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ABSTRACT 

 

People tend to overreact when dramatic and unexpected news becomes public. The Banking Sector has 

been proven to be heavily affected by people “fears and greed”: confidence is easily lost, and hard to build 

up. This study will investigate if this behavior generates opportunities for investors to gain abnormal returns 

by following a short-term reversal strategy specifically for the banking sector. In particular, it will 

investigate if overreaction is stronger (and thus more profitable) depending on market sentiment. Results 

show that there is some level of overreaction in the banking sector as a whole, and Cumulative Average 

Abnormal Returns are greater for events that happen during High Sentiment periods.  
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CHAPTER 1  Introduction 

 

In financial markets, understanding the relationship between investor sentiment and stock price 

movements is crucial for both academics and practitioners. The banking sector, being the backbone of 

the global economy, often experiences rapid and sometimes exaggerated price changes in response to 

market news or events. This phenomenon, known as overreaction, and its subsequent short-term 

reversal, has long intrigued researchers and investors. 

 

The research question at the heart of this thesis is: Is the overreaction of the banking sector (and thus its 

following short-term reversal) stronger during low or high market sentiment? 

 

This study aims to shed light on the underlying psychological and behavioral factors that drive market 

dynamics. In particular, given the current interest rate environment and the recent news of bank failures, 

the banking sector is considered a “hot” topic in the financial world. Investor sentiment, whether 

optimistic or pessimistic, profoundly influences trading decisions, often leading to price distortions.  

 

As bank stocks are by nature difficult to analyze because they behave differently from other sectors’ 

stocks (among others: high leverage ratio, strong sensitivity to macroeconomic changes, and risk of 

panic selling), understanding the interplay between market sentiment and the overreaction of the 

banking sector provides valuable insights. If it can be determined whether overreactions are stronger 

during low or high market sentiment, it could help investors anticipate short-term price movements and 

make more informed trading decisions. Various trading strategies could be built to exploit and capitalize 

on these price inefficiencies. 

 

Additionally, this knowledge can contribute to academic research in behavioural finance and expand the 

existing literature on the overreaction hypothesis and short-term reversals, which is often focused on the 

whole market rather than a specific sector.  

 

The literature defines short-term reversal as the phenomenon in which stocks with relatively low returns 

over the past period (might be day, week, or month) earn positive abnormal returns in the following 

period. Vice versa, stocks with high returns will subsequently earn negative abnormal returns. This 

anomaly has been proven both robust and of economic significance for more than 40 years now, even 

though many of its aspects still remain questionable (Da, Liu, and Schaumburg, 2014). 

 

Among many possible explanations for short-term reversal, this thesis will focus on the overreaction 

hypothesis. If market prices reflect investor overreaction to information, fads, or cognitive biases, this 
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might lead to the existence of short term reversals (Shiller, 1984; Black, 1986; Summers and Summers, 

1989; Subrahmanyam, 2005). 

 

We can call this idea "sentiment-based explanation," as discussed in the study by Da, Liu, and 

Schaumburg (2014): it suggests that stocks don't behave like random processes over very short time 

intervals but instead exhibit a noticeable pattern of serial correlation across all time periods. This pattern 

holds even when there are predictable variations in expected returns. 

 

But how does overreaction relate to market sentiment? Does the stock market always react in the same 

way, or can it be influenced by investors’ “fears and greed”? 

 

John Maynard Keynes in 1936 already asserted the influence of investors' “animal spirits” leads the 

market to swing wildly, moving prices in a way unrelated to fundamentals. After Keynes, many other 

authors have considered the possibility that sentiment-driven investors might move prices in an irrational 

way. Intuitively, in a period of fear, people might reason with their more primitive mental system 

(System 1 to cite Kahneman’s “Thinking Fast and Slow” book), letting emotions overcome rationality. 

The same might happen in periods of excessive optimism. In these extremely bullish and bearish times, 

our minds work quickly and automatically, with little or no effort and no sense of voluntary control, and 

this is then reflected in the market. 

 

Some criticism against sentiment effects argues that they would be eliminated by rational traders seeking 

to take advantage of the profit opportunities created by mispricing. However, if rational traders cannot 

fully exploit such opportunities, sentiment effects become more likely. Thus, we can easily say that 

sentiment plays an important role in asset pricing and can affect the market: “Nowadays the question is 

no longer, as it was a few decades ago, whether investor sentiment affects stock prices, but rather how 

to measure investor sentiment and quantify its effects” (Baker and Wurgler, 2007, p. 1). 

 

A recent example of these periods of sentiment-driven market has been given by the crisis of the banking 

sector at the beginning of 2023. In fact, between early 2020 and March 2022, banks’ deposits had 

tremendous growth because of the high level of liquidity in the market (see unconventional expansionary 

monetary policies) and because investing in the money market resulted unattractive. A significant part 

of this growth was directed towards fixed-income securities (mainly those with fixed coupons), which 

lost value when interest rates increased again to fight inflation. According to Jiang et al. (2023), the total 

unrealized losses on securities in US banks amount to around $2.2 trillion.  

 

Banks, more than other types of companies, are built on trust, credibility, and accountability. The 

functioning of the banking system and society as a whole depends heavily on the trust placed in financial 
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institutions and banks. A changing macroeconomic environment (with the rise of interest rates and 

inflation), combined with mismanagement issues in a climate of fear, can lead bank stocks’ prices to a 

high volatility scenario, which in some cases might be motivated, but in others, overreaction can play a 

major role.  

 

A clear case study can be found in Credit Suisse. It hasn’t been a great time for Credit Suisse. Its biggest 

shareholder, Saudi National Bank, was asked if he would buy more stock in the bank by a Bloomberg 

journalist and he replied: “Absolutely not”. The framing of these words caused some “jitters” and the 

share price fell in the biggest one-day selloff in the stock on record, leaving it down more than 85% over 

the last year (As of March 21, 2023). 

 

Now, while Credit Suisse’s balance sheet was reasonably strong, its reputation was obviously not. The 

unending list of scandals, most of them coming from the firm’s senior management and its investment 

banking division, have destroyed the once impressive brand. This loss of reputation has driven away top 

talent and the firm’s customers - collapsing profitability. This profitability issue, in a climate of fear, 

can put a firm like Credit Suisse on the rocks. 

 

This leads to our research question: 

Is the overreaction of the banking sector (and thus its following short-term reversal) stronger during 

low or high market sentiment? 

 

Researchers are still conflicted on this topic. Piccoli and Chaudary (2018), for example, find that 

overreaction is much stronger when investor sentiment is low. On the other side, Yu and Yuan (2011) 

and Stambaugh, Yu, and Yuan (2012) find a greater anomaly when investor sentiment is high rather 

than low. Further analysis of this “conflict” is offered in Chapter 2. 

 

This study finds that while there is some level of overreaction in the banking sector, results are sensible 

to the type of stock price returns and the trigger used. When using a negative trigger, with closing prices 

returns, Cumulative Average Abnormal Returns (CAARs) are positive and greater during periods of 

high market sentiment, but with stock price midpoints returns, high sentiment events lack significance. 

When using a positive trigger, both with closing and midpoint stock price returns, CAARs are negative 

and greater during periods of high market sentiment. These findings should thus imply that is it possible 

to build a Long-Short Strategy in order to exploit the overreaction of the banking sector, where stock 

prices react too strongly to news and subsequently tend to mean revert, creating the short-term reversal 

phenomenon. This strategy is much more profitable during bullish periods, but for the timeframe 

considered (2001 to 2021), there have been many more bearish trading days. 
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The following paper is structured as follows: Chapter 2 will provide a literature review of the short-term 

reversal, overreaction, market sentiment, and the banking sector. Chapters 3 and 4 will describe the Data 

and the Methodology of the research. Results will be analyzed and discussed in Chapter 5. Finally, a 

summary of the conclusions and main points of the paper is provided in Chapter 6. 
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CHAPTER 2 Literature Review  

 

The literature in this research area is definitely extensive and still of interest. The studies are similar in 

general, although it’s worth noting the heterogeneity in the specific research designs, “triggers”, 

markets, and the definition of large returns and results: there is not a standard approach and thus many 

papers might provide very different conclusions and explanations. The following sub-sections will 

describe and review some of the most influential studies in the field. 

 

 

2.1 Short-Term Reversal and Contrarian Strategy 

 

De Bondt and Thaler in their popular paper “Does the Stock Market Overreact?” (1985) already had the 

intuition that if stock prices systematically overshoot, it should be possible to predict their reversal from 

past data alone. Thus, extreme movements in stock prices will be followed by an opposite direction 

movement. This represents a clear violation of the weak-form market efficiency. 

 

A contrarian investment strategy aims to exploit this violation of efficiency by buying stocks that have 

been losers and selling short stocks that have been winners. There can be many strategies to exploit 

short-term reversals, but the standard one is a zero-investment strategy that in each period sorts stocks 

into deciles on the basis of prior-period returns, buys stocks in the bottom decile (losers), and short 

stocks in the first decile (winners) (Da, Liu, and Schaumburg, 2014). 

