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Abstract 

In this paper I apply the Partially Egalitarian Portfolio Selection (PEPS) framework to equity Exchange 

Traded funds (ETFs). PEPS adds two penalty terms to Mean-Variance optimization that select and shrink 

asset weights to equality. Previous research finds PEPS is an improvement to both Equal Weights and 

Mean-Variance portfolios. The drivers behind this outperformance and whether the results hold up for 

asset classes other than stocks have not been researched yet. I fill this gap in the literature by applying 

PEPS to equity ETFs and analyzing PEPS’ returns using the Fama French factors and portfolio distance to 

Equal Weights. In line with previous research, I find PEPS outperforms Equal Weights and Mean-Variance 

Weights. PEPS, however, underperforms the market. I find PEPS selects high-Market-beta ETFs exposed to 

the Momentum factor. Furthermore, I emphasize the importance of covariance shrinkage for PEPS and 

find that relatively stricter asset selection occurs in larger PEPS portfolios.   
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1.0 Introduction 

In this paper, I apply the Partially Egalitarian Portfolio selection (PEPS) to equity ETFs. PEPS is a novel 

way of selecting assets in a portfolio that outperforms the Equal Weights Portfolio and the Mean-Variance 

Portfolio (Peng & Linestky, 2022). I apply PEPS to Equity Traded Funds (ETFs) since previously it has 

only been applied to stocks. The main research question of this paper is whether and how PEPS’ 

outperformance relative to the Mean-Variance and Equal Weights portfolios holds up for ETFs.  

The PEPS framework is a model that aims to combine Markowitz’s Mean-Variance model and Naive 

Diversification. The Mean-Variance (MV) model revolutionized the finance literature landscape as  

investors could model the tradeoff between risk and return in portfolio optimization. Out-of-sample 

performance of the MV model is poor however, due to the model’s sensitivity to estimation error (Chopra 

& Ziemba, 1993, Britten-Jones, 1999). Naive Diversification generally outperforms MV portfolios and 

doesn’t suffer from estimation error since each asset is given the same weight.  

Partially Egalitarian Portfolio Selection is introduced by Peng & Linetsky (2022) and boils down to a 

Mean-Variance model with two regularization terms. These two terms select assets and then shrink 

surviving weights towards equality. The regularization terms of PEPS serve as a hedge for the estimation 

error often found in models such as Mean-Variance. The authors find higher Sharpe Ratios for PEPS 

compared to the Mean-Variance portfolio and the Equal Weights portfolio. Larger PEPS portfolios also 

perform better. The results of Peng & Linetsky (2022) are promising, however, the authors do not apply the 

model to other assets or determine what type of assets are selected.  

I apply PEPS to liquid equity ETFs in the period 2007 to 2022. I analyze both the performance of PEPS 

as well as its selection of ETFs.  I take a simplified approach to PEPS since I set the second penalty term 

of PEPS to an extreme value, ensuring surviving weights are set to equal weights. I use the Equal Weights 

portfolio as the benchmark since PEPS and Equal Weighting only differ in selection. Selection is proxied 

using the distance in portfolio weights between two portfolios. I use the CAPM, Fama French 3, 5, and 6-

factor regressions to determine what drives PEPS returns and compare the coefficients to the benchmark 

portfolio. To investigate the importance of covariance shrinkage to PEPS, I differentiate PEPS portfolios 

between portfolios using an estimated covariance matrix and the Ledoit-Wolf (2004) covariance matrix.  

In line with Peng & Linetsky (2022), I find that PEPS’ Sharpe Ratios are higher than those of the Equal 

Weighted portfolio and the Mean-Variance portfolio. I find PEPS’ outperformance is the result of selecting 

high-market-beta ETFs that have previously performed well and continue to do so. The coefficient for the 

Market factor is significantly positive in all regressions. Coefficient estimates for PEPS exceed 1 whilst for 
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Equal Weights these fall below 1. The Momentum factor is significantly positive for all but the smallest 

PEPS portfolio whilst Equal Weights has no significant Momentum exposure.  

Furthermore, I find that all PEPS portfolios have negative Fama French alphas. These alphas indicate 

that PEPS does not reap enough returns given its risk exposures. The alphas are likely caused by 

underperformance to the market and the Fama French factors capturing less variation in excess returns for 

larger PEPS portfolios. Lastly, I emphasize the use of a shrunk covariance matrix since the estimated 

covariance matrix results in inefficient PEPS portfolios with few assets. PEPS portfolios with shrunk 

covariance matrix select relatively fewer assets as portfolio size increases. This phenomenon falls in line 

with the idea that as portfolio size increases, the number of redundant assets rises.  

Finance literature benefits from this paper as a relatively novel method of portfolio selection is being 

analyzed leading to new insights. Previous research has extensively analyzed Equal Weights portfolios and 

Mean-Variance portfolios. Combining the strengths of both models whilst attempting to mitigate the 

weaknesses is why the PEPS model is so relevant. The analysis of a new model such as PEPS sparks the 

creation of future research.  

The relevancy for investors lies in the possibility of PEPS’ applicability in the real world. Investors want 

to stay ahead and continue outperforming other investors. Staying up-to-date with the newest models can 

help give these investors an edge. Furthermore, investors can benefit from the fact that this paper applies 

PEPS to ETFs. ETFs are a relatively new type of asset that has grown exponentially in popularity in the 

past decade. ETFs allow investors to cheaply diversify portfolios in one trade. Here investors can also gain 

an edge compared to other investors. 
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2.0 Literature Review 

2.1 Mean-Variance & Equal Weights  

One of the largest breakthroughs in finance literature is the Markowitz Mean-variance model. The 

model introduced the idea of how investors not only care about the expected returns of their portfolio 

but also the variance of these returns. This leads to a tradeoff between the portfolio’s return and its risk. 

The Markowitz model can be summarized by the following equations:   

 

𝑚𝑎𝑥
𝑤

 𝑤 ′µ −
𝑦

2
𝑤 ′∑w          (1) 

 

s.t.  𝑤′1 = 1          (2) 

 

Here ‘w’ is a vector of asset weights within the portfolio, µ is a vector of expected returns. By taking 

the product of these two variables one obtains the portfolio’s expected return. У is the investor’s risk-

aversion  (assumed to be >0 ) and ∑ is the covariance matrix of asset returns in the portfolio. This matrix 

needs to be estimated since the true covariance matrix is unknown. The budget constraint (2) states the 

weights must add up to 1.  

 

Naïve Diversification remains popular despite the presence of the Mean-Variance portfolio due to its 

superior performance out of sample (DeMiguel et al., 2009). Naïve Diversification gives each asset an 

equal weight. In contrast to more complex investment strategies such as the Mean-Variance model, 

Equal Weighting is a strategy requiring no extensive analysis or data collection. Complex strategies such 

as the Mean-Variance portfolio suffer from a bottleneck where an investor may not be able to acquire 

the necessary data to properly estimate a model’s parameters.  

 

Mean-Variance portfolios are vulnerable to estimation error (Chopra & Ziemba, 1993, Britten-Jones, 

1999). This vulnerability is caused by the model’s parameters being sensitive to changes in sample 

means (Best & Gauer 1991). DeMiguel et al. (2009) investigate the Mean-Variance’s underperformance 

and treat Equal Weights as a benchmark. In-sample performance of complex strategies is often superior 

to the Equally Weighted portfolio, as per design. The main problem here is that out-of-sample, the 

sophisticated portfolio strategies tend to underperform the 1/N strategy. In line with previous research, 

estimation error is the cause. DeMiguel et al. (2009) proxy estimation error by comparing a strategy's 

in-sample Sharpe Ratio to its out-of-sample Sharpe Ratio. The estimation error is so big that “the gains 
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that Mean-Variance strategies seem to make in-sample, are offset by estimation errors in the out-of-sample” 

(DeMiguel et al., 2009). The estimation window would need to be at least (an infeasible) 3000 months for 

the sample-based Mean-Variance strategy to outperform the 1/N portfolio based on certainty equivalent 

returns. 

 

Kirby & Ostdiek disagree with DeMiguel et al. (2009) and argue that MV portfolios can outperform 

Equal Weights. The paper by DeMiguel et al. (2009) is generally seen as a critique of Mean-Variance 

optimization. Kirby & Ostdiek (2012 argue the methods of DeMiguel et al. (2009) favor the 1/N portfolio. 

The Mean-Variance portfolio’s conditional expected returns are larger than that of the naive portfolio 

which, according to the authors  “magnifies estimation risk and leads to excessive turnover” (Kirby & 

Ostdiek, 2012). A fair comparison between the strategies can only be done when conditional expected 

returns are equal. The results indicate (general) outperformance of the MV portfolio compared to the 1/N 

portfolio in the absence of transaction costs.  

 

The idea that the 1/N portfolio outperforms more sophisticated portfolios is not a given fact as the 

portfolio has periods of underperformance (Kirby & Ostiek, 2012. Taljaard & Mare (2021) present an 

overview of the likely causes for this short-term underperformance. The first source given relates to the 

monthly rebalancing. Since markets tend to be subject to momentum, monthly rebalancing causes the Equal 

Weights portfolio to sell outperforming stocks that keep outperforming and buy underperforming stocks 

that keep underperforming. The second possible source occurs when stock volatilities are low or are heavily 

correlated with one another. Rebalancing highly correlated stocks to equal weighting doesn’t result in true 

equal weighting in risk due to these correlations (Taljaard & Maré, 2019).  

One way of solving the Mean-Variance’s vulnerability to estimation error is applying shrinkage to the 

covariance matrix. Research has shown that the sample covariance matrix is a relatively poor estimator of 

the population covariance matrix in situations where the dimensions of the sample covariance matrix are 

large compared to the sample size (Ledoit & Wolf, 2012). Ledoit & Wolf (2003) applied shrinkage to the 

sample covariance matrix. This method shifts the most extreme values within the matrix towards a more 

centrally located value. Given that these extreme values tend to be the values that are most affected by 

estimation error, this shrinkage “systematically [reduces] estimation error where it matters most” (Ledoit 

& Wolf, 2003).  
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2.2 PeLASSO  

 PEPS draws its inspiration from Diebold & Shin’s (2019) paper on forecast combinations. The Equal 

Weight puzzle is also present in forecast combination literature (Aruoba et al., 2019, Smith & Wallis, 

2009) and is therefore relevant. Diebold & Shin’s (2019) methodology later inspired Peng & Linetsky 

(2022) to apply the framework to portfolio weights.  

 

Diebold & Shin (2019) argue Equal Weights useful direction for weight shrinkage due to its relatively 

good out-of-sample performance. Equal Weights, however, allow for redundant forecasts to enter the 

‘optimal’ forecast combination. The authors argue that it is better to leave certain forecasts out of the 

combination since the information they hold is already present in either the other individual forecasts or 

the combination of forecasts. To achieve this selection, a filter needs to be added setting the weights of 

these forecasts to 0 whilst shifting the remaining weights to the equal weights that perform so well.  

 

Equation (3) displays a forecast optimization problem that aims to minimize the sum of squared 

errors of the forecast combination (Diebold & Shin, 2019). 𝛽𝑖  is the weight given to forecast 𝑓𝑖𝑡  at 

time t. 𝑦𝑡 is the observed value at time t. A penalty term is introduced in equation (4), which 

penalizes the value of weights in the optimization. The effect of the penalty depends mainly on q; 

When q = 2 one obtains a Ridge penalty that only shrinks weights. When q=0 the penalty term selects 

and sets other weights to 0. Lastly when q=1 one obtains the LASSO (Least Absolute Shrinkage and 

Selection Operator) term which achieves shrinkage as well as selection (Tibshirani, 1996).  The LASSO 

penalty is the first of two terms used in the PEPS framework. 

 

�̂�Penalized = arg𝑚𝑖𝑛
𝛽

 ∑  𝑇
𝑡=1 (𝑦𝑡 −∑  𝐾

𝑖=1 𝛽𝑖𝑓𝑖𝑡)
2
       (3) 

  ∑  𝐾
𝑖=1 |𝛽𝑖|

𝑞 ≤ 𝑐.
          (4) 

 �̂�Penalized = arg𝑚𝑖𝑛
𝛽

 (∑  𝑇
𝑡=1 (𝑦𝑡 −∑  𝐾

𝑖=1 𝛽𝑓𝑖𝑡)
2
+ 𝜆∑  𝐾

𝑖=1 |𝛽𝑖|
𝑞)     (5) 

To obtain a LASSO model that selects and shifts the weights towards equal weights an extra penalty 

term must be added. As can be seen in equation (6), the newly added term penalizes deviations of 

surviving weights from equal weighting (Equal weights depicted as  
1

𝑝(𝛽)
), and as a result, shrinks the 
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weights towards equal weighting. Diebold & Shin (2019) name this penalized LASSO regression the 

partially-egalitarian LASSO (peLASSO) regression. The authors find evidence that peLASSO 

outperforms equal weighting and performs similarly to the best out-of-sample forecaster. Lastly, the authors 

advise that in the peLASSO regression, the penalty term for shrinkage should be extreme and the penalty 

term for selection should be high. These penalties result in relatively few forecasts surviving, avoiding 

redundant forecasts, and ensuring equal weights of surviving forecasts.  

