
ERASMUS UNIVERSITY ROTTERDAM
Erasmus School of Economics
Master Thesis Data Science and Marketing Analytics

Dynamic Graph Networks for Sequential Recommender System

with Personalised Subgraph Explanations: a Subgraph

Isomorphism Counting Approach

Name student: Baichen Yan

Student ID number: 573475

Supervisor: Donkers, ACD

Second assessor: Wan, P

Date final version: 2023-10-02

The views stated in this thesis are those of the author and not necessarily those of the supervisor,
second assessor, Erasmus School of Economics or Erasmus University Rotterdam.

Content
1. Introduction 2

1.1 Real-world Explanations for GNN in Recommender Systems 3
1.2 Dynamic GNN for Sequential Recommendations 3
1.3 Structure Dependency and Expressivity 4
1.4 Our Contributions 4

2. Related Work 5
2.1 Dynamic Graph Neural Network 6
2.2 Explainable Graph Neural Network 7
2.3 GNN-based Recommender System 8
2.4 Subgraph Isomorphism Counting 9

3. Preliminaries 9
4. Methodology 11

4.1 Graph Generation 13
4.1.1 Dynamic Graph Construction 13
4.1.2 Subgraph Sampling 14

4.2 Isomorphism Counting 15
4.2.1 Automorphism Orbit Counting 16
4.2.2 Subgraph Isomorphism Counting 18

4.3 Subgraph DGSR Mechanism 19
4.3.1 Information Encoding 20
4.3.2 Node Updating 21
4.3.3 Generate the Recommendations 22
4.3.4 Importance Scores 23

5. Experiments 23
5.1 Dataset 24
5.2 Model Settings 26

5.2.1 Default Parameter Set-up 26
5.2.2 Evaluation Methods 27
5.2.3 Environment & Parameter Setup 28
5.2.4 Subgraph List 28

RQ 1 Performance Comparison 29
RQ 2 Effect of Hyperparameters 33
RQ 3 Selection of Subgraphs 36

RQ 3.1 the number of subgraphs 36
RQ 3.2 the subgraph size 40
RQ 3.3 the ratio of users/items 42

6. Case Study 45
7. Discussion 48
Reference 50
Appendix 1: Importance Scores of RQ1 55
Appendix 2: the Script of Subgraph isomorphism 56

1

1. Introduction
As e-commerce platforms and online retailing services grow rapidly these years,

recommender systems improve the relevance and quality of recommendations, expert at

finding relevant and personalised recommendations for users by considering users'

preferences, past behaviour, and demographic information. Various forms of recommender

systems based on e-commerce platforms such as product suggestions websites Amazon and

Taobao, or media services like Tiktok and Netflix. Undoubtedly, recommender systems have

become indispensable tools to meet different business demands to boost sales (Covington, P.

et al., 2016; Li, G. et al., 2020; Xie, X. et al., 2021; Ying, R. et al., 2018; Zhang, S. et al.,

2018). Subsequently, a myriad of techniques has been developed to capture the features of

consumers and products and to improve the recommender system. As a prominent,

progressive, and powerful technology, the artificial neural networks are highly applied in the

development of recommender systems (e.g. Covington, P., et al. 2016; Koren, Y., 2008).

Inspired by the powerful ability of Graph Neural Networks (GNN) learning on graph

structure data, numerous research of GNN Recommender systems emerged (e.g. Chang, J., et

al., 2021; Qiu, R. et al., 2019; Li, Z. et al., 2020). By leveraging the bipartite graph structure

of user-item interactions, GNNs have been demonstrated to be powerful in representation

learning and can be inherited by the applications to recommender systems (Wu, S. et al.,

2022). The advantages include unifying structure data, capturing deep and complex

relationships among multi-hop entities, and modelling high-order connectivity (He, X. et al.,

2020; Ying, R. et al., 2018). In general, GNN are powerful models working on

recommendation systems with impressive performance with a history of several years (Wu,

S. et al., 2022).

With the progression of the GNN-based recommender system models, we observe three key

problems remain in this field. In response, our research endeavours to make meaningful

contributions towards advancing the understanding and resolution of these issues. Moreover,

we observe the emergence of three distinct research streams, each dedicated to addressing

these problems and presenting potential solutions. These research streams offer valuable

insights to our research contribute to the ongoing evolution of knowledge in these problems:

2

1.1 Real-world Explanations for GNN in Recommender Systems

In contemporary explainable Graph Neural Network (GNN) models, according to Yuan’s

taxonomy (2022), the prevalent approaches focus on explaining instances or models,

including highlighting influential features and generating importance scores, but often lack

the proactive capability to select what to explain. These methods typically rely on

pre-existing graph structures and we cannot select the structures we want to focus on.

Besides, the importance scores or highlighted structures resulting from these approaches may

lack meaningful interpretations and practical relevance in real-world scenarios, especially in

e-commerce. The results may also provide implausible and unactionable advice for retailers,

consequently reducing the practical usability of the model. For instance, perturbation-based

models learn an algorithm to generate masks for processing input graphs and obtaining

feedback from objective functions, but these masks heavily depend on the pre-existing

subgraphs present in the data, which are hard to interpret to a retailing context.

To this end, our design is rooted in a unique approach: we track specific graph structures that

emerge from actual user-item interaction cases. Our model traces these particular graph

structures and searches within the data for instances with analogous patterns. By

incorporating them into the model's input, we achieve a dual benefit. Not only does this

elevate the model's performance significantly, but it also generates importance scores,

enhancing its interpretability. This methodology revolves around transforming real purchase

scenarios into graphical representations, enabling a more comprehensive capture of user

behaviours and item relationships. This, in turn, optimises the recommendation process.

Through this strategy, we not only enhance the quality of recommendations but also provide

interpretability to each recommendation, allowing users to better understand the basis and

rationale behind the suggestions.

1.2 Dynamic GNN for Sequential Recommendations

The second problem acknowledged a crucial constraint in the conventional GNN

recommender system model, which predominantly captures static user-item interactions

while overlooking the valuable insights offered by the history-rich sequential information of

users (Zhang, M. et al., 2020; 2022). To overcome this limitation, various models were

devised to incorporate historical data for sequential recommendations, including the

Temporal Dependent GNN (Qu, L. et al., 2020) and the Graph Convolution embedded LSTM

3

(Chen, J. et al., 2022). Among these advancements, the Dynamic Graph Neural Network for

Sequential Recommendations (DGSR) has gained considerable attention due to its specialised

focus on sequential recommendations. Notably, DGSR effectively considers dynamic

collaborative signals and high-order histories derived from user-item interactions (Zhang, M.

et al., 2022). This emphasis on dynamic information has contributed significantly to its

prominence in the field. DGSR places a strong emphasis on effectively processing dynamic

collaborative signals of user sequences in the context of sequential recommendations,

enhancing the accuracy and relevance of personalised suggestions. Throughout this research

endeavour, DGSR takes priority as the primary model we follow and extensively investigate.

1.3 Structure Dependency and Expressivity

The last problem concentrates on the structure dependency and model expressivity. Some

researchers notice that GNN models are unable to effectively capture long-range topological

information from the underlying graph structure (Liu, J. et al., 2021). Even the dynamic GNN

models encounter challenges when it comes to representing graph or subgraph structure

patterns, such as denoising by neighbour sampling (Chu Y., et al., 2021). These GNN models

also suffer from limited abilities (the Weifeiler Leman test) to adequately exploit graph

substructure (Xu, K. et al., 2018; Morris, C. et al., 2019). A recent solution to this issue lies in

Subgraph Isomorphism Counting (Bouritsas, G. et al., 2022). Bouritsas introduced an

innovative message-passing scheme, referred to as Graph Substructure Network (GSN),

which capitalises on the isomorphism counting metric. According to Bouritsas, GSN

demonstrates strictly enhanced expressivity when compared to the conventional

message-passing techniques employed in GNN models.

1.4 Our Contributions

Given the aforementioned challenges, we introduce a novel model called "Subgraph DGSR."

Our approach is founded on the concept that purchasing behaviours tend to conform to

patterns that are inherently shaped by user experiences and product-related factors. These

patterns exert a natural influence on consumer decision-making. To illustrate, let's consider a

straightforward pattern found in the purchase of a table and chairs. This purchase reflects a

fundamental graph structure: item1-user-item2, signifying that users who buy item1 are likely

to follow up with the purchase of item2. This particular scenario or pattern can occur

numerous times across the entire dataset. Consequently, we aim to direct the model's attention

4

towards specific scenarios that frequently manifest in the data. This approach not only assists

the model in extracting patterns more effectively from the data but also enables it to gauge

the significance of these scenarios within the dataset.

Here are two key innovations in our model:

1. Our model accepts a flexible list of subgraphs input that enables researchers to tailor the

subgraphs the model should focus on. These subgraphs can originate from real-world

scenarios, offering deeper insights and handling complex patterns. For instance, consider a

household scenario where the mother purchases a pet cage, the children buy pet toys, and the

father buys pet food. These intricate cases, involving multiple users and items, can be

challenging to incorporate into a traditional model. However, our model can accommodate

such scenarios by leveraging isomorphism counting metrics to address this complexity;

2. Our model integrates knowledge from graph theory and isomorphism counting so that we

don’t need to exhaustively process every case in the form of one subgraph. Upon inputting a

purchase case, our proposed model identifies other sequences of purchases with similar

structure, taking into consideration the overall sales environment and measuring the

contribution of these similar structures to the prediction.

In summary, our work makes the following contributions:

1. We introduce a novel structure-enhanced model “Subgraph DGSR”', which requires a

list of subgraphs as hyperparameters, representing specific patterns for the model to

keep tracking, in order to enhance model performance and generate importance

scores;

2. We demonstrate the performance of our proposed model through 2 evaluation

methods on 3 real-world datasets in Amazon Review Data (Ni, J. et al., 2019);

3. We illustrate our explaining framework working with our model by tracing subgraph

structures from real-world user-item cases and generating importance scores of them.

2. Related Work

In this section, we will provide a concise overview of prior research in four topics related our

study: Dynamic Graph Neural Network (DGNN), Explainable Graph Neural Network

(XGNN), Graph-based Recommender Systems, and Subgraph Isomorphism Counting.

5

2.1 Dynamic Graph Neural Network

Graph data frequently intersects temporal aspects across multiple applications, prompting the

creation of a multitude of models designed to handle dynamic graphs in various domains,

such as knowledge networks, social networks, and recommender systems. These models aim

to capitalise on both the structural and temporal characteristics of the data simultaneously

(Skarding, J. et al., 2021). Nevertheless, it's essential to note that not every model tailored for

processing dynamic graphs can be classified as a DGNN. According to the definition

proposed by Skarding (2021), a DGNN is specifically a deep representation learning model

that integrates neighbouring nodes as an integral part of its neural architecture. This definition

distinguishes models that depict dynamic graphs using deep techniques but do not inherently

involve the aggregation of neighbouring nodes within their architecture.

For example, DANE utilises matrix perturbation theory to dynamically extract fluctuations in

adjacency and attribute matrices (Li, J. et al., 2017). DynamicTriad introduces the concept of

triadic closure to retain both structural details and evolving patterns within dynamic networks

(Zhou, L. et al., 2018). DynGEM utilises an expanding deep AutoEncoder that adapts in

real-time to capture intricate nonlinear relationships, including both first-order and

second-order connections among graph nodes (Goyal, P. et al., 2018). HTNE incorporates the

Hawkes process into network embeddings to grasp how previous neighbours influence

current ones within temporal embedding (Zuo, Y. et al., 2018). Dyrep leverages a deep

temporal point process model to represent temporally evolving structural information

(Trivedi, R. et al., 2019). JODIE incorporates two types of recurrent neural networks (RNNs)

to model the evolution of distinct node representations (Kumar, S. et al., 2019). MTNE not

only integrates the Hawkes process to stimulate triadic evolution but also utilises attention

mechanisms to discern the significance of various motifs (Huang, H. et al., 2020).

To enhance the models' capacity for capturing evolving graph structures, Xu, D. et al. (2020)

have introduced a temporal graph attention mechanism grounded in Bochner's theorem.

Additionally, certain research efforts have partitioned dynamic graphs into a series of separate

graph snapshots. These advancements collectively underscore the persistent pursuit of

comprehensive dynamic graph modelling, particularly when considering temporal aspects

(Sankar, A. et al., 2020). Furthermore, in a sequential generation approach, DGRN

6

accentuates the dynamic collaborative signals during the encoding of user sequences (Zhang,

M. et al., 2022).

2.2 Explainable Graph Neural Network

In recent years, the realm of explainable graph neural networks (XGNN) has gained

prominence as a pivotal area of research, with the objective of providing users with clear and

comprehensible insights into GNN models. Depending on various aspects of GNN encoding

that are emphasised, XGNN can be categorised into three main types: XGNN through

subgraphs, through graph generation, and through intermediate-level interventions (Li, Y. et

al., 2022). Among these, the subgraph approach represents a family of techniques that

leverage subgraphs to enhance the interpretability of GNN models. This approach frequently

centres on local features, with a focus on identifying and presenting the most significant

subgraph components.

As a pioneer in explaining GNN, GNNExplainer identifies a compact subgraph structure and

a group of influential nodes in the prediction by highlighting relevant features and edges

relevant to the predictions (Ying, Z. et al., 2019). Zhang et al. (2020) introduced RelEx, a

model-agnostic explainer for relational models, by building a local differentiable

approximation of the black-box model and generating an interpretable mask using subgraphs.

This approach provides flexible explanations for users, with a locally faithful and

differentiable approximator for GNN models regarding the input adjacency matrix.

Lin et al. (2020) introduced GISST, a model-agnostic framework for interpreting graph

structures and node features by inducing sparsity, discarding unimportant elements. It

identifies significant subgraphs and features through probability analysis of the adjacency

matrix and node features matrix. Vu et al. (2020) proposed PGM-Explainer, which identifies

crucial graph components to create Bayesian explanations, depicting feature dependencies

and providing deep insights into GNN predictions. Yuan et al. (2021) developed SubgraphX,

which utilises Shapley values to measure subgraph importance in GNNs, focusing on

interactions within the information aggregation process. They employ the Monte Carlo tree

search algorithm for efficient subgraph exploration, explicitly explaining GNNs through

subgraph identification.

7

Despite the diverse approaches of the above-mentioned models for explaining subgraphs or

features, none of them allows for the proactive selection of a specific subgraph to explain. In

other words, they lack the capability to choose a particular subgraph for explanation.

2.3 GNN-based Recommender System

In the rapidly evolving landscape of recommender systems, Graph Neural Networks (GNNs)

have emerged as powerful tools for capturing complex relationships in the scenarios of social

network (Wu, L. et al., 2019), sequential (Chang, J. et al., 2021), session-based (Chen, T., &

Wong, R. C. W., 2020), cross-domain (Guo, L. et al., 2021), multi-behavior (Jin, B. et al.,

2020), bundle recommendation (Chang, J. et al., 2020).

Given the context of sequential recommendations (as we illuminate the importance of

DGNN), the sequential behaviours are naturally expressed in the order of time. One main

issue here could be the shorter and uncertain number of user/item sequences which reduce the

capacity of GNN it utilises (Wu, S. et al., 2022). One mainstream way to solve this is to

import more information into the original graph. HetGNN employs all behaviour sequences

and establishes edges between two successive items within the same sequence, with each

edge type representing a specific behaviour type (Wang, W. et al., 2020). A-PGNN focuses

on scenarios where user information is available, integrating a user's historical sequences

with the current sequence to enhance item-item connections (Zhang, M. et al., 2020).

GCE-GNN (Wang, Z. et al., 2020) and DAT-MDI (Chen, C. et al., 2021) utilise item

transitions from all sessions to capture transition patterns within the current sequence,

leveraging both local and global contexts.

