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Abstract 

 

The aviation sector, challenged by technological constraints and high costs, struggles to achieve 

sustainability despite the imperative to reduce its climate impact. While flying less remains an optimal 

strategy, the allure and necessity of air travel persist. Therefore, other ways of mitigating its impact 

have risen, like carbon offsets. However, this market is relatively unregulated, and the credibility and 

pricing of these offsets have been questioned in the literature. This paper will explore the relationship 

between the reported and the estimated cost of carbon compensation in aviation, using a case study of 

KLM passenger flights. Data on emissions and compensation costs from in- and outbound flights of 

Schiphol Airport is collected. These reported values will be compared with estimated values using a 

fuel-burn estimation model and the Social Cost of Carbon to estimate the cost of carbon. This analysis 

will be conducted using a paired sample t-test. The results suggest that, on average, the reforestation 

option is undervalued compared to the Social Cost of Carbon. However, using sustainable aviation 

fuel as a compensation option is a significantly higher valuation than the estimated cost of carbon. In 

addition, only small differences are found between the reported and estimated CO2 emissions in KLM 

flights. This study complements the understanding of reported and estimated costs of carbon emissions 

and highlights the importance of transparency, methodology refinement, and the critical evaluation of 

compensation alternatives. It could help future research on carbon valuation and compensation in 

aviation.  

 

Keywords: cost of carbon, CO2 emissions, air travel, fuel-burn model, carbon offsets, Social Cost of 

Carbon, paired sample t-test  
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1. Introduction 

 

The problem of the negative externalities of flying, particularly its significant contribution to carbon 

emissions, has been in the news lately. True Price (2023), a corporation developing methods for 

measuring societal impact, published a report estimating the actual price of flying, considering 

environmental damage. They stated that, for example, an airline ticket from Amsterdam to Barcelona 

should be €239.22 instead of €90 in the off-season when considering all environmental costs (True 

Price, 2023). The Dutch public news organization NOS (2023) reported that, in the Netherlands, from 

2023 onwards, the flight tax has been raised to €26, and airlines will pay for their carbon emissions on 

European flights. This shows that flying is widely considered environmentally damaging, especially 

for short distances where more sustainable alternatives are available. Corporations and governments 

are working towards a net zero set by the Paris Agreement (UNFCCC, 2015) and trying to find the 

best ways to price these emissions.  

 

Aviation contributed 11.6% of the total CO2 emissions from transport worldwide in 2018 (IEA, 2021; 

Ritchie, 2020). Notably, the majority, about 74.5%, of emissions come from road vehicles. While this 

statistic might initially suggest that aviation's impact is relatively modest, the context changes when 

considering the number of air transport travellers. Merely 2% to 4% of the global population engaged 

in international air travel in 2018 (Gössling & Humpe, 2020). A minority of travellers, representing 

just 1% of the world's population, are responsible for over 50% of emissions from air travel (Gössling 

& Humpe, 2020). 

 

The role of aviation in global carbon emissions and its broader impact shifts as man peers into the 

future. Aviation's relative contribution to carbon emissions is projected to grow towards 2070 (Ritchie, 

2020). While there is an expectation that world transport will increase, advancements in cleaner 

energy sources and technological innovation can mitigate this growth's harmful effects in most 

transport modes (IEA, 2021). However, the aviation sector faces distinct challenges in decarbonization 

compared to other modes of transport, as some parts of the energy system are relatively hard to 

decarbonize, including aviation and long-distance transport (Davis et al., 2018). This is mainly due to 

the technological limitations of specific decarbonization methods in the aviation industry.  

 

Therefore, other alternatives are considered to reduce aviation emissions. Fulton et al. (2015) 

emphasize the potential reliance on Sustainable Aviation Fuel (SAF) for carbon reduction in specific 

transport modes, emphasizing the intricate economic and technological hurdles associated with 

electrification and the use of hydrogen in aviation. These energy forms are less storage-efficient and 

space-effective compared to conventional fossil fuels, particularly concerning longer distances, 
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making the decarbonization of aviation technically intricate. Thus, the pursuit of a net-zero carbon 

aviation industry remains a challenging objective, as analyses of the IEA (2021) still show 

expectations of carbon emissions from the transport sector in 2070.  

 

The interesting part of the sustainability challenge in the aviation sector is where business meets with 

sustainability. Airlines are trying to find ways to balance the social pressure of having to become 

sustainable. At the same time, they struggle with the involved cost and technological limitations of 

reaching these sustainability goals. In this environment, concepts like carbon compensation arise. The 

actions of airliners can observe this balance between business and sustainability. The article from 

Frost (2023) on the website of Euronews highlights an example of this: “Ryanair: Low-cost airline 

warned about misleading carbon offset claims”. Airlines sometimes tread on legal boundaries to 

present themselves as environmentally responsible. Researchers have questioned the credibility of 

these schemes as they lack transparency and sometimes seem too optimistic (Gössling et al., 2007). 

While offset schemes appear to offer an easier path toward sustainability for airlines, the question of 

their credibility and quality remains. 

 

As van Houten, Director of the Dutch Authority for Consumers and Markets, stated in the article of 

Frost (2023): “Airlines may offer CO2 compensation schemes, but they cannot give the impression 

that CO2 compensation will make flying sustainable”. A gap can be seen in this ambiguous tool of 

sustainability. In one way, it allows people to contribute to more sustainable flying, or at least mitigate 

the adverse effects attributed to it; however, on the other end, the unclear structure and legislations 

surrounding it make the actual value of this compensation in some scenarios debatable. Literature has 

covered emissions estimation and offset schemes' credibility (Brueckner et al., 2020; Yanto & Liem, 

2018; Gössling et al., 2007). However, the gap observed in the literature is studying the relationship 

between an estimated social cost of carbon and the reported cost of compensation in aviation.   

 

The central research question and the accompanying hypotheses will answer this research gap. The 

question this paper will be answering is:  

 

What is the relationship between the estimated cost of carbon emissions in passenger flights 

and the reported compensation cost? 
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The first hypothesis assisting in answering the central question is as follows: 

 

Hypothesis 1: The reported per-passenger emissions are lower than the estimated emissions 

per passenger. 

 

The second hypothesis is as follows:  

 

Hypothesis 2: The reported cost of CO2 compensation per passenger emissions is lower than 

the estimated cost of carbon per passenger. 

 

This paper conducts a case study of KLM passenger flights departing from Schiphol Airport to 

provide insights into the research question. Given KLM's comprehensive carbon compensation scheme 

integrated into the booking process, it serves as an appropriate subject for this study. The relationship 

between the estimated cost of carbon emissions and the reported compensation cost will be compared 

using two paired samples. These two samples consist of emissions and cost of compensation reported 

by KLM (n.d., -b) and the estimated values by this study. These estimations are conducted using a 

fuel-burn estimation model developed by Seymour et al. (2020) and the methodology used by KLM 

(n.d., -c). The comparison of reported and estimated values will be done using a paired sample t-test.  

 

This paper will start with a review of the existing literature on this subject. The topics of externalities, 

SCC, carbon offsetting, fuel burn models and the methodology used by KLM are discussed. After that, 

the methodology used in computing the estimations and the method of comparing the reported and 

estimated values will be explained. The results of these analyses will then be given and further 

discussed, adding limitations and recommendations for further research.  
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2. Literature Review 
 
The carbon cost of air travel and its compensation have been extensively debated in the literature. 

However, the integration of multiple concepts related to these matters offers room for enhancement. 

This chapter will analyze and review the existing literature on the different ways of pricing carbon and 

estimating emissions in flying.  

 

2.1 The Concept of Externalities 

 

 

To first comprehend the concept of carbon compensation in the aviation sector and why a form of this 

exists, an understanding of the concept of externalities is necessary. However, it starts with welfare 

economics discussed by Pigou (1920) and Marshall (1890). Marshall (1890) provided the foundation 

of neoclassical economics and the modern welfare theorem, and his concept of the consumer surplus is 

especially applicable in the case of passenger air travel emissions. The consumer surplus can be 

explained by the difference between what a consumer is willing to pay and the amount paid for a 

product or service (Marshall, 1890). The producer surplus is the difference between the actual market 

price and the lowest price a producer is willing to accept. The demand and supply curve in a 

Marshallian cross returns a consumer and producer surplus; however, when the market is not efficient, 

and there is a difference between social and private cost, in other words, there is the case of 

externalities (Pigou, 1920). Pigou (1920) explains that such an externality occurs when a party’s 

actions affect others’ well-being, which is not considered in the price. Pigou (1920) identified two 

types of externalities: positive and negative. Positive externalities involve third parties benefiting 

without direct compensation. Conversely, negative externalities arise when an entity's actions impose 

costs on others without bearing the financial burden. 

 

The economic concept of externalities is also described in the paper of Dahlman (1979) and is 

explained as side effects of an activity. Dahlman (1979) states that when speaking of an externality, 

there is some form of divergence between private and social costs. When every voluntary contractual 

arrangement has been entered into, there are still interactions which should be internalized into the 

market; however, when leaving the market on its own, the market cannot cope with it (Dhalman, 

1979). It can be seen as a market failure, and the reason for it is that the cost of finding out these 

externalities and paying for the cost of the externality can be seen as more extensive than the expected 

benefits. This is described by Dhalman (1979) as the presence of transaction costs. However, the 

question is what the consequences of this market failure are. As stated before, in the case of negative 

externalities, the social costs are higher than the private costs, so resources are not allocated 

efficiently, and welfare is not internal as society incurs damages. At the same time, these are not paid 

for or compensated for in reduced demand.  
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Using the concept of externalities by Dahlman (1979) discussed above in the case of carbon emissions 

in aviation, it starts with the voluntary contract between the aircraft passenger and the airliner. 

However, as Dahlman (1979) explained, there are still interactions outside the market. In this case, the 

externality can be seen as the emissions from flying negatively impacting the environment. The 

divergence between the social and private costs is that one uses the plane but does not pay any 

personal price (or insufficient) for the emissions that negatively influence society. This could be 

explained by the fact that there are very high and unknown transaction costs involved in discovering 

the cost of externalities. The first is finding out the actual emissions (externalities) released by flying, 

and the second part is valuing these externalities, which are full of uncertainties, as discussed by 

Litterman (2013). In this case of externalities, effectively integrating these social costs into the market 

is demanding. There are several ways of approaching this, which will be discussed in the following 

sections. 

 

2.2 Social Cost of Carbon (SCC) 

 

What the price of carbon compensation should be is dependent on how you interpret this question. In 

broad terms, one could argue that it depends on whether one sees this price as the SCC or the price the 

market systems give to compensate for it. This SCC can be explained as “the estimate of the monetary 

value of worldwide damage done by anthropogenic CO2 emissions” (Pearce, 2003). One could discuss 

that these SCCs and the price of carbon should be the same as the compensation, which should result 

in a state of no damages. However, the prices for the technology or resources needed for this 

compensation differ per region, and the different interpretation of this compensation makes it seem 

that these two concepts might not necessarily have the same monetary value (Pearce, 2003). At the 

same time, they are intended to display the same damages done. Arguing that the SCC should be equal 

to the price of carbon offsetting also means that these offsets’ quality is perfect. However, as discussed 

in the introduction, there are indications that these offsets are not always perfect. The following part 

will discuss the SCC. Literature uses the definitions of the “price of carbon” and the “social cost of 

carbon” interchangeably, as finding out the SCC is, in a way, putting a price on carbon. In this paper, 

the actual compensation prices and their credibility will be discussed later and noted as the “cost of 

compensation”.  

 

It is difficult to calculate actual damages created by emissions and give it a monetary value. As 

Litterman (2013) explained in his article on a discussion of the right price for carbon emissions: “The 

unknown potential for devastating effects from climate change complicates pricing” (Litterman, 2013). 

There are two issues for economists to put an appropriate price on carbon emissions. First, the possible 

long time before the harmful effects of these emissions can be realized makes it challenging to put a 

value on them today. The second issue is that the possibility of a very high impact but low probability 
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environmental occurrence happening is, and probably will be, uncertain (Litterman, 2013). The 

fundamental problem of coming to a correct carbon price is that the answer to this depends on 

something unknowable (Litterman, 2013). Litterman (2013) would suggest that a cautious approach to 

this unknown catastrophe is needed, and the market price of carbon should be on or above the 

expected damage in the future. It could be said that this expected damage is part of the challenge, not 

the solution.  

 

The cost of carbon has been a topic of research by government authorities. A study by the US 

government managed to get to an SCC of $20 a ton in 2010 (Greenstone et al., 2011). However, the 

accuracy of this number and the research is questioned by Pindyck (2013) in his article on carbon 

pricing. Pindyck (2013) challenges the simulation models as they were based on most likely scenarios 

and the current situation, limiting their predictive value. This critique seems reasonable as the impact 

of unlikely but highly impactful events could be substantial and should be considered. Furthermore, 

Pindyck (2013) indicates that the choice of discount factor has considerable influence on the outcome, 

and the likely or acceptable level of discount rate is not necessarily the sole truth. This shows that 

government entities’ findings are debatable and primarily based on assumptions and low probability, 

but high-impact events are not considered.  

 

Multiple complex, integrated assessment models (IAM) are used to calculate an internally consistent 

SCC (Nordhaus, 2017). One of the major models used is the DICE model (Dynamic Integrated Model 

of Climate and the Economy); in 2018, Nordhaus (2018) revised the model he developed. The 

estimated SCC in this new 2016R model is $31 per ton of CO2 (in 2010 U.S. Dollars) for 2015 

(Nordhaus, 2018). These IAM models have a significant estimation error; the 5% to 95% confidence 

interval gives an SSC range of $6 and $93 per ton of CO2 (in 2010 U.S. Dollars). This is due to the 

total effect of all uncertainties and assumptions in the model. This highlights the difficulty of giving a 

precise value for the SCC. 

 

A trend that can be observed in the literature surrounding the SCC is the increase in its prediction 

values in the last years. Nordhaus estimated $31 a per ton of CO2 for 2015 (Nordhaus, 2018). 