 

�̂�peLASSO = arg𝑚𝑖𝑛
𝛽

  (∑  𝑇
𝑡=1 (𝑦𝑡 −∑  𝐾

𝑖=1 𝛽𝑖𝑓𝑖𝑡)
2
+ 𝜆1 ∑  𝐾

𝑖=1 |𝛽𝑖|

+𝜆2 ∑  𝐾
𝑖=1 |𝛽𝑖 −

1

𝑝(𝛽)
|)

    (6) 

 

2.3 PEPS 

Peng & Linetsky (2022) build upon the peLASSO methodology by applying it to stocks and portfolio 

formation. Their formulation of the peLASSO is given (in vector notation) in equation (7). The first two 

terms of the equation present the Markowitz mean-variance model from equation (1). Peng & Linetsky 

(2022) use this model as their base and add the two penalty terms that select and shrink to equal weights 

with the budget constraint adding weights up to 1 (Equation 8)  

 

  

𝑚𝑖𝑛
𝑤

     
𝛾

2
𝑤 ′Σ𝑤 − 𝑤 ′𝜇 + 𝜆1∥𝑤∥1 + 𝜆2‖𝑤 − ∥𝑤∥ 10

−1 ‖
1
     (7) 

 

s.t.     𝑤′1 = 1          (8)  

 

𝑤𝑖 ≥ 0, 𝑖 = 1, … , 𝑁          (9) 

 

The first penalty term, 𝜆1 ∥ 𝑤 ∥1, is the LASSO term applied to portfolio weights. However, when 

setting a short-sale constraint (Equation 9) this penalty becomes redundant (Peng & Linetsky, 2022) and 

can be left out.  

 

The second penalty term’s formulation, 𝜆2 ∥ 𝑤−∥ 𝑤∥∥ 10
−1 ∥∥1, is different from the Diebold & Shin (2019) 

paper but works the same way. The term calculates the amount of surviving weights and then computes 
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what the equal weights should be for these surviving stock weights. Then the deviations from these equal 

weights are penalized by the 𝜆2 term. A higher 𝜆2 term therefore shifts the surviving weights toward this 

equality of weights whilst a lower 𝜆2 term makes the surviving weights shift more toward Mean-

Variance weights.  

 

The PEPS framework outperforms the 1/N portfolio and the Mean-Variance portfolio. Using 

historical means for the expected return, Sharpe Ratios of PEPS are always higher than MV portfolios. 

The same goes for the 1/N portfolio but here the differences are marginal. Peng & Linetsky (2022) 

present two ways the PEPS model can be implemented, a 2-step approach and a 1-step approach. The 

usage of the 1-step approach resulted in superior Sharpe Ratios. Lastly, the authors conclude that 

inserting a predictive model using momentum and a reversal factor rather than using historical mean 

into the expected return variable, significantly improves the PEPS returns.  

 

2.4 ETFs 

An exchange-traded fund (ETF) is a fund that is traded on exchanges. ETFs consist of a collection of 

assets that can be bought and sold similarly to regular stocks. ETFs are either active or passive. The 

passive ETF attempts to replicate an index, whilst the active ETF has a manager picking assets to include 

in the portfolio (Simpson, 2022). There is also a variety of types of ETFs including Bond/Fixed-income 

ETFs, Commodity ETFs, Currency ETFs, and more. Equity ETFs, baskets of stocks, are the most common 

type of ETF. ETFs allow investors to diversify into hundreds or even thousands of companies with a 

single trade.  

 

ETFs have known an exponential increase in popularity. In 1990 the first ETF was introduced in Canada. 

Three years later the US followed. The number of ETFs has grown rapidly along with the total value of 

ETF assets: In 2009 the total amount of ETF assets stood at $1 Trillion, in 2018 this number reached $6.5 

trillion. The ETF has become so popular because it allows investors to cheaply diversify their portfolios 

(History of ETFs | Vanguard Canada, z.d.).  

 

Angel et al. (2016) find that ETFs are not always as cheap to trade as they may seem. The authors note 

that since ETFs are a collection of assets, the price of ETFs is bound by what assets they hold. The price 

of an ETF is therefore determined by the market. In the scenario that the price of the ETF is below the 

value of its assets, investors arbitrage the difference away. Da & Shive (2018) however, finds that an ETF 
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can increase comovement among the assets it holds, to the point where non-fundamental shocks can be sent 

through the ETF to the stocks. ETFs are therefore not always bound to the assets. Angel et al. (2016) do 

note that ETF prices are not exact representations of their assets since arbitrage is not always possible. This 

can happen when ETFs hold foreign assets that are not traded at the same time as the ETF. This can also 

occur when transaction costs make arbitrage unworthwhile. For this reason, Angel et al. (2016) use the 

difference between the ETF price and the value of the underlying (measured as Net Asset Value) as a proxy 

for transaction costs. When deviations of this proxy exceed the Bid-Ask spreads of ETFs, investors pay 

higher transaction costs and are likely unaware. This is indeed found for smaller and less-liquid ETFs. 

These ETFs are less easily arbitraged. Lachance (2022) also linked trading costs to ETF liquidity as the 

author illustrates how older ETFs tend to have more developed secondary markets and are (usually) cheaper 

to trade than the underlying assets. The opposite tends to be true for younger ETFs.  
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3.0 Data 

This section will describe the data selection in this paper. This includes which ETFs are chosen, acquiring 

Fama French Factors, and data patterns.  

3.1 CRSP 

Data on the ETFs is collected between 31-01-2000 and 31-12-2022 from CRSP’s stock file. All 

securities with Share Code 73 are classified as an ETF. CRSP notes that American Trust Components 

could also be included in this database. Lipper classes were used to verify that all assets within the 

database were ETFs. To avoid ETFs that do not track equities, this paper will use the same ETF 

classification method Crego et al. (2022) used. Only Domestic Equity ETFs will be considered in the 

PEPS framework. A description of which Lipper classes belong to the Domestic Equity classification can 

be found in Table (1). A total of 622 unique ETFs belong to one of these classes in the sample. 

 

Table 1: Included Lipper Classes 

 
 

Lipper Class Abbreviation Lipper Class Abbreviation 

Absolute-Return Funds  ABR   Industrials Funds  ID    

Precious Metals Equity Funds  AU    Long/Short Equity Funds  LSE   

Basic Materials Funds  BM    Mid-Cap Funds  MC    

Capital Appreciation Funds  CA    Micro-Cap Funds  MR    

Consumer Goods Funds  CG    Natural Resources Funds  NR    

Commodities Funds  CMD   Real Estate Funds  RE    

Consumer Services Funds  CS    Small-Cap Funds  SG    

Equity Leverage Funds  DL    S&P 500 Index Objective Funds  SP    

Dedicated Short Bias Funds DSB Science & Technology Funds  TK    

Equity Income Funds EI Telecommunication Funds  TL    

Growth Funds  G     Utility Funds  UT    

Growth and Income Funds  GI    Equity Market Neutral Funds  EMN   

Health/Biotechnology Funds H Financial Services Funds  FS    

Note: This table presents the Lipper Classes and their abbreviations of ETFs used in the sample.  

 

CRSP provides monthly data on adjusted holding returns, share volume traded, and prices. The database 

uses the CUSIP-8 identifier for funds. CRSP calculates the price of an ETF by taking the closing price on 

the final trading day of the month. If no value is obtainable for this final day of the month, the price is set 

to the Bid/Ask Average. CRSP indicates the Bid/Ask Average as a negative value. CRSP then calculates 
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the return by taking the value of a stock/ETF at time t and dividing it by the value of the stock/ETF at t-1. 

The database adjusts the return for cash dividends and potential splits/buybacks. In the case of a delisting, 

there is a missing value for the return variable on that month. The CRSP database provides a delisting return 

which only has a valid value on the month of delisting. This paper will not dig deeper into what the reason 

for delisting is. ETF liquidity is proxied by dollar trading volume.  

 

3.2 Fama French Factors  

Data on the Fama French factors is obtained from the Data Library at Dartmouth College Tuck School of 

Business for the period 2011-12 to 2022-12. The first factor, MKT-Rf, measures the difference between the 

return on the market portfolio and the risk-free rate. Here the risk-free rate is the 1-month T-bill rate from 

Ibbotson and Associates Inc. The Small-minus-Big (SMB) factor indicates the difference in returns between 

small and big-cap companies. The High Minus Low (HML) factor similarly represents the difference in 

returns between firms with a high book-to-market ratio and firms with a low book-to-market ratio (Fama 

& French, 1993). The Investment factor (CMA) presents the difference in returns between aggressive and 

conservative investment firms. The Robust-minus-Weak (RMW) factor indicates the difference in returns 

between firms that have robust profitability and weak profitability (Fama & French, 2015). Lastly, this 

paper will also include the Momentum factor (MOM). Momentum captures the difference in returns of 

buying assets that have positive historical returns, the winners, whilst shorting assets that have negative 

historical returns, the losers.  

 

Table 2 presents the correlations of the Fama French factors over the sample. Most notable is that the 

Momentum factor is negatively correlated with all other factors including the Market. Furthermore, the 

CMA and HML are positively correlated (0.632).  
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Table 2: Fama French Factors Correlations 

              

Factor Mkt-RF SMB HML RMW CMA MOM 

Mkt-RF 1 
     

SMB 0.335 1 
    

HML 0.052 0.255 1 
   

RMW 0.012 -0.396 0.136 1 
  

CMA -0.214 -0.017 0.632 0.180 1  

MOM -0.387 -0.253 -0.333 -0.088 -0.036 1 

Note: This table presents correlations of monthly Fama French factors between 2011-12 and 2022-12.  

3.3 Data Patterns 

Table (3) confirms that the number of ETFs in the sample increases over time. The sample sees its largest 

jump in 2007, when the number of unique ETFs reaches 100. From 2007 onwards there is generally an 

increase in unique ETFs. The highest count of unique ETFs is in 2017 reaching 378. After 2017 the 

number of ETFs declines. This drop is caused by the sampling in this paper as firstly, the total amount of 

ETFs is far larger than 378, and secondly, the count of total ETFs hasn’t stopped increasing.  

 

Nearly all the largest ETF losses occur in March 2020 due to the covid-19 crash (Mazur et al., 2021). 

Most ETFs that lost significantly rebounded in the following months. Most notable is Direxion Daily S&P 

Oil & Gas Exp. & Prod. Bull 2X Shares (GUSH). In March 2020 this ETF lost 96%. A month later the 

same ETF gained 162%. Despite this extreme rebound, this ETF has not reached pre-COVID price 

levels yet. ProShares Ultra VIX Short Term Futures ETF did the opposite, in March 2020 this ETF gained 

155% during the COVID crash in March (and later lost its gains). This paper will not leave out these 

returns since COVID-19 is a market-wide event. Comparing portfolio performance is not an issue given 

that the event affects each portfolio similarly. Leaving these returns out of the sample could potentially 

even bias the results. Additionally, despite the crash, mean returns are positive in 2020. This is a contrast 

compared to 2008 where the returns are less extreme but mean returns are strongly negative.  

 

2016 is a volatile year for ETFs also. More specifically almost all top gainers in 2016 are ETFs by Direxion 

that seek to follow either gas and oil drilling exploration firms or gold and silver mining exploration firms. 

The gains are possibly related to the gold and oil prices rising sharply in the first half of 2016. These gains 

are generally lost in the following years.  
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 Table 3: Summary Statistics Sample 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: This table presents summary statistics for the entire sample. The mean return is the geometric mean in %, σ is the standard 

deviation of returns of all ETFs within a given year in %.  

  

          
Year Nr. 

ETFs 

Mean 

Return 

σ Max. 

Return 

Min. 

Return       

2000 9 0.20 7.42 18.24 -20.51 

2001 9 -0.46 7.18 19.12 -24.91 

2002 9 -1.53 6.72 24.77 -16.69 

2003 9 2.16 4.30 13.09 -6.69 

2004 19 1.15 3.30 9.74 -8.48 

2005 20 0.71 4.03 16.78 -12.60 

2006 22 1.24 4.18 26.50 -11.79 

2007 113 0.53 5.86 20.68 -18.70 

2008 165 -3.08 13.27 51.90 -58.96 

2009 199 0.49 13.74 60.74 -66.59 

2010 245 0.48 11.28 44.27 -34.79 

2011 280 -0.81 11.34 92.77 -53.88 

2012 291 0.43 8.89 81.82 -50.91 

2013 279 0.61 8.07 60.75 -37.79 

2014 287 -0.09 9.19 95.80 -66.67 

2015 340 -0.60 10.28 87.29 -59.97 

2016 378 0.74 12.49 143.12 -69.33 

2017 375 0.97 6.47 60.04 -47.91 

2018 378 -0.61 9.73 92.90 -89.65 

2019 349 1.54 9.48 65.04 -45.70 

2020 361 1.12 15.77 162.77 -97.41 

2021 311 1.14 8.06 124.72 -40.78 

2022 289 -1.68 11.74 72.56 -74.19 
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4.0 Methodology 

This section will present the methodology employed in this paper. It should be noted that to obtain the 

PEPS portfolio weights, a large part of the methodology will follow that of  Peng & Linetsky (2022). 

Nonetheless, every part will be described.  

4.1 Asset Selection 

To minimize the potential effects of transaction costs, this paper will use the most liquid ETFs in the 

PEPS model. An ETF’s liquidity is determined by a rolling average liquidity variable. This variable is 

calculated by taking the product of the Volume and the Price or Bid/Ask variables and then on a given 

month t, taking the previous 12 values to compute the average for month t. The same method is used for 

the calculation of the historical mean and covariance matrices. The historical mean and covariance matrix 

use the previous 24 and 30 returns respectively.   

 

To generate out-of-sample returns, the values at month t are skipped for these calculations. 

Skipping the current month essentially means that the PEPS weights will be calculated on the last day of 

the previous month. The ETFs are then held on the first trading day of the month until the last, leading to 

out-of-sample returns. ETFs that do not have the required 30 consecutive values of returns or the 12 

consecutive values for both the Volume or Price or Bid/Ask variables on a given month, will not be 

considered in the PEPS framework for that month. A dummy is then created which takes on the value 1 

if the rolling liquidity variable falls in the top N ETFs. Here N is the number of ETFs that will be 

considered in the PEPS framework, the trading universe. In this paper, N will be 20, 40, 60, 80 and 100 

ETFs.  

