
ERASMUS UNIVERSITY ROTTERDAM 

Erasmus School of Economics 

Master Thesis Data Science & Marketing Analytics 

 

 

Predicting CLV with supervised learning methods using 

music streaming subscription data 

 

 

 

Olivier Henri Mathijs Rudolf Bax 

 

Supervisor: dr. K Gruber 

Second assessor: dr. CS Bellet 

 

Date: 13/10/2023 

  



1 

 

Abstract 

This research tried to find the most suitable supervised learning model to predict customer lifetime value. 

It does this by predicting the customer lifetime value of individual users by using three different types 

of supervised learning algorithms with and without using additional feature selection methods, using 

user data from a music streaming service operating in Asia. Moreover, customer lifetime value was not 

available in the data set and was calculated using the basic and most simple calculation method. From 

the nine different models that were used in this research, the RF-RFE model had the highest prediction 

accuracy and was chosen as the most suitable supervised learning model, despite being the least 

interpretable model. 
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1 Introduction 

Over the last two decades, the music industry has changed a lot because of the rapid growth of the 

Internet (Kim et al., 2017). First, offline record sales were being replaced by online music downloading, 

but now, music streaming is becoming the new business model for online music services because of the 

emergence of mobile devices (Sugo Music Group, 2016). Music streaming services are web-based 

services that allow users to stream music to their phones or computers (PCMag, 2023). They earn 

revenue by either showing advertisements to free users or by charging a monthly subscription fee to 

subscribers (Wlömert & Papies, 2016). According to Susic (2023), music streaming accounts for one 

third of all consumption and more than 616 million people were subscribed to music streaming services 

worldwide in 2022. 

KKBOX is the first music streaming service that provides legal music streaming services to customers 

(KKBOX, 2023). It offers both a limited and unlimited version to more than 10 million users in Asia 

and is financed by advertising and paid subscriptions (WSDM, 2018). KKBOX is currently the biggest 

music streaming service in Asia, featuring more than 90 million legal tracks (KKBOX, 2023). It is 

currently accessible in Taiwan, Japan, Singapore, and Malaysia, and remains to be a prominent 

Taiwanese brand that actively cultivates the music industry. 

According to Jawale (2022), a subscription service should be built on customer relationship management 

(CRM). Hu et al. (2013) defined CRM as handling interactions between customers and organizations. 

The goal of CRM is to attain and maintain customers, increase their value and devotion, and create 

strategies that are prioritizing their needs (Cheng & Chen, 2009). A good relationship with customers is 

very important for commercial companies to succeed in their marketing competitions (Safari et al., 

2016). One of the vital concepts of CRM is customer lifetime value (CLV), which was introduced first 

by Kotler (1974) more than 40 years ago. Dahana et al. (2019) defined CLV as the present value of all 

future cash flows from a customer. 

One of the main benefits obtained from a CLV analysis is that it gives insights into the overall 

performance of a business and helps with making more appropriate marketing strategies and customer-

related decisions (Gurǎu & Ranchhod, 2002). According to Blattberg et al. (2009), CLV analysis 

provides companies with a long-term economic view of the customer and gives insights into the key 

components of CLV. Furthermore, they stated that CLV combined with customer acquisition data and 

expenses allows firms to maintain the profitability of the firm in the long run. Moreover, Chang et al. 

(2012) explained that by classifying customers into high-, medium- and low-value customers, CLV 

models allow firms to differentiate their products and services according to the expected value of the 

customer. Besides that, they explained that it gives insights into how much money a company can afford 

to acquire new customers and to obtain the tradeoff between cost and profitability. 
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Calculating CLV accurately is thus an important task for businesses. However, predicting CLV with 

supervised learning might be an interesting next step for a company. Supervised learning has 

significantly increased in value and importance in recent years, as it made many things possible which 

were previously seen as impossible (Shah et al., 2020). Shah et al. explained that supervised learning is 

an attempt to create intelligent systems, while being completely based on statistics and mathematics. 

For example, supervised learning can be used to predict future data/unseen data by analyzing historical 

data/given data (Shah et al., 2020), or to detect non-linear patterns (Desai & Ouarda, 2021) in the data. 

This master thesis will try to predict CLV using a least absolute shrinkage and selection operator 

(LASSO) regression, a regression tree (RT), and a random forest (RF), with and without using recursive 

feature elimination (RFE) and best subset selection (BSS), using subscription data from KKBOX. The 

goal of this research is to find which supervised learning model, possibly in combination with a feature 

selection method, is the most favorable model to predict CLV. The research question for this research is: 

“What type of supervised learning model is most suitable for predicting CLV when using music 

streaming subscription data?” 

To answer this question, the following sub-questions will first need to be answered: 

“How does the model interpretability vary for a LASSO regression, a regression tree and a random 

forest when predicting CLV?” 

“How does the prediction accuracy vary for a LASSO regression, a regression tree and a random forest, 

when predicting CLV?” 

“How does the prediction accuracy of each model change when recursive feature elimination or best 

subset selection is used in addition?” 

This research is academically relevant as it builds upon existing literature on CLV prediction using 

supervised learning algorithms. It will provide insights how feature selection affects the accuracy of a 

LASSO regression, an RT, and an RF when predicting CLV. Moreover, this research uses user 

subscription data from a music streaming service to predict CLV, which has not been used before for 

this type of research. 

Besides academic relevance, this research is socially relevant as the insights gained from this research 

have practical implications for companies. These implications can help companies to identify relevant 

features to predict CLV and to choose a suitable supervised learning algorithm in combination with a 

feature selection method when predicting CLV. Moreover, the insights can optimize marketing strategies 

of companies and improve customer satisfaction. 
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2 Literature review 

2.1 What is customer lifetime value 

Creating a strong relationship with customers is important for businesses to be successful in their 

marketing competitions (Safari et al., 2016). Kumar et al. (2008) highlighted that a firms customer 

management activities involves making consistent decisions over time regarding which customers to 

select for special targeting, resource allocation to customers and selecting customers to receive special 

services to increase profitability. The authors stated that it is essential to measure customer profitability 

and to understand the connection between firm actions and customer profitability is needed in order the 

make the previously mentioned decisions successful. Customer profitability often refers to the revenues 

minus the costs generated by a customer during a specific period, but it can also be projected into the 

future (Chang et al., 2012). According to Petrison & Blattberg (1997), this output is often termed as 

customer lifetime value (CLV). Blattberg et al. (2009) and Chang et al. (2012) gave a more detailed 

definition and defined CLV as the stream of expected future revenues over the lifespan of a customer, 

after subtracting incremental costs from production, selling, servicing, and marketing, discounted with 

a proper rate to get the net present value (Blattberg et al., 2009; Chang et al., 2012). 

According to Chang et al. (2012), CLV serves as an efficient metric to assess a firm’s customer 

relationships and is crucial for firms offering customer-oriented services. CLV helps businesses to 

understand customer value and customer patterns, which in turn allows businesses to make efficient 

marketing strategies, cut costs, and create long-term relationships (Chang et al., 2012; Gurǎu and 

Ranchhod, 2002). Furthermore, Chang et al. stated that CLV can assist in managing the existing 

customer base. For instance, categorizing customers into high, medium, and low value segments allows 

companies to tailor products and services based on customer value and to aim retention efforts towards 

high-value segments (Chang et al., 2012). 

Dahana et al. (2019) explained that to accurately calculate CLV, information about the revenues gained 

from a customer, the cost of customer acquisition, the retention rate, the discount rate, and the lifetime 

duration of a customer is needed. Fader & Hardie (2007) defined the retention rate as the proportion of 

customers who remain active from the beginning to the end of a specific period. Moreover, Hansen & 

Jagannathan (1997) defined the discount rate as a value that is used to calculate prices today by 

discounting the corresponding cash-flows at a future date. Furthermore, Tukel & Dixit (2013) considered 

the lifetime of a customer to be the entire period the customer stayed in a relationship with the company. 

2.2 Predicting customer lifetime value 

According to Venkatakrishna et al. (2021), there are several different methods to predict CLV. 

Additionally, the authors stated that many studies use regression methods to predict of CLV. For 

example, Malthouse & Blattberg (2005) utilized different supervised learning models to predict CLV. 

Moreover, Glady et al. (2009A) stated that CLV can be estimated by forecasting the number of 
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transactions and corresponding profits of a customer. Another research by Glady et al. (2009B) showed 

the effectiveness of probabilistic models like Pereto/NBD and BG/NBD to predict the future behavior 

of a customer. 

What is important to note is that in this research, only the basic CLV calculation method (section 2.2.1) 

and the supervised learning model method (section 2.2.5) will be used. The RFM model, Pareto/NBD 

model, BG/NBD model and the Markov chain model (section 2.2.2, 2.2.3 and 2.2.4) are only included 

to illustrate alternative methods for estimating CLV. As a result, these sections provide a brief 

explanation. However, for a more comprehensive understanding of these models, a more detailed 

explanation of these models can be found in section 9.1 of the appendix. 

2.2.1 Basic CLV calculation 

According to Kahreh et al. (2014), the simplest way to calculate/estimate CLV is the basic formula 

proposed by Berger & Nasr (1998) that calculates the CLV for customer 𝑖 at time 𝑡 for a finite time 

horizon (𝑇) in the following way: 

𝐶𝐿𝑉𝑖,𝑡 =
∑ 𝜋𝑖,𝑡 ∗ 𝑟𝑡  𝑇

𝑡=0

(1 + 𝑑)𝑡
 

where 𝜋𝑖,𝑡 represents the profit made from customer 𝑖 in period 𝑡 and 𝑑 represents the discount rate to 

discount future cashflows/profits (Berger & Nasr, 1998). Blattberg et al. (2009) explained that these 

profits consist out of revenues and costs. 

The model makes two major assumptions. It assumes a constant margin of profit over time that does not 

consider the stochastic nature of the purchase behavior of the customers and assumes that the customer 

behavior is uniform for all customers. Moreover, the model assumes that the customer retention rate and 

the costs of retention are constant over time and both costs and revenues happen periodically at a 

constant rate. 

2.2.2 RFM model 

Recency, purchase frequency and monetary value are well known metrics used in marketing (Burelli, 

2019). Together, these metrics are known as RFM and are often used to predict customer behavior 

(Gupta et al., 2006).  Shih and Liu (2003) came up with a method that uses RFM and CLV clustering to 

rank customers based on profitability. They explained that this is done by first identifying the relative 

importance of the RFM variables using analytical hierarchical processing, followed by clustering the 

customers based on RFM, and score these clusters using a weighted sum of the normalized RFM 

features. Burelli (2019) stated that this method is not able to predict numerical values for CLV, but rather 

to rank the customers based on profitability. Moreover, Fader et al. (2005A) further emphasized that this 

method is only able to predict customer behavior for the upcoming period. 



9 

 

2.2.3 Pareto/NBD and BG/NBD 

An alternative method to predict CLV is the pareto/NBD model introduced by Schmittlein et al. (1987). 

The model tries to predict the number of future purchases of customers based on recency, frequency, 

and customer lifetime (Glady et al., 2009B). It does this by using a Pareto distribution of the second 

kind and a negative binomial distribution (Burelli, 2019). The Pareto distribution is controlled by the 

variation in customer lifetimes and the average duration of a customer’s lifetime, while the negative 

binomial distribution is controlled by the variability in the purchase frequencies of a customer and 

average purchase frequency (Burelli, 2019; Schmittlein et al., 1987). These parameters can be estimated 

from past customer behavior and with these parameters, the model can indirectly predict CLV by 

predicting the number of future purchases (Glady et al., 2009B). 

The Pareto/NBD model uses very complex computations (Fader et al., 2005B). As a result, the more 

efficient BG/NBD model was proposed by Fader et al. (2005B). Fader et al. stated that in the BG/NBD 

model, customer activity is modeled based on the probability of a customer making a purchase within a 

specific time and the probability of the customer becoming inactive after making a purchase. 

2.2.4 Markov Chain Model 

Pfeifer and Carraway (2000) suggested an alternative approach for predicting CLV, which involved 

employing a Markov Chain Model (MCM) to model the customer relationship. MCMs are mathematical 

models that describe random processes (Ching & Ng, 2006). Ching & Ng explained that a process is 

represented by a set of states, and transitions between these states are determined by probabilities. 

Moreover, they explained that the transitioning of each state to another state has its own associated 

probability, called a transition probability. Pfeifer & Carraway (2000) applied the MCM in a way where 

the states represented different relationship conditions between customers and the company, and the 

transition probabilities between the states represented the probability of a customer moving from one 

condition to another, for example to churn or to make a purchase. 