However, Hänsel et al. (2020) find higher values using updated climate model predictions in the DICE 

model. They find a cost of $37 per ton of CO2 in the same year as the $31 of Nordhaus (2017). 

Further looking into the recent predictions and the trend of increased SCC, the carbon price calculated 

from the updated Hänsel et al. (2020) model changed to the year 2020 at $82. However, when Hänsel 

et al. (2020) considered expert opinions on the SCC by using a voting system on discount factors, it 

resulted in carbon prices of $119 and $208 per ton of CO2, depending on the year the zero emissions 

goal is set. This trend continues with values found by a recent study of the EPA (2022). Their model 

finds values between $125 and $351 per ton of CO2 depending on the discount factor. Similar values 
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are found by Rennert et al. (2022), ranging between $80 and $308 again depending on the discount 

factor and showing that CO2 emission mitigation efforts are seen to be more beneficial. This 

exploration of the SCC shows the difficulty in assessing the correct value of the SCC. This paper will 

focus on the most recent findings of the SCC to incorporate the most up-to-date knowledge on climate 

change and use these in estimating the cost of carbon in flying.  

 

2.3 Carbon Pricing Systems 

 

As discussed in the section on externalities, there are multiple ways of bringing negative externalities 

into the market system. This way, a pricing system is created to put a tradeable value on carbon 

emissions. In general, they are categorized into several systems (The World Bank, n.d.):  

 

➢ Emission Trading Systems (ETS)  

o Cap-and-trade systems  

o Baseline-and-credit systems 

➢ Carbon Tax 

➢ Crediting Mechanism 

➢ Results Based Climate Finance (RBCF)  

➢ Internal Carbon Pricing 

 

The ETS is a system where carbon emitters can use a trading scheme to meet their emission 

requirements. Entities can require carbon emissions units on the market, and the market price is 

established by demand and supply systems (The World Bank, n.d.). The cap-and-trade system applies 

a cap to the total emissions within the ETS, and then emissions allowances are distributed. This can be 

for free or by using an auction. The baseline-and-credit system uses an emissions baseline for 

individual regulated entities, and credits are given to entities that reduce their emissions below this 

threshold. The remaining credits can be sold to other entities that exceed their baseline (The World 

Bank, n.d.).  

 

The carbon tax is a straightforward way of setting carbon prices. This puts an explicit tax rate on 

carbon emissions, usually a price per ton of CO2 emitted. The difference between the tax and the ETS 

is that the price is predetermined, but the total emissions reduction is not (The World Bank, n.d.). 

The crediting mechanism creates carbon emissions reductions or compensation by using projects. 

These projects issue carbon credits, which can be used to offset emissions by using corporate 

citizenship objectives, international agreements, domestic policies or voluntary reasons (The World 

Bank, n.d.).  
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RBCF is a funding approach to the solution of pricing carbon. Financial rewards are paid out after 

specific predetermined goals are met. It often serves a dual purpose: reducing emissions and focusing 

on poverty and community benefits (The World Bank, n.d.). Internal carbon pricing is a tool 

organizations use to support decision-making regarding the organization’s climate impact. 

Organizations put a value on their carbon emissions to create a positive change relating to climate 

change (The World Bank, n.d.). 

 

Government entities mostly use the systems of ETS and carbon tax. One of those uses depends on the 

context and political choices. Cooperations and individual consumers use carbon crediting systems. 

This system applies to the case of carbon offsetting in flying. These crediting systems are based on 

market demand and supply and do not necessarily display the SCC. These trading schemes are a cost-

effective regulatory approach to reducing emissions. It is based on a market system created to trade the 

rights of carbon compensation. Alternatively, as Conte & Kotchen (2010) explained on the market 

prices of carbon offsets, the price is established by the equilibrium of regulated entities' and offset 

projects’ abatement costs. However, this would follow, as mentioned by Conte & Kotchen (2010), the 

“law of one price”, but the way that those prices are determined in the market for voluntary carbon 

offsets is unclear. The offsets in a voluntary carbon offsetting market reflect more than just the 

marginal costs of producing these offsets. It seems they present a broader bundle of characteristics. 

Buyers possibly seek co-benefits from these offsets, like the conservation of biodiversity or poverty 

reduction (Conte & Kotchen, 2010). The concept of offsetting and voluntary carbon offsets will be 

further discussed in the following section.  

 

2.4 Introduction to Carbon Offsetting 

 

The purpose of an offset program can be explained in different ways. Gillenwater (2012) describes it 

as it is to create certain public benefits “in a way that is more cost-effective than would be possible 

using other policy mechanisms” (Gillenwater, 2012). He explains that these programs achieve higher 

cost-effectiveness by using mechanisms based on the market to get the private sector to search for 

low-cost opportunities. Gössling et al.(2009), in their article on voluntary carbon offsetting in air 

travel, state that: “Carbon offset providers offer to ‘neutralize’ emissions caused by consumption in 

one sector through compensation in another sector” (Gössling et al., 2009). Bumpus & Liverman 

(2008), in their research on the governance of international carbon offsets, explain that advocates see 

these schemes as a cheaper, faster and easier way of reducing environmental impact than doing this 

domestically and thus resulting in more significant benefits.  

 

There is not a single correct explanation of carbon offsetting schemes. Experts in the field have 

different views, which shows the challenge in assessing any boundaries to an offsetting scheme. 
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However, getting to an overall definition of different views is possible. At least, carbon offsetting 

schemes are used to neutralize the adverse effects of emissions on the public by using market systems 

to attain compensation with higher cost-effectiveness than achieving this compensation through its 

original sector, thus aiming for greater benefit to the public.  

 

2.4.1 History of Carbon Offsetting 

 

The history of carbon offsetting can be traced back to the Clean Air Act in the United States, as it was 

initially passed in 1963 and had amendments in 1970, 1977 and 1990 (Greenstone, 2002). Before 1970 

the government in the United States had no significant role in regulating air pollution. However, 

because of the lack of regulation, there came interest in regulating the increasing pollution of The 

Clean Air Act in response to increasing pollution of CO, O3, SO2 and TSPs (Greenstone, 2002). The 

cornerstone of the legislation was based upon air quality standards that every county was required to 

meet. The additions to the Clean Air Act in 1977 resemble the idea of carbon offsetting schemes as we 

know them today. As stated by Greenstone (2002), “The  1977  amendments  added  the  requirement  

that  any  increase  in emissions  from  new  investment is offset  by  a  reduction  in  emissions from 

another source within the same county.” This concept of offsetting comes from one of the first acts of 

emissions trading, as stated by Gillenwater (2012). A company could increase its emissions only if it 

paid another business to compensate for these emissions.  

 

As discussed by Bumpus & Liverman (2008), the actual start of these offsetting schemes is the Kyoto 

Protocol from the United Nations Framework Convention (United Nations, 1997). This agreement 

allowed countries to meet their emissions reduction requirements by using two different mechanisms 

of carbon offsetting. They could invest in emissions reductions in developing countries (CDM, Clean 

Development Mechanism) or Eastern European countries transitioning to a market economy (JI, Joint 

Implementation). This CDM is a regulated market; however, besides this, an unregulated market of 

Voluntary Carbon Offsets has been created since then (VCO) (Bumpus & Liverman, 2008).  

Bumpus and Liverman (2008) state that the international community's commitments to reducing 

carbon emissions drive these schemes. They mention the Kyoto Protocol (United Nations, 1997) as an 

example. However, as the article of Bumpus and Liverman (2008) has aged, this can be attributed to, 

for example, the Paris Agreement of 2015 ( UNFCCC, 2015). This is driven by the idea, as stated by 

Bumpus and Liverman (2008), that the carbon offset in the developing world is cheaper than that of 

the developed world, as the marginal cost of reducing domestic emissions is high, which would have a 

negative economic impact. This then allows developed countries and organizations to attain carbon 

credits to meet their reduction by investing in more cost-efficient projects in developing countries. At 

the same time, these developing countries can benefit from the investments of these countries or 

organizations (Bumpus & Liverman, 2008). 
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The emergence of VCOs (Voluntary Carbon Offsetting Schemes), as Bumpus and Liverman (2008) 

discussed, was parallel to the CDM. These VCOs could arise due to parties or countries who were not 

a proponent of the Kyoto Protocol or thought more should be done to the problem. These were mostly 

non-profit organizations working with large corporations to try and reduce the carbon footprint of 

investors. The World Bank’s report on carbon crediting (The World Bank, 2022) explains that since 

the creation, and especially in the last years, these carbon crediting markets have grown further. The 

total carbon credits market in 2021 increased by 48% (The World Bank, 2022). The World Bank 

showed in their report on carbon crediting the carbon crediting mechanisms. This can be split up into 

the supply side of these schemes and the market/demand side (The World Bank, 2022). The supply 

side is the parties offering different ways of carbon crediting, and the demand side is the customers for 

this carbon crediting. 

 

Supply-side 

➢ International Crediting Mechanisms: Systems like the CDM.   

 

➢ Domestic Crediting Mechanisms: Domestic systems like the Australia Emissions Reduction 

Fund 

 

➢ Independent Crediting Mechanisms: independent systems by non-governmental entities.   

 

Demand side: 

➢ International Compliance Markets: Purchasing of credits to help countries meet their climate 

obligations.  

 

➢ Domestic Compliance Markets: Purchasing of credits aimed at meeting carbon tax obligations.  

 

➢ Results-Based Finance: Purchasing credits aimed at using it as a public tool for incentivizing 

emissions mitigation.  

 

➢ Voluntary Carbon Market: Purchasing of credits intended to meet commitments or voluntary 

targets.  

 

There is an interaction between these markets, meaning domestic compliance markets could purchase 

credits from international crediting mechanisms (State and Trends of Carbon Pricing 2022, 2022). 

However, one could assume that, in this case, voluntary carbon markets work primarily by using 

credits from an independent crediting mechanism. To clarify this, for the case of carbon compensation 

for passengers in air travel, the offsetting scheme looks as follows in this paper. The passenger buys 
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Voluntary Carbon Compensation (VCC), which is seen as the voluntary carbon market. These VCCs 

price carbon in the way of a crediting mechanism and fall under the independent crediting 

mechanisms.  

 

It is observed that the most significant increase in carbon credit transactions is coming from these 

independent crediting mechanisms (The World Bank, 2022). The World Bank predicts that the CDM, 

from the Kyoto Protocol, will continue a gradual phasedown and be replaced by other international 

crediting mechanisms. The rise of the voluntary carbon market can be seen in the numbers, as in 

November of 2021, the total voluntary credit market first exceeded 1 billion US dollars (The World 

Bank, 2022). This market increase is due to rising demand for carbon compensation by corporations, 

and this also makes traders and investors hope to make a profit. One of the key drivers of this increase 

in demand in the voluntary carbon credit market, as stated by The World Bank (2022), is the increase 

of commitment of corporations to the net zero goals of 2050 from the Paris Agreement (UNFCCC, 

2015). The aviation sector also participated in this commitment as the International Air Transport 

Association announced a net zero target for the industry for 2050; 19% of this target is expected to be 

met using carbon credits (IATA, 2021).  

 

2.4.2 Critique on Offsetting Schemes 

 

At first sight, these offsetting schemes offer a good way of reducing or mitigating carbon emissions. 

However, there are also critical sounds from researchers on these schemes. This started with Lohmann 

(2005) critiquing the Kyoto Protocol and its followers, stating that the scale and contradictions of 

developing this carbon market had been underestimated. Lohmann (2005) notes the problems of 

unverifiability in this market and suggests that it has no attention to any structural change. These 

issues can be seen in the market of VCO today as well. However, addressing these issues could 

improve their credibility and unlock more potential for these schemes.  

 

Bumpus and Liverman (2008) discuss the complicating governing factors of these schemes, as they 

explain that there is very little organization in the VCO market in terms of, among others, governance 

structure and definitions. Gillenwater (2012) addresses the concept of additionality and baseline. He 

argues that something can be an offset if “one does something that results in extra good that is 

equivalent in magnitude, approximate timing and recipient population to the original harm done” 

(Gillenwater, 2012). He states the problem of difficulty in explaining the “extra” term and how one 

should measure it. The current definitions of additionality are ambiguous and circular. The offset 

should be better than a particular baseline. However, this is not always the case or is hard to control. 

These two articles show the problem of a relatively unregulated market with fundamental values of 

correctly using these schemes being broadly interpretable.  
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Watt (2021) questioned practitioners of carbon offsetting schemes; these interviews show practitioners 

questioning the additionality of particular projects. It shows that there are doubts about their credibility 

from within organizations. Watt (2021) argues that these schemes are more of a fantasy from a 

psycho-analytical ideology perspective and that interviews with practitioners suggest that it is 

sustained by trust in others’ authority and the desire for carbon offsetting schemes’ organizations 

promises to be true. The research shows fundamental issues. However, the question to what extent to 

which these issues exist still needs to be answered.  

 

Gössling et al. (2007) went deeper in to the source of these possible issues in aviation offsetting 

schemes. They discuss the issues arising from aviation institutions using these carbon offsetting 

schemes to compensate for carbon emissions. The main problem they address is the approaches 

chosen for calculating these emissions, the compensation measures and their respective price level 

(Gössling et al., 2007). One of these topics is the value of the so-called Radiative Forcing Index (RFI), 

which shows the additional impact of aircraft emissions besides that of CO2. The value of this 

multiplier is different per organization. Another part is the calculation of CO2 emission, which is done 

mainly according to predetermined factors determining the emissions per liter of jet fuel used. 

However, as shown by (Gössling et al., 2007), even if these factors are the same, they still get different 

results. These per-passenger emissions are, however, also dependent on the aircraft type and other 

determining factors, as discussed before.  

 

Another aspect of the debate is that the pricing of these emissions is also done differently, as seen by 

(Gössling et al., 2007). The same RFI and emission can still lead to different valuations of pricing. 

“The prices of compensation might thus rather depend on the time horizons over which projects are 

calculated, the validity and reliability of projects, administrative costs or profit margins taken out by 

profit entities” (Gössling et al., 2007). These different factors contribute to the unclear picture of these 

schemes and suggest that some might not be scientifically substantiated. This contributes to the 

literature on the credibility of carbon offsetting schemes.  

