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Abstract

This paper contains an extensive and robust study investigating capital structure arbitrage

(CSA) opportunities with a factor investing portfolio perspective. We evaluate regression, coin-

tegration and Ornstein-Uhlenbeck models with various controls, including Random Forest and

Boosting, to investigate possible interactions and non-linearities. On the US bond market for

listed companies from 1994 to 2022, we can harvest CSA opportunities in both the credit and

equities markets. The arbitrage opportunities are driven by both asset classes, equity and credit,

and both asset classes contribute to the convergence of the opportunity. An investor may attrac-

tively combine individual models and obtain an ensemble model with a yearly turnover rate of

117% and break-even transaction cost of 1.12%. The CSA factor of the ensemble is significantly

correlated with Equity and Credit Momentum and, empirically, does not obtain a significant 7-

factor spanning alpha. However, to construct the 7-factor portfolio, an investor would have to

short bonds, which is difficult and costly in practice.

The views stated in this thesis are those of the author and not necessarily those of the supervisors, second assessor,

Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

In recent years, there has been a growing interest in applying factor investing principles to credit

markets, specifically corporate bonds. Factor investing entails allocating to quantitative investment

strategies that historically have shown higher risk-adjusted returns than the market. In simpler

terms, factor investing seeks to capitalize on specific characteristics or attributes of assets that have

demonstrated a consistent impact on returns. Well-known factors such as Value (Basu, 1977) focus

on investing in undervalued assets, Momentum (Jegadeesh and Titman, 1993) involves capitalizing on

the trend-following behaviour observed in asset prices, whilst the observation that smaller companies,

in terms of market capitalization, have historically outperformed larger ones forms the basis for Size

(Banz, 1981), and Low-Risk (Haugen and Heins, 1972) prioritizes assets with lower volatility. These

factors have been extensively studied in equity markets, leading to the development of successful factor

investing strategies.

While factor investing in equity markets has gained significant attention, the academic literature

exploring factor investing in credit markets is relatively new but rapidly expanding. Researchers and

practitioners have recognized the potential for factor-based investment strategies to generate superior

risk-adjusted returns in the corporate bond space (Correia et al., 2012; Jostova et al., 2013; Frazzini

and Pedersen, 2014; Houweling and Van Zundert, 2017; Haesen et al., 2017). Consequently, the first

factor investing strategies for corporate bonds have emerged, offering investors an alternative approach

to traditional fixed-income investing.

Factor investing strategies are designed to harvest factors that earn high risk-adjusted returns

while minimizing the exposure to unrewarded risks. While some factors are built on bond or issuer

information, the inherent relationship between credit default risk and equity risk implies that other

markets, such as equity or credit default swaps, also carry information for corporate bond investors.

So-called ”structural” credit risk models attempt to model this relationship, starting with Merton

(1974). At the same time, bond and equity investors may have different opinions about the risk of a

company defaulting and price default risk differently. This happens due to various factors like market

segmentation, investors’ risk tolerance, and information processing (Gebhardt et al., 2005). Capital

structure arbitrage (CSA) is a strategy that seeks to exploit those mispricing opportunities arising

from differences in the pricing of default risk by bond and equity investors. Investors employing CSA

aim to capitalize on these divergences through long or short positions in bonds and equities, benefitting

from subsequent price adjustments.

This paper aims to investigate opportunities that arise when stock and bond prices diverge,

with a particular focus on the bond leg; the investment strategy has to be profitable without taking

positions in the equity market. We are the first to investigate a CSA factor investing strategy in the

bond market. A substantial difference with existing literature is that we 1) estimate a bond-equity

relationship instead of a CDS-equity relationship, 2) use bond returns, 3) only trade the bond leg,

and 4) do monthly portfolio construction based on the relative ranking of the opportunities, while

typical CSA strategies do absolute ranking and only buy above a set threshold. The primary goal
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of this paper is to investigate what model (or combination of models) obtains the highest break-even

transaction cost and models mean-reversion in credit returns. To answer this, we investigate:

1. Can capital structure arbitrage opportunities be harvested when focusing on the bond leg only?

2. What are the drivers of the formation and convergence of the arbitrage opportunities, and at

what speed do the arbitrage opportunities disappear?

3. How robust are those findings to various modelling options?

To answer the research questions, we introduce models that use return level information, price

level information, models based on an Ornstein-Uhlenbeck process (Ornstein and Uhlenbeck, 1930),

models that estimate the correlation between debt and equity markets and models that fix the correla-

tion. All models are evaluated on monthly data from 1994 to 2022, covering 29 years. We introduce a

novel framework specific to mean reversion in the credit market that, among other evaluation criteria,

uses autocorrelation in the signal series as a proxy for mean reversion.

The contribution of this paper is eight-fold. Firstly, we show that investors may harvest CSA

opportunities focusing on the bond leg only. Secondly, a CSA factor may also harvest those op-

portunities in the equities market. Thirdly, we show that both the equity and the credit markets

drive arbitrage opportunities. Fourthly, setting a prior to fix the credit-equity correlation improves

returns, emphasizing the importance of correlation modelling. Fifthly, removing systematic risk im-

proves the arbitrage modelling, but machine learning does not add value. Sixthly, price-level models

show disappointing results. Seventhly, we show why models based on an Ornstein-Uhlenbeck process

are valuable. Finally, we show that combining fixed and estimated correlation models in an ensemble

outperforms any individual model in gross and net returns and a data-driven ensemble in net returns.

This paper is structured as follows: in Section 2, we discuss the literature; in Section 3, we

introduce the data, and in Section 4, all methods and evaluation procedures are explored. We show

results in Section 5, and we conclude and discuss the research in Section 6.

2 Literature Review

This section discusses three applicable streams of literature for this research: debt market-, equity

market-, and factor investing literature.

Debt market From the 2000s till the Great Financial Crisis, there was a notable surge of interest in

Credit Default Swap (CDS) contracts. Consequently, extensive research was conducted on CDS-equity

trading and models that effectively capture the relationship between debt and equity risk. Studies by

Yu (2006); Bajlum and Larsen (2008); Wojtowicz (2014) examine CSA using the CreditGrades model

based on the structural model introduced by Merton (1974) and discussed in Bluhm et al. (2001)

and Finkelstein et al. (2002). These studies find that CSA can yield attractive risk-adjusted returns,

with Sharpe ratios, a measure for risk-adjusted returns, comparable to industry benchmarks. Several

modifications of the structural models, such as CreditGrades, have been proposed in Leland and Toft
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(1996); Byström (2006); Ozeki et al. (2011); Ju et al. (2015). All structural models aim to predict

default risk and estimate a model implied credit spread (ICS) from the default risk. If the observed

credit spread of the CDS is far from the ICS, there should be an arbitrage opportunity. Research

shows that some structural models outperform CreditGrades in predicting default risk, but structural

models still structurally underpredict default risk (Leland and Toft, 1996; Leland, 2012). Duarte et al.

(2007) highlight the positively skewed returns associated with structural CSA and emphasizes the

significant capital allocation required for this strategy as opportunities cluster. However, to enhance

the predictability of default risk, it becomes imperative to establish a long-run relation between debt

and equity. Lovreta and Mladenović (2018) show that such relations between the CDS and equity

markets exist in cointegration relations, but only when allowing for structural breaks. They show that

cointegrated CDS-ICS pairs yield higher returns with less risk. Kapadia and Pu (2012) further discuss

the integration of equity and CDS markets and the implications for structural models. Schaefer and

Strebulaev (2008); Friewald et al. (2014) show corporate bond/CDS and equity market integration.

However, more recently Choi and Kim (2018) show disintegration between relative risk premia in bond

and equity markets, where potential mispricing may break debt-equity market integration, a possible

impediment to arbitrage.

There is a growing body of literature exploring the integration of CDS and equity markets using

machine learning models (Bali et al., 2020; Chan et al., 2023; Mao et al., 2023), and more general in

finance Gu et al. (2020); Kelly and Xiu (2023). Bali et al. (2020) and Mao et al. (2023) show imposing

the dependence structure between debt and equity of Merton (1974) improves performance of multiple

machine learning models for CDS-equity trading. The vast majority of literature discusses CDS-equity

trading and not specifically bond-equity trading. Regarding the performance of structural models for

bond-equity trading Eom et al. (2004) show that structural models do not accurately predict bond

spreads. Some structural models overpredict, whilst other structural models underpredict. For CSA

in the corporate bond market Velthuis (2007) shows that regression models that measure arbitrage

opportunities based on historical credit and equity returns outperform the CreditGrades model with a

long bond, short equity strategy. This paper extends Velthuis (2007) research by investigating whether

we can use default risk information from structural models in regression models. We extend further

with controls for systematic risk, and investigate machine learning for the regression models.

Equity Market In a CSA strategy, we aim to find the relation between debt and equity. Re-

searchers have documented techniques in equity markets like statistical arbitrage, pairs trading and

cointegration to establish the relationship between two equity instruments that garner considerable

attention. This stream of literature may inspire methods that, with adjustment, may be implemented

in debt-equity trading. Liew and Wu (2013) introduce the copula approach as an alternative to coin-

tegration (Vidyamurthy, 2004) for pairs trading, subsequent studies by Rad et al. (2016); Krauss

(2017) utilizing extensive samples and analyzing many academic papers suggest that cointegration

and distance (Gatev et al., 2006) methods tend to generate superior returns. Contrary to Lovreta and

Mladenović (2018), Rad et al. (2016) does not only establish a cointegration relation but defines a
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trading strategy based on the spread between two cointegrated securities. Krauss (2017) emphasizes

that cointegration provides a more rigorous framework for pairs trading than the distance approach.

Inspired by these results, we construct a cointegration framework in this research, in addition to the

extended regression framework.

Avellaneda and Lee (2010) introduce an Ornstein-Uhlenbeck process (Ornstein and Uhlenbeck,

1930) for measuring mispricing between ETFs and individual stocks. Guijarro-Ordonez et al. (2021)

extend this research toward statistical arbitrage by applying neural networks to frequency-transformed

mispricing spreads that are input for the Ornstein-Uhlenbeck process. The papers show promising

results. However, statistical arbitrage is based on short-term mean reversion (Pole, 2011). Therefore,

methodologies that flourish in statistical arbitrage do not necessarily translate to good performance

for the CSA strategy in this research, based on monthly data. We take inspiration from Avellaneda

and Lee (2010) and create an Ornstein-Uhlenbeck process for a CSA factor investing strategy.

Factor Investing Factor investing in the corporate bond space is relatively new with the first

strategies appearing after 2010 (Correia et al., 2012; Jostova et al., 2013; Frazzini and Pedersen,

2014; Haesen et al., 2017) compared to equities where factors have been reported earlier (Haugen and

Heins, 1972; Basu, 1977; Banz, 1981; Jegadeesh and Titman, 1993). Factor investing in corporate

bond markets is further discussed in Houweling and Van Zundert (2017) and Bektić et al. (2019) and

factor investing shows higher risk-adjusted returns than the market. Researchers have yet to explore

CSA in a factor investing strategy. We contribute to the factor investing literature by exploring a

CSA factor for the corporate bond market.

3 Data

In this paper, we use the bond database from Robeco with monthly bond, stock, and issuer data

(1989-2022). Before filtering, the data set consists of 3,200,834 bond-month observations of 61,267

unique bonds of 5,462 companies. Table 17 in Appendix A shows the filtering steps for the data.

We use 1, 352, 676 bond-month observations, which is 42.3% of the available sample. The primary

decrease in the sample results from the constraint that the bond has to be a constituent of the US

Investment Grade (IG) or High Yield (HY) index. Investment Grade bonds are bonds from companies

with a low probability of default and are considered the most secure bonds. As credit rating drops,

the default risk increases. The US IG/HY filter prevents exchange rate noise in the data from bonds

issued in Europe or emerging markets (EM), and removes the influence of differences in taxation that

account for approximately one-third of credit spreads (Schaefer and Strebulaev, 2004). Similarly, we

remove bonds that do not have matched dollar-denoted equity returns.

We remove bonds rated CCC or lower and distressed bonds because the behaviour of those

bonds is substantially different from the other bonds, for example, due to legal procedures concerning

possible bankruptcy (Wang, 2011). We implement a final constraint of at least 36 months of obser-

vations to increase the speed of the programs as we require at least 36 months of observations for
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estimation in the rolling window that we apply. Figure 1a shows that there are more IG bonds in

the investment universe than HY bonds, and that the available universe grows over time. Figure 1b

shows that most bonds are rated A or BBB and that the highest rating is for ∼2% of bonds only.

(a) Number of bonds in the cross-section (b) Rating Distribution

Figure 1: Growth of the Bond Universe and Distribution of Ratings

This paper uses equity and credit returns to estimate arbitrage opportunities. For equity re-

turns, we use excess equity returns, constructed by subtracting the risk-free rate from equity returns

(Haesen et al., 2017). Risk-free rates are the 1-month US treasury bill rates and are retrieved from the

Dartmouth US returns library (Kenneth French Data Library)1. Following Houweling and Van Zun-

dert (2017); Bessembinder et al. (2008) we employ credit returns, defined as the excess return of a

corporate bond versus duration-matched Treasuries. Contrary to equities, bonds have a maturity

date. Bonds with longer maturity carry an increased risk for which investors want to be rewarded.

