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Abstract

I examine the efficacy of neural networks in forecasting implied volatility, uti-
lizing firm characteristics data from Gu et al. (2020). I use end-of-the-month
data from at-the-money US call options with maturities of 30- and 91-days over
the sample period 1996 to 2021. In line with my expectations, neural networks
outperform linear regressions in forecasting implied volatility using firm charac-
teristics. Specifically, utilizing neural networks yields out-of-sample R-squared
increases of 25 and 10 percentage points for the 30- and 91-day maturities, rela-
tive to OLS. Diebold-Mariano statistics show neural networks outperform linear
regression achieving higher accuracy in 87.63% and 86.07% of the assessed op-
tions for the respective maturities. Option maturity does not play a major role
in IV predictability.

The views stated in this thesis are those of the author and not necessarily those of the
supervisor, second assessor, Erasmus School of Economics or Erasmus University

Rotterdam.
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I. Introduction

I examine the effectiveness of neural network (NN) models compared to linear re-

gression (OLS) in predicting implied volatility (IV) for US options with 1-month (30d) and

3-months (91d) maturity using the firm characteristics of Gu et al. (2020). Also, I study the

impact of option maturity on the relative forecasting performance of NN and OLS. Lastly,

I analyse variable importance of the forecasting models to uncover which variables have the

most relevance for forecasting IV. The data structure and methodology of this research are

largely based on Crego et al. (2023). The economic motivation for this research is to lay the

foundation of IV forecasting using NN, which could be used to make profits as an investor.

In Appendix A, I present a simplified example on how one can make profit by forecasting

IV using the Black-Scholes formula1. The scientific goal of this thesis is to find what factors

influence implied volatility and which model, linear versus nonlinear, is best capable of using

these factors to predict IV. This has been researched for asset pricing using realized returns

(Gu et al., 2020) or yields (Crego et al., 2023). However, it has not been discovered what the

implications are for IV. I expect results similar to Crego et al. (2023), because IV is closely

related to their yields estimator. Therefore, I expect NN to outperform OLS in forecasting

IV and anticipate liquidity-related characteristics to be important IV predictors.

Asset prices are dynamic and are affected by many other factors aside from cash flows

and performance of underlying companies. Macroeconomic (Hondroyiannis & Papapetrou,

2001) and geopolitical stability (Balcilar et al., 2018), investor sentiment (Baker & Wurgler,

2007) and other factors play important roles in determining riskiness of an asset. A parameter

that is often used to quantify the riskiness of an asset is implied volatility. Implied volatility

is an estimate for future volatility of an underlying asset, based on the option contract prices

on that asset. IV has been popularized by models such as the Black-Scholes model (Black
1In this scenario, a European call option is listed for $14.70. The relevant factors are as follows: spot price

= $110, strike price = $100, risk-free rate = 3%, and maturity = 1 year, resulting in an implied volatility of
15%. If one correctly anticipates that tomorrow the IV will increase to 16%, a financial gain of $0.30 can be
achieved by purchasing the call option at its current price.



Implied Volatility Forecasting using Neural Networks 2

& Scholes, 1973) and the Rubinstein Implied Binomial Tree (Rubinstein, 1994). These

models show the relation between IV and option prices, which allows for prediction of option

prices changes, by predicting future IV. IV is forward looking, i.e., it reflects the investors

expectations of future price changes of the asset. Cao et al. (2020) show that the put-

call implied volatility spread can be used to effectively predict equity premiums, stating

that the predictive power can be traced back to the forward-looking information underlying

the implied volatility spread, capturing general market sentiment. Similarly, the VIX, the

Chicago Board Options Exchange’s Volatility Index, is a measure of the stock market’s

expectation of future volatility based on S&P500 index options. Its ability to capture the

market expectations makes implied volatility a valid predictor for asset prices. Hence, in

general, the predictive power of IV for asset prices stems from its ability to capture market

expectations.

A vast body of literature has been dedicated to forecasting asset prices using factors.

Factor models such as the Capital Asset Pricing Model of Sharpe (1964) and the FF-5 of

Fama and French (2015) are regarded as cornerstones of modern-day asset pricing. These

models perform relatively well, but are limited to establishing linear relations between asset

prices and factors. This is where Machine Learning models can improve on the standard

methods. Machine learning (ML) is a relatively new approach to academic research. Its

relevance is found in its effectiveness in deciphering, especially nonlinear, relations between

dependent and independent variables. Gu et al. (2020) assess the task of asset pricing

using multiple ML models using a vast amount of predictors. The authors find that using

ML models yields large economics gains, in some cases doubling the return obtained using

linear models. Gu et al. (2020) and other studies such as Christensen et al. (2021) accredit

ML’s superior performance, compared to linear models, to the ability to capture nonlinear

relations. However, the literature regarding whether nonlinear is better than linear analysis

in predicting volatility instead of realized returns is not conclusive. For example, Vortelinos

(2017) finds that a Heterogeneous Auto Regressive model slightly outperforms nonlinear
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models. Vortelinos attributes the outperformance to the property of persistence of volatility.