 

2.5 Fuel Burn Estimation Models 

 

The impact of flying on the environment has been explored from various angles and was written with 

different purposes. To estimate the cost of carbon in flying, data on the emissions of passenger flights 

is needed. Since an aircraft’s emissions are proportional to its fuel consumption, modelling emissions 

can be done by modelling aircraft fuel usage (Brueckner & Abreu, 2017). Research first focused on 

modelling fuel usage to reduce operational costs. This can be seen in the paper of Collins (1982); the 

research was based upon primary concepts of energy balance, as previous research had focused on 
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complex aircraft dynamics or historical data; Collins (1982) created a model based on path profile 

data. It assessed the impact of changes in air traffic control procedures on aircraft fuel consumption. 

 

The report of Penner et al. (1999) from the Intergovernmental Panel on Climate Change was the first 

extensive report on the impact of aircraft on climate and atmospheric ozone. It created the groundwork 

for further research on reducing the harmful effects of flying on climate change. The focus of studies 

after this report shifted from lowering operational costs to reducing climate impact. 

 

Lee et al. (2001) used the Brequet range equation (Breguet, 1923; Coffin, 1920), like Collins (1982), 

to compute predictions for future efficiency gains in aviation based on historical trends of the 

reduction in energy usage due to technological development in aviation. The Brequet range equation is 

a primary form of fuel consumption modelling (Seymour et al., 2020). It only models flights as a 

cruise phase without considering a landing, take-off, climbing and descent phase. This makes it a basic 

approximation, so researchers have been trying to extend this approximation by using more 

comprehensive models.  

 

The article of Babikian et al. (2002) looks into the effects of regional aircraft type on fuel usage and 

efficiency. This has been an ongoing topic lately, with the most recent response on this being a new 

law from the French government banning domestic flights shorter than 2.5 hours (République 

Française, 2023). In their research, Babikian et al. (2002) show that regional aircraft have 1.5-2 times 

higher energy usage than larger passenger aircraft (Babikian et al., 2002). These findings indicate the 

possible differences between aircraft types, operational procedures, and travel distance. They show 

that smaller aircraft spend a disproportionate amount of time on the ground, taxiing or maneuvering, 

compared to larger aircraft due to shorter stage lengths.  

 

2.5.1 Choice of Fuel Burn Model 

 

Flight performance analysis is needed to decide on a policy or analysis of the environmental effects of 

flying, especially the fuel burned during this flight (Yanto & Liem, 2018). A fuel burn model will be 

needed to estimate aircraft emissions. Several different models will be discussed below, and a model 

will be chosen that fits the needs and scope of the research best.  

 

Recent research has focused on finding a balance between creating accurate and computationally 

efficient fuel burn models. This is because the scale of analyzing the fuel burn of the whole world is 

complicated, time-consuming and thus expensive as it would involve the simulation of around 35 

million flights of 350 different aircraft types (Yanto & Liem, 2018). Another aspect is the availability 

of data, which is not always freely accessible or not accessible at all (Yanto & Liem, 2018; Seymour et 
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al., 2020). Currently, there are several systems available. Yanto & Liem (2018) reviewed a number of 

these systems. They range from being low-fidelity to being high-fidelity. This means how closely the 

estimation models represent real-life physics. The high-fidelity model models flight trajectories 

considering the conditions at the time. The low-fidelity models rely on an empirical base and use 

simplified assumptions (Yanto & Liem, 2018). The trade-offs between these models are based on 

computational time and accuracy.  

 

Government entities or large organizations develop some of the models available. One of the systems 

is the Aviation Environmental Design Tool (AEDT), developed by the Federal Aviation 

Administration (FAA). The AEDT assesses aircraft fuel burn, emissions, and noise using flight 

schedules, trajectories, aircraft performance models, and emission factors (AEDT, 2017). The AEDT 

uses radar flight data and, when not available, makes estimations. It provides a very high degree of 

detail but relies on extensive data input, which is not freely available (Seymour et al., 2020). This 

makes it not useful for the scope of our research.  

 

Another system is that of the International Civil Aviation Organization (ICAO), which developed the 

ICAO Carbon Emission Calculator (ICAO, 2015). The ICAO Carbon Emission Calculator is designed 

to work with minimal input data, using distance, which is widely available data. It can be easily and 

freely accessed online and is used as a base for several offsetting schemes. The ICAO Carbon 

Emission Calculator uses data from over 190 countries, including aircraft types, fuel use, passenger-to-

freight ratios, and load factors. It uses averages of these numbers in its calculation. However, this low-

fidelity system lacks accuracy in computing the different stages of flight. It is based on average 

consumption per distance and does not consider any take-off or landing phase. The goal is to get an 

accurate value for the emissions; therefore, this model is considered basic.  

 

The third model was developed by The European Organization for the Safety of Air Navigation 

(Eurocontrol), which is named the Advanced Emission Model (AEM) (Nuic et al., 2010). AEM can 

generate aircraft trajectories and estimate fuel consumption, which uses the BADA database to make 

these estimations (Mouillet, 2019). The system is a very high-fidelity model simulating aircraft 

performance. However, the limitation of this system is that it requires a very high computational time. 

Using this system will require that three flight trajectories be computed manually (take-off, descent, 

cruise) for every individual flight. Making a fuel use database of thousands of flights is unrealistic 

regarding time, as these three trajectories should be computed for every flight. The system is not freely 

available and requires a license, making it harder to implement.  

 

The AEDT and AEM mentioned above are high-fidelity, not readily available, and are not very 

applicable to this research as they do not fit the time frame of this research and scope. The ICAO 
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model is easy to operate, and the methodology is provided; however, the flight modelling is rather 

basic. These three models can offer a good prediction. However, it is impossible to put in any different 

parameters for certain assumptions, making the ICAO calculator less applicable and transparent.  

 

Researchers have tried to create fuel burn prediction models that are typically physics-based and not 

empirical. Two pieces of research will be discussed, which both derive a regression equation per 

aircraft type, which makes it easy to implement and use as an estimation model. Yanto & Liem (2018) 

tried to create an accurate but efficient approximation model for aircraft fuel burn. A regression model 

per aircraft type is derived from a fuel-burn database created by using US flight mission data and 

applying their medium-fidelity model to this data to compute the fuel burn of the aggregate flights 

(Yanto & Liem, 2018). This medium-fidelity model is a compromise between the existing high and 

low-fidelity models. The model they created has drastically reduced the computation time while 

having an estimation error of less than 6%. Seymour et al. (2020) pointed out that the model of Yanto 

& Liem (2018) does depend on payload data, which is harder to come by outside the US. One could 

use an estimation of the average payload. However, this requires an extra estimation and assumption 

while it greatly influences the emissions (Yanto & Liem, 2018). 

  

Seymour et al. (2020) created a fuel burn model that is seen as a compromise between the high-fidelity 

and low-fidelity models. They used a model where the high fidelity model, based on the BADA 

database and model, simulates several flights and their fuel burn per aircraft type. This creates several 

points of fuel burn related to distance. These points can then be linked using ordinary least squares 

regression. This formula can be seen below.  

 

𝐹𝑖 = 𝛼𝑖 ∗ 𝑑𝑔𝑐
2 + 𝛽𝑖 ∗ 𝑑𝑔𝑐 + 𝑦𝑖 

 

It provides the estimated total fuel used by a specific type of aircraft for a given distance 𝑑𝑔𝑐. This 

model comprises the advantages of high-fidelity accuracy and still be easy to implement and use for 

estimations. One advantage of this study for this paper is that the aircraft used by KLM at the time of 

this paper were all modelled by Seymour et al. (2020). Therefore, it would suit the needs of this study 

well.  

 

The literature discussed above shows the potential difficulty in creating a predicting model that is 

accurate, easy to operate and uses freely available data. Discussing these models also shows the first 

part of the problem of answering the research question. Calculating the predicted emissions of a flight 

is the first part of answering the question of the costs of these carbon emissions. The credibility of 

these predictions relies on the accuracy and fidelity of the model. However, the difficulty in judging 
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these models as right or wrong means there is no real consensus on which model is the best. However, 

the best for the scope of the research will be a model based on the methodology by Seymour et al. 

(2020). The model of Seymour et al. (2020) uses an accurate high-fidelity flight model while 

maintaining computable efficiency. This is within the scope of this research, as the connection 

between emissions and cost is the main point of interest.  

 

2.6 KLM Emission and Pricing Methodology 

 

In order to explain any differences between the estimated emissions and the values reported by KLM, 

it would be good practice to understand the methodology used by KLM. The KLM provides a short 

methodology explanation for emissions and allocation calculations (KLM, n.d.-c). However, this 

methodology is not very clear and complete. The writing lacks clarity and would not be reproducible 

in how it is presented. It does, however, give information which can be used in the estimation. 

Therefore, its content will be discussed in the following section.  

 

2.6.1  Carbon Compensation Options 

 

The booking process of KLM provides four different options for carbon compensation. This booking 

process can be found in Appendix A1. These four options consist of reforestation and sustainable 

aviation fuel (SAF), and the two other options are a combination of these two forms of compensation. 

Let us discuss the options of SAF and reforestation. Reforestation is explained by KLM (n.d. -d) as 

planting new trees where forests were lost due to the activities of humans or any natural disturbances. 

This is done as trees can absorb CO2 and reduce the current carbon dioxide in the atmosphere. With 

the funds from the reforestation option, KLM supports three reforestation projects in Panama, Uganda 

and Colombia KLM (n.d. -d). This is done by using a carbon credits system. KLM buys a carbon 

credit at Forliance, an agency managing offsetting projects, for these projects, which relates to 

compensating for 1 ton of CO2 (Forliance, 2022; KLM, n.d. -d). KLM reports that these projects are 

all Gold Standard certified (KLM, n.d. -d). This Gold Standard was founded in 2003 by the WWF and 

other international corporations to ensure that carbon reduction schemes are of quality and integrity 

(Gold Standard, n.d.). The next option in the booking is that of SAF. SAF is a different type of 

aviation fuel that can reduce the total lifecycle CO2 emissions compared to regular kerosene by about 

75% (KLM, n.d. -d). The fuel consists of multiple components like cooking oils and other waste oils 

of organic origin. KLM reports that they only buy SAF made from “raw materials” and not from soy 

or palm oil, as these sources can be attributed to deforestation (KLM, n.d. -d). However, no clear 

explanation is given about these “raw materials”. KLM already adds 1% of SAF to the fuel system of 

every flight from Amsterdam Schiphol, using the SAF as compensation; therefore, it comes on top of 

this 1%. KLM states that this SAF is 3 to 4 times more expensive than regular kerosene, and the 
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availability of SAF is limited; this makes it difficult and maybe impossible to entirely switch to SAF at 

this time (KLM, n.d. -d). With the funds acquired by passengers choosing the SAF compensation 

option, more SAF is added to the aircraft's fuel system. However, this is not on your own flight due to 

logistic limitations (KLM, n.d. -d). This means the overall fleet reduction is the emission reduction 

you pay for. KLM does not report any calculations but is audited yearly to ensure these reported 

emissions reductions are correct.  

 

2.6.2  KLM Emission Calculation 

 

The report on the emissions calculation methodology by KLM explains that the calculation is based on 

the KLM network's average fuel consumption per passenger (KLM, n.d.-c). The data used for their 

calculation is based upon actual flight data gathered by the flight onboard systems (KLM, n.d.-c). The 

calculation on fuel usage per aircraft type is based upon ton-kilometers travelled, passenger-kilometers 

travelled and the fuel use per 100 kg payload (which equals a passenger and their luggage) per 100 km 

great circle distance. It is gathered from the previous calendar year and converted to the fleet’s fuel 

efficiency.  

 

The first principle KLM discusses is the split of fuel burn between passengers and cargo. This 

allocation is proportional to the overall mass of these passengers and cargo (KLM, n.d.-c). The 

following formula can explain the overall mass: 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑚𝑎𝑠𝑠 = 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 + 𝐸𝑞𝑢𝑖𝑝𝑝𝑒𝑑 𝑚𝑎𝑠𝑠 

 

• 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑚𝑎𝑠𝑠  - Total mass onboard 

• 𝑃𝑎𝑦𝑙𝑜𝑎𝑑  - Passengers, Luggage, Cargo 

• 𝐸𝑞𝑢𝑖𝑝𝑝𝑒𝑑 𝑚𝑎𝑠𝑠 - Equipment needed for transportation of payload 

 

KLM states that “the two equipped masses were estimated for each type of operation” (KLM, n.d.-c); 

however, it is unclear what they mean by two equipped masses. It is assumed that the payload and 

equipped masses are intended. The operation types are the short-/medium- and the long-haul distance 

groups. These masses are then used to get the fuel usage per passenger and cargo for each aircraft 

type. KLM uses average factors for the cargo load and equipment weights per passenger from an older 

version of the methodology of the ICAO carbon emission calculator (ICAO, 2008).  

 

The second principle discussed in their methodology is the evaluation of flight distances. The great 

circle distance and the actual flying distance are different (KLM, n.d.-c). KLM uses distances from 

flight plans as the actual flying distance to express the emission of CO2 per km.  
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The third principle discussed by the methodology is the calculation of CO2 emissions per origin and 

destination pair. They base this on the expected fuel efficiency per passenger (KLM, n.d.-c). This is 

done by taking the weighted average of all the aircraft types used on the origin and destination routes 

for the coming year. This average fuel consumption is then multiplied by the distance related to the 

origin and destination pair. It is then stated that the CO2 emissions of a flight are calculated by 

multiplying the fuel burn per passenger by an emission factor (KLM, n.d.-c). This seems odd as this 

will result in CO2 emissions per passenger, not per flight. However, it seems they intend the emission 

per passenger per flight. The factor they use to convert fuel usage to emissions is 3.16kg of CO2 per 

kg of kerosene (ICAO, 2008).  