 

If the premise is that the stock market overreacts to news, winners will tend to be overvalued and losers 

undervalued (Chan, 1988). Is important to note, as in Chan (1988), that the estimation of the abnormal 

return to the contrarian investment strategy is sensitive to the model and estimation method. As an 

example, in his paper, he found that the contrarian strategy earns a very small abnormal return, which is 

probably economically insignificant.  

 

The way the Abnormal Return is calculated is crucial in this type of studies, in particular, the precision 

in the estimation of Expected Returns can completely change the results of research of this type. To 

avoid this, I will use the Fama-French 3 Factors as main model. A detailed explanation can be found in 

Chapter 4 (Methodology). 

 

Brown, Harlow, and Tinic (1988) define as an event the one-day residual returns above 2.5 or below -

2.5 percent for the largest firms in the SandP500 between July 1963 and December 1985, with a total of 

4806 positive and 4319 negative events. On average, over the next 10 trading days after the event, prior 
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winners earn (insignificant) CAPM risk-adjusted excess returns (CAER) of 3 basis points, while prior 

losers earn about 37 basis points (significant).  

 

Similarly, Bremer and Sweeney (1991) studied all Fortune 500 companies with a one-day return below 

-10.0 percent and found that, for the period between July 1962 and December 1986, three days after the 

price “jump”, the “Cumulative Excess Return” is an extraordinary 2.643 percent. Also in this case, it is 

necessary to highlight the fact that Cumulative Excess Returns are calculated by subtracting the sample 

average returns from the event day’s actual returns. Thus, these results might be completely different 

from a study that uses other models to calculate expected returns.  

 

Lehmann (1990) tests the standard contrarian strategy in order to verify the efficient market hypothesis: 

it studies the profits of costless (i.e., zero net investment) portfolios which give negative weight to recent 

winners and positive weight to recent losers. Theoretically, the short-run martingale models predict that 

these costless portfolios should tend to earn zero profits. In contrast, they will typically profit from return 

reversals over some horizon if stock prices overreact, and this strongly suggests the rejection of the 

efficient market hypothesis. Portfolios of securities that had positive returns in one week typically 

reverted in the next week (-0.35 to -0.55 percent per week on average), while those with negative returns 

in one week typically had positive returns in the next week (0.86 to 1.24 percent per week on average). 

The costless portfolio had positive profits in roughly ninety percent of the weeks. It is difficult to account 

for these results within the efficient market framework. These measured arbitrage profits persist after 

corrections for the mismeasurement of security returns due to bid-ask spreads and for plausible levels 

of transaction costs. 

 

Jegadeesh (1990) employed a similar strategy where he created ten portfolios based on returns data and 

used ex-ante predictions of the regression parameters. Between top and bottom deciles, he found a 

difference in risk-adjusted returns of 2.49% per month, for the period 1934-1987. He suggested that this 

consistent pattern might be due to market inefficiencies or systematic changes in expected stock returns. 

 

Another possible explanation for these abnormal returns is the “bid-ask bounce” as in Ball, Kothari, and 

Wasley (1995). Contrarian strategies’ returns are usually estimated from simulated trading using 

historical data, not from implemented trading. The historical data come almost exclusively from large-

scale files such as CRSP which only provide estimates of closing prices, and simulated contrarian 

portfolios tend to buy at the bid and short at the ask, which is not implementable for most investors. This 

might result in an upward bias when calculating contrarian abnormal returns. To ensure that the results 

will not be unduly affected by the bid–ask bounce, I will follow Subrahmanyam (2005), among others, 

and examine returns computed using mid-quotes. The use of mid-quotes returns allays concerns about 

bid-ask phenomena affecting the results.  
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Lakonishok et al. (1994) offer an explanation of the outperformance of contrarian strategy using the 

value factor as an example. Value strategies might produce higher returns because they are contrarian 

to "naive" strategies followed by other investors. These naive strategies might range from extrapolating 

past earnings growth too far into the future to assuming a trend in stock prices, overreacting to good or 

bad news, or simply equating a good investment with a well-run company irrespective of price. 

Regardless of the reason, some investors tend to overbuy growth stocks because they get overly excited 

about their recent good performance, so these "glamour" stocks become overpriced. Similarly, they tend 

to oversell “value” stocks by overreacting to their recent bad performances. These out-of-favor "value" 

stocks become under-priced. The logic behind Lakonishok’s Growth-Value example is that contrarian 

investors outperform the market because they bet against such naive investors by investing 

disproportionately in stocks that are under-priced (value stocks) and underinvest in stocks that are 

overpriced (growth stocks).  

 

Short-term stock reversals are also often seen as evidence that the market lacks enough liquidity to 

counteract the impact of sudden buying and selling pressure and that market makers set prices to manage 

their inventories. For example, Grossman and Miller (1988) and Jegadeesh and Titman (1995) assert 

that these reversals arise from inventory imbalances experienced by market makers, and that the 

contrarian profits are a form of compensation for inventory risks.  

 

Madhavan and Smidt (1993), and Hendershott and Seasholes (2007) have found that dealer prices are 

inversely related to their inventory, lending credence to the idea that dealers proactively manage their 

inventories. This theory of liquidity suggests that reversals should be decreasing in size over time since 

market liquidity has considerably increased. Additionally, it predicts that reversals will be more 

pronounced among small-cap stocks than large-cap stocks, which tend to have lower turnover. On the 

other hand, De Groot et. al (2012) discovered that the net reversal profits for the largest 500 and 100 US 

stocks are substantial and positive, and that they did not decrease over the course of the second decade 

in their sample. This finding refutes the notion that reversals can be explained exclusively by liquidity 

considerations. 

 

Lo and MacKinlay (1990) provide another possible cause of short-term reversals: nonsynchronous 

trading (lead-lag effect) contributes to contrarian profits. If the information is diffused gradually in 

financial markets and large-cap stocks react more quickly to information than small-cap stocks (that are 

covered by fewer analysts), the returns of large-cap stocks might lead the returns of small-cap stocks. 

However, always De Groot et al. (2012) find that reversal profits are smaller for the 1500 largest US 

stocks than for the 500 and 100 largest stocks. This is inconsistent with this explanation since 
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nonsynchronous trading predicts a size-related lead-lag-effect in stock returns and higher reversal profits 

among small-cap stocks. 

 

Jegadeesh and Titman (1995a, p. 1) further prove the inconsistency of Lo and MacKinlay (1990) 

nonsynchronous trading explanation: “Most of the contrarian profit is due to stock price overreaction 

and a very small fraction of the profit can be attributed to the lead-lag effect.” 

 

This behavioural explanation predicts that market prices tend to overreact to information in the short 

run, as already pointed out in De Bondt and Thaler (1985). Blitz et al. (2013) confirm that the 

overreaction explanation of short-term reversals is the only one that is “not inconsistent” with their 

findings. 

 

In conclusion, many authors find different results for short-term reversal, but nowadays, we can affirm 

that sufficient research and backtests have been made in order to prove that is a profitable and robust 

strategy. In real-life investments though, many other factors could undermine the actual and concrete 

applicability of this strategy, such as transaction costs, short-sale constraints, and market sentiment. 

 

In the next sub-section, it will be provided a focus on the “overreaction” literature, given the major 

importance that it has in financial markets and the fact that it’s one of the most plausible explanations 

of the short-term reversal anomaly. 

 

 

2.2  The Overreaction Hypothesis 

 

One of the relatively biggest controversial subjects in the recent financial literature is whether investors 

rationally price stocks or whether they overreact to market information, generating stock’s overpricing 

and underpricing (Dreman and Lufkin, 2000). 

 

Brown and Harlow (1988, p. 1) define overreaction as “the general tendency for investors to process 

event-related news in an overzealous fashion. Market participants can be said to overreact when 

unexpected favourable (unfavourable) announcements induce trading behaviour that results in price 

appreciation (depreciation) that is excessive relative to the actual value implied by the nature of the 

event.” 

 

In their pioneering study, De Bondt and Thaler (1985), formally stated the “Overreaction Hypothesis” 

(OH), and posed the basis of a new stream of literature with their strong and innovative hypotheses:  
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OH - 1 Extreme movements in stock prices will be followed by subsequent price movements 

in the opposite direction (the Directional Effect). 

OH - 2 The more extreme the initial price movement, the greater will be the subsequent 

adjustment (the Magnitude Effect). 

 

To demonstrate these hypotheses, De Bondt and Thaler showed that companies having the largest losses 

during a three-year estimation period realized returns over the following five years that were 19.6% 

greater than the market average. On the other side, companies having the largest gains lost 5% relative 

to the market in that later period. They thus concluded that the stock market tends to overreact to extreme 

situations and that the long-term overreaction process is apparently asymmetric. It is noticeable that, 

although it is considered to be a pioneer in the overreaction field, their study strongly differs from this 

thesis, as it is focused on the long-term reversal phenomenon, and it is a cross-sectional type of research, 

while this paper will be a time-series analysis related to short term reversals (as further explained in 

Chapter 4). 