 

4.2 Equal Weights & Mean-Variance 

The Equal Weights portfolio and Mean-Variance portfolios consist of the same ETFs as the PEPS 

portfolios. This means that the ETFs that will be included in the Equal Weighted portfolio require 30 

months of consecutive returns data even though the covariance matrix is not a requirement here. All 

portfolios having the same trading universe means a fair comparison can be made. 

 The Equal Weighted portfolio can be formally modeled as such: 
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𝑅𝑡 =∑  𝑁
𝑖 (𝑤𝑖𝑅𝑖,𝑡)𝑖 = 1, … , 𝑁        (10) 

 

s.t.  𝑤𝑖 =
1

𝑁
,𝑖 = 1,… ,𝑁        (11) 

Equation (11) already implies the weights add up to 1 to comply with a portfolio budget constraint.  

 

I apply a maximum weights constraint to the Mean-Variance portfolio to avoid extreme weights. The MV 

portfolio (Equations 12, 13, and 14) is nearly the same as equation (1). Constraint (14) is added to prevent 

weights exceeding -1 and 1. The Mean-Variance model becomes more realistic as the portfolio avoids 

extreme concentrations in one ETF. This in turn improves diversification. The Mean-Variance model that 

will be used can be formally described as follows: 

𝑚𝑎𝑥
𝑤

  𝑤 ′µ −
𝑦

2
𝑤 ′∑w          (12) 

s.t.      ∑  𝑁
𝑖 𝑤𝑖 = 1,𝑖 = 1,… ,𝑁                       (13) 

−1 ≤ 𝑤𝑖 ≤ 1,𝑖 = 1,… ,𝑁                       (14) 

 

4.3 PEPS Framework 

This paper will employ the same 1 step formulation that Peng & Linetsky (2022) used. Additionally, this 

paper will use the same mixed integer solver Gurobi (version 10). The model can be written as follows: 

 

𝑚𝑖𝑛
w, y,u, z, s, t, v 

 
𝛾

2
𝑤 ′Σ𝑤 − 𝑤 ′𝜇 + 𝜆1𝑠 + 𝜆2𝑡        (15) 

s.t. 

 −𝑀𝑧𝑖 ≤ 𝑤𝑖 ≤ 𝑀𝑧𝑖,𝑖 = 1,…,N        (16) 

∑  𝑁
𝑖=1 𝑦𝑖𝑧𝑖 = 1,𝑖 = 1, … , 𝑁        (17) 

𝑦𝑖 = 𝐺,𝑖 = 1,… , 𝑁        (18) 

−𝑢𝑖 ≤ 𝑤𝑖 ≤ 𝑢𝑖 ,𝑖 = 1,…𝑁        (19) 

∑  𝑁
1 𝑢𝑖 = 𝑠,𝑖 = 1, … ,𝑁        (20) 

−𝑣𝑖 ≤ 𝑤𝑖 − 𝑦𝑖 ∗ 𝑧𝑖 ≤ 𝑣𝑖 ,𝑖 = 1,…𝑁      (21) 
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∑  𝑁
𝑖 𝑣𝑖 = 𝑡,𝑖 = 1, … , 𝑁         (22) 

𝑣𝑖 ≥ 0,𝑖 = 1,… ,𝑁         (23) 

𝑢𝑖 ≥ 0,𝑖 = 1, … , 𝑁         (24) 

𝑧𝑖 ∈ {0,1},𝑖 = 1,… , 𝑁         (25) 

∑  𝑁
𝑖 𝑤𝑖 = 1,𝑖 = 1,… ,𝑁         (26) 

𝑤 ≥ 0,𝑖 = 1,… ,𝑁         (27) 

 

In this formulation w[i] is the weight of ETF i in the portfolio of  month T. The variable M dictates the 

upper and lower bounds of the weight of each ETF. Values of M larger than 1 would indicate that weights 

over 1 and below -1 are possible. This paper avoids extreme weights by setting M to 1, similar to Peng & 

Linetsky (2022). Z[i] is a binary variable that indicates whether an ETF[i] will have a non-zero weight 

(takes on value 1) or a zero-weight (takes on value 0) Constraint (16) combines both variables to set w[i] 

to 0 when Z[i] equals 0.  

 

4.3.1 The 𝝀𝟏 Term 

The 𝜆1 (Lasso) penalty term is implemented using constraints 19, 20, and 24. Constraint (19) sets the 

values for u[i], which are summed up and ultimately penalized in variable s (Constraint 20).  Since the 

model aims to minimize the penalty of s, values of u are set (close) to the values of w.  Constraint (19) is 

essentially the same as setting  𝑤𝑖 = 𝑢𝑖, which is the same as what is penalized in the Lasso penalty. Using 

the variable u alongside constraint (19) is more efficiently solved by Gurobi’s mixed integer solver (Peng 

& Linetsky, 2022) than simply penalizing the sum of weights. Implementation of the short-sale constraint 

in equation (27) makes the 𝜆1 redundant and can therefore be left out when solving the model.   

 

4.3.2 The 𝝀𝟐 Term 

The 𝜆2 penalty is implemented using constraints 17, 18, 21, and 22. Constraint (17) calculates the 

weight that every ETF with z = 1 would have under Equal Weights. For practical reasons, these weights 

are placed in variable y[i]. Variable y[i] does not guarantee that all y[i] are equal. Constraint (18) is 

introduced to enforce equality by giving all y[i] the same value G. Constraint (21) then calculates 

deviations of ETF weights to G and penalizes these deviations in equation (22). 
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 It is crucial in constraint (21) to multiply each y[i] with z[i] as 0 weights mustn’t be penalized for their 

deviations to the Equal Weights of surviving ETFs. To illustrate, out of 10 ETFS, 8 have a non-zero weight 

(z =1).  ETF [1] has a weight set to 0, however, the model will set y[1] to ⅛. Multiplying y[1] with z[1] sets 

the penalty of ETF[1] to 0 and only allows for ETFs with a non-zero weight to be penalized for deviations 

from Equal Weights (v[i]) among these surviving ETFs.  

 

Constraint (22) lastly sums deviations from Equal Weights in variable t which are then penalized by the 

λ2 term. Not multiplying y[1] with z[1] would cause the penalty to increase by 1/8, its deviation from what 

the surviving ETFs’ weights would be. The λ1 term’s selection would be (partially) offset as selecting ETFs 

would naturally increase the penalty of λ2. An alternative approach would be to set a lower bound of 0 on 

v (Equation 23). 

 

4.4 Covariance Shrinkage  

This methodology will use the sample covariance matrix and the Ledoit-Wolf (2004) covariance 

matrix. The shrinkage proposed by Ledoit-Wolf (2004) boils down to finding a target covariance matrix 

and a sample covariance matrix. The target covariance matrix’ mean squared error is fully biased but 

represents no variance. Conversely, the mean squared error of the sample covariance matrix has no bias but 

represents all variance (Ledoit-Wolf, 2004). Ledoit-Wolf shrinkage aims to find the weights these two 

covariance matrices need to have (adding up to 1) to best represent the true (unobservable) covariance 

matrix. This is therefore a tradeoff between bias and variance. This can be formally written as equation (28) 

where F is the target covariance matrix, S is the sample covariance matrix, and �̂�∗ is the optimal shrinkage 

weight. 

 

Σ̂Shrink = �̂�∗𝐹 + (1 − �̂�∗)𝑆         (28) 

 

 Ledoit-Wolf (2004) use the identity matrix as the target matrix and subsequently estimate �̂�∗ using a 

quadratic loss function. The optimal shrinkage intensity is therefore a tradeoff between the quadratic loss 

of the sample covariance matrix and the shrunken covariance matrix. The minimization problem is 

displayed in Equations (29) and (30), where ∑* is the shrunken covariance matrix, ∑ is the true covariance 

matrix and v*I is the target matrix with weight 𝜌. Software packages such as Python’s scikit-learn can 

efficiently solve this optimization problem.  
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𝑚𝑖𝑛
𝜌,v 

 E[∥ ∑∗ −∑ ∥2]          (29) 

𝑠. 𝑡. ∑∗  = 𝜌𝑣𝐼 + (1 − 𝜌)𝑆         (30) 

 

4.5 Hyperparameter Tuning 

For the PEPS framework, 3 hyperparameters can be optimized. The λ1, λ2, and the risk aversion term y. 

I follow Peng & Linestky’s (2022) lead in treating the risk-aversion term as a constant and setting it to 5. 

I also follow Diebold & Shin’s (2019) advice of setting the shrinkage term λ2 to an extreme value, 9.  

 

Giving the λ2 an extreme value sets surviving weights to equal weighting. The λ1 is then the only 

hyperparameter that needs to be tuned. For this hyperparameter, a larger variety of values can be explored 

whilst keeping the computation time to a feasible level. This is crucial for larger trading universes as the 

Gurobi Mixed Integer solver takes up considerable time to find solutions for large N for each month.  

 

Hyperparameter tuning is done using rolling window cross-validation. The rolling window consists of 

a training window, a validation window, and a test date. The windows have fixed sizes. The training 

window consists of 38 months, the validation window consists of 19 months and the test date consists of 

one month. The Test month is the month for which the portfolio is held. For each iteration, all windows 

shift one month into the future. Trends that occurred far in the past will not affect the model’s solutions. 

Additionally, trends unique to the training window have a lesser influence since the validation window 

filters them out.   

 

For each combination of hyperparameters, the PEPS model is run for each date in the training window. 

Subsequently, the returns and the Sharpe Ratio of the portfolio are calculated for this training period. The 

hyperparameter combinations that give the 20 highest Sharpe Ratios are then applied to the validation set. 

The Sharpe-Ratio is calculated as follows:  

 

𝑆ℎ𝑎𝑟𝑝𝑒𝑅𝑎𝑡𝑖𝑜 =  (
𝑅𝑝−𝑅𝑓

σ𝑝
)         (31)

    

Where 𝑅𝑓 is the mean risk-free rate, 𝑅𝑝 is the mean return on the portfolio and the σ𝑝 is the standard 

deviation of the portfolio’s excess returns. It is a popular measure used in portfolio optimization to 
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describe risk-adjusted returns (Sharpe, 1998) The higher the Sharpe ratio the better the risk-adjusted 

performance of the portfolio.  

 

I derive Sharpe Ratio 95% confidence intervals using a stationary bootstrap for the validation window. 

The validation window is significantly shorter than the training window. As Peng & Linetsky (2022) note, 

calculating the Sharpe Ratio for such a small window introduces random noise. In their paper, they opted 

for a bootstrap using 12-month blocks within their validation window. Due to the smaller validation window 

in this paper, I use the stationary bootstrap (without blocks).  

 

For a given combination of hyperparameters, the bootstrap is performed as follows: In the validation 

window, the excess returns are computed for each month using the PEPS model. This set of returns is the 

sample for the bootstrapping. Then for 300 iterations one of the returns is replaced randomly by a randomly 

chosen return from the bootstrap sample. Each time the Sharpe Ratio is computed. This leads to a 

distribution of 300 Sharpe Ratios. From here on out I follow Peng & Linetsky’s (2022) method by choosing 

the hyperparameter combination that gives the highest lower bound of the 95% confidence interval of these 

Sharpe Ratios. The combination of hyperparameters that is obtained is then used in the model for the test 

month.  

 

The first holding month of PEPS is December 2011. The final month the PEPS portfolio is held is in 

December 2022. December 2011 is used due to the requirement of having 100 ETFs that have 30 returns 

observations to calculate the sample covariance matrix. In this paper’s sample, the 100-ETF mark is passed 

in 2007, adding thirty months lead to the first train portfolio being held in late 2009. Adding a further 57 

months (training and validation window) would lead to the first test portfolio to be held in 2014. I am 

aiming for 10 years of returns data to analyze. I deemed 8 years of returns too little. For this reason, I choose 

to omit the training window for the first 2 years of the model. The first two years of returns are therefore 

calculated using all hyperparameter combinations in the validation window.  
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Note: This table presents each abbreviation of models used in this paper.  

4.5 Portfolio Evaluation 

This subsection will present the metrics that will be used to evaluate the PEPS portfolio. Besides the 

following metrics, the earlier presented Sharpe Ratio is also used to evaluate PEPS’ performance.  

 

4.5.1 Distance  

 

How asset selection of PEPS portfolios differs from the Equal Weights portfolios can be measured using 

portfolio Distance (Equation 32) used in the paper by Plyakha et al. (2012). T is the number of dates, 𝑤𝑛
𝑖  

and 𝑤𝑛
𝑗
 are the respective portfolio weights to asset n of portfolio i and j at time t.  

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗 =
1

𝑇
∑ √∑ (𝑤𝑛

𝑖 −𝑤𝑛
𝑗
)
2

𝑁
𝑛=1

𝑇
𝑡=1        (32) 

 

Distance is calculated by taking the root of the sum of squared differences in portfolio weights for each 

ETF. The metric is then averaged over the evaluation period. It is a measure that indicates alikeness 

between two portfolios. Distances close to 0 indicate the weights are very alike, alternatively higher 

distances indicate big differences. Since the PEPS portfolio is advised to have strong penalties that, rather 

 
                                 Table 4: List of strategies 

 

No. Description Abbreviations 

   

1 Equal weighting portfolio 1/N 

2 Short-sale constrained Mean-Variance model with Ledoit-Wolf covariance matrix MV(Constrained + Ledoit) 

3 Short-sale constrained Mean-Variance model MV(Constrained) 

4 Mean-Variance model with Ledoit-Wolf covariance matrix MV(Ledoit) 

5 Mean-Variance model MV() 

6 Short-sale constrained PEPS model with Ledoit-Wolf covariance matrix PEPS(Constrained + Ledoit) 

7 Short-sale-constrained PEPS model PEPS(Constrained) 

8 PEPS model with Ledoit-Wolf covariance matrix PEPS(Ledoit) 

9 PEPS model PEPS() 



20 
 

than shrink, set the surviving weights to equal weighting (Diebold & Shin 2019), the distances to the 1/N 

portfolio are likely to be of small sizes. Differences in Distances between portfolios are then ultimately 

determined by the selection of ETFs. 

