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Abstract

I propose including aggregate indices of investor sentiment (SENT) and investor atten-

tion (ATTENT) as predictors, alongside firm and macroeconomic factors, in machine learning

stock return prediction model. Therefore, I design a benchmark sample and an extended

sample that includes the additional SENT and ATTENT predictors for comparison. Among

the various forecasting models, the Deep Neural Network (DNN) exhibits the best predictive

performance for stock-level returns, with R2
oos of 1.70% in the benchmark sample and 1.90%

in the extended sample. Graphically, the cumulative long-short portfolio return construc-

ted using predictions from the DNN outperforms the UK cumulative excess market return in

both samples. However, the majority of the portfolio’s return comes from the short positions.

After adjusting for the CAPM, Fama-French 3, 5, and 6 risk factor models, the risk-adjusted

portfolio return for the benchmark sample remains highly significant. The portfolio exhib-

its a monthly adjusted return range of 1.97% to 1.83%, supported by t-statistics ranging

from 3.89 to 6.18. In the extended sample, it yields a highly significant monthly adjusted

return range of 1.75% to 2.13%, supported by t-statistics ranging from 3.14 to 3.70. Lastly,

incorporating sentiment and attention (SENT/ATTENT) significantly enhances portfolio

performance, with a 71.02% increase in the return of the portfolio for each one-unit increase

in the portfolio’s return with sentiment and attention, with a t-statistic of 8.05.

Keywords: asset pricing, machine learning, stock return prediction, investor sentiment,

investor attention, portfolio analysis.
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1 Introduction

In the field of asset pricing, researchers have placed significant emphasis on explaining anomalies

and utilizing them for predictive purposes. When it comes to machine learning-based stock

return prediction, most studies have followed the mainstream literature established by Gu, Kelly

and Xiu (2020). These studies incorporate both firm-specific and macroeconomic anomalies in

their stock prediction models. However, the majority of these investigations have focused on

the US market, which is known for its high tendency of home bias (Azevedo, Kaiser & Müller,

2022). As a result, there has been a recent surge of interest in studying markets outside the US.

While previous studies have successfully utilized firm-specific and macroeconomic anomalies

in machine learning-based stock return prediction, the inclusion of investor behavior anomalies

has been largely overlooked. This is surprising considering the empirical evidence from tra-

ditional regression analysis (OLS), which suggests that investor sentiment and attention have

demonstrated predictive power on stock return (Hudson & Green, 2015; J. Chen, Tang, Yao &

Zhou, 2022).These predictors capture the irrational behavior of investors, driven by heterogen-

eous beliefs and deviations from fundamental asset values. For instance, investor attention arises

due to cognitive limitations, while investor sentiment reflects overoptimistic and overconfident

attitudes, and vice versa.

In this study, I incorporate investor sentiment and investor attention predictors, in addition

to formal firm and macroeconomic predictors, into machine learning models for stock prediction

and prediction-sorted portfolio analysis in the UK market. Following the main literature Hudson

and Green (2015) and J. Chen et al. (2022), I use Principal Component Analysis (PCA) to

aggregate investor sentiment and investor attention proxies into composite indices called SENT

and ATTENT. These indices are then used as predictors in the machine learning models for

stock prediction.

Furthermore, I construct two groups of study subjects: the benchmark sample and the ex-

tended sample. The benchmark sample consists of 49 firm and macroeconomic predictors that

are fit into the machine learning models to predict stock returns. In the extended sample, in

addition to the traditional and macroeconomic predictors, the SENT and ATTENT indices are

added, resulting in a total of 51 predictors used in the forecast models to predict stock returns

at the individual stock level.

At the stock level analysis, my aim is to investigate whether flexible non-linear functional

form machine learning models such as Generalized Linear Models (GLM), Gradient Boosting

Method (GBM), and Deep Neural Networks (DNN) outperform the linear model Ordinary Least

Squares regression (OLS). I also aim to determine the best forecast model under each respective

benchmark sample and extended sample. The UK sample is divided into three different sub-

periods: from 2000 to 2022. The first 10 years are used to train the data, the next 5 years

are used for hyperparameter tuning in the validation set, and the last 8 years are used for the

out-of-sample testing set.
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Among the machine learning models, the DNN with NN3 architecture outperforms the other

forecast models, demonstrating the highest prediction performance. This result is consistent

with various existing literature in both the US and non-US markets (Gu et al., 2020; Drobetz,

Haller, Jasperneite & Otto, 2019; Hanauer & Kalsbach, 2023). However, the DNN achieves an

out-of-sample R2
oos of 1.90% under extended sample which is higher than the benchmark sample

of R2
oos of 1.70%. However, both groups consistently yield higher R2

oos compared to OLS models

in both benchmark and extended sample ranging from 0.60% to 0.67%. The Diebold-Mariano

test further confirms the superior performance of the DNN model in terms of predictive accuracy,

which is significant at a p-value 10% level for both benchmark and extended samples.

To explore the explainability of the forecast models, I analyze variable importance plot, and

all models agree that STReversal is the most important factor shaping stock level predictions in

both the benchmark and extended samples. Additionally, SENT and ATTENT are among the

top-ranking variables across all forecast models. To increase the interpretability of the superior

”black-box” forecast model DNN, I introduce Partial Dependence and Individual Conditional

Expectation Plots to study the marginal effects of STReversal, SENT, and ATTENT on stock

returns in the extended sample. SENT shows an increasing upward trend, whereas ATTENT ex-

hibits an increasing downward trend, which is consistent with the literature on investor behavior

and stock return prediction(Hudson & Green, 2015; J. Chen et al., 2022).

Having verified that the DNN is the best-performing forecast model for stock level prediction,

I assess its return predictability using conventional portfolio sorts under both the benchmark

and extended samples. The realized excess return is sorted based on the model’s predicted excess

return for the next month. Finally, I create an equal-weighted zero-net-investment portfolio, also

known as a long-short portfolio, for both the benchmark sample and extended sample by buying

stocks with the highest expected returns (decile 10) and selling stocks with the lowest expected

returns (decile 1). The Sharpe ratio of the High minus Low decile (10-1) for the benchmark

sample is 0.33, which is lower than the extended sample’s (10-1) Sharpe ratio of 0.45.

The cumulative portfolio return for the DNN model in both the benchmark and extended

samples outperforms the market return (FTSE All Share) over the 8-year period. However, the

extended sample’s final cumulative return as of 2022 is higher than the benchmark sample’s

cumulative return. Graphically, in the UK market, the long leg of the portfolio mostly incurs

losses, however a significant spike is observed around 2020 to 2021. Most of the time, the

portfolio relies on short selling to compensate for losses on the long side. The cumulative return

under the extended sample has a smoother trendline compared to the benchmark sample. The

incorporation of SENT and ATTENT factors allows the machine learning model to better adjust

its predictions, especially during market turbulent periods, preventing a decrease in the overall

cumulative return and consistently contributing to higher returns for that period.

Additionally, I assess the adjusted portfolio returns using the CAPM, Fama-French 3, 5, and

6 factor models. These factor models are unable to explain away the DNN long-short portfolio

returns, as a highly significant alpha (risk-adjusted return) at the p-value of 1% level is present

in both the benchmark and extended samples. The reported range of monthly adjusted return
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in the benchmark sample is 1.97%(CAPM)-1.83%(FF6), with t-statistics ranging from 3.89 to

6.18. As for the range of monthly adjusted return in the extended sample is 2.13%(CAPM) to

1.75% (FF6), with t-statistics ranging from 3.14 to 3.70. This indicates that machine learning

models such as DNN has its uniqueness in generating unexplainable additional returns.

Lastly, I perform a regression analysis, regressing the extended sample’s long-short portfolio

return on the benchmark sample’s long-short portfolio return. The results show that a one-

unit increase in the long-short portfolio return with sentiment and attention (extended sample)

is associated with an estimated increase of 71.02% with t-statistics of 8.05 in the long-short

portfolio return without sentiment and attention (benchmark sample). This relationship is

highly positive and significant at the p-value 1% level. The inclusion of sentiment and attention

as stock level predictors indeed improves the portfolio’s returns.

The rest of the paper is organized as follows. In section 2, I provide a literature review

of machine learning stock return prediction and portfolio analysis, as well as the extensions

associated to investor behavior predictors. Section 3 contains the methodology related to the

research design, construction of stock level prediction models, and the procedures for both stock

and portfolio level analysis. I present the results in section 4 and conclude in section 5.
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2 Literature Review

2.1 Machine Learning Stock Return Prediction and Portfolio Analysis

The prediction of stock return has been a subject of extensive research in finance. Traditional

method such as Ordinary Least Square regression (OLS), has been widely used to predict stock

return based on firm characteristics and macroeconomics variables. For example, Fama and

French (2008) and Lewellen (2014), they run cross sectional regression of future stock return on

a several lagged firm-level stock characteristics’ predictors. On the other hand, Welch and Goyal

(2008), they conduct time-series regression for stock return on a small number of macroeconomics

predictor variables.

The main limitation for using traditional method (OLS) to predict stock return, is that the

model with simple linear functional form unable to accommodate the large number of predictors,

unable to capture interaction variables as well as non-linear patterns among the predictors.

Therefore, it results in weaker prediction performance.

One of the pioneering works in machine learning asset pricing literature by Gu et al. (2020)

successfully leveraged the advantages of existing literature by constructing predictors that in-

corporate both firm characteristics and macroeconomic variables in a cross-sectional setting.

Secondly, they utilized machine learning models with non-linear functional forms, allowing them

to capture the non-linear and non-stationary relationship between stock returns and firm and

macroeconomic characteristics. Additionally, these models effectively captured signals from a

large number of predictors, thereby increasing the coverage and significantly improving the pre-

diction performance for stock returns.

Subsequent to the study conducted by Gu et al. (2020), a multitude of researchers have

replicated their framework by experimenting with various supervised and unsupervised models.

These include techniques such as dimension reduction, penalized and generalized linear models,

support vector machines, regression trees, and neural networks. These models have been applied

using an extensive large number of firm and macroeconomic variables that demonstrate the

potential to predict stock returns. Notable examples of such studies include Avramov, Cheng

and Metzker (2023); Feng, He, Polson and Xu (2018); Feng and He (2022); Freyberger, Neuhierl

and Weber (2020); Rapach and Zhou (2020); Chinco, Clark-Joseph and Ye (2019); L. Chen,

Pelger and Zhu (2023). A consistent finding across all these studies is that both tree-based

supervised models and neural network supervised models have been widely acknowledged as

highly effective in predicting stock returns.

Rather than including an exponentially large number of stock predictors, which can intro-

duce redundancy and noise in the machine learning models, recent research suggest an optimal

range of predictors from 40 to 80. These predictors should focus on accessible stock character-

istics without incorporating complex interactions or nonlinear variables. Beyond this range, the

marginal predictive power tends to decline (Choi, Jiang & Zhang, 2022; Drobetz et al., 2019;

Hanauer & Kalsbach, 2023). For instance,Crego, Soerlie Kvaerner and Stam (2023) conduct

a study on long-short portfolios and observe a decrease in the average return as the number
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of predictors increase. They examine it from three different dimensions: actual and predicted

yield, as well as realized return. Furthermore, their analysis indicates that around 50 predictors

serve as the cutoff point for achieving zero positive return at the portfolio level.

However, the majority of studies tend to conduct their analyses solely based on one market,

primarily the US market, which can introduce a home bias (Azevedo et al., 2022). Consequently,

another recent strand of literature has emerged, expanding the scope of analysis beyond the US

market. For example, Drobetz et al. (2019) focus on the European market, while Hanauer

and Kalsbach (2023) concentrate on emerging markets. These studies consistently find similar

evidence that machine learning (ML) models outperform the benchmark model of ordinary least

squares (OLS) in predicting stock-level returns, irrespective of whether it is in developed or

emerging markets. In addition to stock-level predictions, researchers, following the approach

of Gu et al. (2020), have also extended their analyses to evaluate prediction-sorted portfolios.

Furthermore, a few studies have explored risk-adjusted returns at the portfolio level, utilizing

benchmark models such as the CAPM and Fama-French models (Drobetz et al., 2019; Hanauer

& Kalsbach, 2023; Crego et al., 2023).
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2.2 Extension of Machine Learning Prediction Models

2.2.1 Investor Sentiment as Predictors

The waves of irrational sentiment can produce both underreaction and overreaction to news

(Barberis, Shleifer & Vishny, 1998). For example, investors with overly optimistic or pessimistic

expectations can persist and divert asset prices from their rational, fundamental values for signi-

ficant of time (Kahneman & Tversky, 1973; Odean, 1998). Most specifically, investor sentiment

is defined as as the propensity to speculate (Baker & Wurgler, 2006). Under this definition,

sentiment-based mispricing is based on an uninformed demand shock. Because correlated de-

mand shocks persist among uninformed noise traders over time, this can lead to high levels of

speculative activity, consequently causing persistent mispricing (Brown & Cliff, 2004).