In the realm of sequential recommendations employing Graph Neural Networks (GNN), five

prominent GNN frameworks are frequently employed: GCN approximates the first-order

eigendecomposition of the graph Laplacian to iteratively gather information from

neighbouring nodes (Kipf, T. N., & Welling, M., 2016). GraphSAGE samples a fixed-sized

neighbourhood for each node, introduces mean/sum/max-pooling aggregators, and employs

concatenation for updates (Hamilton, W. et al., 2017). GAT distinguishes the influence of

neighbours, avoiding uniform or pre-defined influence assumptions, by using an attention

mechanism to weigh the contributions of neighbouring nodes when updating a node's vector

(Velickovic, P. et al., 2017). GGNN employs a gated recurrent unit (GRU) in the update step

8

(Li, Y. et al., 2015), and HGNN represents a typical hypergraph neural network, designed to

capture high-order data correlations within a hypergraph structure (Feng, Y. et al., 2019).

2.4 Subgraph Isomorphism Counting

Isomorphism metrics have been utilised in graph-based models for a couple of years. For

instance, they've been used to identify functional group information in chemical molecules

for determining compound properties (Gilmer, J. et al., 2017), and in social networks, certain

substructures have been considered crucial for recommender systems (Ying, R. et al., 2018).

While numerous graph-based models have emerged, many of them rely on multiple

message-passing steps for nodes to comprehend the graph's global structure. However, these

message-passing GNNs are limited to at most as powerful as the Weisfeiler Leman test (WL

test, Weisfeiler, B., & Leman, A., 1968). Consequently, they are constrained in fully

exploiting the graph structure (Morris et al., 2019; Xu et al., 2019).

Within the constraints, Bouritsas et al. (2022) introduced the Graph Substructure Network

(GSN), a novel message-passing scheme that incorporates structural information into

aggregation functions. Their theoretical analysis confirmed that GSN surpasses traditional

GNN in expressiveness for most subgraph patterns while preserving localised message

passing, setting it apart from higher-order methods like the Weisfeiler-Leman hierarchy (e.g.,

Morris, C. et al., 2019; Maron, H. et al., 2018, 2019 May, 2019).

GSN operates based on subgraph encoding and necessitates the selection of specific

subgraphs for input. Notably, if these subgraph counts can uniquely identify vertices, GSN's

universality property remains intact. Moreover, the authors conjecture that the number of

subgraphs required for uniqueness can be significantly reduced in real-world scenarios.

3. Preliminaries
In this section, we define the symbols and outline the issues related to sequential graphs and

isomorphism, paving the way for subsequent in-depth analysis and discussion.

Sequential Graphs

In the context of bipartite graphs for sequential recommendations, the sets and denote

users and items, respectively. For every user , their action sequence is represented as

9

https://www.codecogs.com/eqnedit.php?latex=U#0
https://www.codecogs.com/eqnedit.php?latex=I#0
https://www.codecogs.com/eqnedit.php?latex=u%20%5Cin%20U#0

, where . The corresponding timestamp sequence for is

denoted as . The entire set of is indicated as . The objective of

sequential recommendation is to predict the subsequent item in using the sequence

information between time and . Generally, the sequential recommendation task imposes

a maximum length on . if exceeds , the prediction is made based on the most recent

items . Each user and item is embedded into a low dimension

vector , where and , and represents the dimension of the

embedding space. The user embedding matrix is denoted as , and the item

embedding matrix is represented as .

Isomorphism and Orbit

Consider an undirected graph , denoted as , which is

composed of a set of vertices and a set of edges . This graph is characterised by

and edges. A subgraph of , symbolised as , is any graph where

and . An "induced" subgraph is defined when encompasses all

the edges of that have endpoints in , i.e., .

To prevent confusion with representing users, we employ or to symbolise a vertex in a

graph. Two graphs, and , are isomorphic (expressed as), if there is a bijective

mapping that preserves adjacency, . In other words, iff.

. In the context of a small graph , the subgraph isomorphism problem

involves identifying a subgraph of such that . An automorphism of is an

isomorphism that functions to itself. The set of all automorphisms consists the

automorphism group of the graph, denoted as , which contains all possible graph

symmetries.

By , the vertices are separated into subsets of called orbits. Formally, the orbit

of a vertex is the set of vertices to which it can be mapped via an automorphism:

. and the set of all orbits denoted as

, where is the cardinality of the quotient. Similarly, structural roles

of edges are defined through edge automorphisms, which are bijective mappings from the set

of edges to themselves that maintain edge adjacency. Specifically, each vertex automorphism

10

https://www.codecogs.com/eqnedit.php?latex=S%5Eu%20%3D%20(i_1%2C%20i_2%2C%5Ccdots%2C%20i_k)#0
https://www.codecogs.com/eqnedit.php?latex=i%20%5Cin%20I#0
https://www.codecogs.com/eqnedit.php?latex=S%5Eu#0
https://www.codecogs.com/eqnedit.php?latex=T%5Eu%20%3D%20(t_1%2C%20t_2%2C%20%5Ccdots%2C%20t_k)#0
https://www.codecogs.com/eqnedit.php?latex=S%5Eu#0
https://www.codecogs.com/eqnedit.php?latex=%20S%20#0
https://www.codecogs.com/eqnedit.php?latex=%20S%5Eu%20#0
https://www.codecogs.com/eqnedit.php?latex=t_1#0
https://www.codecogs.com/eqnedit.php?latex=%20t_k#0
https://www.codecogs.com/eqnedit.php?latex=%20n%20#0
https://www.codecogs.com/eqnedit.php?latex=S%5Eu#0
https://www.codecogs.com/eqnedit.php?latex=k#0
https://www.codecogs.com/eqnedit.php?latex=%20n%20#0
https://www.codecogs.com/eqnedit.php?latex=%20n%20#0
https://www.codecogs.com/eqnedit.php?latex=(i_%7Bk-n%7D%2C%20i_%7Bk-n%2B1%7D%2C%20%5Cldots%2C%20i_k)#0
https://www.codecogs.com/eqnedit.php?latex=%20e_u%2C%20e_i%20%5Cin%20%5Cmathbb%7BR%7D%5Ed%20#0
https://www.codecogs.com/eqnedit.php?latex=%20u%20%5Cin%20U#0
https://www.codecogs.com/eqnedit.php?latex=%20i%20%5Cin%20I%20#0
https://www.codecogs.com/eqnedit.php?latex=%20d%20#0
https://www.codecogs.com/eqnedit.php?latex=%20E_U%20%5Cin%20%5Cmathbb%7BR%7D%5E%7B%7CU%7C%5Ctimes%20d%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20E_I%20%5Cin%20%5Cmathbb%7BR%7D%5E%7B%7CI%7C%5Ctimes%20d%7D#0
https://www.codecogs.com/eqnedit.php?latex=G%20%3D%20%5Cleft(V_G%2C%20E_G%20%5Cright)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20G%20%3D%20%5Cleft(V_G%2C%20E_G%20%5Cright)%20%20#0
https://www.codecogs.com/eqnedit.php?latex=V_G#0
https://www.codecogs.com/eqnedit.php?latex=E_G#0
https://www.codecogs.com/eqnedit.php?latex=n#0
https://www.codecogs.com/eqnedit.php?latex=%20m%20#0
https://www.codecogs.com/eqnedit.php?latex=G#0
https://www.codecogs.com/eqnedit.php?latex=G_S%20%3D%20%5Cleft(V_%7BG_S%7D%2C%20E_%7BG_S%7D%5Cright)%20%20#0
https://www.codecogs.com/eqnedit.php?latex=%20V_%7BG_S%7D%20%5Csubset%20V_G%20#0
https://www.codecogs.com/eqnedit.php?latex=%20E_%7BG_S%7D%20%5Csubset%20E_G%20#0
https://www.codecogs.com/eqnedit.php?latex=%20E_%7BG_S%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=G#0
https://www.codecogs.com/eqnedit.php?latex=%20%20V_%7BG_S%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=E_%7BG_S%7D%20%3D%20E_G%20%5Ccap%20%5Cleft(%20V_%7BG_S%7D%20%5Ctimes%20V_%7BG_S%7D%20%5Cright)#0
https://www.codecogs.com/eqnedit.php?latex=u#0
https://www.codecogs.com/eqnedit.php?latex=a#0
https://www.codecogs.com/eqnedit.php?latex=%20b#0
https://www.codecogs.com/eqnedit.php?latex=G#0
https://www.codecogs.com/eqnedit.php?latex=H#0
https://www.codecogs.com/eqnedit.php?latex=%20H%20%5Csimeq%20G%20#0
https://www.codecogs.com/eqnedit.php?latex=%20f%3A%20V_G%20%5Crightarrow%20V_H%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cleft(b%2C%20a%5Cright)%20%5Cin%20E_G%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cleft(f(b)%2C%20f(a)%20%5Cright)%20%5Cin%20E_H%20#0
https://www.codecogs.com/eqnedit.php?latex=H#0
https://www.codecogs.com/eqnedit.php?latex=G_S#0
https://www.codecogs.com/eqnedit.php?latex=G#0
https://www.codecogs.com/eqnedit.php?latex=%20G_S%20%5Csimeq%20H%20#0
https://www.codecogs.com/eqnedit.php?latex=H#0
https://www.codecogs.com/eqnedit.php?latex=H#0
https://www.codecogs.com/eqnedit.php?latex=%20Aut(H)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20Aut(H)%20#0
https://www.codecogs.com/eqnedit.php?latex=V_H#0
https://www.codecogs.com/eqnedit.php?latex=%20v%20%5Cin%20V_H#0
https://www.codecogs.com/eqnedit.php?latex=Orb(b)%20%3D%20%5C%7B%20a%20%5Cin%20V_H%20%5Cmid%20%5Cexists%20g%5Cin%20Aut(H)%20s.t.%20g(a)%20%3D%20b%20%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20%5C%7B%20O%5EV_%7BH%2C1%7D%2C%20%5Cldots%2C%20O%5EV_%7BH%2Cd_H%7D%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=d_H#0

induces an edge automorphism by mapping each edge to . Edge

automorphism group are formed in the same way, from which we derive the partition of the

edge set into edge orbits .

4. Methodology
In this section, we illustrate the model construction and delve into the methodology employed

in developing our innovative recommendation system. The entire framework of our model is

illustrated in Fig. 1. In the subsequent sections, we will explain the fundamental components

of our model, accompanied by a detailed description of the approach employed to leverage

subgraphs for personalised recommendations.

In Section 4.1, we detail the process of generating data graphs from user-item interaction data

stored in the retailer's database. This process is thoroughly outlined in Algorithm 1 within this

section.

In Section 4.2, we delve into the algorithm handling of the list of subgraphs that we want our

model to be aware of. This algorithm enables our model to detect specified subgraph

structures we input, independent of specific users and items, and ensures our model not to

become overwhelmed by the multitude of users and items, maintaining focus only on the

essential structures we define, and extracting structural information from the data graphs.

This section involves two key components: first, the automorphism orbits algorithm, which

aids in organising subgraphs into groups of "similar" nodes for subsequent isomorphism

counting. Second, the isomorphism counting itself, where we employ the orbits to tally the

occurrences of isomorphic structures within the data graph, utilising the edges as anchor

points. These two algorithms collectively furnish us with structural information that

aligns with the list of subgraphs to be incorporated into the model.

In Section 4.3, titled "Subgraph DGSR Mechanism," we outline how the model manages

graph embeddings and processes the extracted information to make predictions. As depicted

in Fig. 1, our model comprises DGSR layers, interconnected via our subgraph message

passing scheme. Each DGSR layer begins with long-term and short-term embedding

processes for both users and items, detailed in Section 4.3.1. Subsequently, a message passing

module, elaborated upon in Section 4.3.2, combines these embeddings with structural

information to carry out its function. In Section 4.3.3, we elucidate how, after processing

11

https://www.codecogs.com/eqnedit.php?latex=g#0
https://www.codecogs.com/eqnedit.php?latex=(a%2Cb)#0
https://www.codecogs.com/eqnedit.php?latex=%20%5C(g(a)%2C%20g(b)%5C)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5C%7B%20O%5EE_%7BH%2C1%7D%2C%20%5Cldots%2CO%5EE_%7BH%2Cd_H%7D%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctextbf%7Bx%7D%5EE%20#0
https://www.codecogs.com/eqnedit.php?latex=l#0

through these layers, user embeddings are employed to generate sequential predictions. In

Section 4.3.4, we provide insights into how we derive importance scores for the subgraphs

from a trained subgraph DGSR model.

Fig. 1: The overview of Subgraph DGSR framework, taking the prediction of with interaction sequence

as an example. Starting at the bottom left corner, we convert users’ interaction sequences into

dynamic graphs , and perform Algorithm 1 and get a m-order sample graph (Section 4.1). Before

imputed to the model, we perform Algorithm 3 (Section 4.2.2) to generate structural information from

with orbits of the subgraph list. The orbits are counted by Algorithm2 (Section 4.2.1) when the model is set up.

After this, the well-designed Subgraph DGSR model (Algorithm 4; Section 4.3) will propagate and aggregate

the information and finally output the prediction

Looking at the general structure, the Isomorphism Counting part and DGSR part collaborate

and focus on distinct aspects: the Isomorphism Counting algorithm embeds structural

information, abstracted from specific users and items, and forwards it to the DGSR layers;

while the embeddings of long-term and short-term user-item interactions are formulated in

DGSR to pinpoint characteristic user preferences or item attributes, and are then propagated

to the subsequent layer. Each time the structural information from Isomorphism Counting is

integrated with the embeddings from DGSR and updated to the next layer, the model's

structural memory is enhanced. A simplified depiction of the synergy between Isomorphism

Counting and DGSR is presented in Fig. 2. In general, Isomorphism Counting works on the

12

https://www.codecogs.com/eqnedit.php?latex=l#0
https://www.codecogs.com/eqnedit.php?latex=u_1#0
http://www.texrendr.com/?eqn=%5Ctextit%7B%5C(%20i_1%2C%20i_2%2C%20i_3%5C)%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=G_%7Bt_3%7D%20#0
http://www.texrendr.com/?eqn=%20%5Ctextit%7BG%5Em_%7Bu_1%7D%5C(t_3%5C)%7D#0
http://www.texrendr.com/?eqn=%20%5Ctextit%7BG%5Em_%7Bu_1%7D%5C(t_3%5C)%7D#0

structures of user-item interactions regardless of specific users or items, and then passed on to

DGSR, which focuses on embedding specific user and item information.

Fig. 2: The role of Isomorphism Counting and DGSR in our model. Isomorphism Counting extracts the

structure information and DGSR process embedding on users and items. Both of them collaborate to generate

predictions.

4.1 Graph Generation

In this section, we present the process of transforming user behaviour record data into graph

structures, which primarily involves two key steps: Dynamic Graph Construction and

Subgraph Sampling, as previously established in the DGSR model by Zhang (2022).

4.1.1 Dynamic Graph Construction

In this section, we outline the method to transform all user sequences into a dynamic graph.

When a user , interacts with an item , at a specific timestamp , we establish an edge ,

between u and i. This edge can be characterised by a quintuple (, , , ,), where

denotes the timestamp when the interaction took place; represents the order of interaction

between and , essentially signifying the item i's position among u's interactions;

denotes the order of user among all the user nodes that have interacted with item .