However, Hosker et al. (2018) show that the recurrent neural networks (RNN) and long short-

term memory (LSTM) provide improved volatility forecasts compared to linear regression,

principal components analysis and ARIMA methods for 1-month option contracts of the

VIX. Vrontos et al. (2021) discovered that the utilization of machine learning techniques

for forecasting implied volatility can surpass conventional econometric models and model

selection methods. This superiority of machine learning models holds true in both statistical

and economic evaluation contexts. In the same vein, Malliaris and Salchenberger (1996)

show that neural networks are more accurate at forecasting implied volatility compared to

historic forecasts.

The central paper on which this research is based is Crego et al. (2023). In their

paper, the authors examine the usage of multiple models on predicting an option-based yield

estimator derived from Martin and Wagner (2019), using the characteristics of Gu et al.

(2020) and macro data of Welch and Goyal (2008). IV closely relates to yield estimator of

Martin and Wagner (2019), as IV is a key ingredient in their yield calculation. Hence, I

expect the data structure and methodology of Crego et al. (2023) to also be compatible with

IV research. Crego et al. (2023) find that their best performing model is NN3, which consid-

erably outperforms OLS at predicting option yields. Considering the similarities in research

design, I expect to obtain similar results to Crego et al. (2023), meaning neural networks

outperforming OLS in forecasting IV. Using this, I construct the following hypothesis

H1: Neural network outperforms linear regression in forecasting implied volatility based on

firm characteristics

I also aim to examine the effect of option maturity on the potential outperformance

of NN compared to OLS. The closer the option is to its expiration, the less opportunities

there are for an investor to make profit on it, as less volatility can affect its price. As the
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trading price of the option will eventually converge to the strike price, the option price tends

to become less volatile. A longer time until expiration allows for more changes of IV, which

is why I expect the implied volatility to be more complex to predict further from expiration.

I anticipate the ML model to be better suited for this complexity. Therefore, I predict

the difference in forecasting performance of the models to be larger for options with longer

maturities. I will not formally test this using a hypothesis as that is beyond the scope of this

thesis. Combining the aforementioned hypothesis with the maturity analysis, the Research

Question reads:

RQ: To what extent does neural network outperform linear regression in forecasting implied

volatility based on firm characteristics, and how does option maturity affect this relative per-

formance?



Implied Volatility Forecasting using Neural Networks 5

II. Data

In this analysis, I attempt to follow the data collection methodology from Crego et al.

(2023). I obtain implied volatility data of options with 30- and 91-days maturity from the

volatility surface of OptionMetrics. I limit the sample to end-of-the-month observations, i.e.,

the last trading day in each month. I use Center for Research in Security Prices (CRSP) to

obtain stock price data of the underlying assets. Next, I limit my sample to at-the-money

options by monthly filtering on the option contracts that are closest to the actual asset

prices. I use the database of Gu et al. (2020) to obtain the data on 94 firm characteristics.

I normalize the predictor data and use monthly median values to replace missing data.

Throughout this thesis, these predictors will be referred to as the GKX firm characteristics.

A list of these firm characteristics with descriptions can be found in the Table B1 (Appendix

B). To be able to optimize the NN model, I split all my data into a training, validation and

a testing section. Following Crego et al. (2023), I use 1996-2003 as the training data, 2004-

2007 as the validation data and the remaining years, 2008-2021, as the testing set. Lastly, I

exclude options with fewer than 12 consecutive monthly observations in the test set, as an

imbalanced panel introduces additional complexity to the forecasting process. The final data

set stretches from January 1996 to December 2021. The descriptive statistics for implied

volatility after aforementioned adjustments are presented in the following table:

Table 1: Desciptive Statistics: Implied Volatility

30d 91d

Train Validation Test Train Validation Test

Mean 0.4987 0.4234 0.4805 0.4891 0.4170 0.4568
Std 0.2433 0.2274 0.2937 0.2341 0.2163 0.2665
Med 0.4429 0.3728 0.4049 0.4342 0.3708 0.3906
Obs 108993 123738 543975 108988 123737 543959

Mean, standard deviation, median and amount of observations of implied volatility. Train is the period
1996-2003, validation is 2004-2007 and test is 2008-2021. Values, except observations, are rounded to the

fourth decimal.
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III. Methodology

I utilize the train-validate-test approach to optimize the neural network. In this

process, the training set is utilized to estimate coefficients for each predictor variable, while

the validation set assesses model performance beyond the training data. This facilitates

model refinement, enhancing out-of-sample forecasting accuracy. Subsequently, the testing

set evaluates the actual forecasting proficiency of the model. However, for the OLS model,

the validation set holds no utility since this model lacks tuning parameters (hyperparameters)

for refinement. Integrating the validation period into the training and/or testing sets for OLS

would result in imbalanced performance comparisons. Consequently, the linear regression

model excludes the validation period to ensure a fair evaluation. Both models share the same

structure: the implied volatility serves as the dependent variable, while the feature variables

from the database by Gu et al. (2020) act as the independent variables.

III.I Linear Regression

The first forecasting model is the pooled linear regression. Initially, I perform a re-

gression on the entire training dataset to obtain the coefficients that capture the relationship

between each GKX feature and implied volatility. This regression takes the following form:

IV = α+X trainβ̂ + ε (1)

Here, IV represents a N train× 1 vector of implied volatilities, α denotes a N train× 1

vector of constants, X train indicates a N train × 94 matrix of the 94 firm characteristics

from the Gu et al. (2020) of the training period, β̂ represents a 94 × 1 vector of estimated

coefficients of the firm characteristics, and ε denotes a N train×1 vector of estimation errors.