2.2.5 Supervised learning models 

According to Burelli (2019), another possible method to predict CLV would be by using supervised 

learning. He explained that it can be used to learn a complex function between past customer behavior 

and their recorded lifetime value. Supervised learning tries to predict the categorical or continuous 

values of a dependent variable based on input variables called features (Schrider & Kern, 2018). Burkart 

& Huber (2021) explained that supervised learning does this by using a training data set with labeled 

examples, where each example consists out of a set of features, each corresponding to a certain value of 

the dependent variable. Additionally, the authors explained that supervised learning learns from these 

examples to create a model that estimates the dependent variable for new/unseen data. When supervised 

learning is used for classification, the output is a discrete label and when supervised learning is used for 

regression, the output is a continuous value (Burkart & Huber, 2021). 
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Burelli (2019) explained that some supervised learning models sacrifice explanatory power for better 

prediction power by capturing more complex relations. These type of supervised learning models are 

called black-box models (Burelli, 2019). A black-box model can make relatively accurate predictions 

but is very hard to interpret because its decision-making process is not transparent (Zhao & Hastie, 

2021). When used for CLV prediction, these models may not provide detailed insights into individual 

customer preferences, but they can be more accurate and can therefore be useful for tasks such as 

marketing automation (Burelli, 2019). 

There are many different methods how supervised learning can be used to predict CLV. For example, 

Haenlein et al. (2007) used a decision tree and a MCM to predict CLV. They did this by first dividing 

their customer data of a retail bank into age groups. After that, they fitted a decision tree on each age 

group to predict the profit for a customer within that specific group. The authors then used a MCM to 

model the transition probabilities between the groups so that the model can track customer transitions 

throughout their lifetime. Finally, they calculated CLV by discounting the sum of predicted CLV for 

each possible customer states, weighted by the transition probabilities. 

Moreover, Asadi & Kazerooni (2023), Sawant (2022), and Venkatakrishna et al. (2021) all employed 

supervised learning approaches to predict CLV that are very similar to each other. Sawant (2022) used 

Lasso regression, RF, and extreme gradient boosting, using demographic, educational, financial, vehicle, 

and policy data to predict CLV. Venkatakrishna et al. (2021) on the other hand employed linear 

regression, extra trees regression, RF, gradient boosting, and extreme gradient boosting, using predictors 

such as recency, frequency, total revenue, and transformed categorical variables to predict CLV. 

Moreover,  Asadi & Kazerooni (2023) used stacked ensemble learning models including deep neural 

networks, bagging, support vector regression, RF, extreme gradient boosting, and light gradient boosting 

machine, using normalized recency, frequency, monetary value, average basket weight, and customer 

relationship length to predict CLV. Asadi & Kazerooni (2023) used a time-based split based on a 

threshold date to divide the data into a training and test set, while Sawant (2022) and Venkatakrishna et 

al. (2021) used random sampling. Furthermore, in the research of Sawant (2022), a pre-calculated CLV 

variable was already present in the data, while Asadi & Kazerooni (2023) and Venkatakrishna et al. 

(2021) used derivations of the basic CLV calculation method to calculate CLV, before predicting it using 

the different supervised learning methods. 

2.4 LASSO regression 

Regression models are often used for prediction (Ranstam & Cook, 2018). One of the best-known 

standard regression methods is the ordinary least squares (OLS) method, which fits a linear model using 

predictors to minimize the sum of squared differences between the actual values and the predicted values 

by a linear approximation. However, Ranstam & Cook (2018) explained that OLS often has low bias 

but high variance, causing the model to overfit the data. They stated that OLS works especially poorly 
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when predicting ‘more extreme’ observations and explained that the more predictors are being used, the 

harder it becomes to interpret the model. LASSO regression, introduced by Tibshirani (1996), was 

introduced to address these problems. 

LASSO is a shrinkage and feature selection method that can be used for OLS or logistic regression 

problems (Ranstam and Cook (2018). Tibshirani (1996) stated that shrinking coefficients of irrelevant 

variables towards zero can improve prediction accuracy and that using a subset of variables with the 

strongest effects can improve interpretability. However, the standard techniques such as subset selection 

and ridge regression to improve OLS estimates both have drawbacks according to Tibshirani (1996). He 

explained that LASSO uses the good features of best subset selection and ridge regression by shrinking 

some coefficients while setting others to zero. 

Ranstam and Cook (2018) explained that LASSO tries to identify the variables and respective regression 

coefficients that result in a model that minimizes the prediction error (Ranstam & Cook, 2018). It does 

this by imposing a constraint (λ) that the sum of absolute values of regression coefficients should be less 

than a fixed value (λ), which shrinks the coefficients of irrelevant variables close to or even equal to 

zero (Ai, 2022). A larger λ enforces stricter constraints, which causes more shrinkage and potentially 

setting some coefficients to zero. The variables with coefficients equal to zero because of the shrinkage 

are removed from the model (Ranstam & Cook, 2018). Ranstam & Cook (2018) also explained that λ 

can be chosen by using k-fold cross-validation. With k-fold cross-validation, the data set is randomly 

split into k folds of equal size. (Anguita et al., 2012; Wong & Yeh, 2019). Anguita et al. (2012) explained 

that each fold in turn plays the role for testing the model while the other k - 1 folds are used for 

developing the model and that this procedure is carried out k times. A rule-of-thumb suggests fixing 

large values of k such as 5, 10 or 20 as it is often preferred to exploit many patterns to train the model 

(Anguita et al., 2012). Rantam & Cook (2018) explained that by combining the separate test results, the 

optimal λ can be chosen which can be used to determine the optimal model. Furthermore, they explained 

that this method reduces overfitting. 

As mentioned before, two big advantages of LASSO compared to standard regression models are that it 

improves prediction accuracy by shrinking or setting coefficients to zero and that it improves model 

interpretability by only using a subset of variables with the strongest effects (Tibshirani, 1996). It even 

has the capability to select a subset of predictors in “sparse data” situations with many possible 

predictors, where only a few of them are related to the dependent variable (Roy et al., 2015). Despite 

the advantages of the LASSO model, it has a few drawbacks. Roy et al. (2015) stated that when 

predictors are highly correlated, LASSO may not generate consistent results. Moreover, Algamal & Lee 

(2015) stated that in the presence of high correlation among predictors, LASSO struggles to distinguish 

relevant and irrelevant variables Additionally, they stated that LASSO is unable to select more predictors 

than the number of observations in the data. 
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2.5 Decision tree 

Decision trees (DTs) are non-linear tree like sequential models, which use a sequence of simple tests to 

sequentially split the data into multiple groups of homogenous data (Kotsiantis, 2013; Yang et., 2017). 

DTs are very easy to interpret and have become very popular because of their ability to handle covariates 

measured at different measurement levels (Larivière & Van den Poel, 2005; Yang et., 2017).  

Loh (2011) stated that a DT can either be used for classification problems (classification tree (CT)) or 

regression problems (RT). Loh (2011) explained that an RT is fitted to each homogenous group of data 

to give a predicted value of the dependent variable, as the dependent variable takes continuous or ordered 

values. On the other hand, a CT splits the data into separate classes and takes categorical values for its 

dependent variable (Kotsiantis, 2013). The Classification and Regression Tree (CART) learning 

algorithm, which was introduced by Breiman et al. (1984), is the best-known decision tree learning 

algorithm in the literature (Yang et al., 2017). 

When the CART algorithm is used for a regression problem, it looks for tests (binary divisions) that best 

divide the data into homogenous groups (Kotsiantis, 2013). Kotsiantis explained that every test 

compares a numeric variable against a threshold value and a categorical variable against a set of possible 

values. According to Breiman et al. (1984), Efron & Tibshirani (1991) and Venables & Ripley (1997), 

the algorithm starts by taking all the available training data (root node) and analyzes all possible ‘splits’ 

for every explanatory variable. The algorithm then selects the split which reduces the deviance in the 

dependent variable the most and this process is repeated for the two groups of data resulting from this 

first split, until all the groups are homogenous or until a certain criterion is satisfied (Breiman et al., 

1984; Efron & Tibshirani, 1991; Venables & Ripley, 1997). These homogenous groups are called 

terminal nodes and contain the mean value of all the data points in each terminal node (Yang et al., 

2017). As a result, the tree like series of tests can be used to predict a likely value of the dependent 

variable for new data (Lawrence & Wright, 2001). The CART algorithm can be seen as a greedy search 

algorithm as the splits that are being made at every step are only based on the best current option, without 

considering the splitting performance of upcoming tests (Kotsiantis, 2013). 

When CART generates large trees, it often overfits the training data, resulting in poorer generalization 

performance to unseen samples (Yang et al., 2017). To prevent this, the tree can be made smaller with 

pruning to be more robust (Lawrence & Wright, 2001). Pruning is often referred to as post-pruning and 

is considered a backwards selection method (Prodromidis and Stolfo, 1998; Prodromidi & Stolfo, 2001). 

It sequentially removes the splits and prunes the tree from its maximum size back to the root node, 

creating a set of consecutive nested candidate trees of decreasing size (Yang et al., 2017). Each candidate 

tree is built on the training data and the tree with the lowest prediction error is selected as the final tree 

(Breiman, 2001). Pre-pruning on the other hand is conducted during recursive binary partitioning and 

aims to prevent splits that do not meet certain criteria such as a minimum number of observations for a 
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split to happen or a minimum number of observations in a (terminal) node itself (Kotsiantis, 2013). 

While post-pruning is very simple and interpretable, using average values at the terminal nodes for 

prediction often results in compromised prediction performance (Antipov & Pokryshevskaya, 2012; 

Bayam et al., 2005; Bel et al., 2009; Loh, 2011). 

There are several different pruning methods. Cost complexity pruning (CCP) is a pruning method that 

creates a several subtrees from the original large tree by progressively pruning the tree to its root node 

(Prodromidis & Stolfo, 2001). Prodromidis & Stolfo explained that CCP does this by first associating a 

complexity measure 𝐶(𝑇) based on the number of terminal nodes (𝑇) of the fully grown decision tree. 

It then prunes the tree by minimizing a cost complexity metric 𝑅𝛼(𝑇).  𝑅𝛼(𝑇) is defined as: 

𝑅𝛼(𝑇) =  𝑅(𝑇) +  𝛼 ∗ 𝐶(𝑇) 

where 𝑅(𝑇) represents the misclassification cost or the error rate of the tree and 𝛼 is a complexity 

parameter which is larger than zero (Prodromidis & Stolfo, 2001). The authors also explained that the 

strength of pruning of the initial tree is controlled by 𝛼. When 𝛼 decreases, the final size of the tree 

increases as the penalty for having many terminal nodes decreases. A search algorithm can be used to 

calculate every 𝛼 value that changes the size of the tree (Bradford et al., 1998). Bradford et al. explained 

that the parameter can be chosen by using cross-validation. 

According to Henrard et al. (2015) DTs have many key benefits compared to more conventional 

methods. The authors explained that they are easy to understand and interpret, as they allow individuals 

to easily assess which subgroup a specific observation belongs to. Moreover, the authors noted that DTs 

can handle nonlinear relations and make no assumptions about the distribution of variables, unlike OLS, 

logistic regression, and LASSO models. Furthermore, they highlighted that DTs can easily handle 

multicollinearity by selecting the best splits at each node. Additionally, they explained that DTs can 

identify outliers, because outliers can easily be separated by separate nodes.  Finally, they stated that 

DTs can handle interactions between explanatory variables by showing them in the tree with the best 

split at each node. Despite all the advantages, Friedman & Meulman (2003) emphasized that the major 

disadvantage of DTs is that they tend to be less accurate. While DTs can sometimes be competitive, they 

are never the most accurate model in any given application (Friedman & Meulman, 2003). 

2.6 Random Forest 

According to Breiman (2001), many of the disadvantages of decision trees have been dealt with by 

growing an ensemble of trees instead of using only one decision tree. One of these techniques is an RF, 

which was proposed by Breiman (2001) himself. An RF is a tree ensemble method that uses multiple 

CART trees for prediction (Breiman, 2001). RF can be used for classification or regression problems 

and is gaining a lot of popularity in several research fields because of its inherent non-linear and non-

parametric characteristics (Desai & Ouarda, 2021).  
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When an RF is used for regression tasks, it is called random forest regression (RFR) (Desai & Ouarda, 

2021). Desai & Ouarda explained that RFR first creates multiple samples from a given set of training 

data by using bootstrapping. Bootstrapping is a resampling method, developed by Efron (1979), that 

resamples observed data with replacement (Akins et al., 2005). Akins et al. (2005) explained that each 

bootstrap sample is a random subset drawn with replacement from the original data, with the same size 

as the original data set. Breiman (2001) explained that after the samples are created, RFR grows full 

tree-structured classifiers ℎ(𝑥, 𝜃𝑘) on these samples where 𝑥 represents the independent input variables, 

𝜃𝑘 represent independent identically distributed random vectors and 𝑘 identifies each individual tree, 

ranging from 1 to 𝐾 (Breiman, 2001). 𝜃𝑘 take on numerical values in RFR instead of categorical values, 

which would be the case for a classification task (Desai & Ouarda, 2021). Finally, the results of all fully 

grown trees are combined, and an estimate of the target variable is obtained by taking the average over 

the individual trees (Larivière & Van den Poel, 2005). When RF would be used for a classification task, 

the most popular class from the predictions of the ensemble of trees would be selected as the final 

predicted value (Breiman, 2001). 

