.9594068 0.9573191 58143400 0.94 | DLP
0.952 0.9663363 0.9644889 60750075 0.95 | DLP
0.962 0.9731575 0.9715722 63867318 0.96 | DLP
0.972 0.9797934 0.9784979 67763659 0.97 | DLP
0.982 0.9859955 0.9849948 72890050 0.98 | DLP
0.992 0.9909160 0.9902091 79654657 0.99 | DLP
0.753 0.8244658 0.8187290 35625098 0.75 | Willemain
0.763 0.8327957 0.8271652 36396015 0.76 | Willemain
0.773 0.8410564 0.8355770 37193164 0.77 | Willemain
0.783 0.8494160 0.8440835 38037258 0.78 | Willemain
0.793 0.8575975 0.8524044 38894385 0.79 | Willemain
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0.814 0.8656280 0.8605740 39791866 0.80 | Willemain
0.815 0.8735033 0.8686039 40723842 0.81 | Willemain
0.823 0.8814080 0.8766844 41703306 0.82 | Willemain
0.833 0.8892051 0.8846549 42721795 0.83 | Willemain
0.843 0.8968427 0.8924705 43804703 0.84 | Willemain
0.853 0.9044465 0.9002590 44941344 0.85 | Willemain
0.863 0.9118143 0.9078423 46133988 0.86 | Willemain
0.873 0.9191000 0.9153291 47426036 0.87 | Willemain
0.883 0.9263270 0.9227700 48788067 0.88 | Willemain
0.893 0.9334073 0.9300938 50256660 0.89 | Willemain
0.914 0.9403207 0.9372158 51849866 0.90 | Willemain
0.915 0.9471867 0.9443469 53588935 0.91 | Willemain
0.923 0.9536567 0.9510483 55508008 0.92 | Willemain
0.933 0.9602161 0.9578767 57659856 0.93 | Willemain
0.943 0.9663757 0.9643024 60099289 0.94 | Willemain
0.953 0.9724050 0.9706102 62939762 0.95 | Willemain
0.963 0.9782955 0.9768090 66346125 0.96 | Willemain
0.973 0.9838529 0.9826745 70619649 0.97 | Willemain
0.983 0.9891549 0.9883050 76362326 0.98 | Willemain
0.993 0.9941252 0.9936166 85313109 0.99 | Willemain
0.754 0.7595192 0.7531615 30583248 0.75 | QR
0.764 0.7696027 0.7633226 31294342 0.76 | QR
0.774 0.7797156 0.7735098 32037702 0.77 | QR
0.784 0.7896421 0.7835529 32799958 0.78 | QR
0.794 0.7998942 0.7939176 33616720 0.79 | QR
0.816 0.8100799 0.8042408 34457835 0.80 | QR
0.817 0.8202560 0.8145064 35335690 0.81 | QR
0.824 0.8302237 0.8246179 36256838 0.82 | QR
0.834 0.8402141 0.8347682 37214308 0.83 | QR
0.844 0.8504787 0.8452094 38251194 0.84 | QR
0.854 0.8602916 0.8551822 39326051 0.85 | QR
0.864 0.8701919 0.8652740 40473024 0.86 | QR
0.874 0.8802671 0.8755648 41708123 0.87 | QR
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0.884 0.8900763 0.8855655 43021923 0.88 | QR
0.894 0.9000195 0.8957536 44454877 0.89 | QR
0.916 0.9097526 0.9057418 45996826 0.90 | QR
0.917 0.9194142 0.9156723 47706495 0.91 | QR
0.924 0.9290227 0.9255739 49591097 0.92 | QR
0.934 0.9386534 0.9355144 51730693 0.93 | QR
0.944 0.9480433 0.9452251 54157830 0.94 | QR
0.954 0.9573362 0.9548682 57023734 0.95 | QR
0.964 0.9663990 0.9643214 60497021 0.96 | QR
0.974 0.9752900 0.9736448 64913859 0.97 | QR
0.984 0.9837543 0.9825629 70957428 0.98 | QR
0.994 0.9904968 0.9897443 79176225 0.99 | QR
0.755 0.7772962 0.7721137 32077544 0.75 | MLP
0.765 0.7867277 0.7816128 32787644 0.76 | MLP
0.775 0.7960367 0.7909830 33530219 0.77 | MLP
0.785 0.8054302 0.8004496 34294669 0.78 | MLP
0.795 0.8147148 0.8098163 35089273 0.79 | MLP
0.818 0.8241672 0.8193487 35925035 0.80 | MLP
0.819 0.8333822 0.8286703 36791220 0.81 | MLP
0.825 0.8427077 0.8381036 37696652 0.82 | MLP
0.835 0.8518436 0.8473540 38648313 0.83 | MLP
0.845 0.8611293 0.8567558 39658142 0.84 | MLP
0.855 0.8702393 0.8660009 40713010 0.85 | MLP
0.865 0.8793873 0.8753117 41836791 0.86 | MLP
0.875 0.8886169 0.8846828 43036684 0.87 | MLP
0.885 0.8976246 0.8938540 44316703 0.88 | MLP
0.895 0.9066436 0.9030612 45710048 0.89 | MLP
0.918 0.9155600 0.9121621 47204076 0.90 | MLP
0.919 0.9245195 0.9213369 48864332 0.91 | MLP
0.925 0.9333942 0.9304361 50681853 0.92 | MLP
0.935 0.9422632 0.9395424 52738839 0.93 | MLP
0.945 0.9509346 0.9484758 55072592 0.94 | MLP
0.955 0.9595790 0.9574083 57817691 0.95 | MLP
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0.965 0.9680745 0.9662363 61133569 0.96 | MLP

0.975 0.9764136 0.9749328 65343292 0.97 | MLP
0.985 0.9843404 0.9832528 71061714 0.98 | MLP
0.995 0.9906547 0.9899308 78910381 0.99 | MLP

0.756 0.7800323 0.7689542 33258734 0.75 | LSTM
0.766 0.7925745 0.7817538 34314804 0.76 | LSTM
0.776 0.8050678 0.7944884 35420910 0.77 | LSTM
0.786 0.8170601 0.8067432 36563134 0.78 | LSTM
0.796 0.8291345 0.8191205 37767676 0.79 | LSTM
0.820 0.8411632 0.8314963 39032626 0.80 | LSTM
0.8110 0.8527397 0.8433938 40367390 0.81 | LSTM
0.826 0.8641216 0.8551364 41756588 0.82 | LSTM
0.836 0.8754236 0.8668375 43247513 0.83 | LSTM
0.846 0.8862378 0.8780619 44798658 0.84 | LSTM
0.856 0.8967369 0.8889806 46462964 0.85 | LSTM
0.866 0.9071293 0.8998580 48234576 0.86 | LSTM
0.876 0.9169026 0.9100991 50115337 0.87 | LSTM
0.886 0.9264457 0.9201571 52119492 0.88 | LSTM
0.896 0.9354749 0.9296926 54289378 0.89 | LSTM
0.920 0.9441483 0.9388929 56602570 0.90 | LSTM
0.9110 0.9524408 0.9477256 59103538 0.91 | LSTM
0.926 0.9600420 0.9558571 61785933 0.92 | LSTM
0.936 0.9670912 0.9634571 64675928 0.93 | LSTM
0.946 0.9735336 0.9704474 67782153 0.94 | LSTM
0.956 0.9791851 0.9766242 71065986 0.95 | LSTM
0.966 0.9839443 0.9818740 74516871 0.96 | LSTM
0.976 0.9878332 0.9862025 77943260 0.97 | LSTM
0.986 0.9905127 0.9892215 81050177 0.98 | LSTM
0.996 0.9919008 0.9908056 83304288 0.99 | LSTM
0.757 0.7781139 0.7721524 32105916 0.75 | LightGBM
0.767 0.7874768 0.7816011 32822084 0.76 | LightGBM
0.777 0.7969502 0.7911848 33570929 0.77 | LightGBM
0.787 0.8063803 0.8007199 34343774 0.78 | LightGBM
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0.797 0.8157910 0.8102306 35150209 0.79 | LightGBM
0.827 0.8251493 0.8197063 35985024 0.80 | LightGBM
0.8111 0.8344994 0.8291945 36860952 0.81 | LightGBM
0.828 0.8437718 0.8385882 37772294 0.82 | LightGBM
0.837 0.8531093 0.8480782 38736398 0.83 | LightGBM
0.847 0.8623604 0.8574827 39749551 0.84 | LightGBM
0.857 0.8715732 0.8668728 40821839 0.85 | LightGBM
0.867 0.8806427 0.8761196 41954052 0.86 | LightGBM
0.877 0.8898594 0.8855250 43167371 0.87 | LightGBM
0.887 0.8989370 0.8948070 44468150 0.88 | LightGBM
0.897 0.9079335 0.9040349 45861533 0.89 | LightGBM
0.927 0.9169508 0.9132808 47387181 0.90 | LightGBM
0.9111 0.9258630 0.9224403 49056316 0.91 | LightGBM
0.928 0.9347422 0.9315899 50907774 0.92 | LightGBM
0.937 0.9433968 0.9405152 52976540 0.93 | LightGBM
0.947 0.9521210 0.9495486 55359804 0.94 | LightGBM
0.957 0.9605889 0.9583396 58133671 0.95 | LightGBM
0.967 0.9688799 0.9669812 61492958 0.96 | LightGBM
0.977 0.9770392 0.9755327 65752224 0.97 | LightGBM
0.987 0.9847682 0.9836662 71518743 0.98 | LightGBM
0.997 0.9907316 0.9900073 79246300 0.99 | LightGBM
0.758 0.7806374 0.7751582 32354705 0.75 | RF
0.768 0.7898578 0.7844401 33067419 0.76 | RF
0.778 0.7992334 0.7939104 33812532 0.77 | RF
0.788 0.8085333 0.8032788 34588881 0.78 | RF
0.798 0.8178193 0.8126698 35389716 0.79 | RF
0.829 0.8270418 0.8219896 36220271 0.80 | RF
0.8112 0.8362808 0.8313409 37090688 0.81 | RF
0.8210 0.8454281 0.8406085 38006435 0.82 | RF
0.838 0.8546065 0.8499013 38962476 0.83 | RF
0.848 0.8636784 0.8591274 39967465 0.84 | RF
0.858 0.8726749 0.8682653 41030407 0.85 | RF
0.868 0.8818019 0.8775581 42161397 0.86 | RF
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0.878 0.8907300 0.8866581 43361488 0.87 | RF
0.888 0.8996337 0.8957401 44652267 0.88 | RF
0.898 0.9086234 0.9049320 46046752 0.89 | RF
0.929 0.9173228 0.9138357 47546099 0.90 | RF
0.9112 0.9262527 0.9229817 49206705 091 | RF
0.9210 0.9349564 0.9319322 51039532 0.92 | RF
0.938 0.9436701 0.9409052 53095331 0.93 | RF
0.948 0.9522183 0.9497260 55444357 0.94 | RF
0.958 0.9606721 0.9584874 58190478 0.95 | RF
0.968 0.9689388 0.9670938 61513880 0.96 | RF
0.978 0.9770174 0.9755345 65725504 0.97 | RF
0.988 0.9847491 0.9836626 71436971 0.98 | RF
0.998 0.9907489 0.9900263 79161129 0.99 | RF
Table 15: IPM values for SIM4