The compensation is the term premium. Additionally, there is a default premium, where companies

with higher risk levels pay higher interest rates. The term premium can be earned efficiently by

investing in government bonds, so the primary purpose of investing in corporate bonds is to earn

the default premium. Therefore, we remove the term premium and model only the default premium.

The Robeco data set contains major (BBB) and minor (BBB+/BBB/BBB-) ratings. This paper uses

major ratings to obtain a larger peer universe when filtering rating, sector and maturity buckets.

Otherwise, there are months with peer groups consisting of 2 bonds, and this is not a representative

sample of the group. Table 1 shows that rating, sector, and maturity groups show different returns

that differ substantially across time periods. Figure 15, 16, and 17 in Appendix A show the different

credit return dynamics across groups over time, where one may observe the difference in volatility

of the credit returns too. Ambastha et al. (2010) provide evidence for segmentation into HY and

IG. More recently, Chen et al. (2014) show that the different market participants in IG and HY lead

to different return dynamics. Therefore, we test models separately for the IG and the HY universe,

where we prioritize IG as the IG universe is the largest, Figure 1a.

Integration of markets is crucial for profitable arbitrage (Chan et al., 2023). As a proxy for

market integration, we use correlation. Table 2 shows a significant cross-correlation between credit

and equity returns, evidence that we have information flow from equity to credits. However, only

1https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_factors.html
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Table 1: Monthly credit returns (%) per rating, sector and maturity group

Rating Sector Maturity

Time Period AAA AA A BBB BB B Financial Industrial Utility Short Medium Long

Before 2000 0.016 0.020 0.035 0.027 0.187 0.187 0.045 0.053 0.058 0.069 0.063 0.023

Between 2000 and 2010 -0.053 -0.027 0.004 0.037 0.099 0.030 -0.050 0.055 0.052 0.059 0.006 0.009

After 2010 0.076 0.071 0.093 0.150 0.321 0.320 0.180 0.164 0.135 0.148 0.198 0.147

one-fifth of the correlation is significant. The table further shows that credit returns are significantly

correlated with past credit and equity returns; we explore including past credit and equity information

in this paper. Figure 18 in Appendix A shows that correlation is also time-varying, indicating that

information spill-over during specific periods might be lower or more selective. This is challenging

for factor investing because portfolios are constructed monthly, removing the possibility of buying

more or fewer bonds in specific periods. Therefore, capital structure arbitrage opportunities may be

especially challenging to harvest in a factor investing strategy.

Table 2: Auto- and cross-correlation for credit and credit with equity lags

Correlation Credit with credit lags Credit with equity lags

Lag Mean Median Significance Mean Median Significance

0 1.00 1.00 100% 0.10 0.09 22.1%

1 -0.01 -0.01 22.1% 0.00 0.00 11.1%

2 -0.04 -0.04 13.8% -0.02 -0.02 9.9%

3 -0.05 -0.06 13.7% -0.02 -0.03 8.3%

4 -0.05 -0.06 9.4% -0.01 -0.01 6.7%

5 -0.03 -0.02 8.8% -0.04 -0.03 8.6%

6 -0.01 -0.01 8.2% -0.03 -0.03 7.7%

7 -0.01 0.00 6.8% -0.01 -0.02 5.4%

8 -0.04 -0.04 6.7% -0.02 -0.03 5.4%

9 0.00 -0.01 6.5% 0.02 0.02 6.4%

10 0.01 0.02 6.9% -0.04 -0.04 7.1%

4 Methodology

The aim is to find a combination of models that outperforms all other models and captures mean-

reversion in credit returns. To evaluate all models, we first introduce portfolio construction and

spanning regressions to assess the performance of one model relative to another model in Section 4.1.

Secondly, we introduce three categories of models to evaluate in Section 4.2, Section 4.3 and Section

4.4. Thirdly, we introduce evaluation metrics in Section 4.5 to assess whether the models capture

CSA opportunities, and lastly, in Section 4.6 we introduce an ensemble methodology to combine the

models that capture CSA opportunities.

4.1 Portfolio Construction and Spanning Regressions

We construct equally weighted monthly portfolios from January 1994 to December 2022 because we

require the first few years of data for bond-equity relation estimation. We hold the portfolio for one
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month and up to 12 months using the overlapping portfolio methodology of the influential paper of

Jegadeesh and Titman (1993). The holding period of up to 12 months prevents extreme turnover and

is realistic in practice (Houweling and Van Zundert, 2017). Portfolios consist of deciles, 10% of the

cross-section, in line with Jegadeesh and Titman (1993) for equities and with Jostova et al. (2013);

Houweling and Van Zundert (2017) for corporate bonds. Bonds are ranked monthly and sorted in the

cross-section based on signals. An example of a signal is all bonds in the cross-section ranked by credit

return. The bond with the highest return would have rank 1, and the top decile would contain the top

10% credit returns. Following Blitz (2012); Huij et al. (2014); Houweling and Van Zundert (2017) we

construct long-only portfolios instead of long-short portfolios that are common in academic literature

because shorting corporate bonds is difficult and costly in practice (Houweling and Van Zundert,

2017). Including the short positions would, therefore, inflate performance to unrealistic levels.

We compute performance statistics to evaluate portfolio return characteristics. Performance

metrics for every portfolio are the mean and standard deviation of the annualized credit returns,

Sharpe ratio, information ratio (IR) and tracking error. Sharpe on portfolio level is defined as

Sharpe =
Rp −Rf

σp
,

where Rp is the portfolio’s return, Rf is the risk-free rate and σp is the standard deviation of the

portfolio credit returns. We define IR as,

IR =
Rp −Rm

σpm
,

where Rm represents a benchmark to the bond set. In this research paper, the benchmark is the

market return, where we define the market as all bonds in the US IG or US HY index. σpm is the

tracking error defined as the standard deviation of the portfolio minus benchmark returns.

We take a three-step approach to infer an incremental improvement to a strategy, the influence

of common factors on the strategy, and the significance of the unexplained returns considering factors

based on spanning regressions (Fama and French, 1992). First, we regress the observed top-bottom

credit returns of strategy A on the observed top-bottom credit returns of the second/previous strategy

B to test incremental improvement

RTBA,t = α+ βRTBB ,t + εt, (1)

where α shows whether returns of strategy A are spanned by returns of strategy B, the sign of β

the (direction of) correlation with the other strategy, and 1 ≤ t ≤ T (January 1994 to December

2022). Suppose estimated α is significantly positively different from zero. In that case, the returns of

strategy A are significantly higher than the returns of strategy B, and the adjustment is a significant

improvement for the strategy. When we refer to a spanning alpha or significant alpha in case of an

improvement in the strategy, we refer to α, which shows the returns strategy A obtains over the

returns of strategy B, common practice in financial literature (Houweling and Van Zundert, 2017).

Secondly, we regress observed top-bottom portfolio returns

RTB,t = α+ βmRm,t +
∑
f

βfRTB,f,t + εt,
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top portfolio returns,

RD1,t = α+ βmRm,t +
∑
f

βfRD1,f,t + εt,

and bottom portfolio returns,

RD10,t = α+ βmRm,t +
∑
f

βfRD10,f,t + εt,

where the sum over f is over the four well-known factors in the corporate bond market, Size, LowRisk,

Value and Credit Momentum (Houweling and Van Zundert, 2017), we supplement the four well-known

factors with Equity Momentum, Credit Reversal, and Equity Reversal as we construct a strategy

based on data that those factors utilize too. When we observe a significant 7-factor spanning alpha,

we obtain significant credit returns unexplained by the market and the four well-known factors plus

the supplementary factors. Furthermore, we investigate the correlation of different strategies with the

factors. Significant betas show that the CSA strategy shows significant common returns with one or

more factors. If this is combined with high R2, one may in theory approximately obtain the returns

of the CSA strategy with an investment in a linear combination of the common plus supplementary

factors. Now that we have introduced how we asses possible improvement of various strategies, we

introduce all models in the next three sections. The models are split into three sections, as all models

use a different ’level’ of credit and equity information.

Section 4.2 contains regression models based on credit and equity returns, i.e. ’returns level’.

Section 4.3 contains cointegration models that use information from the difference in the bond spread

and share price, i.e. ’price level’. Lastly, Section 4.4, discusses Ornstein-Uhlenbeck models estimated

on the cumulative residual series of the models from Section 4.2, i.e. ’cumulative returns level’.

4.2 Return Level Models

In this section, we introduce return level models in three subsections. First, we discuss a model-free

approach in Section 4.2.1 to set a base model to compare all alternatives to. Secondly, we introduce

regression models in Section 4.2.2 to explore 1) past dependencies, 2) raw mispricing versus return

prediction, 3) influence of carry, and 4) structural information. Lastly, in Section 4.2.3, we introduce

a two-pass approach to account for systematic risk and implement Random Forest and Gradient

Boosting Regression Trees to explore non-linear and interaction effects.

4.2.1 Model-Free (Fixed Equity-Credit Correlation)

We consider a panel of credit and equity returns for bonds i = 1, ..., N at time t = 1, ..., T (July 1989

to December 2022). The simplest approach for deriving the relation between equity and credit returns

of a company is via a model-free approach, the difference between a Z-score of credit and equity return

Z-scoreci =
rcT,i − µc

i

σc
i

, Z-scoreei =
reT,i − µe

i

σe
i

,

Z-diffi = Z-scoreci − Z-scoreei

10



where rcT,i is credit return in month T for bond i, µc
i the mean of credit returns, and σc

i is the standard

deviation of credit returns. Similarly, reT,i is equity return in month T for bond i, µe
i the mean of

equity returns and σe
i is the standard deviation of equity returns. However, we require a monthly

estimate of the arbitrage opportunity to construct portfolios. Therefore, we compute Z-diff in a rolling

window of length L

Z-scorect,i =
rct,i − µc

t,i

σc
t,i

, Z-scoreet,i =
ret,i − µe

t,i

σe
t,i

,

Z-difft,i = Z-scorect,i − Z-scoreet,i,

where the rolling window applies to the mean and standard deviation like µc
t,i =

1
L

∑t
k=t−L+1 r

c
k,i and

σc
t,i =

√
1

L−1

∑t
k=t−L+1(r

c
k,i − µc

t,i)
2. t now starts at L, thus t = L, ..., T ; we set L = 36, common in

other research (Velthuis, 2007; Choi and Kim, 2018; Bai et al., 2019). For every period t, starting at

L = 36, we have a cross-section of bonds with a ’score’ for Z-diff. Bonds for which Z-diff > 0 credit

returns have outperformed equity returns compared to their 3-year historical average. Bonds for which

Z-diff < 0 credit returns have underperformed equity returns based on their 3-year historical average.

Therefore, in the presence of arbitrageurs, we expect that bonds with the most negative Z-diff ’score’

will most likely outperform in the following months. For those bonds, the equity credit dispersion is

the largest, based on the historical average, and to revert to the historical average, credit should start

outperforming, and equity should underperform. We introduce Z-difft,b, the Z-diff ’score’ of bond b,

the first bond in the second decile in ascending order of all bonds in the cross-section at time t. We

buy all bonds for which Z-difft,i < Z-difft,b. We buy the bottom 10% of the cross-section.

Before introducing return level regression models, we note that one may express Z-diff in a

regression form. To keep the notation simple, we ignore a rolling window and treat the model as if

we only estimate it once as

rct,i = µc
i + εct,i, ret,i = µe

i + εet,i,

Z-scoreci =
rct,i − µc

i

σc
i

, Z-scoreei =
ret,i − µe

i

σe
i

,

Z-diffi = Z-scoreci − Z-scoreei .

With the regression form, we may explain why the Z-diff model is a good benchmark. The model is

essentially a return level regression model with correlation and volatility constraints, as shown in

rct,i = µc
i + εct,i, ret,i = µe

i + εet,i,

rct,i − 1ret,i = µc
i − µe

i + εct,i − εet,i, imposing β = 1

rct,i − ret,i = αi + εt,i, with αi = µc
i − µe

i , εt,i = εct,i − εet,i,

Z-scorec−e
i =

εt,i
σi

=
εct,i − εet,i

σi

=
εct,i
σi

−
εet,i
σi

=
εct,i
σc
i

−
εet,i
σe
i

, if and only if σc
i = σe

i
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= Z-scoreci − Z-scoreei

= Z-diffi.

The Z-diff model is equal to a regression of credit on equity returns if and only if the correlation

between equity and credit is equal to 1 and the volatility of equity and credit is equal. Therefore, we

define Z-diff in the category of fixed equity-credit correlation models.

4.2.2 Regression (Estimated Equity-Credit Correlation)

The next set of models is based on regressions, and the correlation between equity and credit returns

is estimated. The simplest regression model is the following, where we regress credit on equity returns

of a firm with a rolling window of length L

rc(t−L):t,i = αt,i + βt,ir
e
(t−L):t,i + βx,t,iX(t−L):t,i + ε(t−L):t,i, (2)

where X(t−L):t,i can be any control variable. Without any controls, we refer to this model as the

Returns Model. We set L = 36. We obtain a set of parameter estimates for every rolling window,

resulting in a vector of parameter estimates of length T −L starting at observation L for every bond i.