Investor sentiment able to influence asset prices and encompasses explanatory power on some

well-known asset pricing anomalies (Sun, Najand & Shen, 2016).For example,Lemmon and Port-

niaguina (2006) find that consumer confidence as the proxy of the sentiment indeed able to fore-

cast small stock returns under time-series setting.Antoniou, Doukas and Subrahmanyam (2013)

find that momentum profits only exist only under investor optimism. Baker and Wurgler (2006)

demonstrate the cross sectional effect of investor sentiment on return prediction. They point out

that when sentiment is high,the future return is relatively low for small, young, unprofitable,

distressed, high growth, non-dividend-paying firms as well as firms with volatile stock return.

There are several empirical ways to measure investor sentiment. First, survey-based tech-

niques related to acquiring the public’s expectations and thoughts about the stock market,

which aim to capture the mood of investors. For example, University of Michigan Consumer

Sentiment Index, Consumer Confidence Index, the AAII investor sentiment survey, and the

UBS/GALLUP Index (Brown, 1999; Fong, 2013; Schmeling, 2009). However, these indexes are

available and suitable for US market analysis. Second method is media-based investor sentiment

measure, which is based on textual analysis of media contents. For example, newspapers, blogs

and google search results (Sun et al., 2016). This method highly relies on Natural Processing

Language (NPL) for accurate measurements. Third is the composite sentiment index using prin-

cipal component analysis (PCA) to extract a single sentiment measure from a range of pertinent

financial market indicators.

Despite the discrepancy of the components of composite sentiment index have been suggested

in the existing literature. The different versions of composite index still able to capture the

variation within the component, with the renewal of information across time. It still shows

consistent significance of sentiment on the predictability of the cross sectional stock return in

various studies (Brown & Cliff, 2004; Baker & Wurgler, 2006; Hudson & Green, 2015).

2.2.2 Investor Attention as Predictors

Attention is a scarce cognitive resources (Kahneman & Tversky, 1973), information can be in-

corporated into asset prices only when investors pay sufficient attention (Huberman & Regev,

2001). However, in reality, investors, especially retail investors are attention constrained (Andrei

& Hasler, 2015; Hirshleifer & Teoh, 2003; Kacperczyk, Van Nieuwerburgh & Veldkamp, 2016;
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Peng & Xiong, 2006). They cannot fully understand all market level information due to bounded

rationality with limited time and energy. Therefore, rational inattention investors incline to fo-

cus on major events, aggregate market level, sector-wide shocks rather than firm level (Huang,

Huang & Lin, 2019; Peng & Xiong, 2006; J. Chen et al., 2022). It further reflects on investors’

decision making, they tend to choose attention-grabbing stocks, creating temporary price pres-

sure, deviate the stock price from fundamental values (J. Chen et al., 2022).

Investor attention has substantial asset pricing implication and the attention drawing effect

depends on the position that a certain type of information is displayed (J. Chen et al., 2022).

Fedyk (2018) find the front page news items on Bloomberg terminal induces greater trading

volume, and the price changes rapidly after publication. Barber, Huang, Odean and Schwarz

(2022) show that the compilation of a “top fluctuating stock list” within the Robinhood mobile

phone trading app leads to concentrate trading. This concentrate trading pattern is character-

ized by intense buying behavior, which subsequently results in abnormal returns.

Empirically, the existing literature suggested using traditional investor attention proxies,

such as abnormal trading volume, extreme trading volume (Barber & Odean, 2007);past re-

turns (Aboody, Lehavy & Trueman, 2010),nearness to 52-week high and nearness to historical

high (J. Li & Yu, 2012); analyst coverage (Hirshleifer & Teoh, 2003), which all based on the

market level. However, with the presence of internet, researchers utilize the keyword-based

social media search traffics. For example, Google Search Volume (Bijl, Kringhaug, Molnár &

Sandvik, 2016; Han, He, Rapach & Zhou, 2018; X. Li, Ma, Wang & Zhang, 2015). Also, a

new strand of literature suggesting aggregate upper limit hits as investor attention proxies. For

example, Seasholes and Wu (2007) find that daily upper limit hits draw investor attention and

temporarily drive stock price up from 2001 to 2003. Similarly, T. Chen, Gao, He, Jiang and

Xiong (2019) argue that the retail buying after UP limit-hitting day leads to long-run price

reversal for up to 120 days from 2012 to 2015. Finally, Cai, Jiang and Liu (2022) demonstrate a

negative predictive relationship between cross-sectional stock returns and investor attention, as

measured by aggregate upper limit hits. Moreover, implementing long-short trading strategies

based on this attention measure generates substantial economic value. Instead of utilizing indi-

vidual proxies,Chu, Goodell, Shen and Zhang (2022) and J. Chen et al. (2022) have suggested

aggregating various investor attention proxies through principal component analysis (PCA) into

a composite attention index.

Irrespective of whether individual proxies or aggregate indices are utilized, multiple studies

consistently reveal the predictive power of investor attention when it comes to stock returns

(Cai et al., 2022; Chu et al., 2022; J. Chen et al., 2022). Additionally, investor attention

has demonstrated its independent forecasting power even when controlled for common return

predictors, economic predictors, and investor sentiment predictors (J. Chen et al., 2022).
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3 Methodology

3.1 Data

I obtain monthly equity return from DataStream for all the firms listed on FTSE All Share,

which represents approximately 98%-99% UK stock capitalization. The sample period ranging

from January 2000 to December 2022, compromising both active and dead firms as of December

2022, that resulted in 1,078,840 observations across 3929 firms. However, I remove trailing

and leading return NAs (missing values), to include only those active period observations for

the dead firms. Also, I further drop the observations with infinite returns, both positive and

negative, as it is impossible for a firm to have an infinite return in terms of market valuation.

After these adjustments, the sample is left with total of 406,969 observations across 3838 firms.

Finally, to calculate the stock excess return, I subtract the risk free rate from the stock return.

I prepare two sets of data for analysis. The first set consists of 38 firm predictors and 11

macroeconomic predictors. The second set is an extension of first set by including 2 additional

predictors: SENT, an aggregated investor sentiment predictor, and ATTENT, an aggregated

investor attention predictor.

3.1.1 Firm Predictors

I construct 38 firm predictors from raw accounting data retrieved from DataStream, following

the methodology used by Hanauer and Kalsbach (2023). My predictors have a comprehensive

coverage of different firm characteristic categories, including past returns, investments, prof-

itability, intangibles, value, and trading frictions, and are based on either annual or monthly

frequency. (Appendix A.1) outlines an overview of the 38 firm-level predictors. I did not exclude

financial firms but set the following characteristics as missing for these firms, as they are not

meaningfully defined for financials: ATO, C, D2A, DPI2A, F2CY, FreeCF, CF2P, GP2A, OA,

PCM, PM, Prof, RNA, SG2A, and NOA.

3.1.2 Macroeconomiccs Predictors

For the macroeconomics predictors, I extract the macroeconomics data from various sources

such as OECD, UK National Statistics, FRED, as well as DataStream. All of the data are

based on a quarterly/monthly basis from January 2000 to December 2022. There is no missing

data for the macroeconomics predictors. I have constructed 9 Macroeconomics predictors fol-

lowing the predictors mentioned in Welch and Goyal (2008), including the dividend-yield ratio

(d/y), FTSE All Share earning price ratio (e/p), FTSE All Share book-to-market ratio (b/m),

risk-free rate (rf), term spread (tms), stock variance (svar), investment to capital ratio (i/k),

inflation (infl), as well as the long-term yield (lty). These predictors have been re-examined in

Goyal, Welch and Zafirov (2021), and they have been proven to be robust in equity premium

prediction. Additionally, I have constructed 2 variables based on Paye (2011): the option ad-

justed spread (oas), which serves as a substitute for the default spread, and the commercial

paper-to-Treasury spread (cp). (Appendix A.2) provides detailed overviews of the definition of

the 11 macroeconomics predictors.
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3.1.3 Investor Sentiment and Attention Predictors

To construct investor attention and investor sentiment proxies at the market level, my focus lies

on utilizing the FTSE 100 as a data source, as suggested by Hudson and Green (2015). This

particular index has proven to attract significant attention and media coverage, thereby serving

as a reliable reflection of UK investors’ market sensitivity across diverse market conditions.

Additionally, the FTSE 100 offers greater availability for futures and options, making it a more

suitable option for constructing proxies compared to the FTSE All Share.

Concerns about the FTSE 100’s representativeness in relation to the FTSE All Share can

be set aside. Hudson and Green (2015) suggest that there is a contagious sentiment effect

among different countries. Specifically, they find a relationship between US sentiment and UK

sentiment. Therefore, it is reasonable to assume that both investor sentiment and attention

within the same country can be highly reliable, and indices tend to influence one another from

FTSE 100 to the FTSE All share. This contagious effect strengthens the reliability of using the

FTSE 100 as the source for constructing proxies to gauge investor sentiment and attention.

Investor Sentiment

Following Hudson and Green (2015) I construct Advances-Decline Ratio (AVCD), Smart Money

Flow Index (SMART. index), which is a substitute for Money Flow Index, (MFI), Put-call

Volume ratio (PCV), Put-call Open Interest ratio (PCO), 30 Days Relative Strength Index

(RSI.30D) and 30-days Implied Volatility Index (IVI.30D). Additionally, I include 2 sentiment

indicators from European Central Bank (ECB), composite indicator of systematic stress (CISS)

and country-level financial stress composite indicator (CLIFS) for the UK.

Prior to conducting Principal Component Analysis (PCA) on the 9 investor sentiment prox-

ies and extracting the first component to construct a composite index SENT as predictor, I

standardize the proxies to the [-1,1] range. By standardizing the variables, this ensures that no

single proxy dominates the construction of the aggregate SENT predictor. PCA is a statistical

technique used to reduce the dimensionality and identifying the most important patterns in the

data. In our case, the first component of the PCA captures the overall variation in the 9 sen-

timent predictors, it accounts for 40.13% component variance. It has the capability to provide

a summary measure of the underlying investor sentiment towards the UK stock market. By

constructing this composite index SENT as a predictor to fit into machine learning models for

stock return prediction, we can capture the overall sentiment of investors towards the market

in a more concise and meaningful way. (Appendix A.3 and Appendix C.3) provide extensive

overview of the definition and constructions of the proxies pre-PCA.

Investor Attention

I follow J. Chen et al. (2022) to construct abnormal trading volume (aavol), extreme returns

(aeret), and Google search volume (GSV). Additionally, I refer to Cai et al. (2022) to construct

upper aggregate limit-hits (ualhits). To ensure comparability across the different proxies, I

standardize them within the [-1,1] range and conduct PCA on the 4 investor attention proxies.

Finally, I extract the first principal component to construct an aggregate ATTENT predictor

that captures overall signals from the underlying predictors. The first component (PC1) explains
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34.76% of components variance, which means the ATTENT predictor able to capture significant

part of common variation among the proxies. (Appendix A.4 and Appendix C.4) provided

detailed definition and constructions of the proxies pre-PCA.

3.1.4 Data Pre-Processing

The majority of firm-level characteristics used in constructing predictors are made available to

the public with a time lag, to avoid forward looking bias. I follow Gu et al. (2020) to lag annual

variables by at least 6 months, and monthly variables by at least 1 month. Another issue in

the dataset is that the presence of missing values (NAs). (Appendix B.1) showed that most of

the missingness in each predictor is approximately around 20%-30%. Instead of imputing with

cross-sectional median values, I implement Kalman filter imputation to replace the missing val-

ues. Kalman filter imputation (Moritz & Bartz-Beielstein, 2017) is a statistical method that can

be used to estimate the values of missing data in a time-series dataset. It is particularly useful

when dealing with missing data that have a temporal component, as it takes into account both

the current and past values of the variable in question to make an estimate of the missing value.

Secondly, it can provide more accurate estimates of missing values by incorporating additional

information about the underlying structure of the data. Specifically, the Kalman filter takes

into account the observed values of the variable, as well as any relevant trends or patterns in

the data, to make a more informed estimate of the missing value. Furthermore, the benefit of

Kalman filter imputation is that it can handle missing data that are not missing completely

at random (MCAR). In other words, it can handle situations where the missingness may be

related to other variables in the dataset. This is important because MCAR assumptions are

often unrealistic in practice, and other imputation methods may not be appropriate in these

situations. In short, I employ the Kalman filter imputation method to impute missing values

based on other observed characteristics, past observations, and information from other firms

cross-sectionally. The Kalman filter imputation shares a similar concept of missing value im-

putation as in Beckmeyer and Wiedemann (2023) model, which adapts a Natural Processing

Language (NPL) model with a non-linearity assumption to impute financial missing data. How-

ever, the key difference between the two methods is that the Kalman filter method uses a linear

dynamic system model to capture the time-varying nature of the data, while the NPL model

in Beckmeyer and Wiedemann (2023) approach assumes non-linear relationships between the

observed and missing variables. Furthermore, (Appendix B.1) reveals that some firm-level pre-

dictors exhibit highly skewed and leptokurtic distributions, and outliers have been detected.

