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Abstract

Climate change exacerbates flood risk within the Netherlands, a country that is

already situated below sea level. Furthermore, the problem of data scarcity results

into low awareness and clarity regarding damages as a consequence of floods. This

research proposes and demonstrates a novel image recognition algorithm to overcome

data limitations and extract damage proxies from flood scenario maps for fluvial and

coastal floods. We perform a quantile fitting analysis to obtain a loss distribution,

which forms the basis for assessing the viability of CAT bonds as a potential rein-

surance pool. Additionally, we show how increasing awareness of risk exposure yields

benefits not only applicable to insurance company portfolio decision making but also

to national policy considerations. Moving forward, we find that CAT bonds deem a

reasonable option as a reinsurance pool within the Netherlands and show the optimal

strategy for issuing CAT bonds from the insurers’ perspective for a vast range of CAT

bond parameters, by applying both analytical and numerical optimization methods.
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1 Introduction

The Netherlands has a vast history with floods, mainly due to the fact that the country is under

sea level. The threat of climate change within recent years exacerbates the flood risk even more.

Hence, the Netherlands serves as a key example to address and examine the probability and

severity of potential damages and how insurance companies and governments should manage the

increasing risks. Scarcity of historic data poses as one of the major challenges when assessing

costs of flood risk. Largely sophisticated models exist on a global level to provide an indication

of the probability and severity of pluvial, fluvial and coastal flood risks. However, the translation

from such risks to associated costs proves difficult up to today (Dutch Association of Insurers,

2020).

This thesis contributes to existing literature by suggesting a novel methodology to overcome

both the problem of data scarcity and lack of clarity regarding costs due to flood damages.

Additionally, we explore the viability of CAT bonds as a reinsurance pool in the Netherlands.

We believe that this is a pivotal step in the current dialogue about insurance clarity in the

Netherlands (Dutch Association of Insurers, 2022). To overcome data scarcity, we consult LIWO,

Watermanagementcenter Nederland (2023), who present four very well established flood scenario

maps within the Netherlands, all corresponding to a particular probability of occurrence, which

may be interpreted as a quantile of some distribution. Additionally, the scenario maps distinguish

between different flood depths. Note that these flood maps exclude pluvial floods that arise due

to precipitation. This thesis translates the flood scenario maps towards loss distributions. We

focus in particular on damages regarding residential buildings. This subcategory of damages is

highly relevant for insurance companies. Additionally, data on the value of residential buildings

is widely and publicly available within the Netherlands. This evokes the first research question

which formulates as follows:

RQ1: How can we extract and quantify damages to residential buildings from existing

flood risk scenarios within the Netherlands?

This thesis attempts to answer this question in two steps. First, we provide a flexible proced-

ure for translating existing flood scenario maps towards associated damage proxies. This thesis

proposes a novel image recognition approach to overcome data limitation of flood risk. We per-

form the procedure on South-Holland - a province in the Netherlands - and translate four flood

scenario maps to damage proxies for damages to residential buildings. Additionally, we provide

a sensitivity analysis.
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As a second step, we obtain a more comprehensive assessment of the costs by consulting a

quantile fitting analysis. In this analysis, we fit four heavy-tailed distributions to the extracted

damage proxies corresponding to the different quantiles associated with the flood risk scenario

maps. We compare the extracted damage proxy quantiles to the theoretical quantiles of these

distributions by using different error metrics and choose the best distribution fit. This allows us

to simulate yearly as well as multi-yearly losses from a distribution, not only restricted to the

four flood map scenario quantiles. Furthermore, we illustrate how insurance companies benefit

from knowing potential losses within their client portfolio.

In the Netherlands, the Dutch Association of Insurers (DAI) currently works on a plan

regarding compensation for flooding damage caused by major rivers or the sea (Dutch Association

of Insurers, 2022). They propose a system that uses a public-private international reinsurance

pool to obtain wide risk sharing of the damages. The reason for this new plan is that current

rules and regulation on flood damages are not explicit and clear for insurers to get a concrete

overview of the costs corresponding to flood risk.

Currently, other countries make use of Catastrophe (CAT) bonds to partially reallocate risk

towards investors. To our current knowledge, there does not exist any sort of CAT bond within

the Netherlands. We examine whether this is a potential option within the Netherlands by

attempting to answer the second research question:

RQ2: How can insurance companies use CAT bonds as a reinsurance pool for flood risk

within the Netherlands?

In this case, we explore zero-coupon CAT bonds for which investors generally receives a

premium after the bond expires. In the case of damages exceeding an attachment point, the

investor only receives back a fraction of that payment. We consider the insurers’ perspective

and investigate if it is in their best interest to reallocate risk through CAT bonds by using a

mean-variance hedge to determine the optimal amount of CAT bonds for an insurance company

to issue. We consider a variety of risk aversion and bond parameters. We perform mean-variance

optimization both analytically and by simulation, where we simulate hypothetical losses from the

fitted distribution and estimate the payoff from the insurers’ perspective. If the optimal amount

of CAT bonds to be issued is zero, this indicates that CAT bonds prove no viable option as a

reinsurance pool. We extensively investigate the change in the optimal amount of CAT bonds

to be issued when changing parameters individually or combined.

This thesis obtains damage proxies for each flood scenario quantile map, ranging from 44
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million up to 88 billion euros for South-Holland. The degree of these numbers confirms the

importance of clarity about the potential damages due to flooding. Next, We conduct a quantile

fitting analysis to obtain a corresponding loss distribution, where the generalized extreme value

(GEV) distribution performs best. We optimize the distribution parameters such that the the-

oretical quantile values best align with the extracted damage proxies corresponding to their

respective quantiles. This optimization is done by using four error metrics. For this applica-

tion, the mean squared error (MSE) and mean squared percentage error (MSPE) provide the

most accurate distribution fits compared to the mean absolute error (MAE) and mean absolute

percentage error (MAPE).

Next, we find that from the insurers’ perspective, CAT bonds are generally a valid option

as a reinsurance pool for multiple degrees of risk aversion. We find the optimal amount of CAT

bonds to be issued to be above zero for a wide range of bond parameters. Furthermore, we show

how multiple bond parameters affect the optimal strategy for insurers when issuing CAT bonds.

For example, we find that higher risk aversion leads to more CAT bonds to issue to reallocate

more risk. The effects of the payout fraction in the case of a catastrophic event rely on the

premium paid by the insurer. Lastly, the attachment point should be considered carefully as it

has a concave parabolic effect on the optimal amount of CAT bonds to issue.

The remainder of this thesis is structured as follows. Section 2 contains an overview of

relevant literature to help us answer the research questions. Secondly, Section 3 describes and

visualizes the data and provides some summary statistics. Next, Section 4 elaborates on the

methodology and gives some necessary derivations. Section 5 shows in-depth results for every

described method and provides the reader with insights as well as a sensitivity analysis. Section

6 concludes. Lastly, Section 7 addresses limitations and possible further research.

2 Literature Review

2.1 Heavy Tailed Distributions

After obtaining proxies for flood losses for different quantiles, we aim to convert these quantiles

estimates to an actual distribution from which we draw losses. Recent studies use quantile

regression methods to assess tail risks of various macroeconomic and financial variables. Since

the flood scenario maps correspond to their respective quantiles, this is an interesting field to

further examine.

Adrian et al. (2019) estimate a quantile regression of typically four chosen quantiles, which is

equal to the number of quantiles we have available for this thesis. Mitchell et al. (2022) discuss
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robustness regarding the choice of the amount of quantiles used for fitting a distribution. They

find supporting results for the rather arbitrary choice of four quantiles and state that this is often

sufficient in practice.

As a second step, Adrian et al. (2019) fit a skewed-t density function to the quantile estimates

by minimizing the Eucledian distance (or ℓ2 norm) between the empirical quantiles and the

theoretical quantiles of the chosen density. Note that this method goes beyond only the skewed-t

density and other distributions can be used. In the application for flood risk, other distributions

may be more suitable. Due to the heavy-tailed nature of damages due to flood risks, we aim to

fit other heavy-tailed distributions such as the generalized pareto distribution (GPD) and GEV

distribution to quantile data (Hattermann et al., 2014; Morrison and Smith, 2002).

2.2 Theoretical Framework CAT Bonds

The fitted distribution allows for simulating hypothetical losses, which we use to research the

possibility of CAT bonds as a reinsurance pool. CAT bonds still remain absent in the Nether-

lands, while other countries make use of these financial instruments for different purposes. As

final part of this thesis, we conduct research on various implementations of CAT bonds within

the Netherlands. Luckily, literature is rich on CAT bonds and its different possible structures

(Zonggang and Ma, 2013; Stupfler and Yang, 2017; Lee and Yu, 2007).

Zonggang and Ma (2013) show that a general scheme for CAT bonds works as follows. The

insurer or sponsor wishes to transfer risk towards one or multiple investors that in return demand

higher expected returns for accepting the risk. Insurers create a special purpose vehicle (SPV)

that serves to isolate the specific risk that is to be reinsured. The insurer pays a premium to

the SPV in exchange for a pre-defined amount of coverage in the case of a catastrophic event.

On the investor side, the SPV receives principals from the investors and after the bond expires,

pays back the principal plus a premium appropriate for the risk. The SPV securely invests the

received capital into safe short-term securities such as Treasury bonds that are held in a trust

account. The almost riskless returns from these securities are then swapped for more fluctuating

returns that depend on the London Interbank Offered Rate (LIBOR) via a highly rated swap

counter party. The use of swaps allows for both the investors and insurer to mitigate interest

rate risk and default risk. For simplification, we assume no interest or default risk in this thesis.

Visualization of this framework shows in Figure 1.
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Figure 1: Structure of CAT bond transactions. This figure is gathered from Zonggang and Ma
(2013).

In the scenario of a catastrophic event, the investors receive their principal back only partially

or not at all, depending on the CAT bond contract. The SPV in turn pays the insurer the agreed

coverage amount.

3 Data

3.1 Flood Scenario Maps

The data consists of four flood maps of the Netherlands with scenarios that correspond to the

following flood probability quantiles per year: 0.9, 0.99, 0.999 and 0.9999. All flood scenario

maps are retrieved from LIWO, Watermanagementcenter Nederland (2023). The underlying

map contains very detailed information on positions and areas of buildings, roads, water etcet-

era, all distinguished by different colors. Every quantile corresponds to its own flood scenario,

an overarching layer that is placed on the underlying map, containing a pixels with colors corres-

ponding to different maximum flood depths. These flood depths correspond to flood occurrences

associated with the probabilities. The grid size of the pixels varies depending on whether a flood

is fluvial (smaller) or coastal (larger). Figure 2 shows a fully zoomed out 1 in 100 year flood

scenario map of the Netherlands, corresponding to the 0.99 quantile. Observe that the map

contains the option to include municipality borders, which allows us to assess flood damage for

municipalities individually. An important note is that every scenario map has the underlying

assumption that the probability of such a scenario remains the same over the years due to policies

on improving the dikes before 2050. The main purpose of Figures 2 is to give the reader a general

feeling of the visual data that we handle in the remainder of this thesis.
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Figure 2: Visual data of the 1 in 100 year flood risk scenario in the Netherlands. The scenario
shows the maximum depth of the flood for different scenarios in meters.