To construct portfolios, we require a monthly arbitrage estimate. For every window starting at t = L

we have a vector of in-sample error terms ε(t−L):t,i. To introduce the arbitrage estimate, we denote

εt,l,i as the in-sample error terms of the rolling window at time t, where 1 ≤ l ≤ L. Therefore, we

denote the last in-sample error at time t as εt,L,i. Following Velthuis (2007), we estimate the arbitrage

opportunity at time t with a Z-score of εt,L,i as

Z-scoret,i =
εt,L,i − µt,i

σt,i
=

εt,L,i

σt,i
, (3)

where µt,i is mean of the error process and σt,i is the standard deviation of the error process. We

do not cap the Z-scores because the Financial Crisis and COVID-19 result in many capped signals;

they have the same value, and therefore, the inability to create decile portfolios, and we use equally

weighted portfolios; thus, the magnitude of mispricing does not matter, only the order. A negative

Z-score signals underperformance of the credit returns relative to equity returns. We expect the credit

returns to catch up with the equity returns. Therefore, we buy sufficiently negative Z-scores

Z-scoret,i < Z-scoret,b,

where Z-scoret,b is the Z-score of bond b for which 10% of the Z-scores in the cross-section at time t, are

lower. We extend upon this regression model to investigate 1) past dependencies, 2) raw mispricing

versus return prediction, 3) influence of carry, and 4) structural model information.

Past Dependencies Kwan (1996); Gebhardt et al. (2005); Hilscher et al. (2015) find that informa-

tion flows from equity to bond markets, and from Table 2 in Section 3, we infer this is the case for

the data in this research as well. Therefore, lagged equity information might provide information for

credit returns, and we extend the Returns Model with lagged equity returns

rc(t−L):t,i = αi + β1r
e
(t−L):t,i + β2r

e
(t−1−L):t−1,i + β3r

e
(t−L):t−2,i + εPE

(t−L):t,i,

12



where εPE
(t−L):t,i are the in-sample error terms from the model denoted with PE (past equity) to denote

the in-sample errors are different from the Returns Model in-sample error terms. From Table 2, we

infer that credit returns also contain significant autocorrelation. We extend the regression with lagged

credit returns

rc(t−L):t,i = αi + β1,tr
e
(t−L):t,i + β2,tr

e
(t−1−L):t−1,i + β3,tr

e
(t−2−L):t−2,i

+β4,tr
c
(t−1−L):t−1,i + β5,tr

c
(t−2−L):t−2,i + εPD

(t−L):t,i,

where εPD
(t−L):t,i are the in-sample error terms from the model denoted with PD (past dependencies)

to emphasize that the error process is not equal to the Returns Model error process. By including

the lags, we test whether the performance of the signal, accumulation of εPD, improves by including

the effect of past dependencies. If we do not obtain significantly higher alpha over the entire sample

period, the arbitrage opportunity is not better captured by including past dependencies. Furthermore,

we test the similarity between ε(t−L):t,i and εPD
(t−L):t,i, r

c
(t−1−L):t−1,i, r

c
(t−2−L):t−2,i, r

e
(t−1−L):t−1,i, and

re(t−2−L):t−2,i by assessing the rank correlation with Spearman’s rank correlation coefficient Spearman

(1961). We check the correlation of the ranked bonds in the cross-section between two signals monthly

to asses whether the two signals rank the portfolio differently. Rank correlation further allows to assess

the effect of incremental contribution on the signal. We can infer whether the ranked cross-section

of ε(t−L):t,i is correlated with εPD
(t−L):t,i but uncorrelated with the lagged equity and credit returns.

If that is the case, we can infer whether lagged equity and credit returns drive the ranking in the

cross-section. Exposure of credit returns to lagged credit and equity returns sheds light on omitted

variable bias and identifies opportunities for more accurate modelling of CSA opportunities.

Raw Mispricing versus Return Prediction Raw mispricing refers to the estimation in the

cross-section of returns and bond characteristics using all information available until time t, but

estimating the relation between credit and equity contemporaneously, like the introduced models.

Another approach is to predict credit returns for t+ 1 and buy bonds for which the predicted credit

return is highest. We test whether past errors contain information that can predict future returns.

If predicting returns obtains significant alpha from a spanning regression, Equation (1), over a raw

estimate of the mispricing approach, it is deemed more informative for arbitrage modelling. We

estimate the return prediction model referred to as Predict Returns 1 (P1) as

rc(t−L):t,i = αt,i + βt,iε(t−1−L):t−1,i + ηP1
(t−L):t,i, (4)

where ηP1
(t−L):t,i are the in-sample error terms. We investigate time series dependence for return predic-

tion just as we did for raw mispricing estimates. To test whether including a time series dependence

structure on past credit and equity returns adds value to forecast credit returns, we extend Equation

(4) with εt−2 and εt−3 lags, and investigate spanning alpha.

Influence of Carry Before delving into the concept of carry, it is essential to introduce the concept

of the yield curve. The yield curve serves as a vital tool in financial markets, providing insights

into the relationship between interest rates and the maturities of bonds. The yield curve is typically
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shown with maturity on the x-axis and interest rate on the y-axis. An upward-sloping curve suggests

anticipation of economic expansion, while an inverted or flat curve may signal economic concerns,

potentially indicating an expectation of a recession (Campbell, 1995).

Consider carry as an asset’s future returns, assuming prices stay the same (Koijen et al., 2018).

For bonds specifically, that means that carry is the expected return when the yield curve does not

change (Martens et al., 2019). In practice, the yield curve does change. By examining carry removal,

we may isolate factors beyond expected returns that enhance our understanding of the underlying

return drivers in an arbitrage setting. The first order Taylor expansion of credit returns shows credit

returns are driven by carry and by duration times the change in spread

rct,i ≈
St−1,i

10, 000Y
−Dt−1,i∆

(
St,i

10000

)
rct,i =

St−1,i

10, 000Y
−Dt−1,i∆

(
St,i

10000

)
+ et,i,

where Y = 12 to rescale spread on a ’yearly scale’ to a ’monthly scale’ for data in this research

specifically. The first term is the carry, Dt−1 is the last period’s duration (a measure of interest rate

sensitivity), and ∆St is the expected spread difference to the last period; by including et we equal

both sides as the Taylor expansion is an approximation. Spread difference and duration are observed

variables. Carry is the return an investor earns on the bond if the spreads do not change during the

month. In this paper, we focus on arbitrage, for which mean reversion is an underlying assumption.

Therefore, we are interested in modelling spread change. We investigate whether removing the carry

component improves the arbitrage strategy. We introduce three ’carry free’ models to extrapolate

what factor beyond carry affects the arbitrage strategy. We again denote the in-sample error terms

with a superscript to emphasize the difference from the error process of the Returns Model. To focus

on spread change, we estimate a first model that removes the carry from the Taylor expansion

rc(t−L):t,i −
S(t−1−L):t−1,i

10, 000Y
= αt,i + βt,ir

e
(t−L):t,i + εMC

(t−L):t,i.

This approach of removing carry still contains et. Therefore, to investigate whether we can improve

further, we estimate the second model

D(t−1−L):t−1,i∆

(
S(t−L):t,i

10000

)
= αt,i + βt,ir

e
(t−L):t,i + εDSD

(t−L):t,i,

where we focus directly on the spread change times duration. Lastly, to complete the picture of the

carry dynamics that influence the arbitrage dynamics, we regress only the change in spread on equity

returns

∆

(
S(t−L):t,i

10000

)
= αt,i + βt,ir

e
(t−L):t,i + εSD

(t−L):t,i.

If duration drives the returns of the bond, including it in the regression may lead to maturity bias

as duration effects are stronger for higher maturity bonds. We assess incremental improvements with

spanning regressions from Section 4.1.

Structural Model Information Researchers base structural models on the theory of Merton

(1974). The key idea presented in Merton (1974) is modelling corporate debt as an option on the
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value of the underlying firm’s assets. Merton’s framework builds on the Black-Scholes option pricing

model (Black and Scholes, 1973). By viewing debt as an option, Merton provides insights into the

relationship between a firm’s leverage (debt-to-equity ratio), its underlying asset value, and the risk-

iness of the debt. An example of a structural model is the CreditGrades model, developed to profit

from mispricing between a company’s debt and equity.

CreditGrades is a practical extension of Merton’s model (Finkelstein et al., 2002). Assumed is

that the asset value follows a geometric Brownian motion. The recovery rate, a parameter that reflects

the uncertainty around the exact value of the default barrier, follows a log-normal process. The default

barrier level, therefore, varies over time; this results in more realistic short-term default probabilities.

An improvement over Merton’s model that underestimates default probabilities (Leland, 2002). A

drawback of CreditGrades is that not all input variables are directly observable. Byström (2006)

shows that including three assumptions improves the transparency of the calculation and obtains

similar Distance-to-Default (DtD) results. From the structural model proposed by Byström (2006),

we compute model implied credit spreads (ICS) based on Distance-to-Default

DtDt,i =
ln(Levt,i)

(Levt,i − 1) ∗ σe
t,i

,

where σe is equity volatility, we use 260-day historical volatility, and Lev is the leverage, computed

as the value of liabilities over the value of liabilities plus the value of equity. Liabilities contain all

liabilities of the company. For the computation of the probability of default, we accumulate time

annual probabilities as

PDM
t,i = 1− (1− PD1

t,i)
M ,

where M is the time to maturity and PD1 the annualized default probability from Byström (2006) as

PD1
t,i = N(−DtDt,i).

Following Byström (2006), we cap annualized default probabilities at a level of 20%, and we cap

< 0.5% of all annualized default probabilities as a result. To relate the model implied credit spread

to default probabilities, we may use

st,i = −
ln(1− λ) ∗ exp−PDM

t,i ∗M + λ

M
, (5)

from Manning (2004) where λ is the recovery rate on default, usually set at 0.4. A ’simpler’ alternative

is

ssimple
t,i = (1− λ) ∗ PDM

t,i , (6)

where one states that spread is the risk premium an investor wants based on loss in case of default

times the probability of default. Reverse engineering the recovery rate from the estimated model

implied spreads shows that the model implied spread calculation from Equation (6) obtains recovery

rates closer to 0.4 and is, therefore, the model of choice.

This paper investigates whether information from structural models can improve arbitrage

modelling for the regression models. The first step to assess the potential is to identify whether the
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error of the Returns Model captures movement in the Distance-to-Default variable; we regress

εt,i = αi + β1,i(DtDt,i −DtDt−1,i) + ϱt,i = αi + β1,i∆DtDt,i + ϱt,i.

The regression captures the exposure of the Returns Model error term to DtD. If present, we may

improve the arbitrage modelling by controlling for DtD exposure, discussed in the next section.

4.2.3 Two-Pass Regression (Estimated Equity-Credit Correlation)

This section discusses several approaches for cleaning the credit and equity returns for arbitrage

modelling. We aim to remove systematic risk. In the first paragraph, we motivate using controls for

systematic risk. The second paragraph introduces linear specifications to control for systematic risk.

In the third and last paragraph, we introduce Gradient Boosting and Random Forest Regression Trees

to include interaction and non-linear effects.

Systematic Risk and Idiosyncratic Returns Lower-rated bonds and bonds with a longer ma-

turity inherently bear more risk than higher-rated short-dated bonds; we call this systematic risk

(Weinstein, 1981). We can correct for systematic risk by controlling for maturity and rating effects.

Moreover, different sectors of the economy can exhibit varying risk and return characteristics due

to the nature of their businesses, financial structures, and macroeconomic factors that affect them

(Leary and Roberts, 2014). Controlling for the company’s sector that issues the bond can control for

this and further reduce systematic risk in the credit returns. Since models in Section 4.2.2 use credit

returns, we expect the errors that we model the arbitrage opportunity from to be partially explained

by maturity, sector and rating effects (Fama and French, 1989). Table 1 in Section 3 further shows

that returns differ across rating, maturity and sector buckets. In the next paragraph, we introduce

methods to capture systematic risk in a first-pass regression and model time-series arbitrage dynamics

in a second pass on individual bond level, like the previously introduced models.

Linear Models The first approach to clean returns of systematic returns is to clean credit, and

equity returns monthly by considering abnormal returns. Abnormal returns are the return of the bond

minus the returns of the peer group of that bond. We construct the peer group on maturity, sector

and rating buckets and compute abnormal credit and equity returns as

ARc
t,i = rct,i − rct,peers, ARe

t,i = ret,i − ret,peers,

where rt,peers are the peer group returns for month t for a peer group. For the return of the peer

group of bond i, the return of bond i itself is excluded. We refer to the Returns Model with abnormal

returns as the Returns Demeaned Model. For Z-diff, we refer to Z-diff Demeaned.