AchievedFillRates_Avg | AchievedFillRates_Total | HoldingCosts | TargetFillRates | Method
0.75 0.7742640 0.7670440 22355860 0.75 | Croston
0.76 0.7861326 0.7789816 22957806 0.76 | Croston
0.77 0.7980579 0.7909848 23578620 0.77 | Croston
0.78 0.8098851 0.8029249 24233149 0.78 | Croston
0.79 0.8215289 0.8147067 24906352 0.79 | Croston
0.8 0.8330974 0.8263908 25618805 0.80 | Croston
0.81 0.8447542 0.8382456 26370994 0.81 | Croston
0.82 0.8561924 0.8498531 27157550 0.82 | Croston
0.83 0.8671939 0.8610229 27981358 0.83 | Croston
0.84 0.8784413 0.8725562 28863124 0.84 | Croston
0.85 0.8893741 0.8837075 29804210 0.85 | Croston
0.86 0.8999892 0.8945929 30799496 0.86 | Croston
0.87 0.9104557 0.9053658 31867979 0.87 | Croston
0.88 0.9206338 0.9158370 33031255 0.88 | Croston
0.89 0.9303775 0.9259274 34275678 0.89 | Croston
0.9 0.9398800 0.9357854 35662787 0.90 | Croston
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0.91 0.9489046 0.9451871 37163950 0.91 | Croston
0.92 0.9575069 0.9542167 38863830 0.92 | Croston
0.93 0.9656202 0.9627603 40765670 0.93 | Croston
0.94 0.9730645 0.9706685 42955812 0.94 | Croston
0.95 0.9797143 0.9777976 45466751 0.95 | Croston
0.96 0.9851446 0.9836830 48295049 0.96 | Croston
0.97 0.9888856 0.9877904 51222605 0.97 | Croston
0.98 0.9907451 0.9898676 53705061 0.98 | Croston
0.99 0.9911758 0.9903658 55100241 0.99 | Croston
0.751 0.7729708 0.7653798 22296521 0.75 | SBA
0.761 0.7850935 0.7776104 22904245 0.76 | SBA
0.771 0.7971521 0.7897459 23536064 0.77 | SBA
0.781 0.8091776 0.8019085 24200580 0.78 | SBA
0.791 0.8209859 0.8138672 24886896 0.79 | SBA
0.810 0.8326658 0.8256713 25607517 0.80 | SBA
0.811 0.8444856 0.8377103 26372447 0.81 | SBA
0.821 0.8561978 0.8496318 27177902 0.82 | SBA
0.831 0.8672130 0.8608090 28008030 0.83 | SBA
0.841 0.8786695 0.8725871 28916067 0.84 | SBA
0.851 0.8897523 0.8839016 29867216 0.85 | SBA
0.861 0.9004287 0.8948414 30885521 0.86 | SBA
0.871 0.9110759 0.9058295 31973967 0.87 | SBA
0.881 0.9212533 0.9163316 33161406 0.88 | SBA
0.891 0.9311280 0.9265555 34431606 0.89 | SBA
0.910 0.9406017 0.9364222 35838299 0.90 | SBA
0.911 0.9497083 0.9459339 37373138 0.91 | SBA
0.921 0.9582888 0.9549561 39101284 0.92 | SBA
0.931 0.9662793 0.9633983 41028898 0.93 | SBA
0.941 0.9736955 0.9713027 43245912 0.94 | SBA
0.951 0.9802405 0.9783355 45773609 0.95 | SBA
0.961 0.9854873 0.9840391 48590585 0.96 | SBA
0.971 0.9890603 0.9879758 51458087 0.97 | SBA
0.981 0.9907795 0.9899059 53833517 0.98 | SBA
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0.991 0.9911768 0.9903671 55132431 0.99 | SBA
0.752 0.7953476 0.7887976 23580543 0.75 | DLP
0.762 0.8060370 0.7995420 24164067 0.76 | DLP
0.772 0.8167128 0.8102605 24775697 0.77 | DLP
0.782 0.8273923 0.8211151 25402273 0.78 | DLP
0.792 0.8377606 0.8316011 26061037 0.79 | DLP
0.812 0.8481112 0.8420526 26744390 0.80 | DLP
0.813 0.8585720 0.8526598 27473111 0.81 | DLP
0.822 0.8686505 0.8629183 28229000 0.82 | DLP
0.832 0.8786072 0.8730446 29018707 0.83 | DLP
0.842 0.8886429 0.8833291 29867475 0.84 | DLP
0.852 0.8983077 0.8931747 30760996 0.85 | DLP
0.862 0.9076501 0.9027607 31707658 0.86 | DLP
0.872 0.9170276 0.9124097 32728613 0.87 | DLP
0.882 0.9260775 0.9217051 33820982 0.88 | DLP
0.892 0.9347834 0.9307359 35001185 0.89 | DLP
0.912 0.9434276 0.9396727 36297433 0.90 | DLP
0.913 0.9514560 0.9480717 37705908 0.91 | DLP
0.922 0.9593093 0.9562617 39291010 0.92 | DLP
0.932 0.9666808 0.9640178 41061010 0.93 | DLP
0.942 0.9735185 0.9712632 43083494 0.94 | DLP
0.952 0.9797036 0.9778743 45411804 0.95 | DLP
0.962 0.9849115 0.9834790 48059288 0.96 | DLP
0.972 0.9886566 0.9875542 50870857 0.97 | DLP
0.982 0.9906322 0.9897464 53419521 0.98 | DLP
0.992 0.9911642 0.9903522 55004076 0.99 | DLP
0.753 0.8326600 0.8255971 25501850 0.75 | Willemain
0.763 0.8411109 0.8341988 26038226 0.76 | Willemain
0.773 0.8493537 0.8425966 26587798 0.77 | Willemain
0.783 0.8575546 0.8509980 27158380 0.78 | Willemain
0.793 0.8655356 0.8591695 27749299 0.79 | Willemain
0.814 0.8736113 0.8674424 28368427 0.80 | Willemain
0.815 0.8814504 0.8754779 29011041 0.81 | Willemain
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0.823 0.8891759 0.8834416 29674466 0.82 | Willemain
0.833 0.8967927 0.8912793 30368382 0.83 | Willemain
0.843 0.9043616 0.8990527 31113195 0.84 | Willemain
0.853 0.9115454 0.9064996 31880630 0.85 | Willemain
0.863 0.9188802 0.9140924 32694307 0.86 | Willemain
0.873 0.9258353 0.9212847 33563779 0.87 | Willemain
0.883 0.9327715 0.9284967 34487736 0.88 | Willemain
0.893 0.9395985 0.9356271 35481247 0.89 | Willemain
0.914 0.9461517 0.9424583 36560420 0.90 | Willemain
0.915 0.9524982 0.9491115 37728002 0.91 | Willemain
0.923 0.9586915 0.9556237 39019093 0.92 | Willemain
0.933 0.9646450 0.9618899 40454068 0.93 | Willemain
0.943 0.9704494 0.9680423 42087829 0.94 | Willemain
0.953 0.9759269 0.9738733 43976075 0.95 | Willemain
0.963 0.9812545 0.9795731 46237330 0.96 | Willemain
0.973 0.9862293 0.9849244 49039189 0.97 | Willemain
0.983 0.9908760 0.9899578 52786186 0.98 | Willemain
0.993 0.9951729 0.9946352 58594299 0.99 | Willemain
0.754 0.7744098 0.7666991 22427970 0.75 | QR
0.764 0.7865189 0.7789013 23048931 0.76 | QR
0.774 0.7985573 0.7910540 23687673 0.77 | QR
0.784 0.8103755 0.8030856 24359547 0.78 | QR
0.794 0.8221426 0.8150504 25060157 0.79 | QR
0.816 0.8340170 0.8270832 25800385 0.80 | QR
0.817 0.8456978 0.8389912 26575831 0.81 | QR
0.824 0.8571487 0.8506914 27394605 0.82 | QR
0.834 0.8683029 0.8620998 28247059 0.83 | QR
0.844 0.8795137 0.8736084 29168821 0.84 | QR
0.854 0.8905158 0.8849019 30141135 0.85 | QR
0.864 0.9011035 0.8957873 31176276 0.86 | QR
0.874 0.9113867 0.9064514 32284950 0.87 | QR
0.884 0.9214584 0.9168459 33495138 0.88 | QR
0.894 0.9311240 0.9269413 34786222 0.89 | QR
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0.916 0.9405366 0.9367177 36220954 0.90 | QR
0.917 0.9492881 0.9459240 37774261 091 | QR
0.924 0.9577200 0.9547755 39525349 0.92 | QR
0.934 0.9655068 0.9630051 41474996 0.93 | QR
0.944 0.9726406 0.9706141 43679863 094 | QR
0.954 0.9788918 0.9773266 46169530 0.95 | QR
0.964 0.9839678 0.9828336 48906198 0.96 | QR
0.974 0.9874422 0.9866356 51651097 097 | QR
0.984 0.9891572 0.9885421 53868113 0.98 | QR
0.994 0.9895338 0.9889699 55040130 0.99 | QR
0.755 0.7719820 0.7645044 22254120 0.75 | MLP
0.765 0.7838434 0.7764161 22844176 0.76 | MLP
0.775 0.7960008 0.7886900 23467025 0.77 | MLP
0.785 0.8075847 0.8004557 24105097 0.78 | MLP
0.795 0.8190645 0.8120558 24766071 0.79 | MLP
0.818 0.8306155 0.8237808 25464731 0.80 | MLP
0.819 0.8423115 0.8357159 26207597 0.81 | MLP
0.825 0.8538254 0.8474100 26988910 0.82 | MLP
0.835 0.8647681 0.8585538 27788754 0.83 | MLP
0.845 0.8759857 0.8700611 28654713 0.84 | MLP
0.855 0.8871939 0.8815289 29588967 0.85 | MLP
0.865 0.8976189 0.8922116 30556194 0.86 | MLP
0.875 0.9082865 0.9032144 31616930 0.87 | MLP
0.885 0.9185306 0.9137685 32751981 0.88 | MLP
0.895 0.9283953 0.9239813 33979800 0.89 | MLP
0.918 0.9380797 0.9340346 35330714 0.90 | MLP
0.919 0.9471978 0.9435526 36808587 0.91 | MLP
0.925 0.9560879 0.9528344 38481143 0.92 | MLP
0.935 0.9642261 0.9613941 40346367 0.93 | MLP
0.945 0.9718143 0.9694456 42488752 0.94 | MLP
0.955 0.9785740 0.9766737 44948921 0.95 | MLP
0.965 0.9842349 0.9827755 47707378 0.96 | MLP
0.975 0.9882718 0.9871635 50559875 0.97 | MLP