Hereafter, we use zoom 6 - a setting - of the flood scenario map for the data quantifying

process. This zoom provides for a solid distinction between pixels that do or do not contain

buildings and flooded pixels corresponding to different maximum flood depths, while keeping

data preparation time to a minimum. The scenario maps are not available for download to

the best of our knowledge. In case that the map can be downloaded in high resolution, we of

course should consider the maximum zoom for the most accurate results. We later perform a

sensitivity analysis to investigate the effects of adjusting the zoom. We further elaborate on the

data handling process in Section 4.1.

Due to no available download, we work with screenshots where we prepare six images for every

municipality that perfectly align with each other to the pixel. Consider the municipality Gouda

as an example in Figure 3. Figure 3a includes no underlying map and only the municipality

borders to determine which pixels lie within the municipality. Figure 3b serves to determine

which pixels correspond to buildings. Finally, Figures 3c-3f correspond to the four flood scenario

maps to determine which building pixels are at risk for flooding.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Six exactly aligned screenshots of the municipality Gouda. Images include municipality
borders, a colored underlying map that includes buildings in light grey. Additionally, four flood
scenarios with different maximum flood depths show corresponding to 1 in 10, 100, 1000 and
10000 year floods.

3.2 Buildings

To assist the extraction of damage proxies from the flood scenario maps, we use two additional

data sets. First, we use data from Statistics Netherlands (2023a) that consists of the total

number of buildings per municipality in the Netherlands in January, 2023. We use this data set

in combination with the flood scenario maps to translate the percentages of flooded buildings,

based on pixel color codes, to actual numbers of buildings at risk. The 2023 data set contains

342 municipalities.

A third data set connects the total number of buildings to their respective WOZ value for

every individual municipality. The data is retrieved from Statistics Netherlands (2023b) and

contains average WOZ values in euros per municipality at January, 2023. We use WOZ values as

a proxy for the total possible damage costs to a building. The market value is a good or arguably

better alternative to consider for such a proxy. However, data on WOZ values is easily accessible

and up to date for every municipality, while market values are harder to retrieve publicly. This

last data set for WOZ values is crucial for converting the four flood scenarios and number of

buildings at risk to a proxy of actual potential damages in euros. Table 1 shows some summary
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statistics for both the amount of buildings per municipality and its average WOZ values. Observe

that damages can differ strongly between municipalities due to large differences in both buildings

and WOZ values.

Table 1: Summary statistics of the total amount of buildings and WOZ values for each municip-
ality within the Netherlands

Total Mean Maximum Minimum
Buildings 9213833 26707 507344 733
WOZ values (e) 378614 985000 192000

The flood scenario maps assign the same color code to every building, so we are not able

to differentiate between residential and other buildings. Therefore, we make the assumption

that every building is a residential building. Pixels may contain one or multiple buildings,

depending on the zoom. This may results into some inaccuracies in the estimation of damage

proxies. However, this thesis mainly focuses on providing a general procedure of extracting

damage proxies from flood scenario maps. We aim to approach the potential damages and are

bond to make some assumptions in the process due to time limitations.

3.3 Depth-Damage Curves

Available flood maps of the Netherlands include the maximum flood depth in meters to give

additional insights about the severity of the flood. Since higher flood depths result into higher

damage costs and vice versa, this should be taken into account when creating a proxy for damage

costs.

A common way to estimate direct flood damages is through depth-damage curves (Huizinga

et al., 2017). Such curves distinguish flood damages at specific depth ranges, often based on

historic events or expert judgements. Huizinga et al. (2017) present depth-damage curves for

different countries and damage categories. Figure 4 shows depth-damage curves for residential

building damages for countries located in Europe, including the Netherlands. The damage factor

is equal to the percentage of the sum insured at risk. We use the damage factors for the Neth-

erlands in this thesis to access damages for different flood depths. Based on this figure, a Dutch

insurance company expects a claim of 10% of the total sum insured when a building is flooded

by 2 meters.
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Figure 4: Depth-damage curves for a selection of European countries, gathered from Huizinga
et al. (2017). Damages are considered as percentage of the total sum insured for residential
buildings and include inventory damages.

For simplicity, we do not go into different damage categories and hence consider every building

to be residential. We deem this assumption reasonable due to two reasons. One, residential

buildings within the Netherlands take up to over 87% of total buildings (Statistics Netherlands,

2023a). Two, depth-damage curves show that maximum damage costs are lower for commerce

and industry (Huizinga et al., 2017). This indicates that we do not neglect huge costs and at

worst overestimate such damages slightly, which is a minor issue in the context of maximum flood

losses. A last note is that the depth-damage curve is based on residential buildings and content.

We are aware that this may differ from the WOZ value that we use in this thesis. However, the

WOZ value serves as a good proxy and our methodology allows for insurance companies to plug

in their own depth-damage curves easily into the model. Moreover, while we the WOZ value does

not include content, it overestimates the total insured sum for the residential building without

content as the total insured sum would only consider the rebuilding value.

4 Methodology

In this Section, we define notation and describe the methods used for answering the research

questions. First, we extensively define the procedure of extracting damage proxies from the

flood scenario maps. Secondly, we describe the four distributions and how we perform the

quantile fitting analysis with different error metrics. Next, we precisely show the relevance of

this research through an application. Finally, we show derivations for analytical optimization of

the mean-variance hedge for insurers’ perspective when issuing CAT bonds and shortly dive into

some effects of CAT bond parameters for which no results are necessary.
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4.1 Flood Scenarios to Damage Proxies

First, we translate the scenario maps to damage estimates. Due to time restrictions, we perform

our analysis on South-Holland, a province of the Netherlands. This changes nothing to the

procedure itself as the methodology is the same for every province within the Netherlands. The

data preparation requires many assumptions and confirms the challenges due to data scarcity

within the field of flood risk modeling. We keep track of every assumption that is necessary

for translating the flood risk scenario maps to damages and what consequences follow. For

simplification purposes, we only consider the data quantifying process for one municipality in

this methodology: Gouda (remember Figure 3). Keep in mind that the data quantifying process

is equal for all other municipalities within the Netherlands.

4.1.1 Image Recognition Algorithm

We use matplotlib.image in Python to convert images to pixels that store the pixel position

and RGB-color codes. This is an essential first step for differentiating between different colors

within the image and to see which fraction of buildings falls victim to a flood within different

scenarios. We start by defining the borders of the municipality and use a self written flood-fill

algorithm (like the bucket tool in paint) to determine all of the pixels that lie within the borders

of the municipality. Figure 5 shows pixel data of the municipality Gouda.

(a) Data translation to pixel data for the mu-
nicipality Gouda, where black pixels represent
the borders of the municipality. The axes cor-
respond to the pixel positions.

(b) Data translation to pixel data for the mu-
nicipality Gouda, where black pixels represent
the area within the borders of the municipality.
The axes correspond to the pixel positions.

Figure 5: Representations of the borders and area within the borders of the municipality Gouda
after running the flood-fill algorithm on the screenshots of the underlying map of the municipality.

After we know the area that lies within the borders of the municipality, we determine every

pixel that corresponds to buildings - grey RGB color codes - within this area. The total number

of pixels that corresponds to buildings is considered the full amount of buildings within the
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municipality at hand. Gouda counts 38157 residential buildings in total. If for example 100 pixels

correspond to buildings based on RGB color codes, one pixel corresponds to 381.57 buildings.

After running the algorithm, the pixels corresponding to buildings show in Figure 6a. Lastly,

we load the screenshots for all flood scenarios and divide every pixel in a certain depth range by

color codes. Since we exclusively consider flood damage to buildings, we only determine flooded

pixels for pixels that show black in 6a. One example, the 0.999 probability flood scenario for

Gouda shows in Figure 6b.

(a) Pixel data for Gouda. Black pixels
contain one or multiple buildings. The
axes correspond to the pixel positions.

(b) 1 in 1000 year flood scenario pixel data
for Gouda. Each color represents a max-
imum flood depth for each pixel that con-
tains buildings.

Figure 6: Figure with representations of all the buildings in Gouda and (un)affected buildings
in the 0.999 probability flood scenario.

Figure 6b assigns different maximum flood depth ranges to pixels that contain buildings and

retrieves percentages of pixels at risk for different maximum flood depths.

4.1.2 Quantifying Pixel Data

Now, we estimate damage proxies from the obtained pixel data. We quantify the pixel data

for every flood scenario separately by multiplying the pixel percentages per depth with their

respective damage factors - percentages of the insured sum - of Huizinga et al. (2017). We

consider the average damage factor within the maximum flood depth ranges. For example, for

maximum flood depth 1.0− 1.5m, we consider the damage factor for 1.25m. Next, we multiply

the sum of these fractions with the total amount of buildings and the average WOZ values for the

municipality. This concludes the data quantifying process as we obtain the amount damages in

euros for each flood scenario for a particular municipality. For all of South-Holland, we retrieve

damage proxies by aggregating results for every individual municipality within South-Holland.

Assessing flood risk for a province seems the most plausible, due to substantial differences in

flood risk among provinces. This leads to differences in policies among provinces, where some
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provinces need to consider multiple dike rings and rivers, while other provinces have almost no

flood risk at all. This is the same for insurance companies that often focus on broader areas

opposed to the whole country or just municipalities. However, the data quantifying process is

flexible and can also be performed on a (multiple) multiplicity level or national level.

Additionally, we perform the calculation where we treat South-Holland as a municipality.

This is possible since we know the average WOZ value for South-Holland. We perform this last

calculation for comparison purposes and if results are relatively equal to aggregated results, this

saves up time in the data preparation and we are able to perform analysis for the Netherlands

as a whole. However, we hypothesize that results will differ due to the varying range of WOZ

values per municipality (Table 1).

Lastly, we make notation more general for obtaining damage proxies for an arbitrary Dutch

province by aggregating results for municipalities. Let Φ be the set of provinces in the Nether-

lands. Let ϕ ∈ Φ be some province and denote flood scenario quantile q ∈ (0.9, 0.99, 0.999, 0.9999).