 

4.5.2 Fama-French Regressions 

The return evaluation includes running 4 regressions: The CAPM, the Fama French 3 Factor, 5 Factor, 

and 6 Factor model.  The regressions are presented respectively in Equations 33, 34, 35, and 36. With 𝑅𝑡

− 𝑅𝑓𝑡 being the excess return of the portfolio at time t.   

 

𝑅𝑡− 𝑅𝑓𝑡 = 𝛼 + 𝛽(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝜖𝑡        (33) 

 

𝑅𝑡− 𝑅𝑓𝑡 = 𝛼 + 𝛽1(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽2𝑆𝑀𝐵𝑡+ 𝛽3𝐻𝑀𝐿𝑡+ 𝜖𝑡ff    (34) 

 

𝑅𝑡− 𝑅𝑓𝑡 = 𝛼 + 𝛽1(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽2𝑆𝑀𝐵𝑡+ 𝛽3𝐻𝑀𝐿𝑡 + 𝛽4𝐶𝑀𝐴𝑡+ 𝛽4𝑅𝑀𝑊𝑡 + 𝜖𝑡 (35) 

 

𝑅𝑡− 𝑅𝑓𝑡 = 𝛼 + 𝛽1(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽2𝑆𝑀𝐵𝑡+ 𝛽3𝐻𝑀𝐿𝑡 + 𝛽4𝐶𝑀𝐴𝑡+ 𝛽4𝑅𝑀𝑊𝑡 +

𝛽5𝑀𝑂𝑀𝑡+ 𝜖𝑡        (36) 

              

The CAPM model is used to check whether a portfolio out/underperforms a benchmark, usually the 

market. This out/underperformance is presented by the alpha of the regression: A significantly positive 

alpha would indicate a portfolio’s outperformance whilst a significantly negative alpha indicates 

underperformance.  

 

The results of the Fama French regressions display which factors the PEPS portfolio is exposed to. A 

portfolio’s exposure to a risk factor can be seen as the weighted average exposure for each asset to said risk 

factor. Each ETF’s exposure is in turn caused by the exposures of the equities the ETF holds. A significant 

coefficient for the SMB factor would indicate that the PEPS’ excess returns have significant exposure to 

the difference in returns between Small and Big-cap companies. The alphas in the Fama French Regressions 

portray the portion of returns that is not attributable to the risk factors, the abnormal return.  
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4.5.3 Sortino Ratio 

The Sortino Ratio is a metric that measures the portfolio's returns vs. downside risk (Sortino & Van Der 

Meer, 1991). The formula is nearly identical to the Sharpe ratio except for the denominator. Rather than 

taking the standard deviation of excess returns, the standard deviation of the portfolio’s negative excess 

returns (σ𝑝𝑑𝑜𝑤𝑛𝑠𝑖𝑑𝑒) is used. This changes the Sharpe Ratio from a metric that measures a portfolio’s 

risk-adjusted return to a metric that measures a portfolio’s downside-risk-adjusted return. Similarly to the 

Sharpe Ratio, higher positive values indicate better performance. A loss-averse investor who cares about 

negative returns tails is more likely to use the Sortino ratio because it holds more information on these 

negative tails.  

 

𝑆𝑜𝑟𝑡𝑖𝑛𝑜𝑅𝑎𝑡𝑖𝑜 =  (
𝑅𝑝−𝑅𝑓

σ𝑝𝑑𝑜𝑤𝑛𝑠𝑖𝑑𝑒
)         (37) 
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5.0 Results 

Table 5 presents the performance metrics of each investment strategy except MV. Table 15 depicts the 

Mean-Variance portfolios’ performance. Since the MV portfolios are not the focus of this paper, the 

analysis is presented in the Appendix. The main takeaway from the MV portfolios is its poor risk-adjusted 

performance depicted by near-0 and/or negative Sharpe Ratios.  

 

5.1 Equal Weights Performance 

Equal Weights underperforms the market. The Equally Weighted 20 ETF portfolio outperforms its larger 

variants. This is displayed firstly in this portfolio having the largest mean monthly return, standing at 0.33%, 

and the highest annualized Sharpe Ratio among all 1/N portfolios (0.22). Increasing the number of ETFs to 

40 or 60 lowers the average monthly return to 0.04% and 0.07% respectively. This drop in returns drives 

the Sharpe Ratios down to 0.03 and 0.06 respectively. All Sharpe Ratios fall below that of the market, 0.83.  

 

ETFs introduced in the 21st through 60th most liquid category perform worse than the most liquid 20 ETFs. 

The relatively poor returns of the 40 and 60 ETF portfolios indicate that the 21st through the 60th most 

liquid ETFs for each month happen to consistently perform poorly, driving performance down compared 

to the most liquid 20 ETFs. Further increasing the number of ETFs in the portfolio improves both the Sharpe 

Ratio and the mean return, yet these remain below the level of the 20 ETF portfolio. The Sharpe Ratio of 

the 80 and 100 ETF portfolios are respectively 0.15 and 0.13.  

 

Larger Equal Weights portfolios generally have lower risk. Increasing the number of ETFs has, apart from 

the 60 ETF portfolio, a negative effect on portfolio std. deviations. This trend is most notable when moving 

from the 20 ETF portfolio (5.23%) to the 40 ETF portfolio (4.93%). The remaining portfolio sizes have std. 

deviations around 4.3%. This trend is evidence that including more ETFs in the Equal Weights portfolio 

improves diversification. Diversification benefits stagnate when moving to portfolios larger than 60 ETFs 

as the std. deviations remain around 4.3%.  
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    Table 5: Portfolio Performance 

N Portfolio 
Sharpe 

Ratio 

Sortino 

Ratio 

Mean 

Return 
σ Max. Min. Kurtosis Skewness 

          

20 PEPS() 0.33 0.20 1.13 11.93 92.82 -25.76 27.18 3.71 

40 PEPS() 0.23 0.14 0.80 12.12 92.82 -21.20 25.62 3.63 

60 PEPS() 0.23 0.15 0.82 12.41 92.82 -21.20 23.11 3.39 

80 PEPS() 0.21 0.13 0.73 12.33 92.82 -21.99 23.84 3.44 

100 PEPS() 0.19 0.12 0.69 12.32 92.82 -25.43 22.93 3.17 

          

20 PEPS(Constrained) 0.26 0.12 0.72 9.38 46.68 -25.76 5.39 0.99 

40 PEPS(Constrained) 0.14 0.07 0.38 9.6 46.68 -21.2 4.49 1.05 

60 PEPS(Constrained) 0.14 0.07 0.40 9.98 46.68 -21.2 3.83 0.99 

80 PEPS(Constrained) 0.14 0.07 0.39 9.91 46.68 -21.99 3.92 1.00 

100 PEPS(Constrained) 0.11 0.05 0.29 9.72 46.68 -25.43 1.49 0.42 

          

20 PEPS(Ledoit) 0.42 0.16 0.68 5.72 22.59 -21.33 2.43 -0.38 

40 PEPS(Ledoit) 0.44 0.17 0.75 5.91 22.31 -18.62 1.82 -0.3 

60 PEPS(Ledoit) 0.32 0.13 0.54 5.72 20.09 -14.81 1.23 -0.2 

80 PEPS(Ledoit) 0.30 0.13 0.52 5.98 21.83 -15.82 1.21 -0.1 

100 PEPS(Ledoit) 0.37 0.17 0.73 6.79 28.65 -15.58 2.72 0.49 

          

20 
PEPS(Constrained + 

Ledoit) 
0.41 0.16 0.67 5.73 22.59 -21.33 2.39 -0.38 

40 
PEPS(Constrained + 

Ledoit) 
0.46 0.18 0.77 5.81 22.43 -17.12 1.74 -0.23 

60 
PEPS(Constrained + 

Ledoit) 
0.30 0.12 0.49 5.66 18.42 -14.81 1.03 -0.25 

80 
PEPS(Constrained + 

Ledoit) 
0.31 0.13 0.53 5.94 21.83 -15.98 1.29 -0.10 

100 
PEPS(Constrained + 

Ledoit) 
0.34 0.16 0.67 6.75 28.65 -15.85 2.88 0.51 

          

20 1/N 0.22 0.08 0.34 5.23 14.55 -18.18 1.84 -0.52 

40 1/N 0.03 0.01 0.04 4.93 14.13 -21.43 3.43 -0.71 

60 1/N 0.06 0.02 0.07 4.26 13.1 -17.93 3.52 -0.58 

80 1/N 0.15 0.05 0.18 4.34 13.92 -16.86 2.88 -0.44 

100 1/N 0.13 0.05 0.17 4.31 13.75 -16.64 2.97 -0.50 

- Market 0.83 0.37 1.03 4.31 13.65 -13.39 1.26 -0.47 

Note: This table presents portfolio metrics over the period 12-2011 to 12-2022 for Equal Weights and covariance-

shrunk PEPS portfolios. N is the trading universe. Mean Return is the geometric mean of excess returns in %. σ is 

the standard deviation of excess returns in %. The Sharpe Ratio is annualized. Max. and Min. are respectively the 

highest and lowest monthly returns over the entire sample. Metrics on the Market are derived from the Fama French 

MKT-RF factor. 
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5.2 PEPS and sample covariance matrix 

PEPS portfolios using the sample covariance matrix select ETFs too harshly.  The 100 PEPS portfolio 

selects at most 13 ETFs in a single month, whilst the constrained 100 ETF PEPS portfolio selects at most 

11 ETFs. Weights of 1, 0.5, and 0.33 are the most common in all portfolios, regardless of the size of the 

trading universe. The latter is confirmed by the Distances to the Equal Weights in Table 8. All Distances 

are approximately 0.6.  

 

PEPS is vulnerable to estimation error. The high concentration of portfolio weights means that portfolio 

diversification depends on the diversification of the ETFs. This is not inherently a disadvantage if these 

ETFs fully diversify risk. Nonetheless, an extreme portfolio weight of 1 implies that this asset provides the 

best return-risk tradeoff, better than any combination of assets. Extreme weights occur similarly in Mean-

Variance portfolios that perform poorly out-of-sample due to estimation errors in the covariance matrix. 

The PEPS model using the same estimated covariance matrix and suffering from highly concentrated 

weights can therefore be interpreted as PEPS’ vulnerability to estimation error.   

 

The PEPS() and PEPS(Constrained) portfolio metrics in Table 5 are inflated by the COVID-19 rebound. 

The unconstrained PEPS portfolios all gain +92.8 % on 04-2020 by setting a portfolio weight of 1 in 

Direxion Daily Junior Gold Miners Idx Bull 2X Shs (JNUG), whilst the unconstrained portfolios assign a 

lower weight to this ETF (0.33). Due to the unprecedented nature of COVID-19, I can’t ascribe the extreme 

returns post-covid to PEPS. For the analysis on PEPS() and PEPS(Constrained) portfolios, I omit the returns 

in February, March, and April 2020 in Table 6 to avoid the influence of the extreme rebound. The Covid-

19 rebound continued in the following months. Comparison of metrics is only possible between PEPS() 

and PEPS(Constrained) portfolios here.  

 

Larger PEPS portfolios with estimated covariance matrix have worse risk-adjusted performance. The 

Sharpe Ratios display a negative relation with portfolio size, caused by drops in mean returns. The 20 ETF 

PEPS portfolio has an annualized Sharpe Ratio of 0.23, moving to 60 ETFs already brings this ratio down 

to 0.11. The 100 ETF portfolio’s Sharpe Ratio is 0.02. The same pattern occurs in the short-constrained 

portfolios. The drop in Sharpe Ratios is attributable to a similar decline in mean excess returns. The 20 ETF 

PEPS() portfolio’s mean return is 0.58%, dropping step by step down to 0.06% for the 100 ETF PEPS() 

portfolio.  
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PEPS and short-sale constrained PEPS using the sample covariance matrix have identical performance. 

The omission of COVID-19 returns in Table 6 displays the similar nature of the PEPS() and 

PEPS(Constrained) portfolios. The constrained PEPS portfolio is either equally as good or better than its 

unconstrained counterpart. The differences in Sharpe Ratios are, however, marginal. The 20 

PEPS(Constrained) portfolio’s Sharpe Ratio is only 0.004 higher. For the 100 PEPS(Constrained) 

portfolio this difference is relatively larger (0.01).  

 

 

      Table 6: PEPS Excluding Feb., Mar. & Apr. 2020 

N Portfolio 
Sharpe 

Ratio 

Mean 

Return 
σ 

20 PEPS() 0.23 0.58 8.86 

40 PEPS() 0.13 0.35 8.95 

60 PEPS() 0.11 0.30 9.46 

80 PEPS() 0.06 0.17 9.37 

100 PEPS() 0.02 0.06 9.27 

20 PEPS(Constrained) 0.23 0.59 8.85 

40 PEPS(Constrained) 0.14 0.36 8.95 

60 PEPS(Constrained) 0.11 0.30 9.46 

80 PEPS(Constrained) 0.09 0.26 9.41 

100 PEPS(Constrained) 0.03 0.08 9.12 

     
Note: This table presents the Mean excess return, std. deviation (σ) of excess returns and the Annualized Sharpe Ratio for all 

months except February, March, and April 2020.  
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5.3 PEPS and Ledoit-Wolf covariance matrix 

Applying Ledoit-Wolf shrinkage to the covariance matrix leads to less concentrated ETF selection. The 

main weakness of the previously discussed PEPS models is the extreme portfolio concentrations. Shrinking 

the covariance matrix causes the 100 ETF (Ledoit) portfolio to have months where it selects 55 out of the 

100 ETFs. Months where the model selects 4 ETFs do still occur, but far less frequently. Mean distances 

range from 0.07 to 0.22 for PEPS portfolios with Ledoit-Wolf covariance matrix vs. 0.56 to 0.65 for PEPS 

portfolios with sample covariance matrix.  