After that, we forms a dynamic graph denoted as ,

which records the interaction times between users and items and captures the order

information between them. Subsequently, we define our dynamic graph at a specific time, ,

as , which comprises all users' interaction sequences up to and including time t. For a

13

https://www.codecogs.com/eqnedit.php?latex=%20u%20#0
https://www.codecogs.com/eqnedit.php?latex=%20i%20#0
https://www.codecogs.com/eqnedit.php?latex=%20t%20#0
https://www.codecogs.com/eqnedit.php?latex=%20e%20#0
https://www.codecogs.com/eqnedit.php?latex=u%20#0
https://www.codecogs.com/eqnedit.php?latex=i%20#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=o%5Ei_u#0
https://www.codecogs.com/eqnedit.php?latex=o%5Eu_i#0
https://www.codecogs.com/eqnedit.php?latex=%20t#0
https://www.codecogs.com/eqnedit.php?latex=o%5Ei_u#0
https://www.codecogs.com/eqnedit.php?latex=u#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=o%5Eu_i#0
https://www.codecogs.com/eqnedit.php?latex=u#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=%20G%20%3D%20%5C%7B(u%2C%20i%2C%20t%2C%20o%5Ei_u%2C%20o%5Eu_i)%20%7C%20u%20%5Cin%20U%20%2C%20i%20%5Cin%20V%20%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=G%5Et%20%5Cin%20G#0

given user sequence, , with the corresponding timestamp sequence

, predicting the next item in sequence is equivalent to predicting

the item linked to the node in the dynamic graph at time tk, denoted as .

4.1.2 Subgraph Sampling

As the user sequence expands, the number of neighbour sequences grows exponentially,

which can be computationally costly and introduce substantial noise into our target sequence

. To manage computational complexity and reduce noise in user sequences, we propose an

efficient sampling strategy. We begin by selecting a user node as the anchor node and

extracting its most recent first-order neighbours from graph , representing the

historical items has interacted with. Then, for each item , we use it as an anchor

node to sample the set of users who have interacted with that item, denoted as . To

enhance sampling efficiency, we keep track of nodes used as anchor nodes to prevent

redundant sampling and limit the maximum number of samples to when sampling user

nodes. This process allows us to obtain the multi-hop neighbours of node , forming the user

u’s m-order subgraph of , where is a hyper-parameter controlling the

sub-graph's size. A pseudo algorithm is shown below:

Algorithm 1: Graph Sampling

Input: User sequence ;
Time sequence ;
Dynamic graph ;
Order of graph ;

Output: The m-order Graph .
// Initialization

,
// Node Sampling
for each :

if is an odd number:
for each :

if :
Break

14

https://www.codecogs.com/eqnedit.php?latex=S%5Eu%20%3D%20(i_1%2C%20i_2%2C%20%5Cldots%2C%20i_k)%20#0
https://www.codecogs.com/eqnedit.php?latex=T%5Eu%20%3D%20(t_1%2C%20t_2%2C%20%5Cdots%2C%20t_k)%20#0
https://www.codecogs.com/eqnedit.php?latex=S%5Eu#0
https://www.codecogs.com/eqnedit.php?latex=u#0
https://www.codecogs.com/eqnedit.php?latex=G%5E%7Bt_k%7D#0
https://www.codecogs.com/eqnedit.php?latex=S_u#0
https://www.codecogs.com/eqnedit.php?latex=S_u#0
https://www.codecogs.com/eqnedit.php?latex=u#0
https://www.codecogs.com/eqnedit.php?latex=n#0
https://www.codecogs.com/eqnedit.php?latex=G%5E%7Bt_k%7D#0
https://www.codecogs.com/eqnedit.php?latex=u#0
https://www.codecogs.com/eqnedit.php?latex=i%20%5Cin%20N_u#0
https://www.codecogs.com/eqnedit.php?latex=N_i#0
https://www.codecogs.com/eqnedit.php?latex=n#0
https://www.codecogs.com/eqnedit.php?latex=u#0
https://www.codecogs.com/eqnedit.php?latex=G%5Em_u(tk)#0
https://www.codecogs.com/eqnedit.php?latex=S%5Eu#0
https://www.codecogs.com/eqnedit.php?latex=m#0
https://www.codecogs.com/eqnedit.php?latex=S%5Eu%20%3D%20(i_1%2C%20i_2%2C%20%5Cdots%2C%20i_k)%20#0
https://www.codecogs.com/eqnedit.php?latex=T%5Eu%20%3D%20(t_1%2C%20t_2%2C%20%5Cdots%2C%20t_k)#0
https://www.codecogs.com/eqnedit.php?latex=G%5E%7Bt_k%7D#0
https://www.codecogs.com/eqnedit.php?latex=m#0
https://www.codecogs.com/eqnedit.php?latex=%20G%5Em_u(t_k)#0
https://www.codecogs.com/eqnedit.php?latex=U_m%2C%20U_%7Btemp%7D%20%5Cleftarrow%20%5C%7Bu%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=I_m%2C%20I_%7Btemp%7D%20%5Cleftarrow%20%20%5Cemptyset#0
https://www.codecogs.com/eqnedit.php?latex=k%20%5Cin%20%5C%5B1%2C%20%5Cldots%2C%20m%5C%5D#0
https://www.codecogs.com/eqnedit.php?latex=k#0
https://www.codecogs.com/eqnedit.php?latex=u%20%5Cin%20U_%7Btemp%7D#0
https://www.codecogs.com/eqnedit.php?latex=I_%7Btemp%7D%20%5Cleftarrow%20%20I_%7Btemp%7D%20%5Ccup%20N_u#0
https://www.codecogs.com/eqnedit.php?latex=I_%7Btemp%7D%20%5Cleftarrow%20I_%7Btemp%7D%5Cbackslash%20I_m%20#0
https://www.codecogs.com/eqnedit.php?latex=I_%7Btemp%7D%20%3D%20%5Cemptyset#0

else:
for :

if :
Break

if
Sample nodes from

//Graph Generation:
, where

4.2 Isomorphism Counting

We first illustrate how the model performs isomorphism counting in an intuitive way (see

Fig. 3). According to Bouritsas's message passing scheme (2022), isomorphism counting

involves node or edge counts, with edges capturing richer information by connecting two

nodes. In our context, an edge represents a user's behaviour, which is more contextually

meaningful in recommender systems compared to individual user or item nodes. Therefore,

we prioritise the isomorphism counting by edges in our methodology.

When we get a list of subgraphs, we need to categorise the edges of a subgraph into distinct

sets (the orbits) which act similarly within an orbit. This step is done by automorphism orbit

counting (section 4.2.1), where each node is matched to other isomorphic nodes within the

same graph (automorphism). As a result, we get subgraphs with orbit partitions as shown in

Fig. 3 with different colours (both subgraph 1 and 2 have only one edge orbit because they

are symmetry). Subsequently, we employ this partitioning of orbits to perform isomorphism

counting (section 4.2.2) within the data graph for each unique orbit. We take each edge in the

data graph in turns as the anchor edge (depicted as the red edge), to count the conditions that

the subgraph is contained in the data graph with the anchor node taking the position of the

edge of the orbit. It’s notable that, within an orbit distinct edges are treated as equivalent, so

in Fig. 3 the red edge can take the position of each of the blue edges (or yellow edges for

subgraph 2), because they are symmetry (i.e. in an orbit). Consequently, the counts of all

orbits related to the anchor node are appended to its features as structural information.

15

https://www.codecogs.com/eqnedit.php?latex=I_m%20%5Cleftarrow%20I_m%20%5Ccup%20I_%7Btemp%7D#0
https://www.codecogs.com/eqnedit.php?latex=i%20%5Cin%20I_%7Btemp%7D#0
https://www.codecogs.com/eqnedit.php?latex=U_%7Btemp%7D%20%5Cleftarrow%20U_%7Btemp%7D%20%5Ccup%20N_i#0
https://www.codecogs.com/eqnedit.php?latex=U_%7Btemp%7D%20%5Cleftarrow%20U_%7Btemp%7D%20%5Cbackslash%20U_m#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=U_%7Btemp%7D%20%3D%20%5Cemptyset%24%24#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%24%20%5C%7CU_%7Btemp%7D%5C%7C%20%3E%20n%20%24%24#0
https://www.codecogs.com/eqnedit.php?latex=%3A#0
https://www.codecogs.com/eqnedit.php?latex=n#0
https://www.codecogs.com/eqnedit.php?latex=U_%7Btemp%7D#0
https://www.codecogs.com/eqnedit.php?latex=U_m%20%5Cleftarrow%20U_m%20%5Ccup%20U_%7Btemp%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20G%5Em_u(t_k)%20%3D%20(U_m%2C%20I_m)#0
https://www.codecogs.com/eqnedit.php?latex=U_m%2C%20I_m%20%5Cin%20G%5E%7Bt_k%7D#0

Fig. 3. Isomorphism counting on Data Graph from a list of 2 subgraphs. The red edge in the Data Graph is the

anchor edge that we count for. Blue and yellow refer to orbits. Dash arrows represent 2 options when matching,

so counted as 2. The boxes at bottom right corner are results attached to the anchor edge.

We have illustrated how the model actually performs the isomorphism counting on data

graphs with a list of subgraphs, which yields isomorphism counts by orbits attached to the

graph as structural features. In the following part of this section, we mainly focus on how we

represent the chosen subgraph list, which serves as a set of hyperparameters for our model,

covering two essential steps: automorphism orbit counting for the selected subgraphs and

isomorphism counting by edges, as we mentioned above.

At the start of the model, we select the list of subgraphs that require the model's attention,

denoted as , where each element represents an individual

subgraph from our list. Subsequently, we will compute the automorphism orbit for each of

these selected subgraphs.

4.2.1 Automorphism Orbit Counting

This algorithm introduces how we discern automorphisms in a graph using its edge list.

(Automorphisms are symmetries allowing graph parts to be interchanged without changing

the graph's overall structure.)

Starting with an given edge list , we construct a NetworkX graph . (In

our scripts, the input graphs are bi-directed with edges from both “users to items” and “items

to users” as well. Then, considering that self-loops in a graph can overshadow information

from neighbouring nodes, we first need to refine by excluding self-loops:

. From the cleaned graph, we extract its automorphisms as

16

https://www.codecogs.com/eqnedit.php?latex=k#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathcal%7BH%7D%20%3D%20%5C%7BH_1%2C%20H_2%2C%20%5Cldots%2C%20H_k%20%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=H_i#0
https://www.codecogs.com/eqnedit.php?latex=%20E_%7BH_i%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=H_i(V_%7BH_i%7D%2CE_%7BH_i%7D)%20#0
https://www.codecogs.com/eqnedit.php?latex=E_%7BH_i%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=E_%7BH_i%7D%3DE_%7BH_i%7D%20%5Cbackslash%5C%7B(v%2Cv)%20%7C%20v%20%5Cin%20V_%7BH_i%7D%5C%7D#0

, where we use NetworkX's GraphMatcher to detect

automorphisms. In , each vertex starts with an initial orbit, expressed as

, before updating the orbits into this collection. However, in found

automorphisms, the vertices in an orbit act as the same “role” and we need one certain vertex

to represent this orbit, so we update each vertex's orbit to its minimal label using:

. By using the minimum label, we

consistently pick one certain vertex as the label of their shared orbit.

Once orbits are finalised, vertices are clustered by their orbit classifications:

. The entire process concludes by counting the

discovered automorphisms, represented as . And then we pack the outputs

including the refined graph, orbit partitions, an orbit membership dictionary, and a count of

detected automorphisms.

The detailed pseudocode is provided below:

Algorithm 2: Automorphism Orbit Counting

Input: edge list of a subgraph: ,
where ,

Output: A quadruple ,

where represents orbits of edge ,
indicates the orbit membership dictionary of ,

and refers to the count of automorphisms of .
// construct subgraph

,
// remove self-loops

// find automorphisms

for :
initialise , where
for :

search within
add to

// validate if it’s an automorphism

17

https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathcal%7BA%7D_i%20%3D%20Automorphisms(H_i)%20#0
https://www.codecogs.com/eqnedit.php?latex=H_i#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathcal%7BM%7D(v)%3Dv%2C%20%5Cforall%20v%20%5Cin%20V_%7BH_i%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathcal%7BM%7D(v)%20%3D%20min(%5Cmathcal%7BM%7D(v)%2Ca(v))%2C%20%5Cforall%20v%20%5Cin%20V_%7BH_i%7D%2C%20%5Cforall%20a%20%5Cin%20%5Cmathcal%7BA%7D_i%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathcal%7BP%7D%20%3D%5C%7Bv%20%7C%20%5Cmathcal%7BM%7D(v)%3Do%5C%7D%2C%20%5Cforall%20o%20%5Cin%20unique(%5Cmathcal%7BM%7D)%20%20#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%20%E2%88%A3%5Cmathcal%7BA%7D_i%E2%88%A3%3Dlength(%5Cmathcal%7BA%7D_i)#0
https://www.codecogs.com/eqnedit.php?latex=%20E_%7BH_i%7D%20%3D%20%5C%7B(a_1%2C%20b_1)%2C%20%5Cldots%2C%20(a_%7Bs(i)%7D%2C%20b_%7Bs(i)%7D)%20%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=a_p%2C%20b_p%20%5Cin%20V_%7BH_i%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=s(i)%20%3D%20%5CVert%20E_%7BH_i%7D%20%5CVert%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5C(%20H_i%20%2C%20%5C%7B%5Cmathcal%7BO%7D%5EE_%7BH_i%7D(a%2Cb)%20%7C%20%20(a%2Cb)%20%5Cin%20E_%7BH_i%7D%20%5C%7D%2C%20%5Cmathcal%7BM%7D_i%2C%20%7C%20%5Cmathcal%7BA%7D_i%20%7C%20%5C)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathcal%7BO%7D%5EE_%7BH_i%7D(a%2Cb)#0
https://www.codecogs.com/eqnedit.php?latex=%20(a%2Cb)#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathcal%7BM%7D_i%20#0
https://www.codecogs.com/eqnedit.php?latex=H_i#0
https://www.codecogs.com/eqnedit.php?latex=%7C%20%5Cmathcal%7BA%7D_i%20%7C#0
https://www.codecogs.com/eqnedit.php?latex=H_i#0
https://www.codecogs.com/eqnedit.php?latex=%20H_i%20%20%5Cleftarrow%20E_%7BH_i%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20H_i%20%20%5Cleftarrow%20H_i%20%5Cbackslash%5C%7B%20(v%2C%20v)%20%7C%20%20v%20%5Cin%20V_%7BH_i%7D%5C%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathcal%7BA%7D_i%20%20%3D%20%5Cemptyset%20#0
https://www.codecogs.com/eqnedit.php?latex=(v_1%2C%20v_2)%20%5Cin%20V%20%5Ctimes%20V#0
https://www.codecogs.com/eqnedit.php?latex=%20f%3A%20V%20%5Cto%20V%20#0
https://www.codecogs.com/eqnedit.php?latex=%20f(v_1)%20%3D%20v_2%20#0
https://www.codecogs.com/eqnedit.php?latex=%20a%20%5Cin%20N(v_1)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20w%20%5Cin%20N(v_2)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20f#0
https://www.codecogs.com/eqnedit.php?latex=%20f(a)%20%3D%20w%20#0
https://www.codecogs.com/eqnedit.php?latex=%20f#0

is_automorphism = True
for :

if :
is_automorphism = False;

for :
if :

is_automorphism = False;
if is_automorphism:

for :
for :

\\group vertices by

for :

if :

4.2.2 Subgraph Isomorphism Counting

Once we have computed the orbits for the subgraphs, we can proceed to calculate the

structural features, following the method outlined in Bouritas' research: Consider the list of

subgraphs , for each graph , we initially identify its

isomorphic subgraphs in the , represented as . Then, for each edge , we

determine its significance concerning a particular graph by examining the orbit of

its corresponding mapping in . By counting the occurrences of various

orbits of , we derive the vertex structural feature of edge , defined as

follows. For all :