77



0.985 0.9904740 0.9895807 53124631 0.98 | MLP

0.995 0.9911402 0.9903263 54850228 0.99 | MLP

0.756 0.8524185 0.8406716 27934481 0.75 | LSTM
0.766 0.8638138 0.8524171 28832926 0.76 | LSTM
0.776 0.8749118 0.8639847 29756988 0.77 | LSTM
0.786 0.8852849 0.8748795 30720936 0.78 | LSTM
0.796 0.8952637 0.8853520 31724192 0.79 | LSTM
0.820 0.9051474 0.8957680 32767952 0.80 | LSTM
0.8110 0.9145091 0.9056687 33855279 0.81 | LSTM
0.826 0.9233015 0.9150359 34982705 0.82 | LSTM
0.836 0.9316930 0.9239809 36161844 0.83 | LSTM
0.846 0.9394695 0.9323177 37392693 0.84 | LSTM
0.856 0.9469582 0.9404120 38670043 0.85 | LSTM
0.866 0.9538404 0.9478496 40002334 0.86 | LSTM
0.876 0.9600787 0.9546771 41367213 0.87 | LSTM
0.886 0.9658505 0.9610277 42782352 0.88 | LSTM
0.896 0.9710195 0.9667216 44235722 0.89 | LSTM
0.920 0.9755433 0.9717588 45716577 0.90 | LSTM
0.9110 0.9794334 0.9761373 47194499 0.91 | LSTM
0.926 0.9827058 0.9798410 48651922 0.92 | LSTM
0.936 0.9854698 0.9830112 50054415 0.93 | LSTM
0.946 0.9875611 0.9854399 51345089 0.94 | LSTM
0.956 0.9890124 0.9871372 52478699 0.95 | LSTM
0.966 0.9899500 0.9882606 53420685 0.96 | LSTM
0.976 0.9904728 0.9888971 54112605 0.97 | LSTM
0.986 0.9906528 0.9891173 54521663 0.98 | LSTM
0.996 0.9907173 0.9891941 54716174 0.99 | LSTM
0.757 0.7838920 0.7764890 22951433 0.75 | LightGBM
0.767 0.7954688 0.7882016 23563522 0.76 | LightGBM
0.777 0.8069795 0.7998487 24194941 0.77 | LightGBM
0.787 0.8184317 0.8115044 24855923 0.78 | LightGBM
0.797 0.8298863 0.8231205 25551814 0.79 | LightGBM
0.827 0.8410667 0.8344968 26275084 0.80 | LightGBM
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0.8111 0.8523301 0.8459967 27044064 0.81 | LightGBM
0.828 0.8633996 0.8572803 27842590 0.82 | LightGBM
0.837 0.8740500 0.8681867 28681723 0.83 | LightGBM
0.847 0.8849539 0.8793887 29588552 0.84 | LightGBM
0.857 0.8954805 0.8901875 30542409 0.85 | LightGBM
0.867 0.9055309 0.9005203 31556964 0.86 | LightGBM
0.877 0.9155343 0.9108468 32652336 0.87 | LightGBM
0.887 0.9252367 0.9208841 33827128 0.88 | LightGBM
0.897 0.9344947 0.9304836 35100378 0.89 | LightGBM
0.927 0.9433928 0.9397506 36491354 0.90 | LightGBM
0.9111 0.9519355 0.9486676 38016950 0.91 | LightGBM
0.928 0.9600220 0.9571309 39713697 0.92 | LightGBM
0.937 0.9675030 0.9649933 41607714 0.93 | LightGBM
0.947 0.9743430 0.9722511 43735643 0.94 | LightGBM
0.957 0.9804146 0.9787398 46134069 0.95 | LightGBM
0.967 0.9853680 0.9840576 48762863 0.96 | LightGBM
0.977 0.9888626 0.9878213 51404849 0.97 | LightGBM
0.987 0.9906184 0.9897464 53654741 0.98 | LightGBM
0.997 0.9911204 0.9903028 55007180 0.99 | LightGBM
0.758 0.7886884 0.7804357 23165942 0.75 | RF
0.768 0.8002095 0.7920976 23780559 0.76 | RF
0.778 0.8117368 0.8037632 24423236 0.77 | RF
0.788 0.8227839 0.8150220 25080150 0.78 | RF
0.798 0.8339637 0.8264032 25777122 0.79 | RF
0.829 0.8452464 0.8379143 26511664 0.80 | RF
0.8112 0.8562051 0.8491038 27270631 0.81 | RF
0.8210 0.8668791 0.8600350 28074305 0.82 | RF
0.838 0.8774393 0.8709093 28923302 0.83 | RF
0.848 0.8880712 0.8818368 29826105 0.84 | RF
0.858 0.8982209 0.8923018 30779079 0.85 | RF
0.868 0.9082311 0.9026407 31797326 0.86 | RF
0.878 0.9181172 0.9128968 32897234 0.87 | RF
0.888 0.9274340 0.9225978 34063687 0.88 | RF
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0.898 0.9365942 0.9321330 35336800 0.89 | RF
0.929 0.9452740 0.9412306 36725333 0.90 | RF
0.9112 0.9535515 0.9499226 38240774 091 | RF
0.9210 0.9613488 0.9581522 39926043 0.92 | RF
0.938 0.9685944 0.9658514 41797421 0.93 | RF
0.948 0.9751828 0.9729113 43898464 0.94 | RF
0.958 0.9809633 0.9791664 46243299 0.95 | RF
0.968 0.9856789 0.9842950 48785247 0.96 | RF
0.978 0.9889435 0.9878695 51345735 0.97 | RF
0.988 0.9906379 0.9897526 53557385 0.98 | RF
0.998 0.9911527 0.9903374 54972161 0.99 | RF
Table 16: IPM values for MAN

AchievedFillRates_Avg | AchievedFillRates_Total | HoldingCosts | TargetFillRates | Method
0.75 0.6734819 0.7103484 91837.78 0.75 | Croston
0.76 0.6822701 0.7220733 94884.23 0.76 | Croston
0.77 0.6897269 0.7339199 98059.45 0.77 | Croston
0.78 0.6972481 0.7456895 101365.15 0.78 | Croston
0.79 0.7054504 0.7574242 104914.72 0.79 | Croston
0.8 0.7138291 0.7691326 108576.71 0.80 | Croston
0.81 0.7217973 0.7809129 112392.51 0.81 | Croston
0.82 0.7305667 0.7926313 116337.22 0.82 | Croston
0.83 0.7384567 0.8045922 120534.61 0.83 | Croston
0.84 0.7461041 0.8167415 124848.36 0.84 | Croston
0.85 0.7536951 0.8289883 129343.62 0.85 | Croston
0.86 0.7606159 0.8414460 133875.53 0.86 | Croston
0.87 0.7674174 0.8540950 138803.38 0.87 | Croston
0.88 0.7745193 0.8672375 143943.98 0.88 | Croston
0.89 0.7808530 0.8797479 149199.60 0.89 | Croston
0.9 0.7867527 0.8892916 154504.86 0.90 | Croston
0.91 0.7923890 0.8974688 160017.99 0.91 | Croston
0.92 0.7976095 0.9053799 165952.14 0.92 | Croston
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0.93 0.8029400 0.9133017 171792.17 0.93 | Croston
0.94 0.8074070 0.9211997 177939.54 0.94 | Croston
0.95 0.8118564 0.9292473 184177.72 0.95 | Croston
0.96 0.8154405 0.9371947 190114.32 0.96 | Croston
0.97 0.8188170 0.9447769 196038.71 0.97 | Croston
0.98 0.8212882 0.9519788 202035.89 0.98 | Croston
0.99 0.8230571 0.9575141 207498.77 0.99 | Croston
0.751 0.6876678 0.7156073 98888.94 0.75 | SBA
0.761 0.6952528 0.7272181 101986.33 0.76 | SBA
0.771 0.7030550 0.7387451 105212.70 0.77 | SBA
0.781 0.7101538 0.7504206 108470.95 0.78 | SBA
0.791 0.7177245 0.7621423 111918.11 0.79 | SBA
0.810 0.7250117 0.7741414 115430.39 0.80 | SBA
0.811 0.7328877 0.7858138 119203.82 0.81 | SBA
0.821 0.7404670 0.7976427 122979.45 0.82 | SBA
0.831 0.7478598 0.8096890 127075.19 0.83 | SBA
0.841 0.7544639 0.8216806 131322.18 0.84 | SBA
0.851 0.7613051 0.8338221 135743.79 0.85 | SBA
0.861 0.7680029 0.8462160 140223.81 0.86 | SBA
0.871 0.7740193 0.8588503 145014.96 0.87 | SBA
0.881 0.7801505 0.8718868 149867.37 0.88 | SBA
0.891 0.7857263 0.8836114 154859.85 0.89 | SBA
0.910 0.7910352 0.8923155 159856.94 0.90 | SBA
0.911 0.7960007 0.9001410 164990.74 0.91 | SBA
0.921 0.8009015 0.9078614 170427.01 0.92 | SBA
0.931 0.8053932 0.9154758 175796.85 0.93 | SBA
0.941 0.8095474 0.9231161 181355.49 0.94 | SBA
0.951 0.8133805 0.9308997 186830.82 0.95 | SBA
0.961 0.8167299 0.9385184 191978.21 0.96 | SBA
0.971 0.8195780 0.9458860 197289.51 0.97 | SBA
0.981 0.8217509 0.9529505 202793.45 0.98 | SBA
0.991 0.8231120 0.9576565 208014.79 0.99 | SBA
0.752 0.6545046 0.6905383 84858.02 0.75 | DLP
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0.762 0.6630815 0.7021365 87695.83 0.76 | DLP
0.772 0.6717917 0.7138837 90569.16 0.77 | DLP
0.782 0.6799123 0.7257599 93660.23 0.78 | DLP
0.792 0.6883098 0.7376243 96808.77 0.79 | DLP
0.812 0.6959622 0.7494419 100092.04 0.80 | DLP
0.813 0.7047495 0.7614159 103632.11 0.81 | DLP
0.822 0.7127020 0.7732461 107359.62 0.82 | DLP
0.832 0.7208125 0.7851467 111282.29 0.83 | DLP
0.842 0.7292435 0.7971698 115339.72 0.84 | DLP
0.852 0.7372273 0.8094323 119605.14 0.85 | DLP
0.862 0.7455483 0.8216600 124146.02 0.86 | DLP
0.872 0.7536078 0.8342136 128923.78 0.87 | DLP
0.882 0.7614003 0.8470201 133949.58 0.88 | DLP
0.892 0.7689359 0.8603988 139303.70 0.89 | DLP
0.912 0.7764201 0.8741181 144944.51 0.90 | DLP
0.913 0.7828239 0.8865018 150818.98 0.91 | DLP
0.922 0.7897419 0.8972874 156895.23 0.92 | DLP
0.932 0.7955845 0.9060207 163353.24 0.93 | DLP
0.942 0.8016658 0.9148797 170170.83 0.94 | DLP
0.952 0.8072391 0.9238029 177190.94 0.95 | DLP
0.962 0.8122260 0.9327367 184229.80 0.96 | DLP
0.972 0.8164340 0.9413075 191508.20 0.97 | DLP
0.982 0.8201018 0.9499886 198947.83 0.98 | DLP
0.992 0.8226713 0.9570829 205993.28 0.99 | DLP
0.753 0.7317528 0.7429168 110022.12 0.75 | Willemain
0.763 0.7380484 0.7521084 112695.86 0.76 | Willemain
0.773 0.7431109 0.7613291 115480.93 0.77 | Willemain
0.783 0.7483886 0.7703278 118207.01 0.78 | Willemain
0.793 0.7532631 0.7792921 121118.09 0.79 | Willemain
0.814 0.7585389 0.7882145 124210.93 0.80 | Willemain
0.815 0.7637725 0.7970473 127283.32 0.81 | Willemain
0.823 0.7688027 0.8056975 130431.12 0.82 | Willemain
0.833 0.7735231 0.8142114 133848.77 0.83 | Willemain
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0.843 0.7780662 0.8226621 137273.41 0.84 | Willemain
0.853 0.7829727 0.8309915 140920.21 0.85 | Willemain
0.863 0.7875419 0.8391601 144816.29 0.86 | Willemain
0.873 0.7921167 0.8472863 148811.68 0.87 | Willemain
0.883 0.7967370 0.8555028 153085.46 0.88 | Willemain
0.893 0.8010899 0.8638021 157640.41 0.89 | Willemain
0.914 0.8056166 0.8722287 162492.77 0.90 | Willemain
0.915 0.8098164 0.8805784 167622.13 0.91 | Willemain
0.923 0.8139718 0.8888368 173153.51 0.92 | Willemain
0.933 0.8185462 0.8973222 179150.53 0.93 | Willemain
0.943 0.8229966 0.9055288 185680.07 0.94 | Willemain
0.953 0.8275375 0.9138365 192784.01 0.95 | Willemain
0.963 0.8318687 0.9225498 201075.96 0.96 | Willemain
0.973 0.8361934 0.9309693 210592.45 0.97 | Willemain
0.983 0.8409132 0.9396269 222478.75 0.98 | Willemain
0.993 0.8462830 0.9497288 239581.73 0.99 | Willemain
0.754 0.0721134 0.3335347 22396.94 0.75 | QR
0.764 0.0724512 0.3352854 22767.45 0.76 | QR
0.774 0.0727295 0.3369178 23146.95 0.77 | QR
0.784 0.0730660 0.3385574 23535.40 0.78 | QR
0.794 0.0733426 0.3400752 23926.25 0.79 | QR
0.816 0.0736226 0.3415268 24303.00 0.80 | QR
0.817 0.0738875 0.3429913 24667.37 0.81 | QR
0.824 0.0741416 0.3444181 25030.53 0.82 | QR
0.834 0.0744050 0.3457693 25378.74 0.83 | QR
0.844 0.0746576 0.3471447 25723.38 0.84 | QR
0.854 0.0749005 0.3485228 26089.59 0.85 | QR
0.864 0.0751180 0.3498607 26472.01 0.86 | QR
0.874 0.0753065 0.3511124 26861.59 0.87 | QR
0.884 0.0755213 0.3523025 27265.27 0.88 | QR
0.894 0.0757314 0.3534515 27683.69 0.89 | QR
0.916 0.0759017 0.3545510 28109.33 0.90 | QR
0.917 0.0760837 0.3556728 28536.72 0.91 | QR
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0.924 0.0762825 0.3567581 28973.04 0.92 | QR