N train represents the amount of observations in the training set. For forecasting the IV for

the test set, I utilize the coefficients obtained from the training set’s regression, resulting in
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the following equation:

ÎV = X testβ̂ (2)

Here, ÎV represents a N test×1 vector of implied volatilities, X test indicates a N test×

94 matrix of the 94 firm characteristics from the Gu et al. (2020) of the training period and β̂

represents the 94× 1 vector of coefficients estimated in Eq. (1). N test represents the amount

of observations in the test set.

III.II Neural Network

The more advanced model of this research is the feed-forward neural network. This

artificial intelligence model feeds the raw data from the input layer through one or multiple

hidden layers of neurons that interact with each other and non-linearly transform the raw

input data. These transformations are then linearly aggregated in the final output layer.

Neural networks have a vast amount of computational flexibility, which is both an asset as

well as a liability. It allows for complex nonlinear function estimation, but has the drawback

of having low transparency and being highly parameterized.

The key objective in Machine Learning is to create a model that performs well on

data which it has not been trained on, achieving a low regularisation error. A proper model

achieves a sufficiently small training error as well as a sufficiently small gap between training

and test error. This ties into the challenge of optimizing a model’s capacity, i.e., its ability

to fit a wide variety of functions. Ideally, the ML model’s capacity closely matches the true

complexity of its task. An insufficient capacity leads to underfitting, meaning the model

does not learn enough from the training data to be effective on the test set. More formally,

the training error is not sufficiently low. Underfitting is associated with a higher bias of the
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estimator. The bias of the estimator is defined as:

Bias(θ̂m) = E[θ̂m]− θ, (3)

where θ̂m is the estimator and θ is the true underlying value. In contrast, a too high capacity

leads to overfitting. This means the model is too tailored to the training data, such that it

becomes ineffective when used on the test set. More formally, the gap between training and

test error is too large. Overfitting is associated with a higher variance of the estimator. The

variance of the estimator is written as: V ar(θ̂). Finding the optimal model capacity means

optimizing the objective function. From the multiple possible objective functions, I use the

MSE objective function as this is also the objective function for OLS. MSE is defined as:

MSE = E[(θ̂m − θ)2] = Bias(θ̂m)
2 + V ar(θ̂m) (4)

The model optimizes its capability to forecast out-of-sample by minimizing the MSE equation

on the validation set. This ensures, given the data and hyperparameters, the model finds the

optimal trade-off between training error and the gap between training and test error. The

MSE is calculated monthly and averaged to obtain a single value.

Model Parameters

To optimize the ML model’s capacity for out-of-sample forecasting, hyperparameters

are used to tune the model such that the MSE of validation set is minimised. Neural

networks have a complicated structure and require a number of hyperparameters. The first

hyperparameter is the amount of neurons in each hidden layer. To find the optimal hidden

layer structure and learning rate (LR), I use a grid search on the 30d validation data. To

save computational expense and time, it is assumed that the optimal parameters found with

the 30d data are also optimal for the 91d data. I examine the performance of {32, 16, 8}

and {16, 8} where each element represents the amount of neurons per hidden layer. Within
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each hidden layer, neurons receive input and perform mathematical operations, such as

assigning weights, nonlinearly transforming the data. The output is then passed onto the

next layer. Learning rate (LR) is the hyperparameter that determines how much the model

adjusts to estimated error each time the model is updated. The grid search includes LR

∈ {0.1, 0.01, 0.001}. Following modern NN default recommendation, I use rectified linear

unit (ReLu) as the activation function of my hidden layers (Jarrett et al., 2009). ReLu

activation function, defined as g(z) = max{0, z}, has the benefits of being nonlinear, yet

preserving many desired properties of linear functions. These desired properties include

easy optimisation and good generalisation. Following Crego et al. (2023), I use the Adam

optimisation algorithm with 100 epochs. The L1 penalty is the hyperparameter that assigns a

penalty based on the amount of variables, used to prevent inclusion of too many variables. To

determine the optimal L1 penalty, I use cross-validation. Unlike OLS, neural networks exhibit

variability in forecasting outcomes. I use a randomly selected seed to ensure reproducibility

and consistency of the results.

III.III Forecast Evaluation

To evaluate the goodness-of-fit of a model, a commonly used measure is the R-squared

(R2). R-squared measures the proportion of variance of the dependent variable that is

explained by the model of independent variables. When evaluating a forecasting model, it is

common to calculate the R-squared based on the forecasts of the test sample, as this shows

how well the model performs on not previously-shown data compared to the simple mean.

This is referred to as the out-of-sample R-squared, R2
oos. The R2

oos is calculated as follows:

R2
oos = 1−

∑n
i=1(ytest,i − ŷtest,i)

2∑n
i=1(ytest,i − ȳtest)2

(5)

where y represents the actual IV, ŷ represents the model’s estimation of IV and ȳ represents

the simple average actual IV. Given a correctly constructed model, a higher R2 means a more
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accurate model. R2 has an upper limit of 1 and is only negative if the model’s forecast is a

worse approximate of the true value than the simple average. The R2 is calculated monthly

to capture how much of the cross-sectional variation can be explained using the forecasts.