PEPS with Ledoit-Wolf shrinkage has better risk-adjusted performance than Equal Weights. Table 5 

depicts how each PEPS(Ledoit) portfolio has a higher Sharpe Ratio than its equally weighted counterpart. 

The 40 PEPS(Ledoit) portfolio is the most efficient, having the highest Sharpe Ratio (0.44). This portfolio 

also improves the most compared to its 1/N counterpart, which has the lowest Sharpe Ratio among all 1/N 

portfolios (0.03). The Sortino Ratios tell the same story (0.01 to 0.17). Given that the ETFs that are 

introduced when moving from a 20ETF to a 40ETF 1/N portfolio perform relatively poorly. The 40 ETF 

PEPS(Ledoit) portfolio benefits the most by selecting well-performing ETFs from this group. 

PEPS outperformance to Equal weights is driven by returns increasing more than risk. All PEPS 

portfolios have higher standard deviations of excess returns compared to Equal Weights. Equal Weights 

std. deviations range from 4.26% to 5.23% PEPS std. deviations range from 5.72% to 6.79%. The smallest 

relative jump in mean returns is that of the 20 ETF portfolio. This portfolio has double the mean excess 

return than that of Equal Weights (0.68% vs. 0.34%).  

Larger PEPS portfolios select relatively fewer ETFs. Table 8 provides the means of Distances to Equal 

Weighting for PEPS portfolios. The Table displays how increasing the number of ETFs increases the 

average distance. This implies that the 20 PEPS(Ledoit) portfolio is more similar to the 20 ETF Equal 

Weights portfolio (0.068 average distance) than the 100 PEPS(Ledoit) portfolio is to the 100 ETF Equal 

Weights portfolio (0.216 average distance). Since differences in Distance are caused only by selection, the 

larger Distances for bigger PEPS sizes indicate harsher selection. Harsher selection can be attributed to the 

omission of redundant ETFs. Like forecast combinations, increasing the total number of forecasts increases 

the number of redundant forecasts. The 20 PEPS(Ledoit) has relatively few ETFs that do not benefit the 

risk vs. return tradeoff, the redundant ETFs. The lack of redundant ETFs is why the 20 ETF PEPS(Ledoit) 

is so similar to the 1/N portfolio. The 100 PEPS(Ledoit) portfolio has more redundant ETFs to omit, making 

it less alike to the 1/N portfolio.  Figure 1 shows the bigger distances of larger PEPS portfolios persist over 

the entire sample. Figure 1 also shows how the 20 ETF PEPS(Ledoit) portfolio has months where it becomes 

the Equal Weights portfolio.  
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PEPS and short-sale-constrained PEPS are nearly identical portfolios. The short-sale constraint on 

PEPS(Ledoit) portfolios has no clear effect on performance. Distances to Equal Weighting are but for 

one instance all equal both the short-constraint and unconstrained PEPS portfolios. Sharpe Ratios differ 

only marginally. The 100 ETF short-constrained portfolio’s Sharpe is 0.06 lower than the unconstrained 

portfolio. All other Sharpe Ratios differ less than this 0.06. The 40 (+0.02) and 80 (+0.01) ETF 

constrained portfolios have marginally higher Sharpe Ratios. The constrained PEPS and unconstrained 

PEPS do differ in asset selection at times. The 20 PEPS(Constrained+ Ledoit) has a different weight for 

an ETF 23% of the time. The 100 ETF portfolio differs 14.8% of the time. Differences in weights change 

portfolio performance marginally, therefore differences in these weights are likely small also. In a month 

where 60 ETFs have a non-zero weight, adding the 61st non-zero weight changes 61 weights that month. 

At the same time, the return of that month might only change by 0.001. The lack of differences between 

the portfolios is most likely caused by setting the 𝜆2 term to an extreme value, essentially preventing 

negative portfolio weights. The only difference then is which ETFs end up in the portfolio. 

Larger PEPS portfolios do not always outperform smaller PEPS portfolios. Among the PEPS(Ledoit) 

portfolios, the Sharpe Ratios of the 20 (0.42) and 40 (0.44) ETF portfolios are the highest.  The 60 and 

80 ETF portfolios’ annualized Sharpe Ratios are lower, respectively 0.32 and 0.30. The 100 ETF 

portfolio has a higher Sharpe (0.37) but remains below the smallest two portfolios. The Sortino Ratios 

follow the same pattern, indicating there is a U-shaped pattern in performance vs. portfolio size. The 

100 ETF portfolios have approximately the same Sortino Ratio (0.17) as the 20 (0.16) and 40 (0.17) 

ETF portfolios but the 60 (0.13) and 80 (0.13) ETF portfolios are the lowest.   

PEPS is vulnerable to market shocks. The most concentrated portfolio weights occur between 2020-

04 and 2021-06, visible by the spike for all portfolios in Figure 1. These high weights are likely caused 

by the market distortion after COVID-19. After approximately 14 months the higher weights disappear. 

The spike after covid could have happened through three channels: The mean returns, the covariance 

matrix, and the selection of liquid ETFs.   
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   Table 8: PEPS Distance to Equal Weights 

N Portfolio Mean σ 
20 PEPS() 0.650 0.209 

40 PEPS() 0.568 0.167 

60 PEPS() 0.573 0.180 

80 PEPS() 0.559 0.191 

100 PEPS() 0.595 0.212 

20 PEPS(Constrained) 0.642 0.207 

40 PEPS(Constrained) 0.564 0.163 

60 PEPS(Constrained) 0.569 0.176 

80 PEPS(Constrained) 0.561 0.189 

100 PEPS(Constrained) 0.590 0.207 

20 PEPS(Constrained + Ledoit) 0.069 0.055 

40 PEPS(Constrained + Ledoit) 0.138 0.068 

60 PEPS(Constrained + Ledoit) 0.169 0.080 

80 PEPS(Constrained + Ledoit) 0.183 0.085 

100 PEPS(Constrained + Ledoit) 0.215 0.096 

20 PEPS(Ledoit) 0.068 0.055 

40 PEPS(Ledoit) 0.138 0.068 

60 PEPS(Ledoit) 0.170 0.081 

80 PEPS(Ledoit) 0.183 0.085 

100 PEPS(Ledoit) 0.216 0.098 

Note: This table presents the mean distance of each PEPS portfolio to Equal Weights. This means that the 20 ETF PEPS() portfolio’s 

distance is computed compared to the 20 ETF 1/N portfolio, the 40 ETF PEPS compared to 40 ETF 1/N etc., with N being the 

number of ETFs considered.  ‘σ’ is the standard deviation of distances over the entire sample.  

 

    Figure 1: PEPS(Ledoit) Distance  

Note: This figure depicts the distance between PEPS(Ledoit) portfolios to Equal Weights. The numbers in front of PEPS(Ledoit) 

indicate the number of ETFs in the trading universe: as such 20PEPS(Ledoit) means the PEPS(Ledoit) portfolio with 20 ETFs.  
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5.4 Fama French Results 

This section will present the results of performing Fama French Regressions on portfolio excess 

returns. Due to the inefficient nature of the MV portfolios, these will be left out. The same goes for 

PEPS portfolios without a shrunk covariance matrix. I shall occasionally refer to 

PEPS(Constrained+Ledoit) and PEPS(Ledoit) by simply PEPS in this section since the portfolios are 

alike. Apart from the Fama French 6-factor regression in Table 12, the results of the regressions are 

presented in the Appendix.  

 

   Table 12: Fama French 6 Full Sample   

N Portfolio Constant Mkt-RF SMB HML RMW CMA MOM R-squared 

20 PEPS(Ledoit)     -0.6695** 

(0.2266) 

    1.2214*** 

(0.0779) 

    0.1200   

(0.1145) 

    -0.1205   

(0.1561) 

    0.2446   

(0.1557) 

    0.2259   

(0.2009) 

    0.0197   

(0.1158) 

0.8474 

40 PEPS(Ledoit)     -0.7664*** 

(0.2324) 

    1.3337*** 

(0.0764) 

    0.0444   

(0.1119) 

    -0.0156   

(0.1273) 

    0.0784   

(0.1313) 

    0.1059   

(0.1872) 

    0.3531** 

(0.1245) 

0.8378 

60 PEPS(Ledoit)     -0.8909*** 

(0.2741) 

    1.2756*** 

(0.0888) 

    -0.0289   

(0.1238) 

    -0.2250*   

(0.1253) 

    -0.1717   

(0.1780) 

    0.1931   

(0.2254) 

    0.4367*** 

(0.1208) 

0.7733 

80 PEPS(Ledoit)     -0.9789*** 

(0.2757) 

    1.3298*** 

(0.0973) 

    -0.0124   

(0.1314) 

    -0.2169*   

(0.1248) 

    -0.1990   

(0.1695) 

    0.1618   

(0.2143) 

    0.5345*** 

(0.1308) 

0.7709 

100 PEPS(Ledoit)     -0.8962*** 

(0.3390) 

    1.4343*** 

(0.1398) 

    0.0246   

(0.1693) 

    -0.2332   

(0.1647) 

    -0.1996   

(0.2105) 

    0.1172   

(0.2739) 

    0.6507*** 

(0.1717) 

0.7076 

20 PEPS(Constrained + 
Ledoit) 

    -0.6847*** 
(0.2273) 

    1.2269*** 
(0.0780) 

    0.0996   
(0.1154) 

    -0.1228   
(0.1578) 

    0.2340   
(0.1566) 

    0.2388   
(0.2029) 

    0.0101   
(0.1160) 

0.8471 

40 PEPS(Constrained + 

Ledoit) 

    -0.7531*** 

(0.2222) 

    1.3377*** 

(0.0741) 

    0.0284   

(0.1067) 

    -0.0374   

(0.1154) 

    0.0741   

(0.1261) 

    0.1276   

(0.1771) 

    0.3555** 

(0.1211) 

0.8439 

60 PEPS(Constrained + 
Ledoit) 

    -0.9305*** 
(0.2664) 

    1.2653*** 
(0.0859) 

    -0.0272   
(0.1212) 

    -0.2408**   
(0.1219) 

    -0.1604   
(0.1688) 

    0.1846   
(0.2136) 

    0.4418*** 
(0.1194) 

0.7804 

80 PEPS(Constrained + 

Ledoit) 

    -0.9431*** 

(0.2721) 

    1.3188*** 

(0.0976) 

    -0.0184   

(0.1291) 

    -0.2015 *  

(0.1215) 

    -0.2072   

(0.1690) 

    0.1207   

(0.2145) 

    0.5265*** 

(0.1298) 

0.7735 

100 PEPS(Constrained + 
Ledoit) 

    -0.9457*** 
(0.3364) 

    1.4230*** 
(0.1404) 

    0.0444   
(0.1710) 

    -0.2406   
(0.1638) 

    -0.1977   
(0.2122) 

    0.1413   
(0.2723) 

    0.6449*** 
(0.1723) 

0.7053 

20 1/N     -0.8765*** 

(0.1849) 

    1.1327*** 

(0.0587) 

    0.0651   

(0.0879) 

    -0.0927   

(0.0876) 

    0.1636   

(0.1170) 

    0.1144   

(0.1404) 

    -0.0239   

(0.0702) 

0.8871 

40 1/N     -1.0309*** 
(0.1998) 

    1.0200*** 
(0.0662) 

    0.1183   
(0.0963) 

    0.1212   
(0.1137) 

    0.0665   
(0.1332) 

    -0.0190   
(0.1622) 

    0.0142   
(0.0651) 

0.8457 

60 1/N     -0.8676*** 

(0.1695) 

    0.8993*** 

(0.0554) 

    0.0997   

(0.0750) 

    0.0736   

(0.0882) 

    0.0533   

(0.1055) 

    -0.0322   

(0.1310) 

    0.0251   

(0.0514) 

0.8661 

80 1/N     -0.7695*** 
(0.1522) 

    0.9207*** 
(0.0517) 

    0.1100   
(0.0699) 

    0.0458   
(0.0643) 

    0.0279   
(0.0984) 

    0.0127   
(0.1062) 

    -0.0189   
(0.0472) 

0.8915 

100 1/N     -0.8003*** 

(0.1499) 

    0.9262*** 

(0.0521) 

    0.1112   

(0.0696) 

    0.0521   

(0.0603) 

    0.0333   

(0.0966) 

    -0.0011   

(0.1040) 

    0.0145   

(0.0457) 

0.8981 

Note: This table presents the results of the portfolio’s excess returns on the Fama French 6-factor model (Equation 

36). Heteroskedasticity-robust standard errors are placed in parenthesis. Three levels of significance are considered: 

* : p < 0.1, ** : p < 0.05, *** : p<0.01 
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5.4.1 Equal Weights Exposures 

The Equal Weights portfolios exhibit a neutral exposure towards the SMB, HML, RMW, CMA, and 

MOM factors. The Fama French 3-factor regression displays significantly positive coefficients for the SMB 

in the 80 and 100 Equal Weights portfolios. In the Fama French 5-factor regression, only the 80 ETF 

portfolio’s SMB is significant. Lastly adding Momentum leads to no significant coefficients for SMB. The 

RMW and CMA are never significant. The HML factor is significantly positive in only one instance (40 

ETF portfolio) in the Fama French 3-factor regression (p<0.1). This significance is not robust to Fama 

French 5 and 6-factor models. In conclusion, apart from the Market factor, there is no evidence that Equal 

Weight portfolios have exposure to any other Fama French factor considered. 