Given a set of municipalities in province ϕ: Mϕ and a set of possible maximum flood depths D,

the calculation procedure for damage proxies for a municipality and province follow in Equation

(1) and (2) respectively. For an arbitrary municipality m ∈ Mϕ:

L̂(m,q) =
∑
d∈D

x(m,d,q) · dfd · bm · wozm, (1)

L̂(ϕ,q) =
∑

m∈Mϕ

L̂(m,q), (2)

with L̂(m,q) and L̂(ϕ,q) the estimated yearly losses - damage proxies - for municipality m and

province ϕ and scenario quantile q respectively. Moreover, where x(m,d,q) the fraction of pixels

corresponding to buildings in municipality m and maximum flood depth d in scenario quantile

q. Additionally, dfd denotes the (interpolated) damage factors of Huizinga et al. (2017) that

correspond to maximum flood depth d. Lastly, bm and wozm represent the total buildings

and average WOZ values of municipality m respectively. We perform an alternative estimation

approach by using damages per m2, which we elaborate upon in Appendix A. However, we

choose to solely use the damage factor approach, since this includes more municipality specific

information such as average WOZ values.

4.1.3 Application for Underwriting

For an underwriters’ perspective, it is not only relevant to understand possible damages within

a municipality or province, but rather potential damages within its client portfolio consisting of
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residential buildings. We create two client portfolios of 10 addresses within South-Holland, P1

and P2. For privacy reasons, we do not mention the exact postal codes and housing numbers.

However, we describe the methodology for obtaining the addresses so replication is possible

nevertheless. We consult Funda (2023) for houses on sale filtered within the last 24 hours. We

use this method to include randomness within the portfolios. Additionally, this method enables

for using market values of the residential buildings instead of using the average WOZ value for

the municipality. The use of market values allows for more specific and accurate results. Be

aware of implied bias when using houses on sale at Funda, since this potentially excludes areas

with low sales or with sales through alternative channels rather then through Funda.

We form portfolios P1 and P2 at 3pm September 9th 2023 and 12pm September 20th 2023

respectively. We then find the pixels that correspond to all ten addresses within the portfolios and

retrieve four quantiles with corresponding losses for each portfolio. This provides insurers with

clarity on their risk exposure. We also show quantile fitting and simulation for both portfolios.

now use the program to simulate damage quantiles specifically for the portfolio of interest.

This proves the versatility of the flood-to-damages procedure and shows that the procedure is

applicable in multiple scenarios, both nationally and on smaller scales.

4.2 Damage Proxies to Loss Distribution

After obtaining estimates for damage proxies, we fit multiple distributions to the quantiles of

the respective damage proxies to get a distribution for losses L. One could consider a variety

of distributions to fit to the quantile data. we expect high losses far in the right tail, growing

as the quantiles get closer to one. Hence, We opt for distributions with heavy tails to best

imitate this tail behaviour. In this thesis, we consider four possible distributions for L, namely

the classic Student t-distribution and a skewed Student t-distribution. Moreover, we consider

the GPD and the GEV distribution. Define the set of distributions in the same order as above:

D = (st, sst, gpd, gev) for notational purposes.

4.2.1 Distribution Notation

We first consider the classic Student t-distribution for which the probability density function

(PDF) denoted as fst(·) formulates as in Equation (3).

fst(l;µ, σ, ν) =
Γ
(
ν+1
2

)
√
νπσ Γ

(
ν
2

) (1 + 1

ν

(
l − µ

σ

)2
)− ν+1

2

, (3)

with for now, losses l ∈ R and where location parameter µ ∈ R, scale parameter σ ∈ R>0 and

13



degrees of freedom ν ∈ R≥1
1. When ν = ∞, the distribution reduces to a Gaussian distribution

with mean µ and variance σ2.

Next, we follow the procedure of quantile fitting from Adrian et al. (2019), where they use

with a skewed version of the classic univariate Student t-distribution, developed by Azzalini and

Capitanio (2003). The PDF of the univariate skewed Student t-distribution formulates as in

equation (4).

fsst(l;µ, σ, α, ν) =
2

σ
fst

((
l − µ

σ

)
; ν

)
Fst

α

(
l − µ

σ

) √√√√ ν + 1

ν +
(
l−µ
σ

)2 ; ν + 1

 , (4)

where shape parameter α ∈ R and Fst(·) the cumulative distribution function (CDF) of the classic

Student t-distribution. The special case α = 0 reduces this distribution to the classic Student t-

distribution. Mitchell et al. (2022) argue that the parametric assumption of using the univariate

skewed Student t-distribution delivers gains compared to (mixed) Gaussian distributions when

the true density is unimodal. Floods are irregular events and associated yearly damages should

generally be close to zero. Therefore, we hypothesize unimodality around zero for the real loss

distribution. This supports the idea of using a skewed Student t-distribution to fit the flood

damage quantiles. The true density may also be bimodal in the case that losses are centered

around the same number, introducing a second peak. However, we expect damages to vary per

flooding and therefore unimodality of the true density.

Lastly, we consider two distributions that are often used in the context of heavy tailed (flood)

data, namely the GPD and the GEV distribution (Wang, 1991; Morrison and Smith, 2002). The

GEV distribution combines the Gumbel, Fréchet and Weibull distributions, which all classify as

extreme value distributions. Properties of the GPD and GEV distribution are well established.

Both distributions include a location, scale and shape parameter ξ ∈ R. The PDF for the GPD

shows in Equation (5).

fgpd(l;µ, σ, ξ) =


1
σ

(
1 + ξ(l−µ)

σ

)− 1
ξ
−1

, if ξ ̸= 0

1
σ exp

(
− l−µ

σ

)
, if ξ = 0

. (5)

Additionally, the PDF for the GEV distribution formulates as follows:
1Hodges (2013) show that the degrees of freedom parameter is not strictly restricted to be integer.
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fgev(l;µ, σ, ξ) =


1
σ exp

(
−
(
1 + ξ l−µ

σ

)− 1
ξ

)
, if ξ ̸= 0

1
σ exp

(
− exp

(
− l−µ

σ

))
, if ξ = 0

, (6)

where the parameter space of loss l depends on ξ in the following way:

l ∈ [µ− σ

ξ
,∞) , if ξ > 0 ,

l ∈ R , if ξ = 0 ,

l ∈ (−∞, µ− σ

ξ
] , if ξ < 0 .

(7)

A last important general note is that damages cannot be negative. Therefore, the distribu-

tions should be truncated from the left at zero. This indicates the universal restriction l ∈ R≥0,

of course also keeping in mind constraints on the range of l specific to the distributions. To

obtain truncated versions of the four PDFs, we divide the PDF of each distribution i ∈ D by

1− Fi(0; θ), where Fi(·) denotes the CDF of distribution i with corresponding parameter set θi

(Jamalizadeh et al., 2009). This division guarantees the PDFs to integrate to one.

To our best knowledge, R packages only offers the possibility of truncation only for the

classic Student t-distribution (crch). Numerically optimizing truncated versions for the other

distributions is extremely time consuming. For this reason, we only use the truncated version

of a Student t-distribution. For the other distributions, we truncate the distributions where we

use the parameter estimates for the non-truncated versions and assess whether the truncated

versions remain adequate. Additionally, we investigate the consequences of using non-truncated

distribution fits and setting negative values to zero when simulating.

Another possibility is to apply a log-transformation by for example considering the losses to

be log-normally distributed. However, while parameters are clear for the log-normal distribution,

such a well known distribution do not exist for heavy-tailed distributions like the GPD and GEV

distributions. Moreover, it is not possible to first do a log-transformation on the data and then

fit the heavy-tailed distribution, since the distribution fit to the log of the quantiles still needs to

be truncated. Hence, in this thesis we continue with the truncation approach or the simulating

and setting negative values to zero approach discussed above.

4.2.2 Distribution Moments

Information on the first and second moments for the four distributions are essential for the mean-

variance hedge that follows later in this thesis. An inconvenient yet important note is that the
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moments do not exist under specific circumstances. To prevent confusion hereafter regarding the

location parameter and the first moment, we denote the first moment as E[L] = µi for i ∈ D.

For the skewed and classic Student t-distribution, both the mean and variance are undefined

if ν ≤ 1. Additionally, the variance is equal to ∞ if 1 < ν ≤ 2. For the GPD, the mean is

undefined if ξ < 1 and the variance is undefined for ξ < 1
2 . Finally, for the GEV distribution, it

holds that µgev = ∞ if ξ ≥ 1 and the variance is equal to ∞ if ξ ≥ 1
2 . Note that the existence

of the moments depends only on ν and ξ. We keep this in mind when obtaining quantile fit

distribution parameter estimates.

4.2.3 Quantile Fitting

Adrian et al. (2019) introduce quantile forecast estimates relating to the τ -th quantile of losses

L as Q̂τ (L). We treat the quantile estimates retrieved from the flood maps as expert judgement.

Hence, in our notation, the quantiles are not conditional on a regressor set. Additionally, their

method considers quantiles at a finite number of τ , say [τ1, . . . , τk], where 0 < τ1 < τ2 < · · · <

τk < 1 for which we use k = 4.

Adrian et al. (2019) and Mitchell et al. (2022) use the MSE for the quantile fitting procedure.

Since flood risk quantiles might contain extreme values in the tail, this method might prove to

be too sensitive to outliers. Additional other widely used error metrics are the MAE, MSPE and

the MAPE (De Myttenaere et al., 2016; Armstrong and Collopy, 1992). The MAE is less prone

to outlier data compared to the MSE due to the absence of squaring high values. The MSPE

and MAPE measure the errors relative to their respective values and may therefore be a good

choice as values may differ a lot over the quantiles. A drawback of the MSPE and MAPE is that

values close to zero explode due to division, resulting in overvaluing such quantiles, which we

keep in mind.

Therefore, we minimize the distance of the damage quantiles estimates with respect to the

distribution quantiles of distribution i not by only using the MSE, but in four ways. We use the

MSE, MAE, MSPE and MAPE as error metrics to compare the damage proxy quantile values

and the theoretical quantile values. We examine outcomes based on the different scores and make

a well-considered choice based on the results. The minimization formulas show in Equations (8)

through (11).
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θ̂MSE,i = arg
θi

min
∑
τ

(
Q̂τ (L)− F−1

i (τ ; θ)
)2

, (8)

θ̂MAE,i = arg
θi

min
∑
τ

∣∣∣Q̂τ (L)− F−1
i (τ ; θ)

∣∣∣, (9)

θ̂MSPE,i = arg
θi

min
∑
τ

(
Q̂τ (L)− F−1

i (τ ; θ)

Q̂τ (L)

)2

, (10)

θ̂MAPE,i = arg
θi

min
∑
τ

∣∣∣∣∣Q̂τ (L)− F−1
i (τ ; θ)

Q̂τ (L)

∣∣∣∣∣, (11)

where F−1
i (·) denotes the inverted CDF of distribution i ∈ D.