This also allows for assessing how the models’ accuracy develops over time. Finally, for each

model I take the average of the monthly R2s to obtain a single evaluation metric.

Finally, I partition the generated multi-asset Panel data containing NN and OLS

forecasts into distinct single-asset time series. For every individual asset, I compute forecast

errors for both NNs and OLS, followed by conducting the Diebold-Mariano (DM) test.

DM =
√
n× d̃

σd

(6)

d̃ =

∑n
i=1(ŷ

NN
i − yi)− (ŷOLS

i − yi)

n
=

∑n
i=1 ŷ

NN
i − ŷOLS

i

n
(7)

where d̃ represents the average difference between NN forecast error and OLS forecast error,

σd represents the standard deviation of the difference between NN forecast error and OLS

forecast error and n represents the amount of forecasts. I use DM such that a test statistic

larger than the critical value indicates NN outperforms OLS. Conversely, a test statistic lower

than the negative critical value indicates OLS outperforms NN. Using two-sided testing and

a 95% confidence level, the critical value is approximately ±1.96. Finally, I take the average

of the DM test statistics and observe what percentage of test statistics exceeds the critical

value.

III.IV Variable Importance

In contrast to OLS, neural networks are infamously nontransparent, meaning it is

hard to determine the contribution of each variable to the model. Following Crego et al.

(2023), I use the leave-one-covariate-out (LOCO) from Lei et al. (2018) on the training set

to obtain the variable importance for the neural network. First, I calculate the Spearman
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Rank Correlation ρ for the entire model, i.e., using all F = 94 firm characteristics. Then,

the model is trained F = 94 times, each iteration dropping feature f = 1,2,...,F from the

full model. The variable importance of feature f is then calculated as the absolute change of

Spearman Rank Correlation, |∆ρ|, when dropping f from to the full model.
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IV. Results

The first objective of this research is to obtain the optimal neural network hyperpa-

rameters. The hyperparameters I kept adjustable are the hidden layer structure, learning

rate and L1 penalty. Using the LASSO model, I obtained optimal L1 penalties of approx-

imately 0.00032 and 0.00027 for the 30-day and 91-day maturities, respectively. Using the

grid search, I obtained the optimal configuration for the other hyperparameters. In Table 2,

I present the performance measures of out-of-sample forecasting for all configurations of the

grid search. The results are from the validation data of the 30-day maturity options.

Table 2: Grid Search

LR=0.1 LR=0.01 LR=0.001

Layers R2 MSE R2 MSE R2 MSE

{32,16,8} -0.2042 0.0623 -0.5692 0.0811 0.1175 0.0456
{16,8} -0.2041 0.0623 0.6168 0.0198 -1.5860 0.1337

Table presents the out-of-sample R2 and Mean Squared Error. LR represents Learning Rates and Layers
represents the layer structure of the Neural Network. Values are rounded to the fourth decimal.

From this table, one can see that the configuration LR = 0.01 and {16, 8} performs

best, both achieving the highest R-squared, as well as lowest Mean Squared Error. LR = 0.1

was unable to effectively produce different forecasts, i.e, it produced a single value for nearly

the entire panel of forecasts. This is likely the result of overfitting; the model is too tailored

to the training data which causes it to become insensitive to new inputs. For LR = 0.1,

changing the hidden layer structure hardly affected the performance, as can be seen from

the minimal alteration in both R2 and MSE. The models using learning rates of 0.1 are both

unable to achieve positive R-squared values, meaning their forecasts are worse approximates

than the simple average. The same holds for the configuration LR = 0.001 and {32, 16, 8},

which has the worst performance of all configurations considered. Increasing the complexity

of the hidden layer structure did vastly improve the forecasting capabilities, even obtaining
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a positive R2. In contrast, the LR = 0.01 model vastly improved when reducing the hidden

layer complexity, obtaining the best R2 and MSE of all configuration.

The optimal configuration obtained using 30-day data, {16, 8} and LR = 0.01, was

used to implied volatility forecasts for both maturities. To show how the models’ accuracy

develops over time, I grouped the IV forecasts by month and calculated the out-of-sample R2

for both OLS and NN at both maturities. The result of this analysis is presented in Figure

1.
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Figure 1: Monthly R2

Y-axis represents monthly out-of-sample R2 and the x-axis represents the period 2008-2022. Grey bars
indicate periods of economic recessions according to National Bureau of Economic Research (01/2008 -
06/2009 and 02/2020 - 04/2020).

Both models show decreased R2 in the periods of economic recession at both ma-

turities. NN does not experience as severe accuracy drops as the OLS models, except for

the 2020 recession. Out of all forecasts, the R2 of the 30-day maturity OLS experiences the

largest decreases.

Next, I averaged the monthly values to obtain a single R2 per model. Similarly, I

calculated and averaged the monthly MSEs. The results are presented in Table 3.
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Table 3: Neural Networks versus OLS

30d 91d

R2 MSE R2 MSE

OLS 0.0699 0.0678 0.2260 0.0473
NN 0.3274 0.0521 0.3302 0.0417

Table presents the out-of-sample R2 and Mean Squared Error. Values are rounded to the fourth decimal.