A second approach is a two-pass approach where, in the first pass, we estimate a pooled model

to control for systematic effects and in the second pass, we estimate arbitrage on an individual bond

level. First, we introduce the procedure for Z-diff. We monthly clean the credit and equity returns of

the maturity, rating, and sector mean

rct,i = βM
t Mt,i + βR

t Rt,i + βS
t St,i + εct,i,
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ret,i = βM
t Mt,i + βR

t Rt,i + βS
t St,i + εet,i,

where M is a categorical maturity dummy, including three dynamic maturity buckets. Dynamic

entails that at every month t, we divide the cross-section in equally sized buckets across the maturity

dimension. There are as many bonds in the bucket with the lowest maturity as in the middle and

highest buckets by dynamically defining the barriers between the buckets. The barrier has to be

dynamic as the distribution of maturity is not constant through time. R contains the company’s

rating, ranging from AAA to B, and S is a sector dummy for financial, utility or industrial companies.

The cleaned credit and equity returns we use for Z-diff as

εc(t−L):t,i = µc
t,i + ζc(t−L):t,i, εe(t−L):t,i = µe

t,i + ζe(t−L):t,i

Z-scorect,i =
ζct,L,i

σc
ζ,i

, Z-scoreet,i =
ζet,L,i

σe
ζ,i

Z-difft,i = Z-scorect,i − Z-scoreet,i,

where ζt,L,i is the last in-sample error at time t, we refer to this model as Z-diff d. For pass 1, we

test three linear specifications for return level regression models. The first specification is only the

monthly subtraction of the maturity, rating, and sector mean with a cross-sectional regression

rct,i = βM
t Mt,i + βR

t Rt,i + βS
t St,i + εCt,i.

In the first specification, we correct for group average credit returns. What would the credit returns

be if a company has a short-maturity bond, is AAA-rated, and is a financial company? In the second

specification, we add the equity returns of the specific rating, maturity or sector group, and estimate

Returns RD as

εC(t−L):t,i = γM
t,gM(t−L):t,ir

e
(t−L):t,g + γR

t,gR(t−L):t,ir
e
(t−L):t,g

+ βS
t,gS(t−L):t,ir

e
(t−L):t,g + ε1(t−L):t,i,

where g is, for example, maturity below five years, AAA, or financial sector. This specification corrects

credit returns for the equity return of the rating, maturity and sector group. If all AAA bonds have

lower returns than lower-rated bonds, we should correct this if we want to focus on the idiosyncratic

returns. Removing these systematic returns from the group leaves solely the idiosyncratic returns of

the specific bond. We include interaction between the rating, maturity and sector groups in the third

specification. Essentially, we remove the group average equity return effect of, for example (AAA,

long maturity, and financials) for companies that belong to that group, and estimate Returns RD ID

εC(t−L):t,i = γM
t,gM(t−L):t,ir

e
(t−L):t,g + γR

t,gR(t−L):t,ir
e
(t−L):t,g + βS

t,gS(t−L):t,ir
e
(t−L):t,g

+
∑
g

γt,gM(t−L):t,iR(t−L):t,iS(t−L):t,ir
e
(t−L):t,g + ε1(t−L):t,i,

(7)

where
∑

g runs over all the possible groups by interactions of the six rating, three maturity and three

sector buckets. To limit the number of models in the final evaluation procedure, we test which of the

three specifications leads to the highest autocorrelation in the error series. We employ autocorrelation

as a metric to target CSA opportunities, not necessarily portfolio performance. Lastly, we test what
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information ∆DtD from the structural model holds by

εC(t−L):t,i = γM
t,gM(t−L):t,ir

e
(t−L):t,g + γR

t,gR(t−L):t,ir
e
(t−L):t,g + βS

t,gS(t−L):t,ir
e
(t−L):t,g

+ βD
t,g∆DtD(t−L):t,i + ε1(t−L):t,i.

In the second pass, we run individual regressions on the error term of the first pass. In this pass, we

focus on the bond-specific sensitivity to the equity return of the issuer

ε1(t−L):t,i = αt,i + βt,ir
e
(t−L):t,i + ε2(t−L):t,i, (8)

where, like the Returns Model, we construct a Z-score of the last in-sample residual of the rolling

window at every month t as

Z-score2t,i =
ε2t,L,i

σ2
t,i

. (9)

For the first-pass estimation, we further employ (Gradient Boosting) Regression Trees and

Random Forest (Friedman, 2001; Breiman, 2001) to assess whether the increased flexibility in non-

linearities and interaction effects improves the in-sample fit and autocorrelation dynamics. One may

model the interaction effects linearly, like Equation (7), and one can also add non-linear transfor-

mations of those variables in a ’linear’ regression model. However, lacking prior knowledge about

the actual interaction and non-linear function quickly leads to computational infeasibility because of

the explosion of the number of features if many possibilities are included (Gu et al., 2020). In the

next paragraph, we discuss the implementation of (Gradient Boosting) Regression Trees and Random

Forest of the following models

rct,i = f(Mt, Rt, St,Mtr
e
t,g, Rtr

e
t,g, Str

e
t,g) + ε1t,i,

rct,i = f(Mt, Rt, St,∆DtD,Mtr
e
t,g, Rtr

e
t,g, Str

e
t,g) + ε1t,i,

The errors from these specifications are further regressed on individual bond level following the pro-

cedure from Equation (8), and standardized like Equation (9).

(Gradient Boosting and Random Forest) Regression Trees This section discusses the imple-

mentation of (Gradient Boosting) Regression Trees and Random Forest. We implement a naive single

tree, a dynamic depth single tree and Gradient Boosting Regression Trees and Random Forest with

dynamic hyperparameter tuning.

Regression Trees Trees flexibly capture interactions and are therefore attractive to test on

the entire cross-section (Breiman, 2017). A first naive implementation is a single regression tree with

a depth equal to five for the entire sample period. We extend this by tuning the depth parameter

in the cross-section, dynamic depth. The depth parameter is re-estimated every month. Single

regression trees are prone to overfitting and do not generalize well to unseen data (Kelly and Xiu,

2023). Therefore, we implement two ensemble methodologies: boosting and bagging. First, we discuss

the model validation procedure, equivalent to single, boosting, and bagging trees.
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Model Validation In pass one, the goal is to provide superior explanatory power in-sample

and in the cross-section. In pass one, we do not focus on the time-series dynamics that drive the arbi-

trage opportunity. We focus on purifying the credit returns from cross-sectional rating, maturity and

sector effects. Therefore, we employ K-fold cross-validation (Stone, 1974), not time-series validation

(Kelly and Xiu, 2023), even though we use time-series data. Furthermore, as we aim to explain a

contemporaneous relation with high in-sample explanatory power, we do not obtain error terms for

estimation in pass two in a test set but retrieve them in the train set. K-fold cross-validation is visu-

alized in Figure 2 iteration 1 to 5. After obtaining hyperparameters, we retrain the entire 36-month

cross-section to retrieve in-sample errors, iteration 6, for a second pass regression. To prevent data

leakage, we employ grouped K-fold cross-validation. We define groups on the company level. Herefore,

for example, Coca-Cola can only appear in the train or validation set, not in both. This prevents

data leakage as we employ company-level equity and bond-level credit returns. Bonds are a subset

of the company, so we circumvent data leakage in credit returns. Furthermore, rating and sector are

company-level characteristics too.

Figure 2: Estimation and training procedure for hyperparameters and in-sample error estimation

Ensemble Learning - Gradient Boosting and Random Forest In order to improve the

predictive power of a single regression tree, one can employ boosting or bagging. By combining many

different models, ensemble learning tends to be more flexible (less bias) and less data sensitive (less

variance). Boosting and bagging combine a set of weak learners into a strong learner to minimize

training and testing errors (Friedman, 2001; Breiman, 2001).

In boosting, a subsample of data is selected, fitted with a tree and then trained sequentially.

That is, each new tree tries to compensate for the weaknesses of its preceding tree. With each

iteration, the weak rules from each individual regression tree are combined to form one strong predic-

tion rule. Individually, all trees are shallow and weak predictors, but combined, they form a strong
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predictor. Boosting methods differ in creating and aggregating weak learners based on the employed

algorithm. Two popular boosting methods include Adaptive Boosting and Gradient Boosting (Freund

and Schapire, 1997; Friedman, 2001). This paper uses Gradient Boosting because it is more commonly

used in financial markets (Gu et al., 2020). Gradient Boosting works by sequentially adding predictors

to an ensemble, with each one correcting for the errors of its predecessor by increasing the weight for

data points with the highest errors. It trains on minimizing a loss function based on the residual

errors of previous predictors (Friedman, 2001). In this research, we optimize over a quadratic loss

function to align with the regression models. Important hyperparameters for Gradient Boosting are

the depth, learning rate, number of trees, and percentage of the sample used for every tree. For an

optimal subsample less than 100% of the sample we refer to Gradient Boosting as Stochastic Gradient

Boosting (Friedman, 2002).

Another approach to regularize trees is bagging. In bagging, a bootstrapped subsample (Efron,

1992) with a random subset of all features is selected per tree. For every iteration (tree), we bootstrap

a new subsample, and at every split, we construct a new random selection of features (Breiman, 2001).

In bagging, all trees are trained in parallel, and a final prediction is made by averaging the predictions

over all trees, contrary to boosting, where trees are trained sequentially. The depth of the trees, the

number of trees, and the dropout for features and bootstrapping are hyperparameters.

Where boosting focuses on removing noise by focusing on the ’unexplainable’ errors, bagging

focuses on removing noise by ignoring large errors if they do not appear in many trees by taking

the average over the trees. Boosting may, therefore, be more prone to overfitting. As we evaluate

the in-sample fit of the boosting and bagging models, we must be wary of overfitting and test both

approaches.

We expect hyperparameters to be stable over time, and for computational purposes, we re-

estimate hyperparameters for Gradient Boosting Regression Trees and Random Forest every five

years. To assess whether this assumption is valid, we investigate in-sample R2 over time. We expect

a slight drop in R2 as we move away from the training window. We test standardized and rank

standardized data as input variables, standard practice in the literature (Kelly and Xiu, 2023).

Besides model estimation on return level, the literature shows that cointegration methods using

price-level information work well in equity markets and contain valuable information for structural

models. We discuss such an approach in the next section of the paper.

4.3 Cointegration and the Error Correction Model

The profitability of a capital structure arbitrage strategy rests on the assumption that the prices

will revert. Therefore, we investigate the degree of mean reversion by cointegration (Rad et al.,

2016; Krauss, 2017). Furthermore, in the literature, it is clear that the profitability of strategies

based on mean reversion for other asset classes depends on the degree of cointegration. Lovreta and

Mladenović (2018) find that the profitability of CDS-equity trading crucially depends on the presence

of cointegration and the stability of the cointegration vectors for a sample of European companies.

Cointegration is a method that can measure the presence of a long-run equilibrium between debt
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and equity markets. We investigate whether the presence and strength of cointegration improve the

returns of the capital structure arbitrage strategy. If that is the case, we can use it as a filter in our

strategy. In practice, for example, one may only trade on a cointegrated subset of the universe.

We investigate double-sorted portfolios, where the first sort is in quintiles on cointegration and

within every quintile, we sort on the degree of mispricing. If higher quintile portfolios obtain significant

alpha over lower quintile portfolios, higher cointegration leads to superior returns. Moreover, we

investigate whether a cointegrated subsample outperforms a non-cointegrated subsample.

The concept of cointegration is introduced in Granger (1981). Gregory and Hansen (1996)

pioneer the test for cointegration whilst allowing for structural breaks in the time series. Cointegration

is related to stationarity. A non-stationary time-series x1,t is I(1) if the first difference of the time-

series is stationary, I(0). Consider a second I(1) time-series x2,t. Then, in general, it is true that a

linear combination of the two time series is also I(1). However, there may be a constant β such that

x1,t−βx2,t is I(0). When this is true, the two time series are said to be cointegrated (Granger, 1981).