RFR uses a random selection of a subset of all the original independent variables to grow every 

individual tree (Larivière & Van den Poel, 2005). This random subset is used to split the data into 

homogenous groups and is much smaller compared the original number of independent variables that 

were selected for the analysis. According to Breiman (2001), this number should be equal to square root 

of the original total number of independent variables. He explained that the variable randomness 

minimizes correlation while still maintaining strength. He found that by doing this, the model has an 

accuracy that compares favorably with a Adaboost, which is a different tree ensemble method. 

Because RFR uses bootstrapping, one third of the observations from the original data set are left out in 

the bootstrap samples, which are known as out-of-bag (OOB) Samples (Desai & Ouarda, 2021). The 

estimated error on the OOB samples is called the OOB-error rate, which can be used as an accuracy 

measure itself instead of validating RFR on a test set and to select the optimal number of trees used by 

the model (Desai & Ouarda, 2021). A captivating by-product of RFR is the variable importance, which 

compares each independent variable on how useful they are for predicting the dependent variable 

(Ishwaran et al., 2004). 

In contrast to conventional methods, RFR has several nice advantages such as its non-parametric nature, 

its strong prediction accuracy, and its ability to calculate the variable importance (Ouedraogo et al., 

2018). Moreover, Desai & Ouarda (2021) explained that RFR handles noise and outliers quite well, as 

the input training sets are randomly sampled by replacement, and because the subset of variables used 

by each tree are selected randomly. Moreover, they stated that the absence of correlation between 

individual trees prevents RFRs from overfitting the training data. Additionally, Larivière & Van den Poel 

(2005) suggested that RFR needs little computation time and is easy to use, because the only two 
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parameters that need to be determined are the number of trees used by the model and the number of 

estimators that need to be randomly selected from the original predictors (Larivière & Van den Poel, 

2005). Breiman (2001) recommended to use many trees and to use the square root of the number of 

predictors used for the number of estimators used by each tree. Despite all its advantages, a big 

disadvantage of the RF is its black-box nature, making it hard to interpret the complex relationships 

between the dependent variable and the predictors (Zhang et al., 2021). 

2.7 Feature selection methods 

Feature selection reduces the number of input variables during predictive model development 

(Brownlee, 2019). Brownlee explained that it is often desirable to minimize the number of input 

variables as this decreases the computational cost of modeling and can improve the model performance 

as well. According to Brownlee, there are two types of feature selections methods, namely supervised 

feature selection methods and unsupervised feature selection methods. Supervised feature selection 

methods use the target variable as a basis for selecting the most relevant variables. Unsupervised feature 

selection methods, on the other hand, do not use the target variable and are based solely on the 

characteristics of the features themselves. Supervised feature selection methods can be divided into filter 

methods, wrapper methods, embedded methods, and hybrid methods (Jović et al., 2016). 

According to Jović et al. (2016) filter methods select, and rank features based on a performance measure. 

They explained that only after the best features are found, the modeling algorithms can use them (Jović 

et al., 2016). According to the authors, filter methods can either rank individual features or evaluate 

entire feature subsets. They explained that measures for feature filtering include information, distance, 

consistency, similarity, and statistical measures. Furthermore, they stated that filter methods are 

classified by classification, regression, or clustering tasks. 

Wrapper methods use a specific learning algorithm to assess the feature subsets based on classification 

error estimates and to construct the final classifier (Chen & Jeong, 2007). Wrappers are slower than 

filters because they depend on the algorithm's resource demands (Jović et al., 2016). Jović et al. (2016) 

also explained that the feature subsets generated by wrappers are biased towards the algorithm used for 

evaluation. Therefore, the independent validation sample and another algorithm are used after the final 

subset is found for a reliable general error estimate (Jović et al., 2016). However, the authors explained 

wrappers perform better than filters as they evaluate subsets using a real modeling algorithm. 

Jović et al. (2016) explained that embedded methods select features during the algorithm’s execution 

and that these methods are thus embedded in a model algorithm itself. Moreover, they explained that 

some embedded methods perform feature weighting based on regularization models with objective 

functions that minimize fitting errors and, in the meantime, force the feature coefficients to be small or 

to be exact zero. They stated that these methods based on LASSO and Elastic Net usually work with 

linear classifiers and induce penalties on irrelevant features. 
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Hybrid methods combine filters and wrappers (Jović et al., 2016). Jović et al. explained that these 

methods first use a filter to reduce feature space, which generates candidate subsets. After that, a wrapper 

is used to select the best candidate subset (Jović et al., 2016). Moreover, the authors explained that 

hybrid methods often achieve accuracy and efficiency, and various filter-wrapper combinations can be 

used for hybrid methodology. 

2.8 Best subset selection 

BSS tries to find a small subset of estimators, that results in the best prediction accuracy when used by 

a certain model (Hocking & Leslie, 1967). Given a dependent variable 𝑌 ∈ 𝑅𝑛 and a predictor matrix 

𝑋 ∈ 𝑅𝑛∗𝑝 containing estimators and a subset with a size of 𝑘 predictors, where 𝑘 ranges between 0 and 

𝑚𝑖𝑛{𝑛, 𝑝} (the minimum value between the number of observations (𝑛) and the number of predictors 

(𝑝)) and where 𝑅 represents the set of real numbers, BSS tries to find the best subset of 𝑘 predictors that 

give the best fit in terms of the squared error (Hastie et al., 2020). BSS does this by minimizing the 

squared difference between the observed values and the predicted values of the dependent variable, 

subject to a condition where the number of nonzero coefficients in 𝛽 is smaller than or equal to 𝑘.  

min
 𝛽 ∈ 𝑅𝑝

‖𝑌 − 𝑋β‖2
2   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖β‖0  ≤  𝑘, 𝛽 ∈  𝑅𝑝, 

where, ‖𝛽‖0 = ∑ 1{𝛽1 ≠ 0}
𝑝
𝑖=1  is the 𝑙0 norm of β (Bertsimas et al.,2016). Bertsimas et al. also 

explained that 𝑙0 counts the number of nonzero elements in the vector 𝛽 and 1(·) denotes the indicator 

function. Moreover, they explained that the condition ‖𝛽‖0 ≤  𝑘 ensures that the number of estimators 

used by the model is limited, which helps to prevent the model from overfitting the training data and 

keeps it simple. Moreover, the indicator function 1(·) takes a value of 1 when the condition inside it is 

true and 0 when it is false. 

One problem with BSS is that several BSS algorithms, like leaps in R, do not scale to problem sizes 

where p > 30 (Bertsimas et al., 2016). Due to this limitation, best subset selection is often considered as 

impractical for problem sizes where the number of predictors is larger than 30, leading to the method 

being dismissed by the statistical community (Bertsimas et al., 2016). 

2.9 Recursive feature elimination 

RFE is a feature selection method developed for small sample classification problems (Guyon et al., 

2002). However, RFE is also used for regression problems (Ai, 2022; Qiu et al., 2011; Zhou et al., 2009). 

RFE attempts to select the optimal feature subset based on the learned model and the classification 

accuracy (Jeon & Oh, 2020). Traditional RFE sequentially removes the worst feature that lowers the 

model accuracy after building a model (Chen et al., 2007; Jeon & Oh, 2020). However, according to 

Jeon & Oh (2020), the new RFE approach tries to improve the model performance by removing the 

worst features based on feature importance instead of classification accuracy, which is based on the 

support vector machine (SVM) model. Jeon & Oh called this method feature-importance-based RFE 
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and stated that it involves training a classifier with a dataset and obtaining feature weights to determine 

importance. They explained that the feature with the lowest weight is removed, and the classifier is re-

trained until no features remain. Moreover, they stated that with this approach, RFE can also be applied 

to other classification models such as RF models and gradient boosting machines (GBMs), which both 

have a built-in feature evaluation mechanism. According to Jeon & Oh (2020), RFE is an embedded 

selection method, while Ai (2022) and Jović et al. (2016) both stated that it is a wrapper method. 

Chen et al. (2007) stated that RFE works well in small-sample feature selection, but often removes useful 

redundant features and weak features in bigger data sets. The authors found that redundant features can 

improve class separation and that using weak features together can significantly improve performance. 

Moreover, they found that by removing these features, classification performance could be reduced. 

Darst et al. (2018) supported this in their own research by integrating RFE with a RF model, calling it a 

Random Forest-Recursive Feature Elimination algorithm (RF-RFE). Darst et al. (2018) explained that 

correlated predictors weaken the ability of a RF to identify strong predictors and that RF-RFE can solve 

this issue in small datasets but that its effectiveness in high-dimensional datasets was still unknown. 

Furthermore, the authors stated that RF-RFE reduced the importance of correlated variables when using 

high dimensional data, but that it also decreased the importance of causal variables in the presence of 

many correlated variables. They explained that this made it difficult to detect both, suggesting that RF-

RFE may not be suitable for high-dimensional data. 

Furthermore, Ai (2022) integrated RFE with a LASSO model calling it a LASSO-Recursive Feature 

Elimination (LASSO-RFE) algorithm. He explained that LASSO-RFE utilizes LASSO as the 

underlying algorithm and enhances the feature selection using RFE, keeping the benefit of LASSO in 

effectively removing irrelevant variables while improving model interpretation, which makes the 

selected features more representative. Moreover, Tyagi et al. (2021) combined RFE with a DT calling it 

a Decision Tree-Recursive Feature Elimination (DT-RFE). They explained that DT-RFE removes the 

least important variables in a recursive manner, based on the feature importance obtained from the DT. 

2.10 Evaluation metrics 

Evaluation metrics are numerical indicators utilized to evaluate the performance and effectiveness of 

statistical or machine learning models (Saxena et al. 2008). As a result, these metrics make it possible 

to compare different models in terms of performance to identify the best performing model. When 

evaluating model performance, it is important to choose the right evaluation metric(s) (Tapper, 2022). 

According to Botchkarev (2018), the mean square error (MSE), the root mean square error (RMSE), the 

mean absolute error (MAE) and the mean absolute percentage error (MAPE) are the most popular 

metrics used for regression models in the past decades. 

Chicco et al. (2021) stated that the MAE and the MSE are the two basic members of the family of metrics 

that evaluate model performance by looking at the distance of the predicted values to the actual values. 
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The MAE is defined as the mean of the absolute difference between the predicted and actual values 

while the MSE is defined as the mean of the squared difference between the predicted and actual values 

(Chai & Draxler, 2014). Moreover, MAPE is a derivation of MAE. MAPE is defined as the average 

percentage errors between the predicted values and the actual values (De Myttenaere et al., 2016). 

Similarly, RMSE is a derivation of MSE. RMSE standardizes the units of measures of MSE and is 

defined as the square root of the mean of the squared difference between the predicted and actual values 

(Chai & Draxler, 2014; Chicco et al., 2021). Another commonly used evaluation metric is the coefficient 

of determination, which is better known as R-squared and is proposed by Wright (1921). It explains by 

how much the dependent variable is explained by the independent variables, in terms of variance (Chicco 

et al., 2021). However, it does not imply causality (Tapper, 2022). R-squared is upper bounded by the 

value 1. If it is equal to 1, the variance of the target variable is fully explained by the independent 

variables, and when it is equal to 0, these variables do not explain any variance (Chicco et al., 2021). In 

contrast, the values of MAE, MSE, RMSE and MAPE cover the entire positive branch. For these 

metrics, zero implies a perfect fit, while larger values imply poorer model performance (Chicco et al., 

2021). 

In studies where similar models are being used for regression tasks, R-squared, RMSE and MAPE seem 

to be quite popular metrics. For instance, Gomes et al. (2020) and Gomes & Jelihoyschi (2020) utilized 

R-squared to evaluate the performance of an RT model. Similarly, Ouedraogo et al. (2018) used the 

RMSE to evaluate an RFR model, while Thach et al. (2021) used RMSE and MAPE to evaluate a 

LASSO regression model. Additionally, in a related line of research where CLV is predicted with 

machine learning R-squared, MSE, RMSE and MAE seem to be popular. For example, Venkatakrishna 

et al. (2021) evaluated their models using R-squared, and MSE, while Tapper (2022) used the MAE, 

RMSE and R-squared. 