Looking at R2, the neural network model performs better than the linear regression at

forecasting implied volatility using the GKX firm characteristics. Note that for both models

are more accurate at forecasting the 91d maturity. Using neural networks instead of OLS

yields an increase in out-of-sample R-squared of more than 25 and 10 percentage points for

the 30- and 91-day maturities, respectively. NN also obtains slightly lower MSE than OLS

at both maturities.

To formally test the forecasting ability difference between NN and OLS, I used the

Diebold-Mariano test on each asset separately. The average DM test statistic and the per-

centage of cases where NN is significantly better than OLS (DM∗%) are shown in Table

4:

Table 4: Diebold-Mariano Test

AverageDM DM∗%

30d 17.47 87.63
91d 11.42 86.07

Values are rounded to the second decimal. DM∗% shows the amount of cases for which the DM statistic is
larger than critical value 1.96, meaning NN has significantly lower forecast errors than OLS

Table 4 presents the main result of the paper. Both maturities have average DM test

statistics much larger than 1.96, 30d having the largest of the two. A DM test statistic that

exceeds the critical value of 1.96 indicates that NN has significantly lower forecasting errors

than OLS. NN performs better than OLS in more than 86% of cases at forecasting IV using

GKX firm characteristics at both maturities. Despite the difference in average DM statistic,

there is not a large difference in NN outperformance between maturities.
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Lastly, the results of the variable importance analysis are shown in Figure 1. Fig-

ure 1.a and 1.b show the 20 most important variables for the 30d and 91d training sets,

respectively.
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Figure 2: Variable Importance

This figure shows of the variable importance analysis using leave-one-covariate-out on Spearman rank corre-
lation on the training set (1996-2003). This figure shows the variable importance of the 20 most important
variables for the 30d and 91d maturity options. The x-axis variable, |∆ρ|, represents the absolute change in
Spearman rank correlation from the full model, when the y-axis variable feature is excluded.

Figure 2.a shows that, for the 30d maturity, the three most important variables

are: bid-ask spread, idiosyncratic return volatility and standard deviation of asset turnover.

Figure 2.b shows that at the 91d maturity the three most important variables are: research

and development-to-sales ratio, bid-ask spread, idiosyncratic return volatility.
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V. Discussion

In this section, I discuss the results of this thesis. The first result to discuss are

the results from Figure 1. Both models show decreased R2 coinciding with the periods of

economic recession at both maturities. Notice that NNs does not experience as large R2 drops

as OLS. The economic turbulence of a recession is likely causing an increase in complexity of

implied volatility predicting, leading to both forecast models being less accurate. OLS suffers

a total of four major accuracy drops, two of which do not occur during to economic recessions,

between 2013-2015 and 2016-2018. In an attempt to explain these drops, I examined the

trends of implied volatility and implied volatility changes. I expected that these drops might

be caused by rapid changes in IV trends, making the prediction task more complicated.

Looking at Figure C1 and C2 (Appendix C), IV trend spikes can be observed coinciding

with the economic recession periods. However, no noticeable trend spikes occur around the

accuracy drops between 2013-2015 and 2016-2018. Thus, I conclude that these R2 drops

are likely not the result of rapid IV trend changes. What actually did cause these accuracy

drops remains unexplained.

Next is the comparison of forecast evaluation measures of NN and OLS and the

results of the Diebold-Mariano test. From Table 3, one can see that, based on the evaluation

measures presented, NN outperforms OLS for both maturities. OLS achieves better R2

and MSE on the longer maturity options, likely due to having less intense accuracy drops

as seen in Figure 1. NN’s R2 and MSE also both improve from 30- to 91-day maturity,

however not by as much as is the case for OLS. The difference in R2 is smaller for the 91-day

maturity. This initially appears to contrast my expectation that the difference in forecasting

performance of the models are larger for options with longer maturities. However, the results

presented in Table 4 show that this is not necessarily the case, as the amount of cases in

which NN is more accurate than OLS do not differ much between maturities (from 87.6% to

86.1%). Figure 1 shows that OLS often obtains a higher R2 than NN, but the large accuracy
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drops is what deteriorates OLS’ overall performance. NN is not consistently more accurate

than OLS, but NN does not experience such accuracy drops leading to the majority of assets

being better approximated by NN than OLS. It would be interesting to examine the relative

performance between the forecasting methods when excluding recession periods.

In Table 4, I also present the average DM statistics. Both maturities have average

DM much greater than the 1.96 critical value. The 30d has a larger average DM than the 91d

maturity, however as discussed earlier, this does not lead to a large difference in percentual

NN outperformance. The mean of DM statistics is included as it is an easy-to-understand

metric. It also shows that significance of NN’s outperformance is not highly affected by

critical value choice. In retrospect, the median DM might also have been a relevant addition,

as the median is more robust against outliers than the mean.

Next is the variable importance analysis, shown in Figure 2. The first thing to

note is that the most important variable differs across the maturities, 30d having bid-ask

spread (baspread) and 91d having research & development to sales ratio (rd_sale) as most

important variable. Bid-ask spread, as well as idiosyncratic return volatility (idiovol), is

amongst the three most important variables for both maturities. This could indicate that

these two variables are important for IV forecasting using NN regardless of option maturity.