Larger Equal Weights portfolios have more ETFs with a low market beta. In the Fama French 6-factor 

regression, the 20 ETF Equal Weights portfolio has an estimated Market coefficient of 1.13 (p<0.01). The 

40 ETF portfolio has a slightly lower Beta of 1.02. The most important evidence for this claim is the Betas 

for the 60, 80, and 100 ETF portfolios that are respectively, 0.90, 0.92, and 0.93, all below 1. This pattern 

holds for all full-sample regressions. The Market coefficient indicates a portfolio’s exposure to the market. 

A portfolio’s total exposure is the average of its asset’s exposures. Given that the exposure is lower for 

larger portfolios, this means that the assets added to the larger portfolios lower the average exposure to the 

market and therefore tend to have a market beta below 1.   

All Equal Weights portfolios have negative abnormal returns.  The CAPM regression confirms that over 

the entire sample, all Equal Weights underperform the market. This underperformance is implied by all 

portfolios having significantly negative alphas (p<0.01). The alphas in the Fama French 3, 5, and 6-factor 

regressions are all significantly below 0. The alpha in the Fama French regressions presents the portion of 

returns that cannot be attributed to the factors. Given that there is only significant market exposure, the 

negative alpha suggests that the Equal Weights portfolios have underperformed to what is expected for this 

market exposure. An investor would be better off passively investing in this Market-Exposure than using 

the Equal Weights portfolio.  

Equal Weight portfolios’ neutral exposure to HML and MOM over the entire sample is made up of a 

negative and a positive exposure that even out. Splitting the sample in half uncovers exposures to HML and 

Momentum. The HML is significantly negative in the first half of the sample for the 20 (-0.34), 40 (-0.24), 

60 (-0.23) and 80 (-0.17) ETF portfolios. Furthermore, the sizes of the exposure estimates become closer 

to 0 with portfolio size to the point where the 100 ETF portfolio has an insignificant coefficient. In the 

second half of the sample, we see significantly positive HML exposures for the 40 (0.22), 60 (0.16), 80 

(0.11), and 100 (0.09) ETF portfolios. Apart from the 20 ETF portfolio, the exposure estimate becomes 
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closer to 0 with portfolio size. Apart from Momentum becoming significantly positive in the second half 

of the sample (coefficients become insignificant), the same pattern occurs for Momentum exposure.  

 

5.4.2 PEPS Exposures 

PEPS selects high-Market-beta ETFs. From the CAPM regression, Market beta estimates exceed 1 for 

all PEPS portfolios. In the Fama French 3, 5, and 6-factor the beta estimates are higher than that of the 

CAPM. In the Fama French 6 regression, a high Market beta indicates that a portfolio is more volatile than 

the Market. The 20 ETF PEPS(Ledoit) portfolio’s estimate is 1.22. Similarly, the 100 ETF PEPS (Ledoit) 

portfolio’s estimate is 1.43. These estimates contrast with the Equal Weights portfolios’ beta estimates that 

tend to be slightly higher than 1 for the 20 and 40 ETF portfolios but fall below 1 for the 60, 80, and 100 

ETF portfolios (Fama French 6 results). All Market Betas are higher for PEPS than for 1/N. The high Market 

Betas are therefore the result of omission of low-beta ETFs and selection of high(er) beta ETFs.  

The PEPS model selects ETFs subject to momentum. This selection is evident from the significantly 

positive (p<0.05) Momentum coefficients for all but the 20 ETF PEPS portfolios in the Fama French 6 

regression. The Momentum coefficients are 0.35, 0.44, 0.53, and 0.65 for the 40, 60, 80, and 100 ETF 

PEPS(Ledoit) respectively. The increasing coefficients for larger PEPS portfolios imply Momentum 

exposure is more present for larger PEPS portfolios. Larger ETF PEPS portfolios have access to the same 

ETFs as all smaller PEPS portfolios and more. The larger PEPS portfolios therefore have more ETFs with 

exposure towards the Momentum factor available. These are then ultimately chosen, driving up the 

estimated Momentum exposure. The positive sign of the exposure can be interpreted as follows: The PEPS 

portfolio consists of ETFs. These ETFs in turn consist of equities that drive the ETF's returns. The equities 

that have been indirectly selected by the PEPS portfolio collectively have performed well in the past and 

continue to do so in the holding period.  

PEPS portfolios have negative abnormal returns. An efficient portfolio reaps returns equal to or larger 

than what is expected given its risk exposures. Fama French alphas are then 0 or positive. All PEPS 

portfolios display significantly negative alphas for all Fama French regressions. In the Fama French 6-

factor regression, alphas range from -0.67 for the 20 ETF PEPS(Ledoit) portfolio to -0.98 for the 80 ETF 

portfolio. These alphas indicate that given the estimated risk exposures, the PEPS portfolios perform worse 

than what is expected. Similarly, a fund manager who underperforms its index has a negative alpha.  

The negativity of alpha is related to PEPS’ underperformance to the market. Market coefficients of PEPS 

portfolios tend to exceed 1, indicating the portfolio is more volatile than the market. The returns that are 
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supposed to come along with this exposure are lower than what is expected. The CAPM alphas for PEPS 

portfolios are significantly negative are for all but the largest portfolios. All alphas are significantly negative 

after controlling for the Fama French. The annualized Sharpe Ratio of the Market factor (0.83) being higher 

than that of all PEPS portfolios confirms PEPS’ underperformance.  

PEPS’ underperformance to the Market portfolio could be related to the sample drawn. The Equal 

Weights portfolio presents the returns of all assets in the trading universe. Given that the Equal Weights 

portfolio underperforms the Market, PEPS selection from a pool of underperforming ETFs would need to 

extremely efficient for the model to outperform the market.   

PEPS’ negative alphas can be the result of omitted risk factors. The Fama French factors capture PEPS 

returns less efficiently for larger portfolio sizes. The R^2 of the Fama French regressions decreases when 

moving from smaller PEPS to larger PEPS portfolios. The Fama French 6-factor regression capture around 

85 – 89% of the variance of the Equal Weights portfolios. Meanwhile, the PEPS (Ledoit) portfolio’s highest 

R^2 is 84%, decreasing to 70% for the 100 ETF PEPS(Ledoit) portfolio. This pattern indicates there might 

be other factors that better explain PEPS’ returns, factors inherent to PEPS. These factors could explain a 

portion of PEPS’ return that is attributed to alpha in the Fama French regressions.  

I find insufficient evidence PEPS selects ETFs exposed to the HML factor. The regression coefficients 

for HML in the Fama French 3-factor regression are significantly negative (p<0.01) for the 60 (-0.32), 80 

(-0.36), and 100 (-0.44) ETF PEPS(Ledoit) portfolios. The coefficients become more negative in the Fama 

French 5-factor regression, -0.42, -0.46, and -0.53 for the 60, 80, and 100 ETF PEPS(Ledoit) portfolios 

respectively. In the Fama French 6-factor regression, the 100 ETF PEPS(Ledoit) portfolio’s HML 

coefficient loses all significance (p = 0.108) and the 60 and 80 ETF portfolios remain only slightly 

significant (p<0.1). The HML coefficients lose significance because the coefficient estimates decrease after 

the introduction of Momentum: all three estimates are between 0.21 and 0.24. The std. errors remain of 

similar sizes for the 60, 80, and 100 ETF PEPS(Ledoit) portfolios: 0.14, 0.14, 0.16 respectively in Fama 

French 5  vs. 0.13, 0.12, 0.16 respectively in Fama French 6. These results indicate that a large portion of 

the variance of PEPS excess returns that is attributed to the HML, is better explained by the Momentum 

factor.  

Exposure to HML found over the entire sample can be attributed to exposure in the first half of the 

sample.  The full sample Fama French 6-factor regression displays significantly negative HML coefficients 

for the 60 and 80 ETF PEPS portfolios. The Fama French 6 regression for the first half of the sample results 

in significantly negative coefficients for 40 (-0.26) and 100 (-0.42) ETF PEPS(Ledoit) portfolios (p<0.1) 

as well as the 60 (-0.32)  and 80 (-0.44)  ETF PEPS(Ledoit) portfolios (p<0.05). I can not attribute these 
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negative exposures to PEPS’ selection since the Equal Weights portfolios also tend to have significantly 

negative exposure toward HML. In the second half of the sample, HML is never significant for PEPS.  

If PEPS systematically selects ETFs with negative HML exposure, larger portfolio sizes would have 

a similar or increasing exposure to the HML factor. Large portfolios have more ETFs to choose from 

and thus more ETFs with exposure toward HML. At the same time, larger PEPS portfolios select 

relatively fewer assets. Systematically selecting HML-exposed ETFs would show up strongest in the 

largest portfolios. The HML factor being insignificant for the 20 and 40 ETF portfolio, and significantly 

negative for the 60 and 80 ETF portfolio, falls in line with this argument. However, the 100 ETF PEPS 

portfolio having an insignificant HML exposure fails to provide evidence that PEPS selects ‘low-value’ 

ETFs despite the larger pool of ETFs. Given these results, I refrain from drawing conclusions regarding 

PEPS’ asset selection and HML-exposed ETFs.  
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6.0 Conclusion 

This paper applies the Partially Egalitarian Portfolio Selection (PEPS) model to equity ETFs from 2007 

until 2022. The model’s goal is to utilize the Equal Weights lack of exposure towards estimation error of 

model parameters whilst obtaining a higher return. Peng & Linetsky (2022) indeed find PEPS outperforms 

Equal Weights and MV weights but limit their sample to stocks. The main research question of this paper 

is whether and how PEPS’ outperformance to Equal Weights and Mean-Variance weights holds up for ETFs.  

The PEPS framework applied to ETFs has better risk-adjusted performance than the Equal Weights and 

Mean-Variance portfolios when applying the Ledoit-Wolf covariance matrix. Outperformance is best 

depicted by PEPS’ superior Sharpe Ratios and Sortino Ratios. Not shrinking the covariance matrix leads to 

PEPS selecting ETFs too aggressively. Portfolio concentration becomes too high, with occasional weights 

of 100%, leaving the portfolio vulnerable to extreme returns. Additionally, in this paper’s methodology, the 

short-sale constraint only marginally alters the PEPS portfolios. Neither portfolio are capable of 

outperforming the market-portfolio and have negative abnormal returns, apparent from significantly 

negative Fama French alphas.  

I find evidence that PEPS portfolios select high-Market-beta ETFs that have historically performed well 

and continue to do so.  By using a Fama French 6 Factor regression, I show that the 1/N portfolio has no 

significant Momentum exposure. The PEPS portfolios have significantly positive Momentum coefficients 

for all but the smallest PEPS portfolio. Similarly, the Market-Betas for the 1/N portfolios are either slightly 

above 1 (20 and 40 ETF portfolios), or below 1 (60, 80, and 100 ETF portfolios). The estimated Market-

betas of the PEPS portfolios are all larger than the Equal Weights counterpart in each of the CAPM, Fama 

French 3, 5, and 6-factor regressions. The PEPS model therefore selects high(er)-beta ETFs and/or ETFs 

that have historically performed well and continue to do so.  

The finding that the ETFs in PEPS portfolios are exposed to Momentum aligns with previous research 

by Apergis et al. (2022). The authors found that Momentum explained returns in factor ETFs. The authors 

present two possibilities. Momentum exposure could be explained by the fact that ETFs tend to pick equities 

that have historically performed better than other stocks. An alternative explanation is that ETFs do not 

diversify momentum exposure when selecting assets. Further research could investigate through which 

channels PEPS’ selection of Momentum ETFs occurs. Using alternative measures for the expected return 

variable in the model could result in different Momentum exposures than when using historical mean return. 

Lastly, I find that the PEPS framework selects relatively harsher when more ETFs are available. I 

display this phenomenon using the distance of portfolio weights between the PEPS portfolios and Equal 

Weights portfolios (1/N). The more ETFs are available, the larger the average distance to the 1/N 
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portfolio. This falls in line with Diebold & Shin's (2019) goal for the model. The Equally Weighted 

portfolio would have redundant assets whose information is already present in other ETFs. When more 

ETFs enter the trading universe, less new information enters. This makes more ETFs redundant. These are 

then omitted from the PEPS portfolio. The harshest selection occurs directly after a Market-wide shock 

(COVID).  

The results of this paper imply that when investors are doubting when picking an ETF investment 

strategy, they are better of picking PEPS over Equal Weights and Mean-Variance weights. The selection 

of assets by PEPS is efficient enough that it omits ETFs redundant for diversification that are present in 

Equal Weights portfolios, leading to better risk-adjusted returns. The market portfolio is in this paper 

superior to PEPS, but this could be related to the sample of assets drawn. Future research should apply 

PEPS to alternative ETFs samples or combine different type of assets to find outperformance to the 

market.  

The methodology in this paper suffers from several inefficiencies. Firstly, I assume no transaction costs. 