We examine Augmented Dickey-Fuller (ADF) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS)

statistics to test for stationarity (Dickey and Fuller, 1979; Kwiatkowski et al., 1992) of two time-series

combinations: option-adjusted spread (OAS) and share price adjusted for dividends and splits (P e)

and P e and bond price series constructed as

P c
t,i =

t∑
k=1

(1 + rtk,i),

where rt is the total credit return; the return including interest rate risk. We introduce the bond price

series because we want the synthetic price of credit risk; a reflection of the market’s assessment of

the likelihood of default by bond issuers. The price series may reflect the price dynamics of the bond

better than OAS; using the bond price series may increase the cointegration rate with share price. We

test stationarity and cointegration on the entire sample. We are aware that estimating cointegration

with information until time T , and trading with this information in month t < T introduces forward-

looking bias. However, consider a base case where OAS and share price are cointegrated for ten

years. The cointegration of the series implies that if we find divergence in that period, it should mean

revert. If the degree of cointegration does not improve credit returns in this scenario, it is improbable

that it improves returns in a scenario without forward-looking bias. Nevertheless, we also study this

assumption for stationarity by investigating rolling versus complete sample cointegration portfolio

returns. We use ADF and KPSS statistics to test for stationarity. The null hypothesis of the ADF

test states that the time series is non-stationary, implying γ = 0 in the following equation

∆xt,i = αi + β0,it+ γxt,i +

K∑
k=1

βk,i∆xt−k,i + εt,i,

where xt,i is the level series, either ln(OAS), ln(P c) or ln(P e), ∆ the first difference of the respective

series, αi the constant and β0,it the linear trend component. We choose AIC over BIC for lag selection

as AIC emphasizes model fit. AIC penalizes model complexity less; thus, we can explore more lags

(Burnham and Anderson, 2004). ADF has three configurations: no constant and no drift, constant

without drift and constant with drift. We test for a constant with drift as a share price time series
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shows a trend. For KPSS statistics, the null hypothesis is the opposite of the ADF statistics; the time

series is stationary, i.e. d = 0 in

xt,i = αi + β0,it+ d

t∑
j=1

uj + εt,i,

where uj is a random walk. There are two configurations: stationary around a constant and stationary

around a linear trend. We test stationarity around a trend for reasons similar to the ADF test. Because

the null hypotheses are opposite and the tests different, the combination of the null hypotheses results

in four unique cases (Schlitzer, 1995):

1. Both tests conclude that the series is not stationary - The series is not stationary

2. Both tests conclude that the series is stationary - The series is stationary

3. KPSS indicates stationarity, and ADF indicates non-stationarity - The series is trend stationary.

One needs to remove the trend to make the series strictly stationary.

4. KPSS indicates non-stationarity and ADF indicates stationarity - The series is difference sta-

tionary. Differencing is to be used to make series stationary.

We are interested in cases 1 and 4 because when a differenced series is stationary, there is a basis to

test for cointegration (Perman, 1991).

We test for cointegration on a subsample of non-stationary time series, cases 1 and 4. Two time

series are cointegrated if the null hypothesis of no cointegration relationship is rejected. We employ

Johansen’s cointegration test (Johansen, 1991) to test for cointegration, most common in literature

(Shrestha and Bhatta, 2018). We test for cointegration, including a linear trend. We choose a linear

trend as we expect the relation between P e and P c to have a trend in most cases because the trend in

share price is stronger than in OAS. If we find cointegration, the cointegration relation can be shown in

an Error Correction Model (ECM) using Granger’s theorem (Engle and Granger, 1987). Based on the

ECM, the cointegrated time series shows a long-run equilibrium. The model specification allows for

short-term deviations from the long-run equilibrium. The rolling ECM representation with a constant

and a linear trend is

∆X(t−L):t,i = αt,i(β
′
t,iX(t−1−L):t−1,i + ct,i + γt,it)

+

K−1∑
kar=1

Γkar,t,i∆X(t−kar−L):(t−kar),i + ε(t−L):t,i

(10)

where X = (ln(OAS), ln(P e))’, αt,i(β
′
t,iX(t−1−L):t−1,i+ct,i+γt,it) is the error correction term around

a linear trend, that reverts the time series to the long-run equilibrium for bond i, and the first term

on the second line the autoregressive part of order kar that captures the short-term deviations from

the long-run equilibrium. The long-run equilibrium is between option-adjusted spread and share

price adjusted for dividends and share splits, or the share- and bond price series. Johansen (1991)

describes two statistics to test the cointegration rank: the trace test and the maximum eigenvalue

test. Following Lovreta and Mladenović (2018), we employ the trace test. We compute Johansen’s
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trace test from eigenvalues λ1,t,i and λ2,t,i, which we use to maximize the log-likelihood of equation

(10). Following Johansen (1991), we define the null hypothesis of Johansen’s trace test as

−T

2∑
j=1

log(1− λ̂j,t,i),

where λ̂j,t,i are the solution of the problem

|λS1,1 − S1,0S
−1
0,0S0,1| = 0,

where Sm,n are defined as

Sm,n = T−1
T∑

t=1

Rm,tR
′
n,t,

where R0,t is the matrix of residuals from regressing ∆X(t−L):t,i on (β′
iX(t−1−L):t−1,i + ci + γit), and

R1,t is the matrix of residuals from regressing Xt−1 on the same set of regressors. When forming

R, excluding the autoregressive part ensures that the residuals reflect deviations from the long-term

equilibrium, providing a more accurate assessment of cointegration. Including the autoregressive

part in R would mix short-term dynamics with long-term relationships, potentially leading to biased

results. The Johansen trace test isolates long-term relationships by considering residuals, excluding the

autoregressive part. We test the null hypothesis of rk(β) = 0 against the alternative that rk(β) > 0,

where rk(β) is the rank of the matrix β. If we reject the null hypothesis, we know that at least one

cointegration relation exists. Moreover, we know that if we reject the null that rk(β) = 1 because

we test for cointegration on a non-stationary subsample, implying that rk(β) ̸= 2 because full rank

would impose that the series are stationary (Johansen and Juselius, 1990).

Apart from testing the effect of the degree of cointegration on the portfolio credit returns derived

from return level models introduced in Section 4.2.1 and 4.2.2, one may also construct portfolios on

the divergence in the spread between OAS and P e based on their historical relation. The time series

that defines the arbitrage opportunity is

δ(t−L):t,i = ln(OAS)(t−1−L):t−1,i − β0,t,iln(P
e)(t−1−L):t−1,i + ct,i + γt,it,

where we estimate β0 by regressing ln(OAS) on a constant, the linear trend and ln(P e). We denote

δt,l,i as the in-sample arbitrage spreads, where 1 ≤ l ≤ L. Therefore, we denote the last in-sample

arbitrage spread at month t as δt,L,i. As different bonds have different arbitrage spread dynamics, we

standardize all the spreads

δ∗t,i =
δt,L,i − µδ,t,i

σδ,t,i
,

where µδ,t,i is the mean of the arbitrage spread and σδ,t,i the standard deviation. We compute δ∗t,i for

every bond and rank accordingly every month. Essentially, δ∗t,i is the signal. Following the reasoning

for the return level models, we buy sufficiently negative spreads

δ∗t,i < δ∗t,b,

where δ∗t,b is the spread of bond b for which 10% of the spreads in the cross-section at time t, are lower.
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Another approach to estimating arbitrage with a different level of information is to estimate

arbitrage on a cumulative error series. In the next section, we introduce Ornstein-Uhlenbeck models

tailored for such an estimation. Moreover, Ornstein-Uhlenbeck explicitly models mean reversion in

the cumulative error series.

4.4 Ornstein-Uhlenbeck Models

Estimating a Z-score of the last in-sample residual as in Equation (3) does not consider the mean

reversion of the series in the score. We model an Ornstein-Uhlenbeck (OU) process to consider an

estimate of mean reversion (Ornstein and Uhlenbeck, 1930). Avellaneda and Lee (2010) introduce

an Ornstein-Uhlenbeck process for modelling the outperformance of stocks relative to an ETF. We

introduce the Ornstein-Uhlenbeck process in the credit market to estimate arbitrage opportunities

between credits and equities. To estimate the Ornstein-Uhlenbeck process we construct a cumulative

error series as

Et,l,i =

l∑
k=1

εt,k,i,

where ε is the error term from any return level model. Just as in Section 4.2.2 for ε consider now

the cumulative in-sample cumulative error term Et,l,i for every window as the vector E(t−L):t,i for the

entire sample, and model as follows

dE(t−L):t,i = κt,i(µt,i − E(t−L):t,i)dt+ σt,iB(t−L):t,i,

where Bt,i is a Brownian motion, κt,i the speed of mean reversion, µt,i the unconditional mean, and

L = 36. Because the last in-sample error is a cumulative sum including the first in-sample error of the

rolling window, Ornstein-Uhlenbeck models use information of the entire rolling window length of the

return level models. The Ornstein-Uhlenbeck process is a continuous process, but one can estimate

the parameters in an AR(1) process without loss of generality as

E(t+1−L):t+1,i = αt,i + βiE(t−L):t,i + ζ(t−L):t,i, (11)

where ζt,i are normal, IID distributed random variables with mean 0 (Yeo and Papanicolaou, 2017).

The parameter estimates for the Ornstein-Uhlenbeck process are

κt,i = −log(βt,i), µt,i =
αt,i

1− βt,i
,

σt,i√
2κt,i

=
σζ
t,i√

1− β2
t,i

,

where σζ
t,i is the square root of the variance of Equation (11). The parameter estimate of κ shows

why the Ornstein-Uhlenbeck process is undefined on the non-cumulative error series. Specifically, for

estimating the Ornstein-Uhlenbeck process on εt,i directly, βt,i is mostly negative, rendering the OU

process undefined in such cases. The estimated signal is

OUt,i =
Et,L,i − µt,i

σt,i/
√

2κt,i

=
−µt,i

σt,i/
√

2κt,i

, (12)

as Et,L,i =
∑L

k=1 εt,k,i = 0 by construction of the Ordinary Least Squares estimation of the residuals.
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Next to a possible increase in portfolio returns, we investigate the drivers of the OU portfolio

sorts by constructing portfolios on the separate components of the OU process. The top deciles contain

bonds for which

OUt,i < OUt,b, µt,i > µt,b,
µt,i

σt,i
>

µt,b

σt,b
, κt,i < κt,b,

where b is the bond for which the cutoff value constructs 10% of the cross-section in the top decile.

Because we investigate portfolio sorts on the kappa (κ) parameter, we estimate the OU process for

the Z-diff not on the separate error series but on the Z-diff signal series as the difference between the

equity and credit kappa has no meaning

Et,l,i =

l∑
k=1

Z-difft,k,i.

One may not estimate the Ornstein-Uhlenbeck process on the individual credit and equity error terms

due to the volatility difference in the two series; we need to consider the volatility difference between

credit and equity. Furthermore, we investigate how OU portfolio sorts differ from a Z-score portfolio

sort by investigating the in-sample error process to infer whether an OU process models a different

mean-reversion pattern in the residual and credit returns. Finally, we investigate the performance

improvement of modelling an Ornstein-Uhlenbeck process with spanning regression. We estimate the

spanning alpha of every Ornstein-Uhlenbeck model over its return level matched model. For example,

the Returns Model with Ornstein-Uhlenbeck portfolio returns regressed on the Returns Model from

Equation (2) portfolio returns.

4.5 CSA Evaluation Framework

This section introduces an evaluation procedure to answer the research questions. We introduce

a novel framework tailored specifically towards arbitrage strategies. We categorize all models into

five categories: return level with fixed correlation, return level with estimated correlation, Ornstein-

Uhlenbeck with fixed correlation, Ornstein-Uhlenbeck with estimated correlation, and cointegration

models. For every category, we have introduced several models. Not all models are evaluated in

the CSA framework as we pre-select promising models. Namely, we select categories with monotonic

portfolio returns, reflecting a consistent return relationship (Haesen et al., 2017), and for the return

level models we test the incremental improvement of the methods introduced in Section 4.2 including

only models that demonstrate an improvement over the Returns Model. For the two-pass regression

models we include the equity time effects that obtain highest autocorrelation in the signal series. For

this selection we estimate Ornstein-Uhlenbeck models. Therefore, we do not retest the incremental

improvement for Ornstein-Uhlenbeck models as we only estimate Ornstein-Uhlenbeck models for in-

dividual bond level controls of Section 4.2.2 that show an incremental improvement. For the final

CSA evaluation framework, we introduce in the following paragraphs: (effective) lookback window,

look-forward window, holding period, turnover, break-even transaction-cost, and autocorrelation.

(Effective) Lookback Window In this paragraph, we introduce the lookback window and then

define an effective lookback window to compare returns level models and Ornstein-Uhlenbeck models
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on equal footing. Ornstein-Uhlenbeck models use information on the entire rolling window length

of return level models because the last cumulative in-sample error contains information from all in-

sample errors. We, therefore, investigate whether the information of multiple periods for return level

models improves arbitrage modelling. The hypothesis is that if mispricing/divergence is persistent for

multiple months, the probability of convergence should increase. Consider a lookback window of LB

months; we transform the in-sample errors as

εLB
t,l,i =

1

LB

LB∑
k=1

εt,l−k+1,i,

essentially a moving average where l = LB, ..., L. For the return level models with estimated cor-

relation, such as the Returns Model, we may define a signal for a lookback window of LB months

as

SLB
t,i =

1
LB

∑LB
k=1 εt,l−k+1,i

σt,i
=

εLB
t,L,i

σt,i
.

For a lookback window of 1 month, this is equal to the Z-score of Equation (3). For return level

models with fixed correlation, such as Z-diff, the corresponding signal is defined as

SLB
t,i =

1
LB

∑LB
k=1 ε

c
t,l−k+1,i

σc
t,i

−
1

LB

∑LB
k=1 ε

e
t,−k+1,i

σe
t,i

.