Due to the choice of k = 4, there is a restriction for fitting distributions. |θ| ≤ 4 is re-

quired since more parameters result in identification issues. In the case of the skewed Student

t-distribution, we estimate exactly four parameters, which means an exactly identified cross sec-

tional regression fit of the quantile estimates from flood maps on the quantiles of the skewed

Student t-distribution. All other distributions have less than 4 parameters and thus do comply

with the restriction due to the choice of k.

4.3 CAT Bonds

We now possess distribution fits for yearly losses L. Next, we examine CAT bonds as a reinsur-

ance pool. We examine different parameters and payout structures and discuss their advantages

and disadvantages to get insights on whether CAT bonds deem a viable option for the Nether-

lands when reinsuring flood risk for residential buildings.

We work with yearly losses due to the nature of the flood scenario maps. We assume yearly

losses to be identically and independently distributed from the distribution fits. CAT bonds

may have maturities of more than one year. Hence, we define the agregated loss process for a

time-period of T years, that formulates as in Equation (12).

L(T ) =

T∑
t=1

Lt, (12)

where Lt denote the losses for year t. Observe that L(1) = L1.

The pricing structure of CAT bonds is fundamentally a function of (aggregated) losses

f(L(T )), where we often consider expected losses E[L(T )] (Zonggang and Ma, 2013). CAT bond

prices typically associate with an attachment point a. This point is a certain threshold for

which policy holders become eligible to receive compensation. When losses increase towards the

attachment point, the probability of investors not receiving their full payment back increases.
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Consequently, this is why expected losses pay a role in the pricing structure of CAT bonds. We

set the range for the attachment point a ∈ R≥0, since losses are nonnegative. These fundamental

insights are also relevant for insurance companies. In this thesis, we focus on the insurers’ per-

spective of CAT bond payoffs and effects of changing parameters within the bond structure.

Note that really small values of a are not logical for the bonds, unless an insurance company

wants to completely eliminate their risk irrespective of the costs of issuing bonds.

We follow notation of Zonggang and Ma (2013). Consider a zero-coupon CAT bond, with

principal y in euros, maturity T and attachment point a. Define PCAT, a random variable that

corresponds to the payout fraction of the CAT bond that is paid to the investor. Observe that this

variable is independent of the CAT bond principal or premium paid by the insurance company.

Mathematical notation shows in Equation (13).

PCAT =

p ; L(T ) > a

1 ; L(T ) ≤ a
, (13)

where p ∈ [0, 1) represents the portion of the principal that investors receive when losses

surpass the attachment point a. Additionally, the insurance company pays a premium r to the

investor in return for taking over a piece of the risks, depending on the attachment point. An

alternative representation of PCAT shows in Equation (14).

PCAT = pI(L(T ) > a) + I(L(T ) ≤ a). (14)

I(·) an indicator function that takes either value one or zero depending on whether the event in

the brackets occurs.

Now consider a random variable that denotes the payoff for the insurers’ perspective. We

exclude collected premiums that clients pay in return for insurers, since this is some fixed constant

this is irrelevant for the maximization and determination for the amount of CAT bonds to be

issued. We define insurers’ payoff PINS as follows:

PINS = −L(T ) + βy − βy(1 + r)PCAT, (15)

where β ∈ Z≥0 denotes the amount of issued CAT bonds, PCAT as defined above and with y the

price for one CAT bond in billions of euros. For example, y = 1 corresponds with a CAT bond

being worth one billion euros. The positive term that includes β denotes the money received

through principals paid by the investors, while the negative term that includes β denotes the

money paid back to investors, depending on PCAT. This provides for a quantifying way to
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determine whether CAT bonds are a reasonable choice for insurance companies to reinsure flood

risk, since β = 0 implies that the optimal choice for the insurer is to not issue any CAT bonds.

4.3.1 Mean-Variance Hedging

We use mean-variance hedging, originally proposed by Markowits (1952), to determine an optimal

strategy for insurance companies regarding the issuing of CAT bonds. The objective is to max-

imize the payoff for the insurer PINS, while keeping risks to a minimum. For this maximization

problem (Schweizer, 2010), we maximize the insurers’ payoff for β:

max
β

E[PINS]− γVar(PINS), (16)

where γ denotes the risk aversion of the insurer, with higher values for γ indicate a higher risk

aversion of the insurance company. Intuitively, the expected payoff is negative since we exclude

client premiums from the equation. observe that increasing γ has a negative impact on the

maximization function as the variance is always non-negative.

In reality, insurance companies are restricted to decide on issuing CAT bonds at current time

and cannot adjust their initial strategy over the years. They may choose to issue additional CAT

bonds in following years, when next year is now current time. However, this excludes dynamic

decision making, which allows for relatively simpler maximization.

4.3.2 Analytical Derivations

To analytically solve the mean-variance hedge, we require derivations for both moments in the

maximization function from Equation (16). We provide analytical derivations for maturity T = 1.

For notational convenience, denote L = L(1), with mean E[L] = µi, variance Var(L) = σ2
i and

CDF Fi(l), where i ∈ D. We make the following derivations for the moments of interest with

maturity T = 1:

E[PINS] = −E[L] + βy − βy(1 + r)E[PCAT]

= −µi + βy − βy(1 + r)(P (L ≤ a) + pP (L > a))

= −µi + βy − βy(1 + r)(Fi(a) + p(1− Fi(a)),

(17)

Var(PINS) = Var(L) + β2y2(1 + r)2Var(PCAT) + 2βy(1 + r)Cov(L,PCAT). (18)
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Since L and PCAT are not independent, the variance expression from Equation (18) requires some

more work. Let us first derive the expression for Var(PCAT).

Var(PCAT) = E[Var(PCAT|L)] + Var(E[PCAT|L])

= Var(E[PCAT|L])

= E[E[PCAT|L]2]− E[E[PCAT|L]]2

= p2(1− Fi(a)) + Fi(a)− (p(1− Fi(a)) + Fi(a))
2

= −Fi(a)
2p2 + 2Fi(a)

2p+ Fi(a)p
2 − Fi(a)

2 − 2Fi(a)p+ Fi(a),

(19)

where we use the fact that E[Var(PCAT|L)] = 0 as PCAT is a fixed number if L is known.

An alternative approach to get an expression for Var(PCAT) follows from using the alternative

representation from Equation (14). The indicator functions are Bernoulli distributed random

variables I(L ≤ a) ∼ B(Fi(a)) and I(L > a) ∼ B(1− Fi(a)) = 1− I(L ≤ a). We then derive the

variance of the CAT bond payoff for the insurer as follows.

Var(PCAT) = Var(pI(L > a) + I(L ≤ a))

= p2Var(I(L > a)) + Var(I(L ≤ a)) + 2pCov(I(L > a), I(L ≤ a)))

= p2Fi(a)(1− Fi(a)) + F (a)(1− Fi(a))

+ 2p(E[I(L ≤ a)I(L > a)]− Fi(a)(1− Fi(a)))

= p2F (a)(1− Fi(a)) + F (a)(1− Fi(a))

+ 2p(E[I(L ≤ a)(1− I(L ≤ a)]− Fi(a)(1− Fi(a)))

= p2Fi(a)(1− Fi(a)) + Fi(a)(1− Fi(a))− 2p(Fi(a)(1− Fi(a)),

(20)

where we make use of the properties of the Bernoulli distribution and the fact that the second

moment is equal to it’s first moment. The last expression simplifies exactly to the result in

Equation (19).

Next, we derive the covariance in Equation (18). The derivation shows in Equation (21).

Cov(L,PCAT)
(14)
= Cov(L, pI(L > a) + I(L ≤ a))

= E[LpI(L > a) + LI(L ≤ a))]− µi(p(1− Fi(a)) + F (a))

=

a∫
0

lfi(l)dl + p

∞∫
a

lfi(l)dl − µi(p(1− Fi(a)) + F (a)),

(21)
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where the first integral starts at 0 due to distribution truncation. For non-truncated distribu-

tions, this first integral starts at −∞. Note that the integrals and µi depend on the particular

distribution functions of distribution i ∈ D. We expect Cov(L,PCAT) to be negative, since higher

losses increase P(L > a), which decreases the value of PCAT since p < 1.

We now have the full derivation of Equation (18). Aside from this derivation, we now optimize

the resulting minimization equation (24). We do this derivation analytically by taking the

derivative of the objective function with respect to β and setting the derivative equal to zero.

First work out the function

f(β) = E[PINS]− γVar(PINS)

= −µi + βy − βy(1 + r)(Fi(a) + p(1− Fi(a)))

− γ(Var(L) + β2y2(1 + r)2Var(PCAT) + 2y(1 + r)βCov(L,PCAT),

(22)

where we take the derivative and set it equal to zero as follows.

f(β)′ = y − y(1 + r)(Fi(a) + p(1− Fi(a)))− 2γβy2(1 + r)2Var(PCAT)

− 2γy(1 + r)Cov(L,PCAT) = 0,
(23)

which we solve for β to find the optimal amount of CAT bonds to be issued from the insurer’s

perspective. We denote the optimal β as

β∗ = max

{
0,

1
(1+r) − (Fi(a) + p(1− Fi(a)))− 2γCov(L,PCAT)

2y(1 + r)γVar(PCAT)

}
, (24)

where β∗ is the optimal solution of the mean-variance hedge and hence the optimal number

of CAT bonds with maturity T = 1 to issue for the insurer. Hereafter, we refer to 1
(1+r) −

(Fi(a) + p(1 − Fi(a))) as the expectation term, −2γCov(L,PCAT) as the covariance term and

2y(1 + r)γVar(PCAT) as the variance term. Note that we make sure that β∗ ≥ 0 by taking the

maximum of the expression and zero.

An important last note is that, as stated in Section 4.2.2, E[L] and Var(L) may not exist

under some circumstances. At first glance, these terms are not present in the calculation for

β∗. However, a nonexistent mean results in divergent or non-solvable integrals in the calculation

of Cov(L,PCAT). Hence, a nonexistent mean results in no possible analytical solution for the

maximization problem. We may obtain β∗ via simulation results of the distribution of L. Note
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that this problem with the integrals relates to the E[L] and that a nonexistent Var(L) does not

evoke any problems in the calculation of β∗, as this term does not appear in Equation (24).