Due to the errors being squared, MSE and RMSE are relatively sensitive to outliers (Chai & Draxler, 

2014; Chicco et al., 2021). Willmott & Matsuura (2005) stated that evaluation metrics based on the sum 

of squared errors have “disturbing characteristics” and should not be used as evaluation metrics. Both 

Chai & Draxler (2014) and Willmott & Matsuura (2005) strongly advised to use MAE instead of MSE 

or RMSE. According to Tapper (2022), the advantages of MAE are that it is very simple and 

interpretable. Furthermore, MAPE has a strong bias towards underestimating large forecasts, making it 

an inappropriate evaluation metric when large errors are anticipated (De Myttenaere et al., 2015). In 

addition, Foss et al. (2003) concluded that MAPE is “unreliable and may have misled the entire software 

engineering discipline”. Moreover, Chicco et al. (2021) concluded that R-squared is more informative 

and interpretable compared to MSE, RMSE, MAE and MAPE. They suggested that R-squared should 

be used as a standard evaluation metric for regression analyses. However, Li (2017) stated that the R-

squared should not be used as an evaluation metric for models when numerical data is used, because R-

squared is biased and misleading when predicted and observed values are not perfectly matched. 
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3 Data 

3.1 Raw data 

The data used in this research is user subscription data from KKBOX, containing information about, 

demographics, transactions, and churn related features from subscribers. The data was created for a 

churn prediction competition on Kaggle but was used to predict CLV in this research. Kaggle divided 

the KKBOX data into five separate data sets, but only three of them were used in this research. This is 

because the third and fourth data set originally served for training and test purposes respectively. 

However, in this research, the third data set was only used to extract a variable. As a result, the very 

similar fourth data was obsolete for this research. Moreover, the fifth data set was unmanageable1 in R. 

The three raw data sets that will be used are discussed below. 

The first raw data set is called transactions.csv. It contains a collection of records capturing financial 

interactions and contains the following variables: msno, payment_method_id, payment_plan_days, 

plan_list_price, actual_amount_paid, is_auto_renew, transaction_date, membership_expire_date and 

is_cancel. The variable descriptions can be found in table A1 in the appendix. Furthermore, the data 

contains 21,547,746 transactions, made between 2015-01-01 and 2017-02-28. 

The second data set is called members.csv and mainly contains user demographics and information 

about their subscription and contains the following variables: msno, city, bd, gender, registered_via, 

registration_init_time. The variable descriptions can be found in table A1. Moreover, the data set 

contains 6,769,473 users. However, one variable in the data set seems to be missing2. 

The third data set is called train.csv and contains only two variables, namely msno and is_churn.  The 

variable descriptions can also be found in table A1. Additionally, the data set contains 992,931 users. 

3.2 Data sampling 

The three previously mentioned data sets are extremely large data sets. To reduce computation time, a 

random sample of 100,000 user will be used instead of the entire userbase. However, the three data sets 

do not contain the exact same users. Because train.csv contained the least number of users, the 100,000 

users were randomly selected from the train.csv data set, and only the 100,000 selected users were kept 

in the individual three data sets, resulting in 1,600,435 observations in the sampled transaction data, 

88,472 users in the sampled members data and 100,000 observations in the sampled train data. 

Members.csv ended up with less than 100,000 users, because the train.csv data contained some users 

that were not present in the members.csv data. However, this ‘issue’ was solved later when the data sets 

were merged, which is explained in the final paragraph of section 3.3. 

 
1 The unmanageable data set is unmanageable due to its large size (30GB). Despite using various R packages 

such as data.table and vroom, it could not be loaded into R. 
2 The variable named expiration_date seems to be missing in the members.csv data, which should be present 

according to Kaggle. 
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3.3 Data cleaning 

After sampling, the data sets needed to be cleaned. In the sampled members data set, the variable bd, 

which represents the age of the customer at the time that the data was collected, contained some odd 

values above 99, even reaching 1032. Additionally, bd contained values equal to negative values or zero. 

Furthermore, the variable gender frequently exhibited a blank value and the respective bd value was 

often equal to zero for these users. Therefore, it is likely that customer demographic information is 

missing for these users. To improve the analysis, all the suspicious users were removed from the data. 

Besides the sampled members data set, the sampled transactions data set also needed to be cleaned. For 

some of the observations in these data set, actual_amount_paid was equal to zero, which clearly does 

not make any sense. Moreover, some transactions seemed to be duplicated as some users had supposedly 

made multiple transactions on the same exact day with the same exact price, which seems odd for a 

subscription service. As a result, these ‘duplicated’ observations and observations where 

actual_amount_paid was equal to zero were removed from the sampled transactions data set. 

In between the cleaning process, the cleaned sampled members data and the sampled train data were 

merged, creating the data set called user data. The final step of the cleaning process was to remove the 

deleted user IDs of the sampled members data from the sampled transactions data and to remove the 

(possibly) deleted user IDs of the sampled transactions data from the newly created user data. 

3.4 Transforming variables 

After cleaning the data, some variables still had to be transformed to make sure that additional 

preprocessing steps worked properly. First, all the integer date variables (with values such as 

“20150202”) were transformed into proper date variables with a %Y%m%d format. Secondly, variables 

with character values were changed into factor variables because Barrowman (2020) stated that although 

most statistical operations in R will transform character variables automatically into factors first, it is 

more efficient to convert them manually. Moreover, every integer binary variable, city, registered_via 

and payment_method_id (see table A1 in the appendix)) were also changed to factors, because these 

variables were categorical in nature. Integer variables that are categorical in nature should be converted 

to factors to prevent the ordered numeric values to take on a meaning (Bhalla, 2016). 

3.5 Aggregating the data, removing variables and creating new variables 

The next step of the data preprocessing was to aggregate the sampled transactions data in a way that 

each unique user ID appeared only once in the aggregated transactional data. For this aggregated 

transaction data, first_transaction (date), last_transaction (date), frequency, total_amount_paid and 

average_amount_paid were created/calculated for each user. With these new variables, recency_months 

(the recency in terms of months instead of days), number_months_from_start (the number of months 

between the start of the period and the first purchase) could also be created. The final variable that 

needed to be created was CLV. This step is explained in detail in the methodology section. 
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Moreover, in the data aggregating step, some uninformative variables and time dependent variables that 

varied over time were left out from the new aggregated transactional data. These variables were, 

payment_method_id, payment_plan_days, plan_list_price, is_auto_renew, membership_expire_date 

and is_cancel. Furthermore, after creating all the variables for the analysis, the variables 

(first_transaction, last_transaction and total_amount_paid) that only served the purpose to create new 

variables were removed as well. Finally, the name of msno was changed to user_ID. 

3.6 Merging the data 

One of the final steps of the data preprocessing was to merge the newly created aggregated transactional 

data set with the user data set created a few steps back, resulting in the final aggregated data set. This 

data set included 11 variables (user_ID, gender, bd, city, registered_via, is_churn, frequency, 

average_amount_paid, recency_months, number_months_from_start and CLV) and consisted out of 

38,274 observations. The variable descriptions of the full aggregated data can be found in table A2 in 

the appendix. 

3.7 Descriptive statistics 

In table 1, the descriptive statistics can be seen for all the numerical variables from the final aggregated 

data set. 

Table 1 Descriptive statistics of the numerical variables used for analysis 

Variable Mean Median Standard deviation Min Max 

bd 30.01 28.00 8.90 1.00 98.00 

frequency 17.31 19.00 8.16 1.00 42.00 

average_amount_paid 187.17 149.00 195.52 35.00 2000.00 

recency_months 0.61 0.00 1.91 0.00 22.00 

number_months_from_start 5.63 2.00 7.53 0.00 25.00 

CLV 8324.31 8865.82 3483.82 156.58 18376.77 

 

Besides numerical variables, this research also used binary factor variables for the analysis. In table 2, 

the descriptive statistics of the binary factor variables can be seen. 

Table 2 Descriptive statistics of the factor variables used for analysis 

Variable Level Count Proportion 

gender male 20222 0.53 

is_churn 1 3311 0.09 

Note: The first level of the binary factor variable are left out of this table. 

3.8 Bar plots of the remaining factor variables 

In figure 1, the frequencies of the different levels of the factor variables city and registered_via can be 

seen in two bar plots next to each other. What is important to note is that the reference category (the 

first level of the factor variable) is still present for both variables. 
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Figure 1 Distributions of the numerical variables used for analysis 

3.8 Data distributions 

In figure 2, the distributions of the numerical variables can be seen. What is important to note is that 

this figure contains multiple histograms, each using a different scale.

 

 

Figure 2 Distributions of the numerical variables used for analysis 
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3.9 Data correlations 

In figure 3, the correlations between all the numerical variables are visualized in a correlation plot. A 

large dark blue circle indicates a positive correlation close to “1”, while a large dark red circle indicates 

a negative correlation close to “-1”. The smaller and lighter the circle becomes, the weaker the 

correlation between the two variables. Figure 9 shows a few very intuitive high correlations between 

variables, such as the positive correlation between frequency and CLV, the negative correlation between 

number_months_from_start and CLV, and the negative correlation between frequency and 

number_months_from_start.  The latter suggests the possibility of multicollinearity between these two 

variables. Moreover, it is interesting to observe a very low negative correlation between 

average_amount_paid and CLV, and a high positive correlation between average_amount_paid and 

recency_months which also seems to suggest multicollinearity. 

 

Figure 3 Correlation plot of all the numerical variables used for analysis 

3.11 Dummy coding 

The final data preprocessing step was to transform all factor variables into dummies with dummy coding. 

For each variable, the reference category was removed to prevent multicollinearity. For example, when 

a factor variable with five levels is transformed with dummy coding, it is transformed into four dummies. 

As a result, the final data set used for analysis contained 31 variables instead of the 11 variables 

mentioned in section 3.6. 
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3.12 Creating training data and test data 

After the data preprocessing was completed, the data had to be split up in training data and test data to 

predict CLV. According to Radečić (2022), a time-based split is very common way to split time 

dependent data in training and test data for time dependent data. He explained that when predicting data 

with time series data, the values at the rear of the data set should be used for testing and everything else 

for training. However, I believe that this is not the case for this research, as supervised learning will be 

used for prediction instead of a prediction method that forecasts future values of the dependent variable, 

without needing future values from the predictor variables. Moreover, the final data used for prediction 

is an aggregated transactional data set instead of a time series. Additionally, when the original transaction 

data (explained in section 3.1 to 3.4) would be split up based on a threshold date, it would be more 

difficult to create a CLV variable for the training data and test data because these data sets would not 

cover the same number of months. As a result, I decided to use a stratified split to randomly split users 

into a training data set and a test data set. 

According to Gholamy et al. (2018), empirical research has shown that allocating 20-30% of the data 

for testing and 70-80% for training results in the best accuracy. In this research, 70% of the data was 

randomly allocated for training purposes, and 30% for testing purposes. A 70/30 split was used instead 

of an 80/20 split due to the substantial size of the dataset. Consequently, I was confident that allocating 

70% of the data for training would be sufficient, allowing for a larger portion of data to be reserved for 

validation. 

4 Methodology 

The methodology explains how the data analysis is conducted in this research. Section 4.1 explains how 

CLV was calculated. Moreover, section 4.2 to section 4.10 explain how a LASSO regression, LASSO-

BSS, LASSO-RFE, RT, RT-BSS, RT-RFE, RF-BSS and RF-RFE were created and tuned in R to predict 

CLV. Finally, section 4.11 explains how the prediction accuracy of the nine supervised learning models 

were measured. 

The reason for including several LASSO regression models was because these models are quite easy to 

interpret. Therefore, it seemed interesting to compare the prediction performance of these models with 

black-box supervised machine learning models like the RF models, which often have high prediction 

accuracy, but are hard to interpret. By including both models, a trade-off can be made between model 

interpretability and model accuracy. Furthermore, several RT models are also included. The reason for 

including these RT models is that it seemed interesting to see by how much prediction accuracy increases 

when a model uses multiple trees instead of just one. 

Furthermore, the reason for including best subset selection as the first additional feature selection 

method was because it is well established method with many successors. Therefore, it seemed interesting 
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to see how well this well-established feature selection method would affect the prediction performance 

of the supervised learning Moreover, RFE was included as a second feature selection method, to assess 

the extent to which a newer feature selection method could improve accuracy in contrast to the well-

established method. 