,

where we count for the anchor edge with the orbit in subgraph ,

and ,

where we aggregate the counts crossing different orbits within subgraph ,

18

https://www.codecogs.com/eqnedit.php?latex=%20(a%2C%20b)%20%5Cin%20E_%7BH_i%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20(f(a)%2C%20f(b))%20%5Cnotin%20E_%7BH_i%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20(f(a)%2C%20f(b))%20%5Cin%20E_%7BH_i%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20(a%2C%20b)%20%5Cnotin%20E_%7BH_i%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathcal%7BA%7D_i%20%2B%3D%20f%20#0
https://www.codecogs.com/eqnedit.php?latex=%20a%20%5Cin%20%5Cmathcal%7BA%7D_i%20#0
https://www.codecogs.com/eqnedit.php?latex=%20e%20%5Cin%20E_%7BH_i%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathcal%7BM%7D%20%5Cleftarrow%20%5Cmathcal%7BO%7D%5EE_%7BH_i%7D(a%2Cb)%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathcal%7BO%7D%5EE_%7BH_i%7D(a%2Cb)#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathcal%7BP%7D%20%3D%20%5C%7B%20%5C%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20e%20%20%5Cin%20%20E_%7BH_i%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20o%20%3D%20%5Cmathcal%7BM%7D(e)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20o%20%5Cnotin%20%5Cmathcal%7BP%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathcal%7BP%7D%5C%5Bo%5C%5D%3D%20%20v%20#0
https://www.codecogs.com/eqnedit.php?latex=%7C%5Cmathcal%7BA%7D_i%7C%20%3D%20len(%5Cmathcal%7BP%7D)#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathcal%7BH%7D%20%3D%20%5C%7BH_1%2C%20H_2%2C%20%5Cldots%2C%20H_k%20%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20H_i%20%5Cin%20%5Cmathcal%7BH%7D#0
https://www.codecogs.com/eqnedit.php?latex=G#0
https://www.codecogs.com/eqnedit.php?latex=G_S#0
https://www.codecogs.com/eqnedit.php?latex=%20(a%2Cb)%20%5Cin%20E_%7BG_S%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathcal%7BO%7D%5EE_%7BH%2Ci%7D(a%2Cb)#0
https://www.codecogs.com/eqnedit.php?latex=%5C(f(a)%2C%20f(b)%5C)#0
https://www.codecogs.com/eqnedit.php?latex=H_i#0
https://www.codecogs.com/eqnedit.php?latex=(a%2Cb)#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctextbf%7Bx%7D%5EE_%7BH_i%7D%5C(a%2Cb%5C)%20#0
https://www.codecogs.com/eqnedit.php?latex=(a%2Cb)#0
https://www.codecogs.com/eqnedit.php?latex=%20j%20%5Cin%20%5C%7B1%2C%20%5Cldots%2Cd_H%5C%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=x%5EE_%7BH_i%2C%20j%7D%5C(a%2Cb%5C)%20%20%3D%20%20%7C%20%5C%7B%20G_S%20%5Ccong%20H_i%20%7C%20%5C(a%2Cb%5C)%20%5Cin%20E_%7BG_S%7D%2C%20%5C(f(a)%2C%20f(b)%5C)%20%5Cin%20%5Cmathcal%7BO%7D%5EE_%7BH_i%2C%20j%7D%20%5C%7D%20%7C#0
https://www.codecogs.com/eqnedit.php?latex=%20%5C(a%2Cb%5C)#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=H_i#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctextbf%7Bx%7D%5EE_%7BH_i%7D%5C(a%2Cb%5C)%20%3D%5C%5Bx%5EE_%7BH_i%2C%201%7D%5C(a%2Cb%5C)%2C%20%5Cldots%2C%20x%5EE_%7BH_i%2C%20d_H%7D%5C(a%2Cb%5C)%5C%5D%20#0
https://www.codecogs.com/eqnedit.php?latex=H_i#0

and thus combine the edge features as the structural

features. The detailed pseudocode is provided below:

Algorithm 3: Isomorphism Counting

Input: Graph , denoted as below,
List of subgraphs .

Output: Structure features .
// Remove self-loops

// Compute the isomorphic counts

for :

// Use GraphMatcher from Networkx (VF2 algorithm)

isomorphism maps ,

where denotes all isomorphism functions.

// Initialise the structure features for

// Count by isomorphism maps

for :

for :

if :

// Normalise the counts

// Concatenate structure features

4.3 Subgraph DGSR Mechanism

In this section, we provide an overview of the fundamental structure of our Subgraph DGSR

model, which is divided into four key sections: In section 4.3.1, we delve into the rationale

and methods behind executing long-term and short-term embeddings for users and items

within our Subgraph DGSR layer. Moving on to section 4.3.2, we explain our approach to

19

https://www.codecogs.com/eqnedit.php?latex=%20%5Ctextbf%7Bx%7D%5EE_%7B%5C(a%2Cb%5C)%7D%20%3D%20%5C%5B%5Ctextbf%7Bx%7D%5EE_%7BH_1%7D%5C(a%2Cb%5C)%2C%20%5Cldots%2C%20%5Ctextbf%7Bx%7D%5EE_%7BH_k%7D%5C(a%2Cb%5C)%20%5C%5D%20#0
https://www.codecogs.com/eqnedit.php?latex=G%5Em_u(t_k)#0
https://www.codecogs.com/eqnedit.php?latex=G#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathcal%7BH%7D%20%3D%20%5C%7BH_1%2C%20H_2%2C%20%5Cldots%2C%20H_k%20%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctextbf%7Bx%7D%5EE_%7B%5C(a%2C%20b%5C)%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20G%20%20%5Cleftarrow%20G%20%5Cbackslash%5C%7B%20(v%2C%20v)%20%7C%20%20v%20%5Cin%20V_%7BG%7D%5C%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20H_i%20%5Cin%20%5Cmathcal%7BH%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathcal%7BI%7D%20%5Cleftarrow%20%5C%7B%5C%7B%5C(a%2Cf(a)%5C)%20%7C%20a%5Cin%20H_i%2C%20f(a)%20%5Cin%20G%20%5C%7D%20%7C%20f%20%5Cin%20V%5Ctimes%20V%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20V%20%5Ctimes%20V#0
https://www.codecogs.com/eqnedit.php?latex=H_i#0
https://www.codecogs.com/eqnedit.php?latex=x%5EE_%7BH_i%2C%20j%7D%5C(a%2Cb%5C)%20%20%3D%20%200#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctextbf%7Bx%7D%5EE_%7BH_i%7D%5C(a%2Cb%5C)%20%3D%5C%5Bx%5EE_%7BH_i%2C%201%7D%5C(a%2Cb%5C)%2C%20%5Cldots%2C%20x%5EE_%7BH_i%2C%20d_H%7D%5C(a%2Cb%5C)%5C%5D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20iso%20%5Cin%20%5Cmathcal%7BI%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20(a%2Cb)%20%5Cin%20E_%7BH_i%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5C(a%2C%20f(a)%5C)%2C%20%5C(b%2C%20f(b)%5C)%20%5Cin%20iso%20#0
https://www.codecogs.com/eqnedit.php?latex=count%20%20%2B%3D%201#0
https://www.codecogs.com/eqnedit.php?latex=%20x%5EE_%7BH_i%2C%20j%7D%5C(a%2Cb%5C)%20%5Cleftarrow%20count%20%5Cbackslash%20%7C%20%5Cmathcal%7BA%7D_i%7C%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctextbf%7Bx%7D%5EE_%7B%5C(a%2Cb%5C)%7D%20%3D%20%5C%5B%5Ctextbf%7Bx%7D%5EE_%7BH_1%7D%5C(a%2Cb%5C)%2C%20%5Cldots%2C%20%5Ctextbf%7Bx%7D%5EE_%7BH_k%7D%5C(a%2Cb%5C)%20%5C%5D%20#0

aggregating and concatenating information, updating new user and item features for

propagation to the subsequent layer. After progressing through multiple layers, section 4.3.3

outlines how we generate personalised recommendations for users. Lastly, in section 4.3.4,

we detail the process of generating importance scores using the trained model.

4.3.1 Information Encoding

In recommender systems, the conversion of user-item records into bipartite graphs and the

division of message passing into two parts, item-user and user-item interactions, stem from

two key considerations. 1. interactions are often asymmetric, with users engaging with items,

but not the same way back; 2. users and items contain distinct data types; users have

demographic and behavioural information, while items possess unique product features. In

our model, we design another partition for embedding: long-term (L) and short-term (S),

where long-term refers to the user's preference in the history of interactions, and short-term

for the most recent purchase (or behaviour) they make. Overall, we have 4 embedding paths

in our model: 1. Long-term user-to-item; 2. Short-term user-to-item; 3. Long-term

item-to-user; 4. Short-term item-to-user. For brevity, “user-to-item” is depicted as in the

following equations and vice versa.

DGRN combines the strengths of the Graph Attention mechanism and sequence encoding,

and designs a dynamic attention module to capture the interaction order information, due to

the following reasons: traditional static GNNs like GCN and GAT excel in processing various

graph structure data, but they often overlook the sequential information of neighbours for

each user and item; while sequence-based models like RNN and Transformer nets need to be

invoked for more dynamic scenarios. By this combination, the attention coefficients are then

influenced by a relative-order-aware attention mechanism, making it possible to compute

long-term preferences of users and items:

,

,

where , ,

and ,

20

https://www.codecogs.com/eqnedit.php?latex=ui#0
http://www.texrendr.com/?eqn=%20%5Ctextbf%7Bh%7D%5EL_u%20%5C%2C%20%3D%20%5C%2C%20%5Csum_%7Bi%5Cin%20%5Cmathcal%7BN%7D_u%7D%20%5C%2C%20%5Calpha_%7Bui%7D%20%5C(%5Ctextbf%7BW_1%7D%5E%7B(l-1)%7D%20%5Ctextbf%7Bh%7D_i%5E%7B(l-1)%7D%20%2B%20%5Ctextbf%7Bp%7D%5EV_%7Br%5Ei_u%7D%20%5C)%20#0
http://www.texrendr.com/?eqn=%20%5Ctextbf%7Bh%7D%5EL_i%20%5C%2C%20%3D%20%5C%2C%20%5Csum_%7Bi%5Cin%20%5Cmathcal%7BN%7D_i%7D%20%5C%2C%20%5Cbeta_%7Biu%7D%20%5C(%5Ctextbf%7BW_2%7D%5E%7B(l-1)%7D%20%5Ctextbf%7Bh%7D_i%5E%7B(l-1)%7D%20%2B%20%5Ctextbf%7Bp%7D%5EV_%7Br%5Eu_i%7D%20%5C)%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha_%7Bui%7D%20%3D%20softmax%5C(%20e_%7Bui%7D%20%5C)%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7Bui%7D%20%3D%20softmax%5C(%20e_%7Biu%7D%20%5C)%20#0
http://www.texrendr.com/?eqn=%20e_%7Bui%7D%20%3D%20%5C(%5Ctextbf%7BW_2%7D%5E%7B(l-1)%7D%20%5Ctextbf%7Bh%7D_i%5E%7B(l-1)%7D%5C)%5ET%20%5C(%5Ctextbf%7BW_1%7D%5E%7B(l-1)%7D%20%5Ctextbf%7Bh%7D_i%5E%7B(l-1)%7D%20%2B%20%5Ctextbf%7Bp%7D%5EV_%7Br%5Ei_u%7D%20%5C)%20%20%5Cbackslash%20sqrt%7Bd%7D#0

,

and refer to order-relative embedding.

Complementing the long-term information, the short-term information focuses on capturing

users' recent interests. Unlike traditional approaches that emphasise only the last interaction,

DGRN leverages an attention mechanism to balance the latest interaction with historical

ones:

,

,

where , ,

and ,

.

4.3.2 Node Updating

With the propagation information well calculated, the node features need to be updated. This

process enables nodes to concatenate information from long-term and short-term interactions,

as well as from the preceding layer, resulting in a new comprehensive representation for users

and items. Moreover, we will incorporate the edge path from the Graph Substructure Network

(GSN - e) introduced by Bourtias (2022), integrating the isomorphism counting results from

Section 4.2 into the passing message, as outlined in the following scheme:

(From now, is denoted as in the context of recommendation systems.)

where , leveraging the information from long term, short term,

embedding before updates and isomorphism counting.

21

http://www.texrendr.com/?eqn=%20e_%7Biu%7D%20%3D%20%5C(%5Ctextbf%7BW_1%7D%5E%7B(l-1)%7D%20%5Ctextbf%7Bh%7D_u%5E%7B(l-1)%7D%5C)%5ET%20%5C(%5Ctextbf%7BW_2%7D%5E%7B(l-1)%7D%20%5Ctextbf%7Bh%7D_u%5E%7B(l-1)%7D%20%2B%20%5Ctextbf%7Bp%7D%5EV_%7Br%5Eu_i%7D%20%5C)%20%20%5Cbackslash%20sqrt%7Bd%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctextbf%7Bp%7D%5EV_%7Br%5Eu_i%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctextbf%7Bh%7D%5ES_u%20%5C%2C%20%3D%20%5C%2C%20%5Csum_%7Bi%5Cin%20%5Cmathcal%7BN%7D_u%7D%20%5C%2C%20%5Chat%7B%5Calpha%7D_%7Bui%7D%20%5Ctextbf%7Bh%7D_i%5E%7B(l-1)%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctextbf%7Bh%7D%5ES_i%20%5C%2C%20%3D%20%5C%2C%20%5Csum_%7Bu%5Cin%20%5Cmathcal%7BN%7D_i%7D%20%5C%2C%20%5Chat%7B%5Cbeta%7D_%7Biu%7D%20%5Ctextbf%7Bh%7D_u%5E%7B(l-1)%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7B%5Calpha%7D_%7Bui%7D%20%3D%20softmax%5C(%20%5Chat%7Be%7D_%7Bui%7D%20%5C)%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7B%5Cbeta%7D_%7Bui%7D%20%3D%20softmax%5C(%20%5Chat%7Be%7D_%7Biu%7D%20%5C)%20#0
http://www.texrendr.com/?eqn=%20%5Chat%7Be%7D_%7Bui%7D%20%3D%20%5C(%5Ctextbf%7BW_2%7D%5E%7B(l-1)%7D%20%5Ctextbf%7Bh%7D_%7Bi_%7Blast%7D%7D%5E%7B(l-1)%7D%5C)%5ET%20%5C(%5Ctextbf%7BW_1%7D%5E%7B(l-1)%7D%20%5Ctextbf%7Bh%7D_i%5E%7B(l-1)%7D%20%2B%20%5Ctextbf%7Bp%7D%5EV_%7Br%5Ei_u%7D%20%5C)%20%20%5Cbackslash%20sqrt%7Bd%7D#0
http://www.texrendr.com/?eqn=%20%5Chat%7Be%7D_%7Biu%7D%20%3D%20%5C(%5Ctextbf%7BW_1%7D%5E%7B(l-1)%7D%20%5Ctextbf%7Bh%7D_%7Bu_%7Blast%7D%7D%5E%7B(l-1)%7D%5C)%5ET%20%5C(%5Ctextbf%7BW_2%7D%5E%7B(l-1)%7D%20%5Ctextbf%7Bh%7D_u%5E%7B(l-1)%7D%20%2B%20%5Ctextbf%7Bp%7D%5EV_%7Br%5Eu_i%7D%20%5C)%20%20%5Cbackslash%20sqrt%7Bd%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctextbf%7Bx%7D%5EE_%7B%5C(a%2C%20b%5C)%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctextbf%7Bx%7D%5EE_%7B%5C(u%2C%20i%5C)%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctextbf%7Bh%7D%5E%7B(l)%7D_u%20%3D%20%5Ctanh%5C(%20%5Ctextbf%7BW%7D_5%5E%7B(l)%7D%20%5Ctimes%20%5C%5B%5Ctextbf%7Bh%7D%5EL_u%20%20%5C%7C%20%5Ctextbf%7Bh%7D%5ES_u%20%5C%7C%20%20%5Ctextbf%7Bh%7D%5E%7B(l-1)%7D_u%20%5C%7C%20%5Ctextbf%7Bx%7D%5EE_%7B%5C(u%2C%20i%5C)%7D%20%5C%5D)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctextbf%7Bh%7D%5E%7B(l)%7D_i%20%3D%20%5Ctanh%5C(%20%5Ctextbf%7BW%7D_6%5E%7B(l)%7D%20%5Ctimes%20%5C%5B%5Ctextbf%7Bh%7D%5EL_i%20%20%5C%7C%20%5Ctextbf%7Bh%7D%5ES_i%20%5C%7C%20%20%5Ctextbf%7Bh%7D%5E%7B(l-1)%7D_i%20%5C%7C%20%5Ctextbf%7Bx%7D%5EE_%7B%5C(i%2C%20u%5C)%7D%20%5C%5D)%20#0
http://www.texrendr.com/?eqn=%20%5Ctextbf%7BW_5%7D%5E%7B(l)%7D%2C%20%20%5Ctextbf%7BW_5%7D%5E%7B(l)%7D%20%5Cin%20%5Cmathbb%7BR%7D%5E%7Bd%20%5Ctimes%203d%7D%20#0

4.3.3 Generate the Recommendations

From the described mechanism, following layers of model propagation, we acquire

numerous embeddings for each user node . These embeddings are then concatenated as

follows:

.