4.3.3 Effects of CAT bond parameters

Consider the derivations from the previous Section. On forehand before obtaining results, we

explore causal effects on β∗ when changing individual parameters, ceteris paribus. Parameters

to consider are y, γ, r, p and a. Keep in mind that the maturity is set to one year.

Starting with y, this parameter shows only once in Equation (24), which is in the denominator.

Therefore, increasing y (the bond price) decreases the amount of bonds to be issued by the same

factor. This makes sense as the bond price does not matter as a 10 times higher price would

result in 10 times less issued bonds and results to the same optimum. Since β can only be integer,

lower bond prices provide more accurate results since there is less chance of rounding β∗ after

optimization.

Next, consider the risk aversion parameter γ. This parameter appears twice in the expression

for β∗. Using Equation (24), we obtain the following limits for γ:

lim
γ→∞

β∗ = max

{
0,

−Cov(L,PCAT)

y(1 + r)Var(PCAT)

}
,

lim
γ→0+

β∗ = max {0,±∞} ,
(25)

where the second limit is either positive infinity when the expectation term is positive and

zero if the expectation term is negative. Observe that when the risk aversion parameter goes

towards infinity, the optimal decision in the limit only depends on the variance and covariance

terms, neglecting the expectation term. Contrarily, when γ approaches zero, the optimal decision

depends solely on whether the fixed part is profitable (issue infinite bonds) or not profitable (issue

no bonds), which depends on the premium and attachment point. An additional note is that β∗

cannot be negative as an insurer cannot issue a negative amount of CAT bonds, so the limit of

β∗ when γ approaches zero is either positive infinity or zero.

We now provide an important insight on the role of the risk aversion parameter γ in this

particular mean-variance hedge. First, observe that for the first limit, β∗ converges to a fraction

with both the covariance and variance term. We expect Cov(L,PCAT) to be negative, so the frac-

tion becomes a positive number. Moreover, we established that β∗ goes towards positive infinity

or zero when γ goes to zero. Generally, we expect this to be zero opposed to positive infinity,

since investors should receive a higher premium than the expected payoff due to uncertainties,

such that 1
(1+r) − (Fi(a)+p(1−Fi(a))) < 0. Therefore, increasing γ leads to an optimal solution
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of more CAT bonds to issue, converging to the first limit. This result makes sense intuitively,

since a higher risk aversion for insurance companies implies that they wish to reallocate more

risk towards investors via CAT bonds.

Now consider the premium r, the risk premium paid to investors for taking over a portion

of the risk. We see two occurrences in the expression for β∗. Since (1 + r) ≥ 1 and using the

fact that r only shows in denominators within the equation, a higher r results in a lower β∗.

This makes sense as bonds are more costly to issue and hence less attractive for insurers when r

increases.

The effects of a and p are less prevalent, since they appear in both the variance and covariance

terms as well as the expression itself for β∗. Intuitively, we hypothesize that a higher payout

fraction p in the case of a catastrophe leads to a lower β∗. Note that a higher p becomes closer to

one, which decreases Var(PCAT), which in turn would decrease β∗. This holds true in Equation

(20), since p2 < 2p for every value of p. However, a higher payout fraction does not necessarily

decrease β∗, since the result is also dependent on the relation between the expectation and

covariance term in the nominator.

A higher attachment point corresponds to more risk exposure for insurance companies since

the catastrophic event is defined for larger losses. For attachment point a, such that Fi(a) = 0.5,

Var(PCAT) is highest. Increasing or decreasing a from that point decreases the variance term

towards zero as Fi(a) → 1 or Fi(a) → 0. Moreover, the covariance term also goes towards zero

as a increases as it follows for Cov(L,PCAT) that

lim
a→∞

Cov(L,PCAT) =

∞∫
0

lfi(l)dl + p

∞∫
∞

lfi(l)dl − µi = µi + 0− µi = 0,

lim
a→0+

Cov(L,PCAT) =

0∫
0

lfi(l)dl + p

∞∫
0

lfi(l)dl − µi = 0 + pµi − pµi = 0,

(26)

This together with the effects described for the variance term indicate that if a either decreases

towards zero or increases towards positive infinity, β∗ converges to the expectation term, blown

up by the variance term. Due to β∗ restricted to be nonnegative, this means that β∗ converges

to zero when the expectation term is zero or negative and converges to positive infinity when the

expectation term is positive. The limits for the expectation are as follows:
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lim
a→∞

(
1

(1 + r)
− (Fi(a) + p(1− Fi(a)))

)
=

1

(1 + r)
− 1,

lim
a→0+

(
1

(1 + r)
− (Fi(a) + p(1− Fi(a)))

)
=

1

(1 + r)
− p,

(27)

where the first limit is generally negative since r ≥ 0 and we expect the second limit to be

positive due to r and p usually relatively small. Therefore, β∗ is expected to become positive

infinity for really small a and zero for large values of a that correspond to Fi(a) → 1.

The effects regarding changes in the attachment point intuitively make sense as high values

of a indicate essentially no variance or covariance since losses have almost no chance of exceeding

the attachment point, making PCAT close to a fixed number. A similar explanation follows for a

close to zero, indicating that PCAT is almost always equal to p.

4.3.4 Optimization by Simulation

Lastly, we perform the mean-variance hedge by simulation of losses. We perform the analysis

for the chosen most appropriate distribution fit. Numerical optimization allows us to consider

other maturities. Hence, we consider maturities ranging from 1 to 10. For optimization, we use

the optimize function from R and set the seed to zero. This creates a small bias in simulation

outcomes. However, this allows for replication. Moreover, the bias becomes negligible as the

amount of simulations becomes large. For every maturity, we draw 1, 000, 000 independent

aggregated losses from which we estimate β̂∗.

5 Results

In this Section, we provide the results after using the data and methodologies from previous

sections. First, we show the translation of flood risk quantiles towards damages in euros. Next,

we show a wide range of distribution quantile fits on the damage quantiles and make a selection

of distribution fits which we further examine. Moreover, we show an alternative application on

a more local level for insurers by using portfolios of residential buildings instead of looking at

municipalities or provinces as a whole.

Furthermore, we show how issuing CAT bonds serves as a potential solution to partially

reallocate risk for the insurer towards other parties and explore effects of changing variables

that exist in such bonds. Finally, we show results for a sensitivity analysis regarding the zoom,

performed on the quantifying process of the flood risk quantiles to damages.
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5.1 Flood Scenarios to Damage Proxies

First, we translate Flood scenario maps to damage proxies by running the image recognition

algorithm for all municipalities in South-Holland separately. We retrieve pixel data for all four

flood scenario quantiles from the algorithm and estimate damage proxies following the method-

ology from Section 4.1.

5.1.1 Quantifying Pixel Data

All explicit results for every quantile for the individual municipalities and the aggregated results

show in Appendix B. Visualization of the average damages for every municipality shows in Figure

7. Observe that the spread of values of individual municipalities grows larger as the quantiles

go further into the right tail, most likely due to several municipalities being inside of the of

flood range of dike rings collapsing, while other municipalities are never impacted by such floods.

Moreover, the scale of municipalities plays a big role. For example, a big municipality Rotterdam

covers considerably more buildings than smaller municipalities, which results in more potential

damages.

Figure 7: Average damages in billions for every municipality within South-Holland. The graph
also shows the maximum and minimum values vertically. Note that the horizontal axis is not
really linear in steps for visualization purposes.

We aggregate the damages calculated for the quantiles for all individual municipalities to

obtain the total damages for every quantile for all of South-Holland. Define these total damages

as the aggregated version for South-Holland. Additionally, we complete a similar calculation

by using an alternative, averaging way, where we convert all of South-Holland to damages as a

whole. This second calculation uses the average WOZ values for the province instead of for every

municipality individually, which saves calculation time for the program. If both calculations
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are relatively equal, running the program for provinces directly without aggregating individual

municipalities would potentially be a good option for other provinces, assuming that the process

for South-Holland is representative for other provinces. This speeds up the process substantially

and allows us to examine other provinces too within the scope of this thesis. Results for the

individual municipalities and the aggregated results show in Figure 8. Although the patterns

between quantiles are fairly the same for both calculation procedures, the results itself clearly

differ. This shows that performing calculations for municipalities individually and then aggregate

results add value opposed to averaging for the province as a whole. For this reason, this thesis

exclusively considers results for South-Holland. Note that results for the Netherlands as a whole

follow the same procedure by aggregating all municipalities. A possible explanation for why the

aggregated and averaged calculations vary is that some municipalities with high WOZ values

(e.g. Wassenaar) are relatively safe from flood risk and therefore are less prone to damages to

residential buildings, while the average WOZ value for the municipality drives up the average

WOZ value for the province nevertheless.

Figure 8: Aggregated flood damages in billions for different quantiles for every municipality
within South-Holland. Flood damages show also averaged for the whole province in terms of
WOZ values. Note that the horizontal axis is not really linear in steps for visualization purposes.

Damages differ substantially over the quantiles, ranging from 4 million euros to 87 billion

euros. This shows the impact of floods due to dike breaches versus fluvial floods. To put

the damages into perspective, consider the flood damages in Limburg, another province of the

Netherlands in July 2021. All damages taken into account is estimated for a total of around 1.8

billion euros (NOS, 2022). This comparison is not entirely reasonable, since South-Holland is

more densely populated. Moreover, this includes all damages and does not exclusively consider
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damage to buildings. When damages to buildings are known, one could run the algorithm in this

thesis for Limburg and estimate the corresponding flood probability. Nevertheless, this provides

some indication for the order of magnitude of the damages.

5.1.2 Application for Underwriting

In this application, we consider a portfolio of residential buildings within South-Holland and

take a look at the underwriters’ perspective. This provides a more precise look opposed to the

previous more generalized view on the national level regarding all residential buildings within

a province. Moreover, this shows the relevance of this thesis and how the theory translates to

real-world practicalities. We consult Funda to obtain portfolios P1 and P2 as discussed in Section

4.1.3. We use a similar approach as before to quantify flood risk to actual damages. Visualization

for the distribution of residential buildings for portfolios P1 and P2 show in Figure 9. We extract

data from the specific pixels of the locations and use a similar calculation as Equation (1) to

estimate losses for each quantile. Remember that we use market values from Funda in contrast

to average WOZ values of the municipalities to obtain more precise results.
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Figure 9: Visualization of the portfolio distribution that consists of 10 residential buildings
within South-Holland. Locations of the residential buildings show in red and blue for P1 and P2

respectively.