 

The fourth part of the methodology explains the calculation of the CO2 emissions per cabin class. This 

is done because a business class passenger takes up more space in the plane than an economy class 

passenger (KLM, n.d.-c). KLM defines specific ratios to re-divide these emissions per class, which is 

based on the extra economy class seats that could have been placed in the space of the premium class. 

This is divided between the short- and medium-haul and long-haul groups. For the short and medium-

haul, 98% of the seats are assumed to be economy seats; for the long-haul, this is 80%.  

 

These four parts of KLM’s methodology, the emission calculation method explained above, are then 

used to calculate the emissions per passenger. They state that they consider the efficiency of KLM to 

be the best in its class, and therefore, the emission estimations might be undervalued (KLM, n.d.-c). 

This methodology provided by KLM will be used to convert the estimations made in this paper to be 

comparable to the reported values by KLM. This will be further discussed in chapter 3.   
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3. Methodology 

 

This part of the paper will display the methodology used to collect the needed data and the method 

used to analyze and compare different models. The statistical models and calculations will be 

explained in the following sections. As discussed in the literature review, the approach to this study 

will be based on two hypotheses. The first hypothesis concerns the comparison between the reported 

emissions and the estimated emissions. The second hypothesis concerns comparing the reported cost 

of emissions compensation and the estimated cost of these emissions. The explanation of the 

methodology will follow this same structure and start with the estimation model of the emissions and 

follow up with the methodology used on pricing. The reported emissions and cost of compensation 

from KLM do not require any further calculations and can be directly used to compare estimated and 

reported values. However, the calculations for the estimations will be explained in the following 

section 3.4.   

 

3.1 Fuel Estimation Model 

 

As discussed in the literature review, the fuel estimation model used will be based on the methodology 

and results of the research of Seymour et al. (2020) and the methodology of KLM. Some assumptions 

made by Seymour et al. (2020) and the methodology structure used are vital in explaining any possible 

deviations between the estimated emission from this paper and the reported emissions by KLM (KLM, 

n.d.-c). The model constructed by Seymour et al. (2020) is a fuel estimation model. As stated in the 

methodology of the ICAO emissions calculator tool, a constant factor can be applied to burn one 

kilogram of jet fuel to get to its related emissions (ICAO, 2018). Therefore, creating a fuel burn model 

to estimate emissions is standard practice. The following sections will, therefore, first explain the fuel 

burn model, an emissions factor that will be applied later on.  

 

The model of Seymour et al. is made to be used with minimal required data inputs and computation 

costs while maintaining model accuracy (Seymour et al., 2020). The model is called the Fuel 

Estimation in Air Transportation (FEAT) model. The model consists of two components: (1) a high-

fidelity flight profile simulator based on simulation made in BADA (Mouillet, 2019), which is used to 

derive (2) a reduced-order fuel burn approximation model. The only inputs for this reduced order 

model are the aircraft type and great circle distance. An overview of the model as produced by 

Seymour et al. (2020) can be seen below: 
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Figure 3.1: 

 

Source: Seymour et al. (2020) 

 

The figure shows the methodology used by Seymour et al. (2020). Seymour et al. (2020) used this 

model to estimate the total global fuel burn; this means that the two left sections are of interest in this 

explanation. The high-fidelity model estimates 25 flights per aircraft type to create data points for the 

reduced order model, which is a quadratic regression equation fitting to these points. This reduced 

order model can then estimate fuel usage per flight, varying aircraft types and great circle distance 

(Seymour et al., 2020).  

 

3.1.1 High-Fidelity Model 

 

The high-fidelity model uses BADA (Mouillet, 2019) based on the total energy model (TEM). 

Eurocontrol developed the BADA model, which combines theoretical models and related datasets to 

simulate the behaviour of different aircraft with high fidelity (Mouillet, 2019). This model equates the 

forces acting on an aircraft to kinetic and potential energy increases. It can be used to determine the 

needed thrust at certain speed levels. This is the base of the BADA model, which calculates the fuel 

burn linked to a specific thrust value (Seymour et al., 2020).  

 

The high-fidelity model of the FEAT accurately simulates 25 missions per aircraft type; these flight 

missions consist of 8 stages: taxi-out, take-off, climb, cruise, descent, approach, landing, and taxi-in. 

The objective is to find the fuel flow for each of these stages. The fuel used in take-off, taxi-in and 

taxi-out phases are assumed to be constant in time and are based on engine testing fuel flow rates. 

However, the fuel usage of the climbing cruise and descent phase is determined using BADA and the 

TEM equation (Seymour et al., 2020). The total fuel burn summarizes the fuel burn in the eight flight 

stages.  
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Aircraft mass has a significant impact on fuel burn; therefore, in this model, the take-off weight is 

considered. It depends on the aircraft's weight, passenger, cargo and fuel. In the high-fidelity model, 

the mass of the aircraft is updated after every phase of flight, as fuel burned during these phases affects 

the aircraft mass and, therefore, the fuel consumption (Seymour et al., 2020). 

 

3.1.2 FEAT Reduced Order Model 

 

The high-fidelity model simulates 25 flying distances per aircraft type and their related fuel burn. 

These distance points create a regression equation per aircraft type to estimate fuel burn (Seymour et 

al., 2020). The model takes the form of a quadratic regression function: 

 

𝐹𝑖 = 𝛼𝑖 ∗ 𝑑𝑔𝑐
2 + 𝛽𝑖 ∗ 𝑑𝑔𝑐 + 𝑦𝑖 

 

• 𝐹𝑖  - Fuel burn in kg 

• 𝛼𝑖, 𝛽𝑖 , 𝑦𝑖 - Regression parameters 

• 𝑑𝑔𝑐  - Great circle distance in km 

• 𝑖  - Aircraft type  

 

The resulting regression equations from this model will be used to analyze the estimated emissions on 

all the direct connections of KLM inbound and outbound of Schiphol airport. Seymour et al. (2020) 

reported these regressions for 133 aircraft types, including the 12 aircraft types KLM uses. The table 

below shows the regression equations for these 12 aircraft.  

 

Table 3.1: Estimation Models for Fuel Burn By Great Circle Distance 

Aircraft type:  Reduced order estimation equation: 

Boeing 737-700 𝐹𝑖 = 8.45𝑒 − 05 ∗ 𝑑𝑔𝑐
2 + 2.49𝑑 + 1254.80 

Boeing 737-800 𝐹𝑖 = 7.38𝑒 − 05 ∗ 𝑑𝑔𝑐
2 + 2.92𝑑 + 1218.82 

Embraer 195-E2 𝐹𝑖 = 9.30𝑒 − 05 ∗ 𝑑𝑔𝑐
2 + 2.34𝑑 + 916.10 

Boeing 737-900 𝐹𝑖 = 5.87𝑒 − 05 ∗ 𝑑𝑔𝑐
2 + 3.08𝑑 + 1193.96 

Embraer 190 𝐹𝑖 = 2.52𝑒 − 05 ∗ 𝑑𝑔𝑐
2 + 2.27𝑑 + 890.10 

Embraer 175 𝐹𝑖 = 6.23𝑒 − 05 ∗ 𝑑𝑔𝑐
2 + 1.74𝑑 + 765.14 

Boeing 787-9 𝐹𝑖 = 1.18𝑒 − 04 ∗ 𝑑𝑔𝑐
2 + 3.89𝑑 + 3252.75 

Boeing 777-200ER 𝐹𝑖 = 1.91𝑒 − 04 ∗ 𝑑𝑔𝑐
2 + 5.78𝑑 + 3631.80 

Boeing 787-10 𝐹𝑖 = 6.97𝑒 − 05 ∗ 𝑑𝑔𝑐
2 + 4.98𝑑 + 2688.35 

Boeing 777-300ER 𝐹𝑖 = 2.10𝑒 − 04 ∗ 𝑑𝑔𝑐
2 + 6.45𝑑 + 4650.53 

Airbus A330-300 𝐹𝑖 = 2.64𝑒 − 05 ∗ 𝑑𝑔𝑐
2 + 6.52𝑑 + 2090.64 

Airbus A330-200 𝐹𝑖 = 1.75𝑒 − 04 ∗ 𝑑𝑔𝑐
2 + 4.90𝑑 + 3603.04 

-Rounded to two decimals. Source: Seymour et al. (2020) 
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3.2 Estimating Emissions 

 

Part 3.1.3 discusses the reduced order model for the different aircraft types; these regression equations 

can estimate the total fuel used by great circle distance per aircraft type. Some calculations are needed 

to compare it to the reported emissions of KLM. This is based on the methodology by KLM (KLM, 

n.d.-c).  

 

3.2.1 Average Fuel Burn per Flight 

 

The emissions emitted largely depend on the type of aircraft used. This aircraft type is also crucial for 

distributing emissions over passengers, as the different aircraft types have different seat capacities. 

For this reason, an estimation is needed for the type of aircraft used on the 293 flights considered in 

this paper. Then, the weighted average fuel consumption of all the aircraft used on a route can be 

created just as KLM performed in their methodology. 

 

The type of aircraft KLM uses is not mentioned during the booking process. The website of KLM 

reports a list of the fleet of aircraft used with some accompanying routes. However, this does not span 

all their flights; some routes are served by multiple aircraft types (KLM, n.d. -a). This implies that 

routes do not always use the same type of planes. The types of aircraft used on the considered routes 

are estimated using historical flight data from the website of Flightradar24.com (Flightradar24, n.d.). 

12312 flights on the considered routes were gathered, and the relative usage of the different aircraft 

types was gathered. The formula below provides the average aircraft fuel usage per route based on 

relative aircraft usage:  

 

𝐴𝑓𝑟 = ∑
∑ 𝑀𝑖,𝑟

∑ 𝑀𝑟
∗ 𝐹𝑖 

 

• 𝐴𝑓𝑟  - Average fuel consumption in kg of fuel 

• 𝑀𝑖,𝑟  - Total flight missions per route and type of aircraft 

• 𝑀𝑟  - Total flight missions per route 

• 𝐹𝑖  - Fuel burn in kg per aircraft type from regression 

 

This calculation provides the average fuel usage on a route based on the relative aircraft usage and the 

regression equations on expected fuel usage per aircraft type discussed in section 3.1.2.  
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3.2.2 From Fuel Burn to Emissions 

 

To be able to convert the fuel burn to the emissions associated with this fuel burn, an emission factor 

is needed. KLM uses an emission factor of 3.16 kg of CO2 for every kg of jet fuel burned (KLM, n.d.-

c). This is considered a standard value reported by multiple governmental and environmental 

institutions (EIA, 2022; ICAO, 2018). This, therefore, seems to be an accepted value. However, 

another factor influencing the impact of emissions, which was addressed by Gössling et al. (2007), is 

that of the Radiative Forcing Index (RFI). It is a factor intended to incorporate any non-carbon effects 

on climate change in the carbon emissions. Aviation warms the Earth’s surface through CO2 and other 

factors (Lee et al., 2021). However, there is no genuine consent of its value in literature. Therefore, the 

International Air Transport Association (IATA) and the International Civil Aviation Organization 

(ICAO) do not use any value of this RFI. As KLM follows the emissions calculation methodology by 

ICAO (2018), they do not include this RFI (KLM, n.d.-c). The estimation of this RFI ranges between a 

factor of 3 and 1.7 (UK Department for Energy Security and Net Zero, 2023; Leet et al., 2021). 

Literature, however, shows that not all these estimations for the different effects can be backed up by 

robust evidence and display high agreement within the field of research (Lee et al., 2021). Therefore, 

no RFI will be used in the research, but its possible impact will be discussed in the discussion and 

conclusion.  

 

This results in the conversion of the last average fuel consumption per route to the average emissions 

per route: 

 

𝐸𝑟 =  𝑟 ∗ 𝐴𝑓
𝑟
 

 

• 𝐸𝑟   - Average emissions per route in kg of CO2 

• 𝑟  - Emissions factor in kg of CO2 per kg of fuel 

• 𝐴𝑓𝑟  - Relative aircraft fuel usage per route in kg of fuel 

 

3.2.3 Defining Flight Haul Type  

 

This concept of flight haul type has been swiftly discussed in the methodology used by KLM in 

section 2.6. The IATA (n.d.) distinguishes three different haul types based on the duration of the 

flight. These are the short-haul, medium-haul and long-haul. These flight haul types will be used, just 

like in the methodology of KLM (KLM, n.d.-c), to explain the effect of flight classes, and this paper 

will also use the flight haul types to compare any possible differences between the types.  
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Table 3.3: Flight Haul types 

Flight Haul Type Duration 

Short-haul Up to 3 hours 

Medium-haul Between 3-6 hours 

Long-haul More than 6 hours 

-Source: IATA (n.d.) 

 

The raw data set contains 293 flight routes, of which only 11 are medium-haul. This low sample size 

makes it less accurate to do proper statistical analysis. The methodology of KLM takes short- and 

medium-haul as one group in their calculations. For these two reasons, analyzing possible differences 

in estimated and reported values will be done using the short-/medium- and long-haul groups.  

 

3.2.4 Determining Passenger Numbers 

 

The average emissions per route is known; however, the amount of passengers onboard the plane is 

not. It is needed to estimate the amount of emissions that should be allocated to a passenger. The first 

part of getting the number of passengers is the passenger capacity per aircraft type; this list can be 

found in Appendix C1. 

 

In order to make a valid comparison between the values claimed by KLM and the estimation based on 

the FEAT model (Seymour et al., 2020), the seat distribution of classes in the aircraft and the load 

factor of passengers is also needed. For this research, only the economy class passenger is taken into 

consideration. KLM provides a distribution of economy and premium seats in their methodology 

report on CO2 calculation (KLM, n.d.-c). These values used by KLM show that on short- and 

medium-haul flights, 98% of the seats are economy class; on long-haul flights, 80% of the seat space 

is used for economy passengers (KLM, n.d.-c). This can be used to calculate how much of the total 

CO2 should be attributed to one economy-class passenger.  

 

A passenger load factor is given per region in the methodology of the ICAO emissions calculator. 