 

The Overreaction Hypothesis predicts that more extreme price changes will cause more extreme 

responses, so according to Bernstein (1985), Brown and Harlow (1988), it is also conceivable that the 

size of the subsequent reaction will vary inversely with the amount of time needed for the initial price 

change to occur. This leads to the third hypothesis: 

 

OH - 3 The shorter the duration of the initial price change, the more extreme the subsequent 

response (the Intensity Effect). 

 

All three hypotheses imply return forecastability and specific violations of weak form market efficiency 

(De Bondt, 1987). 

 

Howe (1986) provides further evidence to support the overreaction hypothesis. Specifically, he found 

that firms with large positive returns because of favourable news, performed poorly in the 50-week 

period following that event, with returns averaging about 30 percent below the market. The results for 

the sample of bad news stocks show a large price decline followed by a period of above-average returns.  

 

Given the evidence of the overreaction behaviour, it comes now natural to ask what the underlying 

explanation for this phenomenon is, and many studies differ in their views. 

 

Daniel et al. (1998) built a model to explain overreaction: if individuals are overconfident (e.g., they 

overestimate the precision of their private information signals and of their predictive skills), they will 

overweight their private signals relative to the public ones, causing the stock price to overreact. 
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Zarowin (1990) and Chopra et al. (1992) investigate the impact of the size effect within the overreaction 

hypothesis using US data and find that adjustment for size does reduce the extra return available from 

losers. Indeed, Zarowin (1990) believes that all of the extra return can be explained by the size effect, 

while De Bondt and Thaler (1985) did not believe that their results were due to the size effect. 

 

Dreman and Lufkin (2000) present evidence of overreaction by showing that important fundamentals, 

upon which securities prices depend, demonstrate little movement in the face of major changes to the 

returns of favoured and unfavoured stocks, and they find no explanation other than psychological 

influences to account for this finding.  

 

Griffin and Tversky (1992) argue that, in revising beliefs, people tend to focus on the ‘‘strength” or 

extremeness of available evidence (e.g., size of an effect) and pay insufficient attention to its ‘‘weight” 

or credence (e.g., size of the sample). This leads to overconfidence when ‘‘strength” is high and 

‘‘weight” is low, and underconfidence when the opposite is the case. In the context of stock prices, this 

means that investors would tend to have overconfidence in events (news, developments) that are 

sizable/grave in magnitude but low in frequency, and hence would tend to overreact. 

 

The purpose of this thesis though, is not to provide an explanation for the Overreaction Hypothesis, but 

rather to study the relationship between OH and Market Sentiment, with an additional focus on the 

banking sector as shown in the next sections. 

 

 

2.3  Market Sentiment 

 

“Even apart from the instability due to speculation, there is the instability due to the characteristic of 

human nature that a large proportion of our positive activities depend on spontaneous optimism rather 

than on a mathematical expectation, whether moral or hedonistic or economic. Most, probably, of our 

decisions to do something positive, the full consequences of which will be drawn out over many days to 

come, can only be taken as a result of animal spirits—of a spontaneous urge to action rather than 

inaction, and not as the outcome of a weighted average of quantitative benefits multiplied by quantitative 

probabilities” (Keynes; The General Theory of Employment, Interest, and Money (1936),  p. 81). 

 

Investor sentiment, defined broadly, is “a belief about future cash flows and investment risks that is not 

justified by the facts at hand” (Baker and Wurgler 2007, p. 1). 
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De Long, Shleifer, Summers, and Waldmann (1990) formalized the role of investor sentiment in 

financial markets. They demonstrated that sentiment changes will lead to more noise trading, greater 

mispricing, and excess volatility in the presence of uninformed noise traders (who base their trading 

decisions on sentiment) and risk-averse arbitrageurs who encounter limits to arbitrage. Based on the 

idea of Griffin and Tversky (1992) that, in making forecasts, people pay too much attention to the 

strength of the evidence they are presented with and too little attention to its statistical weight, Barberis 

et al. (1998) presented a model of investor sentiment that predicts the underreaction of stock prices to 

earnings announcements and similar events, and the overreaction to consistent patterns of good or bad 

news.  

 

According to Shiller (2000), the news media is a significant force in setting the stage for market moves. 

He affirms that investors often follow the printed word, even though much of it may be pure hype. This 

suggests that market sentiment is heavily influenced by the content of the news. But how does market 

sentiment relate to overreaction? As previously stated in the introduction, there are different views. 

 

Yu and Yuan (2011) find that in the mean–variance relation, investor sentiment plays a crucial role. 

There is a strong positive trade-off between mean and variance when sentiment is low but little (if any) 

trade-off when sentiment is high. This might happen because sentiment traders are usually reluctant to 

take short positions in low-sentiment periods, thus they tend to exert greater influence during Bullish 

markets rather than during Bearish markets (see, for example, Barber and Odean 2008).  

Similarly, Stambaugh et al. (2012) combine sentiment and short-sale constraints to investigate the 

presence of sentiment effects. In particular, the study explores the role of investor sentiment in a broad 

set of anomalies in cross-sectional stock returns.  

 

With impediments to short-selling, overpricing becomes more difficult to eliminate, so a firm’s stock 

price can reflect the views of investors who are too optimistic. With market-wide variations in investor 

sentiment, such overpricing can occur for many stocks during periods of high sentiment. 

Karlsson, Loewenstein, and Seppi (2009) build a model that predicts that individuals may add additional 

information on favourable news and avoid information following neutral or bad news. This Ostrich-like 

behaviour might lead sentiment-driven investors to participate and trade more aggressively in high-

sentiment periods.  

 

So, for some researchers, overreaction is stronger during high market sentiment periods, and this 

happens mainly because of market frictions (short-sale constraints) and non-rational behaviours 

(reluctance to take short-positions in low-sentiment periods, Ostrich-like behaviour). On the contrary, 

another stream of literature predicts the exact opposite: overreaction is stronger during periods of low 

sentiment. 
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According to Piccoli and Chaudury (2018), extreme market movements are by construction very 

unlikely to occur, which makes them surprising and can cause people to overreact. Griffin and Tversky 

(1992) found that people tend to give more weight to unexpected events, leading to overreaction. 

However, in times of low sentiment, large market movements stand out more and can be more startling 

for investors because when people are feeling pessimistic, they may be more uncertain about their 

beliefs, which can contribute to the overreaction to extreme market events. This view is coherent with 

Kahneman and Tversky's (1979) prospect theory, in which individuals weigh losses more than gains. 

Thus, in a “bearish” period where futures expectations are already negative, bad news might provoke a 

bigger stock sell-off than in a bullish market. 

 

A natural question that comes is if every sector of the market (over)reacts in the same way or if there 

might be additional factors that influence specific sectors’ stock trends. In the latest months, for example, 

we have seen how the banking sector’s stock prices have been “nervous” and “noisy”. The collapse of 

US-based Silicon Valley Bank and Signature Bank followed by the forced takeover of Credit Suisse by 

UBS sparked widespread worries about a new financial crisis in early March.  

 

The main goal of this thesis is to verify which of the two streams of literature is a more accurate 

representation of actual market behaviour: Is the overreaction of the banking sector (and thus its 

following short-term reversal) stronger during low or high market sentiment? 

 

From the logical and psychological perspective, I am more inclined to follow Piccoli and Chaudury’s 

stream of literature: the effects of fears are usually stronger than the effects of greed. As we are behaving 

under the guidance of “animal spirits”, we usually tend to act more irrationally in moments of panic 

rather than in moments of excessive optimism: losses are weighted much more than gains (as in the 

prospect theory). This approach is also supported by episodes of “momentum crashes” (Daniel, 

Moskowitz, 2016). They found that momentum strategies (which are basically the opposite of contrarian 

strategies: buy recent winners and short recent losers) tend to perform poorly during panic states, 

following multi-year market drawdowns, and in periods of high market volatility. In addition, the 

banking sector has been proven to be particularly affected by irrationality (such as the herding behaviour 

in the case of bank runs for example), which might be in some cases justified but in others not. Thus, 

the tentative hypothesis is the following: 

 

Hypothesis: Overreaction of the Banking Sector is stronger during periods of low market sentiment. 

 

The next subsection will briefly discuss the literature related to the banking sector, sentiment, and 

overreaction, given the current news and its systemic importance. 
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2.4  The Banking Sector 

 

Banks, whether commercial or investment, differ a lot from every other type of company. One of the 

main features of a bank is its complexity: it’s an organization with multiple business lines, products, and 

services. This complexity makes it challenging for new entrants to compete effectively in the sector. In 

addition, the banking sector is heavily regulated by government authorities to ensure financial stability 

and consumer protection. Banks are required to meet certain capital requirements, maintain reserves, 

and comply with a range of other regulations.  