Table 9 shows results for obtaining damage proxies for portfolios P1 and P2. This imme-

diately shows the differences that may arise within specific portfolios. Since we only consider

ten residential buildings per portfolio and only receive four quantiles, information is relatively

fragile to perform quantile fitting with distributions. However, insurers may consider quantile

fitting for larger portfolios. For such larger portfolios, insurers are able to calculate other meas-

ures such as expected shortfall after fitting a distribution. Even for smaller portfolios like we

show, insurance companies are able to extract information from quantile results. Quantiles are

equivalent to Value at Risk (VaR), a risk measure often used in the field of risk management.

Insurers may either voluntarily or mandatorily use this risk measure due to regulation laws. For

example, requirements for Insurers may include a safety net corresponding to a VaR(0.999). For

P1, this implies that the insurance company must have approximately 700 thousand euros readily

available at all times.
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Table 2: Summary statistics of the total amount of buildings and WOZ values for each municip-
ality within the Netherlands

Portfolio q0.9 (e) q0.99 (e) q0.999 (e) q0.9999 (e) Market Value (e)
P1 0 6,638 346,633 707,246 4,596,000
P2 0 61,845 260,870 523,676 5,949,000

Estimating damage proxies provides for a better awareness for insurers to access the risk

within their portfolio and allows them to react accordingly. This goes beyond only regulatory

capital restrictions. For example, an insurance company may use the same approach to assess

the risk of adding new residential buildings to their portfolio. While insurers are prohibited to

discriminate by declining new clients - residential buildings - to their portfolio, it provides the

insurer with clarity on how risk exposure of the portfolio changes for the different quantiles.

Lastly, the damage proxies provide insights for insurers regarding decision making for their

premiums paid by their clients. Insurers operate in a competitive environment against other

insurance companies. Clarity on potential losses and probabilities allows insurers to make a

better assessment of the expected claims. In combination with clarity on all other relevant

business aspects such as underwriting expenses, operation costs and regulatory obligations, the

insurer then estimates the premiums needed to at least cover all expenses.

5.2 Damage Proxies to Loss Distribution

After obtaining estimated losses in billions of euros corresponding to the four flood scenario

maps, we perform quantile fitting for defined distribution set D to get distribution fits for the

losses. Hereafter, we consider the aggregated calculation for damage losses in South-Holland to

be the actual damage quantiles. We minimize with respect to the distance between the actual

quantiles and the distribution quantiles. We perform this minimization for the four distributions

based on multiple error metrics, namely the MSE, MAE, MSPE and MAPE.

5.2.1 Quantile Fitting

There are two options to obtain a distribution for the losses. The first method is to aggregate the

damage quantiles and fit a distribution to the quantiles. The second option is to fit a distribution

for every municipality individually and then to aggregate the distributions. An advantage of

the second method is that it allows for the distribution to capture individual characteristics of

multiplicities into the distribution. However, we see in the results that the quantiles vary strongly

among multiplicities, with some municipalities having no damages until the worst case scenario
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(0.9999 quantile). This results into very different distribution fits or different multiplicities may

even require different theoretical distributions. Consequently, it becomes a difficult choice to

give weights to the distribution parameters when aggregating. Furthermore, we only work with

four quantiles, which means that the uncertainty of the distribution fits adds up even more when

considering every municipality individually. Lastly, it is hard to model the dependencies between

municipalities when aggregating the distributions, while this is more convenient when summing

up the damage proxies. Hence, we first aggregate the damage proxies and then proceed with the

quantile fitting using the aggregated proxies.

The quantile fitting results show in Table 3. Note that scores are only comparable relative to

the same error metric. The best (lowest) scores within the same error metrics are highlighted in

bold. The GEV distribution fits outperform the other distributions when using the MSE, MAE

and MSPE. In terms of the MAPE, the skewed Student t-distribution scores best.

Table 3: Optimized loss distribution fits. The scores show the squared or absolute differences
between the distribution fit quantiles and the actual proxy quantile values. The second row
shows the actual damage proxy values for each quantile.

Distribution Score Q0.9 (bne) Q0.99 (bne) Q0.999 (bne) Q0.9999 (bne)
0.0445 11.1116 33.6455 87.1544

MSE

SST 14.77 3.56 11.64 32.22 87.47
ST 17.63 3.87 11.59 32.01 87.52

GPD 11.05 3.19 11.41 32.63 87.38
GEV 10.36 3.09 11.42 32.67 87.37

MAE

SST 10.21 2.67 9.04 28.18 87.2
ST 10.01 2.82 9.2 28.36 87.19

GPD 7.08 2.86 9.56 30.25 95.56
GEV 5.92 3.59 12.66 34.43 87.11

MSPE

SST 1.76 0.0585 0.6043 6.0452 60.4521
ST 1.78 0.0585 0.5899 5.8997 58.9974

GPD 1.49 0.0486 0.6445 7.9585 97.7217
GEV 1.48 0.0486 0.6697 8.14 97.9345

MAPE

SST 2.96 0.0445 0.1439 0.4256 1.2469
ST 2.99 0.0445 0.0445 0.0445 0.0445

GPD 2.99 0.0445 0.053 0.0547 0.055
GEV 2.99 0.0445 0.0569 0.0601 0.061

Notes: Scores can only be compared for the same error metric. For the Score column, the best score shows
in bold for each error metric.

In line with our hypothesis, the distribution fits that are based on the MSE and MAE assign

a substantial portion of the weights towards the highest quantile value, while disregarding the

low quantile values. Both the MSE and MAE distribution fit results in Table 3 estimate the 0.9

quantile value around 3 for every distribution, while the actual quantile value 0.0445 is smaller by
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a factor of approximately 67. On the contrary, the MSPE and MAPE assign weights to quantiles

relative to their respective values. A drawback is that values close to zero tend to get high

weights due to division within the error metric by the quantile value itself. This especially shows

in the MAPE results, where the fitted quantiles assign nearly all the weight to the first quantile

value, where now the high quantiles are neglected instead. The most balanced error metric for

the minimization seems to be the MSPE as it spreads the weights most towards the different

quantile values. Although the second quantile is off by a factor 10, all quantiles are relatively well

estimated and both the smallest and highest quantile values fit acceptably. For now, the MSE

deems to be the best overall choice as an error metric for this particular application of quantile

fitting. However, the MSPE based fits better satisfies the actual value for the 0.9. Therefore, we

consider results for both the MSE and MSPE error metric hereafter.

The parameter estimates for the distribution fits based on error metrics MSE and MSPE

show in Table 4. Observe the differences in σ, ξ and ν for both minimization procedures. A

rather inconvenient observation is that the MSPE fitted parameter estimates indicate for all

of the distributions that there does not exist a finite mean. This eliminates the possibility of

analytically solving a mean-variance hedge since that requires the integrals in Equation (21) to

be finite. The MSE fitted parameters do allow for analytically solving the mean-variance hedge,

as the mean is finite for all distributions.

Table 4: Parameters of the optimized distribution fits for the MSE and MSPE error metrics.

Distribution µ σ ξ ν

MSE

SST 0 2 0 2.31
ST 0 1.44 - 2.29

GPD 0 0.83 0.412 -
GEV 0 0.835 0.411 -

MSPE

SST 0 0.019 0 1
ST 0 0.00927 - 1

GPD 0 0.00469 1.08894 -
GEV 0 0.00507 1.07987 -

The GEV distribution fits perform best for both the MSE and MSPE based optimization

procedures. Hence, we consider the GEV distribution and its parameter estimates hereafter.

The GEV distribution PDFs for both error metrics show in Figure 10. We exclude the vertical

axis since only the pattern for the PDFs are relevant here. The difference between the fitted

distributions is inherently clear as the MSPE fit drops towards zero more swiftly than the MSE

fit. Since the first actual quantile value is 0.0445 billion euros, additional more zoomed in graphs
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also show for both distribution fits in Figures 10c and 10d. The MSPE based distribution fit is

already in the tail within the area around this value, while the MSE based distribution fit is not

even close to the tail for this value: Fgev,MSE(0.0455) = 0.031.

(a) (b)

(c) (d)

Figure 10: Movements of the PDFs of the MSE and MSPE distribution fits of the GEV distri-
bution.

5.2.2 Truncation

Losses are always nonnegative. This means that the loss distribution fits should be truncated

for l ∈ R≥0. Taking this into account in the quantile fitting procedure was only possible for the

classic Student t-distribution by using the crch package in R. We obtain the other truncated

distribution fits by plugging in the non-truncated fits and dividing the PDF of distribution i

by 1 − Fi(0) so the PDF remains a proper density. For the non-truncated GEV distribution

fits based on the MSE and MSPE error metrics, FGEV,MSE(0) = FGEV,MSPE(0) = 0.368. This

implies that more than a third of the distribution lies below zero. However, we should further

examine the segment of the distribution below zero.

First, we use results from Equation 7 regarding the domain of l to show that Fgev,MSPE(l) =

0 for l ≈ −0.00469, which shows that negative values at worst in the order of 1 million in

negative damages. Contrarily, Fgev,MSE(l) = 0 for l ≈ −2.032, which means that this distribution

occasionally produces negative billions in damages. Truncation is therefore crucial to obtain a

realistic distribution for real-life losses, especially for the MSE fit. Table 5 shows the impact

of truncating the distributions on the score and quantile value estimates. Notice the increasing

scores for the truncated GEV distributions with the same variables as the non-truncated fits. An
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explanation for this is that the distribution is mapped on the new interval [0,∞), which scales up

every value that was already within this interval. The scores for the truncated GEV distributions

proof to be a lot worse than the initial estimated truncated classic Student-t distribution. Hence,

this naive truncation method after the parameter optimization is not accurate for this application.

Truncation should be considered during the parameter optimization when available. Hereafter,

we do not use the truncated GEV distributions within this thesis.

Table 5: Optimized loss distribution fits. The scores show the squared differences between the
distribution fit quantiles and the actual proxy quantile values. The second row shows the actual
damage proxy values for each quantile.

Distribution Score Q0.9 (bne) Q0.99 (bne) Q0.999 (bne) Q0.9999 (bne)
0.0445 11.1116 33.6455 87.1544

MSE

ST 17.63 3.87 11.59 32.01 87.52
GEV 10.36 3.09 11.42 32.67 87.37

TGEV 417.58 4.20 14.22 39.87 104.91

MSPE

ST 1.78 0.0585 0.5899 5.8997 58.9974
GEV 1.48 0.0486 0.6697 8.14 97.9345

TGEV 2.70 0.0847 1.104 13.37 160.77

Notes: Scores can only be compared for the same error metric. For the Score column, the best score shows
in bold for each error metric.