However, this is relatively old data from 2016 (ICAO, 2018). This data does show that there can be 

significant differences between regions on load factor. Seymour et al. (2020) used an average load 

factor published by IATA as these are more up-to-date. Therefore, the regional load factors of the 

ICAO (2018) will be used and adjusted to the newest available average load factor from IATA (2023); 

this is an approximation but gives a better judgement of regional differences and is still up-to-date. 

The average load factor will be 84.8%, which is the average load factor of airlines situated in Europe 

for May 2023 (IATA, 2023), and between regions differences are still possible. A table with the 

different load factors per region can be found in Appendix C2. 

 



30 
 

3.2.5 Estimated Emissions per Passenger 

 

The emissions per passenger is a combination of the calculated average emissions per flight and the 

retrieved data on passenger numbers per aircraft. This results in the following equation:  

 

𝐸𝑝,𝑟 =
𝐸𝑟

𝑙 ∗ 𝑐𝑟𝑐 ∗ 𝑃𝑟
 

 

• 𝐸𝑝,𝑟  - Estimated CO2 emissions in kg per passenger and route 

• 𝐸𝑟   - Average emissions per route in kg of CO2 

• 𝑙  - Average passenger load factor 

• 𝑐ℎ𝑐  - Class correction factor per route flight haul class 

• 𝑃𝑟  - Average passenger capacity per route 

 

The equation divides the CO2 emissions per route for the whole aircraft with the expected passengers 

aboard the aircraft adjusted for the seating class. This provides the estimated emissions per economy 

passenger per route.  

 

3.3 Estimating Cost of Carbon 

 

After establishing the estimated emissions per passenger, the next part will explain the methodology 

for comparing the reported cost of compensation by KLM and the estimated cost of carbon. This 

relates to the second hypothesis.  

 

The cost of carbon will be estimated using the in section 2 discussed SCC. The pricing of the SCC will 

be an average of the results found in recent literature grouped by the discount rate. A higher discount 

rate lowers the value of the SCC as more value is given to the present. The values for the SCC will be 

an average of the SCC values calculated by the U.S. Environmental Protection Agency (2022) and the 

research of Rennert et al. (2022). This choice is made because these are results from very recent and 

well-accepted studies or entities. This choice of recent estimations is essential as the literature shows 

signs of increasing estimation values of the SCC. Therefore, newer research can use the newest 

forecasts regarding climate change. 

 

The average values used for this SCC can be seen in the table below, which is corrected for inflation 

and converted to Euros of the values given in the reports of the Environmental Protection Agency 

(2022) and Rennert et al. (2022), which were reported 2020 US dollars (Appendix F1).  
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Table 3.4: SCC Estimation 

 Discount rate 

Report SCC 1.5% SCC 2% SCC 2.5% 

U.S. EPA 362.65 207.69 125.91 

Rennert et al. 331.45 199.08 126.98 

Average 347.05 203.39 126.45 

-Values are in 2023 Euros per metric ton of CO2 estimated for 2020 rounded to 2 decimal points. Currency conversion has 

been done on 02-08-2023. The base values of the SCC are acquired from the EPA(2022) and Rennert et al. (2022).  

 

The values are calculated for 2020; the EPA (2022) does report values for 2023. However, the 

research of Rennert et al. (2022) does not. Therefore, it is chosen to take the SCC for 2020. This will 

result in a slightly lower estimation of the SCC, as the EPA (2022) reports a value of 351 US dollars 

for the 1.5% discount rate. This is roughly 4% more than that of 2020.  

 

3.4 Comparing Reported and Estimated Values 

 

The following section explains the methodology for comparing the reported emissions and cost by 

KLM and this paper's estimated emissions and cost using the SCC. The comparison will be done by 

conducting a paired t-test. Ross & Willson (2017) explain that the paired t-test compares the mean of 

two matched groups; in this case, that is the estimated and reported emissions. This method will be 

used and executed on the whole sample and the distance category. Three distance groups can be 

considered; in that case, an ANOVA would be more appropriate. However, as discussed above, the 

alteration of the groups leaves two groups, making the paired t-test suitable for this analysis.  

 

The formulas for this t-test can be found below:  

 

𝑡 =
�̅�

𝑠𝑑

√𝑛
⁄

 

Where:  

 

�̅� =
∑ 𝑑𝑖

𝑛
𝑖=1

𝑛
 

And:  

𝑠𝑑 = √∑ (𝑑𝑖 − �̅�)
2𝑛

𝑖=1

𝑛 − 1
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• 𝑡  - t-statistic 

• �̅�  - mean difference of the paired observations 

• 𝑠𝑑  - sample standard deviation of the paired differences 

• 𝑛  - number of routes 

• 𝑑𝑖  - difference between estimated and reported emissions for the i route 

 

This test will be executed using R as statistical software, providing the t-statistic and p-value and 

showing if the null hypothesis, assuming no emissions or cost mean differences, can be rejected. 

 

The paired t-test requires several assumptions to be met for the results to be valid (Hsu & 

Lachenbruch, 2014). The dependent variable should first be continuous; this is the case as the 

emissions or cost can have any value. The second assumption is that the pairs should be related. In this 

case, the pairs are related flight routes as they are the same route for the estimation and the reported 

values. The sample should be random. The sample has been chosen to be direct flights, which is a 

choice. However, no selection is made for certain types of flights and thus can be considered random. 

The pairs should also be considered to be independent. This is met as the reported emissions from 

KLM or the estimated emission pairs on a specific route do not influence other routes. Next, the data 

must (approximately) satisfy the normality condition (Kim, 2015). The sample size is relatively large, 

so the paired t-test is quite robust for non-normality. However, it is checked by making a histogram, 

which will be done in section 4, and conducting Q-plots, which can be found in Appendix Figure E1. 

The final assumption is that there should be no outliers in the differences between the reported and 

estimated emissions; this will be checked in section 4.  
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4. Data 

 

This chapter will discuss the collected data and further explain the transformation made to the data for 

further statistical analysis. The assumptions are addressed, and summary statistics are provided.  

 

4.1 KLM Booking Data 

 

For this research, data on emissions of individual flights and the corresponding compensations and 

price of compensation were needed from KLM. This data is not freely available in a readymade data 

set. These values can only be acquired through booking on the KLM website (KLM, n.d. -b).  

The preferred data collection approach was web scraping, as no dataset was available. Web scraping is 

a technique to extract data from a webpage and save it into a database or file for analysis (Zhao, 2017). 

This would be an appropriate technique. However, the website of KLM does not allow web scraping 

in the booking process as this data is likely valuable and, therefore, protected. Therefore, the only way 

to collect the data was manually through the booking process. For example, the booking process of a 

flight from Amsterdam Schiphol Airport to London Heathrow Airport is shown in Appendix A1. 

During this collection process, access to the website of KLM was denied multiple times as a 

confirmation of the sensitive nature of the data collected.  

 

The choice of data was restricted to Amsterdam Schiphol as the departure and arrival airport and all 

the direct destinations that KLM serves from Schiphol. This choice was made as this research will 

focus on direct flights. According to the website of FlightsFrom.com (FlightsFrom.com, n.d.), 147 

routes, from which six were currently inactive, resulted in 147 direct connections as of 21-06-2023. 

These connections can be seen in the figure below, and a list of all the routes can be found in 

Appendix B1. This list includes 154 flights, as six inbound flights arrive from a different airport than 

the destination of the outbound flight. The figure below shows all the routes considered and their 

GCD. This GCD was calculated using the website of Great Circle Mapper (Swartz, n.d.).  
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Figure 4.1: 

 

 -Computed for 153 routes with Great Circle Mapper (Swartz, n.d.) 

 

The data on the flights was manually collected in the time of 4 days: 21-06-2023, 22-06-2023, 23-06-

2023, and 27-6-2023, the flight price data was collected between 16:00 and 17:30. As stated in the 

publication of KLM of their methodology (KLM, n.d. -c), the prices of compensation can be adjusted 

twice a year. Therefore, the majority of the collection phase was done in these three days, and during 

this phase, multiple checks were conducted to ensure the prices did not change.  

The dates selected as departure and return are 1-11-2023 and 8-11-2023. This date was chosen to 

ensure flight tickets were available at the time of collection. However, not all flights were available at 

that time due to their weekly schedule or seasonality; for 27 flights, another date was chosen at the 

moment these flights were available.  

 

The 147 destination pairs shown in the table in Appendix B1 are 294 inbound and outbound flights, as 

there is an inbound flight from the corresponding airport pair and an outbound flight. For the 

efficiency of data collection, the individual flight data was collected by selecting a round trip and then 

dividing the collected emissions and compensation data by two. This is possible as it shows that for 

almost all flights, with some exceptions, the displayed emissions, compensation and cost of 

compensation of a round trip is exactly half of these values for the one-way trip. There are two 

exceptions to this rule. The first is flights whose compensation price, emissions or reductions end on 

an odd number. These are rounded up for one of the flights and rounded down for the other flight. This 

is adjusted in the dataset. The second exception is flights containing in-between stops. Inbound flights 

from Aruba, Bogota, Riyadh, Kilimanjaro, Kigali, Quito, Sint Maarten and Zanzibar have an in-

between stop at a nearby airport. Therefore, the outbound flights of this destination are used, and the 

inbound flights from the destination airport are replaced by the inbound flights coming from the in-
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between stop. The inbound flight of Zanzibar was left out, as it uses the same in-between stops as 

Kilimanjaro; this flight is thus already in the dataset.  

 

4.2 Emission Data Assumptions 

 

At first, the assumption will be tested for the collected data of KLM and the estimated data. The 

assumption that will need to be tested is normality. The histogram of the frequencies of the differences 

between the reported and estimated emissions can be seen in figure 6.1 below.  

 

Figure 6.1: Histogram Emission Differences 

 

 

The negative values in the plot indicated flight routes where the estimated emissions are higher than 

the reported; this is the other way around for the positive values. It seems that there is a normal 

distribution. However, there seem to be outliers on the long-haul group's left side of the distribution 

graph. These could also be observed when making a boxplot. As one of the other assumptions stated in 

the methodology, there should be no outliers in the difference between reported and estimated 

emissions.  

The outliers for the long-haul group with a difference of 187.70 KG of CO2 per passenger are that of 

flights KL0809 and KL0910 between Kuala Lumpur and Amsterdam. These could be qualified as an 

outlier as they differ significantly from the other observations. Removing the outlier gives the 

following results shown in figure 6.2.  

 

Figure 6.2: Histogram Emission Differences Without Outliers 
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This new histogram without any outliers seems to show an okay normal distribution. However, the 

short-/medium-haul group is slightly positively skewed, and the long-haul group is slightly negatively 

skewed. An extra check for the normality using Q-plots can be seen in Appendix Figure E1.  

 

4.3 Historical Flight Data 

 

The next part of data needed to estimate emissions is the type of aircraft used on the flight routes 

selected before. The fuel used differs per aircraft type, so to make a fitting estimation of the difference 

between the claimed emissions and related compensation, the aircraft type is needed. During the 

booking process, there is no mention of the type of aircraft used. The website of KLM does report a 

list of the fleet used with some destinations where these aircraft are used. However, this does not span 

all their flights, and multiple aircraft types serve multiple routes. This implies that routes do not 

always use the same type of planes. Therefore, another approach was taken to collect this aircraft-type 

data. The website of Flightradar24.com (Flightradar24, n.d.) offers historical flight data per flight 

number. The free version of the website displays seven historical days of flight data. A free trial 

version of the gold version was used to collect a more significant number of flights than was available 

if using the free version. The downside of this data is that this data cannot be downloaded per flight 

number. The option of web scraping was also protected on the website of Flightradar24.com. 

Therefore, this data was collected manually during two days, 28 and 29 of June 2023 and processed in 

Excel.  

 

The choice was made to collect data for aircraft type for the outbound flights, and the assumption was 

made that the inbound flights used the same planes. A visual inspection of the data showed that most 

of the time, the planes used on the outbound flights were the same as on the inbound flights. This 

seems like a reasonable assumption to make. One exception was made for the flights which have in-

between stops, which were mentioned before. These inbound flights are collected as these are not the 

same routes. Data was available for all the outbound flights except that of flight KL0807 to Taipei and 

KL0861 to Tokyo. These routes have not been flown recently. However, KLM has scheduled them for 

2-11-2023 and 1-11-2023. Therefore, the same plane type was used as that of the destination of Hong 

Kong for flight KL0807 and Seoul for flight KL0861, as these are similar distances and areas. A quick 

scan also shows that similar plane types are used in that flight range.  

 

The primary collected historical flight data consisted of 13922 flights. This data was cleaned by 

removing any cancelled flights, diverted flights and any scheduled flights that did not depart yet, and 

flights that have the same flight number as our flight of interest but do not have the same departure 

and arrival destination. This led to a dataset of 12312 flights corresponding to the 294 connections 

from KLM to and from Schiphol. Not every flight route has the same amount of flights per period. 
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This makes it so that the number of historical flights collected fluctuates per flight number. Between 

21 and 100 historical flights were gathered per flight number. The aircraft used in these 12312 flights 

correspond to 12 different aircraft types. These are the same as the aircraft reported in use by KLM 

(KLM, n.d. -a); this report of the KLM also shows data on passenger numbers. This will be useful to 

calculate the prediction model of the emissions reported by KLM per flight, as KLM only reports CO2 

per passenger. As not every flight is filled with passengers, an estimation has to be made concerning 

the average passenger load factor. An average passenger load factor of 84.8% will be used, translating 

to the average load factor of airlines situated in Europe for May 2023 (IATA, 2023). 

 

4.4 Summary Statistics 

 

Table 4.1 shows the summary statistics of basic flight data retrieved from the booking process of the 

KLM website. This is grouped into the short-/medium- and long-haul distance groups. The shortest 

flight distance is only 158 km, corresponding to flights KL1720 and KL1721 and the Amsterdam and 

Brussels airport pair. The most expensive flight is that of KL0609 from Amsterdam to Salt Lake City; 

this is, however, not the longest flight in terms of distance or duration.  