 

By nature, a bank’s leverage is much higher than that of nonfinancial corporations. This is also why 

usually the financial industry is excluded from market and sector-specific research: they follow a 

completely different framework both in the balance sheet but also in their everyday behaviour, when 

compared to “traditional” industries. Basel III international regulatory framework specifies a minimum 

leverage ratio of 3%, which is already much lower when compared to other industries’ leverages. The 

pervasive idea in the sector is that “equity is expensive”, and bankers have always asserted that 

increasing equity requirements would reduce loans supply and thus economic growth. One could then 

argue that banks and other financial institutions (that hold equity in a very small fraction of their assets) 

might result fragile from a societal point of view (Admati et al., 2013). 

 

That is why it comes naturally to highlight the importance of “trust”. Banks rely on the trust of their 

customers, which is why reputation and accountability are of major relevance in this sector.  The lack 

of this factor might lead to bank runs and subsequent fall in a bank’s stock price (or even bankruptcy, 

see the Silicon Valley Bank case). 

 

As first modeled in Diamond and Dybvig (1983), during a bank run, depositors rush to withdraw their 

deposits because they expect the bank to fail. In fact, the sudden withdrawals can force the bank to 

liquidate many of its assets at a loss and fail. 

 

Banks are clearly fragile to “irrational exuberance” and panic behaviours; thus, they are also highly 

exposed to market sentiment. Uygur and Tas (2014) analyse the Turkish stock market and find that 

investor sentiment affects mostly the conditional volatility of the key driving sectors of the Turkish 

economy and Istanbul Stock Exchange: Industry and Banking sectors.  

 

Gandhi et al. (2019) find convincing evidence that the performance of banks during the period from 

January 2004 to December 2012 was driven by investors’ irrational market-wide crisis sentiment, 

suggesting that the losses experienced by bank stock investors were amplified both by irrational market-

wide and firm-individual crisis sentiment. This can be easily seen in the recent cases of Silicon Valley 
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Bank, Signature Bank, Credit Suisse, and First Republic Bank. Each of the failures had its characteristics 

and reasons, but surely the general climate of fear and suspicion in the banking sector has been a 

common denominator.  

  

As Figure 1 shows, bank failures are not as uncommon as expected: on the contrary, since 2001 there 

have been around 500 bankruptcies. In particular, while the 2008 Great Financial Crisis mainly affected 

a large number of smaller banks, the 2022-2023 crisis hit three major banks, with a combined value of 

total assets of more than $500 billion. Is this all due to the interest rates hikes or can there be any other 

reasons such as market sentiment? The SVB case study offers a clear example of how other external 

factors can be strongly influential.    

 

 

2.5   A case study: Silicon Valley Bank 

 

The Silicon Valley Bank (SVB) was one of the main banks that financed start-up projects in Silicon 

Valley. Just a few weeks before the bank's failure, it was named by Forbes as one of the best American 

banks based on its impressive growth, credit quality, and profitability, highlighting its success and 

stability in the industry. 

 

SVB failed on the 10 March 2023, when many of its customers began to withdraw their money due to 

rumours that the bank might run out of cash. This all began a few years ago when tech and 

Figure 9 - Bank Failures in Brief from 2001 to May 2023 - FDIC: Bank Failures in Brief 

 

https://www.fdic.gov/bank/historical/bank/
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pharmaceutical start-ups were growing at dizzying rates and there was a lot of liquidity in the market. 

A lot of money was circulating because of the expansionary policy of the FED between March 2020 and 

April 2022 as a response to the COVID-19 pandemic. Expansionary policies led to a huge increase in 

investments, and many of these investments went to Silicon Valley start-ups, which were then deposited 

in banks as SVB. 

 

Banks were incentivized to invest in Government securities because they were considered highly liquid 

and had low (if any) capital requirements. In addition, SVB were exempted from most of the toughest 

regulatory measures because they had less than $250 billion in asset under management. This exemption 

has been said to be the result of lobbying: in 2018 the Dodd-Frank threshold to consider systemically 

important a bank (and thus incur in higher regulation and supervision) has been raised from 50 to 

$250bln. Under the Risk-Weighted capital requirements, Treasury Bonds are risk-weighted to zero, 

meaning that SVB had to hold zero equity against the treasury position. SVB was able to build up a lot 

of interest rate risk without it being reflected in the capital requirement under the regulatory framework. 

 

In 2022, the global situation worsened with inflation, the war in Ukraine, and an energy crisis. Central 

Banks then increased interest rates to cool down the economy. The Silicon Valley Bank found itself 

with two problems: deposits were being withdrawn, and its investments were losing value. So, to provide 

money to its customers, the bank sold some of its investments at a loss. The market didn't take the 

situation well, and Moody's downgraded the Silicon Valley Bank to just above junk level. As a result, 

the SVB also crashed in the stock market, and in the end, it failed in less than 48 hours. 

 

The review of the Federal Reserve’s Supervision and Regulation of Silicon Valley Bank claimed that 

SVB failed because of a “textbook case of mismanagement by the bank”. Its senior leadership failed to 

manage basic interest rates and liquidity risk. Its board of directors failed to oversee senior leadership 

and hold them accountable. And Federal Reserve supervisors failed to take forceful enough action, as 

detailed in the report (BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM, 2023). 

 

Looking at the broader picture, as also stated by the FED’s report, while the cause of SVB's failure can 

be mainly attributed to the asset-liability mismatch due to inappropriate risk management, social media 

and fear-sentiment fuelled and accelerated SVB’s crash (Bales and Burghof, 2023). 

 

The importance of social media in influencing people’s decision-making process has increased notably 

in recent years, leading to possible contagion of individuals’ moods and fears and to “herding 

behaviours”. In addition, nowadays bank runs are “virtual”: technology enabled immediate withdrawals 

of funding. This phenomenon might imply an increased Intensity Effect of the Overreaction Hypothesis: 
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if news spreads faster and sentiment changes more frequently, we can also hypothesize that there will 

be shorter durations of the initial price changes, meaning more extreme reversals. 
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CHAPTER 3  Data 

 

To give our research question an answer, we will need two different types of datasets: bank stocks’ daily 

price returns and a sentiment index.  

 

 

3.1  Bank Stocks’ Daily Price Returns 

 

Each of the many data providers has its own pros and cons, but in general since this study will use daily 

bank stock price returns, many possible biases must be taken into account when dealing with the data 

cleaning process. The use of stock price return data instead of total return data is crucial to make sure 

that the effect of dividends and other distributions does not interfere with the trigger measure that is 

going to be used to find events. 

 

As pointed out in Ball et al. (1995), research on trading rule profitability (as in our case) obtained using 

CRSP, usually records estimated closing prices. The estimated closing price might be the last trade of 

the day (that could be at the closing bid, or the closing ask, or neither) or the bid-ask average in the 

absence of a trade. Simulated contrarian portfolios tend to buy at the bid and short at the ask, which 

generates the “Bid-Ask Bounce”. To avoid it, the approach of Subrahmanyam (2005) seems well-suited, 

since it uses returns calculated from quote mid-points. 

 

Using the Refinitiv Eikon “DataStream” dataset for bank stock will let us obtain closing prices, bid 

prices and ask prices, in addition to the banks’ market value. 

 

This study aims to evaluate the overreaction of bank stocks based on market sentiment. This is why it 

considers a timeframe that spans from January 1st, 2001, to December 31st, 2021: this period of twenty-

one years includes two of the biggest market downturns (The Great Financial Crisis of 2008 and the 

Coronavirus Crash of 2020), but also many upturns.  

 

The first filter used considers only the banking sector in “The Refinitiv Business Classification” 

(TRBC), which is a market-based classification system. Other filters applied to the first database 

selection are the timeframe (daily prices from 2001 to 2021) and the currency (only US dollars-

denominated stocks to avoid any currency influence). Following this, I considered only first-class shares 

(common stocks) and both active and currently inactive banks to avoid survivorship bias. 
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With the Bid and Ask price, I created a new variable called “Midpoint” which is just the average between 

bid-ask prices. Unfortunately, Refinitiv does not always provide bids and asks, thus for this research I 

will first analyze “The Overreaction Hypothesis” using closing price returns, then make another study 

using midpoint prices returns when available. It’s worth noting that most of the midpoints started in 

April 2006.  

 

In total, this dataset is composed of 2952 banks, but is also important to note that the data available with 

price midpoints is smaller (2093 banks). In addition, I will consider 20 years of trading activity from 

January 1st, 2001 until December 31st, 2021, for a total of 5496 trading days. 

 

 

3.2   Sentiment Index 

 

Measuring the sentiment might be a difficult task. There are various indicators and studies that assess 

markets, individual investors, and macroeconomic factors and that try to understand the feelings of 

specific markets. 