To address this issue, I follow the approach of Gu et al. (2020) and Freyberger et al. (2020)

by cross-sectionally ranking all stock characteristics each month and standardizing features to

the [-1,1] interval to prevent influence of outliers and ensure that each predictor has an equal

impact on the analysis. (Appendix B.2) shows an overview of the summary statistic of firm and

macroeconomics predictors after imputation and standardization, as well as (Appendix D.1)

shows a correlation heatmap between across firm and macroeconomics predictors. Most of the

predictors do not exhibit multicollinearity. The standardization procedure for SENT and AT-

TENT predictors differed slightly from that of the firm and macroeconomics predictors. Before

PCA, the raw proxies for SENT and ATTENT have been standardized as mentioned above, and
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the resulting composite indices (SENT, ATTENT) are then standardize again within the [-1,1]

interval. (Appendix C.1) presents the summary statistics for proxies, as well as the aggregate

indices SENT and ATTENT. The pre-PCA correlation heatmap for the proxies, on the other

hand, can be found in (Appendix D.1). Additionally, (Appendix C.2) showcases time series

plots depicting investor sentiment and attention. Notably, significant fluctuations are observed

in both SENT and ATTENT prior to 2010, following the aftermath of the 2008 financial crisis,

as well as around 2020 during the Covid-19 crisis. These fluctuations vividly reflect the shifting

beliefs of investors in response to major economic and market events at the aggregate level. I

also checked the log transformed excess returns across years (2000-2022) and did not observe

any extreme or abnormal patterns. The number of firms in the dataset is evenly distributed

across the 23 years, ranging from 14,000 to 22,000. The median of the log excess return in

each year is centered at 0. The most extreme excess return was observed in 2022 at the 100th

percentile, with a value of 5.394. (Appendix B.3) shows the summary statistic for log excess

return. After performing imputation, standardization, and exploratory data analysis, I am left

with two sets of data. The first set consists of 49 predictors, which include both firm-level and

macroeconomic predictors. The second set has 51 predictors, as I have extended it with the

aggregated predictors SENT and ATTENT.

3.2 Research Design

I form 2 groups of study subject:

1. Benchmark sample: Firms and macroeconomics predictors, with 49 predictors are fit into

the machine learning models to predict stock return.

2. Extended sample: composite indices SENT and ATTENT are added to the existing firms

and macroeconomics predictors, resulting in total of 51 predictors, are then fit into machine

learning models to predict stock return.

The benchmark sample and extended sample are then analyzed at the stock level and portfolio

level, which I closely follow the methodology suggested by Gu et al. (2020).

Hypothesis Testing:

First hypothesis:

H0: One/more Machine Learning models do not outperform the ordinary least square regression

(OLS) in terms of stock level return prediction, under both benchmark and extended sample.

H1: One/more Machine Learning models outperform the OLS in terms of stock level prediction,

under both benchmark and extended sample.

Second hypothesis:

H0: Stock level prediction in extended sample does not outperform the benchmark sample.

H1: Stock level prediction in extended sample outperform the benchmark sample.

Third hypothesis:

H0: Extended sample’s long-short portfolio return and/or cumulative return is lower or equal

to benchmark sample long-short portfolio return.

H1: Extended sample’s long-short portfolio return and/or cumulative return is higher than the

benchmark sample long-short portfolio return.
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Fourth hypothesis:

H0: Extended sample’s adjusted portfolio return is lower than the benchmark sample’s adjusted

portfolio return.

H1: Extended sample’s adjusted portfolio return is higher than the benchmark sample adjusted

portfolio return.

Fifth hypothesis:

H0: Investor sentiment and attention do not improve machine learning prediction-based portfo-

lio return.

H1: Investor sentiment and attention improve machine learning prediction-based portfolio re-

turn.

Stock Level Analysis:

The primary objective at the stock level analysis is to predict stock returns, and this is primarily

achieved through the use of machine learning methods. To begin, I will discuss the objective

function used to estimate model parameters, the process of data splits, and the importance

of hyperparameter tuning through validation. Then, I will introduce statistical model which

describes the general functional form of the method used for predicting risk premiums. Next,

I will present various machine learning models and a benchmark regression model (OLS) that

are employed in this context. Moreover, I will explore different techniques that measure the

explanatory power and inference-making ability derived from machine learning models. Lastly,

the study will delve into the evaluation metrics used to assess the out-of-sample performance of

stock-level predictions made by machine learning models.

Portfolio Level Analysis:

In the portfolio level analysis, I begin by selecting the best prediction model for stock level

returns from both the benchmark and extended samples. Then, the realized excess return is

sorted based on the model’s predicted excess return for the next month. Finally, I create an

equal-weighted zero-net-investment portfolio, also known as a long-short portfolio, by buying

stocks with the highest expected returns (decile 10) and selling stocks with the lowest expected

returns (decile 1). All returns are based on an out-of-sample testing period of 8 years.
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3.3 Data Splitting and Tuning via Validation

The data is time-series based, it contains 23 years from January 2000 to December 2022. I split

the sample in three parts, 10 years for training set (January 2000- December 2009), 5 years for

validation set (January 2010-December 2014), the remaining 8 years for out-of-sample testing

set (January 2015-December 2022). It is crucial to retain the temporal ordering of the time

series data, therefore, k-fold cross validation is not used in this study. This prevents the use of

future information in my machine learning models. Since, the study data is large, the splitting

techniques should be convincing enough to prevent overfitting issue in the machine learning

models.

Another technique to prevent or reduce overfitting issue in the machine learning models is

through regularization, which tune the optimal values for the hyperparameters. Hyperparameter

tuning is more an art than knowledge, searching for an optimal values, might require exhaustive

trial and errors, and there is limited theoretical advice for how to “optimize”. Therefore, I utilize

the random grid search for hyperparameter tuning, which is an automated process to search the

optimal value within a specified hyperparameter grid. Hyperparameter tuning is critical, because

they control the model complexity as well as reduce overfitting for the in-sample set, and enhance

the out of performance predictability.

First, I use the training sample to estimate the model, considering a specific set of tuning

parameters. Secondly, the validation sample is used to fine-tune the hyperparameters. The

goal during validation is to minimize the root mean square error (RMSE), which serves as the

objective. To accomplish this, an iterative Random Search is performed, exploring different

combinations of hyperparameters. At each iteration, the model estimation is updated using the

training data, based on the current set of hyperparameter values.

The final model is estimated using the optimal combination of hyperparameters that yield

the lowest RMSE, as determined by the validation sample. In essence, the validation process

acts as a pseudo-out-of-sample forecast and serves as an input to the estimation.

Finally, the out-of-sample testing sample is reserved solely to evaluate the predictive perform-

ance of the machine learning models. This sample is not used for estimation or hyperparameter

tuning, ensuring an unbiased assessment of the models’ performance.
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3.4 Statistical model

I closely follow to the general prediction model outlined by Gu et al. (2020) and Hanauer and

Kalsbach (2023) in my study. Specifically, the asset’s excess return is determined by an additive

prediction error model.

ri,t+1 = Et(ri,t+1) + ϵi,t+1 (1)

Et(ri,t+1) = g∗(zi,t) (2)

the ri,t+1 represents the realized excess stock return, which is obtained by subtracting the

risk-free rate from the stock return. Et(ri,t+1) is the conditional expected excess return.ϵ is

the prediction error term. The zi,t is P dimensional vector of stock features known at time

t for predicting individual stock return at t + 1. The function g(·) denotes a flexible model

that incorporates these predictors for estimation purposes. In the case of machine learning

models, g(·) is approximated by some function g(zi,t, θ, ρ), where θ denotes a vector of coefficients

derived from the underlying training data with respect to ρ and a specific loss function L. The

hyperparameters ρ is based on user’s configuration, it needs to be optimized with respect to L

using the available data. The specific functional form of g(·) depends on the chosen model family,

encompassing possibilities such as linear or non-linear, as well as parametric or non-parametric

formulations.

3.5 Forecast models

3.5.1 Robust Ordinary Least Square Regression (OLS-Huber)

Ordinary Least Square (OLS) regression is the simplest predictive model in our study. This

model assumes a linear relationship and does not incorporate non-linear effects or interactions

between predictors (Gu et al., 2020). Consequently, OLS may perform poorly when a large

number of predictors are included in the model. This is primarily due to the challenges posed

by high dimensionality and a potentially low signal-to-noise ratio. In situations where the

number of predictors is close to or exceeds the number of observations, Ordinary Least Square

(OLS) regression has a tendency to overfit noise instead of capturing the underlying signal.

This problem becomes even more pronounced in settings where the signal-to-noise ratio is low,

as highlighted by Drobetz et al. (2019).

The simple linear model with the conditional expectations g(·) can be approximated by a

linear function, with predictors and parameter vectors θ,

g(zi,t; 0) = z′i,tθ (3)

The primary objective of ordinary least squares (OLS) regression is to minimize the l2 object-

ive function, also known as the least square function.In financial returns and stock predictor

variables, heavy-tailed distributions are common. However, the l2 function tends to heavily

penalize large errors compared to small errors, making linear regression sensitive to outliers.
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This sensitivity undermines the stability of OLS regression forecasts. To address this issue,

this study introduces the Huber Loss objective function, which mitigates the negative impact

of heavy-tailed observations and ensures robust linear regression predictions. The Huber Loss

objective function (Gu et al., 2020) is defined as follows:

LH(θ) =
1

NT

N∑
i=1

T∑
t=1

H(ri,t+1 − g(zi,t; θ, ξ)) (4)

where

H(x; ξ) =

x2 if |x| ≤ ξ

2ξ|x| − ξ2 if |x| > ξ

The Huber Loss functionH(·) incorporates both squared errors for smaller errors and absolute

errors for larger errors. In the R caret rlm package, the optimal Huber threshold value ξ

is predetermined as 1.345 to tune the loss function. This threshold value helps balance the

extended of different error magnitudes and enhances the robustness of the regression model.

Despite its simple model specification, ordinary least squares regression (OLS) with a ro-

bust Huber Loss function can be considered a suitable benchmark when comparing prediction

performance against other machine learning models. By incorporating the Huber Loss func-

tion, OLS becomes more resilient to outliers and exhibits improved robustness in its predictions.

Therefore, it can serve as a reliable point of reference when evaluating the performance of other

more complex machine learning models.

3.5.2 Generalized Linear Model

The Generalized Linear Model (GLM) is a flexible modeling approach that overcomes the limit-

ations of simple linear functional forms by incorporating a nonparametric model. GLM achieves

this by introducing a K-term spline series expansion, which allows for non-linear transformations

of the original predictors as additional terms in the model. This increases flexibility and further

enhances the model’s ability to capture complex relationships. However, to mitigate the risk

of overfitting, regularization techniques are often employed as a complement to the GLM. The

general concept of the generalized linear model is illustrated by Gu et al. (2020):

g(z; θ, p(·)) =
p∑

j=1

p(zj)θj (5)

In order to construct the generalized linear model (GLM), I employ the “h2o: R Interface

for H2O” (2022) open source machine learning library in R. Within H2O, regularization is

implemented using Elastic Net Penalties, which combines the LASSO penalty (l1 ) and ridge

regression penalty (l2 ). The l1 penalty promotes sparsity, meaning that it encourages some

coefficients to become exactly zero, effectively selecting a subset of variables. On the other

hand, the l2 penalty provides stability and encourages a grouping effect within the model. The

grouping effect refers to correlated variables being either dropped or added together as a group.
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To achieve the optimal outcome, the hyperparameter is introduced. It controls the distribution

of the elastic net penalties between l1 and l2. H2O automates the hyperparameter tuning

process through Random Search and the hyperparameter’s search range for α can be referred

under Appendix E.1.

3.5.3 Boosted regression trees and random forests (GBM, DRF)

Regression trees inherently capture multi-way interactions and nonlinearity, eliminating the ne-

cessity for additional predictors to represent these effects (Drobetz et al., 2019). Since my study

did not include interaction terms and non-linear predictors, it provides an opportunity to assess

whether these advantageous specifications can increase the model’s predictability. The process

of regression trees involves adaptively splitting the dataset into groups of similar observations.

Beginning with an initial node, the optimal split variable and value are determined to minimize

the error (RMSE) within each partition. This iterative growth of the tree results in leaves with

minimized impurity, and predictions are made based on the average of observed values within

each leaf. While regression trees are capable of capturing interactions, being invariant to trans-

formations of monotonic predictors and accommodating different datatypes, they are prone to

overfitting and may require regularization. Ensemble methods such as bagging and boosting

can be employed to aggregate predictions from multiple trees, addressing the issue of overfitting

and improving forecasting performance (Gu et al., 2020; Drobetz et al., 2019; Azevedo et al.,

2022).A general idea of the regression trees function is approximated as follows, for detailed

specification explanation, see Gu et al. (2020):

g(zi,t; θ,K,L) =
K∑
k=1

θk⊮zi,t∈Ck(L) (6)

Distributed Random Forest (DRF) operates by constructing a multitude of decision trees using

bootstrapped samples from the original dataset, which creates strong ensemble learner. It can

be implemented either for classification or regression, in this study, it is specifically used for

regression. Each tree as a weak learner is grown independently, utilizing a random subset of

predictors at each split through dropout method. Dropout method is used to mitigate high

correlations between bootstrap-replicated trees. The final prediction of a Random Forest model

is obtained by aggregating the predictions of all the individual trees, typically through averaging.

This approach helps to reduce overfitting, improve generalization, and provide robustness against

outliers and noisy data. I have also implemented the DRF model using the H2O library. The

main hyperparameters include the number of trees (ntrees), maximum tree depth (maxdepth),

and the number of randomly selected predictors (minrows). The optimal hyperparameters are

then determined using H2O’s Random Search Grid. See Appendix E.1 for the specified values

of the hyperparameters.