4.1 Calculating CLV 

Section 2.1 and 2.2.1 from the literature review explained that CLV can be calculated with the net present 

value of the profit gained from a user. However, the KKBOX data used in this research only included 

information about revenues gained from users and not about incremental costs. Therefore, instead of 

using the profit gained from a user, the revenue gained from a user was used to calculate CLV. As a 

result, the CLV in this research was calculated in the following way: 

𝐶𝐿𝑉 = 𝐸 ∑
𝑅𝑡 ∗ 𝑟𝑡

(1 + 𝑑)𝑡

𝑇

𝑡=0

 

where 𝑅𝑡 represents the revenue earned from a user during period 𝑡, 𝑇 represents the customer lifetime, 

𝑟 represents the retention rate and 𝑑 represents the discount rate used to discount cash flows of future 

periods. t starts at zero, which represents the current period, and each period is equal to 26 months. 

Furthermore, no discount rate was given in the data. As a result, the discount rate was based on 

commonly used discount rates. According to Blattberg et al. (2009), the annual discount rate often ranges 

between 10% and 20%. Based on this information, this research used an annual discount rate of 10%. 

However, in this research, one period is equal to 26 months. As a result, the annual discount rate needed 

to be transformed into a discount rate for 26 months. This transformation involved using a simple annual 

discount rate instead of a compound discount rate, as it was assumed that compounding CLV is 

unnecessary. A simple annual discount rate of 10% translates to a 21.67% discount rate over 26 months. 

The next step was to determine 𝑟, which can be defined as 𝑟 =
𝐸−𝑁

𝑆
, where 𝐸 represents the number of 

customers at the end of a specific period, 𝑁 represents the number of new customers acquired during 

the period and 𝑆 represents the number of customers at the beginning of the period (Blattberg et al., 

2009). However, calculating an accurate retention rate was quite hard with the given data. Kaggle 

seemed to suggest that the data set has a contractual setting. However, it seemed to be common for users 

to unsubscribe and resubscribe once or multiple times in a short time. As a result, it was not clear whether 

a user churned or not. As a result, when using 𝑟 =
𝐸−𝑁

𝑆
 to calculate the retention rate, 𝐸 could have been 

underestimated. When only the last month of the data was considered for 𝐸, the retention rate was equal 

to approximately 0.66. However, when the two last months or the three last months were also considered 

for E, the retention rates are approximately 0.97 and 0.98 respectively. These large differences seemed 

to suggest that only taking the last month of the period into account would underestimate 𝐸. As a result, 

users that were active in either one of the last two months or in both, represented 𝐸. 
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The final step to calculate CLV was to determine 𝑇. Bonacchi & Perego (2012) explained that customer 

lifetime represents the entire period during which a person is a customer of a certain company without 

churning. Moreover, they stated that the average lifetime is determined by the rate at which customers 

cancel their subscriptions during a period. In other words, 𝑇 can be defined as 𝑇 =  
1

1−𝑟
  where 𝑟 

represents the retention rate. However, when using the retention rate from the previous paragraph (0.97), 

another problem arises. The formula to calculate 𝑇 would suggest that 𝑇 is equal to approximately 34.01 

periods, which is equal to approximately 74 years. However, it seemed unlikely that users subscribe to 

the same music streaming service for almost 74 years, due to changes in the market during such a long 

period. However, Malthouse & Blattberg (2005) suggested that CLV should be estimated over a long 

period of time rather than a customer’s entire lifetime. They explained that hotels and airlines evaluate 

CLV for only one year. However, one year seemed too short for the music streaming industry. Therefore, 

𝑇 was set to “5”, which is equal to 13 years. What is important to note is that the current period (𝑡 = 0) 

was also included for the CLV calculation. As a result, the current period and the following five future 

periods were used to estimate CLV. 

The reason for choosing the basic CLV calculation method to estimate CLV was because Kaggle seemed 

to suggest that there was a contractual setting. With a contractual setting, it is often very easy to predict 

future revenues from customers, as they pay a monthly or yearly fee. This fee often stays constant unless 

the contract is changed. Moreover, with a contractual setting, users keep paying their fees until they 

churn. As a result, using historical revenue data together with a discount rate and a retention rate seemed 

to be a sufficient method to estimate CLV in a contractual setting. 

4.2 LASSO regression 

The first model that was used to predict CLV is a LASSO regression. The first step was to set a seed for 

reproduction purposes. After that, cv.glmnet() from the caret package in R (Kuhn, 2023) was used to 

create the model, in which “nfolds” was set to “10” and “type.measure” was set to “MSE”. Moreover, 

cv.glmnet() needs a matrix containing the predictor variables and a numeric string representing the 

dependent variable as input data to be trained. The matrix, created with as.matrix(), and the numeric 

string were both obtained from the training data. After the LASSO regression was created with the 

cv.glmnet() function, the coefficient paths of the predictors were plotted, which showed how the 

coefficients of the predictors react to different values of lambda. This plot was created as it provides 

some insights into the variable importance of the predictors used by the LASSO regression model. 

The next step was to obtain the optimal value of lambda, which is the lowest value of lambda. This value 

was used in the glmnet() code to create the final lasso model. With the coef() function, the coefficients 

of the predictor variables were obtained. This function also showed which coefficients were shrunk to 

zero, making it clear which variables were used for prediction. The final step was to predict the CLV 
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values from the test data with the predict() function, which used the final lasso model with the optimal 

lambda. 

4.3 LASSO-BSS 

The second model that was be used to predict CLV is a LASSO-BSS regression. The first step was to 

perform BSS with a linear regression using the regsubsets() function from the leaps package (Lumley, 

2020). This function uses the entire training data as input, and “nvmax” was set to “31” so that the 

maximum size of the subsets was equal to the number of predictors. The reason for using a linear 

regression as the initial model for BSS was because to my knowledge, an R package performing BSS 

while using LASSO as the initial model does not exist. As a result, a linear regression was selected as it 

is the most similar supervised learning algorithm that was available compared to the linear LASSO 

regression. 

The next step was to find the best subset. With the summary() function, several statistics can be obtained 

from the regsubsets() function to select the optimal subset, such as the adjusted R-squared values, 

Mallows' Cp values, and Bayesian Information Criterion (BIC) values for all the possible subsets. The 

adjusted R-squared measures the goodness of fit of the model, while penalizing the addition of 

unnecessary predictors that might cause overfitting. When using the adjusted R-squared, higher values 

are preferred. Moreover, the Cp statistic measures the trade-off between the goodness of fit and the 

model complexity. Furthermore, The BIC, balances the goodness of fit and the model complexity, but 

uses a Bayesian approach. When using the Cp statistic or the BIC, smaller values are preferred. This 

research used the adjusted R-squared to select the best subset, because the adjusted R-squared seemed 

to exhibit less inclination towards simpler models compared to the Cp statistic or the BIC. This seemed 

favorable, as the next step would fit a LASSO regression on the best subset, which shrinks irrelevant 

variables towards zero, if they would still be present in the best subset. 

After the best subset of variables was found, the steps explained in section 4.2.1 for the LASSO 

regression were repeated. The only difference with those previously explained steps was that only the 

variables included in the best subset were used, instead of using all predictors. 

4.4 LASSO-RFE 

The third model that was used to predict CLV is a LASSO-RFE model. The first step was to create 

another LASSO regression model (after setting a seed) using the same first few steps as in section 4.2.1, 

but this time, using a standardized data set. The reason for this is that RFE needs the variable importance 

order to work properly. One way to obtain the variable importance order for the LASSO-RFE model is 

to look at the coefficients of the LASSO regression when it is performed on standardized data. When 

the data is standardized with the scale() function in R, the data is transformed by setting the mean of 

each variable to “0” and the standard deviation to “1”. This allows a fair comparison and analysis of 
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variables with different scales. As a result, the absolute values of the coefficients represent the variable 

importance of the variables used by the LASSO-RFE model. 

After the variable importance order was obtained, the matrix including the predictor variables used in 

section 4.2.1 was transformed in a way that the order of the columns was like the obtained variable 

importance order. This transformed matrix and the numeric string containing the CLV values, were then 

used as the input data for RFE (after setting a seed) with a linear regression as the initial model. A linear 

regression was used as the initial model instead of a LASSO regression because I could not find a 

package in R that performed RFE with a LASSO regression as the initial model. 

In order to set some specifications for RFE, the rfeControl() function from the caret package (Kuhn, 

2023) was used, where “functions” was set to “lmFuncs”, “method” was set to “cv” and  “number” 

(number of folds for the cross-validation) was set to “10”. After that, the rfe() function from the caret 

package (Kuhn, 2023) was used to create the RFE model using linear regression as the initial model, 

using the specifications from the previous rfeControl() function. Moreover, “sizes” was set to “1:31”, 

so that the maximum size of the subsets was equal to the number of predictors. After performing RFE, 

the optimal features were obtained by using the $optVariables in R. 

After obtaining the optimal features from RFE, the steps explained in section 4.2.1 for the LASSO 

regression were repeated. The only difference with those previously explained steps was that only the 

optimal variables were included in the input matrix, instead of using all predictors. 

4.5 Regression tree 

The fourth model that was used to predict CLV is an RT model based on the CART learning algorithm 

introduced by Breiman et al. (1984). The rpart() function from the rpart package (Therneau et al., 

2022) was used to train the RT using the normal training data as input data. Moreover, the complexity 

parameter (cp) was set to “0” for the control parameter, so that the algorithm would build a full tree. 

Furthermore, “method” was set to “anova”, so that it was clear for the algorithm that the tree was used 

for a regression problem. 

In the literature review, it was explained that CART analyzes all possible ‘splits’ for every explanatory 

variable and then selects the split, which reduces the deviance in the dependent variable the most 

(Breiman et al., 1984; Efron & Tibshirani, 1991; Venables & Ripley, 1997). However, when using the 

anova method from the rpart() function, the lowest Sum of squares total (SST) of the node minus the 

sum of squares left (SSL) of the left ‘son’ and the sum of squares right (SSR) of the right ‘son’ (SST − 

(SSL + SSR)) will be used for the splitting criteria, where SST is equal to ∑(𝑦𝑖  −  𝑦̅)2, 𝑦𝑖 represents 

the individual observed values in a data set and  𝑦̅ represents the mean (average) of the observed values 

in a data set (Therneau et al., 2022). 
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After the full RT was created in R, the model was plotted with the plot() function for visualization. 

However, because of the large size of the tree, information about the splits and the nodes were excluded 

to prevent a very messy plot. The next step was to create a cp table with $cptable to find the cp value 

that resulted in the lowest xerror (cross-validated error). This cp value was needed to optimally prune 

the tree with the CCP method, explained in section 2.5. A higher cp value results in a smaller tree. 

With the optimal cp value, the final pruned tree could be created. This was done by using the same 

rpart() code that was used to create the full grown tree, except for the cp value, which was set to the 

optimal value instead of zero. This final model was then used to predict the CLV values in the test set 

using the predict() function. 

After the CLV values were predicted, a new pruned tree was created with a relatively high cp value and 

plotted with the rpart.plot() function from the rpart.plot package in R (Milborrow, 2022), showing 

the first few tests and splits of the RT model. This additional step was needed because the full-grown 

tree and the optimal pruned tree were too large to include information about the tests and the nodes. 

4.6 RT-BSS 

The fifth model that was used to predict CLV is an RT-BSS model. However, when I tried to create this 

model in R, the same problem that was discussed in section 4.2.2 arose as I could not find a best subset 

selection algorithm in R that uses a regression tree as the initial model. As a result, BSS again used a 

linear regression as the initial model, and the best subset found in the LASSO-BSS model was used 

again for the RT-BSS model. With these selected variables instead of using all the predictor variables, 

the steps explained in section 4.2.4 were repeated. 

4.7 RT-RFE 

The sixth model that was used to predict CLV is an RT-RFE model. However, when I tried to create this 

model in R, the same problem that was discussed in section 4.2.3 arose, as I could not find a package in 

R that performed RFE with an RT as the initial model. Fortunately, the caret package (Kuhn, 2023) 

provides RFE coding with an RF model as the initial model, which is basically an extension of the RT 

model, as it uses multiple trees instead of just one. As a result, RF was used as the initial model instead 

of RT. 

The first step to create the model in R was to split the training data into a data set that only contained 

the predictors and a numerical string containing the CLV values, as the rfe() function from the caret 

package (Kuhn, 2023) needs predictors and the dependent variable as separate input data. Before using 

rfe(), a seed was set for reproduction purposes and rfeControl() was used to set some specifications for 

RFE. In the rfeControl() function, “functions” was set to “rfFuncs”, “method” was set to “cv” and 

“number” (number of folds used for cross-validation) was set to “5”. Furthermore, the default values of 

the parameters were used in the RF model because I could not figure out how to change these parameters 
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using this function. As a result, “ntree” was set to “500” and “mtry” was set to floor(ncol(x)/3). After 

that, the rfe() function was used to create the RFE model (with RF as the initial model), using the 

specifications from the rfeControl() function. Moreover, “sizes” was set to “1:31”, so that all available 

predictors were allowed to be in the optimal subset of features. After performing RFE, the optimal 

features were obtained by using $optVariables in R. After the optimal subset of features were obtained, 

the steps explained in section 4.2.4 were repeated. The only difference with those previously explained 

steps was that only the optimal variables were included in the data, instead of using all predictors. 