To formally investigate this, future research should include more option maturities. stdturn

is third most important for the 30d maturity. It is also worthy to note that the x-axes of

the subfigures differ in magnitude. For 30d, baspread leads to a Spearman rank correlation

change of 0.019, whereas rd_sale leads to a change of 0.053 for 91d, more than twice as

much. Despite being highly contributing for 91d, research and development to sales is not

included in the top 20 for 30d. Similarly, stdturn is in the top 3 for the 30d maturity but

not included in the top 20 for 91d. An explanation for this could lie in the update frequency

of variables. stdturn is updated monthly and important to short, 30-day maturity options,

while rd_sale is annually updated and important for the longer, 91-day maturity options.

Considering this, there might be a correlation between the significance of certain variables for
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short maturity options and the frequency of their updates, where short-term (30d) options

tend to have more important variables updated more frequently. Conversely, for longer (91d)

maturity options, it would imply crucial variables undergo less frequent updates. Looking at

the update frequency of the top 20 variables of 30d, 8 are monthly, 4 are quarterly and 8 are

annually. For 91d, 7 are monthly, 1 is quarterly and 12 are annually. 91d indeed has more

annually updated variables than 30d, but this is not enough evidence to make any claims.

It is also relevant to discuss whether the variable importance results are in line with

prior literature. Bid-ask spread denotes the difference between the lowest asking price and

the highest bid for an asset and is a measure of liquidity. Standard deviation of asset turnover

is a measure of asset liquidity volatility. Chou et al. (2011) show that an increase in option

liquidity corresponds with an increase in the level of the implied volatility curve. This positive

relation between liquidity and IV might explain why these variables are important for IV

estimation. My results are in line with Crego et al. (2023) as they find that liquidity-related

characteristics explain most of the variation in expected returns. Furthermore, Crego et al.

(2023) show that for their predicted yield analysis for the S&P500 assets, bid-ask spread is

the most import variable and asset turnover, which closely relates to the standard deviation

of asset turnover, is the fifth most important variable. Next is the variable idiosyncratic

return volatility. This variable shows the volatility associated with a specific individual

asset. The importance of this variable is in line with Crego et al. (2023), as their variable

importance shows that for predicted yield, idiosyncratic return volatility is the second most

important variable for the S&P500 stocks. Lastly, research and development to sales ratio

is a measure of a firm’s level of investment in innovation activities. This variable is not

amongst the top 5 most important variables for predicted yields in the S&P500 sample, but

is the sixth most contributing variable for the total testing set in Crego et al. (2023). This

total testing set does however contain non-optionable stocks which are not included in my

dataset. Summarizing, the three most contributing variables of both 30d and 91d maturities

are in line with the results of Crego et al. (2023), further confirming the likeness of the IV
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and predicted yields

Lastly, I discuss the implications of the results on the hypothesis and research question

of this thesis. Table 4 shows NN outperforms in more than 86% of the cases. Based on these

results, I conclude that the results are in favour of the hypothesis that neural network

outperforms linear regression in forecasting implied volatility based on firm characteristics.

This also answers the first section of the research question. When changing the option

maturity from 30d to 91d, OLS’ metrics improve more than NN’s, but the percentage of

cases in which NN is superior only drops from 87.6% to 86.1%. Even though this is not a

formal test, I conclude that option maturity does not appear to have a large effect on the

relative performance between NN and OLS. This is in contrast with my expectation, which

is likely caused the expectation was poorly founded.
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VI. Application

In this section, I show how one can use the NN to form an actual trading strategy.

Using the Black-Scholes formula (Appendix A) one can derive that, ceteris paribus, an

increase (decrease) in implied volatility is associated with an increase (decrease) in option

price. This means that investors should hold call options that are expected to rise in IV to

profit off the associated expected call price increase. Conversely, one should write call options

that are expected to drop in IV to profit off the associated expected call price decrease. The

first step to form an actual trading strategy is to use NN to forecast IV as done in this

research. Next, one could compute the monthly IV changes for all options and sort the

options into deciles based on their IV change levels. Decile 10 contains the so-called winner

options with the highest positive (or least negative) expected changes in IV, while decile 1

contains the so-called loser options with the highest negative (or least positive) expected

changes in IV. Next, similar to a long-short portfolio for stocks, one can construct a hold-

write portfolio for options, holding call options from the winner decile (10) and writing call

options from the loser decile (1). As the contents of the deciles are subject to change each

month, the hold-write portfolio has to be monthly-rebalanced. This is just one example of

many possible trading strategies that include IV forecasting using NN.
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VII. Conclusion

I examine the relative performance of neural networks and linear regressions at the

task of forecasting implied volatility using firm characteristics. I use end-of-the-month data

from at-the-money US call options with 30-day and 91-day maturities and 94 firm charac-

teristics of Gu et al. (2020), from 1996 until 2021. Using a grid search, I find that the best

performing NN model is able to produce higher out-of-sample R-squared and lower mean

squared error values than OLS for both maturities. Using the Diebold-Mariano test, NN

is the more accurate forecast model for more than 86% of the options. The maturity of

the options does not appear to play a major role in the Diebold-Mariano analysis. NN’s

outperformance is likely attributable to that fact that its performance is more stable in

periods in which OLS experiences sharp accuracy decreases. The most important drivers

in explaining cross-sectional variation in IV are bid-ask spread and R&D-to-sales ratio, for

option maturities 30 and 91, showing from neural network variable importance analysis
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Appendix

Appendix A; IV Profitability Example

The Black-Scholes formula is defined as:

C = St · N (d1)−K · e−rt · N (d2) (8)

P = K · e−rt · N (−d2)− St · N (−d1) (9)

d1 =
ln
(
St

K

)
+
(
r + σ2

2

)
t

σ
√
t

(10)

d2 = d1 − σ
√
t (11)

, where C and P represent the call and put option prices, respectively. St is the spot

price, K is the strike price, r is the risk-free rate, t is the time to maturity, and σ is the

volatility of the underlying asset. N (·) denotes the cumulative distribution function of the

standard normal distribution. Consider a European call option with St = 110, k = 100,

r = 3%, t = 1 year or td = 365 days. The call option is listed for $14.70. Solving for

these values in equations (9), (11) and (12) results in σ = 15%. Suppose one forecasts that

tomorrow the underlying asset’s volatility will be σ = 16%. Using the same equations (and

td = 364), one can obtain that the call option should be worth $15.00. Ceteris paribus, the

call option is currently undervalued, meaning one theoretically gains $0.30 by buying this

call option. This example illustrates how to profit of the option Greek vega, meaning the

price sensitivity to changes in implied volatility. This example is purely illustrative and is

not meant to be realistic.
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Appendix B; GKX Firm Characteristics

Table B1: Details of the Firm Characteristics
No. Acronym Firm characteristic Paper’s author(s) Year, Journal Data Source Frequency
1 absacc Absolute accruals Bandyopadhyay, Huang 2010, WP Compustat Annual
2 acc Working capital accruals Sloan 1996, TAR Compustat Annual
3 aeavol Abnormal earnings Lerman, Livnat 2007, WP Compustat+CRSP Quarterly
4 age # years since first Jiang, Lee 2005, RAS Compustat Annual
5 agr Asset growth Cooper, Gulen 2008, JF Compustat Annual
6 baspread Bid-ask spread Amihud 1989, JF CRSP Monthly
7 beta Beta Fama 1973, JPE CRSP Monthly
8 betasq Beta squared Fama 1973, JPE CRSP Monthly
9 bm Book-to-market Rosenberg, Reid 1985, JPM Compustat+CRSP Annual
10 bm_ia Industry-adjusted Asness, Porter 2000, WP Compustat Annual
11 cash Cash holdings Palazzo 2012, JFE Compustat Quarterly
12 cashdebt Cash flow to debt Ou 1989, JAE Compustat Annual
13 cashpr Cash productivity Chandrashekar 2009, WP Compustat Annual
14 cfp Cash flow to price ratio Desai, Rajgopal 2004, TAR Compustat Annual
15 cfp_ia Industry-adjusted Asness, Porter 2000, WP Compustat Annual
16 chatoia Industry-adjusted Soliman 2008, TAR Compustat Annual
17 chcsho Change in shares Pontiff 2008, JF Compustat Annual
18 chempia Industry-adjusted Asness, Porter 1994, WP Compustat Annual
19 chinv Change in inventory Thomas 2002, RAS Compustat Annual
20 chmom Change in 6-month Gettleman 2006, WP CRSP Monthly
21 chpmia Industry-adjusted Soliman 2008, TAR Compustat Annual
22 chtx Change in tax expense Thomas 2011, JAR Compustat Quarterly
23 cinvest Corporate investment Titman, Wei 2004, JFQA Compustat Quarterly
24 convind Convertible debt Valta 2016, JFQA Compustat Annual
25 currat Current ratio Ou 1989, JAE Compustat Annual
26 depr Depreciation / PP&E Holthausen 1992, JAE Compustat Annual
27 divi Dividend initiation Michaely, Thaler 1995, JF Compustat Annual
28 divo Dividend omission Michaely, Thaler 1995, JF Compustat Annual
29 dolvol Dollar trading volume Chordia, Subrahmanyam 2001, JFE CRSP Monthly
30 dy Dividend to price Litzenberger 1982, JF Compustat Annual
31 ear Earnings announcement Kishore, Brandt 2008, WP Compustat+CRSP Quarterly
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Table B1 (Continued): Details of the Firm Characteristics