0.934 0.0764867 0.3578672 29425.91 0.93 | QR

0.944 0.0766863 0.3590122 29877.16 0.94 | QR

0.954 0.0768740 0.3602274 30317.93 0.95 | QR

0.964 0.0770062 0.3612065 30744.03 0.96 | QR

0.974 0.0771204 0.3619326 31163.56 0.97 | QR

0.984 0.0772336 0.3623329 31512.56 0.98 | QR

0.994 0.0772992 0.3625415 31769.57 0.99 | QR

0.755 0.6596059 0.7897659 80579.72 0.75 | MLP
0.765 0.6673476 0.8005812 83297.69 0.76 | MLP
0.775 0.6744515 0.8114514 86069.40 0.77 | MLP
0.785 0.6808039 0.8221566 89049.64 0.78 | MLP
0.795 0.6883513 0.8331298 92157.32 0.79 | MLP
0.818 0.6962391 0.8427137 95384.52 0.80 | MLP
0.819 0.7025343 0.8519701 98722.47 0.81 | MLP
0.825 0.7097596 0.8611979 102347.16 0.82 | MLP
0.835 0.7173899 0.8696013 106094.04 0.83 | MLP
0.845 0.7241538 0.8767716 109876.73 0.84 | MLP
0.855 0.7316017 0.8839304 114007.29 0.85 | MLP
0.865 0.7388830 0.8908905 118294.48 0.86 | MLP
0.875 0.7453045 0.8975039 122771.30 0.87 | MLP
0.885 0.7518215 0.9036608 127572.35 0.88 | MLP
0.895 0.7588357 0.9095077 132584.79 0.89 | MLP
0.918 0.7649809 0.9152244 137934.24 0.90 | MLP
0.919 0.7709382 0.9206013 143664.85 0.91 | MLP
0.925 0.7775365 0.9257413 149539.11 0.92 | MLP
0.935 0.7830428 0.9308491 155978.70 0.93 | MLP
0.945 0.7890872 0.9356755 162704.39 0.94 | MLP
0.955 0.7953369 0.9400991 169973.19 0.95 | MLP
0.965 0.8011999 0.9441164 177848.16 0.96 | MLP
0.975 0.8062980 0.9480344 186373.57 0.97 | MLP
0.985 0.8118424 0.9518352 195094.89 0.98 | MLP
0.995 0.8172846 0.9552229 204567.78 0.99 | MLP

84



0.756 0.7122287 0.9330413 136490.63 0.75 | LSTM
0.766 0.7143208 0.9342090 138255.93 0.76 | LSTM
0.776 0.7172173 0.9353486 140036.74 0.77 | LSTM
0.786 0.7197988 0.9364373 141857.14 0.78 | LSTM
0.796 0.7223669 0.9375012 143571.26 0.79 | LSTM
0.820 0.7263994 0.9385176 145368.65 0.80 | LSTM
0.8110 0.7287696 0.9394547 147308.27 0.81 | LSTM
0.826 0.7314167 0.9403530 149113.81 0.82 | LSTM
0.836 0.7345666 0.9412972 151009.33 0.83 | LSTM
0.846 0.7372089 0.9422051 152824.33 0.84 | LSTM
0.856 0.7399918 0.9431360 154796.77 0.85 | LSTM
0.866 0.7428663 0.9440291 156690.13 0.86 | LSTM
0.876 0.7452654 0.9449482 158674.83 0.87 | LSTM
0.886 0.7476752 0.9458216 160637.67 0.88 | LSTM
0.896 0.7510076 0.9466781 162764.49 0.89 | LSTM
0.920 0.7539560 0.9475199 164864.80 0.90 | LSTM
0.9110 0.7577999 0.9483612 167048.34 0.91 | LSTM
0.926 0.7603664 0.9490668 169132.40 0.92 | LSTM
0.936 0.7631713 0.9497692 171421.89 0.93 | LSTM
0.946 0.7661285 0.9504722 173912.50 0.94 | LSTM
0.956 0.7698157 0.9511740 176522.81 0.95 | LSTM
0.966 0.7730635 0.9517907 179303.93 0.96 | LSTM
0.976 0.7771721 0.9524930 182384.24 0.97 | LSTM
0.986 0.7821269 0.9533309 185928.12 0.98 | LSTM
0.996 0.7883397 0.9544392 190842.58 0.99 | LSTM
0.757 0.7180564 0.8531650 120812.44 0.75 | LightGBM
0.767 0.7237552 0.8585625 123228.90 0.76 | LightGBM
0.777 0.7285607 0.8640129 125843.17 0.77 | LightGBM
0.787 0.7339752 0.8694848 128499.13 0.78 | LightGBM
0.797 0.7394325 0.8749275 131190.34 0.79 | LightGBM
0.827 0.7444716 0.8800498 133916.31 0.80 | LightGBM
0.8111 0.7494324 0.8847907 136827.46 0.81 | LightGBM
0.828 0.7539437 0.8893573 139578.73 0.82 | LightGBM
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0.837 0.7581147 0.8936285 142445.86 0.83 | LightGBM
0.847 0.7625703 0.8976344 145371.04 0.84 | LightGBM
0.857 0.7666324 0.9016764 148468.00 0.85 | LightGBM
0.867 0.7718215 0.9057431 151610.73 0.86 | LightGBM
0.877 0.7757529 0.9098158 154814.41 0.87 | LightGBM
0.887 0.7796255 0.9136035 158313.27 0.88 | LightGBM
0.897 0.7835963 0.9171662 161732.58 0.89 | LightGBM
0.927 0.7876064 0.9207317 165441.84 0.90 | LightGBM
0.9111 0.7913682 0.9240437 169125.12 0.91 | LightGBM
0.928 0.7954508 0.9274640 173091.95 0.92 | LightGBM
0.937 0.7992033 0.9308061 177254.67 0.93 | LightGBM
0.947 0.8025041 0.9342717 181603.16 0.94 | LightGBM
0.957 0.8058832 0.9379568 186018.03 0.95 | LightGBM
0.967 0.8092889 0.9415628 190362.92 0.96 | LightGBM
0.977 0.8125164 0.9451398 195094.65 0.97 | LightGBM
0.987 0.8156188 0.9484138 200405.96 0.98 | LightGBM
0.997 0.8188207 0.9530141 205553.88 0.99 | LightGBM
0.758 0.7158143 0.8351692 111821.03 0.75 | RF
0.768 0.7221260 0.8417242 114513.47 0.76 | RF
0.778 0.7275667 0.8481153 117324.05 0.77 | RF
0.788 0.7330107 0.8543450 120203.21 0.78 | RF
0.798 0.7393551 0.8604996 123190.22 0.79 | RF
0.829 0.7440802 0.8666099 126191.57 0.80 | RF
0.8112 0.7496285 0.8727799 129317.11 0.81 | RF
0.8210 0.7547958 0.8788146 132373.82 0.82 | RF
0.838 0.7596620 0.8841959 135606.39 0.83 | RF
0.848 0.7643886 0.8894140 138847.19 0.84 | RF
0.858 0.7687151 0.8945088 142269.27 0.85 | RF
0.868 0.7741417 0.8996247 145873.25 0.86 | RF
0.878 0.7781993 0.9044567 149495.70 0.87 | RF
0.888 0.7822405 0.9093267 153391.79 0.88 | RF
0.898 0.7862213 0.9142546 157220.34 0.89 | RF
0.929 0.7896940 0.9188878 161362.01 0.90 | RF
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0.9112 0.7936245 0.9233114 165487.44 0.91 | RF
0.9210 0.7974709 0.9275943 169890.82 0.92 | RF
0.938 0.8014801 0.9319685 174533.68 0.93 | RF
0.948 0.8046493 0.9361680 179508.28 0.94 | RF
0.958 0.8079550 0.9404348 184571.31 0.95 | RF
0.968 0.8113828 0.9445644 189544.48 0.96 | RF
0.978 0.8142065 0.9482306 194880.82 0.97 | RF
0.988 0.8172539 0.9516104 200796.96 0.98 | RF
0.998 0.8202057 0.9553530 206611.10 0.99 | RF
Table 17: IPM values for BRAF