4.8 Random Forest 

The seventh model that was used to predict CLV is an RF model. The first step was to set a seed for 

reproduction purposes. After that, a preliminary RF model was trained on the training data with the 

randomForest() function from the randomForest package (Breiman et al., 2022). In the 

randomForest() function, “mtry” was set to the rounded value of the square root of the number of 

predictors used. Furthermore, “ntree” was set to “700”. The reason for selecting a relatively high number 

of trees was because the next step was to plot an OOB error plot for the preliminary model. This plot 

showed the OOB errors for an RF model using ntree values from one to the chosen 700. Using a higher 

ntree results in a more comprehensive OOB error plot, as more ntree values are included. From the OOB 

error plot, the ntree values resulting in relatively low OOB errors were selected. 

The next step was to tune the hyperparameters used by the RF model. With the selected ntree values and 

all the mtry values from two to 31, a hyper grid was created with the expand.grid() function in which 

each combination of a possible mtry value and ntree value was created in a data set. After that, a seed 

was set for reproduction purposes and the ranger() function from the ranger package (Wright et al., 

2023) was used to create RF models for all the possible combinations of ntree and mtry values. The 

combination that resulted in the lowest OOB error was selected for the final RF model. After setting a 

seed, the final RF model was created with the randomForest() function explained before, but this time 

using the optimal ntree and mtry value. Also, “importance” was set to “TRUE” so that a permuted 

variable importance plot could be plotted to improve the interpretability of the model. In short, the 

permuted variable importance shows the decrease in the model’s accuracy when the values of a certain 

variable are randomly shuffled. This plot was created with the varImpPlot() where “type” was set to “1” 

to make sure that the plot showed the permuted variable importance. When “type” is set to “1”, the x-

axis shows the mean decrease in accuracy after a single variable is permuted. 

When using an RF model, the OOB error can be used to measure the accuracy of the model. However, 

in this paper, the model accuracy of the (final) RF model needs to be compared with other models that 

did not use the OOB error as a measurement of accuracy. As a result, to measure the prediction accuracy 

of the RF model, the predict() function was used to predict the CLV values in the test data. With those 

values, several accuracy metrics were calculated, which is explained in more detail in section 4.10. The 
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OOB error was therefore only used to select the optimal number of trees used and the optimal number 

of random estimators used by the model. 

4.9 RF-BSS 

The eighth model that was used to predict CLV is an RF-BSS model. Just like the LASSO-BSS model 

and the RT-BSS model, the BSS step in the RF-BSS model used a linear regression as the initial model, 

as I could not find a best subset selection algorithm in R that uses a RF as the initial model. As a result, 

the best subset found in the LASSO-BSS model was used again for the RF-BSS model. With these 

selected variables instead of using all the predictor variables, the steps explained in section 4.2.7 were 

repeated. The only slight difference is that this time, the hypergrid was created with mtry values from 

two to the number of features in the best subset, instead of using mtry values from two to 31. 

4.10 RF-RFE 

The ninth and final model that was used to predict CLV is an RF-RFE model. The first step was to split 

the training data into a data set that only contained the predictors and a numerical string containing the 

CLV values, as RFE needs predictors and the dependent variable as separate input data when using the 

rfe() function in R. Moreover, rfeControl() was used to set some specifications for RFE. In rfeControl(), 

“functions” was set to “rfFuncs”, “method” was set to “cv”, and “number” (number of folds used for 

cross-validation) was set to “5”. Furthermore, rfFuncs used the default values of ntree and mtry (500 

and floor(ncol(x)/3) respectively), because I could not figure out how to change these parameters using 

this function. After that, rfe() was used to create the RFE model with RF as the initial model, using the 

specifications from the rfeControl() function. Moreover, “sizes” was set to “1:31”, so that all available 

predictors were allowed to be in the optimal subset of features. After performing RFE, the optimal 

features were obtained by using $optVariables in R. With these selected optimal variables, the steps 

explained in section 4.2.7 were repeated. The only slight difference is that this time, the hypergrid was 

created with mtry values ranging from one to the number of optimal features selected by RFE, instead 

of using mtry values ranging from two to 31. 

4.11 Measuring the accuracy of the models 

This research used MAE, RMSE and the adjusted R-squared as accuracy metrics to evaluate the 

predicting performance of the supervised learning models. These metrics were selected because they are 

easy to interpret and are often used in studies where similar supervised learning models are being used 

or where similar research questions are being answered (see section 2.9). The reason for using the 

adjusted R-squared instead of the normal R-squared is because the adjusted R-squared penalizes the 

inclusion of unnecessary variables in the model, which is favorable because the nine supervised learning 

models use different numbers of variables. The formulas to calculate MAE, RMSE and the adjusted R-

squared are explained below. 

MAE can be defined as: 
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𝑀𝐴𝐸 =
∑ |𝑦̂𝑖 − 𝑦𝑖|𝑁

𝑖=1

𝑁
 

where 𝑦̂𝑖 represents the predicted value of observation 𝑖, 𝑦𝑖 represents the observed value of observation 

𝑖 and 𝑁 represents the sample size. A lower MAE score indicates a higher model accuracy. Moreover, 

the MAE score can be compared with the range of the dependent variable to see whether the score is 

sufficient or not. 

RMSE can be defined as: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑁

𝑖=1

𝑁
 

where 𝑦̂𝑖 represents the predicted value of observation 𝑖, 𝑦𝑖 represents the observed value of observation 

𝑖, and 𝑁 represents the sample size. A lower RMSE score indicates a higher model accuracy. Just like 

the MAE score, the RMSE score can be compared with the range of the dependent variable to see 

whether the score is sufficient or not. 

R-squared can be defined as: 

𝑅2 = 1 −
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑁

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑁
𝑖=1

 

where 𝑦̂𝑖 represents the predicted value of observation 𝑖, 𝑦𝑖 represents the observed value of observation 

𝑖, and 𝑦̅ represents the mean of the observed values. Additionally, the adjusted R-squared can be defined 

as: 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 −
1 − (1 − 𝑅2)(𝑁 − 1)

𝑁 − 𝑝 − 1
 

where 𝑁 represents the sample size and 𝑝 represents the number of predictors used. A higher adjusted 

R-squared indicates a higher proportion of the variance in the dependent variable that can be explained 

by the predictors. 

5 Results 

5.1 LASSO, LASSO-BSS and LASSO-RFE 

Figure 4 shows how the coefficients of the predictors used in the LASSO regression model change when 

different values of lambda are used. According to the coefficient paths, frequency seems to be the most 

important variable, followed by number_months_from_start, recency_months, registered_via7, and 

finally average_amount_paid. However, it seems that frequency, number_months_from_start and 

recency_months are by far the most important predictors. What is also interesting to see is that 

registered_via7 seems to be a relatively important variable in the LASSO regression. Unfortunately, it 
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is unknown what type of registration it represents. Moreover, average_amount_paid does not seem to 

be that relevant compared to the other mentioned predictors, which is quite counterintuitive as you would 

expect it to be the most important predictor together with frequency. However, it corresponds with figure 

3 in section 3.9, which showed a low correlation between average_amount_paid and CLV. 

 

Figure 4 Coefficient paths of the predictors in the LASSO regression model 

Figure 5 shows the coefficient paths of the predictors used by the LASSO-BSS model. The best subset 

of variables used by the LASSO_BSS model included the following 16 variables: male, bd, city5, city11, 

city14, city15, city17, city22, registered_via7, registered_via9, registered_via13, is_churn, frequency, 

average_amount_paid, recency_months and number_months_from_start. What is important to note is 

that these 16 variables also represent the best subset for the RT-BSS model and the RF-BSS model, 

because they all use the same BSS method. Figure 4 looks almost identical to figure 3. The only 

difference between the two figures is that figure 4 contains less coefficient paths because of BSS. 

However, the coefficient paths of the most important predictors are identical in both figures. 

 

Figure 5 Coefficient paths of the predictors in the LASSO-BSS model 
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In figure 6, the coefficient paths of the predictors used by the LASSO-RFE model are plotted. In the 

LASSO-RFE model, all the original 31 predictors were included as optimal features after performing 

RFE. Figure 6 looks very similar to figure 4 and the coefficient paths of the most important variables 

are identical except for one variable, which is quite surprising. According to the coefficient paths of 

figure 6, frequency still seems to be the most important variable, but is this time followed by 

registered_via9, number_months_from_start, registered_via7, and finally recency_months.  

 

Figure 6 Coefficient paths of the predictors in the LASSO-RFE model 

In table 3, the coefficients of the predictors used by the three LASSO model, the LASSO-BSS model 

and the LASSO-RFE model can be seen. What is interesting to see is that three models are quite similar. 

They all use an optimal lambda value of 4.32 and use almost the exact same predictors to predict CLV. 

The regular LASSO regression model uses 18 out of the 31 original predictors to predict CLV, as it 

shrunk the coefficients of city6, city7, city8, city9, city10, city12, city13, city16, city18, city19, city20, 

city21 and is_churn to zero. In the LASSO-BSS model, all the previously mentioned city dummy 

variables were already removed by BSS together with city3, city4 and registered_via4. After that, it only 

shrunk the coefficient of is_churn to zero. In contrast, the RFE step of the LASSO-RFE model did not 

remove any variables. From all the 31 remaining features, the LASSO-RFE model shrunk the 

coefficients of city3, city6, city7, city8, city9, city10, city12, city16, city18, city19, city20, city21 and 

is_churn to zero. What is interesting to see is that none of the three models either removed frequency, 

number_months_from_start, average_amount_paid or recency_months because of the high correlation 

between frequency and number_months_from_start, and between average_amount_paid and 

recency_months. 
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Table 3 Coefficients of the predictors used in the final LASSO regression model 

Variable Coefficient 

LASSO 

Coefficient 

LASSO-BSS 

Coefficient 

LASSO-RFE 

intercept 2853.36 2852.16 2854.07 

male -2.30 -2.30 -1.07 

bd -1.01 -1.01 -2.31 

city3 -0.83 x 0.00 

city4 0.70 x 1.14 

city5 79.15 78.75 79.37 

city6 0.00 x 0.00 

city7 0.00 x 0.00 

city8 0.00 x 0.00 

city9 0.00 x 0.00 

city10 0.00 x 0.00 

city11 -123.16 -123.58 -122.12 

city12 0.00 x 0.00 

city13 0.00 x 0.43 

city14 -3.81 -4.06 -2.93 

city15 -38.52 -38.74 -37.40 

city16 0.00 x 0.00 

city17 -49.74 -49.97 -48.62 

city18 0.00 x 0.00 

city19 0.00 x 0.00 

city20 0.00 x 0.00 

city21 0.00 x 0.00 

city22 -28.96 -29.15 -27.84 

registered_via4 0.70 x 1.02 

registered_via7 -811.10 -811.18 -810.44 

registered_via9 -38.46 -38.54 -38.58 

registered_via13 -105.38 -105.58 -105.51 

is_churn 0.00 0.00 0.00 

frequency 326.54 326.54 326.44 

average_amount_paid 4.55 4.55 4.55 

recency_months -159.52 -159.49 -160.19 

number_months_from_start -130.04 -130.03 -130.14 

Note: “x” means that the variable is removed by BSS or RFE. 

5.2 RT, RT-BSS and RT-RFE 

In figure 7, a visualization of the RT model can be seen. What is important to note is that this figure only 

contains the first few splits of the three model instead of the entire tree. This is because the full pruned 

tree, which uses a cp of “2.634944e-08”, is too large to be visualized together with information about 

which tests are used at the splits of the tree, even after pruning. However, in figure A3 and A4 in the 

appendix, the structure (without additional information about the tests used) of the full tree before and 

after CCP can be seen for a better understanding of the structure of the model. 
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When looking at the first few splits of the RT model in figure 7, it becomes clear that the most important 

three variables used by the RT model to predict CLV are number_months_from_start followed by 

frequency and average_amount_paid respectively. This is quite an interesting result, as it would be more 

intuitive if frequency was more important than number_months_from_start, based on the formula how 

CLV was calculated. However, this unintuitive finding is likely caused by multicollinearity. 