For a candidate item , the link function is , where represents the

user's scores for all candidate items. We learn the model parameters by optimising the

cross-entropy loss, including regularisation:

where encodes the actual items in for the user , comprises all model parameters,

and regulates the regularisation strength.

The detailed pseudocode algorithm of our entire model is provided below:

Algorithm 4: Subgraph DGSR Model Structure

Input: : Current sequence for user ;
: Timestamp sequence for user ;

: DGRN layer number
Output: : The next item of
// Generate graph data for

Run Algorithm 1: Graph Sampling to generate from
// Count automorphism orbits for subgraphs

Run Algorithm 2: Automorphism Orbit Counting to generate
// Initialise node representation
for :

//Generate Isomorphism for messaging passing

Run Algorithm 3: Isomorphism Counting to generate

// Update users and items

for :

22

https://www.codecogs.com/eqnedit.php?latex=L#0
https://www.codecogs.com/eqnedit.php?latex=u#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctextbf%7Bh%7D_u%20%3D%20CONCAT%20%5C(%5Ctextbf%7Bh%7D%5E%7B(0)%7D_u%20%5C%7C%20%5Ctextbf%7Bh%7D%5E%7B(1)%7D_u%2C%20%5Cldots%2C%20%5C%7C%20%5Ctextbf%7Bh%7D%5E%7B(L)%7D_u%20%5C)%20#0
https://www.codecogs.com/eqnedit.php?latex=i#0
http://www.texrendr.com/?eqn=%20%5Ctextbf%7Bs_%7Bui%7D%3D%20%5Ctextbf%7Bh_u%7D%5ET%20%5Ctextbf%7BW%7D_%7B%5Ctextbf%7BP%7D%7D%5Ctextbf%7Be_i%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=s_u#0
https://www.codecogs.com/eqnedit.php?latex=%20Loss%20%3D%20-%5Csum_%7BS%7D%20%5Csum_%7Bi%3D1%7D%5E%7B%5Clvert%20%5Cmathcal%7BI%7D%5Crvert%7D%20%5Cleft(%20y_%7Bui%7D%20%5Clog(%5Chat%7By%7D_%7Bui%7D)%20%2B%20(1%20-%20y_%7Bui%7D)%20%5Clog(1%20-%20%5Chat%7By%7D_%7Bui%7D)%20%5Cright)%20%2B%20%5Clambda%20%5C%7C%5CTheta%5C%7C%5E%7B2%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20y_%7Bu%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=S%5Eu#0
https://www.codecogs.com/eqnedit.php?latex=u#0
https://www.codecogs.com/eqnedit.php?latex=%5CTheta#0
https://www.codecogs.com/eqnedit.php?latex=%5Clambda%20#0
https://www.codecogs.com/eqnedit.php?latex=S%5Eu%20%3D%20(i1%2C%20i2%2C%20...%2C%20ik)#0
https://www.codecogs.com/eqnedit.php?latex=u#0
https://www.codecogs.com/eqnedit.php?latex=T%5Eu%20%3D%20(t1%2C%20t2%2C%20...%2C%20tk)#0
https://www.codecogs.com/eqnedit.php?latex=u#0
https://www.codecogs.com/eqnedit.php?latex=L#0
https://www.codecogs.com/eqnedit.php?latex=i_%7Bk%2B1%7D#0
https://www.codecogs.com/eqnedit.php?latex=S%5Eu#0
https://www.codecogs.com/eqnedit.php?latex=S%5Eu#0
https://www.codecogs.com/eqnedit.php?latex=G%5Em_u(t_k)#0
https://www.codecogs.com/eqnedit.php?latex=G%5E%7Bt_k%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctextbf%7BO%7D%5EV_%7BH_%20i%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cforall%20u%2C%20i%20%5Cin%20G%5Em_u(t_k)#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctextbf%7Bh%7D%5E%7B(0)%7D_u%20%20%3D%20%5Ctextbf%7Be%7D_u#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctextbf%7Bh%7D%5E%7B(0)%7D_i%20%3D%5Ctextbf%7Be%7D_i#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctextbf%7Bx%7D%5EE_%7B%5C(u%2C%20i%5C)%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=l%20%5Cin%20%5C%5B1%3AL%5C%5D#0

// Predict the next item

4.3.4 Importance Scores

From the subgraph isomorphism counting algorithm, we derive structural features from all

graphs by mapping each graph to every subgraph. To get how these subgraphs are obtained in

the data graph, we extract the isomorphism counts and aggregate them based on subgraphs

(rather than the data graph), and then proceed with normalisation. Here are the specific steps

outlining how we compute the importance scores for each subgraph.

For all :

orbit importance ,

and then subgraph importance

where ,

indicates the aggregate function, and represents the normalisation function.

Subsequently, we obtain importance scores that represent the relative significance of different

subgraphs in the list.

5. Experiments
In this section, we conduct a compelling experiment on Amazon user review data, seeking to

comprehensively evaluate the performance of our proposed model compared to the original

model, and introduce the innovative explainable metric framework. Throughout the entire

experiment, we mainly address the following 3 research questions:

23

https://www.codecogs.com/eqnedit.php?latex=%5Ctextbf%7Bh%7D%5E%7B(l)%7D_u%2C%20%5Ctextbf%7Bh%7D%5E%7B(l)%7D_i%20%3D%20DGRN(%5Ctextbf%7Bh%7D%5E%7B(l-1)%7D_u%2C%20%5Ctextbf%7Bh%7D%5E%7B(l-1)%7D_i%2C%20%20G%5Em_u(t_k)%20%5C)#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctextbf%7Bh%7D%5EL_u%2C%20%5Ctextbf%7Bh%7D%5EL_i%20%20%5Cleftarrow%20LongTermEncoding#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctextbf%7Bh%7D%5ES_u%2C%20%5Ctextbf%7Bh%7D%5ES_i%20%20%5Cleftarrow%20ShortTermEncoding#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctextbf%7Bh%7D%5E%7B(l)%7D_u%20%5Cleftarrow%20%5Ctanh%5C(%20%5Ctextbf%7BW%7D_5%5E%7B(l)%7D%20%5Ctimes%20%5C%5B%5Ctextbf%7Bh%7D%5EL_u%20%20%5C%7C%20%5Ctextbf%7Bh%7D%5ES_u%20%5C%7C%20%20%5Ctextbf%7Bh%7D%5E%7B(l-1)%7D_u%20%5C%7C%20%5Ctextbf%7Bx%7D%5EE_%7B%5C(u%2C%20i%5C)%7D%20%5C%5D)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctextbf%7Bh%7D%5E%7B(l)%7D_i%20%5Cleftarrow%20%5Ctanh%5C(%20%5Ctextbf%7BW%7D_6%5E%7B(l)%7D%20%5Ctimes%20%5C%5B%5Ctextbf%7Bh%7D%5EL_i%20%20%5C%7C%20%5Ctextbf%7Bh%7D%5ES_i%20%5C%7C%20%20%5Ctextbf%7Bh%7D%5E%7B(l-1)%7D_i%20%5C%7C%20%5Ctextbf%7Bx%7D%5EE_%7B%5C(i%2C%20u%5C)%7D%20%5C%5D)%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctextbf%7Bh%7D_u%20%3D%20CONCAT%20%5C(%5Ctextbf%7Bh%7D%5E%7B(0)%7D_u%20%5C%7C%20%5Ctextbf%7Bh%7D%5E%7B(1)%7D_u%2C%20%5Cldots%2C%20%5C%7C%20%5Ctextbf%7Bh%7D%5E%7B(L)%7D_u%20%5C)%20#0
http://www.texrendr.com/?eqn=NextItem%20%3D%20%7Bargmax%7D_%7Bi%20%5Cin%20V%7D%20%5C(%20%5Ctextbf%7Bh%7D_u%5ET%20%5Ctextbf%7BW%7D_%7B%5Ctextbf%7BP%7D%7D%5Ctextbf%7Be_i%7D%20%5C)#0
https://www.codecogs.com/eqnedit.php?latex=%20j%20%5Cin%20%5C%7B1%2C%20%5Cldots%2Cd_H%5C%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20Imp_%7BH_i%2C%20j%7D%20%3D%20AGG_%7BG%5Em_u(t_k)%20%5Cin%20%5Cmathcal%7BG%7D%7D%20%5C(x%5EE_%7BH_i%2C%20j%7D%5C(a%2Cb%5C)%20%5C)#0
https://www.codecogs.com/eqnedit.php?latex=%20Imp_%7BH_i%7D%20%3D%20Norm%5C(%5Csum%5E%7Bd_H%7D_%7Bj%3D1%7D%20%20%5C(%20Imp_%7BH_i%2C%20j%7D%20%5C)%20%5C)#0
https://www.codecogs.com/eqnedit.php?latex=x%5EE_%7BH_i%2C%20j%7D%5C(a%2Cb%5C)%20%20%3D%20%20%7C%20%5C%7B%20%7BG%5Em_u(t_k)%7D_S%20%5Ccong%20H_i%20%7C%20%5C(a%2Cb%5C)%20%5Cin%20E_%7B%7BG%5Em_u(t_k)%7D_S%7D%2C%20%5C(f(a)%2C%20f(b)%5C)%20%5Cin%20%5Cmathcal%7BO%7D%5EE_%7BH_i%2C%20j%7D%20%5C%7D%20%7C#0
https://www.codecogs.com/eqnedit.php?latex=AGG#0
https://www.codecogs.com/eqnedit.php?latex=Norm#0

1. How does our proposed Subgraph DGSR perform compared to the original DGSR

model?

2. What’s the effect of hyperparameters on the performance of our DGSR?

3. What factors of our input subgraphs influence the performance of DGSRs?

For RQ1, we test our Subgraph DGSR model in comparison to the original DGSR model

across various datasets as depicted in section 5.1, under the same hyperparameter settings and

evaluation methods detailed in section 5.2, and we display the performance of both models to

showcase the superiority of our model; For RQ2, we test 3 hyperparameters: layer numbers,

max. length of sequence, and sampling size to show the impact of changing them and give

insights to further researchers. We change one of the model settings, retain the others as in

RQ1, and compare the performance to test the impact of the changed hyperparameter. For

RQ3, we mainly test on the list of subgraphs based on 3 perspectives: the number of

subgraphs, the size of subgraphs and the user/item ratio. We design different lists of

subgraphs for comparison, and we assess their influence on the models’ performance and the

importance scores assigned to the subgraphs.

5.1 Dataset

In our study, we employ the Amazon Review Data (Jianmo Ni, Jiacheng Li, Julian McAuley,

Empirical Methods in Natural Language Processing, EMNLP, 2019) obtained from the

Stanford Network Analysis Project.

The dataset encompasses an extensive collection of over 100 million reviews, including

essential details such as the review time, reviewers' identities, review contents, and other

pertinent information. The dataset encompasses a diverse array of Amazon products spanning

29 distinct categories, with users and products identified through anonymized codes to

preserve confidentiality. We choose 3 datasets: CD, Music and Grocery, for implementing our

model as well as for the subsequent case study.

Given our primary emphasis on the data's structure, and for the sake of simplicity, we

consider the subset of source data to be composed of (user_id, product_id, time) pairs, as

depicted in Table 1. It is crucial to note that our model possesses the capability to

accommodate a wide spectrum of features of real user behaviours (e.g. ratings, order

information) that are encountered in real-world scenarios.

24

user_id item_id time

143026860 A1V6B6TNIC10QE 1424304000

014789302X A1V6B6TNIC10QE 1491782400

014789302X A2V9BG2MDQVCYX 1422748800

Table 1. Raw data from Amazon Review Data.

Analysing the data reveals that certain users exhibit behaviours with limited records across

the entire dataset, thereby diminishing data availability. Consequently, we opted to adopt

Zhang's data selection approach, which involves excluding users with fewer than 5 records.

Following this filtration, we proceeded to randomly select records from the dataset and

subsequently transformed the user_id and item_id into distinct integer representations, as

shown in Table 2:

user_id item_id time

0 0 1424304000

1 0 1491782400

1 1 1422748800

Table 2. Processed data from Amazon Review Data.

We employ the previously mentioned node sampling technique to sample nodes and

transform them into graphs. Since the sequences of interactions between users and items are

unpredictable, resulting in varying graph sizes, the quantity of graphs differs across each

dataset. The characteristics of each type of dataset (categories) are displayed in Table 3 :

Dataset Interactions User_ids Item_ids Train Graphs Test Graphs

CD 10,000 7982 574 494 360

CD 20,000 14,018 1,101 2056 1043

Music 10,000 6914 1374 751 614

Music 20,000 11824 2391 2542 1654

Grocery 10,000 8821 380 65 137

Grocery 20,000 16748 607 266 453

Table 3. Size of each used dataset.

25

In addition, the average purchase length represents the mean length of users' purchase

histories in the 3 datasets, excluding the invalid users with fewer than 5 orders, as shown in

Table 4.

Dataset AVE. length

CD 13.7

Music 11.0

Grocery 9.2

Table 4. Average purchase length of 3 datasets.

Given the practical nature of data, which is often provided as records rather than pre-defined

graphs and can vary in size, we opt to categorise datasets based on recorded interactions

before the conversion into graphs. In such a scenario, precisely controlling the number of

train/test graphs becomes challenging.

5.2 Model Settings

5.2.1 Default Parameter Set-up

The diagram provided in Table 5 illustrates the fundamental parameter configurations we

have established. These hyperparameters remain consistent throughout the entire experiment,

unless when conducting experiments specifically focused on the particular hyperparameter.

Hyperparameters Values Hyperparameters Values

Epoch 10 LR 0.001

Num. DGSR layers 3 L2 0.0001

Optimizer Adam Item max length 10

Batchsize 32 (graphs) User max length 10

Sampling Size
(K-hop)

3 steps

Table 5. Model settings for both subgraph DGSR and original DGSR models.