 

Empiricists often proxy for investor sentiment with market-based measures such as trading volume, 

closed-end fund discount, initial public offering (IPO) first-day returns, IPO volume, option implied 

volatilities (VIX), or mutual fund flows. 

 

Baker and Wurgler (2007) offer one of the most influential models based on financial markets data: 

In particular, they use 6 proxies, such as: 

• trading volume as measured by NYSE turnover (TURN) 

• dividend premium (PDND) 

• closed-end fund discount (CEFD) 

• the number of IPOs (NIPO) 

• first-day returns on IPOs (RIPO) 

• the equity share in new issues (S) 
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Figure 10 – Baker and Wurgler (2007) Sentiment index 

 

One of the key points is that waves of sentiment have clearly discernible, important, and regular effects 

on individual firms and the stock market as a whole. When the index is positive (negative), the period 

corresponds to the high (low) sentiment regime. In naïve terms, a high (low) sentiment period can be 

considered a proxy for a bullish (bearish) market. Its easy accessibility from the Stern NYU Website 

and its monthly frequency make it a perfect match for our research purpose. It is useful to observe, as 

explained in the dataset description, that unlike in Baker and Wurgler (2007), NYSE Turnover has been 

dropped as one of the six sentiment indicators, thus this sentiment index is going to be based on the 

other five indicators abovementioned. 

 

Variable Mean P50 SD Min Max Skewness Kurtosis 

SENT -0.13 -0.20 0.48 -0.95 2.27 2.04 9.36 

Table 9 – Baker and Wurgler (2007) sentiment index descriptive table for the period 

January 2001 to December 2021, with a monthly occurrence. 

 

In general, this period of twenty-one years has been on average slightly negative in terms of market 

sentiment, but it is also remarkable that periods of positive market sentiment have been much stronger, 

and usually present some “peaks”, as shown by the underlying Figure 3.  
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Figure 11 – Baker and Wurgler (2007) Index from January 2001 until January 2022 

 

The index shows the drops in sentiment after the 2001 dotcom bubble and after the 2008 GFC, followed 

by the tremendous increase in 2021, as the 2021 stock market rally confirms. 

 

For this study, is also important to highlight that the vast majority of trading days fell under “low 

sentiment” periods. As shown in Figure 4, the largest part of trading days had a slightly negative 

sentiment value, mostly ranging between -1 and 0. Table 2 also shows that while there has not been any 

day with extremely low sentiment (lower than -1), there have been more than 500 days with extreme 

excitement in the markets, with sentiment values greater than 1.  

 

B&W Values Range N. of Days 

[-2;-1] 0 

[-1;0] 3798 

[0;+1] 1095 

[+1;+2] 294 

[+2;+3] 309 

Table 10 - Frequency Distribution of Baker and Wurgler index for the years 2001 to 

2021. The table shows that while most of the days were included between -1 and +1 

sentiment, there has not been any extreme negative sentiment day but there have been 

many extremely positive sentiment days with the sentiment index larger than +1 and 

even +2. 
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Figure 12 – Frequency Distribution of Baker and Wurgler index for the years 2001 

to 2021 

 

The peculiarity of the frequency distribution in this period strongly influenced the features of this study, 

with the majority of events falling under negative sentiment trigger, and thus being defined as negative 

events. 

 

The following Method chapter will better define these characteristics, explaining the “trigger strategy” 

and the overall design of the study.   
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CHAPTER 4  Method 

 

Hypothesis: Overreaction of the Banking Sector is stronger during periods of low market sentiment. 

 

To test this hypothesis, I will need to combine the (abnormal) returns during the event window and the 

market sentiment. The following subsections will provide the formal methodology to perform an 

investigation on whether overreaction is stronger during periods of High or Low sentiment. 

 

 

4.1  Returns 

 

Consistent with the trigger strategy of Bremer and Sweeney (1991) and Cox and Peterson (1994) I will 

examine daily stock returns following one-day price changes lower than -10% and greater than +10%. 

Those one-day extreme returns determine the event day. Thus, an event is identified as a calendar date 

(t0) in which an extreme stock price daily movement (-10%; +10%) occurs. In particular, an event is 

defined “positive event” if the one-day stock price return change is greater than +10%, vice versa a 

“negative event” happens when the one-day stock price return change is lower than -10%. 

 

In this type of financial studies, the length of the estimation window does not follow a definite rule, 

rather, it can be adapted based on the specific analysis and event being considered. Following Piccoli 

and Chaudury (2018), I define an estimation window between the period [t0 – 136] and [t0 -10] trading 

days. This estimation window of 126 trading days in total is well-suited because it represents half of the 

252 average trading days in a year. This semi-annual schedule aligns with this research purpose as it is 

sufficiently balanced between having enough data for the coefficients’ estimation and avoiding 

excessive data that might introduce noise. 

 

The event window, defined as the time period around the event date that we want to analyze, is 

considered from [t0  + 1] trading days until [t0  + 10] trading days, as shown in Figure 4. This study will 

research the short-term reversal for the following event windows: [1,3], [1,5], [1,10] 
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Figure 13 – Timeline of the Event Study. The Estimation window from 136 trading days before the 

event until 10 trading days before the event, for a total of 126 trading days (representing half of the 252 

available working days in a year). The Total event window is from the day after the “trigger” of [-10%] 

until 10 trading days after it. 

 

Abnormal Returns for a stock i in a day t are defined as the difference between Actual Returns and 

Expected Returns in a given event window.  

 

𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑅𝑒𝑡𝑢𝑟𝑛𝑠(𝑖,𝑡) =  𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑒𝑡𝑢𝑟𝑛𝑠(𝑖,𝑡)  −  𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑡𝑢𝑟𝑛𝑠(𝑖,𝑡) (1) 

 

To calculate the conditional expected stock returns component, I use the three-factor model of Fama and 

French (1993) as a benchmark, following some of the most influential papers in the field (Da, Liu, and 

Schaumburg, (2014); Piccoli and Chaudury, (2018); Stambaugh, Yu, and Yuan, (2012)).  

 

Fama and French (hereby F-F) model involves regressing daily stocks’ returns on three factors: market 

excess return (MKT, just the Return of the Market minus the Risk-Free rate), the size factor (SMB), and 

the value factor (HML).  

 

 

With the daily factors obtained directly from Kenneth French’s website, I perform an OLS regression 

over the estimation windows.  

 

The estimated coefficients, coupled with the mean F-F factor values throughout the event period, yield 

the expected return for each individual stock. The daily deviation of a stock's return from its expected 

return is denoted as its Abnormal Return (AR) for that day. Essentially, this represents an approximation 

of the stock's alpha, based on the F–F three-factor risk adjustment in this context. For a specific event, 

it's necessary to have a minimum of 30 consecutive data points before applying the resulting coefficients. 

Otherwise, the observation is excluded from the dataset.  

The next step would be to calculate the Average Abnormal Returns (AAR), in order to compare the 

performances during different sentiments more accurately and with a reduced probability of 

measurement errors caused by idiosyncratic factors. 

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑡𝑢𝑟𝑛𝑠 = 𝑅𝑖,𝑡 − 𝑅𝑓𝑡 = 𝛼 +  𝛽(𝑀𝐾𝑇)𝑀𝐾𝑇𝑡 +  𝛽(𝑆𝑀𝐵)𝑆𝑀𝐵𝑡  + 𝛽(𝐻𝑀𝐿)𝐻𝑀𝐿 𝑡 +  𝜀𝑡 (2) 



24 

𝐴𝐴𝑅𝑡 =  
1

N
∑ 𝐴𝑅𝑖,𝑡

N

𝑖=1

 (3) 

 

 

Finally, the sum of the AARs during the event windows represents the Cumulative Average Abnormal 

Returns (CAAR).  

 

 

Another way to obtain CAAR would be to first calculate the Cumulative Abnormal Returns (CAR) for 

each event and each specific event window, and then perform an average. Cumulative Abnormal Returns 

simply represent a sum of abnormal returns in a given event. 

 

 

For simplicity, to obtain CAARs I will use equation (4), but the two methods are perfectly 

interchangeable. We will use CAR later in the Significance Test chapter (Chapter 4.3). Summing up the 

AARs will let us compare and evaluate effectively the returns during periods of High and Low market 

sentiment. 

 

 

4.2  Market Sentiment 

 

Firstly, I classify daily returns depending on the sentiment provided by the Baker-Wurgler (BW) index.  

A trading day is classified as “high sentiment” if its BW Sentiment value is greater than zero. Vice versa, 

“low-sentiment” days are those with below-zero values. As already mentioned in the data section 

(Chapter 3), the sample period presents many more low-sentiment (LS) days when compared to high-

sentiment (HS) ones (3798 “LS” and 1698 “HS” days), but the bullish periods are usually much stronger.  

 

The following stage consists of calculating the returns separately for the high and low-sentiment days. 

Equation (5) adds a dummy variable to equation (2) that will let us divide the expected returns during 

HS and LS event periods.  