On the other hand, Gradient Boosting Machine (GBM) builds an ensemble of trees in a

sequential manner. Initially, a single tree is created, and its predictions are used to calculate the

residuals or errors. The next tree is then built to predict the residuals of the previous tree, and

this process continues iteratively. Each subsequent tree is designed to minimize the residuals
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from the previous trees. Finally, the predictions from all the trees are combined to form the final

prediction. GBM is known for its ability to handle complex relationships and effectively model

nonlinearity. GBM is prone to overfitting due to its sequential nature, where each tree is built

to correct the mistakes of the previous trees. To mitigate overfitting, regularization is applied.

Similar to random forest, I utilize the GBM model implemented in the H2O R library for our

analysis. In order to enhance the accuracy of the GBM model, I tune several hyperparameters.

These include the learning rate (learntree) to control the contribution of each tree through

shrinkage, the maximum tree depth (maxdepth) the number of trees (ntrees) ,and the minimum

number of samples required for splitting (colsamplerate, samplerate). See Appendix E.1, which

provides grids of suggested hyperparameter values for an effective Random Grid Search approach.

This approach aids in finding the best combination of hyperparameter values that maximize the

performance of the GBM model.

3.5.4 Deep Neural Network (DNN)

Neural Networks are a class of artificial networks that draw inspiration from the structure and

function of the human brain. They are highly parameterized and excel at solving complex

problems, capture non-linearity and interaction effect by learning from large datasets, although

they can be challenging to interpret. In this study, the H2O library’s Deep Neural Network

(DNN) is employed. Gu et al. (2020) demonstrated a general formula of feedforward neural

networks model:

g(z; θ) = θ
(1)
0 +

n∑
j=1

x
(1)
j θ

(1)
j (7)

According to Candel and LeDell (2022), DNN is a multi-layer feedforward artificial neural

network trained with stochastic gradient descent using backpropagation. The basic principle

behind multi-layer feedforward artificial neural networks is that DNNs consist of multiple layers

of interconnected nodes called neurons. Each neuron performs a weighted computation on its

inputs. Then, they map inputs to outputs in a unidirectional manner. For instance, by using

predictors as a weighted average of input values (x), the DNN predicts the output (y) such as

realized return. DNNs consist of multiple layers of interconnected nodes called neurons. How-

ever, Stochastic gradient descent (SGD) is a fundamental optimization algorithm used in training

deep neural networks. During the training process, SGD iteratively updates the network’s para-

meters by computing the gradients of the loss function with respect to these parameters. The

”stochastic” aspect refers to the fact that the gradients are estimated using small subsets of the

training data, known as mini-batches, rather than the entire dataset. By employing SGD with

backpropagation, DNNs can efficiently adjust their internal weights and biases to minimize the

difference between the predicted output and the actual output. This iterative process of forward

propagation (computing predictions) and backward propagation (updating parameters based

on computed gradients) enables DNNs to learn intricate patterns and representations from the

input data.
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Complex models like Deep Neural Networks (DNNs) often suffer from overfitting issues. To

mitigate this problem, it requires regularization through Random Grid Search. In this study, I

explore various hyperparameters, including activation functions types (activation), hidden layer

size (hidden), l1 and l2 regularization, and input dropout ratio, with the goal of enhancing

generalization.

H2O’s hidden layer size (hidden) parameter offers a unique advantage by allowing us to

avoid constructing separate architectures for NN1-NN3. Instead, it allows me to predefine the

number of neurons suggested by (Gu et al., 2020) within the NN1-NN3 architectures. The

Random Search algorithm then searches for the best architecture among NN1-NN3 within the

hyperparameter grid. The hidden layer size hyperparameter (hidden) can be specified as follows:

(32, 16, 8), (32, 16), (32). The first option represents NN3, which consists of three hidden layers

with 32, 16, and 8 neurons respectively. NN2 corresponds to two hidden layers with 32 and

16 neurons, while NN1 represents the shallowest architecture with a single hidden layer of 32

neurons. In this study, the network architecture of NN3 is selected during the regularization

process. Therefore, the NN3 represents the DNN in the following result analysis. Regarding

other parameters like epochs, learning rate, and batch size, I opt to utilize the default settings

provided by H2O for the DNN model. See Appendix E.1 for the hyperparameter specification

for DNN model.
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3.6 Model Explainability

3.6.1 Variable Importance Plot

I aim to investigate the influential variables in the cross-section of expected return while account-

ing for other variables in a similar model. The variable importance graphs in this study provide

an overview of all models, indicating which of the top 20 predictors in each model contribute

to the its own prediction. Following the approach of Gu et al. (2020), variable importance in

both ordinary least squares regression (OLS) and generalized linear models (GLM) is defined

as the reduction in out-of-sample R-squared R2
oos when setting all values of predictor j to zero

while keeping the remaining model estimates fixed. For Random Forest and Gradient Boost-

ing Machine, variable importance is defined as the mean decrease in impurity, as described by

Breiman (2001) and Friedman (2001). Lastly, for Deep Neural Networks, variable importance

is computed using the Gedeon Method, which assesses the contributions of input nodes to the

output (Gedeon, 1997).

In many cases, Deep Neural Networks (DNN) are considered black-box sophisticated predic-

tion models with low interpretability. However, recently various methods have been developed to

offer interpretability from two perspectives: Global Model-Agnostic methods and Local Model

Agnostic Methods. Global methods characterize the average behavior of the prediction derived

from machine learning model. On the other hand, local methods explain individual predictions

(Molnar, 2020). For example, the Partial Dependence Plot (PDP) provides a global viewpoint,

while the Individual Conditional Explanation Plot (ICE) offers a local viewpoint.

3.6.2 Partial Dependence Plot

Partial dependence plot (PDP) gives a visual illustration of the average marginal effect of a

predictor on the response, while holding other variable constant (Model Categories x2014; H2O

documentation — docs.h2o.ai , n.d.). PDP strongly assumes independence between the features.

However, PDP might suffer from hidden heterogenous effect with where data points for that

predictor with half of both positive and negative impacts, ultimately canceling each other out and

resulting in zero overall effect at average level. In such cases, Individual Conditional Expectation

(ICE) plots can be used to address this issue. In short, PDP allows us to identify overall trends

and understand the general impact of each input on the model’s output.

3.6.3 Individual Conditional Expectation Plot

According to Molnar (2020), the Individual Conditional Expectation Plot (ICE) is the building

block of the PDP plot. Both of them graphically demonstrate the marginal effect of a variable

on the response. The PDP displays the average effect of the feature, whereas ICE demonstrates

the effect for a specific instance. It captures the variation in fitted values across the range of

a covariate, shedding light on potential heterogeneities and their extent (Goldstein, Kapelner,

Bleich & Pitkin, 2015).
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For example, in this study, the ICE plot function plots the effect for each decile. Each ICE

percentile curve defines the conditional relationship between the interested variable xs and the

estimated response function f̂ while holding other variables xc constant. The shape, slope, and

direction of the ICE curves can provide insights into the strength and direction of the marginal

effect. This allows us to assess how changes in the predictor influence the predicted outcome.

By examining ICE plots, it is possible to observe cases where increasing a certain covariate is

associated with higher predicted values, indicating deviations from average behavior.

However, in situations where the curves in the plot have a wide range of intercepts and

overlap, making it difficult to discern heterogeneity, a centered ICE (c-ICE) can be helpful.

c-ICE helps to center the curves at a certain point (x∗, f̂(x∗, xci)) in the feature and display

only the difference in the prediction from this point. If x∗ is the minimum value of the interest

variable xs , this ensures the ICE percentile curve originates from a common point, thus removing

the differences in level due to different xci. However, if x
∗ is the maximum value, it reflects the

cumulative effect relative to a base case (where x∗ is the minimum value)(Goldstein et al., 2015).

It is common to select the curves at the minimum and maximum points for ICE plot analysis.

In my case, I anchor at both the minimum point and the maximum point for the particular

covariate and see the variations of predictions across the 0th percentile, 50th percentile, and

100th percentile ICE curves.

Both PDP and ICE plots offer a comprehensive view of local and global interpretability

of the model, specifically regarding the marginal effect of predictors on the response variable.

In this study, I apply the PDP and ICE plots based on the best prediction model for both the

benchmark and extended samples. I specifically focus on the effects of SENT, ATTENT, and the

highest variable importance feature from the best prediction model. Finally, I visually compare

how the results in benchmark sample and extended sample differ from each other.
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3.7 Stock Level Performance Evaluation Metrics

3.7.1 Out-of-sample R-squared (R2
oos)

To measure the out-sample predictive performance for each forecasting model’s stock excess

return, I follow Gu et al. (2020) to use R2
oos as evaluation metric:

R2
oos = 1−

∑
(i,t)∈P3

(ri,t+1 − r̂i,t+1)
2∑

(i,t)∈P3
r2i,t+1

(8)

Where P3 indicates the data sample never enter into models’ training or validation.To evaluate

each model, the R2
oos metric combines prediction errors across firms and over time, offering a

comprehensive assessment at the panel level. I benchmark the R2
oos against a forecast value

of zero instead of noisy historical averages. Because using historical mean stock return might

artificially lower the threshold for determining good forecast performance (Gu et al., 2020).

3.7.2 Diebold-Mariano Test

I apply the Diebold and Mariano (2002) test to assess differences in out-of-sample predictive

accuracy between two prediction models in stock level analysis. Based on the work of Gu et al.

(2020), the Diebold-Mariano test has been modified to compare the average prediction errors

across the cross-section of each model, as opposed to comparing errors among individual returns.

The test statistics is defined as:

DM12 =
d̄12
σd̄12

(9)

The d̄12 denotes as the mean, σ̂(d̄12) denotes as the Newey-West standard error of d12,t over

the testing sample.

3.8 Portfolio return Performance Evaluation

To evaluate the performance of the portfolios, I focus primarily on the portfolio level returns

for both the benchmark and extended samples. This assessment is started with an overview

of metrics such as the average realized return, predicted return, Sharpe ratio and standard

deviation of the high minus low portfolio deciles. Additionally, I analyze the cumulative portfolio

returns graphically, considering the returns of the long leg, short leg, and overall portfolio. To

provide a benchmark, I compare these cumulative returns to the cumulative market return of the

FTSE All Share index. Furthermore, I assess the adjusted portfolio returns by using the CAPM,

Fama-French 3, 5, and 6 factor models as benchmarks. These Fama-French models, derived from

Kenneth R. French - Data Library — mba.tuck.dartmouth.edu (n.d.), are applicable to developed

markets. Lastly, I investigate whether the inclusion of sentiment and attention as stock level

predictors improves the portfolio’s returns. To do this, I regress the extended sample’s long-short

portfolio return on the benchmark sample’s long-short portfolio return.
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4 Results and Discussions

4.1 Stock Level Analysis

4.1.1 The cross-section of individual stocks

Table 1 provides the comparison of linear model and machine learning models in terms of their

out-of-sample predictability R2
oos for the benchmark sample. However, Table 2 provides the

similar comparison for the extended sample with the inclusion of sentiment and attention pre-

dictors. I compare five models in total, starting with Ordinary Least Square with Huber Loss

(OLS-Huber), Generalized Linear Model (GLM), Gradient Boosting Machine (GBM), Distrib-

uted Random Forest (DRF) and Deep Neural Network (DNN).

Table 1:
Monthly level out- of -sample stock level prediction for benchmark sample (per-
centage R2

oos)

OLS
Huber

GLM GBM DRF DNN

All 0.64 0.68 0.16 0.03 1.70

Top 1000 0.58 0.23 0.01 0.05 0.16

Bottom 1000 1.31 0.04 0.00 0.10 0.13

This table shows the monthly R2
oos (in %) for OLS-Huber, GLM,GBM,DRF and DNN under the bench-

mark sample with 49 predictors. Huber indicates the use of Huber Loss instead of l2 loss. I also report

the top 1000 stocks and bottom 1000 stocks based on market value. The lower panel provides a graphical

comparison of R2
oos.
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Table 2:
Monthly level out- of -sample stock level prediction for extended sample (percentage
R2

oos)

OLS
Huber

GLM GBM DRF DNN

All 0.60 0.69 0.68 0.69 1.90

Top 1000 0.52 0.06 0.00 0.12 0.10

Bottom 1000 0.00 0.05 0.03 0.01 0.14

This table shows the monthly R2
oos (in %) for OLS-Huber, GLM,GBM,DRF and DNN under the extended

sample with 51 predictors (with the inclusion of aggregated SENT ATTENT indices as predictors). Huber

indicates the use of Huber Loss instead of l2 loss. I also report the top 1000 stocks and bottom 1000

stocks based on market value. The lower panel provides a graphical comparison of R2
oos.