 

Table 4.1: 

 

 

In total, 12312 flights were gathered to get the relative aircraft usage per route. The summary statistics 

of these flights can be looked up in Appendix D1, and the summary statistics of the estimated and 

reported emissions and the cost of carbon emissions are in Tables D2 and D3, respectively. These 

statistics show that the average estimated emissions per flight on long-haul routes is 176 tons of CO2. 

To put this into perspective, this equates to roughly the same amount of emissions as 38 passenger cars 

emit driving for a year(40.000 km) (EPA, 2023).   
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5. Results 

 

This chapter will discuss the results from the calculations discussed in the methodology, and the 

resulting statistical test will be discussed. These results will be placed in context, and their significance 

will be discussed.  

 

5.1.1 Reported and Estimated Emissions for All Flights 

 

First, looking at the plot of the reported and estimated emissions on GCD is interesting. To observe 

any possible visual relationship between the reported and estimated emissions.  

 

Figure 6.1:  

 

 

The figure above shows the emissions reported by KLM in blue and the estimations in red. The linear 

regression line is added to see possible differences in relationships. There seems to be a visual 

difference between the estimated and reported emissions. It is hard to observe visually if the average 

emissions of the reported or estimated are statistically different; however, the graph does show that 

there might be a difference between longer distances flights and shorter distances flights, looking at 

the ab line. It can be observed that under 3000 km GCD, the reported emissions seem to be higher than 

the estimated emissions. For distances longer than 3000 km GCD, the estimated seem to be higher 

than the reported emissions.  

 

As discussed in the methodology, the difference between the reported and estimated emissions will be 

tested using a paired sample t-test. The table below shows the results of the paired sample t-test for the 

whole sample of short-, medium- and long-haul flights, as observed in figure 6.1.  
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Table 6.1: Difference between Reported and Estimated Emissions 

 95% Confidence interval  

Group T-statistic N P-value Lower 

bound 

Upper 

Bound  

Mean difference 

All flying distances -1.302 290 0.194 -5.696 1.162 -2.268 

-Rounded to three decimal points. *** p<0.01, ** p<0.05, * p<0.1 

 

The first hypothesis in the introduction stated that the reported per-passenger emissions are lower than 

the estimated emissions per-passenger. However, the results show that the null hypothesis of there 

being no difference between the estimated and reported emissions cannot be rejected, as the p-value is 

0.194. The t-test shows signs that the reported emissions’ mean is lower than estimated. However, this 

is not significant at any acceptable level of alpha. This does not support the first hypothesis, stating 

that the reported emissions are expected to be lower than the estimated emissions.  

 

5.1.2 Reported and Estimated Emissions per Haul Type 

 

In Figure 6.1, it can be seen that there is a possible difference between the short/medium and long-haul 

groups. Therefore, the plots of the separate groups in Figure 6.2 can be found below. 

 

Figure 6.2: 

 

 

 

Figure 6.2 shows the possible differences between the short-/medium-haul and long-haul groups, 

confirming the first visual observations of Figure 6.1. The short-/medium-haul group seems to have 

higher emissions from KLM, and the long-haul group seems to have higher emissions from the 

estimation. To check these visual observations on any significance, the short-/medium-haul and long-
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haul groups will be individually tested in the same way as the whole dataset. The results of these two 

groups can be seen in Table 6.2.   

 

Table 6.2: Difference Between Reported and Estimated Emissions per Haul Group 

 95% Confidence interval  

Distance Group T-statistic N P-value Lower 

bound 

Upper 

Bound  

Mean 

difference 

Short/Medium-Haul 6.158 187 3.821e-09*** 5.8451 11.320 8.583 

Long-Haul -6.375 102 5.384e-09*** -28.9382 -15.204 -22.071 

-CI intervals and mean difference are in 2023 Euros. Rounded to three decimal points. *** p<0.01, ** p<0.05, * p<0.1 

 

The test results confirm the first visual expectations from Figures 6.1 and 6.2. For both haul groups, 

the null hypothesis of there being no significant difference between the reported and estimated 

emissions can be rejected based on a significance level of 5%. Observing the results of the short-

/medium-haul group shows that the reported emissions by KLM are, on average, 8.56 

kgCO2/passenger higher than the estimated emissions. The long-haul group paints a different picture. 

The reported emissions of KLM are, on average, 22.07 kgCO2/passenger, lower than the estimated 

emissions. The histogram below shows a visualization of this difference.   

 

Figure 6.3:Boxplot 

 

 

 

 

5.2.1 Reported and Estimated Cost of Compensation for All Flights 

 

The following section will analyze the difference between the reported and estimated cost of 

compensation. This relates to hypothesis 2: “The reported cost of CO2 compensation per passenger 
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emissions is lower than the estimated cost of carbon per passenger”. KLM offers four different 

“compensation packages " (KLM, n.d. -b). This ranges from compensation solely by reforestation to 

compensation solely by using SAF and two options, which are a mix of those. The compensation 

options can be found in Appendix D4. The relationship between the prices of these options and the 

emissions they compensate for can be seen in Figure 6.4.  

 

Figure 6.4:  

 

 -Source of data KLM (n.d. -b) 

 

Figure 6.4 shows three linear relationships for reforestation, reforestation and SAF, and solely SAF. 

The option concerning SAF and reforestation seems to be a two-stepped linear relationship. In the case 

of SAF and reforestation for lower distances, there is a larger relative proportion of SAF in the 

compensation than for higher distances. The different compensation methods will be compared using 

reforestation, SAF and reforestation and SAF. However, the SAF and reforestation option will only be 

used in comparison in the split model, as the cost of compensation distribution is non-linear. These 

options provided by KLM are compared to the SCC, as discussed in section 3.5. The plot of the 

compensation cost of the different sources on GCD can be seen in Figure 6.5.   
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Figure 6.5:  

 

 

Figure 6.5 shows that, at first glance, the compensation price for SAF seems much higher than any 

other compensation measurement. However, the other compensation options by KLM seem to be, on 

average, all lower than valuing the cost of carbon using any estimation of SCC, regardless of any 

discount rate value used in this paper except for the SAF and reforestation option. This option seems 

relatively equal to the SCC estimation of 2.5% for the short-/medium-haul distances. 

 

The comparison of the reported cost of compensation and estimated costs of carbon will be done using 

the same paired sample t-test as the comparison of emissions. The results of the paired sample t-test 

for the whole sample of flights (short-/medium-, long-haul) can be found in Table 6.4.  

 

Table 6.4: Difference between Reported Cost of Compensation and Estimated Cost of Carbon 

 95% Confidence interval  

Group T-statistic N P-value Lower 

bound 

Upper 

Bound  

Mean 

difference 

Reforestation  

SCC 2.5 19.574 290 2.2e<-16*** 23.495 28.745 26.121 

SCC 2  19.662 290 2.2<e-16*** 39.932 48.816 44.374 

SCC 1.5 19.716 290 2.2<e-16*** 70.623 86.287 78.455 

SAF & 

Reforestation 

 

SCC 2.5 11.529 290 2.2e<-16*** 10.906 15.396 13.151 

SCC 2  15.299 290 2.2<e-16*** 27.363 35.443 31.403 

SCC 1.5 17.374 290 2.2<e-16*** 58.066 72.903 65.485 

SAF  
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SCC 2.5  -21.413 290 2.2e<-16*** -154.003 -128.076 -141.040 

SCC 2 -21.624 290 2.2<e-16*** -133.962 -111.611 -122.787 

SCC 1.5 -22.183 290 2.2<e-16*** -96.576 -80.835 -88.705 

-CI intervals and mean difference are in 2023 Euros. Values rounded to 3 decimal points. *** p<0.01, ** p<0.05, * p<0.1 

 

These first results show that, while not making any distinction between flight distance groups, the null 

hypothesis assuming that there is no difference between the estimated cost of carbon compensation 

using the SCC and the reported cost of compensation using the option of reforestation can be rejected, 

for all proposed values of the discount rate in the SCC. The mean difference is estimated to be 

between €26.12 and €78.46. This means the estimated cost of carbon emissions using the SCC is all 

higher than the reported cost of compensation using reforestation provided by KLM. This supports the 

claim of the second hypothesis.  

 

The results of the SAF & Reforestation option show that looking at all the flights, the valuation of the 

cost of carbon using the SCC is, in all cases, statistically significantly higher than that of the option of 

SAF & Reforestation. Depending on the chosen discount factor, this average difference is between 

€13.15 and €65.49.  

 

Comparing the SCC to using SAF as a compensation source results in a different outcome. The null 

hypothesis stating that there is no difference between the reported cost of compensation and the 

estimated cost of carbon can be rejected for all the values of the SCC, as the p-value of the paired t-test 

is lower than 5%. However, this time, the mean differences are all negative, showing that the reported 

cost of compensation, using SAF as the source, reported by KLM, is higher than the estimated cost of 

carbon. This contradicts the second hypothesis, stating that the reported compensation cost will be 

lower than the estimated.  

 

5.2.2 Reported and Estimated Cost of Compensation per Haul Type 

 

The following results of interests would be the difference between the different haul groups. The first 

part of interest is the individual plots of the different haul groups. These can be seen in figure 6.5. 
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Figure 6.5:  

 

 

 

 

Figure 6.5 seems to confirm the observation that for the short-/medium-haul flights, the SAF and 

reforestation option shows almost equal cost of carbon to the SCC 2.5 valuation of the estimated cost 

of carbon. The paired sample t-test results grouped into distance groups can be seen in Table 6.5.  

 

Table 6.5: Difference between Reported Cost of Compensation and Estimated Cost of Carbon by Haul-Group 

 95% Confidence interval  

Group T-statistic N P-value Lower 

bound 

Upper 

Bound  

Mean 

difference 

Short/Medium-Haul  

SCC-Reforestation 

SCC 2.5 40.086 187 <2.2e-16*** 9.882 10.905 10.393 

SCC 2 39.458 187 <2.2e-16*** 16.877 18.653 17.765 

SCC 1.5 39.066 187 <2.2e-16*** 29.937 33.122 31.530 

SCC- SAF & 

Reforestation 

 

SCC 2.5 -2.045 187 0.042** -0.930 -0.017 -0.473 

SCC 2 23.737 187 <2.2e-16*** 6.325 7.472 6.899 

SCC 1.5 35.547 187 <2.2e-16*** 19.516 21.810 20.663 

SCC-SAF  
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SCC 2.5 -28.051 187 <2.2e-16*** -68.453 -59.458 -63.956 

SCC 2 -26.923 187 <2.2e-16*** -60.730 -52.438 -56.584 

SCC 1.5 -24.110 187 <2.2e-16*** -46.323 -39.316 -42.819 

Long-Haul  

SCC-Reforestation 

SCC 2.5 43.715 102 <2.2e-16*** 52.342 57.317 54.829 

SCC 2 44.110 102 <2.2e-16*** 88.763 97.129 92.943 

SCC 1.5 44.354 102 <2.2e-16*** 156.768 171.445 164.106 

SCC-SAF & 

Reforestation 

 

SCC 2.5 40.340 102 <2.2e-16*** 36.148 39.887 38.017 

SCC 2 42.541 102 <2.2e-16*** 72.581 79.680 76.130 

SCC 1.5 43.584 102 <2.2e-16*** 140.591 153.997 147.294 

SCC-SAF  

SCC 2.5 -50.851 102 <2.2e-16*** -292.726 -270.747 -281.736 

SCC 2 -51.224 102 <2.2e-16*** -253.057 -234.190 -243.623 

SCC 1.5 -51.000 102 <2.2e-16*** -179.167 -165.752 -172.459 

-CI intervals and mean difference are in 2023 Euros. Rounded to three decimal points. *** p<0.01, ** p<0.05, * p<0.1 

 

Observing the results of these tests, it can be seen that comparing reforestation as a method of 

valuation to the SCC shows that the differences are all positively statistically significant. The cost of 

carbon emissions valued by the SCC using a discount factor of  2% is, on average, €17.77 higher on 

the short-haul routes and €92.94 higher on the long-haul routes. The splitting of the results shows 

more extreme differences than when looking at the whole model. This could be explained by the 

earlier observed differences between the estimated and reported emissions on the short/medium- and 

long-haul routes. The comparison of prices is a vertical transformation of these earlier observations, as 

the pricing of the emissions is done linearly. 

 

Comparing the SAF and reforestation to the estimated SCC leaves a different picture. The SCC is, in 

all except one case, higher than the SAF and reforestation option. This exception is that of the SCC1.5 

and the SAF and reforestation option in the short-/medium-haul group. The mean value of the 

estimated SCC1.5 is lower than that of the SAF and reforestation option on a 5% significance level; 

this is a slight mean difference of €0.47.  

  

The comparison between SCC and SAF based on distance group shows the same relationship as in 

Table 6.4, but with higher differences. On the short/medium-haul distances, the cost of compensation 
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using SAF is, on average, €56.58 higher than using the SCC (2% discount rate). This number increases 

to €243.62 when looking at the long-haul flights.  

 

These results show that mixed evidence relates to the stated second hypothesis. Most of the results 

show that the estimated cost of carbon is higher than the reported cost of compensation for the option 

of reforestation and SAF & Reforestation. However, all the mean values of the SAF are higher than 

the SCC, and the comparison of the SAF & Reforestation option and the SCC1.5 on the short-

/medium-haul groups shows that the reported compensation is higher than the estimated cost of 

carbon. Visualizing these in a boxplot format provides Figure 6.4.     

 

Figure 6.4: 

   

 

Figure 6.5 shows the reported cost of compensation and estimated cost of carbon using the SCC and 

the average prices of all flights; this shows the actual relative cost of the compensation options and 

valuations according to the estimated SCC. Table 6.6 displays these visual observations translated to 

percentages of the total average price of a ticket. It shows the average price of a ticket and the average 

cost of compensation or carbon as a percentage of the ticket price. This shows that using reforestation 

as a compensation option is, on average, less than 1% of the ticket price, while using SAF as a 

compensation method is, on average, around 40% of the average ticket price.  
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Figure 6.5: 

 

  

 

Table 6.6: Relative Cost of Carbon Compensation and Cost of Carbon in Percentages 

Distance 

Group 

Flight 

price 

Reforestation SAF & 

Reforestation 

SCC 2.5 SCC 2 SCC 1.5 SAF 

Short/Medium-

Haul 

180.44 0.95% 6.98% 6.71% 10.80% 18.43% 42.16% 

Long-Haul 884.43 0.88% 2.78% 7.08% 11.39% 19.44% 38.94% 

-Flight prices are in Euros. Other values are percentages.   