Additionally, what is interesting to see is that both variables are included by the model which shows that 

the RT model is not good at handling multicollinearity. 

 

Figure 7 Visualization of the first few splits of the RT model 
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In figure 8, a visualization of the RT-BSS model can be seen. Just like figure 7, it only contains the first 

few splits of the tree because of the large size of the full tree used in the analysis. However, in figure A5 

and A6 in the appendix, the structure of the full tree before and after CCP, which used a cp value equal 

to “8.992613e-08”, can be seen for a better understanding of the structure of the model. Figure 8 is 

identical to figure 7. Just like in the RT model, the most important three variables used by the RT-BSS 

model to predict CLV are number_months_from_start followed by frequency and average_amount_paid 

respectively. 

 

Figure 8 Visualization of the first few splits of the RT-BSS model 
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In figure 9, a visualization of the RT-RFE model can be seen. Just like figure 7 and figure 8, it only 

contains the first few splits of the tree because of the large size of the full tree used in the analysis. 

However, the structure of the tree before and after CCP, which used a cp value equal to “2.340427e-10”, 

can be seen in figure A7 and A8 in the appendix for a better understanding of the structure of the model. 

In the RT-RFE model, only frequency and average_amount_paid were selected as the optimal features. 

As a result, the tree only uses these two variables to predict CLV. However, figure 9 shows that frequency 

is the most important out of the two. These findings are also quite intuitive. 

 

Figure 9 Visualization of the first few splits of the RT-RFE model 
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5.3 RF, RF-BSS and RF-RFE 

Figure 10 shows the OOB error plot for the preliminary RF model, which used six random predictors to 

build each tree. For this model, 280, 240, 350, 400, 475, 550 and 650 seemed to be the most interesting 

values for the number of trees used by the model, as these values resulted in the lowest OOB errors for 

the RF model. a result, these ntree values together with the mtry values ranging from two to 31 were 

used in the grid search to find the optimal hyperparameter values for the final RF model. 

What is important to note is that the plot was initially used to identify the best ntree values on a different 

scale. However, after determining the best optimal ntree values, the Y-axis scale was adjusted for the 

plot so that it would have the same Y-axis dimensions as the OOB error plot of the preliminary RF-BSS 

model and the preliminary RF-RFE model shown further below. As a result, it may seem as though the 

selected ntree values do not result in the lowest OOB errors within the newly defined Y-axis range. This 

is also the case for figure 11 and 12, which are explained further below. 

 

Figure 10 OOB error plot of the preliminary RF model 

Figure 11 shows the OOB error plot for the preliminary RF-BSS model, which used four random 

predictors to build each tree, because the best subset used by the model included 16 variables. For this 

model, 70, 200, 320, 390, 515 and 700 were selected as the most interesting ntree values and were used 

to create the grid search together with mtry values ranging from two to 31. 

 

Figure 11 OOB error plot of the preliminary RF-BSS model 
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Figure 12 shows the OOB error plot for the preliminary RF-RFE model. The model only used one 

random predictor to build each tree, because RFE only selected frequency and average_amount_paid as 

the optimal values to be included in the model. For the RF-RFE model, 200, 300, 370, 500, 600 and 700 

were selected as the most interesting ntree values and were used to create the grid search together with 

mtry values ranging from one to two. 

 

Figure 12 OOB error plot of the preliminary RF-BSS model 

The grid search conducted for the RF model showed that the optimal number of random variables used 

in each tree was 31 and the optimal number of trees used by the model was 550. Moreover, the grid 

search conducted for the RF-BSS model showed that the optimal number of random variables used in 

each tree was 16 and the optimal number of trees used by the model was 390. Finally, the grid search 

conducted for the RF-BSE model showed that the optimal number of random variables used in each tree 

was 2 and the optimal number of trees used by the model was 500. These results are quite interesting, 

as it suggests that using all available variables instead of using a random subset for each tree results in 

a higher prediction accuracy. In other words, the results seem to suggest that a bagging model would 

predict CLV more accurately compared to a RF model.  This is unexpected, because according to 

Breiman (2001), the variable randomness should minimize correlation while still maintaining strength. 

In figure 13, the permuted variable importance of the RF model can be seen. According to Breiman et 

al. (2022), the X-axis shows the mean decrease in accuracy. However, this does not seem to be in line 

with the actual X-axis in figure 13 (or figure 14 and 15). As a result, the figure should be interpreted 

carefully. However, what is clear from it is that the most important variable to predict CLV for the RF 

model is frequency, followed by average_amount_paid and number_months_from_start. The remaining 

predictors are not relevant when predicting CLV. The variable importance order is also very intuitive 

and looks similar to the importance order of the LASSO and the LASSO-BSS model. However, it is 

interesting to see that all of the highly correlated variables mentioned in section 3.9 are seen as the most 

important variables, which seems to suggest that the basic RF model does not remove correlated 

variables to prevent multicollinearity. Moreover, it is interesting that average_amount_paid is a very 

important predictor for the RF model when predicting CLV, while there is a very weak correlation 

between average_amount_paid and CLV. 
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Figure 13 Permuted variable importance of the RF model 

In figure 14, the permuted variable importance of the RF-BSS model can be seen. The variable 

importance order of the RF-BSS model is very similar to the variable importance order of the RF model 

for the first few variables. Again, frequency, average_amount_paid, number_months_from_start, are the 

most important variables to predict CLV. The remaining predictors are not relevant when predicting 

CLV. What is interesting to see is that average_amount_paid is a very important predictor for the RF-

BSS model when predicting CLV, while there is a very weak correlation between average_amount_paid 

and CLV. 

 

Figure 14 Permuted variable importance of the RF-BSS model 
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In figure 15, the permuted variable importance of the RF-RFE model can be seen. The figure shows that 

that frequency is the most important variable, but average_amount_paid is still quite relevant. Just like 

the RF model and the RF-BSS model, it needs both variables for a good prediction. This is also very 

intuitive. However, what is interesting to see is that average_amount_paid is a very important predictor 

for the RF-RFE model when predicting CLV, while there is a very weak correlation between 

average_amount_paid and CLV. 

 

Figure 15 Permuted variable importance of the RF-RFE model 

5.4 Prediction accuracies 

In table 4, the accuracy metrics of the nine supervised learning models can be seen. In general, the table 

shows that based on the MAE, RMSE and adjusted R-squared, the RF type models have the highest 

prediction accuracy, followed by the RT type models and finally the LASSO regression type models. 

What is interesting to see is that the RT type models have a relatively high prediction accuracy, which 

seems to contradict the literature as it suggested that RT models often have poor prediction accuracy. 

However, a reason why the models perform so well, might be because the relationship between the most 

important predictors and CLV is quite simple. 

When looking at the prediction accuracies in a bit more detail, it becomes clear that based on the three 

accuracy measures, the best performing supervised learning model is the RF-RFE model, followed by 

both the RF-BSS model and the RF model, followed by the RT-RFE model, the RT-BSS model, the RT 

model, the LASSO-RFE model, the LASSO-BSS model, and finally the LASSO regression model. What 

is interesting to see is that BSS improves the prediction accuracy for the RT model, whereas its impact 

on the LASSO regression model and the RF model appears to be limited. For the LASSO regression 

model, it slightly increases MAE and RMSE, but also increases the adjusted R-squared, while it slightly 

increases the adjusted R-squared and does not seem to influence MAE or RMSE. On the other hand, 
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RFE seems to improve the prediction accuracy of all three types of supervised learning models. 

However, for the LASSO regression model, the increase in accuracy is very small. 

The nine different supervised learning models all seem to accurately predict CLV. They all have an 

adjusted R-squared that is higher than 0.93, which is quite high. The MAE and RMSE values also seem 

to be quite low; especially given the fact that CLV ranges from 156.58 to 18,376.77. 

Table 4 Prediction accuracies of the supervised learning models 

model MAE RMSE Adjusted R2 

LASSO 570.59 855.60 0.939612   

LASSO-BSS 570.60 855.61 0.939691   

LASSO-RFE 570.58 855.55 0.939620 

RT 41.312 149.93 0.998146 

RT-BSS 41.22 149.77 0.998152 

RT-RFE 22.85 91.75 0.999308 

RF 16.72 88.20 0.999358 

RF-BSS 16.72 88.20 0.999359 

RF-RFE 4.93 32.61 0.999913 

Note: The results in the third column of this table have more digits compared the first two columns to properly 

show the slight differences between the adjusted R-squared values of the supervised learning models. 

6 Conclusion 

The central research question that was formulated during this research was: “What type of supervised 

learning model is most suitable for predicting CLV when using music streaming subscription data?” 

However, as stated before in the introduction, the three sub research questions need to be answered first 

to answer the central research question. The sub questions of this research are: 

“How does the model interpretability vary for a LASSO regression, a regression tree and a random 

forest when predicting CLV?” 

“How does the prediction accuracy vary for a LASSO regression, a regression tree and a random forest, 

when predicting CLV?” 

“How does the prediction accuracy of each model change when recursive feature elimination or best 

subset selection is used in addition?” 

6.1 Model interpretability 

When assessing the interpretability of LASSO regression, an RT, and an RF for CLV prediction, 

distinctive characteristics were found for each of these types of models. The LASSO type models that 

were used in this research offered clear insights into which variables were used and how they affected 

CLV through their respective coefficients, aided by the coefficient paths that illustrated how the 

coefficients of the predictor variables responded to various lambda values, which gave an indication 

about the variable importance order. 
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RTs are typically very easy to interpret by looking at the visualized plot of the tree model. Unfortunately, 

the RT models that were used in this research used large trees that did not fit in one plot when including 

information about the test used at each split. Consequently, only the first few splits of the tree could be 

plotted with this additional information. As a result, it was only evident which variables held the highest 

level of importance. Consequently, due to this additional information, only the initial tree splits could 

be graphed, leading to ambiguity regarding the predictors utilized in subsequent splits. As a result, the 

relevance of variables on which tests were founded was only evident in the initial splits. 

Finally, RF models are generally very hard to interpret, because they are black-box models that do not 

explain their decision-making process. For example, it was not possible to see the multiple individual 

trees used by the RF models in this research. As a result, it was unknown which variables were used for 

prediction in each tree, what tests were used and in what order these tests were used. However, the RF-

RFE model was an exception to this rule as it only used two relevant predictors. Consequently, it was 

obvious that the RF-RFE model used these two variables, but it was still not clear which tests were used 

and in what order they were used. Fortunately, the variable importance plot improved the interpretability 

of the RF models by showing how important each variable was relative to each other to predict CLV. 

In conclusion, LASSO regression is the most interpretable type of model compared to an RT and an RF 

when predicting CLV. An RT (with complex trees) comes next in interpretability, followed by an RF, 

which proved to be the least interpretable in this research. However, because the RT models used 

complex trees, the interpretability of an RF was only slightly worse in this research. 

6.2 Model accuracy 

When assessing how the prediction accuracy varied for a LASSO regression, an RT, and an RF, when 

predicting CLV, it became clear that the RF had the highest prediction accuracy, followed by the RT and 

finally the LASSO regression. What is interesting to see is that the RT and the RF performed much better 

compared to the LASSO regression. This might suggest that there is a non-linear relationship between 

the predictors and CLV, as an RT and an RF can both capture non-linear relations, while the LASSO 

regression is not designed for this. However, the LASSO regression still had a good prediction accuracy, 

which seems to suggest that fitting a straight line also works relatively well. 

6.3 The effect of additional feature selection methods on accuracy 

When assessing how the accuracy of each model changed when RFE or BSS was used as an additional 

feature selection method, it became clear that RFE increased the accuracy of the three types of 

supervised learning models across the various accuracy metrics used in this research. However, for the 

LASSO regression model, the increase in accuracy was very small. Also, RFE did not filter out any 

variables. As a result, the LASSO-RFE model used the exact same variables in the regression as the 

regular LASSO model when using the same seed. The only difference between the models was that the 

variables in the data set used by the LASSO-RFE model were ordered differently. Somehow, this 
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resulted in a slight improvement in terms of prediction accuracy. On the other hand, the increase in 

prediction accuracy was very large for the RT and the RF when RFE was used as an additional feature 

selection method. One possible explanation for this phenomenon could be that the LASSO regression 

model is a proper feature selection method by itself. Consequently, combining RFE with a supervised 

learning model that already possesses a built-in feature selection capability may not increase prediction 

accuracy as much as when RFE is combined with a supervised learning model that lacks such 

capabilities. 