ETFs are often wrongly assumed to be cheap to trade since trading costs are often larger than they seem 

(Angel et al., 2016). Due to computational restrictions, I simplify PEPS. I use a simplified grid search (set 

λ2 to 9). I also do not implement Peng & Linetsky’s (2022) algorithm that manually sets surviving weights 

to 0 and then resolves the model several times for each month to find more optimal solutions. These 

simplifications might have influenced the optimality of Gurobi’s solutions, and ultimately have led to lower 

returns. Despite these inefficiencies, the PEPS model manages to outperform the 1/N portfolio and the 

Mean-Variance portfolio. Given unrestricted computational power, future research should seek to apply and 

analyze PEPS in its most optimal form.  
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8.0 Appendix 

8.1 Mean-Variance Performance 

The main takeaway from Table 7 is that all MV portfolio variants perform poorly. This performance 

indicates the need for regularization. Poor MV performance is portrayed by (nearly) all Sharpe Ratios and 

Sortino Ratios being below 0. These negative Sharpe Ratios are caused by the negative mean returns. The 

20 ETF portfolio having the best MV() Sharpe Ratio is the result of a lower standard deviation (10.6%) 

of returns accompanied by a higher, yet still negative, mean return (-0.76%).  

 

The Mean-Variance portfolios are characterized by heavy tails in the return’s distribution, portrayed by 

the Kurtosis. Each portfolio displays a Kurtosis exceeding 29. For the 20 ETF portfolio, this Kurtosis is 

caused by a relatively high maximum positive return (+87.6%). For all other MV portfolios, this Kurtosis 

is the result of negative returns exceeding -100. In this situation, shorted ETFs gain and long positions 

lose.  

 

Short-sale-constrained MV portfolios have better negative tails and performance. The Sharpe Ratios are 

still negative but are closer to 0. Furthermore, all standard deviations of (excess) returns have increased. 

The mean return of the 20 ETF worsens by -0.18% whilst all other portfolios’ improvements range 

between +2.2 and +4.2%. This has led to the 20 ETF portfolio shifting from having the highest Sharpe 

Ratio to having the lowest. Kurtoses are still higher than 11. Improved performance is the result of lower 

Min. returns and a strong COVID-19 rebound that made the portfolio gain more than +100%.   

 

Shrinkage partially reduces risk in MV portfolios. The 40 and 60 ETF MV portfolios’ Sharpe Ratios 

improve but remain highly inefficient (Sharpe Ratios < -0.6). All other portfolios’ Sharpe Ratios worsen. 

The negative Sharpe Ratios are caused by negative mean returns, all smaller than -2% per month. The 

risk of the MV(Ledoit) portfolios is the lowest among all MV portfolios. This is the result of the 40, 60, 

80, and 100 ETF portfolios’ reduction in std. dev. and extreme returns (Kurtosis is lower). The negative 

tails are reduced by half. This does come at the cost of the positive tails also becoming smaller. The 20 

ETF portfolio is a unique case in which both the std. dev increases and the mean return decreases when 

applying Ledoit-Wolf Shrinkage. The 20 ETF portfolio sees only its negative tail improve by 8.6%. This 

is evidence that there is a different effect of shrinkage for smaller and bigger portfolios.  
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Shrinkage in MV(Constrained) portfolios improves performance but extreme returns are back. Apart from 

the 40 ETF MV(Constrained + Ledoit) portfolio, all Sharpe Ratios and Sortino Ratios remain negative but 

are closer to 0. Mean returns improve across the board at the cost of higher std. deviations. The heavy tails 

that disappeared in the MV(Ledoit) portfolios are back (Kurtosis >11 for all portfolios & max returns > 

+100%) 

Table 7: Mean-Variance Performance  

Note: This table presents portfolio metrics over the period 12-2011 to 12-2022 Mean-Variance portfolios. N is the 

trading universe. Mean Return is the geometric mean of excess returns in %. σ is the standard deviation of excess 

returns in %. The Sharpe Ratio is annualized. Max. and Min. are respectively the highest and lowest monthly returns 

over the entire sample.  

 

N Portfolio Mea

n 
σ Sharpe 

Ratio 

Sortino 

Ratio 

Kurtosis Skewness Max Min 

20 MV() -0.76 10.65 -0.25 -0.13 36.49 4.13 87.57 -38.97 

40 MV() -4.34 17.35 -0.87 -0.28 41.75 -2.38 100.92 -144.64 

60 MV() -3.79 14.39 -0.91 -0.29 30.76 -3.21 60.31 -115.76 

80 MV() -2.78 13.42 -0.72 -0.21 36.38 -4.31 46.43 -112.07 

100 MV() -2.98 12.96 -0.80 -0.24 29.82 -3.46 45.12 -104.53 
          

          

20 MV(Constrained) -0.94 17.37 -0.19 -0.15 14.78 3.12 106.37 -36.32 

40 MV(Constrained) -0.16 20.49 -0.03 -0.02 11.68 1.87 116.24 -83.41 

60 MV(Constrained) -0.07 18.13 -0.01 -0.01 13.67 2.04 116.24 -70.15 

80 MV(Constrained) -0.58 17.49 -0.12 -0.07 16.06 2.22 116.24 -70.15 

100 MV(Constrained) -0.47 17.22 -0.10 -0.06 16.39 2.49 116.21 -61.95 
          

20 MV(Ledoit) -2.07 14.36 -0.50 -0.34 13.58 2.74 87.46 -30.40 

40 MV(Ledoit) -2.64 13.26 -0.69 -0.27 6.87 -0.72 38.47 -75.45 

60 MV(Ledoit) -2.52 11.32 -0.77 -0.33 3.21 -0.29 28.06 -54.14 

80 MV(Ledoit) -2.84 10.65 -0.92 -0.38 3.75 -0.39 25.69 -52.79 

100 MV(Ledoit) -2.80 10.18 -0.95 -0.38 4.07 -0.55 25.33 -51.61 

20 MV(Constrained 

+ Ledoit) 

-1.74 17.38 -0.35 -0.26 15.35 3.05 107.82 -38.78 

40 MV(Constrained 

+ Ledoit) 

0.02 21.22 0.00 0.00 10.34 1.70 116.24 -85.60 

60 MV(Constrained 

+ Ledoit) 

-0.14 18.87 -0.03 -0.01 12.97 1.48 116.24 -85.19 

80 MV(Constrained 

+ Ledoit) 

-0.30 18.33 -0.06 -0.03 14.54 1.62 116.24 -83.94 

100 MV(Constrained 

+ Ledoit) 

-0.07 18.12 -0.01 -0.01 14.71 1.88 116.21 -79.00 
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8.2 Fama French Regressions 

 

Table 9: CAPM Full Sample 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Note: This table presents the results of the portfolio’s excess returns on the CAPM model (Equation 33). 

Heteroskedasticity-robust standard errors are placed in parenthesis. Three levels of significance are considered: * : p 

< 0.1, ** : p < 0.05, *** : p<0.01 

 

N Portfolio Constant Mkt-RF R-

squared 

20 PEPS(Ledoit)     -0.5701*** 

(0.2017) 

    1.2143*** 

(0.0696) 

0.8374 

40 PEPS(Ledoit)     -0.5062**   

(0.2054) 

    1.2114*** 

(0.0927) 

0.8002 

60 PEPS(Ledoit)     -0.5904**   

(0.2811) 

    1.0890*** 

(0.0990) 

0.6727 

80 PEPS(Ledoit)     -0.6352**   

(0.3057) 

    1.1158*** 

(0.1016) 

0.6459 

100 PEPS(Ledoit)     -0.5012   

(0.3606) 

    1.1915*** 

(0.1476) 

0.5710 

20 PEPS(Constrained + Ledoit)     -0.5850*** 

(0.2018) 

    1.2177*** 

(0.0696) 

0.8372 

40 PEPS(Constrained + Ledoit)     -0.4824**   

(0.2006) 

    1.2086*** 

(0.0918) 

0.8032 

60 PEPS(Constrained + Ledoit)     -0.6274**   

(0.2837) 

    1.0779*** 

(0.0981) 

0.6724 

80 PEPS(Constrained + Ledoit)     -0.6166**   

(0.3006) 

    1.1111*** 

(0.1007) 

0.6501 

100 PEPS(Constrained + Ledoit)     -0.5518   

(0.3602) 

    1.1830*** 

(0.1481) 

0.5697 

20 1/N     -0.8406*** 

(0.1631) 

    1.1412*** 

(0.0454) 

0.8825 

40 1/N     -1.0406*** 

(0.1958) 

    1.0447*** 

(0.0608) 

0.8346 

60 1/N     -0.8731*** 

(0.1598) 

    0.9162*** 

(0.0507) 

0.8601 

80 1/N     -0.7982*** 

(0.1421) 

    0.9482*** 

(0.0422) 

0.8841 

100 1/N     -0.8108*** 

(0.1368) 

    0.9443*** 

(0.0414) 

0.8922 
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Table 10: Fama French 3-factors Full Sample  

Note: This table presents the results of the portfolio’s excess returns on the Fama French 3-factor model (Equation 

34). Heteroskedasticity-robust standard errors are placed in parenthesis. Three levels of significance are considered: 

* : p < 0.1, ** : p < 0.05, *** : p<0.01 

 

 

 

 

 

 

       

N Portfolio Constant Mkt-RF SMB HML R-squared 

20 PEPS(Ledoit)     -0.5707*** 

(0.2086) 

    1.2144*** 

(0.0686) 

    -0.0023   

(0.0928) 

    0.0066   

(0.0742) 

0.8374 

40 PEPS(Ledoit)     -0.5221**   

(0.2200) 

    1.2269*** 

(0.0864) 

    -0.0688   

(0.1278) 

    -0.0794   

(0.0845) 

0.8038 

60 PEPS(Ledoit)     -0.6037**   

(0.2642) 

    1.1132*** 

(0.0901) 

    -0.0696   

(0.1374) 

    -0.3188*** 

(0.0957) 

0.7119 

80 PEPS(Ledoit)     -0.6455**   

(0.2811) 

    1.1396*** 

(0.0945) 

    -0.0593   

(0.1595) 

    -0.3617*** 

(0.0984) 

0.6907 

100 PEPS(Ledoit)     -0.5062   

(0.3343) 

    1.2147*** 

(0.1359) 

    -0.0413   

(0.1990) 

    -0.4368*** 

(0.1101) 

0.6200 

20 PEPS(Constrained 
+ Ledoit) 

    -0.5895*** 
(0.2089) 

    1.2205*** 
(0.0687) 

    -0.0178   
(0.0934) 

    0.0114   
(0.0747) 

0.8373 

40 PEPS(Constrained 
+ Ledoit) 

    -0.5022**   
(0.2131) 

    1.2276*** 
(0.0842) 

    -0.0857   
(0.1251) 

    -0.0934   
(0.0793) 

0.8085 

60 PEPS(Constrained 

+ Ledoit) 

    -0.6412**   

(0.2601) 

    1.1033*** 

(0.0866) 

    -0.0726   

(0.1360) 

    -0.3383*** 

(0.0945) 

0.7173 

80 PEPS(Constrained 

+ Ledoit) 

    -0.6261**   

(0.2735) 

    1.1345*** 

(0.0933) 

    -0.0563   

(0.1569) 

    -0.3623*** 

(0.0944) 

0.6955 

100 PEPS(Constrained 

+ Ledoit) 

    -0.5525 *  

(0.3341) 

    1.2028*** 

(0.1366) 

    -0.0235   

(0.1993) 

    -0.4317*** 

(0.1086) 

0.6173 

20 1/N     -0.8418*** 

(0.1685) 

    1.1426*** 

(0.0485) 

    -0.0055   

(0.0706) 

    -0.0106   

(0.0551) 

0.8826 

40 1/N     -1.0197*** 

(0.1887) 

    1.0237*** 

(0.0568) 

    0.0911   

(0.0745) 

    0.1185*   

(0.0696) 

0.8451 

60 1/N     -0.8550*** 

(0.1590) 

    0.9000*** 

(0.0499) 

    0.0769   

(0.0541) 

    0.0596   

(0.0553) 

0.8653 

80 1/N     -0.7741*** 

(0.1410) 

    0.9274*** 

(0.0423) 

    0.1016**   

(0.0516) 

    0.0620   

(0.0440) 

0.8911 

100 1/N     -0.7882*** 
(0.1369) 

    0.9251*** 
(0.0423) 

    0.0952*   
(0.0524) 

    0.0518   
(0.0445) 

0.8979 
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     Table 11: Fama French 5-factors Full Sample 

         

N Portfolio Constant Mkt-RF SMB HML RMW CMA R-squared 

20 PEPS(Ledoit)     -0.6592*** 
(0.2030) 

    1.2166*** 
(0.0738) 

    0.1153   
(0.1159) 

    -0.1294   
(0.1316) 

    0.2412   
(0.1473) 

    0.2323   
(0.1812) 

0.8473 

40 PEPS(Ledoit)     -0.5811*** 

(0.2173) 

    1.2476*** 

(0.1008) 

    -0.0404   

(0.1436) 

    -0.1752   

(0.1321) 

    0.0173   

(0.1323) 

    0.2189   

(0.2089) 

0.8072 

60 PEPS(Ledoit)     -0.6617* *  
(0.2693) 

    1.1692*** 
(0.1041) 

    -0.1338   
(0.1504) 

    -0.4223*** 
(0.1381) 

    -0.2473   
(0.1843) 

    0.3329   
(0.2526) 

0.7246 

80 PEPS(Ledoit)     -0.6984**   

(0.2817) 

    1.1995*** 

(0.1094) 

    -0.1408   

(0.1725) 

    -0.4584*** 

(0.1402) 

    -0.2916   

(0.1880) 

    0.3329   

(0.2490) 

0.7042 

100 PEPS(Ledoit)     -0.5548*   
(0.3339) 

    1.2757*** 
(0.1551) 

    -0.1317   
(0.2204) 

    -0.5271*** 
(0.1590) 

    -0.3123   
(0.2323) 

    0.3255   
(0.3080) 

0.6310 

20 PEPS(Constrained 

+ Ledoit) 

    -0.6794*** 

(0.2039) 

    1.2245*** 

(0.0739) 

    0.0972   

(0.1165) 