 

 

 

 

 



48 
 

6. Conclusion and Discussion 

 

This final section will make a final conclusion and summarize the results obtained by this study. The 

possible limitations of this study will be discussed, and some recommendations on policy and further 

research will be given.  

 

6.1 Conclusion 

 

The main objective of this research was to find the relationship between the reported and estimated 

cost of carbon based on a case study of KLM flights from Schiphol. The question that needed to be 

answered was: “What is the relationship between the estimated cost of carbon emissions in passenger 

flights and the reported compensation cost?”. Two hypotheses were formed to assist in answering the 

main research question. The results related to these hypotheses will be discussed in the following 

section.  

 

Hypothesis 1: The reported per-passenger emissions are lower than the estimated emissions 

per passenger. 

 

The first hypothesis was tested by first collecting per-passenger emission values reported by KLM on 

291 direct routes flown to and from Schiphol by KLM. Subsequently, the estimated emissions were 

computed using a fuel-burn estimation model, converted to emissions, developed by Seymour et al. 

(2020) and computed per passenger. This resulted in two paired samples of per-passenger emissions, 

statistically analyzed using sample paired t-tests. The t-tests were conducted for the whole sample of 

flights and the short-/medium- and long-haul groups.  

 

The results suggest that there is no significant difference between the estimated and the reported per-

passenger emissions looking at all flight routes combined; this is, therefore, in contrast with the first 

hypotheses and the expectation of this study. However, a different outcome is observed when dividing 

the observations into haul groups. The t-tests show that, on average, the estimated per passenger 

emissions are 8.583 kgCO2 lower than the reported emissions for short-/medium-haul flights. This is, 

on average, 8.2%  lower than the reported emissions. When looking at the results of the long-haul 

group, the estimated emissions per passenger are, on average, 22.071 kgCO2 higher than the reported 

emissions. This is, on average, 4.7% higher than the reported emissions. So, evidence supporting the 

first hypothesis is only found for long-haul flights. However, the relative differences are not that large 

in magnitude and comparable to differences found in the literature between fuel model estimations and 

actual fuel burned by airlines, which was roughly 6% (Yanto & Liem, 2018). As the fuel burn model 

calculation requires several assumptions on values known to the airlines, these significant differences 
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do not seem to indicate any large differences between the reported and estimated per-passenger 

emissions. 

 

Hypothesis 2: The reported cost of CO2 compensation per passenger emissions is lower than 

the estimated cost of carbon per passenger. 

 

The second hypothesis analyzed related to the relationship between the reported cost of compensation 

and the estimated cost of carbon. The earlier computed estimated emissions were transformed to cost 

by pricing this carbon using the SCC. This SCC was computed as an average of the SCC reported by 

Rennert et al. (2022) and the EPA (2022). This SCC was used for three different discount factors. The 

same paired sample t-test was used to compare the means of the estimated and reported cost of carbon. 

This comparison showed that when looking at all the flights combined, the estimated cost of 

compensation using the SCC was significantly higher than that of the reforestation option and the 

option of SAF & reforestation, no matter the discount factor. This result, which is in line with the 

expectations of this study, changes when looking at the reported option of SAF. The cost of 

compensation using an estimated value of the SCC is statistically significantly lower than any reported 

SAF option. This difference is relatively large and stands out as even when using a discount factor of 

1.5%, giving more value to the future, the average difference in compensation cost is €88.71 lower. 

This means the reported average value of the SAF option's carbon compensation cost is 207.74% of 

the SCC1.5 estimation. This, therefore, contradicts the second hypothesis. When splitting up the routes 

of KLM into short-/medium-haul and long-haul, the results suggest the same conclusion, except for 

the comparison of the estimated SCC1.5 and the reported SAF & Reforestation option for the short-

/medium-haul group. The average estimated compensation value is €0.47 lower than the reported SAF 

& Reforestation option. This suggests a minimal difference, although significant, between the 

estimated and reported values of these options. This contradicts the second hypothesis. 

 

Summarizing the findings in answering the research question is not that straightforward. The results 

show mixed results, so some nuance should be given to the findings for interpretation. Some 

differences are found between the reported and estimated emissions, which differ in direction for the 

short-/medium-haul and long-haul. However, The differences are at the highest, around 8%, which 

does not seem large compared with the differences found in the pricing of emissions. The quality of 

accurate estimation of emissions relies for a large part on data availability. As stated by KLM (n.d.-c), 

KLM’s calculations are based on actual fuel burn, and KLM has exact figures on their passenger 

numbers and, therefore, can conduct accurate estimations. However, as not all data is public, there is 

no possibility to review KLM’s precise estimation method accurately. The results suggest small 

differences between the estimated and reported emissions. However, the literature and the 

methodology assumptions indicate that these differences could be due to several assumptions made in 
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the estimation. The reason the long-haul flights have a higher estimation than the reported and the 

short-/medium-haul flights have a lower estimation is debatable. It could be that the used estimation 

model underestimates the inefficiencies of short-haul flights and overestimates efficiencies in long-

haul flights due to the assumptions in the flight modelling. This, however, should be further analyzed. 

The estimated pricing of these emissions is the part of this study where the largest differences between 

the estimated and reported values can be found. The most obvious result is the relatively higher 

valuation of the SAF option. This valuation does not seem to be in relationship with the actual carbon 

cost, looking at the literature. The high end of the estimations of the SCC is still lower than this option. 

It seems it is related to the relatively high cost of SAF. However, the lack of transparency of this 

investment in SAF by KLM and its reduction numbers makes this option difficult to judge. For almost 

all other compensation options and flying distances, the estimated cost of compensation is higher than 

the reported cost of compensation except one. These results show that the relationship between the 

estimated cost and reported cost of carbon in flying is highly reliant on the source of compensation 

chosen. It gives mixed results depending on haul type. However, the results suggest that reforestation, 

at the price used by KLM, undervalues the actual cost of these emissions. 

 

6.2 Limitations and Further Research 

 

The limitations of this study are from different origins. The external validity of the research could be 

debated, as one airline, KLM, has been considered. However, the results could be comparable with an 

airline of equal market position. The research could be easily enlarged to include other airlines as the 

methodology could apply to any airline. Another possible limitation is the choice of the fuel burn 

model. The choice was made for the FEAT model of Seymour et al. (2020). This suited the scope of 

the research. However, this study does rely on the accuracy of the work of Seymour et al. (2020) and 

the underlying assumptions made in their research. This includes assumptions made on passenger 

numbers and load factors, among others. If accurate fuel burn data per flight were available, these 

assumptions would not have been necessary. These same assumptions made on load factors and 

passenger numbers also affect the allocation of emissions in this research. Estimations were made for 

load factors with relatively old data. Newer routes and airline-specific load factors could improve the 

accuracy of the estimations. The estimations of the relative use of aircraft type per route are also 

bound to some limitations. Data on historical flights does not have to represent future schedules. This 

makes it so that, for example, upgrades to more fuel-efficient aircraft cannot be considered. The 

average from two studies was taken to establish the cost of carbon because of the up-to-date values. 

However, one could debate whether a broader scope of estimations could be of value. Another aspect 

that could have altered the outcome is including a value of the RFI, including the extra damaging 

effects of CO2. The estimations range between 1.7 and 3, as the literature suggests, suggesting that the 

estimated emissions and cost of compensation would have increased by a low estimation of at least 
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70%. This is a significant increase and would dramatically increase the cost of carbon in flying. There 

is no real consensus in the literature on the RFI’s value, so further research is needed to include it. 

 

This research has shown that the quality of measurement of emissions is greatly dependent on the 

availability of data and the transparency of airlines. Therefore, it would be recommended that the 

methodology regarding emissions should be easily accessible to the public. The difference between 

estimated and reported emissions by KLM in this study was not large. However, a more open attitude 

towards the data would give more trust in its value. Literature shows that it is difficult to put a specific 

price on carbon emissions due to numerous uncertainties that are hard to predict or quantify 

(Litterman, 2013; Pindyck, 2013). This makes it challenging to price the carbon emissions of flying 

and could explain some carbon pricing variations. However, this paper points out that at least some 

pricing values are significantly lower than the estimated SCC. Whether these values are lower due to 

societies, including airlines, ignorance of the issue or not is another question. However, without proper 

regulation and unclear definitions of these offset schemes’ critical factors, this open market allows 

organizations and consumers to choose the compensation source that suits them well. In the case of 

this study on flights from KLM, one could argue that few passengers would choose the compensation 

option of SAF over reforestation as they are claimed to compensate the same emissions while, on 

average, being 40 times more expensive. This can result in too low pricing of carbon emissions while 

the message to the consumer remains one of total compensation. This feeds into the idea of Watt 

(2021) that people want to believe the unrealizable offsets are valid as it leads away from the pressing 

issue of climate change, and this changes carbon offsetting from a valuable tool to mitigate carbon 

emissions to, as stated by Watt (2021), a fantasy solution leading society away from their 

responsibility. This research has shed light on the relationship between the reported and the estimated 

cost of carbon emissions in flying. More widely available data and further research on the value of the 

SCC could improve the estimations, and further research could use this methodology as a base or 

source of comparison. 
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Appendix 

 
 

Appendix A: Booking Process 

 
A1: KLM Booking Process 

 

Step 1: 

 

 

 -Source: KLM (n.d., -b) 

 

The first step involves choosing a departure date, passenger number and class. This is set to 1-11-2023,  and 

economy class, respectively.  

 

Step 2:  

 

 

  -Source: KLM (n.d., -b) 

 

The second step consists of choosing the flight time. The first available flight is chosen as criteria, and no flights 

are chosen which are from other operators.  
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Step 3: 

 

 

 -Source: KLM (n.d., -b) 

 

The third step consists of choosing the additional services, set at “light” for every flight chosen.  

 

Step 4:  

 

 

  -Source: KLM (n.d., -b) 

 

The fourth step shows an overview of the flight. From this page, the flight number and duration of the flight are 

extracted.  
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Step 5+6+7: 

 

 

 

 

  -Source: KLM (n.d., -b) 

 

Step five, six and seven asks the user to give passenger information; a date of birth is also required when flying 

to the United States or Canada. Step seven asks the user if he wants to join the miles club of KLM, Flying Blue.  
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Step 8:  

 

 

   -Source: KLM (n.d., -b) 

 

Step eight gives the user the choice of several extras, including the CO2 Impact Program, which is the carbon 

offsetting scheme of KLM.  
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Step 9: 

 

 

  -Source: KLM (n.d., -b) 

 

Step number nine gives the user the choice of different options for carbon compensation and shows the carbon 

footprint. From this page, the emissions values and corresponding compensation costs are retrieved.  
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Appendix B: KLM Routes 
 

Table B1: Unique KLM Routes 

Flight 

Number 

Date Departure  Code 

Dep. 

Arrival Code 

Arr. 

Price 

(€) 

Duration 

(min) 

GCD 

(km) 

KL1721 1-11-23 Amsterdam AMS Brussels BRU 167 45 158 

KL1853 1-11-23 Amsterdam AMS Dusseldorf DUS 179 45 179 

KL1515 1-11-23 Amsterdam AMS Norwich NWI 202 50 240 

KL1753 1-11-23 Amsterdam AMS Bremen BRE 184 55 284 

KL1739 1-11-23 Amsterdam AMS Luxembourg LUX 209 55 315 

KL1903 1-11-23 Amsterdam AMS Hannover HAJ 187 55 335 

KL0981 1-11-23 Amsterdam AMS London LCY 119 70 336 

KL1763 1-11-23 Amsterdam AMS Frankfurt FRA 124 65 367 

KL1001 1-11-23 Amsterdam AMS London LHR 130 80 371 

KL1485 1-11-23 Amsterdam AMS Humberside HUY 209 65 372 

KL1777 1-11-23 Amsterdam AMS Hamburg HAM 157 60 380 

KL1223 1-11-23 Amsterdam AMS Paris CDG 147 80 399 

KL1421 1-11-23 Amsterdam AMS Birmingham BHX 123 70 444 

KL0915 1-11-23 Amsterdam AMS Southampton SOU 181 70 450 

KL1545 1-11-23 Amsterdam AMS Leeds LBA 173 65 464 

KL1341 1-11-23 Amsterdam AMS Billund BLL 231 65 478 

KL1533 1-11-23 Amsterdam AMS Durham Tees 

Valley 

MME 213 75 479 

KL1071 1-11-23 Amsterdam AMS Manchester MAN 97 75 488 

KL1867 1-11-23 Amsterdam AMS Stuttgart STR 165 75 512 

KL0957 1-11-23 Amsterdam AMS Newcastle NCL 179 80 523 

KL1049 1-11-23 Amsterdam AMS Bristol BRS 101 75 526 

KL1883 1-11-23 Amsterdam AMS Nuremberg NUE 205 70 542 

KL1985 1-11-23 Amsterdam AMS Basel Mulhouse BSL 110 75 561 

KL1059 1-11-23 Amsterdam AMS Cardiff CWL 201 75 567 

KL1821 1-11-23 Amsterdam AMS Berlin BER 147 80 596 

KL1953 1-11-23 Amsterdam AMS Zurich ZRH 146 85 603 

KL1329 1-11-23 Amsterdam AMS Aalborg AAL 212 75 625 

KL1809 1-11-23 Amsterdam AMS Dresden DRS 167 75 635 

KL1125 1-11-23 Amsterdam AMS Copenhagen CPH 95 80 635 

KL1255 1-11-23 Amsterdam AMS Rennes RNS 203 95 661 

KL1791 1-11-23 Amsterdam AMS Munich MUC 131 85 665 

KL1277 1-11-23 Amsterdam AMS Edinbrugh EDI 124 90 668 

KL1925 1-11-23 Amsterdam AMS Geneva GVA 111 85 682 
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KL1247 1-11-23 Amsterdam AMS Kristiansand KRS 220 85 689 