Epoch: the training epoch. Both models are fully trained with 10 epochs;

Num DGSR layer: the number of stacked DGSR layers we use. According to Zhang’s work,

3 DGSR layers have the best performance;

26

Sampling size indicates the nodes and edges up to a certain distance (k steps) away from a

given node in order to capture local and global information for message passing and

aggregation. When using the value 3, we approach message passing in a sequence such as:

item-user-item-user.

Batchsize: To enhance efficiency during iterations, we employ a batch size of 32 graphs for

batch learning;

LR: The learning rate is 0.001;

L2: the weight_decay parameter of the optimizer. Set to 0.0001 to prevent overfitting;

User max length: the max length of item sequence for each user when sampling nodes;

Item max length: the max length of user sequence for each item when sampling nodes;

5.2.2 Evaluation Methods

In assessing the performance of all methods, we employ two popular metrics for sequential

recommendations, Hit@K and NDCG@K (Kang, W. C. & McAuley J., 2018; Li, J. et al.,

2020). The Hit@K metric calculates the proportion of relevant items that are successfully

retrieved among all relevant items, typically within the top K retrieved results. Conversely,

NDCG@K is a position-sensitive measure, where a higher NDCG value implies that desired

items are more likely to have higher ranks.

The calculator of Hit@K is:

where indicates the number of relevant items in top , and for the total number

of relevant items.

And the calculation for NDCG@K:

where represents the relevant score of the item. DCG@K indicates discounted cumulative

gain, measuring how well the algorithm's ranking captures the relevant information. And

27

https://www.codecogs.com/eqnedit.php?latex=%20Recall%40K%20%3D%20%5Cfrac%7BRe_K%7D%7BRe_%7BAll%7D%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=Re_K#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=K#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=Re_%7BAll%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20Recall%40K%20%3D%20%5Cfrac%7Brelevant%20items%20in%20K%7D%7Ball%20relevant%20items%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20Recall%40K%20%3D%20%5Cfrac%7Brelevant%20items%20in%20K%7D%7Ball%20relevant%20items%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20DCG%40K%20%3D%20%5Csum%5E%7BK%7D_%7Bi%3D1%7D%20%5Cfrac%7B2%5E%7Br_i%7D%20-1%7D%7Blog_2(i%2B1)%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20IDCG%40K%20%3D%20%5Csum%5E%7BK%7D_%7Bi%3D1%7D%20%5Cfrac%7B1%7D%7Blog_2(i%2B1)%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=%20NDCG%40K%20%3D%20%5Cfrac%7BDCG%40K%7D%7BIDCG%40K%7D%20#0
https://www.codecogs.com/eqnedit.php?latex=r_i#0

IDCG@K indicates ideal discounted cumulative gain, as the baseline for the best possible

ranking.

Following the approach of Kang (2018) and Li (2020), our evaluation is conducted on a

per-test-sample basis. For each test sample, we randomly choose 100 items not included in

the ground truth and rank them alongside the true item. This results in a set of 101 items per

test sample, forming the basis for our Hit@K and NDCG@K assessments. We choose the

values 5, 10, and 20 for K, resulting in Hit@5, Hit@10, Hit@20, as well as NDCG@5,

NDCG@10, and NDCG@20 metrics for model comparison.

5.2.3 Environment & Parameter Setup

The computing environment is Google Colaboratory. For DGSR model building, the

following packages are used: NumPy, Pandas, Torch and DGL; and for subgraph

isomorphism metrics, NumPy, DGL, Torch_Geometric and Networkx are used.

Bouritsas (2022) uses the Graph-tool package for graph computation and counting

isomorphism and automorphism. However, due to compatibility issues with DGL in Colab,

we rebuilt the subgraph isomorphism function using DGL and Networkx. This reconstruction

follows the VF2 algorithm (Cordella et al., 2001; 2004), which is employed by Graph-tool

(Tiago P. Peixoto, 2014).

5.2.4 Subgraph List

For our proposed Subgraph DGSR, we need to pre-define a set of subgraphs as

hyperparameters that the model should take into special consideration. Our model can

integrate subgraphs of any numbers and structures, but the input subgraphs should be

designed as scenarios aligned with real-world purchase conditions and worth valuable

research insights. In section 5, we design 3 basic subgraphs that represent 3 basic interactions

that happen between users and items, as illustrated in the graphs in Table 6, and explained in

the following paragraph.

(For further guidelines of subgraphs, we will provide the rules of creating a subgraph list in

RQ3 and illustrate the framework of utilising subgraphs with our model in the section 6, Case

Study.)

28

Recommends Multi-interests Recommends2

Table 6: The list of subgraphs used in RQ1 and RQ2. User nodes are shown in orange and item nodes in green.

Recommends: User-0 and user-2 have the same purchase of item-1, while user-2 also buys

item-3. This scenario indicates one basic logic of recommendations “user-user collaborative

filtering”, which indicates “people like you, like that” (e.g. Resnick, P. et al., 1994);

Multi-interests: Among the three users, each pair of them shares preference for the same

product. This scenario refers to one of the common limitations of traditional collaborative

filtering recommender systems, arising from the fact that users often have multiple interests,

but collaborative filtering systems struggle to provide accurate recommendations because the

recommended item for an active user may not align with the common interests of their

neighbouring (similar) users or in a group of similar users (Koren, Y., 2008; Li, Y. et al.,

2005; Strub, F. et al., 2016). To be aware of the multi-interests of users, we include a

“multi-interests” graph of 3 users;

Recommends2: User-0,1,2 share the same interest as item-3, but user-2 has additional

preference to item-4. This scenario serves as the complement of Recommends to better

identify item-3: Recommends leads a too strong indication of similarity and might mislead

the model when item-3 is not of interest to user-0, while Recommends2 helps in recognizing

item-3 as an interest by involving an additional user. This helps filter out cases when 2 users

coincidentally buy the same item.

During our investigation of RQ1 and RQ2, we incorporate these three predefined subgraphs

into our model as the default list to ensure that our model maintains awareness of them.

However, the comprehensive impact of input subgraphs on our model's performance will be

fully explored in the section of RQ3, where we input more different subgraphs to test.

29

RQ 1 Performance Comparison

In this section, we focus on addressing the first research question: comparing the performance

of our novel Subgraph DGSR model with the original DGSR model, while also providing

plausible explanations for the results obtained. The importance scores, which indicate the

relative significance of subgraphs, are excluded from our model comparison and conclusions

in RQ1. These scores are provided in Appendix 1 but are not a focal point in our analysis.

Datasets Models Hit@5 Hit@10 Hit@20 NDCG@5 NDCG@10 NDCG@20

CD
10,000

Subgraph
DGSR

0.325 0.442 0.597 0.235 0.272 0.310

Regular
DGSR

0.264 0.383 0.539 0.173 0.214 0.253

CD
20,000

Subgraph
DGSR

0.409 0.474 0.692 0.365 0.386 0.429

Regular
DGSR

0.385 0.537 0.657 0.257 0.304 0.343

Music
10,000

Subgraph
DGSR

0.204 0.350 0.533 0.131 0.172 0.234

Regular
DGSR

0.222 0.308 0.457 0.166 0.190 0.228

Music
20,000

Subgraph
DGSR

0.652 0.741 0.845 0.584 0.611 0.637

Regular
DGSR

0.598 0.649 0.720 0.540 0.554 0.575

Grocery
10,000

Subgraph
DGSR

0.409 0.475 0.577 0.363 0.375 0.394

Regular
DGSR

0.380 0.482 0.547 0.334 0.361 0.393

Grocery
20,000

Subgraph
DGSR

0.567 0.634 0.742 0.492 0.526 0.551

Regular
DGSR

0.545 0.614 0.717 0.510 0.515 0.539

Table 7. The performance of the models we use on 3 datasets with 2 different record partitions.

According to Table 7, our Subgraph DGSR achieves better performance on all 6 metrics

within datasets of CD 10,000 and Music 20,000. On the other datasets, our model performs

partially better than the original DGSR model. The worst condition is Music 10,000, where

Hit@10, Hit@20 and NDCG@20 take better scores. A reasonable explanation for the

30

fluctuation of model performance can be, our input lists of subgraphs fail to match the

inherent patterns in Grocery 20,000. On comparison of same datasets with different numbers

of interactions, data size may also have an impact on performance, with larger datasets

potentially presenting different challenges in recommendation.

Based on the performance of the CD dataset shown in Fig. 4, we have the following

findings: 1. Subgraph DGSR consistently outperforms Regular DGSR across datasets of

varying sizes. With the exception of the CD_20000 dataset, Subgraph DGSR consistently

exhibits superior performance compared to Regular DGSR. Moreover, this performance gap

remains stable across various prediction list lengths, ranging from 5 to 20. This stability

underscores the effectiveness of our proposed model in diving deeper into graph patterns

compared to the regular model. 2. As the predicted list gets longer, the Hits and NDCGs are

expected to get better within the same. The increase in Hit and NDCG scores with the

expansion of the prediction list suggests that, even in scenarios where there are 100 negative

items, predicting sequences of less than 20 items doesn't significantly impact the model's

performance.

31

Fig. 4: The Hits (left) and NDCGs (right) performed on CD dataset with 10,000 (up) and 20,000 (down)

interactions.

In the context of the Music dataset (Fig. 5), Music 20000 outperforms Music 10000 overall,

which can be attributed to the availability of more training data. The Hit trendline on the left,

comparing Subgraph DGSR and Regular DGSR, is no longer parallel; instead, it diverges as

the predicted list length increases. Notably, our proposed model exhibits a faster growth rate,

indicating its superior performance in predicting longer sequences. This also suggests that our

default subgraphs effectively capture the patterns within the Music dataset. On the right side,

in terms of NDCG, Music 10000 exhibits similar performance, while in Music 20000, our

Subgraph DGSR maintains a moderate advantage over the regular model.

Fig. 5: The Hits (left) and NDCGs (right) performed on Music dataset with 10,000 (up) and 20,000 (down)

interactions.

In the context of the Grocery dataset, as depicted in Fig. 6, the performance gap between the

two datasets is relatively smaller when compared to certain other models. However, our

Subgraph DGSR model manages to maintain a slight edge over the original DGSR model in

32

most of the evaluation metrics, regardless of the dataset's scale. This suggests that our

model's superiority is consistent across different dataset sizes and reinforces its robust

performance.

Fig. 6: The Hits (left) and NDCGs (right) performed on Grocery dataset with 10,000 (up) and 20,000 (down)

interactions.

RQ 2 Effect of Hyperparameters

In terms of hyperparameters, we mainly focus on three key parameters: the number of layers,

the maximum length of user/item sequences extracted from the data, and the sampling size.

The number of layers helps determine the ideal size of our proposed model, while the

maximum sequence length pertains to how far back in the interaction history we consider

user/item interactions. Lastly, the sampling size signifies the number of steps we trace back

during the message-passing process. The following Table 8 displays the selection of

hyperparameters we render in our experiments:

Hyperparameters Options

33

Layer numbers 1, 3, 5, 7

Max. length of sequence 5, 10, 20

Sampling size 2, 3, 4

Table 8: The tested hyperparameters in this experiment.

The experiment is conducted using the grocery_20000 dataset, which, on average, contains

approximately 27.8 interactions per graph, so it’s suitable for testing the maximum length of

sequences. During the examination of each hyperparameter, the others are maintained at their

default values (Table 5 in section 5.2.1). The experimental outcomes are displayed in Fig. 7.

Fig. 7: The Hits and NDCGs performed on Grocery 20,000 dataset by models with different max

lengths of 5, 10, 20.

The bar chart illustrates the Hit and NDCG scores for models with maximum sequence

lengths of 20, 10, and 5. Interestingly, we observe that the model with a maximum length of

10 exhibits the highest performance, outperforming other max length. Conversely, the model

with a maximum length of 20 consistently performs the poorest across all six evaluation

metrics. Nevertheless, our findings diverge from those of Zhang [reference to section 5.4]

concerning DGSR, where superior performance was observed with a maximum length of 20

compared to 10. This inconsistency can be reasonably attributed to our considerably smaller

dataset. In our context, the setting of a maximum length of 20 may not effectively filter out

noisy information within our graphs. Therefore, for further research on our model, we posit

that the optimal max length should be determined based on alignment with the dataset we are

working with, rather than adopting a fixed value like 10 or any other constant.

34

Fig. 8: The Hits and NDCGs performed on Grocery 20,000 dataset by models with 1, 3, 5, 7 DGSR

layers.

The Fig. 8 visually compares the Hit and NDCG scores of models with varying DGSR layer

counts: 1, 3, 5, and 7. Overall, these different layer configurations exhibit fairly similar

performance. However, there is a slight upward trend in Hit scores as the number of layers

increases, with a minor dip at 5 layers. Notably, models with 7 DGSR layers perform the best,

followed closely by those with 3 layers. Concerning NDCG scores, the highest values

consistently appear when using 3 layers, aligning with Zhang's study, which explored layer

counts from 1 to 4. To summarise, employing 3 layers remains an effective choice for the

Subgraph DGSR model.

Fig. 9: The Hits and NDCGs performed on Grocery 20,000 dataset by models with sampling size of 2

,3, 4.

The overall performance of models with sizes 2, 3, and 4 shown in Fig. 9 exhibits

considerable similarities, particularly in the case of Hit@10 and NDCG@10. Among these,

35

the size 3 model stands out with the best performance in Hit@20 and NDCG@20, despite

slightly trailing the other two sizes in other scores. On the other hand, the size 2 model excels

in generating accurate predictions for shorter lists (Hit@5 and NDCG@5), but struggles

when tasked with predicting longer sequences. This limitation arises because a model of size

2 proves insufficient for capturing the intricate underlying patterns within the graphs required

for robust performance in longer predictions. According to Zhang (2022), a larger subgraph

size can offer a richer source of dynamic contextual information for each user sequence,

aiding in the prediction process. Hence, if the computational complexity is affordable, we

suggest using a sampling size of 3, 4, or even larger.

RQ 3 Selection of Subgraphs

Concerning the choice of subgraphs, aside from considering their compatibility with the data,

there are three additional factors that could potentially influence the composition of the

subgraph lists:

● RQ 3.1 the number of subgraphs in the list;

● RQ 3.2 the subgraph size;

● RQ 3.3 the ratio of users/items.

RQ 3.1 the number of subgraphs

In this section, we aim to assess how the number of subgraphs affects our model's

performance and explanations. Additionally, we investigate the impact of introducing new

structures when expanding the list of subgraphs.

Concerning the number of subgraphs, we choose to include 1, 3, and 5 subgraphs for

comparison purposes. In the case of a single subgraph, we select the "Recommends"

subgraph, which has displayed significant importance in our model. For the list comprising 3

subgraphs, we've utilised our default set of 3 subgraphs.

Now, for the list containing 5 subgraphs, we need to introduce 2 additional subgraphs to the

default 3 subgraphs. Regarding these 2 new subgraphs, we create two versions of them. In the

first version, we incorporate 2 isomorphic graphs of "Recommends" and "Multi-interests",

denoted as "*Recommends" and "*Multi-interests", so that their structures were already

included in the default 3 subgraphs, in order to minimise the impact of new structures

36

introduced by them. This version is referred to as "3 subgraphs + 2 duplicates." For the

second version, we've designed 2 entirely new subgraphs, "2-interests" and "ShareOne," each

featuring substructures not present in the initial 3 subgraphs. This version is labelled "5

subgraphs." By comparing the “3 subgraphs + 2 duplicates” and “5 subgraphs”, we gain

valuable insights into the choice of subgraphs to include when extending the subgraph list.

Consequently, we have four distinct lists of subgraphs, as outlined in Table 9.