AchievedFillRates_Avg | AchievedFillRates_Total | HoldingCosts | TargetFillRates | Method
0.75 0.8471975 0.6616482 470776.5 0.75 | Croston
0.76 0.8540241 0.6715195 486981.0 0.76 | Croston
0.77 0.8610106 0.6816066 502468.9 0.77 | Croston
0.78 0.8669248 0.6911707 517899.5 0.78 | Croston
0.79 0.8728567 0.7006825 535225.0 0.79 | Croston
0.8 0.8785274 0.7101158 550467.6 0.80 | Croston
0.81 0.8837557 0.7196015 567575.8 0.81 | Croston
0.82 0.8884491 0.7289956 585668.2 0.82 | Croston
0.83 0.8930882 0.7385728 602292.0 0.83 | Croston
0.84 0.8977482 0.7480519 621434.5 0.84 | Croston
0.85 0.9025882 0.7576160 638283.1 0.85 | Croston
0.86 0.9067809 0.7667944 656148.7 0.86 | Croston
0.87 0.9111361 0.7759989 675870.8 0.87 | Croston
0.88 0.9146816 0.7848897 695101.6 0.88 | Croston
0.89 0.9182887 0.7932378 716236.0 0.89 | Croston
0.9 0.9212318 0.8010826 733912.7 0.90 | Croston
0.91 0.9239086 0.8082344 751782.1 0.91 | Croston
0.92 0.9260444 0.8144971 767668.0 0.92 | Croston
0.93 0.9277455 0.8200016 780173.3 0.93 | Croston
0.94 0.9289331 0.8243554 789283.0 0.94 | Croston
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0.95 0.9298184 0.8272580 795923.5 0.95 | Croston
0.96 0.9303918 0.8291865 799556.5 0.96 | Croston
0.97 0.9307554 0.8304613 802117.8 0.97 | Croston
0.98 0.9309457 0.8314353 803688.3 0.98 | Croston
0.99 0.9310939 0.8317491 804622.7 0.99 | Croston
0.751 0.8621064 0.6871960 514959.9 0.75 | SBA
0.761 0.8681459 0.6962567 531494.3 0.76 | SBA
0.771 0.8735589 0.7050952 546324.7 0.77 | SBA
0.781 0.8788641 0.7139794 561180.2 0.78 | SBA
0.791 0.8837524 0.7225433 575057.2 0.79 | SBA
0.810 0.8884374 0.7306757 588804.4 0.80 | SBA
0.811 0.8928821 0.7389389 603120.1 0.81 | SBA
0.821 0.8969631 0.7470386 619403.4 0.82 | SBA
0.831 0.9008089 0.7550010 635888.0 0.83 | SBA
0.841 0.9046769 0.7630746 651059.6 0.84 | SBA
0.851 0.9080328 0.7711351 666516.4 0.85 | SBA
0.861 0.9114622 0.7792545 681360.5 0.86 | SBA
0.871 0.9148705 0.7872562 698796.8 0.87 | SBA
0.881 0.9180439 0.7946956 717011.4 0.88 | SBA
0.891 0.9208300 0.8017102 733455.9 0.89 | SBA
0.910 0.9234552 0.8083063 749979.0 0.90 | SBA
0.911 0.9257096 0.8141899 765339.6 0.91 | SBA
0.921 0.9271480 0.8190537 777979.1 0.92 | SBA
0.931 0.9284117 0.8232702 786720.0 0.93 | SBA
0.941 0.9294110 0.8265258 794404.0 0.94 | SBA
0.951 0.9299147 0.8283170 798520.8 0.95 | SBA
0.961 0.9304999 0.8297422 800921.4 0.96 | SBA
0.971 0.9307714 0.8306378 802626.7 0.97 | SBA
0.981 0.9309417 0.8311477 803764.2 0.98 | SBA
0.991 0.9310831 0.8316053 804599.3 0.99 | SBA
0.752 0.8192422 0.6204566 417902.0 0.75 | DLP
0.762 0.8255295 0.6309490 431207.7 0.76 | DLP
0.772 0.8327681 0.6414936 445646.5 0.77 | DLP
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0.782 0.8399698 0.6519860 460692.0 0.78 | DLP
0.792 0.8468959 0.6624457 475475.4 0.79 | DLP
0.812 0.8526609 0.6720883 491744.4 0.80 | DLP
0.813 0.8585983 0.6819988 507259.8 0.81 | DLP
0.822 0.8660542 0.6921578 523995.5 0.82 | DLP
0.832 0.8721237 0.7021534 540676.8 0.83 | DLP
0.842 0.8783183 0.7122339 558329.4 0.84 | DLP
0.852 0.8837182 0.7221249 576553.4 0.85 | DLP
0.862 0.8894026 0.7324015 595294.2 0.86 | DLP
0.872 0.8948346 0.7427567 615321.0 0.87 | DLP
0.882 0.8999352 0.7533406 635709.7 0.88 | DLP
0.892 0.9048567 0.7639049 654929.9 0.89 | DLP
0.912 0.9095700 0.7743253 676322.1 0.90 | DLP
0.913 0.9144306 0.7847654 698498.2 0.91 | DLP
0.922 0.9184207 0.7943949 719947.3 0.92 | DLP
0.932 0.9217329 0.8030961 741686.4 0.93 | DLP
0.942 0.9245726 0.8115619 760940.7 0.94 | DLP
0.952 0.9269477 0.8186353 776509.7 0.95 | DLP
0.962 0.9287340 0.8243685 787621.5 0.96 | DLP
0.972 0.9298922 0.8279117 795257.9 0.97 | DLP
0.982 0.9306766 0.8303371 800747.8 0.98 | DLP
0.992 0.9310382 0.8316641 803995.3 0.99 | DLP
0.753 0.8991754 0.6952827 622395.8 0.75 | Willemain
0.763 0.9028343 0.7018396 639500.9 0.76 | Willemain
0.773 0.9060143 0.7084554 655122.5 0.77 | Willemain
0.783 0.9090813 0.7147966 671197.2 0.78 | Willemain
0.793 0.9118932 0.7210920 687383.8 0.79 | Willemain
0.814 0.9153302 0.7276555 702066.5 0.80 | Willemain
0.815 0.9182581 0.7335717 715781.1 0.81 | Willemain
0.823 0.9208133 0.7393703 731683.1 0.82 | Willemain
0.833 0.9235740 0.7453520 746470.9 0.83 | Willemain
0.843 0.9263472 0.7513467 761777.5 0.84 | Willemain
0.853 0.9290112 0.7572630 779074.2 0.85 | Willemain
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0.863 0.9315929 0.7630812 795717.8 0.86 | Willemain
0.873 0.9343491 0.7691020 815941.1 0.87 | Willemain
0.883 0.9371305 0.7751294 835074.0 0.88 | Willemain
0.893 0.9398736 0.7813595 857529.6 0.89 | Willemain
0.914 0.9424879 0.7873934 881211.2 0.90 | Willemain
0.915 0.9451344 0.7935385 906691.5 0.91 | Willemain
0.923 0.9476713 0.7998601 934402.0 0.92 | Willemain
0.933 0.9501737 0.8062405 964861.9 0.93 | Willemain
0.943 0.9529329 0.8128694 1000503.4 0.94 | Willemain
0.953 0.9554920 0.8193805 1039882.4 0.95 | Willemain
0.963 0.9584246 0.8262251 1085549.6 0.96 | Willemain
0.973 0.9613552 0.8335273 1137736.3 0.97 | Willemain
0.983 0.9649009 0.8418950 1208539.0 0.98 | Willemain
0.993 0.9697344 0.8526162 1328027.6 0.99 | Willemain
0.754 0.0000000 0.0000000 0.0 0.75 | QR
0.764 0.0000000 0.0000000 0.0 0.76 | QR
0.774 0.0000000 0.0000000 0.0 0.77 | QR
0.784 0.0000000 0.0000000 0.0 0.78 | QR
0.794 0.0000000 0.0000000 0.0 0.79 | QR
0.816 0.0000000 0.0000000 0.0 0.80 | QR
0.817 0.0000000 0.0000000 0.0 0.81 | QR
0.824 0.0000000 0.0000000 0.0 0.82 | QR
0.834 0.0000000 0.0000000 0.0 0.83 | QR
0.844 0.0000000 0.0000000 0.0 0.84 | QR
0.854 0.0000000 0.0000000 0.0 0.85 | QR
0.864 0.0000000 0.0000000 0.0 0.86 | QR
0.874 0.0000000 0.0000000 0.0 0.87 | QR
0.884 0.0000000 0.0000000 0.0 0.88 | QR
0.894 0.0000000 0.0000000 0.0 0.89 | QR
0.916 0.0000000 0.0000000 0.0 0.90 | QR
0.917 0.0000000 0.0000000 0.0 0.91 | QR
0.924 0.0000000 0.0000000 0.0 0.92 | QR
0.934 0.0000000 0.0000000 0.0 0.93 | QR
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0.944 0.0000000 0.0000000 0.0 0.94 | QR
0.954 0.0000000 0.0000000 0.0 0.95 | QR
0.964 0.0000000 0.0000000 0.0 0.96 | QR
0.974 0.0000000 0.0000000 0.0 0.97 | QR
0.984 0.0000000 0.0000000 0.0 0.98 | QR
0.994 0.0000000 0.0000000 0.0 0.99 | QR
0.755 0.8340548 0.6183123 430808.5 0.75 | MLP
0.765 0.8393845 0.6275822 442888.1 0.76 | MLP
0.775 0.8452438 0.6366430 454952.8 0.77 | MLP
0.785 0.8503244 0.6457037 466379.5 0.78 | MLP
0.795 0.8552963 0.6547382 479267.4 0.79 | MLP
0.818 0.8606471 0.6637728 492356.6 0.80 | MLP
0.819 0.8652614 0.6728531 504102.1 0.81 | MLP
0.825 0.8699562 0.6820708 517406.5 0.82 | MLP
0.835 0.8746802 0.6910073 532508.7 0.83 | MLP
0.845 0.8791545 0.6999830 547615.0 0.84 | MLP
0.855 0.8836286 0.7087365 562361.6 0.85 | MLP
0.865 0.8875489 0.7171042 578805.1 0.86 | MLP
0.875 0.8917750 0.7252497 594412.2 0.87 | MLP
0.885 0.8957153 0.7334737 611318.2 0.88 | MLP
0.895 0.8996030 0.7417172 629772.7 0.89 | MLP
0.918 0.9032226 0.7499935 646974.6 0.90 | MLP
0.919 0.9065116 0.7582697 664904.5 0.91 | MLP
0.925 0.9099063 0.7668728 683856.8 0.92 | MLP
0.935 0.9135182 0.7750706 704896.3 0.93 | MLP
0.945 0.9166000 0.7831246 726250.5 0.94 | MLP
0.955 0.9195204 0.7913877 748171.1 0.95 | MLP
0.965 0.9222596 0.7991410 769996.9 0.96 | MLP
0.975 0.9248158 0.8067243 785247.0 0.97 | MLP
0.985 0.9271420 0.8145298 797653.5 0.98 | MLP
0.995 0.9293632 0.8230545 803743.8 0.99 | MLP
0.756 0.7014544 0.5250042 272641.5 0.75 | LSTM
0.766 0.7060721 0.5321086 277617.7 0.76 | LSTM
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0.776 0.7108215 0.5395830 282375.9 0.77 | LSTM
0.786 0.7157683 0.5468631 287644.0 0.78 | LSTM
0.796 0.7209316 0.5546428 292715.3 0.79 | LSTM
0.820 0.7253032 0.5622283 300824.4 0.80 | LSTM
0.8110 0.7306305 0.5702670 308732.3 0.81 | LSTM
0.826 0.7363606 0.5787219 317198.9 0.82 | LSTM
0.836 0.7415890 0.5872232 325660.0 0.83 | LSTM
0.846 0.7470457 0.5956782 335989.7 0.84 | LSTM
0.856 0.7528613 0.6050397 347384.1 0.85 | LSTM
0.866 0.7588119 0.6145770 357357.2 0.86 | LSTM
0.876 0.7641181 0.6240218 369353.3 0.87 | LSTM
0.886 0.7700185 0.6340123 384343.4 0.88 | LSTM
0.896 0.7771581 0.6447152 397413.3 0.89 | LSTM
0.920 0.7834761 0.6552515 410581.0 0.90 | LSTM
0.9110 0.7894369 0.6667314 423831.5 0.91 | LSTM
0.926 0.7953066 0.6783963 439116.2 0.92 | LSTM
0.936 0.8016909 0.6910973 453652.7 0.93 | LSTM
0.946 0.8081744 0.7045938 468567.8 0.94 | LSTM
0.956 0.8147979 0.7188951 488337.5 0.95 | LSTM
0.966 0.8221416 0.7350003 509763.4 0.96 | LSTM
0.976 0.8295524 0.7527705 539832.2 0.97 | LSTM
0.986 0.8377555 0.7735472 578794.3 0.98 | LSTM
0.996 0.8481711 0.8006882 636350.2 0.99 | LSTM
0.757 0.8511247 0.6815935 569353.2 0.75 | LightGBM
0.767 0.8560846 0.6882943 579225.1 0.76 | LightGBM
0.777 0.8604646 0.6946943 589185.0 0.77 | LightGBM
0.787 0.8642713 0.7009897 600279.9 0.78 | LightGBM
0.797 0.8691219 0.7072721 610830.0 0.79 | LightGBM
0.827 0.8729240 0.7134564 619986.2 0.80 | LightGBM
0.8111 0.8766773 0.7195361 629391.8 0.81 | LightGBM
0.828 0.8806531 0.7256354 641045.7 0.82 | LightGBM
0.837 0.8845927 0.7320093 650425.3 0.83 | LightGBM
0.847 0.8879657 0.7379779 660086.3 0.84 | LightGBM