As for Ornstein-Uhlenbeck, the estimation window implicitly defines the lookback window. There is

no further accumulation of the OU signal, and the signal is defined as

SLB
t,i = OUt,i,

For the Ornstein-Uhlenbeck model, not every observation in the estimation window is weighted equally

in the parameter estimates as the model employs a cumulative sum. The observations follow a linear

decreasing weighting scheme. We define an effective lookback window to reflect the weighting scheme in

the Ornstein-Uhlenbeck process. The effective lookback window neutralizes the weighing scheme and

allows an apple-to-apple comparison for the effect of the lookback window. The effective lookback

window equals the sum of the effective observation weights in the lookback window. Consider an

example of the mean of an error series of length L

µε =
1

L

L∑
l=1

εl,i,

and a cumulative error series of length L

µE =
1

L

L∑
l=1

l∑
k=1

εk,i =

L∑
l=1

L+ 1− l

L
εl,i,

where the effective time weight for the error series is

ETWε,l =
1

LB
,

and for the cumulative error series

ETWE,l =
LB + 1− l

LB

/∑
l

(
LB + 1− l

LB

)
.
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The different observation weights that are time dependent for the cumulative error series entail that

effectively, some periods are weighted stronger than other periods; the ETW is illustrated in Figure

19 in Appendix B, and reflected in the effective lookback window by weighting the periods by their

effective time weight

ELB =

LB∑
l=1

ETWl(LB + 1− l),

where one implicitly weighs the first effective time weight in a lookback window of 36 months 36

times, and the last observation (most recent) in the lookback window once to reflect the length of the

lookback window.

Look-forward Window and Holding Period We introduce a look-forward window for an au-

tocorrelation estimate for portfolios with a holding period of over one month. The holding period

(HP) of a portfolio is how long an investor holds the bonds in the portfolio before selling them. The

look-forward window for every lookback window is defined as

SLF,LB
t,i =

1

LF

LF∑
k=1

SLB
t+k−1,i,

where LF = 1, ..., 5. The holding period influences turnover in the strategies because bonds are held

longer, influencing trading costs; therefore, we introduce turnover and break-even transaction cost as

a metric that accounts for turnover in the next paragraph.

Turnover and Break-Even Transaction Cost Turnover (TO) is the percentage of the top decile

that changes monthly multiplied by twelve to measure on a yearly scale. If the turnover of a portfolio

is 1200%, that means that every month, all bonds in the portfolio are replaced. Because the turnover

per model may differ and the holding period influences turnover, we define a metric that considers

turnover. We define break-even transaction cost as

BETC =
Rp

2 ∗ TO
,

where we multiply by two because, for every bond we sell, we also have to buy a new one. The

break-even transaction cost indicates how much every trade could cost before the strategy is loss-

making. The power of break-even transaction cost is that we do not have to make assumptions

about trading costs. Bond markets are relatively illiquid compared to equity markets, and liquidity

in bond markets varies substantially between bonds, for example, across ratings (Chen et al., 2007;

De Jong and Driessen, 2012). Therefore, assuming some level of trading cost will, by definition,

not represent an investor’s actual trading cost when applying the strategy. Break-even transaction

cost are, therefore, more informative than net returns. We evaluate all signals for portfolio returns

and break-even transaction cost. Nevertheless, we investigate autocorrelation to assess whether those

portfolio returns and break-even transaction cost are actually driven by mean reversion.

Autocorrelation and Mean Reversion We employ autocorrelation as a proxy for mean reversion

in the time series. Autocorrelation of every bond i at time t is defined by the Pearson correlation
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coefficient (Pearson, 1895) as

ACLF,LB
t,i = Corr(SLF,LB

(t+1−35:t),i, S
LB
(t−35:t),i)

=

∑t
k=t−35(S

LF,LB
k+1,i − S̄LF,LB

i )(SLB
k,i − S̄LB

i )√∑t
k=t−35(S

LF,LB
k+1,i − S̄LF,LB

i )2
∑t

k=t−35(S
LB
k,i − S̄LB

i )2
,

where the first estimation window observations, i.e. observations before observation L, are constructed

from in-sample signals, which therefore contain forward-looking bias to compute the mean and stan-

dard deviation to obtain the Z-score for the signal. For a rolling window of 36 months, approximately

57% of the observations for bonds are before month 36. To some extent, this sample contains a

forward-looking bias for the autocorrelation computation. We accept the bias to increase the avail-

able sample to compute autocorrelation from, with forward-looking bias 43% of the sample remains

for autocorrelation estimation; without forward-looking bias, only 20%. We estimate autocorrelation

with a 36-month rolling window. For the final autocorrelation of a model, we first take a cross-sectional

average and then an average over time to prevent a higher weight to recent history as the universe of

bonds grows with time. Note that we compute autocorrelation including t+ 1 for SLF,LB to include

the observation of the convergence of the opportunity in the autocorrelation.

Due to computational limitations, we investigate a holding period of up to five months to

test whether autocorrelation drives break-even transaction cost, but twelve months to assess possible

convergence in break-even transaction cost independent of autocorrelation dynamics. We investigate

a lookback window of 24, 30, 36, 42, and 48 months for the Ornstein-Uhlenbeck process for the

CSA evaluation framework specifically. We investigate the Ornstein-Uhlenbeck process for several

estimation windows to create enough variance in the sample compared to 36 months to infer the effect

of autocorrelation on the return dynamics. We assess the influence of autocorrelation and the other

variables on portfolio returns and break-even transaction cost as

Rp,t = ct + βACACt + βELBELBt + βHPHPt + ϑt,

BETCt = ct + βACACt + βELBELBt + βHPHPt + βTOTOt + ϑt,

where we include turnover in the second equation because, by definition, break-even transaction cost

is driven by turnover. We infer the significance and sign of all parameter estimates to investigate CSA

and introduce an ensemble methodology for all models that capture CSA opportunities.

4.6 Ensemble

This section introduces two ensemble methodologies to combine signals. The first approach is a

naive ensemble that averages all the signals, 1/N (Naive Ensemble). In the second approach, we

do automatic signal selection via a Random Forest. We investigate whether autocorrelation is a

good proxy of mean reversion for the Naive Ensemble. We do this for the ensemble instead of all

models individually because the ensemble presents the average pattern of all models and is, therefore,

representative of the mean reversion on average. If all models in the Naive Ensemble capture CSA

opportunities following the autocorrelation proxy, we should observe divergence, before buying, and

convergence, after buying, in credit returns for the top decile portfolio.
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4.6.1 Naive Ensemble

For an ensemble, we have to choose between signal and portfolio blend. The signal blend takes the

average of all the signals and buys one new portfolio. In a portfolio blend, one buys all the signals and

takes the average of the returns of all portfolios. We use the signal blend as the signal blend performs

better than the portfolio blend if the target is high alpha (Henke et al., 2020). Figure 20 in Appendix

B shows an illustrative example showing that signal and portfolio blend buy different bonds, leading

to different performances.

There is a different number of models for every model category (estimated/fixed correlation,

return level/Ornstein-Uhlenbeck/cointegration). Therefore, the Naive Ensemble overweights category

characteristics if we average all signals. We investigate the performance of the Naive Ensemble with

equally weighted categories (Naive Ensemble Eqw) against the Naive Ensemble. For a correct imple-

mentation of the Naive Ensemble, it is important to cross-sectionally standardize every signal before

averaging the signals because all signals are based on different models, and the distributions of those

models are not necessarily equal. For a correct implementation of the Naive Ensemble Eqw, one

additional cross-sectional standardization of the category averages is required before averaging over

the categories. To compare the performance of the Naive Ensemble, we also investigate the hit ratio

Hit Ratio =

∑T
t=L

1, if Rp,t > 0

0, if Rp,t ≤ 0

T
,

where we essentially count the percentage of months with positive returns relative to the total number

of evaluated months. A higher hit ratio may be interpreted as a higher probability of predicting future

winners in the bond market (Korn et al., 2022). In the context of a Naive Ensemble, an elevated hit

ratio indicates its favorability over the individual models it consists of, denoting more consistent and

reliable performance.

4.6.2 Automatic Model Selection

As we have different model categories, the logical question is whether we can utilize the differences with

automatic model selection. We use Random Forest Model Averaging (RFMA) for automatic model

selection. We choose RFMA over Bayesian Model Averaging (BMA) because of 1) the computational

intensity of BMA, 2) bagging of a Random Forest is asymptotically a particular case of BMA (Le and

Clarke, 2022), 3) RFMA is more intuitive to benchmark against a Naive Ensemble, 4) RFMA would

be a good benchmark for BMA because of 2). Wasserman (2000) further discuss BMA.

For RFMA, we test standardized and rank standardized features (signals), standard practice

(Kelly and Xiu, 2023). The target is next month’s credit return rank in the cross-section because we

are only interested in the rank of every bond for next month, not necessarily the return itself. The

rank target is more beneficial as we minimize the mean-squared error as a loss-function. Namely, it

does not focus on predicting the extremes correctly since the target distribution is uniform.

We test two RFMA implementations. The first implementation uses a 1-month rolling window
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train set, no validation set, and a 1-month test set. We do not make hyperparameter selections on the

test set to prevent forward-looking bias. We do not use a validation set for hyperparameter selection to

prevent a gap between the train and test set. Without the gap, RFMA is closer to the Naive Ensemble,

and the marginal improvement of applying RFMA can, therefore, be assessed more accurately. We

do an initial test with various random training sets of the entire sample for hyperparameter selection

to test if there is any sensitivity to the hyperparameters. The second implementation of RFMA is

with expanding window with hyperparameter optimization. We prefer RFMA with a 1-month rolling

window train set if the performance is similar to the RFMA with an expanding window since the

1-month training set allows to better assess the value add of RFMA against a Naive Ensemble. The

expanding window setup is a training set of 3 years, validation of 1 year, and a test set of 1 month,

with hyperparameter re-estimation every five years for computational purposes, discussed in Section

4.2.3. Lastly, as a proxy of the accuracy of the credit rank prediction independent of returns, we

compute the Spearman Rank Correlation for the two RFMA implementations with the actual credit

rank (Spearman, 1961).

Because we investigate multiple holding periods, we extend RFMA with a 2, and 3-month

credit rank target. That is, we do not predict next month’s rank but the average rank of a bond for

the next 2 or 3 months. The hypothesis is that a multi-month credit rank target decreases turnover

and that a multi-month credit rank target has higher portfolio returns for a holding period longer

than one month than the 1-month credit rank target. It is important to note that this changes the

training and test procedure. To prevent data leakage between the train and test set, we use a 1-month

gap between the train and test set for the 2-month credit target and a 2-month gap between the train

and test set for the 3-month credit rank target. We refer to the models as Random Forest 1, 2, and

3, depending on the credit rank target.

We assess the influence of the credit rank target on spanning alpha, turnover, break-even

transaction cost, and compare this to the Naive Ensemble (Eqw).

Finally, we investigate what signals RFMA selects with feature importance scores as the features

are the signals. For feature importance, we apply SHAP from Cooperative Game Theory (Shapley

et al., 1953). SHAP is an explainer model that runs on the trained Random Forest model to explain

the behaviour of the features. We define a simple explainer model to illustrate the basics of SHAP as

follows

g(z′) = ϕ0 +

J∑
j=1

ϕjz
′
j , (13)

where g(z′) is the explainer function, ϕ0 the base value, the model output without any input features,

ϕj is the SHAP value of feature z′j which is either zero (signal not present) or 1 (signal present) and

g(z′) matches the output of RFMA assuring local accuracy. Together with two other properties, they

guarantee that the SHAP values are unique (Lundberg and Lee, 2017). The explainer model from

Equation (13) works on row-level data of features (signals) and, therefore, explains local predictions,

i.e. the predicted credit rank in a certain month. We may extend Equation (13) to a global credit
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rank explainer as

ϕj(f, x) =
∑
z′⊆x′

|z′|!(J − |z′| − 1)!

J !

(
fx(z

′)− fx(z
′ \ j)

)
, (14)

where |z′| is the number of non-zero entries in z′, z′ ⊆ x′ represents all z′ vectors where the non-zero

entries are a subset of the non-zero entries in x′, and fx(z
′) is the output of RFMA including feature

z′ for signal rank input x. x′ are simplified inputs that map to the original input through mapping

x = hx(x
′). In short, Equation (14) weighs all the differences between output with and without signal

j and, therefore, constructs the effect for different credit ranks of signal j considering interaction

effects with other signals. This procedure constructs the marginal contribution of every signal to the

final predicted credit rank every month. The sum of absolute SHAP values for signal j ϕj is the total

contribution of the signal to the predicted rank; it reflects to what degree the signal contributes to the

final model output. If SHAP values for all signals are equal, RFMA is equal to the Naive Ensemble.

With the introduction of portfolio construction and spanning regressions in Section 4.1, the

return level models in Section 4.2, cointegration models in Section 4.3, Ornstein-Uhlenbeck models

in Section 4.4, evaluation criteria for CSA in Section 4.5, and finally the ensemble methodologies we

answer all research questions in the next section.

5 Results

The results section is split into three main sections. The first section discusses the three subquestions

in several subsections. The second section answers the main research question. The third section dives

deeper into the incremental return level improvements, cointegration results, and Ornstein-Uhlenbeck

results. We show that for return level models, we do not obtain an incremental improvement on

individual-level modelling, and for cointegration models, returns do not show monotonicity. Further-

more, thirdly, a thorough investigation of how Ornstein-Uhlenbeck models capture CSA, and how

the process behaves to explain the drivers behind Ornstein-Uhlenbeck models portfolio returns, and

improvement over return level models.