An alternative approach to make sure that losses are nonnegative at all times when simulating

losses is by simulating typically from the non-truncated distribution fits for the GEV distribution

and then setting negative values towards zero. This method seems feasible, since this adjustment

has no influence on the right tail of the distribution. However, a consequence is that the value of

zero increases substantially as more than one third of the values are set to zero. This affects the

parameters as the location parameter shifts to the right and the variance decreases. However, a

large peak at zero for the simulations does intuitively make sense, since losses due to flooding do

not occur often and we consider the losses not conditional on default that is a flooding.

5.3 CAT Bonds

Now that we have explored the loss distribution fits, we consider the possibility of issuing CAT

bonds for insurers as a reinsurance pool. For continuation and simplification purposes, again

consider an insurer portfolio containing every residential building in South-Holland. We first

examine the MSE fit for the non-truncated GEV distribution for the purpose of β∗ having an

analytical solution. Next, we simulate losses for the MSE fit for the non-truncated GEV distri-

bution with negative values set to zero. We use simulation results to approach β∗ numerically
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by using the sample mean and variance.

5.3.1 Analytical Optimization

For the analytical optimization results, we consider solely the MSE fit for the non-truncated GEV

distribution with CDF Fgev,MSE(l). We use Equation (24) to calculate β∗, the optimal amount

of CAT bonds to be issued according to the mean-variance hedge. Additionally, we investigate

how CAT bond parameters and insurers’ risk aversion affect β∗.

For the analytical optimization, set the following parameters for a CAT bond with maturity

T = 1. Let the CAT bond price in billions of euros be y = 0.001 (corresponding to one bond

being one million euros), the attachment point in billions of euros be a = 33.65, the damage

proxy value of the 0.999 quantile. Moreover, let the premium paid to investors be r = 0.05,

the risk aversion parameter be γ = 1, which indicates that the fixed, covariance and variance

terms in Equation (24) receive equal weights. Lastly, let the payout fraction paid to investors in

case of a catastrophic event be p = 0.25. Note The attachment point is set at the actual 0.999

quantile value, which means a 1 in 1000 year expected loss. β∗ solves for 30, 552 bonds for the

exact parameters considered above. We calculate and examine how β∗ changes with respect to

individual parameters changing, ceteris paribus. In Section 4, we already established the effects

of both r and γ individually.

Additionally, we investigate combined effects of the bond parameters on β∗. We consider the

above set parameters as the base case and provide ranges for which we show the course of β∗

with respect to the parameters within the range. Table 6 provides a structured overview for the

base values and ranges of bond parameters changing for the analytical optimization. When we

perform calculations of β∗ for a range of parameters, we use 100 values at equal intervals within

the parameter range at hand.

Table 6: An overview for base values and ranges for different CAT bond parameters for a CAT
bond with maturity T = 1.

a (bn e) p r γ

Base value 33.65 0.25 0.05 1
Range [11.11, 87.15] [0, 0.5] [0.01, 0.1] [0.5, 2]

Notes: Values of a are based on the estimated quantile values
for the damage proxies.

We obtain results for every combination of two parameters changing. Remember that we

assign the base value for other parameters that stay fixed. Since we have four parameters in
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total, we have
(
4
2

)
= 6 combinations to consider. Results for all six combinations show in Figure

11. Observe that β∗ > 0 for most parameter value combinations. Figure 11a shows the earlier

described course for β∗ when increasing γ, converging from zero to −Cov(L,PCAT)
y(1+r)Var(PCAT) , a positive

number as expected.

(a) (b)

(c) (d)

(e) (f)

Figure 11: Graphs that show how various CAT bond parameters affect the optimal amount of
CAT bonds to be issued, denoted as β∗. six combinations of combined parameter effects show.
Parameters not considered in individual graphs have based values a = 33.65, p = 0.25, r = 0.05
and γ = 1.

Figure 11b confirms that effects of changing p on β∗ depend on premium r, since r strongly

influences the relationship between the expectation term and the covariance term in the nom-

inator of β∗. For r close to zero, increasing p has a positive effect on the optimal amount of

CAT bonds to issue. When r grows larger, the effect when increasing p slowly becomes negative.

The effects of r and p on β∗ depend on a variety of movements. First, increasing p increases the
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expectation term, while decreasing the covariance term towards zero when p goes to one. Sim-

ultaneously, increasing p decreases the variance term, while increasing r decreases the variance

term. It makes sense that for higher r and p, β∗ goes to zero, since we choose Fgev,MSE(a) close

to one. If r increases, the expectation term becomes negative. For lower p, the covariance term

may compensate, but when p increases, the covariance term shrinks towards zero, resulting in

the denominator term in β∗ to become negative. The movements also depend on the choice of γ

and a.

Lastly, Figures 11c - 11e show a parabolic movement of β∗ when a changes. The parameter

range for a is set such that 0.99 ≤ Fgev,MSE(a) ≤ 0.9999. When a increases such that Fgev,MSE(a)

approaches 1, β∗ becomes zero, which confirms our derivations in Section 4.3.3. The parabolic

movement of β∗ when changing a within the parameter range is not immediately clear from

Equation (24). An explanation for this movement is the relative differences in the terms in the

nominator and denominator as both terms shrink with a different speed. The variance term

includes the term Fi(a)(1 − Fi(a)), which could cause the parabolic movement, since the other

effects of a on β∗ are non-quadratic.

5.3.2 Optimization by Simulation

The analytical solution considers CAT bonds with maturity T = 1. Hence, we perform numerical

optimization by simulation to expand this to higher maturities. We independently simulate

n = 10, 000 1-year losses and corresponding PCAT values and optimize Equation (15) with respect

to β by using the sample mean and variance of PINS. We perform the numerical optimization

for the GEV distribution based on the MSE error metric, previously used in the analytical

optimization. We obtain equal results, confirming our analytical derivation.

Additionally, numerical solutions allows us to set negative losses to zero and still perform

optimization. As discussed, we use the non-truncated GEV distribution fit based on the MSE

and set negative losses to zero. We use the simulated losses to retrieve the corresponding values

of PCAT. We perform the maximization for the mean-variance hedge numerically and retrieve

β̂∗ by using the sample variance and covariance in Equation (24).

We consider the base values from Table 6 and simulate aggregated losses for maturities 1

through 10, 15, 20 and 25. Results for β∗ show in Figure 12. First, β∗ moves up when increasing

the maturity, but this number decreases at the later years. An explanation for this is the different

magnitudes of increase for the variance and mean of PINS due to β. Larger values of β combined

with larger aggregated losses due the higher maturity result into a higher variance of PINS,

decreasing the optimal value of β∗.
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Figure 12: Optimal amount of CAT bonds to issue from the insurers’ perspective for maturities
1 through 10.

5.4 Sensitivity Analysis: Zoom

For all flood scenario maps, we handle data by setting the zoom to 6. We now investigate whether

results substantially differ for more detailed maps, corresponding to zoom 8. Zoom 8 corresponds

to a 4 times more zoomed in scenario map. In line with previous visualization, we perform the

sensitivity analysis for the municipality Gouda. An important note is that this analysis does not

affect the underwriters’ application from Section 5.1.2.

Figure 13 provides visualization of the differences when running the image recognition al-

gorithm. The differences in detail of individual buildings is inherently clear. Additionally, the

issue of the city name potentially affecting specific pixel positions becomes less important. Fig-

ure 13d shows that specific building areas do not show in more zoomed out flood scenario maps,

while those areas are relevant for assessing flood risk.
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(a) Zoom 6, building pixels. (b) Zoom 6, 1 in 100-year flood scenario.

(c) Zoom 8, building pixels. (d) Zoom 8, 1 in 100-year flood scenario.

Figure 13: Pixel data graphs of the municipality Gouda by using different zooms of flood scenario
maps. Pixel data for both zooms include pixels that correspond to buildings and a 1 in 100-year
flood scenario.

We convert the pixel data maps to damage proxies for all four flood scenario maps. Results for

both zooms show in Table 7. While adjusting the zoom clearly alters the damage proxy estimates

for Gouda, it matters less when we look at quantiles closer to one. Observe that increasing the

zoom does not necessarily lead to under- or overestimation, since zoomed in results may either

increase or decrease the damage proxies for different quantiles. Investing time in running the

algorithm for scenario maps with higher zoom may be of interest when focusing on 1 in 10-year

or 1-in-100 year floods.

Table 7: Damage proxy values for different quantiles for the municipality Gouda. Results include
two different zooms. The results for zoom 8 are based on a four times more zoomed in flood
scenario map opposed to the zoom 6 results.

Zoom q0.9 (e) q0.99 (e) q0.999 (e) q0.9999 (e) Buildings WOZ (e)
6 264,934 71,155,601 1,311,059,413 1,959,813,443 38,157 323,000
8 1,187,076 80,064,618 1,244,712,998 1,757,426,332 38,157 323,000
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6 Conclusion

The focus of this thesis is to overcome the data scarcity within flood risk by extracting damage

proxies and a loss distribution from existing flood scenario maps and to investigate the use of

CAT bonds as a reinsurance pool for insurers to reallocate risk.

In particular, we propose a general framework to quantify flood scenario maps towards po-

tential damages and obtain a loss distribution that forms the basis for the analysis of CAT bonds

as a potential reinsurance pool. Recall the two research questions:

RQ1: How can we extract and quantify damages to residential buildings from existing

flood risk scenarios within the Netherlands?

RQ2: How can insurance companies use CAT bonds as a reinsurance pool for flood risk

within the Netherlands?

Regarding RQ1, this research proposes a novel image recognition algorithm to translate flood

scenario maps to proxies for damages to residential buildings. We consider four flood scenarios

corresponding to the 0.9, 0.99, 0.999 and 0.9999 quantiles for flood occurrences. We show the

relevance of this procedure by assessing flood risk for insurer portfolios and a province South-

Holland as a whole.

Moreover, we perform quantile fitting to retrieve a loss distribution. We find that the GEV

distribution scores best when trying to replicate the actual quantile values, irrespective of the

error metric. Concerning the error metrics, the MSE results into the best fit regarding the 0.99,

0.999 and 0.9999 quantiles, while neglecting the 0.9 quantile. The MSPE error metric results in

the best fit for the 0.9 quantile, corresponding to more short term risk.

Concerning RQ2, this thesis finds that it is beneficial for insurers to issue CAT bonds as a

reinsurance pool under most circumstances, even when a insurer is (not) risk averse. We therefore

believe that CAT bonds are a viable option as a reinsurance pool within the Netherlands to

reallocate flood risk. Furthermore, we provide an in-depth analysis on the optimal strategy for

insurers regarding the issuing of CAT bonds. This analysis considers a broad range of bond

parameter combinations and shows how changes in parameters affects the optimal amount of

CAT bonds to issue. This thesis solely considers the insurers’ perspective and we cannot make

binding conclusions on CAT bonds being attractive from the investors’ perspective.