The first row of Table 1 presents the monthly R2
oos for all stocks from January 2015 to

December 2022. Using OLS-Huber, the R2
oosis determined to be 0.64%. For the extended sample

in Table 2, it yields R2
oos of 0.60%. This shows that the OLS-Huber in the benchmark sample

with 49 predictors, has outperformed the R2
oos benchmark of 0% and it achieves a satisfactory

performance. However, when the total number of predictors included in the OLS-Huber model

is increased under extended sample, the R2
oos slightly decreases, but still remains close to the

performance level of the benchmark sample. Both the benchmark and extended samples’ OLS-

Huber models exhibit a monthly R2
oos in the range of 0.60-0.64%, which can be considered as

a threshold for comparing with other machine learning models. In order to demonstrate the

superiority of the machine learning models, these models need to first surpass the benchmark

R2
oos of 0% and then exceed the performance threshold set by the OLS-Huber model.

The GLM with flexible functional form further increases the out-of-sample predictive per-

formance with R2
oos of 0.68% for the benchmark sample, and 0.69% for the extended sample.

The tree-based regression models GBM and DRF’s out-of-sample prediction performance fails

to outperform the OLS in the benchmark sample, with the reported R2
oos of 0.16% for GBM,
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0.03% for DRF. However, GBM yields R2
oos of 0.68% and DRF yields R2

oos of 0.69% in the

extended sample. The tree-based regression models have inherently included interaction terms

and non-linearity. However, under the benchmark sample, this specification does not enhance

predictability and instead introduces redundancy to the models, resulting in underperform-

ance compared to the OLS model. On the contrary, in the extended sample, this specification

demonstrates its significance by capturing the effects of sentiment and attention. It suggests the

presence of interaction and non-linearity with sentiment and attention, potentially improving

performance. The extended sample’s tree-based regression models outperform the OLS model

and yield performance that is approximately similar to that of the GLM model.

The DNN model (with NN3 architecture) outperforms all the other prediction methods in

both benchmark and extended sample. It generates R2
oos of 1.70% for benchmark sample,

whereas R2
oos of 1.90% for the extended sample. The DNN model’s ability to capture com-

plex relationships, its deep architecture for hierarchical feature abstraction, the utilization of

large-scale data collectively contribute to its best performance among the compared methods.

The DNN model excels in integrating supplementary features like investor sentiment and investor

attention, which serve as valuable signals of investor behavior. By combining these factors with

other predictors, the DNN model effectively leverage their impact on stock returns, leading to

improved predictive performance.

Additionally, I present the top 1000 and bottom 1000 monthly R2
oos values under row 2 and 3

for both the benchmark sample in Table 1 and the extended sample in Table 2. It is noteworthy

that both groups exhibit similar patterns, as they perform poorly in subsamples. The overall

success of predictions is not driven by highest or lowest market capitalization stocks, except

for the benchmark sample’s OLS-Huber model, which shows high predictability for the bottom

1000 stocks. Lastly, the overall monthly R2
oos for extended sample’s models is higher compared

to the benchmark sample, except the OLS has slight performance deterioration.
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Table 3:
Comparison of monthly out-of-sample prediction via Diebold -Mariano Tests for
benchmark sample

GLM GBM DRF DNN

OLS Huber 24.52*** 3.67*** 1.84* 1.87*

GLM -8.06*** 1.79* 1.82*

GBM 1.83* 1.85*

DRF 3.38***

Table 4:
Comparison of monthly out-of-sample prediction via Diebold -Mariano Tests for
extended sample

GLM GBM DRF DNN

OLS Huber 67.21*** 0.99 1.85* 1.88**

GLM -40.80*** 1.56 1.60

GBM 1.84* 1.88*

DRF 3.32***

Table 3,4 show the Diebold-Mariano test statistics comparing the out-of-sample stock level prediction

performance among 5 models for benchmark sample and extended sample respectively. The positive

numbers indicate the column model outperform the row model. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, and ∗p < 0.1

represent the significance level of p-value for difference forecast accuracy between models.

The Diebold-Mariano (DM) test is used to compare the forecast accuracy of two different

methods by examining each column’s model against each row’s model in Table 3 and 4. It is

evident that all the non-linear machine learning models outperform the ordinary least square

model, as indicated by the positive DM values in the first row. The p-values obtained from

the Diebold-Mariano test represent the probability of observing the realized forecast error dif-

ference between the two forecast methods, with the significance levels ranging from 1% to 10%.

Moreover, the DNN model, which exhibits the highest monthly R2
oos,consistently outperforms

all other models at a 10% significance level in both the benchmark and extended samples.
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4.2 Model Interpretability

4.2.1 Variable Importance

The variable importance for each stock characteristic in each machine learning model is computed

based on the techniques described in methodology section.The top 20 predictors with the highest

importance for each machine learning model are then normalized to sum up to one. (Figure 1)

illustrates the relative importance of these top 20 predictors among the total of 49 variables in

each machine learning model for the benchmark sample. On the other hand, (Figure 3) displays

the results for the top 20 predictors among the total of 51 variables in each machine learning

model for the extended sample.

(Figure 2) however, reports the overall ranking characteristics for all models under benchmark

sample, while (Figure 4) reports the results for extended sample. I rank the importance of each

characteristic for each model, which sum to 100%. The color gradient shows the most influential

characteristics in the darkest tone, the least influential characteristics in lightest tone.

The OLS-Huber, GLM, GBM, and DRF models exhibit a strong consensus regarding the

categories of the top 20 stock-level predictors that exert the most significant influence in both the

benchmark and extended samples (Figure 1, 3). These common categories include past returns

(STReversal, LTReversal), trading friction (beta, SUV), macroeconomics (svar, rf, oas, cp), as

well as value and profitability. However, the specific variables within the value and profitability

categories vary among the models, and they are relatively less important in tree-based models.

Tree-based models tend to prioritize trading friction and macroeconomics categories, displaying a

noticeable skew towards them. On the other hand, while the DNNmodel also shows agreement in

terms of the most important variable categories, it does not consider the trading friction category

in its stock-level predictions for both the benchmark and extended samples. Additionally, the

DNN model draws predictive signals from a broader range of characteristics, and the ranking

weightage for each variable except the top ranked, the rest are evenly distributed. These could

explain why the DNN model outperforms the other models in every instances. Despite these

differences, all models agree that the most important variable is STReversal, with ranking

weightages ranging from 6% to 21% across all models in both the benchmark and extended

samples.

However, when additional predictors such as investor attention and sentiment (ATTENT,

SENT) are included, all models, except OLS, show improved performance. One possible reason

is that the inclusion of sentiment and attention as additional predictors alters the variables’

composition and reshuffles the ranking within the value and profitability categories among all

models. This effect is particularly prominent in the tree-based models. For example, in GBM,

which previously placed high emphasis on macroeconomics category in the benchmark sample,

the importance of macroeconomics variables now decreases in the extended sample, and the

focus shifts to variables within the value and profitability categories. Similarly, in DRF, the

composition of the value and profitability categories changes, and macroeconomics variables

are replaced with more value category-related variables. These behaviors can be attributed

to the selective nature of the models. OLS, GLM, GBM, and DRF tend to prioritize certain
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predictors’ signals while sacrificing others, as evidenced by allocating 0% ranking weightage for

some variables shown in (Figure 2, 4). This is why the inclusion of sentiment and attention

improves their predictive ability, as it guides the models towards focusing more on firm-related

characteristics rather than macroeconomics that improves prediction performance.

Furthermore, aside from changing the perspective on how the machine learning models ana-

lyze the original predictors, the new predictors themselves (sentiment and attention) emerge

as among the top 20 most important variables. (Figure 3, 4 )show that SENT is the second

most important variable across all models after STReversal, except for GBM and DRF, which

still tend to skew towards trading friction. SENT has a significant ranking weightage ranging

from 3% to 14% across all models. ATTENT predictor, compared to SENT predictor, is less

important in terms of prediction.
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Figure 1: Variable Importance by models for benchmark sample
Variable Importance for the top 20 most important variables in each model for the benchmark sample.

The variable importance is normalized to sum of one.
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Figure 2: Characteristics importance for benchmark sample
It shows the all rankings of 49 firm and macroeconomics predictors in terms of overall contributions for

each model for the benchmark sample. The columns represent all the prediction models. The most

influential variable has the darkest color gradient, and the least has the lightest color gradient. The

weightage for the variables is based on their rank on the sum of ranks of over each model, which sum to

100%.
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Figure 3: Variable Importance by models for extended sample
Variable Importance for the top 20 most important variables in each model for the extended sample. The

variable importance is normalized to sum of one.
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Figure 4: Characteristics importance for extended sample
It shows the all rankings of 51 firm, macroeconomics, aggregate indices SENT and ATTENT predictors

in terms of overall contributions for each model for the extended sample. The columns represent all the

prediction models. The most influential variable has the darkest color gradient, and the least has the

lightest color gradient. The weightage for the variables is based on their rank on the sum of ranks of

over each model, which sum up to 100%.
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4.2.2 Partial Dependence Plot (PD) and Individual Conditional Plot (ICE)

Based on the out-of-sample prediction R2
oos and Diebold-Mariano (DM) Test, it has been con-

cluded that the DNN model demonstrates significant and superior performance compared to

other forecast models. Therefore, the analysis of PD plot and ICE plot will focus exclusively on

the best performing model, DNN with its NN3 architecture. The analysis will consider the most

important variable, STReversal, under the benchmark sample, whereas, STReversal and addi-

tional variables, SENT and ATTENT, under the extended sample. (Figure 5) reveals several

inferences. Firstly, the Partial Dependence Plot illustrates an upward increasing but gradual

flattening trend for average marginal effect of STReversal under the benchmark sample. This

indicates a nonlinear but positive relationship between the stock level return and STReversal.

As the magnitude of STReversal marginally increases, the stock level return also increases.

However, beyond a value of 0.5, the effect of STReversal on the stock level return prediction di-

minishes under the benchmark sample. When examining the Individual Conditional Plot, which

breaks down the average marginal effect into percentiles ranging from 1 to 100th, all percentiles

consistently align with the average marginal effect trend, suggesting no significant heterogeneity

in the effects.

In (Figure 6), the average marginal effect of STReversal on the stock level return under

the extended sample follows a similar trend to that observed in the benchmark sample (Figure

5). Nevertheless, The average marginal effect of SENT on the stock level return exhibits a

positive incremental trend that is less steep compared to STReversal within the extended sample.

However, the increasing trend still persists as the magnitude of SENT approaches 1.0.As for

ATTENT, its average marginal effect on stock return decreases non-linearly as the magnitude of

ATTENT increases. Nevertheless, the ICE plot does not exhibit any noticeable heterogeneous

effects among STReversal, ATTENT, and SENT in relation to stock level return under the

extended sample.

Figure 5: Partial Dependence plot (Left) and Individual Conditional Expectation
plot (Right) for DNN’s most important variable, STReversal under benchmark
sample.
Left panel shows the average marginal effect of STReversal on the stock level return. Right panel shows

the single instance marginal effect of STReversal on the stock level return, which based on 1-100th

percentile.
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Figure 6: Partial dependence plot and Individual Conditional Expectation plot for
DNN’s most important variable STReversal, SENT and ATTENT under extended
sample.
Left panels show the average marginal effect of STReversal, SENT and ATTENT on the stock level

return. Right panels show the single instance marginal effect of STReversal,SENT and ATTENT on the

stock level return, which based on 1-100th percentile.
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Table 5:
c-ICE for benchmark sample’s STreversal

Predictor’s Magnitude
(STreversal)

P0 P50 P100

-1 -0.10 -0.04 -0.07

1 0.02 0.02 0.01

This table presents the breakdown of the ICE plot percentile curves for the benchmark sample, focusing

on the feature STReversal. It demonstrates the difference in predicted mean values for the 0th, 50th, and

100th percentiles of the response variable, logret, at two fixed point of the feature’s magnitude (-1,1).

Table 6:
c-ICE for extended sample’s STreversal

Predictor’s Magnitude
(STreversal)

P0 P50 P100

-1 -0.08 -0.05 -0.01

1 -0.00 0.01 0.00

This table presents the breakdown of the ICE plot percentile curves for the extended sample, focusing

on the feature STReversal. It demonstrates the difference in predicted mean value for the 0th, 50th, and

100th percentiles of the response variable, logret, at two extreme fixed point of the feature’s magnitude

(-1, 1).
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Table 7:
c-ICE for extended sample’s SENT

Predictor’s Magnitude
(SENT)

P0 P50 P100

-0.68 -0.06 -0.02 -0.01

1 -0.01 0.00 -0.00

This table presents the breakdown of the ICE plot for the extended sample, focusing on the feature

SENT. It demonstrates the difference in predicted mean values for the 0th, 50th, and 100th percentiles

of the response variable, Return, at two extreme fixed point of the feature’s magnitude (-0.68,1).

Table 8:
c-ICE for extended sample’s ATTENT

Predictor’s Magnitude
(ATTENT)

P0 P50 P100

-0.87 -0.02 0.00 -0.01

1 -0.06 -0.03 -0.01

This table presents the breakdown of the ICE plot for the extended sample, focusing on the feature

STReversal. It demonstrates the difference in predictions for the 0th, 50th, and 100th percentiles of the

response variable, Return, at two extreme fixed point of the feature’s magnitude (-0.87,1).

4.2.3 Centered ICE (c-ICE)

In Table 5, the benchmark’s sample predicted values of the response variable (’logret’) are

illustrated at different percentiles (P0, P50, and P100) for varying magnitudes of the predictor

STReversal at (-1 and 1).