5.1 Models that Capture Capital Structure Arbitrage Opportunities

We use a subset of the models introduced in Section 4.2, Section 4.3, and Section 4.4 for the CSA dy-

namics analysis, as discussed in Section 4.5. Namely, the cointegration models are omitted because the

models do not provide monotonic returns across deciles, further discussed in Section 5.3.2. Secondly,

in Section 5.3.1, we show that we do not obtain an incremental improvement on individual bond level

for the return level models; thus we only include the Returns Model. The last paragraph of Section

5.3.1 explains the subselection of the two-pass models we use. The models in the CSA analysis are

for return level Z-diff, Z-diff Demeaned, Z-diff d, Returns, Returns Demeaned, Returns RD, Random

Forest, Boosting, and the latter three, including ∆DtD as a control variable. For every one of these

models, we include the Ornstein-Uhlenbeck variant. Considering the five lookback windows, we have

5 times 11 times 2 = 110 models.
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5.1.1 CSA on the Bond Leg Only

Whether the models capture CSA, Figure 3 shows break-even transaction cost for various levels of au-

tocorrelation for return level and Ornstein-Uhlenbeck models. The figure shows that an increase in the

autocorrelation magnitude leads to an increase in break-even transaction cost. Figure 21 in Appendix

C shows a similar pattern for portfolio returns, although more masked for return level models. Table

3a and Table 3b show the drivers of break-even transaction cost and portfolio returns. For return level

and Ornstein-Uhlenbeck models, portfolio returns are significantly driven by autocorrelation, shown

by the t-statistic of -11.06 for return level models and 6.88 for Ornstein-Uhlenbeck models.

Table 3: Linear regression results for the relation between portfolio return, break-even transaction

cost, and autocorrelation

(a) Return level models

Variable Return BE TC

Constant 1.47** 0.95** -0.06** 0.00

(20.76) (14.35) (-5.60) (0.15)

Autocorrelation -2.27** -9.32** -2.19** -0.95**

(-4.74) (-14.88) (-29.14) (-11.06)

Effective Lookback Window 0.10** 0.03**

(5.25) (8.91)

Holding Period -0.23** 0.03**

(-14.00) (9.12)

Turnover 0.00**

(-3.54)

R-squared 0.07 0.48 0.74 0.89

(b) Ornstein-Uhlenbeck models

Variable Return BE TC

Constant 1.00** -0.20 0.92** -0.55**

(7.59) (-0.34) (16.74) (-5.65)

Autocorrelation 1.55** 2.58** -0.85** 0.97**

(7.90) (3.00) (-10.48) (6.88)

Effective Lookback Window 0.01 0.00

(1.80) (1.31)

Holding Period 0.08* 0.10**

(2.12) (12.86)

Turnover 0.00**

(-4.66)

R-squared 0.19 0.36 0.29 0.91

Note. T-statistics are in parentheses; dependent variables are portfolio return and break-even transaction cost;

* p < 0.05, ** p < 0.01.

(a) Returns Models (b) Ornstein-Uhlenbeck models

Figure 3: Relation break-even transaction cost and autocorrelation for Returns and Ornstein-

Uhlenbeck models, transparency reflects the lookback window; one month is most transparent to

five months, least transparent
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We conclude that for return level models in Table 3a 1) more substantial negative autocor-

relation leads to higher BE TC. 2) A longer ELB, which means using more information, leads to

higher BE TC. 3) A longer holding period leads to higher BE TC, contrary to the effect on portfolio

returns, which means that the decrease in portfolio returns is not as substantial as the decrease in

turnover. 4) Higher turnover leads to lower BE TC. Figure 22a in Appendix C shows more evidence

for the hypothesis that a longer ELB leads to higher certainty for convergence as the increase in the

magnitude of autocorrelation is mainly in the middle deciles. This signals that diverging patterns are

pushed to the top and bottom deciles, which are the patterns that we want to capture.

We conclude for Ornstein-Uhlenbeck models in Table 3b that 1) more substantial positive

autocorrelation leads to higher BE TC, the slower the signal, the higher the BE TC. 2) A longer

ELB has no significant effect, as every Ornstein-Uhlenbeck model uses a large part of history it is

expected that the effect would not be as strong as for return level models (the relative difference

between information used is smaller). 3) An increase in the holding period improves BE TC, as the

holding period also increases portfolio returns for Ornstein-Uhlenbeck models this is expected. 4)

Higher turnover leads to lower BE TC.

For both return level and Ornstein-Uhlenbeck models, approximately 90% of the variance is

explained by the independent variables; the effect of autocorrelation is accurate. The difference

in the sign between the effect of autocorrelation for return level and Ornstein-Uhlenbeck models is

because Orstein-Uhlenbeck models are on a cumulative error series. Therefore, it is impossible to

judge from the sign of the autocorrelation whether, for Ornstein-Uhlenbeck models, there is mean

reversion in the arbitrage opportunity. The difference in the autocorrelation magnitude in absolute

terms is due to overlapping data in the autocorrelation computation for Ornstein-Uhlenbeck models.

If we use 48 months of cumulative data and move one month further, we only change one month of

information. The cumulative data creates a moving average in the error term (Harri and Brorsen,

1998). Portfolio BE TC is better explained than portfolio returns reflected by a lower R2 for explaining

returns by autocorrelation, ELB, and holding period. This is reflected in Figure 21 in Appendix C as

the relation between autocorrelation and portfolio returns is more masked than the relation between

autocorrelation and BE TC in Figure 3.

Concluding, given the significance of autocorrelation and assuming that autocorrelation cap-

tures the dissapearance in the arbitrage opportunity, return level models capture CSA opportunities.

To further investigate whether Ornstein-Uhlenbeck models capture CSA opportunities and whether

autocorrelation is a good proxy for capturing CSA opportunities for return level models we investigate

credit and equity returns prior and post arbitrage opportunities.

Figure 4 shows that up and until time t credit returns decrease and equity returns increase for

Ornstein-Uhlenbeck models, and that at time t+1 this is reversed. Moreover, the pattern is monotonic

across deciles. Therefore, Ornstein-Uhlenbeck models capture the formation and disappearance of the

arbitrage opportunity; the Ornstein-Uhlenbeck models capture CSA opportunities. Figure 5 shows

a similar pattern for return level models, therefore autocorrelation is a good proxy for evaluating

CSA opportunities for return level models. In conclusion, all models capture CSA opportunities;
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we can harvest CSA opportunities focusing on the bond leg only, with a portfolio factor investing

implementation.

(a) Credit returns of Ornstein-Uhlenbeck models (b) Equity returns of Ornstein-Uhlenbeck models

Figure 4: Credit and equity returns across deciles before and after bonds are in the decile

(a) Credit returns of return level models (b) Equity returns of return level models

Figure 5: Credit and equity returns across deciles before and after bonds are in the decile

5.1.2 Drivers of CSA Opportunities

We have shown all models capture CSA opportunities. To investigate what asset class drives the

formation of the opportunity and drives the disappearance of the opportunity, we define a Naive

Ensemble as in Section 4.6 and investigate again the development of credit and equity returns around

time t. Figure 6 shows a similar pattern as Figure 4 and Figure 5 but approximately an average of

the magnitude. This is expected as the return level and Ornstein-Uhlenbeck models are constituents

of the Naive Ensemble. Most importantly, Figure 6 shows that for the Naive Ensemble, both asset

classes drive the formation of the opportunity and the opportunity’s convergence and disappearance.

Regarding the second part of the research question about the disappearance of arbitrage op-

portunities, we note that after a bond is a constituent of decile 1, the time it takes to return to

middle deciles would signal that the opportunity has been arbitraged away. Figure 7 shows that

most opportunities after three months are still in the top three deciles. The opportunities disappear

relatively slowly for the Naive Ensemble. Note, however, from Figure 23 in Appendix D that 1) the

speed of convergence, and 2) where the opportunity disappears to differ between return level and
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(a) Credit returns of Naive Ensemble (b) Equity returns of Naive Ensemble

Figure 6: Equity and credit returns across deciles before and after bonds are in the decile

Figure 7: Transition probabilities Naive Ensemble

Note: Stay at top are deciles 1, 2, 3, Goes Neutral are deciles 4, 5, 6, 7, Goes to Bottom are deciles 8, 9, 10.

Ornstein-Uhlenbeck models. The quicker convergence in the return level models may be reflected in

the larger magnitude of the credit returns at time t in Figure 5. The figure shows that return level

models seem to capture more extreme cases than Ornstein-Uhlenbeck models do in Figure 4 because

return level models have a larger difference in credit returns between t and t + 1 across the top and

bottom deciles. In conclusion, both asset classes contribute to the convergence and disappearance of

the arbitrage opportunity, half of the opportunities have converged after approximately four months

for the Naive Ensemble, and return level arbitrage opportunities converge quickest.

5.1.3 Robustness to Various Modelling Options

We know that all models capture CSA opportunities, that both asset classes drive the formation and

convergence of the opportunities, and that the convergence speed varies between return level and

the Ornstein-Uhlenbeck models. Figure 8 shows that between return level and Ornstein-Uhlenbeck

models, a split in fixed- and estimated correlation reveals that the Naive Ensemble return dynamics

vary substantially between its constituents. Namely, Figure 8d shows fixed correlation models, under-
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represented in a Naive Ensemble, obtain higher BE TC than estimated correlation models. The fixed

correlation models are underrepresented because Z-diff models only constitute 27% of all models. The

varying performance between categories and underweight of fixed correlation models raise the question

of whether the Naive Ensemble is optimal or cleverly selecting between the constituents may improve

the model performance. Figure 24 in Appendix E shows that the first improvement is to weigh the

categories equally as BE TC improves, which means that the signal average of fixed correlation OU

models weighs as much as the signal average of estimated correlation OU models, even though there

are more estimated correlation models.

(a) Effective lookback window (b) Information ratio

(c) Turnover (d) Break-even transaction cost

Figure 8: Equity and credit returns across deciles before and after bonds are in the decile

The second ensemble methodology is automatic signal selection with RFMA. Figure 25 in

Appendix E shows that Random Forest 1 selects models dynamically and that weights are not equal

to 1/N. Figure 9a shows that model selection effectively improves the top decile returns for a 1-month

holding period as Random Forest 1 spanning alpha is higher than Naive Ensemble Eqw spanning

alpha. Figure 26 in Appendix E shows that performance between rolling and expanding window for

Random Forest does not differ substantially, as a rolling window is closer to 1/N, and the performance

is slightly better than expanding, Random Forest with a rolling window is the implementation of

choice. That performance is better for a rolling window is somewhat surprising as Figure 27 in

Appendix E shows that the Spearman rank correlation with next month’s credit rank is higher for an

expanding window than for a rolling window. That means that throughout the entire data sample,

an expanding window predicts next month’s rank closer to the actual rank than a rolling window,
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considering the entire cross-section. Therefore, a rolling window solely predicts better in the top as

the top decile drives portfolio returns. Lastly, for robustness, Figure 28 in Appendix E shows that

standardization or rank standardization and hyperparameters do not influence the loss; therefore, we

choose fixed hyperparameters and standardized features for the rolling window. Rank standardized

features contain less information than standardized features because they lose the scale difference.

Figure 9c shows that the increase in performance for RFMA with rolling window comes at the cost

of higher turnover and, therefore, lower BE TC than the Naive Ensemble Eqw.

(a) Spanning alpha (b) Turnover (c) Break-even transaction cost

Figure 9: Performance Naive Ensemble Eqw and Random Forest 1 (1-month holding period)

We extend the credit rank target. Figure 10 shows that all Random Forest model configurations

have a more substantial alpha decay than the Naive Ensemble Eqw. Extending the Random Forest

credit rank target decreases the difference in 1-, 2-, and 3-month holding period spanning alpha but

does not improve the spanning alpha in absolute terms. Extending the Random Forest credit rank

target is ineffective in improving spanning alpha. What does it mean for turnover and, therefore, for

the break-even transaction cost?

Figure 10: Top-bottom spanning alpha Random Forests and Naive Ensemble Eqw
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Considering the effect of the multi-month credit rank target on turnover and, therefore, on the

break-even transaction cost, Figure 11a shows that all RFMA credit targets lead to higher turnover

and, therefore, lower break-even transaction cost for the same level of portfolio returns, Figure 11b. A

2- or 3-month target does reduce turnover, but only noticeably for a 1-month holding period. Again,

extending the credit target is ineffective. A longer holding period is crucial for all methods to reduce

the turnover rate and increase the break-even transaction cost. Considering transaction cost and

performance, the longer the holding horizon, the more attractive the Naive Ensemble Eqw becomes,

and the less attractive RFMA becomes, confirmed by Figure 12 that shows the difference expands to

20 basis points.

In conclusion, a Naive Ensemble Eqw obtains higher break-even transaction costs than a Naive

Ensemble because of differences in the underlying categories and Random Forest Model Averaging

because of lower turnover short-term and higher portfolio returns long-term.