Overall, this research provides a novel and flexible methodology to overcome data scarcity

within flood risk and shows multiple applications for insurance companies or regulators to utilize

knowledge regarding potential losses.
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7 Discussion

This Section discusses assumptions, results and tackles some limitations of this thesis. Moreover,

we propose possible further research.

7.1 Limitations

This thesis broadly shows the problems with data scarcity within the field of flood risk in the

Netherlands. While we mainly propose a general methodology for obtaining damage proxies, this

process shows evident limitations. First, the data preparation is time costly since screenshots

require to be exactly aligned to the pixel for every flood scenario map. Flood scenario maps with

high resolution downloads would solve this problem. Hereafter, we point out additional issues

that result from the current flood scenario maps. City names in the overlay potentially result

into incorrect assessment of buildings for specific pixels. The flood map shows no possibility to

distinguish between residential buildings and other categories of buildings. Note that addition-

ally, the flood scenario maps make the assumption that the scenarios do not alter between years.

In reality, we could extend the analysis of damage proxies by researching new construction of

buildings and future trends of WOZ or market values. This brings us to the next limitation that

market values are not available for every residential building within the Netherlands, while this

may prove a better proxy for the value of residential buildings.

The damage factors from Huizinga et al. (2017) show damage factors, specific to the Nether-

lands, for the insured sum at risk for different flood depths. However, the damage factor consider

residential buildings, contents included, which makes the sole use of WOZ values as a damage

proxy less correct. It is difficult to assess contents as content value may substantially differ per

household. Note that aside from these limitations, this thesis still proposes a good base for a

methodology for assessing potential losses. All of the above limitations involve changes in dam-

age proxy estimates, but the order and course of damage proxies remains similar for alternative

approaches.

An obvious limitation, also present due to data scarcity, is the use of four quantiles. The

quantile fitting becomes very sensitive to the individual quantile values and our best distribution

fit is therefore not necessarily universally the best choice in similar applications. Moreover, the

quantiles all lie far within the right tail of the distribution. Quantile fitting analysis for the

distributions does not consider the fact that for the real-world, yearly losses are zero very often.

Draws for the distribution fit often output values close to, but not exactly zero. Additionally, four

parameters limit the choice of distributions to distributions with a maximum of four parameters

due to identification restrictions. None of the distribution fits adequately captured every quantile,
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due to high differences in potential losses even far inside the tail. Truncation included in the

parameter optimization was not possible within the scope of this thesis, since there is no currently

available package to the best of our knowledge for the GPD, skewed Student t-distribution and

GEV distribution. Implementation requires numerically solving the inverse CDF within every

optimization step.

Furthermore, we limit ourselves to a fixed payout fraction p when exceeding the attachment

point, while CAT bonds commonly use an additional exhaustion point as a parameter to indicate

the maximum damage coverage of the contract, for which p is smallest (Stupfler and Yang, 2017).

However, this only exerts a minor influence on the current CAT bond analysis in this thesis.

Although the amount of limitations is large, the general methodologies and analyses are

fundamentally correct and provide a flexible framework for practical use. For example, the

current formulas and analyses allow for alternative damage factors, market values, scenario maps,

amount of quantiles and so forth.

7.2 Further Research

Many directions are possible for further research. We categorize further research into three

categories: damage proxy estimation, distribution fitting and CAT bonds.

Regarding damage proxy estimation, this thesis provides a general framework and showcases

the use of a image recognition algorithm for quantifying flood scenario maps. Practitioners may

implement the algorithm for all of the Netherlands, with several zooms and with more sophist-

icated estimates for damage factors, market values. They may also include varying values for

residential buildings over time via mapping of planned constructions and by including future

value trends for residential buildings. Additionally, this thesis exclusively focuses on residen-

tial buildings, while many applications are possible related to other damage categories such as

agricultural losses, infrastructure and industrial facilities.

For the distribution fitting procedure by using quantiles, it is possible to approach this prob-

lem by first using a probability of default for the occurrence of a flood with a distribution

conditional on a flood event happening. Moreover, further research should include truncation

for every distribution included in the parameter optimization.

In our approach for investigating the use of CAT bonds as a reinsurance pool, we exclusively

look at the insurers’ perspective. Additionally, it is interesting and relevant to also explore

the investors’ perspective to get better insights in realistic bond parameter ranges and whether

issuing CAT bonds is still reasonable within those ranges. Research may extend this to the

pricing of CAT bonds under risk neutral circumstances (Zonggang and Ma, 2013).
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Lastly further research may look beyond mean-variance optimization problem that we ex-

tensively look at in this thesis. Extensions may distinguish positive or negative variance or

even include the expected shortfall in the loss function. One can even expand the problem to a

more dynamic multi-year setting, where insurers are able to issue CAT bonds each period. This

dynamic setting would require machine learning methods to solve.
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Appendix A Alternative Damage Proxy Estimation

We use an alternative way for calculating damages when obtaining pixel data for the flood

scenario maps. This involves another graph from Huizinga et al. (2017) where damages are

measured by e per m2, which shows in Figure 14. The flood scenario maps includes a legend for

the scale. From this, we extract the real-world m2 for one pixel in the data.

Figure 14: Depth-damage curves for a selection of European countries, gathered from Huizinga
et al. (2017). Damages are considered per square meter for residential buildings and include
inventory damages.

We use the (interpolated) damages per depth per m2 from Figure 14 to estimate damage

proxies from the pixel data after running the image recognition algorithm. Estimations for

municipalities from Equation (28) change as follows:

L̂(m,q) =
∑
d∈D

pix(m,d,q) · (dm2)d, (28)

with dm2
d the damage per m2 for depth range d. Notice that x is replaced by pix since we use the

number of pixels instead of the fraction. Results for the aggregated municipalities show in Table

8 for the province South-Holland. Both approaches result into estimates in the same order of

magnitude. A remarkable result is that damages differ by approximately a factor two for every

quantile. A possible explanation is that South-Holland has relatively high WOZ values compared

to other provinces, which is not taken into account by the alternative damage estimation.

Table 8: Damage proxy estimates for different quantiles for South-Holland. The results include
the use of damage factors and an alternative approach with damage per m2.

Estimation Method q0.9 (e) q0.99 (e) q0.999 (e) q0.9999 (e)
Damage factors 44,508,911 11,111,566,335 33,645,496,434 87,154,426,199
Damage per m2 26,061,117 5,938,708,344 17,584,573,394 42,619,701,585
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Appendix B Damage Proxy Estimates

Table 9: Damage proxy estimates for every municipality in South-Holland. Aggregated results
show for all of South-Holland.

Municipality q0.9 (e) q0.99 (e) q0.999 (e) q0.9999 (e) Buildings WOZ (e)
Vlaardingen 145121 17049652 487215829 1940501445 40817 277000

Goeree-Overflakkee 43312 10509658 36984213 1413113424 31388 347000
Voorne aan Zee 1367869 73974976 85690929 2277695825 38196 369000

Nissewaard 67376 307013786 875805326 3403686537 44451 279000
Hoeksche Waard 4271369 27753121 128752021 825648057 44517 361000

Dordrecht 12418434 17256376 22937231 5006848926 65629 297000
Gorinchem 488691 935047081 1777449963 1868336807 20017 312000

Hardinxveld-Giessendam 0 719949467 871785054 871785054 8515 335000
Sliedrecht 84525 533076636 945264527 935614344 12724 304000

Papendrecht 587613 1289615418 1596051032 1586103451 16571 332000
Hendrik-Ido-Ambacht 288289 21836717 21250557 449313226 14198 398000

Zwijndrecht 95463 7289733 20762742 640729601 23951 304000
Barendrecht 0 0 0 1307786812 22828 421000
Alblasserdam 895088 856291163 980760801 980609435 9756 325000
Ridderkerk 0 2909075 2909075 2284962922 25687 330000

Albrandswaard 0 0 0 648320227 11817 431000
Molenlanden 1488048 1829439328 2364265692 2433377505 20501 389000

Krimpen aan den IJssel 3000271 265137574 1518050601 1519094201 14366 354000
Capelle aan den IJssel 1117848 201958281 686729924 2298877788 34888 310000

Rotterdam 9229277 363029008 4487196138 17762443186 354192 320000
Westland 0 40806558 60618641 1987253312 55545 423000
Maassluis 0 13365279 15341523 542494902 18223 304000

Midden-Delfland 0 62934776 63082225 492360377 9113 469000
Delft 0 61111497 225332906 511547935 57386 322000

Schiedam 0 3088284 7222541 1286508982 41838 285000
Pijnacker-Nootdorp 0 42024952 46658695 61642657 24798 481000

Lansingerland 0 130187282 172338230 338430314 28058 479000
Krimpenerwaard 5212024 99459902 3191617013 3192955244 27766 388000

Gouda 264934 71155601 1311059413 1959813443 38157 323000
Waddinxveen 0 34583202 1277240823 1606223089 15652 370000

Zuidplas 1874432 401098897 1417028575 2191504525 22916 412000
Bodegraven-Reeuwijk 0 135053734 1031783069 1029872916 17982 432000

Zoetermeer 0 35686275 2494448629 2757322605 62552 357000
’s-Gravenhage (gemeente) 1568927 40995519 150012867 8322925307 297930 355000

Rijswijk 0 40144049 42034283 128063610 32399 347000
Leidschendam-Voorburg 0 143673119 228089710 321788527 41737 380000

Voorschoten 0 36950373 38927004 77627891 13341 487000
Zoeterwoude 0 80387199 81015936 82011289 4803 454000

Alphen aan den Rijn 0 316709322 1819439901 1867205402 56520 360000
Nieuwkoop 0 421085603 1075088865 1066222133 14076 447000

Kaag en Braassem 0 598392448 1025589612 1008552808 14450 448000
Leiderdorp 0 12425856 69575660 107034641 14545 413000

Leiden 0 109214769 159921359 480301249 69853 390000
Oegstgeest 0 16175882 22114429 450278975 12204 563000
Wassenaar 0 0 3117853 311490958 13896 731000
Katwijk 0 0 5580784 1659165702 31274 419000

Teylingen 0 16393701 21539170 410953969 18853 459000
Lisse 0 590777628 580824038 795632109 12325 405000

Noordwijk 0 252151 1512906 1389166208 26263 489000
Hillegom 0 78295427 97478119 263226347 11443 403000

Total 44508911 11111566335 33645496434 87154426199 1960907 387800
Zuid-Holland_ave 60018387 14244213611 42330100659 1,02608E+11 1960907 387800
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