At a magnitude of -1, the predicted values of ’logret’ were -0.10, -0.04, and -0.07 for the P0,

P50, and P100 percentiles, respectively. This suggests that lower magnitudes of STReversal

are associated with negative predictions, with a slightly higher value at the P50 percentile.

Conversely, at a magnitude of 1, the predicted values of ’logret’ were 0.02, 0.02, and 0.01

for the P0, P50, and P100 percentiles, respectively. These results indicate a shift towards

positive predictions as the magnitude of the predictor increases, although the differences between

percentiles are relatively small.

As for Table 6, it reveals the extended sample’s predicted values of the response variable

’logret’ at different percentiles (P0, P50, and P100) for varying magnitudes of STReversal (-1

and 1).

At a magnitude of -1, the predicted values of the response variable are -0.08, -0.05, and

-0.01 for the P0, P50, and P100 percentiles, respectively. This suggests a negative association

between STReversal and the response variable, with slightly higher predicted values at the P50

percentile. On the other hand, at a magnitude of 1, the predicted values of the response variable

are -0.00, 0.01, and 0.00 for the P0, P50, and P100 percentiles, respectively. These results

indicate a weaker relationship between STReversal and the response variable, with predictions

close to zero and minimal variation across percentiles.
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In Table 7, it highlights the differences in predicted mean values for the 0th, 50th, and 100th

percentiles of the response variable, logret, at two extreme fixed points of the SENT feature’s

magnitude (-0.68 and 1) in the extended sample.

At a magnitude of -0.68, the predicted mean values of the response variable are -0.06, -

0.02, and -0.01 for the P0, P50, and P100 percentiles, respectively. This indicates a slightly

negative association between SENT and the response variable, with a minimal change in mean

values across the percentiles. Conversely, at a magnitude of 1, the predicted mean values of the

response variable are -0.01, 0.00, and -0.00 for the P0, P50, and P100 percentiles, respectively.

These results suggest a near-neutral relationship between SENT and the response variable, as

the predicted mean values remain close to zero across the percentiles.

Table 8 illustrates the differences in predictions for the 0th, 50th, and 100th percentiles of

the response variable, logret, at two extreme fixed points of the ATTENT feature’s magnitude

(-0.87 and 1) in the extended sample.

At a magnitude of -0.87, the predictions for the response variable are -0.02, 0.00, and -0.01

for the P0, P50, and P100 percentiles, respectively. This suggests a relatively stable prediction

pattern, with slight variations in the predicted values across the percentiles. Conversely, at a

magnitude of 1, the predictions for the response variable are -0.06, -0.03, and -0.01 for the P0,

P50, and P100 percentiles, respectively. These results indicate a negative association between

ATTENT and the response variable, with slightly lower predicted values as the magnitude

increases.

It is worth noting that the differences between percentiles for (STReversal, SENT, ATTENT)

are not substantial, indicating a relatively consistent prediction pattern for each predictor across

the distribution of the response variable in both the benchmark and extended sample. Therefore,

heterogeneity should not be a concern in this study.
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4.3 DNN Portfolio Analysis

4.3.1 Prediction-sorted Portfolio Return

Table 9:
DNN Prediction-sorted Portfolio Performance under benchmark sample

Pred Avg SD SR

Low(L) -0.03 -0.02 0.06 -1.62

2 -0.01 -0.01 0.07 -1.01

3 -0.01 -0.02 0.06 -1.48

4 -0.01 -0.02 0.06 -1.45

5 -0.01 -0.01 0.05 -0.91

6 -0.01 -0.00 0.05 -0.71

7 -0.00 0.00 0.05 -0.45

8 -0.00 0.00 0.05 -0.37

9 -0.00 -0.00 0.05 -0.66

High(H) 0.00 -0.00 0.05 -0.55

H-L 0.03 0.02 0.04 0.33

Table 10:
DNN Prediction-Sorted Portfolio Performance under extended sample

Pred Avg SD SR

Low(L) -0.04 -0.02 0.06 -1.68

2 -0.02 -0.02 0.07 -1.32

3 -0.02 -0.02 0.06 -1.34

4 -0.02 -0.01 0.06 -1.02

5 -0.01 -0.01 0.05 -0.99

6 -0.01 -0.00 0.05 -0.59

7 -0.01 0.00 0.05 -0.50

8 -0.01 -0.00 0.04 -0.77

9 -0.01 -0.00 0.05 -0.71

High(H) -0.01 0.00 0.05 -0.44

H-L 0.03 0.02 0.03 0.45

In (Table 9 and 10), I report the performance of prediction-sorted portfolio across the 8 years out-of-

sample testing period for benchmark and extended sample. All realized stock returns are sorted into

deciles based on their next month’s predicted return. Pred,Avg,SD and SR, represent the monthly

predicted return, average realized return, Standard deviation and Sharpe Ratio respectively.

Since the Deep Neural Network (DNN) model demonstrates superior predictive performance

at the stock-level compared to other forecast models, both in the benchmark and extended

samples (including the SENT and ATTENT predictors) in previous section. Consequently, I
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choose to exclusively rely on the DNN model for the portfolio return analysis. As outlined in

the methodology section, the portfolios in both the benchmark and extended samples categorize

their realized stock returns into deciles based on the corresponding 1-month ahead DNN stock-

level predictions. An equal-weighted long-short portfolio is constructed for each benchmark and

extended sample by buying stocks with the highest expected returns at the long leg (decile 10)

and selling those with the lowest at the short leg (decile 1).

In both Table 9 and Table 10, the high minus low (H-L) strategy shows a similar monthly

predicted return of 3% and average realized return of 2% for both the benchmark and extended

samples. However, the benchmark sample exhibits a higher monthly volatility of 4% compared

to the extended sample’s monthly volatility of 3%. Consequently, the benchmark sample has a

lower Sharpe ratio of 0.33, whereas the extended sample achieves a higher Sharpe ratio of 0.45.

4.3.2 Cumulative DNN Portfolio Return

In (Figure 7 and 8), the cumulative return of the long-short portfolio under the left panel shows

that both the benchmark and extended samples outperform the market’s cumulative excess

return. Furthermore, there is a consistent upward increasing trend observed in both groups.

However, it is important to highlight that the increasing trend is less steep in the extended

sample compared to the benchmark sample until 2022.Starting in 2022, the trendline of the

extended sample shows a steeper increase compared to the benchmark sample. By the end of

2022, the log cumulative return in the extended sample reaches approximately 0.80, which is

higher than the log cumulative return of 0.70 in the benchmark sample.

Furthermore, a notable observation is that at the beginning of 2022, the DNN cumulative

portfolio return displays a contrasting trendline direction compared to the market cumulative

return. While the DNN cumulative portfolio return exhibits an increasing trend, the market

cumulative return continuously declines throughout 2022, with only minor signs of recovery in

the last few months. This shows that despite the overall market decline, the DNN model’s ability

to adapt and respond to changing conditions resulted in a positive and upward trajectory in the

cumulative portfolio return.

Moreover, when comparing the cumulative portfolio return of the benchmark sample to the

extended sample, several sharp dips can be observed in the benchmark sample. These dips occur

during the start of 2019, throughout 2020, and at the beginning of 2021, coinciding with the

occurrence of the Covid Crisis. In contrast, the extended sample exhibits a smoother trendline

without significant dips in recent years. This suggests that these periods of market volatility

and uncertainty had a more pronounced impact on the benchmark sample, highlighting the

limitations of relying solely on traditional market indicators. In contrast, the extended sample,

which incorporates sentiment and attention factors, demonstrated a more robust response during

these challenging periods. By capturing and analyzing market sentiment and attention, the

model was able to adapt and mitigate some of the adverse effects of the Covid Crisis, leading to

a comparatively smoother performance and avoiding steep declines in the cumulative portfolio

return.
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4.3.3 DNN Long and Short Leg Comparisons

The right panels of (Figure 7 and 8), provide a breakdown of the cumulative return of the DNN

long-short portfolio before buying and short-selling. These figures illustrate the comparison

between the long leg, short leg, and the market excess return for both the benchmark and

extended samples. It is evident that in both the benchmark and extended samples, the market

excess return outperforms the long leg. However, the long leg in both groups closely follows

the market trendline (FTSE All Share). The cumulative portfolio return of the long leg in both

groups tends to hover around zero or slightly negative returns. Notably, there are significant

spikes in the long legs of both the benchmark and extended samples during the period from

2020 to 2021, followed by a steep decline from the peak onwards.

The trendline for the short leg in the extended sample is relatively similar to that of the

benchmark sample. The main difference is that, before the peak in 2021, the decreasing trendline

of the short leg in the extended sample is less steep compared to the benchmark sample. After

the peak in 2021, the short leg’s trendline follows the overall market’s decreasing trend as well.

However, the downward trend in the extended sample is steeper than in the benchmark sample.

This indicates that when the market trend is declining, the model incorporating sentiment and

attention factors (SENT and ATTENT) is able to capture this trend, adjust its positioning, and

suggest a more aggressive short-selling strategy (short sell the bottom decile stocks which have

large persistent negative returns) after 2021. This adjustment helps compensate for the losses

in the long leg and ultimately results in a positive overall cumulative return. Nevertheless, it

is notable that the aggressive short-selling strategy induced by incorporation of sentiment and

attention factors (SENT and ATTENT) provides more significant benefits to the model during

market turbulent periods compared to normal periods. During normal periods, when the market

is relatively stable, the impact of SENT and ATTENT factors on overall cumulative portfolio

return may be less pronounced due to less aggressive short-selling strategy. This suggests that the

model’s ability to capture and leverage sentiment and attention signals is particularly valuable

during market turbulent periods when traditional indicators may not fully capture the market

dynamics.
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Figure 7: Cumulative return of DNN portfolio for the benchmark sample
Left panels show the average marginal effect of STReversal, SENT and ATTENT on the stock level

return. Right panels show the single instance marginal effect of STReversal,SENT and ATTENT on the

stock level return, which based on 1-100th percentile.

Figure 8: Cumulative return of DNN portfolio for the extended sample
The left panel shows the cumulative log return of long-short portfolio sorted on the out-of-sample predicted

return over 8 years period for extended sample(SENT,ATTENT as predictors). In the right panel, the

cumulative return of the portfolio is separated into the long leg (top decile) and short leg (bottom decile).

The market excess return that based on FTSE All share is used as the benchmark.
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4.3.4 Long-Short Portfolio Adjusted Return

Table 11:
DNN Portfolio Return based adjusted for CAPM, Fama-French 3/5/6 factors

α MKT-RF SMB HML RMW CMA MOM r2

0.0197***
(3.89)

-0.0003
(-0.29)

0.0020

0.0193***
(5.31)

-0.0003
(-0.43)

0.0021**
(0.98)

-0.0001
(-0.08)

0.0139

0.0177***
(6.18)

-0.0010**
(-2.56)

0.0027
(1.00)

0.0071***
(3.56)

0.0066**
(2.29)

-0.0096**
(-2.08)

0.1332

0.0183***
(4.93)

-0.0019
(-1.48)

0.0026
(0.94)

0.0047*
(1.93)

0.0061**
(2.32)

-0.0082*
(-1.73)

-0.0024
(-1.10)

0.1596

Table 12:
DNN Portfolio Return with SENT,ATTENT, adjusted for CAPM,Fama-
French3/5/6 factors

α MKT-RF SMB HML RMW CMA MOM R2

0.0213***
(3.70)

-0.0003
(-0.45)

0.0029

0.0206***
(3.19)

-0.0002
(-0.35)

0.0033*
(1.89)

0.0001
(0.12)

0.0436

0.0177***
(3.21)

-0.0007
(-1.29)

0.0045**
(2.10)

0.0061*
(1.74)

0.0080***
(4.60)

-0.0063
(-0.96)

0.1833

0.0175***
(3.14)

-0.0005
(-0.49)

0.0045**
(2.09)

0.0068**
(2.15)

0.0081***
(4.43)

-0.0068
(-1.16)

0.0007
(0.36)

0.1866

Table 11 and 12 show the risk adjusted performance of DNN portfolios under benchmark sample and

extended sample based on the factor pricing models, CAPM, Fama-French 3,5,6 factors. The t-test

statistic is in bracket, ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, and ∗p < 0.1 represent the significance level of p-value.