𝐶𝐴𝐴𝑅 =  ∑ 𝐴𝐴𝑅𝑡 (4) 

𝐶𝐴𝑅𝑖,[𝑡1;𝑡2]  =  ∑ 𝐴𝑅𝑖,[𝑡1;𝑡2]                  𝑤ℎ𝑒𝑟𝑒                 

𝑁

𝑖=1

𝐶𝐴𝐴𝑅 =   
1

𝑁
∑ 𝐶𝐴𝑅𝑖,[𝑡1;𝑡2]

𝑁

𝑖=1

 

 

(5) 
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Where 𝑑𝑡
𝐻𝑆 and 𝑑𝑡

𝐿𝑆 are dummy variables indicating bullish and bearish periods. With these results in 

mind, we could finally analyze and compare the CAARs of High and Low periods using the 

aforementioned triggers of -10% and +10%. 

 

𝐶𝐴𝐴𝑅𝐻𝑆  =  ∑ 𝐴𝐴𝑅𝑡
𝐻𝑆 (8) 

𝐶𝐴𝐴𝑅𝐿𝑆  =  ∑ 𝐴𝐴𝑅𝑡
𝐿𝑆 (9) 

 

In other words, I will investigate if the CAARLS is larger than the CAARHS, as previously hypothesized. 

 

 

4.3  Significance Test 

 

For a performance index such as the CAAR, a test statistic is usually measured and compared to its 

assumed distribution under the null hypothesis the average abnormal returns are equal to zero. The 

standard procedure for a test statistic for a classic CAAR as in equation (4), is the CAAR divided by an 

estimate of its standard deviation. For each specific event window [t1; t2], the estimated standard 

deviation used for the CAAR t-test is equivalent to: 

 

 

Where N is the number of observations, d is the degree of freedom, and then the squared sum of specific 

Cumulative Abnormal Returns (CAR) of every event in an event window [t1; t2] subtracted by its 

average for the same event window (CAAR).  

 

It’s important to note that to calculate these standard deviations we need the assumption of no overlap 

of event windows with the estimation windows. This might happen because of “event clustering”, a 

phenomenon that appears when two or more events are too close to each other, creating noise, estimating 

downwards the standard deviation in equation (10) and thus positively skewing the significance test. 

For simplicity, in this study, I only analysed events that do not overlap to avoid clustering of standard 

𝑅𝑖,𝑡 − 𝑅𝑓𝑡 =  𝑑𝑡
𝐿𝑆𝛼𝐿𝑆  +  𝛽(𝑀𝐾𝑇)𝑀𝐾𝑇𝑡 +  𝛽(𝑆𝑀𝐵)𝑆𝑀𝐵𝑡  + 𝛽(𝐻𝑀𝐿)𝐻𝑀𝐿 𝑡 +  𝜀𝑡 (6) 

𝑅𝑖,𝑡 − 𝑅𝑓𝑡 = 𝑑𝑡
𝐻𝑆𝛼𝐻𝑆 +  𝛽(𝑀𝐾𝑇)𝑀𝐾𝑇𝑡 +  𝛽(𝑆𝑀𝐵)𝑆𝑀𝐵𝑡  + 𝛽(𝐻𝑀𝐿)𝐻𝑀𝐿 𝑡 + 𝜀𝑡 (7) 

�̂�𝐶𝐴𝐴𝑅[𝑡1;𝑡2] =  √
1

𝑁(𝑁 − 𝑑)
∑(𝐶𝐴𝑅𝑖,[𝑡1;𝑡2]  −  𝐶𝐴𝐴𝑅[𝑡1;𝑡2])2

𝑁

𝑖=1

 (10) 
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errors, but another possible solution would be to use event-clustered standard errors when performing 

the t-test1. Under the null hypothesis (CAAR = 0) and the assumption that the individual security CARs 

are independent, the CAAR asymptotical distribution can be approximated as unit normal.  

 

 

 

Finally, the cross-sectional t-test to verify the null hypothesis that CAAR = 0 is given by the division of 

the CAAR for each event window for its estimated standard deviation: 

 

 

 

 

 

 

 
1 Further details on the potential impact and implications can be found in Chapter 6, Section 6.2 “Limitations and Future 

Research”.  

 

𝐶𝐴𝐴𝑅[𝑡1;𝑡2]   
a

∼
  𝑁 (0, �̂�𝐶𝐴𝐴𝑅[𝑡1;𝑡2])  (11) 

𝑱 =
𝐶𝐴𝐴𝑅[𝑡1;𝑡2] 

�̂�𝐶𝐴𝐴𝑅[𝑡1;𝑡2]
   

a

∼
   𝑁 (0,1)  (12) 
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CHAPTER 5  Results  

 

Hypothesis: Overreaction of the Banking Sector is stronger during periods of low market sentiment. 

 

In order to verify this hypothesis, I performed separate analysis depending on the trigger used (positive, 

negative) and the type of prices (Closing and Midpoint), to get a deeper and well-rounded understanding 

of the short-term reversal phenomenon.  

 

 

5.1  Negative Trigger Events’ Results 

 

Table 3 presents the Cumulative Average Abnormal Returns using closing prices for the whole sample 

of events, but also for the “high sentiment” subsample and the “low sentiment” subsample. Given that 

this period of twenty years (between 2001 and 2021) mainly presented low sentiment days, and that our 

trigger is negative, the majority of observations are in the “low sentiment” subsample. The events in 

total are 1612, with 1507 that happens during bear sentiment, and 105 during bull sentiment. 

 

Table 11 - Cumulative Average Abnormal Returns using Closing Prices, Negative Trigger of -10% 

This table reports the CAARs of All events, events that happened during periods of High Sentiment, and 

events that happened during periods of Low Sentiment. Results are reported for event windows [1,3], 

[1,5], and [1,10]. T-statistics are in parenthesis and are obtained through equation (12). 

 
 N CAAR [1,3] CAAR [1,5] CAAR [1,10] 

All events 
1612 

0.018 0.025 0.027 

(t-stat) (5.978)*** (6.269)*** (4.594)*** 

Low Sentiment 
1507 

0.017 0.024 0.025 

(t-stat) (5.352)*** (5.593)*** (3.926)*** 

High Sentiment 
105 

0.034 0.039 0.044 

(t-stat) (5.14)*** (6.287)*** (4.791)*** 

***Significant at 1% level **Significant at 5% level *Significant at 10% level  

 

 

As reported in Table 3, all of the samples exhibit economic and statistical significance over each of the 

three event windows. The most notable result from this table is that, at least by analyzing results using 

closing prices, Cumulative Average Abnormal Returns are greater during periods of High Sentiment 

rather than periods of Low Sentiment. This would mean that overreaction is stronger during periods of 

market optimism, supporting the views of researchers that believe that this happens mainly because of 

market frictions (short-sale constraints) and non-rational behaviours (reluctance to take short-positions 

in low-sentiment periods, Ostrich-like behaviour). The statistical significance of the CAARs both in 
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High and Low Sentiment events would imply that the banking sector does not differentiate when 

reacting to events. 

 

Figure 6 shows the CAARs in a day-by-day framework rather than the windows as in Table 3. A clear 

discernible path, in addition to the major difference between “High” and “Low” sentiment events, can 

be noticed by the fact that until day 6 CAARs seem to monotonically grow, then from day six onwards 

have a small decrease but generally moving sideways between day 6 and 10. In other words, the larger 

part of abnormal returns happens until one week after the event. 

 

 

Figure 14 – Cumulative Average Abnormal Return using a Negative Trigger with Closing prices day-

by-day. The figure shows the differences in performances between High Sentiment Events (orange line) 

and Low Sentiment Events (grey line) and All Events taken together (blue line). Events are considered 

as every trading day with a daily stock price return of less than -10% (negative trigger). 

 

It is important to remember that these results are obtained using closing prices.  

 

How much the “bid-ask bounce” phenomenon impacts the CAARs calculated with closing 

prices? I performed the same event study using the price midpoint. which represents the average 

between the bid and the ask price and thus should not be affected by the “bid-ask bounce”.  

Table 4 presents the results. 
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Table 12  - Cumulative Average Abnormal Returns using Midpoint Prices, Negative Trigger of -10 % 

This table reports the CAARs of All events, events that happened during periods of High Sentiment, and 

events that happened during periods of Low Sentiment. Results are reported for event windows [1,3], 

[1,5], and [1,10]. T-statistics are in parenthesis and are obtained through equation (12). 
 

 N CAAR [1,3] CAAR [1,5] CAAR [1,10] 

All events 
1260 

0.023 0.030 0.034 

(t-stat) (6.32)*** (6.506)*** (5.41)*** 

Low Sentiment 
1195 

0.022 0.030 0.036 

(t-stat) (7.961)*** (7.837)*** (7.796)*** 

High Sentiment 
65 

0.004 0.006 -0.028 

(t-stat) (0.12) (0.14) (0.36) 
***Significant at 1% level **Significant at 5% level *Significant at 10% level 

 

While the sample as a whole and events that happened during periods of Low Sentiment appear 

statistically significant, by using midpoints I obtained statistical and economical insignificant abnormal 

returns. The fact that using midpoints, the sample “All events” shows significant CAARs suggests that 

there is some level of market overreaction in the banking sector. An interesting finding is the lack of 

significance of events that happened during periods of High Sentiment, suggesting that during bullish 

market conditions, the market may be less sensitive to the banking sector’s news or events.  