92



0.857 0.8919683 0.7443191 671623.8 0.85 | LightGBM
0.867 0.8955900 0.7501634 681238.7 0.86 | LightGBM
0.877 0.8991234 0.7562693 691648.9 0.87 | LightGBM
0.887 0.9022859 0.7622575 702915.4 0.88 | LightGBM
0.897 0.9056808 0.7683764 712681.7 0.89 | LightGBM
0.927 0.9086366 0.7742469 722781.5 0.90 | LightGBM
0.9111 0.9114513 0.7801697 732693.4 0.91 | LightGBM
0.928 0.9143668 0.7862625 744006.8 0.92 | LightGBM
0.937 0.9170591 0.7926560 753825.9 0.93 | LightGBM
0.947 0.9200559 0.7991148 764449.8 0.94 | LightGBM
0.957 0.9222326 0.8053057 774016.1 0.95 | LightGBM
0.967 0.9244816 0.8111827 782993.6 0.96 | LightGBM
0.977 0.9263943 0.8164453 791033.0 0.97 | LightGBM
0.987 0.9281549 0.8214071 797411.1 0.98 | LightGBM
0.997 0.9296302 0.8263885 801248.6 0.99 | LightGBM
0.758 0.8494212 0.6743763 564363.6 0.75 | RF
0.768 0.8543145 0.6815870 574749.3 0.76 | RF
0.778 0.8587587 0.6884316 585053.9 0.77 | RF
0.788 0.8626595 0.6952761 595976.0 0.78 | RF
0.798 0.8675978 0.7020684 607023.4 0.79 | RF
0.829 0.8718695 0.7087953 619049.6 0.80 | RF
0.8112 0.8757259 0.7152999 628375.7 0.81 | RF
0.8210 0.8801613 0.7219092 638949.4 0.82 | RF
0.838 0.8837699 0.7285445 649675.1 0.83 | RF
0.848 0.8873996 0.7350818 659623.6 0.84 | RF
0.858 0.8914450 0.7414230 671387.5 0.85 | RF
0.868 0.8952315 0.7476204 682297.1 0.86 | RF
0.878 0.8987417 0.7539093 693541.9 0.87 | RF
0.888 0.9018785 0.7600479 704039.9 0.88 | RF
0.898 0.9052987 0.7664740 716255.1 0.89 | RF
0.929 0.9083204 0.7725733 726330.8 0.90 | RF
0.9112 0.9111548 0.7786988 737575.0 0.91 | RF
0.9210 0.9142481 0.7850465 747435.2 0.92 | RF
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0.938 0.9170721 0.7915577 758275.8 0.93 | RF
0.948 0.9199740 0.7981735 768725.9 0.94 | RF
0.958 0.9224352 0.8047696 778435.6 0.95 | RF
0.968 0.9247269 0.8112546 787174.1 0.96 | RF
0.978 0.9267072 0.8169552 795051.8 0.97 | RF
0.988 0.9285555 0.8221720 800841.5 0.98 | RF
0.998 0.9300283 0.8272449 804267.8 0.99 | RF
Table 18: IPM values for AUTO

AchievedFillRates_Avg | AchievedFillRates_Total | HoldingCosts | TargetFillRates | Method
0.75 0.8329468 0.7567474 5017531 0.75 | Croston
0.76 0.8402146 0.7656285 5142227 0.76 | Croston
0.77 0.8469994 0.7743867 5261588 0.77 | Croston
0.78 0.8538949 0.7831002 5390169 0.78 | Croston
0.79 0.8604689 0.7922047 5526738 0.79 | Croston
0.8 0.8680720 0.8017338 5671131 0.80 | Croston
0.81 0.8744967 0.8105590 5815014 0.81 | Croston
0.82 0.8812242 0.8195295 5967477 0.82 | Croston
0.83 0.8879504 0.8286563 6125861 0.83 | Croston
0.84 0.8947175 0.8377385 6293616 0.84 | Croston
0.85 0.9010144 0.8467537 6470030 0.85 | Croston
0.86 0.9073232 0.8555901 6656612 0.86 | Croston
0.87 0.9141551 0.8646834 6875842 0.87 | Croston
0.88 0.9209396 0.8734975 7116128 0.88 | Croston
0.89 0.9273134 0.8821440 7372147 0.89 | Croston
0.9 0.9339066 0.8908575 7640692 0.90 | Croston
0.91 0.9403568 0.8994035 7928011 0.91 | Croston
0.92 0.9463411 0.9081170 8218671 0.92 | Croston
0.93 0.9521564 0.9165847 8534195 0.93 | Croston
0.94 0.9572339 0.9247844 8872438 0.94 | Croston
0.95 0.9618978 0.9328165 9218987 0.95 | Croston
0.96 0.9651899 0.9394187 0548346 0.96 | Croston
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0.97 0.9678386 0.9450713 9834601 0.97 | Croston
0.98 0.9691131 0.9487354 10046348 0.98 | Croston
0.99 0.9695711 0.9500425 10143738 0.99 | Croston
0.751 0.8322482 0.7548930 5045299 0.75 | SBA
0.761 0.8391691 0.7633831 5169515 0.76 | SBA
0.771 0.8462387 0.7725323 5290591 0.77 | SBA
0.781 0.8534080 0.7816145 5419736 0.78 | SBA
0.791 0.8598827 0.7906520 5555774 0.79 | SBA
0.810 0.8674379 0.8003485 5702517 0.80 | SBA
0.811 0.8740309 0.8091514 5853644 0.81 | SBA
0.821 0.8807726 0.8183788 6011779 0.82 | SBA
0.831 0.8873627 0.8274610 6175794 0.83 | SBA
0.841 0.8942052 0.8368336 6346431 0.84 | SBA
0.851 0.9011251 0.8462733 6523249 0.85 | SBA
0.861 0.9075988 0.8552326 6712056 0.86 | SBA
0.871 0.9141817 0.8642812 6930746 0.87 | SBA
0.881 0.9213226 0.8734640 7178477 0.88 | SBA
0.891 0.9277695 0.8824233 7435141 0.89 | SBA
0.910 0.9347111 0.8912038 7701889 0.90 | SBA
0.911 0.9404835 0.8993588 7986823 0.91 | SBA
0.921 0.9466225 0.9081170 8275807 0.92 | SBA
0.931 0.9523630 0.9166183 8576523 0.93 | SBA
0.941 0.9572534 0.9248961 8913196 0.94 | SBA
0.951 0.9618776 0.9327718 9254337 0.95 | SBA
0.961 0.9651897 0.9394522 9578012 0.96 | SBA
0.971 0.9678856 0.9450824 9852536 0.97 | SBA
0.981 0.9691002 0.9487578 10054906 0.98 | SBA
0.991 0.9695612 0.9500313 10145132 0.99 | SBA
0.752 0.8649218 0.8003821 5497289 0.75 | DLP
0.762 0.8702702 0.8078221 5606740 0.76 | DLP
0.772 0.8752208 0.8146477 5718981 0.77 | DLP
0.782 0.8806973 0.8218978 5840353 0.78 | DLP
0.792 0.8862010 0.8290138 5960239 0.79 | DLP
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0.812 0.8916353 0.8362527 6089653 0.80 | DLP
0.813 0.8971879 0.8434805 6223845 0.81 | DLP
0.822 0.9019882 0.8502837 6372101 0.82 | DLP
0.832 0.9072480 0.8574110 6515663 0.83 | DLP
0.842 0.9122281 0.8641695 6665292 0.84 | DLP
0.852 0.9175141 0.8711627 6830613 0.85 | DLP
0.862 0.9220320 0.8775079 7005828 0.86 | DLP
0.872 0.9265911 0.8842553 7197311 0.87 | DLP
0.882 0.9321959 0.8913825 7404860 0.88 | DLP
0.892 0.9372717 0.8981411 7621647 0.89 | DLP
0.912 0.9424556 0.9050896 7860596 0.90 | DLP
0.913 0.9474648 0.9118928 8101133 0.91 | DLP
0.922 0.9522477 0.9186961 8362260 0.92 | DLP
0.932 0.9563640 0.9250302 8626739 0.93 | DLP
0.942 0.9603210 0.9315318 8910057 0.94 | DLP
0.952 0.9635259 0.9373296 9220284 0.95 | DLP
0.962 0.9662544 0.9423455 9520706 0.96 | DLP
0.972 0.9682733 0.9465794 9802891 0.97 | DLP
0.982 0.9692229 0.9490482 10029159 0.98 | DLP
0.992 0.9695649 0.9500425 10142344 0.99 | DLP
0.753 0.8997988 0.8043478 6507536 0.75 | Willemain
0.763 0.9046761 0.8117543 6648346 0.76 | Willemain
0.773 0.9089963 0.8192055 6777408 0.77 | Willemain
0.783 0.9136478 0.8267125 6924428 0.78 | Willemain
0.793 0.9183912 0.8340632 7071264 0.79 | Willemain
0.814 0.9228423 0.8416931 7226470 0.80 | Willemain
0.815 0.9273223 0.8491219 7391799 0.81 | Willemain
0.823 0.9315789 0.8561821 7562896 0.82 | Willemain
0.833 0.9356001 0.8630524 7742309 0.83 | Willemain
0.843 0.9396530 0.8699115 7934413 0.84 | Willemain
0.853 0.9438813 0.8768823 8148849 0.85 | Willemain
0.863 0.9476493 0.8835404 8381433 0.86 | Willemain
0.873 0.9516866 0.8900532 8623983 0.87 | Willemain
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0.883 0.9554712 0.8964208 8888428 0.88 | Willemain
0.893 0.9593095 0.9032128 9154793 0.89 | Willemain