In (Table 11), the portfolio formed on the DNN forecast under the benchmark sample earns

significant alphas at 1% level across CAPM, Fama-French 3 to 6 factors models. The alphas

which represents risk-adjusted return gradually decline as the factor pricing models expanded

with their factors from CAPM of 1.97% with t-statistics of 3.89 to Fama-French 5 factors models

of 1.77% with t-statistic of 6.18. The 5 factors are MKT-RF for market, SMB for size, HML

for value, RMW for operating profitability and CWA for investment. However, when adding

the additional factor of momentum MOM to the 5 factors model, the monthly risk adjusted

return rebounds to 1.83% with t-statistics of 4.93, meaning that the 5-factor model performs

better than the 6-factor model in spanning away the risk-adjusted returns, it suggests that the

additional factor (MOM) does not provide significant explanatory power or improvement. The

spanning regression R2 however, increases from 0.0020 to 0.1596 across the factors models of

the benchmark sample.
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In (Table 12), the portfolio formed based on the DNN forecast in the extended sample exhibits

significant alphas at the p-value 1% level across the CAPM, Fama-French 3, and Fama-French

6 factors models. The monthly adjusted return for CAPM and Fama-French 3 factors models

are approximately 2% with the t-statistics range from 3.70 to 3.19, clearly they are higher

in the extended sample compared to the benchmark sample due to the presence of investor

sentiment and attention. The monthly adjusted return also gradually decreases as the factor

models expand from CAPM with 2.13% with t-statistic of 3.70 to Fama-French 6 factors model

with 1.75% with t-statistic of 3.14. The alpha under the Fama-French 6 factors model is slightly

lower than the alpha in the benchmark sample. This indicates that in the extended sample, the

investor sentiment and attention components play a role in helping the Fama-French 6 factors

model better explain the portfolio returns, resulting in a lower risk-adjusted return. Overall,

neither the extended nor the benchmark sample’s prediction sorted-portfolio returns can be fully

explained by the factor pricing models. Although the investor behavior component embedded

in the portfolio return may prompt the factor pricing models to capture returns better, further

exploration is still required. Additionally, it is noteworthy that HML (High Minus Low) and

RMW (Robust Minus Weak) factors play a significant role in explaining the portfolio returns

under both the extended and benchmark samples.
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4.3.5 Intervention Analysis on Long-Short Portfolio Return Improvement

Table 13:
Regression DNN Long-Short Portfolio Return with SENT/ATTENT on DNN Long-
Short Portfolio Return without SENT/ATTENT

α longshortSA R2

0.0045
(1.04)

0.7102***
(8.05)

0.359

The t-statistics is in brackets, ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, and ∗p < 0.1 represent the significance level of

p-value. This shows the regression of the extended sample’s long short portfolio return on the benchmark

sample’s long short portfolio return.LongshortSA is the long-short portfolio return derived from the stock

level prediction with the inclusion of sentiment and attention.

(Table 13) shows that the extended sample’s DNN prediction sorted long-short portfolio is

regressed on the benchmark sample’s DNN prediction sorted long-short portfolio. The regres-

sion results suggest that the inclusion of sentiment and attention effect, as captured by the

longshortSA variable, it significantly improves the performance of the long-short portfolio. A

one-unit increase in the long-short portfolio return with sentiment and attention is associated

with an estimated increase of 71.02% with t-statistic of 8.05 in the long-short portfolio return

without sentiment and attention. This positive and statistically significant coefficient provides

evidence that investor sentiment and attention information has a significant impact on the per-

formance of the long-short portfolio.
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5 Conclusion

In the UK market, Deep Neural Network (DNN) proves to be the most effective stock level

prediction model, aligning with existing machine learning literature in both the US and other

international markets (Gu et al., 2020; Drobetz et al., 2019; Hanauer & Kalsbach, 2023). In-

stead of following the past studies to rely on the OLS setting to predict stock returns based

on investor sentiment and attention (Hudson & Green, 2015; J. Chen et al., 2022; Cai et al.,

2022),I have incorporated these concepts into my machine learning models. The inclusion of in-

vestor sentiment and attention, along with firm and macroeconomic predictors, has significantly

improved stock level prediction and the resulting long-short portfolio return. Both extended

and benchmark sample’s cumulative long-short portfolio return generated by the DNN model

surpass the cumulative excess return of the UK market. Moreover, the machine learning (DNN)

prediction-based portfolio has its uniqueness for generating alphas that cannot be explained

away by the traditional factor models CAPM, Fama-French 3,5,6 models.

Many emerging markets face short-sale restrictions, which could pose a significant challenge in

implementing the DNN model to achieve a positive increasing cumulative return. This difficulty

arises when the portfolio’s return pattern in these emerging markets, similar to the one observed

in my UK study, predominantly relies on the positive cumulative return generated from the

short leg of the portfolio. Nonetheless, when investor sentiment and attention are incorporated

into the Deep Neural Network prediction, they smooth out the negative effects on cumulative

portfolio return during market turbulence, such as the Covid crisis. The question remains

whether the ability of sophisticated machine learning models like DNN to capture turbulent

fluctuation signals informed by investor sentiment and attention is a result of sheer luck or

superior model architecture. Is incorporating DNN with investor sentiment and attention during

market turbulence a reliable option to achieve higher prediction returns? To what extent can

machine learning models be useful during turbulent periods, and is the trend of outperformance

consistent in every turbulent period? Lastly, my study also suggests that the investor sentiment

and attention components in portfolio returns interact with the Fama-French factors, allowing

these factors to capture a broader range of risk and return drivers in the market. However, I

did not delve further into these aspects, leaving them as potential areas for future research and

extrapolations.
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6 Appendices

6.1 Appendix A.1

# Predictors Category Definition

1 A2ME Value Assets to market capitalization

2 AT Trading Frictions Total assets

3 ATO Profitability Sales to assets

4 BEME Value Book value to market value of equity

5 Beta Trading Frictions Market beta

6 C Value Cash and short term investments to assets

7 CbOPtA Profitability Cash based operating profits to assets

8 CF2P Value Cash flow from operating activities to market capitalization

9 CTO Profitability Capital turnover

10 D2A Intangibles Capital intensity

11 Debt2P Value Leverage

12 DPI2A Investments Ratio of change in property,plants equipment to total assets

13 E2P Value Earning to price

14 FC2Y Profitability Fixed costs to assets

15 FreeCF Value Cash flow to book value of equity

16 GP2A Profitability Gross profit to assets

17 INV Investment Investment

18 LME Trading Frictions Market capitalization

19 LTurnover Trading Frictions Stock’s trading volume divided by shares outstanding

20 NOA Investment Net operating assets

21 OA Intangibles Operating Accruals

22 OL Intangibles Operating Leverages

23 P2P52WH Trading Frictions Price relative to its 52-week high

24 PCM Profitability Price to cost margin

25 PM Profitability Profit margin

26 Prof Profitability Gross Profitability

27 Q Value Tobin’s Q

28 mom Past returns Momentum is the cumulative excess return from month t-12 to t-2

29 intmom Past returns Intermediate momentum is the cumulative excess return from month t-12 to t-7

30 STreversal Past returns Short term reversal is lagged one month excess return

31 LTreversal Past returns Long term reversal is the cumulative return from t-36 to t-13

32 RNA Profitability Return on net operating assets

33 ROA Profitability Return on assets

34 ROE Profitability Return on equity

35 S2P Value Sales to price

36 SGA2S Intangibles Sales and general administrative costs to sales

37 IIliqu Trading Frictions Illiquidity

38 SUV Trading Frictions Unexplained volume

Table A.1: Firm Predictors’ Definitions
I replicate all the 38 firm predictors from Hanauer and Kalsbach (2023).See detailed explanations
of definitions and constructions from their paper.
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6.2 Appendix A.2

# Predictors Definition

1 b/m Ratio of book value to market value of FTSE

2 d/y Dividend-yield ratio of FTSE

3 e/p Earning Price Ratio of FTSE

4 rf UK risk free rate, equivalent to 3 month treasury bill rate.

5 tms Term Spread is the differences between long-term yield on
government bonds and the risk free rate

6 svar Stock variance on FTSE All Share

7 i/k Investment to capital ratio is the ratio of private investment
to capital for the aggregate UK economy

8 infl Inflation is the Consumer Price Index CPI for UK

9 lty UK Long-term government bond yield

10 oas Option Adjusted Spread is the spread of corporate bond rate
and long term treasury bill rate which takes into account of
the embedded option.

11 cp Commercial paper to treasury spread is the spread between
3 month commercial paper rate on the 3 month UK treasury
bills.

Table A.2: Macroeconomics Predictors’ Definitions
I replicate the macroeconomics predictors from the Welch and Goyal (2008) and Paye (2011).
See detailed explanations of the constructions of the variables from their papers
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6.3 Appendix A.3

# Proxies Definition

1 AVCD Advances-Decline Ratio is the number of stocks rising to the number of stocks
declining in UK market

2 SMART.index Smart Money Flow Index for FTSE100

3 PCV Put-Call Trading Volume for FTSE100

4 PCO Put-Call Open Interest ratio for FTSE100

5 RSI.30D Relative Strength Index in 30 days for FTSE 100

6 IVI.30D Implied Volatility in 30 days for FTSE100

7 CISS Composite indicator of systematic stress in UK

8 CLIFS Country-level financial stress composite indicator is a financial stress measure
that accounts for co-movement of different market segments in UK

Table A.3: Investor Sentiment Predictors’ Definitions
I follow Hudson and Green (2015) to construct the proxies of investor sentiment. See detailed
explanations of the definition from their paper. I also incorporate the European Central Bank’s
financial stress indicators for the UK market as proxies. See detailed explanations from ECB
(All Datasets - ECB Statistical Data Warehouse — sdw.ecb.europa.eu, n.d.).

6.4 Appendix A.4

# Proxies Definition

1 GSV Google Search Volume related to FTSE

2 aavol Abnormal Trading Volume for FTSE100

3 aeret Extreme Returns for FTSE100

4 ualhits Upper aggregate limit-hits represents the monthly count of sample stocks hitting
their respective daily upper limit, wherein each stock’s price experiences
a 10% increases compared to the previous closing price

Table A.4: Investor Attention Predictors’ Definitions
Cai et al. (2022) and J. Chen et al. (2022) provide references for construction of proxies for my
study. See detailed explanations from their papers
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6.5 Appendix B.1

Predictors n missing complete rate numeric.mean numeric.sd numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100

mom 30438 0.93 -0.06 0.58 -23.86 -0.41 -0.07 0.20 32.29

intmom 30289 0.93 -0.04 0.42 -15.63 -0.25 -0.03 0.15 15.73

STreversal 1777 1.00 -0.07 0.28 -1.00 -0.22 -0.05 0.10 1.00

LTReversal 107430 0.74 -0.05 0.83 -16.70 -0.61 -0.15 0.31 30.42

TOBINQ 17889 0.96 3.31 111.81 -1.94 0.56 0.93 1.69 19441.25

A2ME 42722 0.90 2.58 19.35 0.00 0.61 1.19 2.23 2577.14

AT 39838 0.90 6535722.83 70322840.35 0.00 12227.00 58197.00 369461.00 2447119464.00

NOA 60141 0.85 0.51 29.02 -438.00 0.35 0.57 0.73 13096.08

ATO 63341 0.84 1837993.08 79793312.76 -11679247555.56 6001.95 62563.74 463627.89 8288119674.29

BEME 10289 0.97 0.83 4.22 -100.00 0.26 0.55 1.04 100.00

C 50133 0.88 0.20 0.23 0.00 0.04 0.11 0.26 1.00

CBOPTA 40158 0.90 -0.05 2.43 -297.00 -0.03 0.07 0.16 383.75

CF2P 140204 0.66 47346.15 1514002.02 -54254900.00 -14.30 27.83 327.53 97103704.00

CTO 43672 0.89 0.89 3.35 -9.60 0.18 0.64 1.21 1636.58

D2A 53072 0.87 0.05 1.33 -0.42 0.01 0.03 0.06 535.92

Debt2P 139899 0.66 8345400.82 82193572.53 -558623469.00 10260.78 53784.83 417917.76 2447118172.11

DPI2A 99648 0.76 0.46 2.13 -0.95 0.10 0.30 0.71 996.71

E2P 139779 0.66 23628.45 928660.28 -17387888.00 -51.47 7.33 159.82 93258672.00

FC2Y 72540 0.82 150622.00 839150.86 -3872000.00 1080.00 6695.00 34000.00 20351588.00

FreeCF 59497 0.85 -625848.34 121906515.86 -38517142350.00 -7770.02 -50.60 599.99 1905346550.00

GP2A 40158 0.90 1398570.14 10280780.98 -89294000.00 4245.83 36116.00 253199.69 361936128.86

INV 11950 0.97 0.04 3.44 -1.00 0.00 0.00 0.00 1211.74

LME 109769 0.73 3775.42 122406.34 0.00 7.69 41.95 304.51 11748472.00

LTurnover 15618 0.96 0.26 15.28 0.00 0.01 0.02 0.06 6811.40

OA 213724 0.47 0.00 0.04 -5.22 0.00 0.00 0.00 6.34

OL 39931 0.90 781894.64 7837335.36 -135374.00 408.12 11453.00 103100.01 309129356.05

P2P52WH 46612 0.89 247.19 1458.95 0.00 36.06 71.91 124.47 135000.00

PCM 72540 0.82 1534312.61 10757387.64 -89294000.00 8643.80 49640.27 312061.52 361936129.15

Prof 42907 0.89 -111099.22 48192845.19 -1085230380.00 -15297.09 847.84 24548.75 8793330870.00