No. Acronym Firm characteristic Paper’s author(s) Year, Journal Data Source Frequency
32 egr Growth in common Richardson, Sloan 2005, JAE Compustat Annual
33 ep Earnings to price Basu 1977, JF Compustat Annual
34 gma Gross profitability Novy-Marx 2013, JFE Compustat Annual
35 grCAPX Growth in capital Anderson 2006, JF Compustat Annual
36 grltnoa Growth in long term Fairfield, Whisenant 2003, TAR Compustat Annual
37 herf Industry sales Hou, Robinson 2006, JF Compustat Annual
38 hire Employee growth rate Bazdresch, Belo 2014, JPE Compustat Annual
39 idiovol Idiosyncratic return volatility Ali, Hwang 2003, JFE CRSP Monthly
40 ill Illiquidity Amihud 2002, JFM CRSP Monthly
41 indmom Industry momentum Moskowitz 1999, JF CRSP Monthly
42 invest Capital expenditures Chen 2010, JF Compustat Annual
43 lev Leverage Bhandari 1988, JF Compustat Annual
44 lgr Growth in long-term Richardson, Sloan 2005, JAE Compustat Annual
45 maxret Maximum daily return Bali, Cakici 2011, JFE CRSP Monthly
46 mom12m 12-month momentum Jegadeesh 1990, JF CRSP Monthly
47 mom1m 1-month momentum Jegadeesh 1993, JF CRSP Monthly
48 mom36m 36-month momentum Jegadeesh 1993, JF CRSP Monthly
49 mom6m 6-month momentum Jegadeesh 1993, JF CRSP Monthly
50 ms Financial statement Mohanram 2005, RAS Compustat Quarterly
51 mvel1 Size Banz 1981, JFE CRSP Monthly
52 mve_ia Industry-adjusted size Asness, Porter 2000, WP Compustat Annual
53 nincr Number of earnings Barth, Elliott 1999, JAR Compustat Quarterly
54 operprof Operating Fama, French 2015, JFE Compustat Annual
55 orgcap Organizational Eisfeldt, Papanikolaou 2013, JF Compustat Annual
56 pchcapx_ia Industry adjusted Abarbanell, Bushee 1998, TAR Compustat Annual
57 pchcurrat % change in current ratio Ou 1989, JAE Compustat Annual
58 pchdepr % change in depreciation Holthausen, Larcker 1992, JAE Compustat Annual
59 pchgm_pchsale % change in gross margin Abarbanell, Bushee 1998, TAR Compustat Annual
60 pchquick % change in quick ratio Ou 1989, JAE Compustat Annual
61 pchsale_pchinvt % change in sales Abarbanell, Bushee 1998, TAR Compustat Annual
62 pchsale_pchrect % change in sales Abarbanell, Bushee 1998, TAR Compustat Annual



Im
plied

V
olatility

Forecasting
using

N
euralN

etw
orks

27

Table B1 (Continued): Details of the Firm Characteristics

No. Acronym Firm characteristic Paper’s author(s) Year, Journal Data Source Frequency
63 pchsale_pchxsga % change in sales Abarbanell, Bushee 1998, TAR Compustat Annual
64 pchsaleinv % change sales-to-inventory Ou 1989, JAE Compustat Annual
65 pctacc Percent accruals Hafzalla, Lundholm 2011, TAR Compustat Annual
66 pricedelay Price delay Hou, Moskowitz 2005, RFS CRSP Monthly
67 ps Financial statements Piotroski 2000, JAR Compustat Annual
68 quick Quick ratio Ou 1989, JAE Compustat Annual
69 rd R&D increase Eberhart, Maxwell 2004, JF Compustat Annual
70 rd_mve R&D to market Guo, Lev 2006, JBFA Compustat Annual
71 rd_sale R&D to sales Guo, Lev 2006, JBFA Compustat Annual
72 realestate Real estate holdings Tuzel 2010, RFS Compustat Annual
73 retvol Return volatility Ang, Hodrick 2006, JF CRSP Monthly
74 roaq Return on assets Balakrishnan, Bartov 2010, JAE Compustat Quarterly
75 roavol Earnings volatility Francis, LaFond 2004, TAR Compustat Quarterly
76 roeq Return on equity Hou, Xue 2015, RFS Compustat Quarterly
77 roic Return on invested Brown, Rowe 2007, WP Compustat Annual
78 rsup Revenue surprise Kama 2009, JBFA Compustat Quarterly
79 salecash Sales to cash Ou 1989, JAE Compustat Annual
80 saleinv Sales to inventory Ou 1989, JAE Compustat Annual
81 salerec Sales to receivables Ou 1989, JAE Compustat Annual
82 secured Secured debt Valta 2016, JFQA Compustat Annual
83 securedind Secured debt indicator Valta 2016, JFQA Compustat Annual
84 sgr Sales growth Lakonishok, Shleifer 1994, JF Compustat Annual
85 sin Sin stocks Hong, Kacperczyk 2009, JFE Compustat Annual
86 sp Sales to price Barbee, Mukherji 1996, FAJ Compustat Annual
87 std_dolvol Volatility of liquidity Chordia, Subrahmanyam 2001, JFE CRSP Monthly
88 std_turn Volatility of liquidity Chordia, Subrahmanyam 2001, JFE CRSP Monthly
89 stdacc Accrual volatility Bandyopadhyay, Huang 2010, WP Compustat Quarterly
90 stdcf Cash flow volatility Huang 2009, JEF Compustat Quarterly
91 tang Debt capacity/firm Almeida, Campello 2007, RFS Compustat Annual
92 tb Tax income to book Lev, Nissim 2004, TAR Compustat Annual
93 turn Share turnover Datar, Naik 1998, JFM CRSP Monthly
94 zerotrade Zero trading days Liu 2006, JFE CRSP Monthly

Source: Gu et al. (2020), supplementary material
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Appendix C; Monthly IV Graphs
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Figure C1: Monthly Mean and Median Implied Volatility

Y-axis represents monthly implied volatility level and the x-axis represents the period 2008-2022. Grey
bars indicate periods of economic recessions according to National Bureau of Economic Research (01/2008
- 06/2009 and 02/2020 - 04/2020).
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Figure C2: Monthly Mean and Median Implied Volatility change

Y-axis represents monthly change in implied volatility compared to the prior month and the x-axis represents
the period 2008-2022. Grey bars indicate periods of economic recessions according to National Bureau of
Economic Research (01/2008 - 06/2009 and 02/2020 - 04/2020).
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