List1: 1 subgraph

Recommends

List 2: 3 subgraphs

Recommends Multi-interests Recommends2

List 3: 3 subgraphs + 2 duplicates

Recommends Multi-interests Recommends2

*Recommends *Multi-interests

37

List 3: 5 subgraphs

Recommends Multi-interests Recommends2

2-interests ShareOne

Table 9: The tested lists with 1 subgraph, 3 subgraphs, 3 subgraphs + 2 duplicates, and 5 subgraphs. User

nodes are displayed in orange while item nodes are green.

The performance of models utilising lists of 1 subgraph, 3 subgraphs, 3 subgraphs +2

duplicates and 5 subgraphs is presented in Fig.10. It is evident that both Hit and NDCG

scores exhibit upward trends as the number of subgraphs in the list increases (1 to 3

subgraphs, and 3 to 5 subgraphs). However, when we compare the set of 3 subgraphs to the

set of 3 subgraphs plus 2 duplicates, we don't observe a significant distinction between them.

This is primarily because the newly added subgraphs, "*Recommends" and

"*Multi-interests," in the 3-subgraph list share substantial resemblance to the existing

subgraphs. Consequently, they don't introduce additional structures for the model to capture,

resulting in similar performance outcomes. In contrast, when adding subgraphs of new

structure to the list (3 subgraphs vs. 5 subgraphs), the model performance witnesses an

38

obvious improvement. The test demonstrates that unique subgraphs can improve the model

performance whereas duplicated subgraphs do not have the same effect.

Fig. 10: The Hits and NDCGs performed on Grocery 20,000 dataset by models with 1, 3, 5 subgraphs.

Table 10 presents the importance scores of 3 subgraphs, 3 subgraphs +2 duplicates and 5

subgraphs within each model. (List1 lacks an importance score as it consists of only 1

subgraph). Among the 3 subgraphs, subgraph1 (Recommends) stands out with the highest

importance score of 0.58, followed by subgraph3 (Recommends2). In the scenario of 3

subgraphs + 2 duplicates, both subgraph1 (Recommends) and subgraph4 (*Recommends)

achieve the highest importance scores, as they have identical structures. Similarly, subgraph2

(Multi-interests) and subgraph5 (*Multi-interests) exhibit this pattern of shared importance

due to their matching structures. When comparing the importance scores between "3

subgraphs" and "3 subgraphs + 2 duplicates," we observe a division of the importance scores

assigned to a single subgraph in the "3 subgraphs" list into two smaller scores, allocated to

the subgraph and its duplicates. This division can potentially create a misconception

regarding their individual importance. However, this does not happen in the "5 subgraphs"

list, where subgraph1 continues to hold the most significant share of importance, while

subgraph3 and subgraph5 have distinct importance scores. This divergence is attributed to the

differing structures of these subgraphs. (It's worth noting that while "Recommend" is a

component of "2-interests," they are counted differently due to the symmetry of "2-interests,"

whereas "Recommend" lacks this symmetry.)

The test results illustrate that incorporating subgraphs with similar structures does not

enhance our model's performance. Instead, it results in shared importance scores among

duplicates, causing a misinterpretation of their significance. The key takeaway here is that

39

when selecting the list of subgraphs for our model to recognize, it's advisable to avoid

including subgraphs with resembling structures and opt for unique subgraphs instead.

3 subgraphs 3 subgraphs + 2 duplicates

5 subgraphs

Table 10: The importance score of 3 subgraphs in list2 (left), and 5 subgraphs in list3 (right).

RQ 3.2 the subgraph size

For the baseline subgraph list, we employ the standard set of 3 subgraphs. To assess the

impact of size while maintaining other variables as constants, we choose to enlarge the

dimensions of the original graph by a factor of two, as shown in Table 11. It's important to

note that there are no edge connections between these enlarged dimensions. This approach

ensures that when calculating the automorphisms for the subgraphs, the structure remains

unaffected by any additional influences.

Default 3

Recommends Multi-interests Recommends2

40

Doubled Default 3

Doub. Recommends Doub. Multi-interests Doub. Recommends2

Table 11: The tested lists of default 3 and Doubled 3 subgraphs. User nodes are displayed in orange while item

nodes are green.

Fig. 11 illustrates the comparative performance of models employing Default 3 subgraphs

and Doubled 3 subgraphs. Minimal variation is observed across all six metrics. This

consistency arises from the fact that these subgraphs share similar structures, causing our

model to track identical patterns within both lists. It's worth noting that our model actually

tracks two orbits with the same structure, resulting in an absence of additional information

and, consequently, yielding similar outcomes. Therefore, our finding suggests that

introducing larger subgraphs without significant patterns into the model does not lead to

improvement on performance.

41

Fig. 11: The Hits and NDCGs performed on Grocery 20,000 dataset by models with Default 3 subgraphs and

Doubled 3 subgraphs.

The comparison of importance scores between Default subgraphs and Doubled subgraphs in

Table 12 reveals limited differences. As previously explained, the introduction of Doubled

Subgraphs doesn't significantly alter the importance scores, primarily because these

subgraphs exhibit similar structures. However, the disparities between subgraphs are

increasing. A plausible explanation is, in the Doubled Subgraphs, two separate subgraphs are

created with the same structure, the number of automorphism orbits is doubled, and so as the

“popular" orbits, which makes them more easily picked up and counted by subgraph

isomorphisms in the graph data.

Default Subgraphs Doubled Subgraphs

Table 12: The importance score of 3 subgraphs in list2 (left), and 5 subgraphs in list3 (right).

RQ 3.3 the ratio of users/items

To investigate the optimal ratio of users to items to include in our model and thus to

understand the design principles for subgraphs, we conducted this experiment on testing

42

subgraphs with different user/item ratios. We systematically adjusted the ratio by 1, 2 and 0.5,

observing how these variations influenced the model's performance. The testing subgraphs

are shown in Table 13. It's important to acknowledge that while the three sets of subgraphs

have different user/item ratios, the structures present in List 1 are also encompassed within

List 2 and List 3. In contrast, List 2 and List 3 include a few structures not found in List 1,

which may inevitably contribute to higher performance for List 2 and List 3.

List1 Users/Items = 1

Recommends Multi-interests

List2: Double-Users Users/Items = 2

DU Recommends DU Multi-interests

List3: Double-Items Users/Items = 0.5

DI Recommends DI Multi-interests

Table 13: The tested lists with subgraph of user/item ratio 1, 2, 0.5. User nodes are displayed in orange while

item nodes are green.

43

Fig. 12 illustrates the performance of input subgraphs under different user/item ratios: 1, 2,

and 0.5. The subgraphs where users and items are in equal proportion exhibit slightly lower

compared to the other two lists with imbalanced subgraphs. That’s because new structures are

added to the subgraphs when doubling user or item nodes. Furthermore, there is no prominent

distinction between scenarios where users outnumber items by a factor of two or where items

outnumber users by a factor of two. This suggests that the user-to-item ratio typically doesn't

exert a significant impact on model performance.

Fig. 12: The Hits and NDCGs performed on Grocery 20,000 dataset by subgraphs of user/item = 1, 2 and 0.5.

Table 14 displays the importance scores of 3 lists of subgraphs. In List 1 (User/Item = 1),

there's a more pronounced gap between subgraph 1 and subgraph 2, whereas in the case of

unbalanced subgraphs, the gaps between subgraph 1 and subgraph 2 tend to be narrower. This

can be attributed to the fact that introducing more homogeneous orbits, and including some

irrelevant ones, tends to dilute the significance of critical orbits.

List1: User/Item = 1 List2: User/Item = 2

List3: User/Item = 0.5

44

Table 14: The importance score of subgraphs of user/item = 1, 2 and 0.5.

6. Case Study
Campaigns in e-commerce are essential for boosting sales and user engagement. Evaluating

their impact on target users can be challenging due to factors like overlapping user groups

and indirect recommendation effects. To this point, our model provides a solution. By

focusing on specific subgraphs and their scores, it offers clear insights into patterns of

user-item interactions, including purchase, reviews and wishing list. It captures structural

information within user-item networks, and thus differentiates the target groups of different

campaigns. This explains why our model outperforms traditional assessment methods in

depth and accuracy.

In this section, we present a case study to exemplify the framework working with our model

from the perspective of an online retailer like Amazon, who is doing discount campaigns to

its users. And we use another dataset, the “Home and kitchen” of Amazon within the same

data source.

The data analysts of Amazon found 3 scenarios where users are more likely to respond to

certain campaigns (e.g. high click through rates or redeem rates), based on surveys or

exploring of their data. So they extract the structure as described in Table 15, and want our

model to test if these scenarios are influential in the recommender system:

In the first scenario “Recommend 1”, the analysts find that, when user1 buys a cooker

(item5), a coupon would trigger him to buy bowls, plates and tissue (item2, 3, 4) as user 0

did. They highlight this scenario and want to know if this scene generally takes place, and

whether this can happen on other combinations of products by other users. Consequently, this

scenario is recorded as the first subgraph. Similarly, in “Recommend 2”, analysts find that

user1 responds to coupons while user2 responds to cross-selling discounts, regarding item3,

45

4, 5, and to the same point, the analysts take down the scenarios. For comparison, they input

the scenario where users hardly respond to promotions, represented as “Flexible”. With the

collaboration of the campaign team, they design corresponding strategies to the 3 scenarios.

(Please note, the users and items are not specific ones. In our model, our subgraph

mechanism looks onto the entire data for the same scenarios (structures) as subgraphs, that

exist in our data, regardless of certain users and items, while DGSR proceeds these structures

onto various combinations of specific users and items.)

Scenarios

Recommend 1 Recommend 2 Flexible

Targeting Campaigns - Example

1. Coupons to user1 on

items 3, 4, 5.

2. Coupons to user1 on

item 3, 4, 5; discounts to

user2 when buying item7

with item3, 4, 5.

3. No promotions

Table 15: The subgraphs of different scenarios aligned with campaigns targeting them. User nodes are

displayed in orange while item nodes are green.

After conducting exploratory data analysis, the data analysts observed that the average

purchase length in the Home and Kitchen category was approximately 9.1, similar to Grocery

and shorter than the CD and Music datasets. As a result, they opted to set the max_length

hyperparameter to 10 for the model, while retaining the default settings for other

hyperparameters. Following training and testing on the dataset, the data analysts obtained a

model with the performance illustrated in Fig. 13, and importance scores shown in Fig. 14.

46

Fig. 13: The performance of the model training on Home dataset.

The obvious increasing trends in recommendation performance as the predicted list length

increases are attributed to the fact that items that are relatively more relevant appear later in

the predicted list. This suggests that our model, when applied to the Home and Kitchen

dataset, excels in generating recommendations with a large number of options available for

users to choose from.

Fig. 14: The importance score of subgraphs of user/item = 1, 2 and 0.5.

When generating recommendations, the impact of subgraph2 (representing "Recommend 2")

is the most significant, contributing to predictions with a weight of 0.45. Subsequently,

subgraph3, representing “Flexible”, plays a relatively less influential role, contributing

around 0.29, closely followed by subgraph1 “Recommend 1”.

Thus, in terms of campaign strategy selection, the analysts prioritise the strategy: when a

“Recommend 2” scenario is detected, they provide coupons to user1 on item 3, 4, 5 and

discounts to user2 when buying item7 together with one of item 3, 4, 5. As the "Recommend

47

1" scenario holds the least importance, the campaign team takes no actions on that group of

potential buyers. In general, based on the model results, the analysts decide to carry on

targeting campaign 2. They also utilise our model to predict recommendations for users and

display promotions to them if the "Recommend 2" scenario is detected on them.

The case study can be expanded to encompass more detailed campaign designs, incorporate

additional user group subgraphs as input, and consider a broader range of user/item

interactions such as views, subscriptions, and ratings. This approach aims to finely tailor

campaign strategies to specific user groups, ensuring more precise targeting and potentially

higher effectiveness.

7. Discussion
In current research, we have successfully developed a structure-enhanced and explainable

Graph Neural Network (GNN) model for recommendation systems. Our model demonstrates

commendable strengths in recommendation accuracy and interpretability, offering importance

scores of personalised subgraphs which patterns the model extracts from user-item

interactions and thus enhancing the overall quality of recommendations.

Throughout our study, we highlight the following main findings:

1. Our Subgraph DGSR model demonstrates superior performance compared to the

original DGSR when configured with appropriate settings and meaningful subgraphs

(RQ1);

2. For future research with our model, we recommend a thorough exploration of the

dataset and computational resources to determine optimal hyperparameters;

3. The selection of subgraph lists plays a crucial role in our Subgraph DGSR model,

especially the inclusion of explanatory structures that are prevalent in the training and

testing data.

a. It's essential to diversify the subgraph structures when expanding the list of

subgraphs for the model to focus on;

b. Introducing larger subgraphs without significant patterns into the model does

not directly result in improved performance;

48

c. There is no compelling evidence to suggest that managing the user/item ratio

is necessary to achieve better model performance and higher importance

scores.

However, despite its achievements, certain limitations need to be addressed to fully realise its

potential and applicability in real-world scenarios:

One of the primary drawbacks of our model is its inherent inflexibility in modifying tracking

subgraphs once the training process begins. This limitation poses challenges for adaptability,

especially when dynamic changes occur in user preferences and product behaviours over

time. To overcome this drawback and bolster the model's responsiveness to evolving data,

future research endeavours can explore the integration of transfer learning techniques. By

incorporating transfer learning, we can facilitate fine-tuning the model on new or updated

tracking subgraphs, enabling it to accommodate changes without necessitating complete

retraining. This improvement would undoubtedly enhance the model's practicality and make

it more suited for real-time recommendation scenarios.

Moreover, the generalizability of our model warrants continued investigation. While our

experiments showcased promising results on the Amazon user review dataset, conducting

evaluations on a broader spectrum of datasets from various domains would provide a

comprehensive understanding of the model's ability to adapt across diverse recommendation

scenarios. By subjecting the model to testing on multiple datasets, we can assess its

sensitivity to dataset-specific characteristics and gain insights into potential areas for

refinement. This thorough assessment would instil greater confidence in the model's

applicability and reliability, cementing its position as a versatile recommendation solution.

In conclusion, our study has contributed to the field of explainable recommendation systems

by presenting a robust and interpretable GNN model. We have highlighted both its strengths

and limitations, acknowledging the need for further developments to realise its full potential.

The application of transfer learning to address tracking subgraph constraints and the

comprehensive evaluation of the model on diverse datasets represent promising avenues for

future research. As we move forward, refining and expanding the capabilities of our model

will undoubtedly elevate its practical impact, empowering online retailers and businesses to

deliver accurate, transparent, and personalised recommendations, thereby enriching the user

experience and fostering stronger customer relationships.

49

Reference
Bouritsas, G., Frasca, F., Zafeiriou, S., & Bronstein, M. M. (2022). Improving graph neural network
expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(1), 657-668.

Chang, J., Gao, C., He, X., Jin, D., & Li, Y. (2020, July). Bundle recommendation with graph
convolutional networks. In Proceedings of the 43rd international ACM SIGIR conference on Research
and development in Information Retrieval (pp. 1673-1676).

Chen, C., Guo, J., & Song, B. (2021, July). Dual attention transfer in session-based recommendation
with multi-dimensional integration. In Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval (pp. 869-878).

Chen, T., & Wong, R. C. W. (2020, August). Handling information loss of graph neural networks for
session-based recommendation. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (pp. 1172-1180).

Chen, J., Wang, X., & Xu, X. (2022). GC-LSTM: Graph convolution embedded LSTM for dynamic
network link prediction. Applied Intelligence, 1-16.