Besides RFE, adding BSS only seemed to slightly improve the prediction accuracy for the RT model 

based on the three accuracy metrics. Moreover, Adding BSS did not seem to increase MAE or RMSE 

for the RF model, but it slightly increased the adjusted R-squared because it uses 16 predictors instead 

of 31. Finally, Adding BSS to the LASSO regression increased MAE and RMSE, but it increased the 

adjusted R-squared, because LASSO-BSS uses 16 variables instead of 31. Hence, it appears that BSS 

has a minimal impact on the prediction accuracy of the LASSO regression, RT, and RF models. 

6.4 The most suitable supervised learning model to predict CLV 

Based on the answers to the sub questions, the most suitable supervised learning model to predict CLV 

seems to be the RF-RFE model. In this research, it clearly had the best prediction accuracy based on 

MAE, RMSE and adjusted R-squared, and it only used the two most intuitive predictors to predict CLV, 

namely frequency and average_amount_paid. As a result, the model can be interpreted relatively well 

for an RF model. Therefore, in my opinion, using an RF-RFE model would be the most suitable model 

for companies to predict CLV when it is initially calculated with the basic CLV calculation method. 

However, if a company prioritizes interpretability and they would reject the RF-RFE model, I suggest 

to opt for the RT-RFE model instead. It utilizes the same two intuitive predictors, offers improved 

interpretability, and is still very accurate. 

7 Discussion 

7.1 Research limitations 

This research also has a few limitations. First, a few highly correlated variables were used as predictors, 

which seemed to cause multicollinearity in some of the supervised learning models. As a result, the true 

effects of some of the variables might be different compared to the observed effects. Moreover, there is 

a very small negative correlation between average_amount_paid and CLV, while a stronger positive 

correlation would be more intuitive. This might have been caused by a few users in the data that had a 

subscription with an annual contract. These users were often subscribed to the service for only one year, 

and paid very high fees, as they had to pay for the entire year at once. This would also clarify why 

average_amount_paid is less relevant when predicting CLV than what is expected. 
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Additionally, in this research, CLV was calculated with the basic CLV calculation method. This method 

seems to be suitable for CLV calculation in contractual settings, as it tries to predict future revenues 

based on historical purchases and multiplies the revenues with the average retention rate to account for 

churn. The only thing that the method does not account for in a contractual setting are changes in fees, 

such as user upgrades or downgrades in subscriptions, which may affect CLV. However, a lot of the 

users did not behave like you would expect them to behave in a contractual setting as they often 

unsubscribed and resubscribed to the service. As a result, it might have been better to estimate CLV with 

the Pareto/NBD model or NG/NBD model, because these models are able to predict irregular individual 

customer purchase behavior. Moreover, because of this strange behavior, it was hard to determine when 

a user had churned or not, which might have resulted in a biased retention rate. 

7.2 Recommendations for future research 

For future research, I have several recommendations. First, I would recommend conducting this research 

again and exclude variables that might cause multicollinearity. Moreover, I would advise to include 

additional predictor variables into the analysis to explore whether there are other predictors capable of 

predicting CLV. This research has primarily showed the relevance of frequency, average_amount_paid, 

and variables closely correlated with these factors when predicting CLV.  However, there could be other 

relevant features, such as customer satisfaction, that are relevant when predicting CLV. Furthermore, I 

would recommend creating a second dependent CLV variable that is estimated with the Pareto/NBD 

model or NG/NBD model. By adopting this approach, it can be examined how dissimilar both differently 

calculated CLV variables are across both lower and higher values. Besides that, it can be tested whether 

one of the two CLV variables is more predictable than the other. 

Additionally, I would advise to use a different statistic for BSS that results in a smaller subset, as using 

the adjusted R-squared resulted in BSS having minimal impact on the prediction accuracies of the 

LASSO regression, the RT, and the RF. Moreover, I would advise to add a more comprehensive feature 

selection method alongside BSS and RFE that generally removes more features than RFE and BSS. 

Marketeers often include all available features and interactions between features in supervised learning 

to capture all relationships between the predictors and the dependent variable. However, simpler models 

often yield greater interpretability, reduced computation time, and, in some instances, improved 

prediction accuracy. Therefore, using three different feature selection methods, each resulting in varying 

subset sizes, effectively demonstrates the impact of model simplicity on interpretability and prediction 

accuracy for different supervised learning models. Besides that, it would be interesting to see whether a 

more comprehensive feature selection would further improve the prediction accuracy more effectively 

than RFE. 
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Finally, I would advise to create a new RFE package that is capable of using a LASSO regression, an 

RT, other widely-adopted supervised learning models as the primary models for the RFE process, as the 

currently used caret package in R lacks this functionality. 

When the previous recommendations would all be incorporated in future research, my final 

recommendation would be to conduct the research on multiple customer/user data sets from different 

industries, to see whether results are robust.  
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9 Appendix 

9.1 Predicting customer lifetime value continued 

This section explains the RFM model, the Pareto/NBD model, the BG/NBD model, and the Markov 

chain model in more detail, because these models are explained shortly in the literature review, as they 

are not being used in this research. 

9.1.1 The RFM model explained in more detail 

Recency, purchase frequency and monetary value are well known metrics used in marketing (Burelli, 

2019). Together, these metrics are known as RFM and are often used to predict customer behavior 

(Gupta et al., 2006). Hughes (2005) proposed a method to estimate customer quality with RFM, where 

the customers of a company are divided into five quantiles for each variable, resulting in 5x5x5 groups. 

These groups are used to assign scores to customers to target them with tailored offers (Hughes, 2005). 

Shih and Liu (2003) were inspired by Hughes (2005) and came up with a method based that uses RFM 

and CLV clustering to rank customers based on profitability. They explained that the first step relies on 

experts that need to identify the relative importance of the RFM variables using analytical hierarchical 

processing. After that, the customers are clustered based on RFM, and the clusters are scored using a 

weighted sum of the three normalized features (Shih and Liu, 2003). 

Burelli (2019) stated that both methods can predict numerical values for CLV, but rather to rank the 

customers based on profitability. Additionally, he noted that these methods do not consider that customer 

behavior in the past is often the result of company actions in the past. Fader et al. (2005A) further 

emphasized that both methods are only able to predict customer behavior for one future period.  

9.1.2 The Pareto/NBD and BG/NBD model explained in more detail 

An alternative method to predict CLV is the pareto/NBD model introduced by Schmittlein et al. (1987). 

The model tries to the number of future purchases of customers based on recency, frequency, and 

customer lifetime (Glady et al., 2009B). It does this by using a Pareto distribution of the second kind 

and a negative binomial distribution (Burelli, 2019). Burelli explained that the Pareto distribution is 

controlled by the parameters s and β, while the negative binomial distribution is controlled by r and α. 

Parameter s represents the variation in customer lifetimes, β represents the average duration of a 

customer’s lifetime, r represents the variability in the purchase frequencies of a customer and α 

represents the average purchase frequency (Schmittlein et al., 1987). Schmittlein et al. explained that 

these parameters can be estimated from past customer behavior by using the maximum likelihood or by 

fitting observed moments. With these parameters, the model can predict the number of future purchases 

for each customer based on recency, frequency, and customer lifetime (Burelli, 2019). 

The computational complexity is one of the drawbacks of the Pareto/NBD model (Fader et al., 2005B). 

to address this issue, the modified BG/NBD model was proposed by Fader et al. (2005B), which can be 
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implemented more efficiently (Burelli, 2019). Feder et al. stated that customer activity is modeled based 

on parameters p and q in the BG/NBD model, where p represents the probability of a customer making 

a purchase within a specific time, while q represents the probability of the customer becoming inactive 

after making a purchase. Both models, as explained by Burelli (2019), can predict the future number of 

purchases for a customer and estimate the number of active customers at a given point in time. However, 

he explained that both models cannot model the value of each purchase, making them unable to predict 

customer lifetime directly. 

Reinartz & Kumar (2003) utilized the Pareto/NBD model to estimate the number of time periods in 

which a customer is expected to make a purchase. They transformed a continuous variable that 

represents probability whether a customer is active, into a binary variable that determines whether a 

customer is active or not at a specific time based on a probability threshold. This variable makes it 

possible to identify when a customer will churn and, when combined with the start date of the customer 

relationship, it can also estimate the expected customer lifetime (Reinartz & Kumar, 2003). The lifetime, 

expressed as n periods, can be used to calculate the customer lifetime value using the basic CLV 

calculation method (Burelli, 2019). 

According to Burelli (2019), one of the main advantages of both models is that they only need historical 

transactional data, making them easily applicable in various contexts. However, the author explained 

that this advantage also poses a drawback, as the models may overlook important information, resulting 

in suboptimal models. To address this limitation, Singh et al. (2009) proposed an estimation framework 

that allows the inclusion of multiple statistical distributions and covariates such as age and gender. 

9.1.3 The Markov Chain model explained in more detail 

According to Pfeifer & Carraway (2000), an alternative method to predict CLV by using a Markov Chain 

Model (MCM) to model the customer relationship. MCMs are mathematical models that describe 

random processes (Ching & Ng, 2006). Ching & Ng explained that a process is represented by a set of 

states, and transitions between these states are determined by probabilities. Moreover, they explained 

that the transitioning of each state to another state has its own associated probability, called a transition 

probability, and the probabilities are often shown in a square transition matrix. An important 

characteristic of a MCM is that the future behavior of the process only depends on its current state and 

is unaffected by previous states (Ching & Ng, 2006). 

Pfeifer & Carraway (2000) applied the MCM in a way where the states represented different relationship 

conditions between customers and the company, and where the transition probabilities between the states 

represented the probability of a customer moving from one condition to another, for example to churn 

or to make a purchase. 
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According to Burelli (2019), calculating the transition probabilities can be done in three steps. Firstly, a 

that a transition matrix should be created where the value of each cell should be equal to zero. Secondly, 

for every customer that transitions from state i to state j, the corresponding cell (ij) should be increased. 

Finally, each row of the matrix should be normalized to a range between 0 and 1 using a min-max 

normalization. Burelli (2019) suggested that with this final matrix, CLV can be calculated for every 

possible state. 

9.2 Variable descriptions 

Table A1 Variable descriptions and formats of the variables in the raw data sets 

Variable Description Format Members Train Transactions 

msno user id character x x x 

city The city that the user lives in 

indicated by a number 

instead of an actual city name 

integer x   

bd The age of the user integer x   

gender The gender of the customer 

(male; unknown; female) 

character x   

registered_via Registration method 

indicated by a number 

instead of an actual method 

integer x   

registration_ 

init_time 

The date when a user 

registered 

integer x   

expiration_date The expiration date of a 

customer when members.csv 

is extracted. It does not 

represent churn. 

integer x   

is_churn A binary variable indicating 

whether a user did not 

continue the subscription 

within 30 days after the 

expiration date 

integer  x  

payment_ 

method_id 

Payment method indicated by 

a number instead of an actual 

method 

integer   x 

payment_ 

plan_days 

Length of the membership 

plan in days 

integer   x 

plan_list_price Expected fee to be paid in 

New Taiwan Dollar (NTD) 

integer   x 

actual_ 

amount_paid 

Actual fee paid in NTD integer   x 

is_auto_renew A binary variable indicating 

whether a user’s subscription 

is auto renewed 

integer   x 

transaction_date The date of a transaction integer   x 

membership_ 

expire_date 

The date when a membership 

expires 

integer   x 

is_cancel A binary variable indicating 

whether the user canceled the 

membership in a during a 

certain transaction or not 

integer   x 

 



61 

 

Table A1 Variable descriptions and formats of the variables in the final aggregated data set. 

Variable Description Format 

user_ID User ID integer 

gender The gender of the customer (male; female) Factor w/ 2 levels 

bd The age of the user integer 

city The city that the user lives in indicated by a 

number 

Factor w/ 21 levels 

registered_via Registration method indicated by a number 

instead of an actual method 

Factor w/ 5 levels 

is_churn whether a user did or did not continue the 

subscription within 30 days after the expiration 

date 

Factor w/ 2 levels 

frequency The number of payments made by the user 

over the entire period 

integer 

average_amount_paid The average fee price paid by the user numeric 

recency_months The number of months between the last 

transaction made by the user and the end of the 

period 

numeric 

number_months_from_start The number of months between the beginning 

of the period and the first transaction made by 

the user 

numeric 

CLV The customer lifetime value numeric 

 

9.3 Additional figures from the analysis 

 

Figure A1 Adjusted R-squared plotted against the number of variables included in the best subset 
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Figure A2 Adjusted R-squared plotted against all subsets 

 

Figure A3 Fully grown RT plotted 

 

Figure A4 Pruned RT plotted 
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Figure A5 Fully grown RT plotted after performing BSS 

 

Figure A6 Pruned RT plotted after performing BSS 

 

Figure A7 Fully grown RT plotted after performing RFE 

 

Figure A8 Pruned RT plotted after performing RFE 