KL1441 1-11-23 Amsterdam AMS Aberdeen ABZ 211 90 705 

KL1351 1-11-23 Amsterdam AMS Prague PRG 147 90 707 

KL1471 1-11-23 Amsterdam AMS Glasgow GLA 95 90 720 

KL1413 1-11-23 Amsterdam AMS Lyon LYS 134 95 732 

KL1197 1-11-23 Amsterdam AMS Stavanger SVG 212 90 733 

KL1455 1-11-23 Amsterdam AMS Nantes NTE 357 90 734 

KL0947 1-11-23 Amsterdam AMS Belfast BHD 110 90 751 

KL0933 1-11-23 Amsterdam AMS Dublin DUB 93 95 753 

KL1153 1-11-23 Amsterdam AMS Gothenburg GOT 210 90 765 

KL1631 1-11-23 Amsterdam AMS Milan MXP 121 95 797 

KL0929 1-11-23 Amsterdam AMS Inversess INV 192 100 810 

KL1555 1-11-23 Amsterdam AMS Turin TRN 212 100 818 

KL1273 1-11-23 Amsterdam AMS Poznan POZ 197 100 821 

KL1619 1-11-23 Amsterdam AMS Milan LIN 121 95 831 

KL1217 1-11-23 Amsterdam AMS Sandefjord TRF 149 95 839 

KL1271 1-11-23 Amsterdam AMS Wroclaw WRO 204 100 848 

KL1187 1-11-23 Amsterdam AMS Bergen BGO 207 110 890 

KL1085 1-11-23 Amsterdam AMS Cork ORK 108 105 909 

KL1315 1-11-23 Amsterdam AMS Bordeaux BOD 210 100 924 

KL1563 1-11-23 Amsterdam AMS Genoa GOA 164 105 928 

KL1653 1-11-23 Amsterdam AMS Venice VCE 243 105 938 

KL1917 1-11-23 Amsterdam AMS Gdansk GDN 190 100 940 

KL1141 1-11-23 Amsterdam AMS Oslo OSL 87 110 961 

KL1845 1-11-23 Amsterdam AMS Vienna VIE 129 105 962 

KL1179 1-11-23 Amsterdam AMS Linkoping LPI 251 105 967 

KL1895 1-11-23 Amsterdam AMS Graz GRZ 166 105 970 

KL1405 1-11-23 Amsterdam AMS Montpellier MPL 220 110 972 

KL1253 1-11-23 Amsterdam AMS Nice NCE 138 115 978 

KL1583 1-11-23 Amsterdam AMS Bologna BLQ 208 105 989 

KL1303 1-11-23 Amsterdam AMS Toulouse TLS 242 110 997 

KL1641 1-11-23 Amsterdam AMS Florence FLR 238 120 1059 

KL1993 1-11-23 Amsterdam AMS Krakow KRK 216 115 1077 

KL1943 1-11-23 Amsterdam AMS Zagreb ZAG 171 110 1101 

KL1363 1-11-23 Amsterdam AMS Warsaw WA

W 

187 115 1105 

KL1325 1-11-23 Amsterdam AMS Aalesund AES 212 120 1145 

KL1687 1-11-23 Amsterdam AMS Bilbao BIO 179 125 1153 

KL1105 1-11-23 Amsterdam AMS Stockholm ARN 197 120 1155 
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KL1975 1-11-23 Amsterdam AMS Budapest BUD 168 120 1171 

KL1665 1-11-23 Amsterdam AMS Barcelona BCN 142 125 1241 

KL1175 1-11-23 Amsterdam AMS Trondheim TRD 289 135 1293 

KL1597 1-11-23 Amsterdam AMS Rome FCO 173 135 1297 

KL1945 4-11-23 Amsterdam AMS Split SPU 123 135 1298 

KL1905 1-11-23 Amsterdam AMS Belgrade BEG 162 145 1413 

KL1679 1-08-23 Amsterdam AMS Palma de 

Mallorca 

PMI 230 150 1426 

KL1699 1-11-23 Amsterdam AMS Madrid MAD 111 155 1459 

KL1587 4-11-23 Amsterdam AMS Napels NAP 139 150 1462 

KL1503 1-11-23 Amsterdam AMS Valencia VLC 203 145 1481 

KL1803 1-08-23 Amsterdam AMS Dubrovnik DBV 336 150 1483 

KL1569 1-08-23 Amsterdam AMS Cagliari CAG 273 145 1488 

KL1497 1-08-23 Amsterdam AMS Ibiza IBZ 186 155 1516 

KL1165 1-11-23 Amsterdam AMS Helsinki HEL 169 145 1525 

KL1711 1-11-23 Amsterdam AMS Porto OPO 181 160 1597 

KL1509 4-11-23 Amsterdam AMS Alicante ALC 175 160 1613 

KL1373 1-11-23 Amsterdam AMS Bucharest OTP 124 165 1788 

KL0911 4-11-23 Amsterdam AMS Catania CTA 366 170 1835 

KL1693 1-11-23 Amsterdam AMS Lisbon LIS 201 180 1847 

KL1039 4-11-23 Amsterdam AMS Malaga AGP 219 175 1883 

KL1575 1-11-23 Amsterdam AMS Athene ATH 349 190 2184 

KL1613 1-11-23 Amsterdam AMS Istanbul IST 211 205 2188 

KL0461 1-11-23 Amsterdam AMS Tel Aviv-Yafo TLV 338 265 3315 

KL0445 1-11-23 Amsterdam AMS Kuwait KWI 327 350 4361 

KL0423 1-11-23 Amsterdam AMS Riyadh RUH 679 360 4644 

KL0587 1-11-23 Amsterdam AMS Lagos LOS 616 405 5072 

KL0427 1-11-23 Amsterdam AMS Dubai DXB 616 390 5174 

KL0589 1-11-23 Amsterdam AMS Accra ACC 566 390 5198 

KL0671 1-11-23 Amsterdam AMS Montreal YUL 1087 470 5519 

KL0617 1-08-23 Amsterdam AMS Boston BOS 1607 455 5563 

KL0641 1-11-23 Amsterdam AMS New York JFK 1325 495 5863 

KL0691 1-11-23 Amsterdam AMS Toronto YYZ 1299 490 6007 

KL0651 1-11-23 Amsterdam AMS Dulles IAD 1414 525 6223 

KL0871 1-11-23 Amsterdam AMS Delhi DEL 783 500 6376 

KL0535 1-11-23 Amsterdam AMS Kigali KGL 808 495 6470 

KL0611 1-11-23 Amsterdam AMS Chicago ORD 1421 525 6631 

KL0565 1-11-23 Amsterdam AMS Nairobi NBO 580 490 6662 

KL0655 1-11-23 Amsterdam AMS Minneapolis MSP 1373 545 6705 
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KL0877 1-11-23 Amsterdam AMS Mumbai BOM 765 505 6866 

KL0569 1-11-23 Amsterdam AMS Kilimanjaro JRO 727 505 6885 

KL0787 4-08-23 Amsterdam AMS Sint Maarten SXM 1084 540 6939 

KL0675 4-11-23 Amsterdam AMS Edmonton YEG 1173 535 6977 

KL0623 1-11-23 Amsterdam AMS Atlanta ATL 1538 580 7082 

KL0677 1-11-23 Amsterdam AMS Calgary YYC 1348 540 7189 

KL0515 3-08-23 Amsterdam AMS Zanzibar ZNZ 770 465 7261 

KL0713 1-11-23 Amsterdam AMS Paramaribo PBM 681 560 7521 

KL0879 4-11-23 Amsterdam AMS Bengaluru BLR 945 555 7698 

KL0681 4-11-23 Amsterdam AMS Vancouver YVR 1383 595 7731 

KL0735 1-11-23 Amsterdam AMS Curacao CUR 559 600 7838 

KL0897 1-11-23 Amsterdam AMS Beijing PEK 940 645 7850 

KL0767 1-11-23 Amsterdam AMS Aruba AUA 620 610 7883 

KL0609 4-08-23 Amsterdam AMS Salt Lake City SLC 1742 600 8031 

KL0661 1-11-23 Amsterdam AMS Houston IAH 1485 655 8067 

KL0667 1-11-23 Amsterdam AMS Austin AUS 1557 630 8189 

KL0689 4-11-23 Amsterdam AMS Cancun CUN 1473 665 8293 

KL0855 4-11-23 Amsterdam AMS Seoul ICN 745 710 8574 

KL0635 5-11-23 Amsterdam AMS Las Vegas LAS 1320 640 8619 

KL0605 4-11-23 Amsterdam AMS San Fransisco SFO 1419 660 8808 

KL0757 1-11-23 Amsterdam AMS Panama City PTY 648 665 8818 

KL0741 1-11-23 Amsterdam AMS Bogota BOG 705 655 8841 

KL0895 1-11-23 Amsterdam AMS Shanghai PVG 847 715 8930 

KL0601 1-11-23 Amsterdam AMS Los Angeles LAX 1438 660 8978 

KL0591 1-11-23 Amsterdam AMS Johannesburg JNB 659 650 8986 

KL0875 1-11-23 Amsterdam AMS Bangkok BKK 1123 660 9217 

KL0685 1-11-23 Amsterdam AMS Mexico City MEX 1463 725 9220 

KL0887 4-11-23 Amsterdam AMS Hong Kong HKG 832 710 9290 

KL0861 1-11-23 Amsterdam AMS Tokyo NRT 945 795 9342 

KL0807 2-11-23 Amsterdam AMS Taipei TPE 901 760 9460 

KL0705 1-11-23 Amsterdam AMS Rio de Janeiro GIG 1045 720 9536 

KL0755 1-11-23 Amsterdam AMS Quito UIO 800 720 9550 

KL0597 1-11-23 Amsterdam AMS Cape Town CPT 691 685 9653 

KL0791 1-11-23 Amsterdam AMS Sao Paulo GRU 819 725 9751 

KL0809 1-11-23 Amsterdam AMS Kuala Lumpur KUL 804 730 10240 

KL0743 1-11-23 Amsterdam AMS Lima LIM 788 750 10511 

KL0835 1-11-23 Amsterdam AMS Singapore SIN 972 735 10516 

KL0701 1-11-23 Amsterdam AMS Buenos Aires EZE 1678 835 11437 
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KL0423

* 

11-11-23 Damman 

Dhahran 

DMM Schiphol  AMS 558 410 4709 

KL0535

* 

8-11-23 Entebbe EBB Schiphol  AMS 1013 510 6343 

KL0569

* 

8-11-23 Dar es Salaam DAR Schiphol  AMS 828 560 7327 

KL0787

* 

11-08-23 Port of Spain POS Schiphol  AMS 1373 545 7464 

KL0767

* 

8-11-23 Bonaire BON Schiphol  AMS 627 555 7796 

KL0741

* 

8-11-23 Cartagena CTG Schiphol  AMS 884 590 8436 

KL0755

* 

8-11-23 Guayaguil GYE Schiphol  AMS 1039 675 9832 

*These are flights that are not unique in the list as KLM operates different lags of a round trip under the same flight number. 

Therefore, this list contains 153 flights.  

-Source: KLM (n.d., -b). Selected flights are all unique direct flights, with 153 unique flights translating to 293 trips, 

including round trips. Prices were collected on the 27-6-2023 between 16:00 and 17:30.   
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Appendix C: Aircraft and Passenger Data 

 

 
Table C1: Aircraft Types Data 

Aircraft Type KLM Type Code Passenger 

Capacity 

Range (KM) 

Boeing 737-700 B737 142 3500 

Boeing 737-800 B738 186 4200 

Embraer 195-E2 E295 132 4815 

Boeing 737-900 B739 188 4300 

Embraer 190 E190 100 3300 

Embraer 175 E75L 88 3300 

Boeing 787-9 B789 294 11500 

Boeing 777-200ER B772 320 13080 

Boeing 787-10 B78X 344 12000 

Boeing 777-300ER B77W 408 12000 

Airbus A330-300 A333 292 8200 

Airbus A330-200 A332 268 8800 

-Source: KLM (n.d. -b) 

 

 

Table C2: Load Factors per Region 

Route Group Passenger Load Factor 

(IACO) 

Adjusted Passenger Load 

Factor 

Europe - Middle East 74.5% 79.675% 

Europe - North Africa 73.6% 78.775% 

Europe - North America 83.1% 88.275% 

Europe - North Asia 80.0% 85.175% 

Europe - Pacific South East 

Asia 

80.2% 85.375% 

Europe - South America 84.9% 90.075% 

Europe - Sub-Saharan Africa 78.4% 83.575% 

Intra Europe 82.3% 87.475% 

Mean 79,625% 84.8% 

-Load factors are combined of IACO (2018) and IATA (2023) data. The adjusted passenger load factor is used.  
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Appendix D: Summary Statistics 

 

Table D1: Summary Statistics Historical Flights: 
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Table D2: Summary Statistics Reported and Estimated Emissions: 

 

-Source KLM (n.d.-b). 

 

Table D3: Summary Statistics Cost of Carbon Emissions 

 

-*are reported values from KLM (n.d.-b). Other values are estimated based on estimated emissions.  
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Table D4: Summary Statistics Distribution of Reforestation and SAF Compensation 

 

 
-values are reported from KLM (n.d.-b). 
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Appendix E: Normality Assumption 

 
Figure E1: Q-Plots for Normality 

 

-Group “0” indicates the Short-/medium-haul group and Group “1” indicates the long-haul group. Est_Reported “0” shows 

reported emissions, “1” shows estimated emissions.  
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Appendix F: Social Cost of Carbon 
 

Table F1: SCC Values in 2020 US Dollars 

 Discount rate 

Report 1.5% 2% 2.5% 

U.S. EPA 337 193 117 

Rennert et al. 308 185 118 

Average 322.5 189 117.5 

-Values are in 2020 US dollars per metric ton of CO2 estimated for 2020.  

Source: EPA (2022), Rennert et al. (2022) 

 