    -0.1274   

(0.1321) 

    0.2322   

(0.1485) 

    0.2420   

(0.1823) 

0.8471 

40 PEPS(Constrained 
+ Ledoit) 

    -0.5665*** 
(0.2093) 

    1.2511*** 
(0.0987) 

    -0.0570   
(0.1390) 

    -0.1980*   
(0.1178) 

    0.0126   
(0.1279) 

    0.2414   
(0.1960) 

0.8126 

60 PEPS(Constrained 

+ Ledoit) 

    -0.6986*** 

(0.2622) 

    1.1576*** 

(0.1010) 

    -0.1333   

(0.1478) 

    -0.4404*** 

(0.1298) 

    -0.2369   

(0.1760) 

    0.3260   

(0.2401) 

0.7295 

80 PEPS(Constrained 
+ Ledoit) 

    -0.6668**   
(0.2771) 

    1.1905*** 
(0.1086) 

    -0.1448   
(0.1694) 

    -0.4393*** 
(0.1378) 

    -0.2984   
(0.1861) 

    0.2892   
(0.2500) 

0.7078 

100 PEPS(Constrained 

+ Ledoit) 

    -0.6072*   

(0.3318) 

    1.2658*** 

(0.1553) 

    -0.1105   

(0.2209) 

    -0.5319*** 

(0.1572) 

    -0.3094   

(0.2313) 

    0.3477   

(0.3057) 

0.6291 

20 1/N     -0.8891*** 
(0.1738) 

    1.1385*** 
(0.0539) 

    0.0708   
(0.0858) 

    -0.0819   
(0.0764) 

    0.1677   
(0.1136) 

    0.1068   
(0.1356) 

0.8869 

40 1/N     -1.0234*** 

(0.1902) 

    1.0166*** 

(0.0618) 

    0.1148   

(0.0928) 

    0.1148   

(0.1015) 

    0.0640   

(0.1303) 

    -0.0144   

(0.1590) 

0.8456 

60 1/N     -0.8544*** 
(0.1625) 

    0.8931*** 
(0.0524) 

    0.0937   
(0.0710) 

    0.0623   
(0.0811) 

    0.0490   
(0.1030) 

    -0.0242   
(0.1317) 

0.8658 

80 1/N     -0.7794*** 

(0.1475) 

    0.9253*** 

(0.0482) 

    0.1145*   

(0.0668) 

    0.0544   

(0.0566) 

    0.0311   

(0.0960) 

    0.0066   

(0.1056) 

0.8913 

100 1/N     -0.7927*** 
(0.1435) 

    0.9227*** 
(0.0490) 

    0.1077   
(0.0678) 

    0.0455   
(0.0558) 

    0.0308   
(0.0953) 

    0.0036   
(0.1073) 

0.8980 

Note: This table presents the results of the portfolio’s excess returns on the Fama French 5-factor model (Equation 

36). Heteroskedasticity-robust standard errors are placed in parenthesis. Three levels of significance are considered: 

* : p < 0.1, ** : p < 0.05, *** : p<0.01 

 

  



44 
 

 

Table 13: Fama French 6-factors first half 

Note: This table presents the results of the portfolio’s excess returns on the Fama French 6-factor model (Equation 

36) for the period 12-2011 to 06-2017. Heteroskedasticity-robust standard errors are placed in parenthesis. Three 

levels of significance are considered: * : p < 0.1, ** : p < 0.05, *** : p<0.01 

 

 

 

 

 

  

         

N Portfolio Constant Mkt-RF SMB HML RMW CMA MOM R-

squared 

20 PEPS(Ledoit)     -0.3192   

(0.3457) 

    1.0053*** 

(0.1019) 

    0.2130   

(0.1706) 

    -0.3142   

(0.2058) 

    0.2676   

(0.3235) 

    0.4776   

(0.3476) 

    -0.2132   

(0.1417) 

0.6978 

40 PEPS(Ledoit)     -0.4313   

(0.3024) 

    1.0826*** 

(0.1161) 

    0.1075   

(0.1358) 

    -0.2640*   

(0.1537) 

    -0.1145   

(0.2275) 

    0.1068   

(0.2681) 

    0.1118   

(0.0954) 

0.7203 

60 PEPS(Ledoit)     -0.6100**   

(0.2772) 

    1.1696*** 

(0.1019) 

    0.0699   

(0.1203) 

    -0.3251**   

(0.1359) 

    -0.1930   

(0.1976) 

    0.0109   

(0.2585) 

    0.2903*** 

(0.0796) 

0.7848 

80 PEPS(Ledoit)     -0.7400**   

(0.2964) 

    1.2906*** 

(0.1090) 

    0.2464   

(0.1607) 

    -0.4416**   

(0.1816) 

    0.0065   

(0.1741) 

    0.1297   

(0.2666) 

    0.3875*** 

(0.0888) 

0.7787 

100 PEPS(Ledoit)     -0.6905*   

(0.3979) 

    1.3827*** 

(0.1469) 

    0.3360   

(0.2096) 

    -0.4218 *  

(0.2251) 

    0.0501   

(0.2449) 

    -0.1130   

(0.3339) 

    0.4755*** 

(0.1138) 

0.7165 

20 PEPS(Constrained 

+ Ledoit) 

    -0.3670   

(0.3468) 

    1.0174*** 

(0.1016) 

    0.1764   

(0.1721) 

    -0.3073   

(0.2065) 

    0.2439   

(0.3225) 

    0.4823   

(0.3492) 

    -0.2235   

(0.1428) 

0.7021 

40 PEPS(Constrained 

+ Ledoit) 

    -0.4585   

(0.2925) 

    1.1008*** 

(0.1114) 

    0.0792   

(0.1293) 

    -0.2363   

(0.1498) 

    -0.1255   

(0.2251) 

    0.1258   

(0.2690) 

    0.1511*   

(0.0867) 

0.7376 

60 PEPS(Constrained 

+ Ledoit) 

    -0.6676**   

(0.2824) 

    1.1585*** 

(0.1073) 

    0.0976   

(0.1221) 

    -0.3392**   

(0.1393) 

    -0.1533   

(0.1943) 

    0.0057   

(0.2525) 

    0.3010*** 

(0.0805) 

0.7812 

80 PEPS(Constrained 

+ Ledoit) 

    -0.7132**   

(0.2874) 

    1.2830*** 

(0.1080) 

    0.2314   

(0.1530) 

    -0.3720**   

(0.1644) 

    -0.0007   

(0.1726) 

    0.0315   

(0.2556) 

    0.3804*** 

(0.0864) 

0.7876 

100 PEPS(Constrained 

+ Ledoit) 

    -0.7269*  

(0.3922) 

    1.3403*** 

(0.1484) 

    0.3436*   

(0.2084) 

    -0.4782**   

(0.2352) 

    -0.0363   

(0.2654) 

    -0.0199   

(0.3290) 

    0.4592*** 

(0.1135) 

0.7105 

20 1/N     -0.5318**   

(0.2360) 

    0.7625*** 

(0.0621) 

    0.0180   

(0.1161) 

    -0.3355*** 

(0.1291) 

    -0.0394   

(0.1670) 

    0.2447   

(0.2174) 

    -0.2744*** 

(0.0773) 

0.7593 

40 1/N     -0.6150*** 

(0.1851) 

    0.4792*** 

(0.0524) 

    0.0371   

(0.0930) 

    -0.2365**   

(0.1024) 

    -0.1032   

(0.1546) 

    0.0094   

(0.1740) 

    -0.1684*** 

(0.0618) 

0.7014 

60 1/N     -0.5565*** 

(0.1800) 

    0.4757*** 

(0.0596) 

    0.0473   

(0.0766) 

    -0.2265**   

(0.0912) 

    -0.1016   

(0.1402) 

    0.0934   

(0.1508) 

    -0.0743   

(0.0561) 

0.7180 

80 1/N     -0.5348*** 

(0.1760) 

    0.5293*** 

(0.0606) 

    0.0611   

(0.0739) 

    -0.1747*   

(0.0908) 

    -0.0939   

(0.1404) 

    0.0347   

(0.1582) 

    -0.1418*** 

(0.0538) 

0.7692 

100 1/N     -0.5505*** 

(0.1544) 

    0.5301*** 

(0.0526) 

    0.0339   

(0.0607) 

    -0.1185   

(0.0744) 

    -0.0997   

(0.1171) 

    -0.0006   

(0.1264) 

    -0.0975**  

(0.0442) 

0.8116 
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Table 14: Fama French 6 Second Half 

         

N Portfolio Constant Mkt-RF SMB HML RMW CMA MOM R-squared 

20 PEPS(Ledoit)     -0.7971**   

(0.3130) 

    1.3092*** 

(0.0973) 

    0.0787   

(0.1517) 

    -0.0373   

(0.1773) 

    0.1880   

(0.1838) 

    0.1289   

(0.2391) 

    0.1694   

(0.1631) 

0.9113 

40 PEPS(Ledoit)     -0.8816**   
(0.4182) 

    1.4164*** 
(0.0961) 

    0.0277   
(0.1392) 

    0.0499   
(0.1574) 

    0.1090   
(0.2084) 

    0.1039   
(0.2498) 

    0.4891**   
(0.2193) 

0.8879 

60 PEPS(Ledoit)     -1.1013**   

(0.5230) 

    1.3120*** 

(0.1231) 

    -0.0507   

(0.2142) 

    -0.1984   

(0.1744) 

    -0.1365   

(0.2867) 

    0.2324   

(0.3071) 

    0.5198**   

(0.2153) 

0.7775 

80 PEPS(Ledoit)     -1.1199**   
(0.5198) 

    1.3614*** 
(0.1345) 

    -0.1721   
(0.2133) 

    -0.1090   
(0.1726) 

    -0.2953   
(0.2792) 

    0.1101   
(0.2794) 

    0.5928*** 
(0.2247) 

0.7810 

100 PEPS(Ledoit)     -1.0072   

(0.6359) 

    1.4739*** 

(0.1936) 

    -0.1575   

(0.2454) 

    -0.1287   

(0.2278) 

    -0.2984   

(0.3363) 

    0.1041   

(0.3689) 

    0.7200**   

(0.2954) 

0.7190 

20 PEPS(Constrained + 
Ledoit) 

    -0.7931**   
(0.3173) 

    1.3115*** 
(0.0981) 

    0.0721   
(0.1535) 

    -0.0441   
(0.1804) 

    0.1885   
(0.1877) 

    0.1441   
(0.2436) 

    0.1635   
(0.1647) 

0.9093 

40 PEPS(Constrained + 

Ledoit) 

    -0.8432**   

(0.4139) 

    1.4146*** 

(0.0949) 

    0.0127   

(0.1350) 

    0.0116   

(0.1493) 

    0.1066   

(0.2072) 

    0.1321   

(0.2449) 

    0.4701**   

(0.2200) 

0.8869 

60 PEPS(Constrained + 

Ledoit) 

    -1.1103**   

(0.5048) 

    1.3049*** 

(0.1186) 

    -0.0744   

(0.2092) 

    -0.2078   

(0.1699) 

    -0.1479   

(0.2761) 

    0.2166   

(0.2919) 

    0.5166**   

(0.2119) 

0.7879 

80 PEPS(Constrained + 

Ledoit) 

    -1.0984**   

(0.5150) 

    1.3488*** 

(0.1361) 

    -0.1609   

(0.2118) 

    -0.1118   

(0.1675) 

    -0.2837   

(0.2778) 

    0.0854   

(0.2798) 

    0.5914*** 

(0.2217) 

0.7802 

100 PEPS(Constrained + 

Ledoit) 

    -1.0367   

(0.6382) 

    1.4690*** 

(0.1943) 

    -0.1393   

(0.2496) 

    -0.1282   

(0.2277) 

    -0.2832   

(0.3414) 

    0.1177   

(0.3688) 

    0.7174**   

(0.2965) 

0.7181 

20 1/N     -0.8685*** 

(0.2310) 

    1.2606*** 

(0.0632) 

    0.0937   

(0.1029) 

    -0.0284   

(0.0786) 

    0.1252   

(0.1428) 

    0.0971   

(0.1460) 

    0.1204   

(0.0903) 

0.9481 

40 1/N     -0.8302*** 

(0.2316) 

    1.2116*** 

(0.0580) 

    0.0780   

(0.0925) 

    0.2165**   

(0.0872) 

    -0.1623   

(0.1401) 

    0.0298   

(0.1413) 

    0.0515   

(0.1038) 

0.9448 

60 1/N     -0.6665*** 

(0.1925) 

    1.0488*** 

(0.0475) 

    0.0321   

(0.0685) 

    0.1557**   

(0.0617) 

    -0.1546*   

(0.0913) 

    -0.0157   

(0.1089) 

    0.0174   

(0.0656) 

0.9557 

80 1/N     -0.5593*** 

(0.1670) 

    1.0611*** 

(0.0448) 

    0.0684   

(0.0589) 

    0.1090**   

(0.0488) 

    -0.1431   

(0.0933) 

    0.0420   

(0.0916) 

    0.0039   

(0.0627) 

0.9659 

100 1/N     -0.6170*** 

(0.1630) 

    1.0666*** 

(0.0466) 

    0.0950   

(0.0637) 

    0.0946**   

(0.0478) 

    -0.1210   

(0.0973) 

    0.0428   

(0.0910) 

    0.0382   

(0.0603) 

0.9667 

Note: This table presents the results of the portfolio’s excess returns on the Fama French 6-factor model (Equation 

36) for the period 07-2017 to 12-2022. Heteroskedasticity-robust standard errors are placed in parenthesis. Three 

levels of significance are considered: * : p < 0.1, ** : p < 0.05, *** : p<0.01 

 

 

 

 

 

 

 