 

These results represent only the negative trigger part of the research, the other side of the coin might 

add important information to our study. 

 

 

5.2  Positive Trigger Events’ Results 

 

Reminding that positive events are trading days with daily stock price changes of a specific stock 

greater than +10%, Table 5 shows the CAARs using closing prices.  

 

Table 13 - Cumulative Average Abnormal Returns using Closing Prices, Positive Trigger of + 10% 

This table reports the CAARs of All events, events that happened during periods of High Sentiment, 

and events that happened during periods of Low Sentiment. Results are reported for event windows 

[1,3], [1,5], and [1,10]. T-statistics are in parenthesis and are obtained through equation (12). 
 

 N CAAR [1,3] CAAR [1,5] CAAR [1,10] 

All events 
2273 

-0.014 -0.015 -0.014 

(t-stat) (5.82)*** (5.328)*** (3.791)*** 

Low Sentiment 
1963 

-0.014 -0.015 -0.012 

(t-stat) (5.05)***      (4.433)*** (2.78)*** 

High Sentiment 
310 

-0.016 -0.021 -0.031 

(t-stat) (4.59)*** (5.12)*** (5.994)*** 
***Significant at 1% level **Significant at 5% level *Significant at 10% level 



30 

A first immediate consideration that we can extrapolate from Table 5 is that there is a short-term reversal 

in each of the windows, meaning that after a one-day daily stock price return of at least +10%, bank 

stocks tend to mean-revert and thus have negative abnormal returns. As in Table 3, overreaction seems 

to be much stronger during periods of High Market sentiment, but in this case, it does not stay stationary 

between day 5 and day 10, but it rather increases further. Figure 7 shows this fact in a more intuitive 

manner, with the decline of abnormal returns in High Sentiment between days 5 and 10 but the 

stationarity (or even small bounce) of Low Sentiment events and more in general, all the events taken 

together. 

 

 

Figure 15 – Cumulative Average Abnormal Return using a Positive Trigger with Closing prices day-

by-day. The figure shows the differences in performances between High Sentiment Events (orange line) 

and Low Sentiment Events (grey line) and All Events taken together (blue line). Events are considered 

as every trading day with a daily stock price return of more than +10% (positive trigger). 

 

Lastly, an analysis of CAARs using Midpoint prices is offered by Table 6, providing this time similar 

results to Closing Prices CAARs with Positive Trigger: CAARs are always negative, implying some 

level of overreaction. 
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Table 14 - Cumulative Average Abnormal Returns using Midpoint Prices, Positive Trigger of 

+10%. This table reports the CAARs of All events, events that happened during periods of High 

Sentiment, and events that happened during periods of Low Sentiment. Results are reported for event 

windows [1,3], [1,5], and [1,10]. T-statistics are in parenthesis and are obtained through equation 

(12). 

 
 N CAAR [1,3] CAAR [1,5] CAAR [1,10] 

All events 
1666 

-0.014 -0.016 -0.011 

(t-stat) (5.25)*** (5.60)*** (3.085)*** 

Low Sentiment 
1501 

-0.013 -0.015 -0.09 

(t-stat) (4.60)***      (4.77)*** (2.246)** 

High Sentiment 
165 

-0.020 -0.026 -0.036 

(t-stat) (3.68)*** (4.04)*** (5.38)*** 

 

When using both closing and midpoint price returns, an additional key difference between Negative and 

Positive trigger events can be found in the number of observations: during low market sentiment, there 

have been around 1500 negative events and 1900 positive events; but it is worth to note that during high 

sentiment periods, the number of positive events is much smaller (around 100 event for negative events 

and 300 for positive events). 

 

In general, these results highlight the fact that there might be many moments of irrationality and thus 

overreaction. Is this irrationality effectively exploitable or not? 

 

 

5.3 Long-Short Strategy to exploit Short-Term Reversals in Banking Sector 

 

A standard long-short strategy would imply buying a bank stock after it falls more than -10% in a single 

trading day, and short a bank stock when its daily stock price returns are larger than +10%. 

 

By easily summing the CAARs of positive and negative events, with positive events’ CAARs inverted 

as we are taking a short position, Figure 8 shows in a descriptive manner the possible sum of  Cumulative 

Average Abnormal Returns that could have been gained by following this strategy. 

 

Is important to keep in mind that these are gross returns: they do not consider taxation, which might be 

relatively high for this short-term trading strategy since it would imply holding the stock for around 10 

days. Also, it does not consider trading costs, which are presumably very high because of the large 

number of operations to carry out, and the fact that short selling, in addition to being not always possible, 

is also expensive. 
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Figure 16 – Sum of Cumulative Average Abnormal Returns of Positive Events and Negative Events 

using Closing Prices 

 

The key takeaway is that while events that happen in periods of high sentiment are much less, they are 

much more profitable (almost double returns!) than events during low sentiment.  

 

 

5.4 Robustness Checks 

 

As already mentioned, the choice of the model to estimate expected returns plays a central role in 

providing the outcomes of this type of study. In this thesis, I used the most popular asset pricing model, 

the Fama and French 3-factors model, which includes the CAPM beta, the size factor (SMB, small minus 

big), and the value factor (HML, high minus low). As a robustness check, it is possible to verify whether 

the results hold even with another model, possibly a more sophisticated one. The Fama and French 5-

factor model (Fama and French, 2015) augments their 3-factor model with the incorporation of two 

additional factors, namely profitability (RMW, robust minus weak) and investment (CMA, conservative 

minus aggressive).  
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The regression equation would then become:  

 

In equation 13, RMW adds some explanatory power as it represents the profitability factor: the 

difference between the returns on diversified portfolios of stocks with Robust and Weak profitability. 

CMA is the difference between the returns on diversified portfolios of the stocks of Conservative and 

Aggressive firms, which are companies with low and high investment levels (Fama and French, 2015). 

 

The inclusion of these new factors in the new model, although it raises some concerns, has indeed a 

significantly improved explanatory power (Blitz, Hanauer, Vidojevic, and Van Vliet, 2018). 

 

The following Table 7 shows the CAARs of positive events using Closing Prices, as in Table 5, but 

instead of using the Fama and French 3-factor model, it applies the new Fama and French 5-factor model 

to estimate Expected Returns.  

 

Table 15 – CAARs of Positive Events using Closing Prices and FF5 model as asset pricing model. 

Using equation 13, this table reports the CAARs of All events, events that happened during periods of 

High Sentiment, and events that happened during periods of Low Sentiment. Results are reported for 

event windows [1,3], [1,5], and [1,10]. T-statistics are in parenthesis and are obtained through 

equation 12.  

 N CAAR [1,3] CAAR [1,5] CAAR [1,10] 

All events 
2273 

-0.015 -0.017 -0.017 

(t-stat) (7.56)*** (7.19)*** (5.49)*** 

Low Sentiment 
1963 

-0.015 -0.017 -0.015 

(t-stat) (6.74)***      (6.27)*** (4.29)** 

High Sentiment 
310 

-0.015 -0.019 -0.029 

(t-stat) (4.21)*** (4.59)*** (5.44)*** 
***Significant at 1% level **Significant at 5% level *Significant at 10% level 

 

 

Results are statistically significant and similar to Table 5, the CAARs are even slightly greater than the 

ones obtained using the 3-factor model, possibly implying that the additional factors are capturing some 

of the variation in the data that was not considered.  

 

On the other side, Table 8 has the aim to check whether the results of Table 3 (CAARs of Negative 

Events) are robust when applying the 5-factor model. 

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑡𝑢𝑟𝑛𝑠 = 𝑅𝑖,𝑡 − 𝑅𝑓𝑡 = 𝛼 + 𝛽(𝑀𝐾𝑇)𝑀𝐾𝑇𝑡 +  𝛽(𝑆𝑀𝐵)𝑆𝑀𝐵𝑡  + 𝛽(𝐻𝑀𝐿)𝐻𝑀𝐿 𝑡 + 𝛽(𝑅𝑀𝑊)𝑅𝑀𝑊𝑡  + 𝛽(𝐶𝑀𝐴)𝐶𝑀𝐴 𝑡  + 𝜀𝑡 (13) 
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Also in this case, results are similar and significant, suggesting that the factors in both the 3-factor and 

5-factor have explanatory power in understanding their influence on abnormal returns. 

 

Table 16 – CAARs of Negative Events using Closing Prices and FF5 model as asset pricing model. 