0.914 0.9625578 0.9090665 9447451 0.90 | Willemain
0.915 0.9661503 0.9154229 9756762 0.91 | Willemain
0.923 0.9694671 0.9214107 10102405 0.92 | Willemain
0.933 0.9727769 0.9277336 10483332 0.93 | Willemain
0.943 0.9763759 0.9341123 10914577 0.94 | Willemain
0.953 0.9791150 0.9400442 11411652 0.95 | Willemain
0.963 0.9825753 0.9467246 11998278 0.96 | Willemain
0.973 0.9854293 0.9530028 12718093 0.97 | Willemain
0.983 0.9883984 0.9597390 13665124 0.98 | Willemain
0.993 0.9915169 0.9671232 15117727 0.99 | Willemain
0.754 0.8346318 0.7667903 5337098 0.75 | QR
0.764 0.8417716 0.7758948 5468206 0.76 | QR
0.774 0.8487719 0.7849323 5596592 0.77 | QR
0.784 0.8549240 0.7935229 5724683 0.78 | QR
0.794 0.8617057 0.8022700 5870566 0.79 | QR
0.816 0.8688939 0.8115756 6022438 0.80 | QR
0.817 0.8752983 0.8200545 6167088 0.81 | QR
0.824 0.8819292 0.8286898 6320256 0.82 | QR
0.834 0.8879238 0.8368895 6486402 0.83 | QR
0.844 0.8942306 0.8457036 6662517 0.84 | QR
0.854 0.9004423 0.8541155 6849947 0.85 | QR
0.864 0.9071200 0.8625609 7050040 0.86 | QR
0.874 0.9130055 0.8707605 7269618 0.87 | QR
0.884 0.9194659 0.8787144 7514887 0.88 | QR
0.894 0.9257017 0.8868470 7777332 0.89 | QR
0.916 0.9324382 0.8951137 8051989 0.90 | QR
0.917 0.9389568 0.9031570 8331451 0.91 | QR
0.924 0.9450336 0.9113231 8616917 0.92 | QR
0.934 0.9499436 0.9193217 8892639 0.93 | QR
0.944 0.9544732 0.9267282 9172477 0.94 | QR
0.954 0.9582142 0.9335538 9443058 0.95 | QR
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0.964 0.9612713 0.9397761 9694301 0.96 | QR
0.974 0.9634214 0.9445574 9892707 0.97 | QR
0.984 0.9645276 0.9472050 10035128 0.98 | QR
0.994 0.9649058 0.9483333 10097810 0.99 | QR
0.755 0.8285125 0.7493074 4926205 0.75 | MLP
0.765 0.8352813 0.7579204 5038137 0.76 | MLP
0.775 0.8420558 0.7668238 5157319 0.77 | MLP
0.785 0.8492772 0.7759618 5272527 0.78 | MLP
0.795 0.8560591 0.7850775 5395827 0.79 | MLP
0.818 0.8635762 0.7946289 5534668 0.80 | MLP
0.819 0.8703331 0.8038451 5668678 0.81 | MLP
0.825 0.8766512 0.8124693 5800296 0.82 | MLP
0.835 0.8833355 0.8213839 5948483 0.83 | MLP
0.845 0.8900700 0.8304661 6105304 0.84 | MLP
0.855 0.8969106 0.8397940 6272145 0.85 | MLP
0.865 0.9040234 0.8492783 6447856 0.86 | MLP
0.875 0.9106329 0.8585728 6645287 0.87 | MLP
0.885 0.9174305 0.8675209 6868555 0.88 | MLP
0.895 0.9243187 0.8767930 7115250 0.89 | MLP
0.918 0.9312525 0.8861544 7361798 0.90 | MLP
0.919 0.9374341 0.8949350 7637018 0.91 | MLP
0.925 0.9437640 0.9040395 7924077 0.92 | MLP
0.935 0.9498108 0.9132669 8223042 0.93 | MLP
0.945 0.9552099 0.9217123 8555155 0.94 | MLP
0.955 0.9604402 0.9300237 8912369 0.95 | MLP
0.965 0.9642735 0.9373073 9276775 0.96 | MLP
0.975 0.9673059 0.9434850 9614660 0.97 | MLP
0.985 0.9688953 0.9479311 9921584 0.98 | MLP
0.995 0.9695436 0.9498972 10124000 0.99 | MLP
0.756 0.8679492 0.8583326 7501396 0.75 | LSTM
0.766 0.8710693 0.8657450 7647691 0.76 | LSTM
0.776 0.8736223 0.8716998 7792168 0.77 | LSTM
0.786 0.8761025 0.8775298 7931698 0.78 | LSTM
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0.796 0.8788513 0.8835679 8080615 0.79 | LSTM
0.820 0.8815305 0.8897726 8221219 0.80 | LSTM
0.8110 0.8835187 0.8951861 8371307 0.81 | LSTM
0.826 0.8859913 0.9011410 8504272 0.82 | LSTM
0.836 0.8881150 0.9065129 8626609 0.83 | LSTM
0.846 0.8897427 0.9113850 8759613 0.84 | LSTM
0.856 0.8915726 0.9160906 8877998 0.85 | LSTM
0.866 0.8930758 0.9208795 8998422 0.86 | LSTM
0.876 0.8942679 0.9252103 9109457 0.87 | LSTM
0.886 0.8954387 0.9291247 9214587 0.88 | LSTM
0.896 0.8968987 0.9334138 9314180 0.89 | LSTM
0.920 0.8978198 0.9362039 9393952 0.90 | LSTM
0.9110 0.8984489 0.9384942 9466190 0.91 | LSTM
0.926 0.8989343 0.9408262 9525111 0.92 | LSTM
0.936 0.8994593 0.9429499 9575191 0.93 | LSTM
0.946 0.8999275 0.9450321 9614197 0.94 | LSTM
0.956 0.9002191 0.9468227 9642146 0.95 | LSTM
0.966 0.9004565 0.9484051 9660449 0.96 | LSTM
0.976 0.9005629 0.9491130 9669797 0.97 | LSTM
0.986 0.9006678 0.9495294 9673210 0.98 | LSTM
0.996 0.9007012 0.9497793 9673760 0.99 | LSTM
0.757 0.8477569 0.7730238 5486176 0.75 | LightGBM
0.767 0.8543257 0.7816703 5606074 0.76 | LightGBM
0.777 0.8608721 0.7901828 5737258 0.77 | LightGBM
0.787 0.8672507 0.7986058 5863893 0.78 | LightGBM
0.797 0.8734238 0.8074087 5992837 0.79 | LightGBM
0.827 0.8801922 0.8163122 6141567 0.80 | LightGBM
0.8111 0.8864774 0.8245342 6280892 0.81 | LightGBM
0.828 0.8926887 0.8328902 6430863 0.82 | LightGBM
0.837 0.8979918 0.8409446 6578272 0.83 | LightGBM
0.847 0.9042134 0.8492448 6749166 0.84 | LightGBM
0.857 0.9100817 0.8572769 6919391 0.85 | LightGBM
0.867 0.9161829 0.8654542 7107925 0.86 | LightGBM
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0.877 0.9216126 0.8730506 7312541 0.87 | LightGBM
0.887 0.9272984 0.8807923 7531588 0.88 | LightGBM
0.897 0.9333640 0.8890143 7760457 0.89 | LightGBM
0.927 0.9388086 0.8965883 7996952 0.90 | LightGBM
0.9111 0.9445356 0.9045422 8239906 0.91 | LightGBM
0.928 0.9492869 0.9118593 8492556 0.92 | LightGBM
0.937 0.9542064 0.9194111 8757203 0.93 | LightGBM
0.947 0.9583855 0.9262702 9036235 0.94 | LightGBM
0.957 0.9617346 0.9323138 9313630 0.95 | LightGBM
0.967 0.9644441 0.9375195 9582979 0.96 | LightGBM
0.977 0.9665545 0.9416976 9824667 0.97 | LightGBM
0.987 0.9675355 0.9445686 10013037 0.98 | LightGBM
0.997 0.9678529 0.9458197 10119789 0.99 | LightGBM
0.758 0.8387887 0.7602105 5152951 0.75 | RF
0.768 0.8455730 0.7689463 5270515 0.76 | RF
0.778 0.8521024 0.7774811 5391144 0.77 | RF
0.788 0.8585057 0.7862170 5521086 0.78 | RF
0.798 0.8655084 0.7953774 5654829 0.79 | RF
0.829 0.8721253 0.8044372 5790769 0.80 | RF
0.8112 0.8794235 0.8136758 0934812 0.81 | RF
0.8210 0.8860854 0.8227468 6089347 0.82 | RF
0.838 0.8921158 0.8314826 6248844 0.83 | RF
0.848 0.8983048 0.8402520 6411921 0.84 | RF
0.858 0.9042241 0.8486974 6584885 0.85 | RF
0.868 0.9110942 0.8579695 6781940 0.86 | RF
0.878 0.9178662 0.8669288 6986074 0.87 | RF
0.888 0.9241278 0.8757205 7208397 0.88 | RF
0.898 0.9303696 0.8841660 7452154 0.89 | RF
0.929 0.9366721 0.8927566 7705766 0.90 | RF
0.9112 0.9423710 0.9011238 7968575 091 | RF
0.9210 0.9479481 0.9096251 8235470 0.92 | RF
0.938 0.9533785 0.9180929 8524044 0.93 | RF
0.948 0.9582467 0.9260467 8843035 0.94 | RF
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0.958 0.9622083 0.9333974 9158445 0.95 | RF
0.968 0.9654225 0.9397203 9473731 0.96 | RF
0.978 0.9677966 0.9451830 9764130 097 | RF
0.988 0.9691091 0.9486125 10000036 0.98 | RF
0.998 0.9695553 0.9500201 10138258 0.99 | RF
Table 19: IPM values for OIL