Chang, J., Gao, C., Zheng, Y., Hui, Y., Niu, Y., Song, Y., ... & Li, Y. (2021, July). Sequential
recommendation with graph neural networks. In Proceedings of the 44th international ACM SIGIR
conference on research and development in information retrieval (pp. 378-387).

Cordella, L. P., Foggia, P., Sansone, C., & Vento, M. (2001, May). An improved algorithm for
matching large graphs. In 3rd IAPR-TC15 workshop on graph-based representations in pattern
recognition (pp. 149-159).

Covington, P., Adams, J., & Sargin, E. (2016, September). Deep neural networks for youtube
recommendations. In Proceedings of the 10th ACM conference on recommender systems (pp.
191-198).

Feng, Y., You, H., Zhang, Z., Ji, R., & Gao, Y. (2019, July). Hypergraph neural networks. In
Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 3558-3565).

Gao, C., Wang, X., He, X., & Li, Y. (2022, February). Graph neural networks for recommender
system. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data
Mining (pp. 1623-1625).

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017, July). Neural message
passing for quantum chemistry. In International conference on machine learning (pp. 1263-1272).
PMLR.

Goyal, P., Kamra, N., He, X., & Liu, Y. (2018). Dyngem: Deep embedding method for dynamic
graphs. arXiv preprint arXiv:1805.11273.

Guo, L., Tang, L., Chen, T., Zhu, L., Nguyen, Q. V. H., & Yin, H. (2021). DA-GCN: A domain-aware
attentive graph convolution network for shared-account cross-domain sequential recommendation.
arXiv preprint arXiv:2105.03300.

50

Gupta, P., Garg, D., Malhotra, P., Vig, L., & Shroff, G. (2019). NISER: Normalized item and session
representations to handle popularity bias. arXiv preprint arXiv:1909.04276.

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs.
Advances in neural information processing systems, 30.

He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., & Wang, M. (2020, July). Lightgcn: Simplifying and
powering graph convolution network for recommendation. In Proceedings of the 43rd International
ACM SIGIR conference on research and development in Information Retrieval (pp. 639-648).

Huang, H., Fang, Z., Wang, X., Miao, Y., & Jin, H. (2020, July). Motif-Preserving Temporal Network
Embedding. In IJCAI (pp. 1237-1243).

Jin, B., Gao, C., He, X., Jin, D., & Li, Y. (2020, July). Multi-behavior recommendation with graph
convolutional networks. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval (pp. 659-668).

Kang, W. C., & McAuley, J. (2018, November). Self-attentive sequential recommendation. In 2018
IEEE international conference on data mining (ICDM) (pp. 197-206). IEEE.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907.

Koren, Y. (2008, August). Factorization meets the neighborhood: a multifaceted collaborative filtering
model. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery
and data mining (pp. 426-434).

Kumar, S., Zhang, X., & Leskovec, J. (2019, July). Predicting dynamic embedding trajectory in
temporal interaction networks. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining (pp. 1269-1278).

Li, J., Dani, H., Hu, X., Tang, J., Chang, Y., & Liu, H. (2017, November). Attributed network
embedding for learning in a dynamic environment. In Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management (pp. 387-396).

Liu, J., Kawaguchi, K., Hooi, B., Wang, Y., & Xiao, X. (2021). Eignn: Efficient infinite-depth graph
neural networks. Advances in Neural Information Processing Systems, 34, 18762-18773.

Li, G., Liu, H., Li, G., Shen, S., & Tang, H. (2020). LSTM-based argument recommendation for
non-API methods. Science China Information Sciences, 63, 1-22.

Li, Y., Lu, L., & Xuefeng, L. (2005). A hybrid collaborative filtering method for multiple-interests
and multiple-content recommendation in E-Commerce. Expert systems with applications, 28(1),
67-77.

Liu, X., & Song, Y. (2022, June). Graph convolutional networks with dual message passing for
subgraph isomorphism counting and matching. In Proceedings of the AAAI Conference on Artificial
Intelligence (Vol. 36, No. 7, pp. 7594-7602).

Lin, C., Sun, G. J., Bulusu, K. C., Dry, J. R., & Hernandez, M. (2020). Graph neural networks
including sparse interpretability. arXiv preprint arXiv:2007.00119.

51

Li, Z., Shen, X., Jiao, Y., Pan, X., Zou, P., Meng, X., ... & Bu, J. (2020, April). Hierarchical bipartite
graph neural networks: Towards large-scale e-commerce applications. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE) (pp. 1677-1688). IEEE.

Li, Y., Tarlow, D., Brockschmidt, M., & Zemel, R. (2015). Gated graph sequence neural networks.
arXiv preprint arXiv:1511.05493.

Li, J., Wang, Y., & McAuley, J. (2020, January). Time interval aware self-attention for sequential
recommendation. In Proceedings of the 13th international conference on web search and data mining
(pp. 322-330).

Li, Y., Zhou, J., Verma, S., & Chen, F. (2022). A survey of explainable graph neural networks:
Taxonomy and evaluation metrics. arXiv preprint arXiv:2207.12599.

Maron, H., Ben-Hamu, H., Serviansky, H., & Lipman, Y. (2019). Provably powerful graph networks.
Advances in neural information processing systems, 32.

Maron, H., Ben-Hamu, H., Shamir, N., & Lipman, Y. (2018). Invariant and equivariant graph
networks. arXiv preprint arXiv:1812.09902.

Maron, H., Fetaya, E., Segol, N., & Lipman, Y. (2019, May). On the universality of invariant
networks. In International conference on machine learning (pp. 4363-4371). PMLR.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., & Grohe, M. (2019,
July). Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings of the
AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 4602-4609).

Ni, J., Li, J., & McAuley, J. (2019). Empirical Methods in Natural Language Processing (EMNLP).

Qiu, R., Li, J., Huang, Z., & Yin, H. (2019, November). Rethinking the item order in session-based
recommendation with graph neural networks. In Proceedings of the 28th ACM international
conference on information and knowledge management (pp. 579-588).

Qu, L., Zhu, H., Duan, Q., & Shi, Y. (2020, April). Continuous-time link prediction via temporal
dependent graph neural network. In Proceedings of The Web Conference 2020 (pp. 3026-3032).

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994, October). Grouplens: An open
architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM conference on
Computer supported cooperative work (pp. 175-186).

Strub, F., Mary, J., & Gaudel, R. (2016). Hybrid collaborative filtering with autoencoders. arXiv
preprint arXiv:1603.00806.

Sankar, A., Wu, Y., Gou, L., Zhang, W., & Yang, H. (2020, January). Dysat: Deep neural
representation learning on dynamic graphs via self-attention networks. In Proceedings of the 13th
international conference on web search and data mining (pp. 519-527).

Skarding, J., Gabrys, B., & Musial, K. (2021). Foundations and modeling of dynamic networks using
dynamic graph neural networks: A survey. IEEE Access, 9, 79143-79168.

Tiago P. Peixoto, “The graph-tool python library”, figshare. (2014) DOI:
10.6084/m9.figshare.1164194 [sci-hub, @tor]

52

Trivedi, R., Farajtabar, M., Biswal, P., & Zha, H. (2019, May). Dyrep: Learning representations over
dynamic graphs. In International conference on learning representations.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention
networks. stat, 1050(20), 10-48550.

Vu, M., & Thai, M. T. (2020). Pgm-explainer: Probabilistic graphical model explanations for graph
neural networks. Advances in neural information processing systems, 33, 12225-12235.

Weisfeiler, B., & Leman, A. (1968). The reduction of a graph to canonical form and the algebra which
appears therein. nti, Series, 2(9), 12-16.

Wu, L., Sun, P., Fu, Y., Hong, R., Wang, X., & Wang, M. (2019, July). A neural influence diffusion
model for social recommendation. In Proceedings of the 42nd international ACM SIGIR conference
on research and development in information retrieval (pp. 235-244).

Wu, S., Sun, F., Zhang, W., Xie, X., & Cui, B. (2022). Graph neural networks in recommender
systems: a survey. ACM Computing Surveys, 55(5), 1-37.

Wang, Z., Wei, W., Cong, G., Li, X. L., Mao, X. L., & Qiu, M. (2020, July). Global context enhanced
graph neural networks for session-based recommendation. In Proceedings of the 43rd international
ACM SIGIR conference on research and development in information retrieval (pp. 169-178).

Wang, W., Zhang, W., Liu, S., Liu, Q., Zhang, B., Lin, L., & Zha, H. (2020, April). Beyond clicks:
Modeling multi-relational item graph for session-based target behavior prediction. In Proceedings of
the web conference 2020 (pp. 3056-3062).

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural networks?. arXiv
preprint arXiv:1810.00826.

Xie, X., Liu, Z., Wu, S., Sun, F., Liu, C., Chen, J., ... & Ding, B. (2021, October). Causcf: Causal
collaborative filtering for recommendation effect estimation. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management (pp. 4253-4263).

Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., & Achan, K. (2020). Inductive representation learning on
temporal graphs. arXiv preprint arXiv:2002.07962.

Ying, Z., Bourgeois, D., You, J., Zitnik, M., & Leskovec, J. (2019). Gnnexplainer: Generating
explanations for graph neural networks. Advances in neural information processing systems, 32.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., & Leskovec, J. (2018, July). Graph
convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining (pp. 974-983).

Yuan, H., Yu, H., Gui, S., & Ji, S. (2022). Explainability in graph neural networks: A taxonomic
survey. IEEE transactions on pattern analysis and machine intelligence, 45(5), 5782-5799.

Zhang, Y., Defazio, D., Ramesh, A.: Relex: A model-agnostic relational model explainer. arXiv
preprint arXiv:2006.00305 (2020)

53

Zhang, M., Wu, S., Gao, M., Jiang, X., Xu, K., & Wang, L. (2020). Personalized graph neural
networks with attention mechanism for session-aware recommendation. IEEE Transactions on
Knowledge and Data Engineering, 34(8), 3946-3957.

Zhang, M., Wu, S., Yu, X., Liu, Q., & Wang, L. (2022). Dynamic graph neural networks for sequential
recommendation. IEEE Transactions on Knowledge and Data Engineering, 35(5), 4741-4753.

Zhou, L., Yang, Y., Ren, X., Wu, F., & Zhuang, Y. (2018, April). Dynamic network embedding by
modeling triadic closure process. In Proceedings of the AAAI conference on artificial intelligence
(Vol. 32, No. 1).

Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey
and new perspectives. ACM computing surveys (CSUR), 52(1), 1-38.

Zuo, Y., Liu, G., Lin, H., Guo, J., Hu, X., & Wu, J. (2018, July). Embedding temporal network via
neighborhood formation. In Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining (pp. 2857-2866).

54

Appendix 1: Importance Scores of RQ1

CD

Music

Grocery

55

Appendix 2: Script of Subgraph Isomorphism
import dgl
import torch
import numpy as np
from torch_geometric.utils import remove_self_loops, to_undirected
import networkx as nx
from networkx.algorithms import isomorphism

import networkx as nx
import matplotlib.pyplot as plt
import numpy as np

def automorphism_orbits(edge_list, print_msgs=True, **kwargs):

vertex automorphism orbits

directed = kwargs['directed'] if 'directed' in kwargs else False

G_nx = nx.from_edgelist(edge_list, create_using=nx.DiGraph() if directed else nx.Graph())
G_nx.remove_edges_from(nx.selfloop_edges(G_nx))

matcher = isomorphism.GraphMatcher(G_nx, G_nx)
aut_group = [iso for iso in matcher.subgraph_isomorphisms_iter()]

orbit_membership = {v: v for v in G_nx.nodes()}

for aut in aut_group:
for original, vertex in aut.items():
role = min(original, orbit_membership[vertex])
orbit_membership[vertex] = role

make orbit list contiguous (i.e. 0,1,2,...O)
unique_orbits = list(set(orbit_membership.values()))
contiguous_orbit_membership = {orbit: idx for idx, orbit in enumerate(unique_orbits)}

orbit_partition = {}
for vertex, orbit in orbit_membership.items():
if contiguous_orbit_membership[orbit] not in orbit_partition:
orbit_partition[contiguous_orbit_membership[orbit]] = []

orbit_partition[contiguous_orbit_membership[orbit]].append(vertex)

aut_count = len(aut_group)

if print_msgs:
print('Orbit partition of given substructure: {}'.format(orbit_partition))
print('Number of orbits: {}'.format(len(orbit_partition)))
print('Automorphism count: {}'.format(aut_count))

return G_nx, orbit_partition, orbit_membership, aut_count

def subgraph_isomorphism_edge_counts(edge_index, num_edge, **kwargs):

56

edge structural identifiers

subgraph_dict, induced = kwargs['subgraph_dict'], kwargs['induced']
directed = kwargs['directed'] if 'directed' in kwargs else False

Convert edge_index to NetworkX graph
G_nx = nx.from_edgelist(edge_index.transpose(1,0).cpu().numpy(), create_using=nx.DiGraph() if

directed else nx.Graph())
subgraph = subgraph_dict['subgraph']

Check for isomorphism
GM = isomorphism.GraphMatcher(G_nx, subgraph)
sub_isos = [iso for iso in GM.subgraph_isomorphisms_iter()]

edge_dict = {tuple(edge): i for i, edge in enumerate(edge_index.transpose(1,0).cpu().numpy())}
subgraph_edges = list(subgraph.edges())

orbit_len = sum(len(lst) for lst in subgraph_dict['orbit_partition'].values())
counts = np.zeros((num_edge, orbit_len))

#print("-" * 20)
#print("counts size:", counts.shape)
#print(subgraph_dict['orbit_partition'])

for sub_iso in sub_isos:
for i, edge in enumerate(subgraph_edges):
Ensure both nodes of the edge are in the mapping
if edge[0] in sub_iso and edge[1] in sub_iso:

edge_orbit = subgraph_dict['orbit_membership'][i]

mapped_edge = (sub_iso[edge[0]], sub_iso[edge[1]])
if mapped_edge in edge_dict:

counts[edge_dict[mapped_edge], edge_orbit] += 1
counts[edge_dict[mapped_edge], i] += 1

counts = counts / subgraph_dict['aut_count']
return torch.tensor(counts)

def subgraph_counts2ids(data, subgraph_dicts, subgraph_params):

Assuming a single edge type for simplicity
edge_type = data.canonical_etypes[0]
Retrieve edges

src, dst = data.edges(form='uv', etype=edge_type)
edge_index = torch.stack([src, dst], dim=0)

num_edge_by = edge_index.shape[1]

if 'edge_features' in data.edata[edge_type]:
edge_features_dict = data.edata[edge_type]['edge_features']

57

If edge_features is a dictionary, process each tensor in the dictionary
if isinstance(edge_features_dict, dict):
for key, value in edge_features_dict.items():
if not isinstance(value, torch.Tensor):
value = torch.tensor(value)

edge_index, value = remove_self_loops(edge_index, value)
edge_features_dict[key] = value

data.edata[edge_type]['edge_features'] = edge_features_dict
else:
edge_index, edge_features = remove_self_loops(edge_index, edge_features_dict)
data.edata[edge_type]['edge_features'] = edge_features

else:
edge_index = remove_self_loops(edge_index)[0]

num_nodes = data.number_of_nodes()
identifiers = None
for subgraph_dict in subgraph_dicts:
kwargs = {
'subgraph_dict': subgraph_dict,
'induced': subgraph_params['induced'],
'num_nodes': num_nodes,
'directed': subgraph_params['directed']

}

counts = subgraph_isomorphism_edge_counts(edge_index, num_edge = num_edge_by,
**kwargs)

identifiers = counts if identifiers is None else torch.cat((identifiers, counts), 1)

Store the computed identifiers as edge data
data.edges['by'].data['identifiers'] = identifiers.long()

#print(identifiers.long().shape)

return data

58