This table reports the CAARs of All events, events that happened during periods of High Sentiment, 

and events that happened during periods of Low Sentiment. Results are reported for event windows 

[1,3], [1,5], and [1,10]. T-statistics are in parenthesis and are obtained through equation (12). 

 N CAAR [1,3] CAAR [1,5] CAAR [1,10] 

All events 
1612 

0.02 0.028 0.034 

(t-stat) (7.30)*** (8.62)*** (8.26)*** 

Low Sentiment 
1507 

0.019 0.027 0.033 

(t-stat) (6.38)***      (7.69)*** (7.47)** 

High Sentiment 
105 

0.033 0.04 0.042 

(t-stat)  (5.75)*** (6.94)*** (5.49)*** 
***Significant at 1% level **Significant at 5% level *Significant at 10% level 

 

 

In this analysis, Cumulative Abnormal Returns (CAARs) have been calculated using both closing prices 

and price midpoints. Closing prices have been widely used in financial research and were included in 

the primary analysis due to their standard practice and data availability. For simplicity, and to ensure 

the robustness of the findings, I conducted a robustness check specifically focusing on closing prices. I 

maintain confidence in the robustness of results also for price midpoint returns, as I do not see any 

inherent reasons why the use of price midpoints would yield significantly different results in the 

robustness check. 
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CHAPTER 6  Conclusion  

 

The main purpose of this thesis was to shed additional light on the overreaction phenomenon of the 

banking sector, by studying the short-term reversal and its complex relation with market sentiment.  

 

Is the overreaction of the banking sector (and thus its following short-term reversal) stronger during 

low or high market sentiment? After an extensive study of the existing, relevant, and conflicting 

literature on whether overreaction is stronger during bullish or bearish markets, I took the side of Piccoli 

and Chaudury’s stream of literature. Thus, the tentative hypothesis is that the overreaction of the 

Banking Sector is stronger during periods of low market sentiment. 

 

This hypothesis has been elaborated mainly because of three reasons. First, the effects of fears are 

usually stronger than the effects of greed: we are behaving under the guidance of “animal spirits”: we 

tend to act more irrationally in moments of panic rather than in moments of excessive optimism, and 

losses are weighted much more than gains (as in the prospect theory). Second, the existence of 

momentum crashes (Daniel, Moskowitz, 2016) affirms that momentum strategies tend to perform poorly 

during panic states, following multi-year market drawdowns, and in periods of high market volatility. 

This would imply that “contrarian strategies” should instead overperform during these periods. Third, 

the banking sector has been proven to be particularly affected by irrationality (such as the herding 

behaviour in the case of bank runs for example), which might be in some cases justified but in others 

not. 

 

To test this hypothesis, I have performed an event-study analysis for the period 2001 until 2021, using 

the time-series approach and the trigger strategy as in Bremer and Sweeney (1991) and Cox and Peterson 

(1994). To have a complete overview of the phenomenon, two triggers have been used (negative and 

positive), and to additionally verify for the bid-ask bounce two different types of stock price returns 

have been used (returns using closing prices and midpoint prices). 

 

Results show that for negative events when using closing prices, we can reject our Hypothesis because 

overreaction is stronger during periods of high market sentiment. When using price midpoints, we 

cannot neither reject nor fail to reject it as high sentiment events lack significance. Thus, it is difficult 

to compare the differences in results between closing prices and midpoints datasets, probably because 

of the nature of the data, but also of the data quality. In fact, midpoint prices can be less volatile and 

reflect a different aspect of market sentiment when compared to closing prices. In terms of data quality, 

observations in midpoints are fewer than observations using closing prices, mainly because as explained 

in Chapter 3 “Data”, the majority of continuously quoted midpoints are available only after April 2006, 
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thus reducing our sample. Because of these differences in the dataset and the observations, we cannot 

measure the impact of bid-ask bounce in the short-term reversal phenomenon of the banking sector. 

 

On the other hand, for positive events, we can reject the tentative hypothesis both when using closing 

and midpoint price returns, as the CAARs are greater during high market sentiment periods. It is 

interesting to note also that while events that happened during high sentiment are more profitable, they 

appear in a much lower frequency than low-sentiment events in the timeframe considered from 2001 to 

2021. 

 

Overall, there is some level of overreaction in the banking sector, as both the closing and the midpoint 

datasets show abnormal returns because of short-term reversals. This would make possible to build a 

Long-Short Strategy that buys bank stocks after a negative event and short-sell them after a positive 

event. Applying this strategy in periods of high market sentiment would be much more profitable, but 

events falling under bullish sentiment have been much rarer in the last 20 years. 

 

These results contribute to the existing literature on the Overreaction Hypothesis by adding a specific 

overview of short-term reversals in a “hot” topic such as the banking sector and their relations with 

market sentiment.  

 

Is overreaction the only plausible explanation for stronger abnormal returns during periods of high 

market sentiment, or is it possible that there are other factors which might not be considered when 

explaining abnormal returns due to short-term reversals?   

 

 

6.1  An alternative explanation: Maverick Risk 

 

A maverick is an independent individual who does not go along with a group or party (courtesy of 

Merriam-Webster’s definition). The concept of maverick risk is a compelling one. When viewed through 

the lens of human behavior, our inherent conditioning tends to associate non-conformity with riskiness. 

This perspective is offered by our evolutionary logic, as our ancestors often lived in circumstances where 

being part of a collective offered security: there is safety in numbers. Therefore, even though we 

intellectually recognize the merits of thinking innovatively (“outside the box”) and adopting contrarian 

approaches, and even though we admire individuals in society who possess the autonomy to chart their 

own course, our primal instincts often override our rationality when it comes to financial decisions. In 

such situations, our "lizard brain," the ancient, instinctual part of our minds, takes precedence, 

compelling us to seek the safety of the crowd. 
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In general, going against "the herd" usually means stepping out of the comfort zone, thereby putting 

yourself on the edge. Failing alone while everyone else achieves their results is far more painful than 

failing when everyone is failing with you. 

 

In the financial markets, losing money during a bull run is much worse than losing money during a 

recession or a crisis. Similarly, the results of this thesis suggests that abnormal returns are higher during 

bullish markets rather than negative periods. 

 

Is it thus possible that these stronger abnormal returns during a bullish market are just a premium for 

the risk of going against the herd? Especially when everyone is making money, taking “naïve” strategies 

can be seen as a particularly risky move. It is conceivable that the success and profitability of contrarian 

strategies that bet against market consensus could be a manifestation of investors demanding a 

“maverick risk premium”, as compensation for the exposure to criticism and deviation from the herd 

that is not captured by other factors. This field is interesting for future research, further exploring its 

dynamics and implications. 

 

In conclusion, the overreaction hypothesis remains a prominent explanation for short term reversals and 

the profitability of contrarian strategies, but the idea of maverick risk introduces a new perspective to 

our understanding of investor behaviours and market performances. 

 

 

6.2  Limitations and Future Research 

 

While event studies have become common practice in economics and finance to analyze the impact of 

specific events on stock prices, this approach presents its own limitations. From a behavioral economics 

standpoint, the definition of expected returns can be easily criticized, as it is based on the assumption 

that returns can somehow be predicted in a way. In reality, the market might not always be perfectly 

efficient, and if we also consider that the model used to estimate these expected returns can strongly 

influence the economic and statistical significance of the whole study, we see how the results and 

abnormal returns depend on the model used to calculate expected returns. In this thesis, I used the Fama-

French 3-factor model to calculate expected returns, and the Fama-French 5-factor model as a robustness 

check but other instruments such as the Carhart (1997) 4-factors could have influenced the outcomes. 

 

Event clustering is another example of how markets can be inefficient: returns can be correlated, and 

the clustering of events makes it difficult to attribute stock price movements and returns to a specific 
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event. Also in this case, the approach used in this study is rather simple and might not be the most 

accurate method to reduce the noise generated by event clustering. The Cross-sectional t-test might 

result as upwardly skewed as the method to eliminate overlapping of events can still be improved 

through the use of clustered standard errors for example. 

 

The choice of estimation window is crucial as well: I used the approach of Piccoli and Chaudury (2018), 

but researchers are still debating on the exact length to minimize the influence of unrelated events while 

still having enough observation to perform robust regressions, 

 

Lastly, the data offered by Refinitiv Eikon Datastream does not include most of the Bid and Ask prices 

before April 2006, reducing the observations available and making it difficult to compare CAARs 

calculated with midpoints and CAARs with closing prices.  The period considered for this study (2001-

2021) presents the majority of events falling in Low Sentiment days, thus skewing the research and 

possibly reducing the accuracy of overall results. 

 

Future research should mitigate all these through careful study design and robust statistical methods 

while keeping the methodology relatively simple and easy to analyze. The extreme peculiarity of the 

banking sector offers a unique perspective on the Overreaction Hypothesis, and further studies should 

investigate how it relates to market and sector sentiment: after all, we still live “Between the Bull and 

the Bear”. 
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