AchievedFillRates_Avg | AchievedFillRates_Total | HoldingCosts | TargetFillRates | Method
0.75 0.5275595 0.6454590 1135064 0.75 | Croston
0.76 0.5310058 0.6571786 1154793 0.76 | Croston
0.77 0.5348048 0.6689847 1177853 0.77 | Croston
0.78 0.5383812 0.6809059 1202464 0.78 | Croston
0.79 0.5426188 0.6935326 1225758 0.79 | Croston
0.8 0.5463268 0.7064185 1253415 0.80 | Croston
0.81 0.5501802 0.7193043 1274390 0.81 | Croston
0.82 0.5531894 0.7313983 1293636 0.82 | Croston
0.83 0.5562027 0.7441402 1318422 0.83 | Croston
0.84 0.5587602 0.7568245 1336561 0.84 | Croston
0.85 0.5609495 0.7693360 1357612 0.85 | Croston
0.86 0.5629412 0.7813004 1381209 0.86 | Croston
0.87 0.5654122 0.7936823 1400563 0.87 | Croston
0.88 0.5671082 0.8043798 1418491 0.88 | Croston
0.89 0.5687680 0.8142421 1435064 0.89 | Croston
0.9 0.5704220 0.8224631 1452596 0.90 | Croston
0.91 0.5714504 0.8288269 1465738 0.91 | Croston
0.92 0.5724101 0.8344132 1475887 0.92 | Croston
0.93 0.5730692 0.8390492 1484204 0.93 | Croston
0.94 0.5734948 0.8422455 1488217 0.94 | Croston
0.95 0.5740180 0.8447218 1490901 0.95 | Croston
0.96 0.5742231 0.8464064 1492516 0.96 | Croston
0.97 0.5743567 0.8478605 1493839 0.97 | Croston
0.98 0.5744586 0.8488971 1494490 0.98 | Croston
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0.99 0.5744956 0.8497466 1494814 0.99 | Croston
0.751 0.5358301 0.6735199 1190956 0.75 | SBA
0.761 0.5391739 0.6844333 1208490 0.76 | SBA
0.771 0.5426994 0.6955627 1230968 0.77 | SBA
0.781 0.5460520 0.7067928 1248836 0.78 | SBA
0.791 0.5496494 0.7180373 1267138 0.79 | SBA
0.810 0.5527906 0.7297282 1290784 0.80 | SBA
0.811 0.5557823 0.7409727 1311256 0.81 | SBA
0.821 0.5577590 0.7514254 1327270 0.82 | SBA
0.831 0.5596721 0.7623531 1347900 0.83 | SBA
0.841 0.5623521 0.7737416 1364692 0.84 | SBA
0.851 0.5640702 0.7846262 1380686 0.85 | SBA
0.861 0.5655752 0.7950357 1399277 0.86 | SBA
0.871 0.5675294 0.8056467 1414034 0.87 | SBA
0.881 0.5689725 0.8144293 1432179 0.88 | SBA
0.891 0.5703163 0.8225783 1445824 0.89 | SBA
0.910 0.5716159 0.8291004 1461167 0.90 | SBA
0.911 0.5725355 0.8343700 1471659 0.91 | SBA
0.921 0.5733158 0.8388908 1479975 0.92 | SBA
0.931 0.5737959 0.8424902 1487170 0.93 | SBA
0.941 0.5740505 0.8451682 1490816 0.94 | SBA
0.951 0.5742422 0.8473134 1492466 0.95 | SBA
0.961 0.5743335 0.8483500 1493315 0.96 | SBA
0.971 0.5744039 0.8490987 1494167 0.97 | SBA
0.981 0.5744744 0.8497898 1494642 0.98 | SBA
0.991 0.5745055 0.8499050 1494881 0.99 | SBA
0.752 0.5060459 0.5970399 1033434 0.75 | DLP
0.762 0.5097608 0.6087883 1050455 0.76 | DLP
0.772 0.5148500 0.6207383 1071972 0.77 | DLP
0.782 0.5196013 0.6332066 1090656 0.78 | DLP
0.792 0.5240740 0.6453870 1113367 0.79 | DLP
0.812 0.5283609 0.6578697 1137486 0.80 | DLP
0.813 0.5325751 0.6701797 1159679 0.81 | DLP
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0.822 0.5363684 0.6831087 1185096 0.82 | DLP
0.832 0.5410228 0.6962969 1210431 0.83 | DLP
0.842 0.5450863 0.7100466 1237856 0.84 | DLP
0.852 0.5483411 0.7237676 1260436 0.85 | DLP
0.862 0.5518549 0.7381796 1283125 0.86 | DLP
0.872 0.5554293 0.7522460 1306670 0.87 | DLP
0.882 0.5587504 0.7669028 1328350 0.88 | DLP
0.892 0.5612524 0.7797023 1356213 0.89 | DLP
0.912 0.5637416 0.7924009 1381580 0.90 | DLP
0.913 0.5661252 0.8035447 1403616 0.91 | DLP
0.922 0.5679355 0.8129463 1425016 0.92 | DLP
0.932 0.5696437 0.8219448 1446139 0.93 | DLP
0.942 0.5713053 0.8305978 1463376 0.94 | DLP
0.952 0.5724804 0.8374367 1476590 0.95 | DLP
0.962 0.5733180 0.8423174 1484787 0.96 | DLP
0.972 0.5740280 0.8457729 1489927 0.97 | DLP
0.982 0.5743595 0.8480621 1493153 0.98 | DLP
0.992 0.5744911 0.8496746 1494656 0.99 | DLP
0.753 0.5695094 0.6995652 1990949 0.75 | Willemain
0.763 0.5711844 0.7062601 2062363 0.76 | Willemain
0.773 0.5728001 0.7124798 2141054 0.77 | Willemain
0.783 0.5745043 0.7189444 2233420 0.78 | Willemain
0.793 0.5759739 0.7251785 2313214 0.79 | Willemain
0.814 0.5774800 0.7314127 2382820 0.80 | Willemain
0.815 0.5788544 0.7376325 2425857 0.81 | Willemain
0.823 0.5801903 0.7438522 2469209 0.82 | Willemain
0.833 0.5816016 0.7500864 2503826 0.83 | Willemain
0.843 0.5825935 0.7562342 2533258 0.84 | Willemain
0.853 0.5838410 0.7626123 2560300 0.85 | Willemain
0.863 0.5848600 0.7684865 2586812 0.86 | Willemain
0.873 0.5859808 0.7751382 2614986 0.87 | Willemain
0.883 0.5868562 0.7813004 2643544 0.88 | Willemain
0.893 0.5877528 0.7876929 2680381 0.89 | Willemain
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0.914 0.5889627 0.7947046 2719862 0.90 | Willemain
0.915 0.5898520 0.8011403 2771289 0.91 | Willemain
0.923 0.5909364 0.8084111 2848378 0.92 | Willemain
0.933 0.5919889 0.8157539 2949632 0.93 | Willemain
0.943 0.5934005 0.8232982 3077092 0.94 | Willemain
0.953 0.5948616 0.8310729 3240600 0.95 | Willemain
0.963 0.5960078 0.8388764 3385530 0.96 | Willemain
0.973 0.5972291 0.8474286 3521161 0.97 | Willemain
0.983 0.5987732 0.8570030 3692460 0.98 | Willemain
0.993 0.6006727 0.8687082 4058969 0.99 | Willemain
0.754 0.0000000 0.0000000 0 0.75 | QR
0.764 0.0000000 0.0000000 0 0.76 | QR
0.774 0.0000000 0.0000000 0 0.77 | QR
0.784 0.0000000 0.0000000 0 0.78 | QR
0.794 0.0000000 0.0000000 0 0.79 | QR
0.816 0.0000000 0.0000000 0 0.80 | QR
0.817 0.0000000 0.0000000 0 0.81 | QR
0.824 0.0000000 0.0000000 0 0.82 | QR
0.834 0.0000000 0.0000000 0 0.83 | QR
0.844 0.0000000 0.0000000 0 0.84 | QR
0.854 0.0000000 0.0000000 0 0.85 | QR
0.864 0.0000000 0.0000000 0 0.86 | QR
0.874 0.0000000 0.0000000 0 0.87 | QR
0.884 0.0000000 0.0000000 0 0.88 | QR
0.894 0.0000000 0.0000000 0 0.89 | QR
0.916 0.0000000 0.0000000 0 0.90 | QR
0.917 0.0000000 0.0000000 0 0.91 | QR
0.924 0.0000000 0.0000000 0 0.92 | QR
0.934 0.0000000 0.0000000 0 0.93 | QR
0.944 0.0000000 0.0000000 0 0.94 | QR
0.954 0.0000000 0.0000000 0 0.95 | QR
0.964 0.0000000 0.0000000 0 0.96 | QR
0.974 0.0000000 0.0000000 0 0.97 | QR
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0.984 0.0000000 0.0000000 0 0.98 | QR
0.994 0.0000000 0.0000000 0 0.99 | QR
0.755 0.5243938 0.6260078 1086340 0.75 | MLP
0.765 0.5270800 0.6367916 1098817 0.76 | MLP
0.775 0.5297409 0.6480218 1114170 0.77 | MLP
0.785 0.5325120 0.6591799 1132361 0.78 | MLP
0.795 0.5345350 0.6701077 1146169 0.79 | MLP
0.818 0.5372010 0.6804020 1163828 0.80 | MLP
0.819 0.5408146 0.6910274 1193037 0.81 | MLP
0.825 0.5433223 0.7015089 1208358 0.82 | MLP
0.835 0.5453660 0.7109105 1223149 0.83 | MLP
0.845 0.5508093 0.7206001 1264008 0.84 | MLP
0.855 0.5526015 0.7290803 1279465 0.85 | MLP
0.865 0.5547101 0.7379924 1300419 0.86 | MLP
0.875 0.5564643 0.7464582 1319739 0.87 | MLP
0.885 0.5586799 0.7556151 1336518 0.88 | MLP
0.895 0.5604206 0.7644984 1356080 0.89 | MLP
0.918 0.5621233 0.7732377 1371877 0.90 | MLP
0.919 0.5636906 0.7818907 1389392 0.91 | MLP
0.925 0.5653343 0.7905437 1409224 0.92 | MLP
0.935 0.5672520 0.8000605 1426577 0.93 | MLP
0.945 0.5687305 0.8094621 1442132 0.94 | MLP
0.955 0.5701816 0.8174240 1458014 0.95 | MLP
0.965 0.5714183 0.8254147 1472676 0.96 | MLP
0.975 0.5726887 0.8333333 1485428 0.97 | MLP
0.985 0.5734488 0.8396251 1493347 0.98 | MLP
0.995 0.5741691 0.8458017 1494710 0.99 | MLP
0.756 0.4069484 0.6579309 1124362 0.75 | LSTM
0.766 0.4088926 0.6670782 1139081 0.76 | LSTM
0.776 0.4107675 0.6765903 1155637 0.77 | LSTM
0.786 0.4125323 0.6857375 1171157 0.78 | LSTM
0.796 0.4142710 0.6950251 1185402 0.79 | LSTM
0.820 0.4159029 0.7039479 1197566 0.80 | LSTM
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0.8110 0.4175925 0.7129549 1210009 0.81 | LSTM
0.826 0.4191486 0.7218777 1227410 0.82 | LSTM
0.836 0.4206141 0.7311653 1244290 0.83 | LSTM
0.846 0.4220060 0.7391902 1259255 0.84 | LSTM
0.856 0.4234965 0.7478605 1271488 0.85 | LSTM
0.866 0.4245851 0.7561379 1286373 0.86 | LSTM
0.876 0.4256530 0.7642470 1301597 0.87 | LSTM
0.886 0.4270023 0.7725525 1315599 0.88 | LSTM
0.896 0.4280416 0.7800724 1332313 0.89 | LSTM
0.920 0.4291665 0.7879851 1345276 0.90 | LSTM
0.9110 0.4300726 0.7953646 1359025 0.91 | LSTM
0.926 0.4310538 0.8032492 1370033 0.92 | LSTM
0.936 0.4318133 0.8103482 1385171 0.93 | LSTM
0.946 0.4326713 0.8174752 1398204 0.94 | LSTM
0.956 0.4333577 0.8244058 1409489 0.95 | LSTM
0.966 0.4339315 0.8306911 1419049 0.96 | LSTM
0.976 0.4345156 0.8372289 1428647 0.97 | LSTM
0.986 0.4349956 0.8436264 1437550 0.98 | LSTM
0.996 0.4354417 0.8498836 1443817 0.99 | LSTM
0.757 0.5293782 0.6707268 1135064 0.75 | LightGBM
0.767 0.5320538 0.6784583 1152358 0.76 | LightGBM
0.777 0.5346203 0.6861898 1166599 0.77 | LightGBM
0.787 0.5373750 0.6944828 1182847 0.78 | LightGBM
0.797 0.5391412 0.7023439 1197778 0.79 | LightGBM
0.827 0.5412786 0.7104066 1210154 0.80 | LightGBM
0.8111 0.5441004 0.7187428 1236457 0.81 | LightGBM
0.828 0.5469659 0.7257976 1253380 0.82 | LightGBM
0.837 0.5488499 0.7327517 1266402 0.83 | LightGBM
0.847 0.5514815 0.7396481 1288652 0.84 | LightGBM
0.857 0.5553298 0.7466166 1317334 0.85 | LightGBM
0.867 0.5573934 0.7534986 1333051 0.86 | LightGBM
0.877 0.5588891 0.7600927 1349666 0.87 | LightGBM
0.887 0.5606338 0.7673491 1366254 0.88 | LightGBM
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0.897 0.5623221 0.7746919 1380133 0.89 | LightGBM
0.927 0.5636561 0.7818043 1395004 0.90 | LightGBM
0.9111 0.5649547 0.7878657 1406315 0.91 | LightGBM
0.928 0.5662645 0.7940711 1420582 0.92 | LightGBM
0.937 0.5680122 0.8008235 1436679 0.93 | LightGBM
0.947 0.5691217 0.8075616 1449765 0.94 | LightGBM
0.957 0.5701485 0.8139542 1460675 0.95 | LightGBM
0.967 0.5712112 0.8205483 1473220 0.96 | LightGBM
0.977 0.5720797 0.8267680 1483729 0.97 | LightGBM
0.987 0.5726873 0.8322247 1490747 0.98 | LightGBM
0.997 0.5732721 0.8374798 1491926 0.99 | LightGBM
0.758 0.5305996 0.6707988 1137213 0.75 | RF
0.768 0.5332257 0.6797829 1153541 0.76 | RF
0.778 0.5357677 0.6880759 1168642 0.77 | RF
0.788 0.5385163 0.6970744 1184763 0.78 | RF
0.798 0.5402120 0.7054826 1200016 0.79 | RF
0.829 0.5422816 0.7143371 1212310 0.80 | RF
0.8112 0.5451794 0.7233212 1238127 0.81 | RF
0.8210 0.5481602 0.7311535 1255870 0.82 | RF
0.838 0.5499510 0.7386115 1270069 0.83 | RF
0.848 0.5525108 0.7462710 1291934 0.84 | RF
0.858 0.5565920 0.7541177 1320192 0.85 | RF
0.868 0.5583681 0.7617916 1335970 0.86 | RF
0.878 0.5598384 0.7692784 1353943 0.87 | RF
0.888 0.5617610 0.7772259 1369345 0.88 | RF
0.898 0.5632107 0.7839496 1383854 0.89 | RF
0.929 0.5645517 0.7905724 1398883 0.90 | RF
0.9112 0.5658591 0.7967490 1410684 091 | RF
0.9210 0.5671886 0.8029688 1424354 0.92 | RF
0.938 0.5689629 0.8098364 1440199 0.93 | RF
0.948 0.5699889 0.8163874 1453191 0.94 | RF
0.958 0.5710713 0.8229383 1464232 0.95 | RF
0.968 0.5722262 0.8298347 1476412 0.96 | RF
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0.978 0.5730789 0.8364288 1486709 0.97 | RF
0.988 0.5736612 0.8414680 1493496 0.98 | RF
0.998 0.5742407 0.8462912 1494476 0.99 | RF
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