PM 80956 0.80 -4.58 139.81 -12424.00 -0.09 0.05 0.14 9877.00

RNA 70872 0.83 275343.89 11391564.04 -666472563.64 -2608.85 3123.18 43296.12 5599757580.95

ROA 43544 0.89 -0.30 6.59 -701.00 -0.11 0.01 0.06 151.26

ROE 46242 0.89 -29839643.59 7325585794.92 -2448591918750.00 -2486.04 1096.50 27410.81 518390384.10

S2P 139899 0.66 193043.39 3945666.23 -35716.18 62.86 683.43 5307.83 196470972.00

SG2A 72540 0.82 3.55 63.09 -79.67 0.07 0.25 0.54 5443.00

IIliqu 15615 0.96 36540.14 379624.26 -54.91 271.00 1904.96 11485.75 112009138.89

beta 7870 0.98 0.71 3.65 -213.28 -0.39 0.65 1.91 131.69

SUV 15686 0.96 0.00 1.00 -1.34 -0.09 -0.07 -0.06 295.11

lty 0 1.00 0.03 0.02 0.00 0.02 0.04 0.05 0.06

rf 0 1.00 0.03 0.02 0.00 0.01 0.01 0.05 0.07

svar 0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

e.p 0 1.00 0.06 0.02 0.03 0.05 0.06 0.07 0.12

d.y 0 1.00 3.36 0.61 2.06 2.99 3.31 3.63 5.53

b.m 0 1.00 0.67 0.26 0.32 0.42 0.64 0.88 1.32

i.k 0 1.00 0.04 0.08 -0.02 0.02 0.03 0.04 1.31

infl 0 1.00 0.02 0.01 0.00 0.01 0.02 0.03 0.10

cp 0 1.00 0.00 0.01 -0.04 0.00 0.00 0.00 0.05

tms 0 1.00 0.01 0.01 -0.02 0.00 0.01 0.01 0.03

oas 0 1.00 0.04 0.03 0.02 0.03 0.04 0.05 0.20

Table B.1: Summary Statistics for Firm and Macroeconomics predictors before imputation
and standardization. Completeness, mean, standard deviation, and each quantile are shown.
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6.6 Appendix B.2

Predictors n missing complete rate numeric.mean numeric.std numeric.p0 numeric.p25 numeric.p50 numeric.p75 numeric.p100

mom 0 1 -0.20 0.34 -1.00 -0.45 -0.23 0.03 1.00

intmom 0 1 -0.13 0.31 -1.00 -0.34 -0.15 0.08 1.00

STreversal 0 1 -0.07 0.28 -1.00 -0.22 -0.05 0.10 1.00

LTReversal 0 1 -0.42 0.28 -1.00 -0.63 -0.48 -0.25 1.00

TOBINQ 0 1 -0.98 0.07 -1.00 -1.00 -0.99 -0.98 1.00

A2ME 0 1 -0.97 0.09 -1.00 -0.99 -0.99 -0.97 1.00

AT 0 1 -0.99 0.09 -1.00 -1.00 -1.00 -1.00 1.00

NOA 0 1 0.61 0.54 -1.00 0.51 0.86 0.96 1.00

ATO 0 1 -0.02 0.45 -1.00 -0.33 -0.02 0.28 1.00

BEME 0 1 0.05 0.31 -1.00 -0.02 0.01 0.23 1.00

C 0 1 -0.60 0.46 -1.00 -0.91 -0.77 -0.45 1.00

CBOPTA 0 1 0.74 0.29 -1.00 0.63 0.84 0.93 1.00

CF2P 0 1 -0.83 0.27 -1.00 -0.98 -0.96 -0.77 1.00

CTO 0 1 -0.84 0.19 -1.00 -0.96 -0.90 -0.80 1.00

D2A 0 1 -0.95 0.09 -1.00 -1.00 -0.99 -0.93 1.00

Debt2P 0 1 -0.93 0.10 -1.00 -0.98 -0.94 -0.90 1.00

DPI2A 0 1 -0.92 0.11 -1.00 -0.99 -0.96 -0.90 1.00

E2P 0 1 -0.58 0.55 -1.00 -0.98 -0.91 -0.45 1.00

FC2Y 0 1 -0.96 0.16 -1.00 -1.00 -1.00 -0.99 1.00

FreeCF 0 1 0.04 0.75 -1.00 -0.74 -0.10 0.90 1.00

GP2A 0 1 -0.96 0.13 -1.00 -1.00 -1.00 -0.98 1.00

INV 0 1 -0.64 0.35 -1.00 -0.92 -0.74 -0.47 1.00

LME 0 1 -0.99 0.07 -1.00 -1.00 -1.00 -1.00 1.00

LTurnover 0 1 -0.99 0.06 -1.00 -1.00 -1.00 -1.00 1.00

OA 0 1 0.02 0.43 -1.00 -0.29 0.00 0.34 1.00

OL 0 1 -0.99 0.07 -1.00 -1.00 -1.00 -1.00 1.00

P2P52WH 0 1 -0.98 0.09 -1.00 -1.00 -1.00 -0.98 1.00

PCM 0 1 -0.96 0.13 -1.00 -1.00 -0.99 -0.98 1.00

Prof 0 1 0.01 0.52 -1.00 -0.49 0.07 0.47 1.00

PM 0 1 0.83 0.29 -1.00 0.80 0.94 0.98 1.00

RNA 0 1 -0.43 0.45 -1.00 -0.89 -0.51 -0.12 1.00

ROA 0 1 0.62 0.41 -1.00 0.46 0.75 0.93 1.00

ROE 0 1 0.02 0.66 -1.00 -0.62 0.02 0.50 1.00

S2P 0 1 -0.99 0.07 -1.00 -1.00 -1.00 -1.00 1.00

SG2A 0 1 -0.97 0.09 -1.00 -1.00 -0.99 -0.96 1.00

IIliqu 0 1 -0.99 0.08 -1.00 -1.00 -1.00 -1.00 1.00

beta 0 1 0.04 0.26 -1.00 -0.13 0.03 0.20 1.00

SUV 0 1 -0.93 0.08 -1.00 -0.97 -0.95 -0.92 1.00

lty 0 1 0.10 0.57 -1.00 -0.44 0.25 0.60 1.00

rf 0 1 -0.21 0.68 -1.00 -0.83 -0.63 0.45 1.00

svar 0 1 -0.86 0.25 -1.00 -0.98 -0.94 -0.84 1.00

e.p 0 1 -0.26 0.38 -1.00 -0.52 -0.26 -0.05 1.00

d.y 0 1 -0.25 0.35 -1.00 -0.46 -0.28 -0.10 1.00

b.m 0 1 -0.29 0.53 -1.00 -0.80 -0.37 0.12 1.00

i.k 0 1 -0.91 0.12 -1.00 -0.93 -0.91 -0.90 1.00

infl 0 1 -0.57 0.30 -1.00 -0.74 -0.62 -0.49 1.00

cp 0 1 -0.13 0.19 -1.00 -0.14 -0.12 -0.11 1.00

tms 0 1 -0.10 0.45 -1.00 -0.45 -0.10 0.12 1.00

oas 0 1 -0.73 0.30 -1.00 -0.89 -0.79 -0.65 1.00

Table B.2: Summary Statistics for Firm and Macroeconomics predictors after standardization
between [-1,1] and imputation. Completeness, mean, standard deviation, and each quantile are
shown.
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6.7 Appendix B.3

year variable n p0 p25 p50 p75 p100

2000 logret 19109 -2.313 -0.068 0 0.057 1.9

2001 logret 19657 -3.081 -0.068 0 0.057 1.951

2002 logret 19722 -2.386 -0.072 0 0.055 3.128

2003 logret 18753 -4.318 -0.073 0 0.055 3.218

2004 logret 19006 -2.722 -0.078 0 0.054 2.311

2005 logret 21306 -3.384 -0.076 0 0.057 4.633

2006 logret 22755 -4.091 -0.076 0 0.055 2.565

2007 logret 22616 -3.628 -0.076 0 0.055 4.614

2008 logret 21490 -4.609 -0.072 0 0.054 2.211

2009 logret 19061 -2.464 -0.073 0 0.054 2.664

2010 logret 17527 -2.069 -0.07 0 0.058 3.08

2011 logret 16766 -2.53 -0.071 0 0.056 2.662

2012 logret 16212 -3.377 -0.071 0 0.059 2.666

2013 logret 15864 -4.126 -0.073 0 0.057 3.08

2014 logret 16229 -3.24 -0.073 0 0.055 1.755

2015 logret 16280 -4.556 -0.072 0 0.056 2.755

2016 logret 15804 -3.296 -0.074 0 0.056 2.4

2017 logret 15520 -2.61 -0.071 0 0.057 1.609

2018 logret 15487 -5.235 -0.071 0 0.059 3.842

2019 logret 15013 -2.574 -0.071 0 0.058 2.014

2020 logret 14205 -4.818 -0.071 0 0.058 2.337

2021 logret 14263 -2.111 -0.072 0 0.057 1.824

2022 logret 14324 -2.306 -0.069 0 0.056 5.394

Table B.3: Summary Statistics of excess return expressed as logret
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6.8 Appendix C.1

Proxies complete rate mean std p0 p25 p50 p75 p100

AVDC 1 -0.04 0.36 -1.00 -0.29 -0.06 0.19 1.00

PCO 1 -0.46 0.22 -1.00 -0.60 -0.51 -0.32 1.00

SMART.index 1 -0.02 0.36 -1.00 -0.26 0.00 0.18 1.00

PCV 1 -0.72 0.21 -1.00 -0.84 -0.77 -0.65 1.00

RSI.30D 1 0.10 0.41 -1.00 -0.15 0.11 0.41 1.00

IVI.30D 1 -0.55 0.32 -1.00 -0.78 -0.64 -0.40 1.00

CLIFS 1 -0.59 0.38 -1.00 -0.85 -0.71 -0.45 1.00

CISS 1 -0.68 0.42 -1.00 -0.96 -0.87 -0.58 1.00

GSV 1 -0.77 0.32 -1.00 -0.95 -0.93 -0.70 1.00

aeret 1 0.10 0.12 -1.00 0.09 0.10 0.11 1.00

aavol 1 -0.24 0.26 -1.00 -0.40 -0.26 -0.10 1.00

ualhits 1 -0.76 0.22 -1.00 -1.00 -0.74 -0.66 1.00

Table C.1: Descriptive Statistics for SENT and ATTENT proxies before PCA

Predictors complete rate mean std p0 p25 p50 p75 p100

SENT 1 0.00 1.79 -6.64 -0.79 0.37 1.34 2.86

ATTENT 1 0.00 1.18 -1.94 -0.73 -0.17 0.45 8.75

Table C.1.2: Descriptive Statistics for SENT and ATTENT indices after PCA

Predictors complete rate mean std p0 p25 p50 p75

SENT 1 0.39 0.39 -1.00 0.20 0.48 0.68

ATTENT 1 -0.65 0.21 -1.00 -0.77 -0.68 -0.56

Table C.1.3: Descriptive Statistics for standardized SENT and ATTENT indices within[-1,1]
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6.9 Appendix C.2

Figure C.2.1: Investor sentiment time series plot

Figure C.2.2: Investor attention time series plot
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6.10 Appendix C.3

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Standard deviation 1.79 1.16 0.94 0.93 0.81 0.78 0.50 0.41

Proportion of Variance 0.40 0.17 0.11 0.11 0.082 0.08 0.03 0.02

Cumulative Proportion 0.40 0.57 0.68 0.79 0.87 0.95 0.98 1.00

Table C.3.1: Importance of components PCA for SENT

AVDC PCO PCV CLIFS CISS RSI.30D IVI.30D SMART.INDEX

0.24 0.17 0.09 -0.46 -0.47 0.40 -0.50 0.27

Table C.3.2: The element loadings for the first principal component (PC1) to construct SENT
composite index

6.11 Appendix C.4

PC1 PC2 PC3 PC4

Standard deviation 1.18 1.02 0.98 0.77

Proportion of Variance 0.35 0.26 0.24 0.15

Cumulative Proportion 0.35 0.61 0.85 1.00

Table C.4.1: Importance of components PCA for ATTENT

GSV aeret aavol ualhits

0.48 -0.03 0.52 0.71

Table C.4.2: The element loadings for the first principal component (PC1) to construct AT-
TENT composite index.
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6.12 Appendix D.1

Figure D.1: Firm and macroeconomics Correlation Heatmap

Figure D.1: Investor Sentiment and Investor Attention Correlation Heatmap
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6.13 Appendix E.1

Hyperparameter Specification Definition

OLS-Huber Loss - - -

GLM α {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} alpha controls the distribution between
the 1 (LASSO) and 2 (ridge regression)
penalties.

DRF n trees {50, 100, 250, 500, 750, 1000} Number of trees

max depth {5, 10, 15, 20, 25, 30} Maximum tree depth

min rows {1, 5, 10, 20, 50} Minimum number of observations for a leaf

GBM learn rate {0.01, 0.1, 0.01} Learning rate

max depth {2, 10, 1} Maximum tree depth

sample rate {0.1,0.5 , 1.0} Row sampling rate

col sample rate {0.1, 1.0, 0.1} Column sampling rate

ntrees 50 (default) Number of trees to build

DNN activation {Rectifier”,”Tanh”,”Maxout”,
”RectifierWithDropout”,
”TanhWithDropout”,
”MaxoutWithDropout}

Activation function

hidden {(32,16,8),(32,16),(32)} Hidden layer sizes with number of neurons
within each layer

input dropout ratio {0, 0.05, 0.1} Input layer dropout ratio

L1 {0, 1e-5, 1e-4} L1 regularization

L2 {0, 1e-5, 1e-4} L2 regularization

Table E.1: Prediction Models’ Hyperparameters
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