(a) Turnover (b) Break-even transaction cost

Figure 11: Naive Ensemble Eqw and Random Forests turnover and BE TC per holding period

Figure 12: Convergence in break-even transaction cost
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5.2 Best Capital Structure Arbitrage Model(s)

This section discusses the Ensemble Eqw specific results in Section 5.2.1. In the second section, we

discuss which controls and whether including non-linear and interaction effects are effective in the

two-pass approach.

5.2.1 The Ensemble

The Naive Ensemble Eqw obtains the highest break-even transaction cost, and models mean reversion

in credit returns. The hit ratio is the final metric to show that an ensemble outperforms all other

models. Figure 29 in Appendix F shows that an equally weighted ensemble obtains a higher hit ratio

than all individual models and a higher hit ratio than RFMA.

We have shown that the Naive Ensemble Eqw outperforms the other models for the IG universe.

For robustness purposes, we show in Table 22 in Appendix G that all ensemble models, except for

returns estimated corr., also outperform the market for the HY universe. Furthermore, we test whether

the strategy works in equity markets. Figure 31 in Appendix H shows that, if you switch the sign of

the signal, CSA opportunities can also be harvested in the equity market because outperformance and

IR have a monotonic pattern and IR is above the threshold of 0.5, which is considered good (Goodwin,

1998).

The Naive Ensemble Eqw models CSA and outperforms all individual models. A final per-

formance evaluation is to analyze the 7-factor alpha from Section 4.1. Table 4 shows that the Naive

Ensemble Eqw only obtains significant spanning alpha over the market. Considering the seven factors,

a Naive Ensemble Eqw does not obtain a significant 7-factor spanning alpha. That means that, in

theory, we may reconstruct the returns from the strategy by investing in a linear combination of the

seven factors and the market. It does mean we would have to short Credit Momentum, which in

practice is costly (Houweling and Van Zundert, 2017). In the top portfolio, we buy equity winners

and credit losers, and we expect credit to outperform; the positive loading to Equity Momentum and

the negative loading to Credit Momentum align with observed dynamics in Figure 6. The loading

should be reversed for the bottom portfolio, but the table shows that the loadings are insignificant.

For top-bottom, we therefore observe loadings similar to the top portfolio. Since we use credit and

equity returns data in an Equity Momentum combined with Credit Reversal implementation, it is

good to observe that the CSA strategy does not load significantly on Size, LowRisk, and Value for the

top-bottom portfolio as we aim to model different dynamics. We, therefore, expect that we should

model returns differently. We do not interpret the reversal factors since Table 21 in Appendix F shows

that Equity- and Credit Reversal obtain significantly negative alpha to the market.

In conclusion, the Naive Ensemble Eqw obtains more periods with positive returns than any

individual model and RFMA. Ensemble methodologies have positive returns over the market for the IG

and HY universe. The Naive Ensemble Eqw CSA strategy works in the equity markets. The strategy

shows monotonic outperformance and IR for a one- and 12-month holding period, Figure 13. Returns

are not harvested in a small period, but over time, reflected by the hit ratio and visualized in Figure

30 in Appendix F. The CSA strategy significantly correlates with Equity- and Credit Momentum and,
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in theory, does not add anything above existing factors.

Table 4: Spanning regression results for the relation between Ensemble Eqw and factor top, bottom,

and top-bottom portfolio returns and market returns

Model Ensemble Eqw

Variable Top Bottom Top-Bottom

Alpha 1.34%* -1.45% -2.11%** 0.02% 3.44%** -2.37%

(2.23) (-1.64) (-7.28) (0.03) (4.74) (-1.93)

Market 1.42** 1.55** 0.96** 0.99** 0.45** 0.44**

(33.10) (42.71) (46.55) (48.24) (8.74) (9.17)

CreditReversal -0.11** -0.09** -0.09**

(-3.16) (-4.62) (-3.53)

EquityReversal -0.01 0.27** -0.10

(-0.11) (4.13) (-1.22)

EquityMomentum6 1M 0.68** 0.06 0.25**

(6.52) (1.33) (2.85)

CreditMomentum6 1M -0.18** 0.01 -0.12*

(-2.93) (0.19) (-2.42)

Size -0.15* -0.32** -0.03

(-2.05) (-3.62) (-0.41)

LowRisk -1.83** 0.09 0.02

(-10.91) (1.92) (0.50)

Value 0.11 -0.10 -0.04

(1.80) (-1.61) (-0.51)

R-squared 0.76 0.86 0.86 0.88 0.18 0.36

Note. T-statistics are in parentheses; * p < 0.05, ** p < 0.01.

(a) Outperformance (b) Information ratio

Figure 13: Naive Ensemble Eqw credit market performance

5.2.2 Controls - Systematic and Idiosyncratic Returns

In this section, we investigate the effect of the controls and non-linearities in machine learning, intro-

duced with the two-pass approach. We draw four conclusions.
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First, Table 5a shows that controlling for peer-group equity time effects does not significantly

improve portfolio returns as there is no spanning alpha. Secondly, Table 5c shows that including

∆DtD does improve portfolio returns in some cases compared to the two-pass approach with only

peer-group equity time effects. The pattern is, however, not strong, but if anything, there is economic

value in the addition of ∆DtD. Thirdly, Table 5b shows that allowing for interaction effects and

non-linearities with Boosting and Random Forest does not significantly improve portfolio returns

consistently. The added value of ∆DtD is not in the interaction or non-linear interaction effects.

Finally, Table 5d shows that monthly demeaning credit and equity returns with their peer group

average leads to significant spanning alpha for 92% of the cases for Z-diff, but only 4% for Returns;

however if anything demeaning is an improvement as there is positive spanning alpha for every case.

In short, estimating CSA opportunities with idiosyncratic returns via peer group demeaning is

effective, especially for Z-diff. Controlling for peer-group equity time effects does not add value. In-

cluding ∆DtD adds, if anything, economic value. Non-linearities and interaction effects with Boosting

and Random Forest do not improve model performance.

Table 5: Spanning regression alpha t-statistic results for two-pass controls and machine learning

(a) Equity time effects

Model Two-Pass

t-stat Returns Boosting Random Forest

Returns
above 2 8% 0% 0%

below -2 0% 0% 0%

(b) Interaction and non-linearities

Model Two-Pass ∆DtD

Two-Pass ∆DtD t-stat Boosting Random Forest

Returns
above 2 12% 12%

below -2 0% 0%

(c) Including ∆DtD

Model Two-Pass ∆DtD

Two-Pass t-stat Returns Boosting Random Forest

Returns
above 2 16% 20% 24%

below -2 0% 0% 0%

Boosting
above 2 36% 24% 44%

below -2 0% 0% 0%

Random Forest
above 2 20% 16% 20%

below -2 0% 0% 0%

(d) Peer-group demeaning

Model Demeaned

t-stat Z-diff Returns

Z-diff

above 2 92%

above 0, below 2 8%

below 0 0%

Returns

above 2 4%

above 0, below 2 96%

below 0 0%

Note. The percentage is of all spanning regression for lookback window and holding period one to five months;

8% is for 2 out of 25 combinations the t-value of spanning alpha is above 2 or below -2, significant at 5%.

5.3 Incremental Model Improvements

This section covers three topics. In the first section, we discuss return level models, in the second

section, cointegration models, and in the third section, Ornstein-Uhlenbeck models.

5.3.1 Modelling of Arbitrage Opportunity on Return Level

In this section, we show that there are no incremental improvements on individual bond levels for

return level models. Therefore, individual bond-level arbitrage estimation in CSA is only from the

Returns Model.
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Past Dependencies To model past dynamics that may drive arbitrage opportunities, we investigate

past dependencies in the Returns Model with lagged equity and credit returns and the exposure of

the signal from the Returns Model to past equity and credit information. The error from the Returns

Model does not capture past dependencies. Table 6 shows that the rank correlation between the

Returns Model and the Returns Model with equity and credit lags equals 0.81, indicating that both

errors contain similar information. More importantly, the error from the Returns Model has a rank

correlation of approximately 0 with 1 and 2 periods of lagged equity and credit returns, showing that

the error does not contain the information that the lagged equity and credit returns do. Therefore,

including past equity and credit information does not substantially influence the arbitrage signal, even

though Figure 32 in Appendix I shows that R2 of the Returns Model with equity and credit lags is

consistently higher than the R2 of the model without lags, the lags do contain information.

Table 6: Rank correlation portfolio return between Returns Model and Returns Model with equity

and credit lags

Model Returns CE l1 l2 Equity l1 Equity l2 Credit l1 Credit l2

Returns Model 0.81 -0.02 -0.02 0.06 0.03

Note. Returns CE l1 l2 is Returns Model with 2 equity and credit lags; Equity l1 is last month’s equity return;

Credit l1 is last month’s credit return.

To conclude with significant evidence that including equity and credit lags does not improve

the arbitrage modelling, Table 7 shows that the t-statistic of alpha is not significant. Moreover, the

returns of both top-bottom portfolios are significantly correlated (47.80). The t-statistics of the credit

and equity lags show that the Returns Model error contains less information about past credit returns

than past equity returns, as both equity lags are significantly correlated. That both equity lags are

correlated is in line with Kwan (1996); Gebhardt et al. (2005); Hilscher et al. (2015) that information

flows from the equity to the bond markets. Including only the equity lags in the model, does not yield

significantly better performance; alpha is not significant for Returns E l1 l2 (-0.25).

Raw Mispricing versus Return Prediction We investigate whether the error of the Returns

Model holds predictive power. We rank bonds on predicted next month’s return instead of raw

mispricing in the current month. Table 8 shows that predicting t+1 credit return with the mispricing

in month t does not obtain significantly higher returns than constructing portfolios on the mispricing

in month t. Moreover, increasing the mispricing information with the mispricing in month t− 1 and

month t−2 does not significantly outperform constructing portfolios on the mispricing in month t. The

portfolio returns are also significantly correlated, even though the rank correlation between the Predict

Returns and Returns Model is 0.01. The Predict Returns model, therefore, ranks bonds similarly in

the tails, top and bottom deciles, but ranks differently in deciles two to eight. In conclusion, return

prediction is not significantly more effective than raw mispricing.

Influence of Carry One may expect that an arbitrage strategy, which tries to harvest positive credit

return movements, signals those opportunities better by removing the ’noise’ of the carry component.
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Table 7: Spanning regression results for the relation between Returns Model and Returns CE l1 l2

and E l1 l2 top-bottom portfolio returns

Variable Returns Model

Alpha 0.10% 1.25% -0.05%

(0.30) (1.45) (-0.25)

Returns CE l1 l2 1.16**

(47.80)

Credit l1 0.17**

(3.43)

Credit l2 -0.04

(-0.76)

Equity l1 -0.15*

(-2.14)

Equity l2 0.49**

(8.14)

Returns E l1 l2 1.09**

(88.57)

R-squared 0.87 0.23 0.96

Note. T-statistics are in parentheses; * p < 0.05, ** p < 0.01.

Table 8: Spanning regression results for the relation between Predict Returns Model with 1, 2, and 3

lags and Returns Model top-bottom portfolio returns

Variable Predict Returns Predict Returns 2 Predict Returns 3

Alpha 0.74% 0.34% 0.72%

(1.24) (0.59) (1.21)

Returns Model 0.39** 0.23** 0.22**

(11.57) (7.06) (6.70)

R-squared 0.28 0.13 0.11

Note. T-statistics are in parentheses; * p < 0.05, ** p < 0.01.

Table 9 shows that alpha increases as we focus more on spread change and remove carry; however, the

monotonic behaviour is not reflected in significance, which does not increase. Furthermore, returns

of the top-bottom portfolios are significantly correlated and R2 approaches 1. Removing carry from

the credit returns does not lead to a significant improvement. Therefore, carry does not significantly

influence portfolio returns.

Table 9: Spanning regression results for the relation between Returns Model without Carry, Duration

times Spread Difference, Spread Difference and Returns Model

Model Returns - Carry Duration x dSpread dSpread

Alpha 0.15% 0.20% 0.36%

(1.51) (0.79) (1.15)

Returns Model 1.01** 0.90** 0.81**

(186.87) (65.22) (46.73)

R-squared 0.99 0.92 0.86

Note. T-statistics are in parentheses; * p < 0.05, ** p < 0.01.
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Structural Model Information Industry practice for CSA strategies published in the early 2000s

are structural models. Leland (2012) states that structural models underpredict default probabilities.

Figure 33 in Appendix I shows that the default probabilities in the sample considered in this research

are close to zero. Therefore, it is impossible to derive meaningful spreads with either Equation (5)

or Equation (6). Default probability does, however, contain information that we may exploit in the

two-pass approach as Table 23 in Appendix I shows that the error term of the Returns Model contains

some exposure to ∆DtD, further explored in Section 5.2.2.

Issuer Level Signal An issuer-level signal allows for immediate arbitrage estimation upon issuance

of a bond, unlike bond-level signals that require a specific estimation window of length L for each

bond. An issue-level signal ranks 41.6% of the cross-section on average, while an issuer-level signal

ranks 82.4% of the cross-section. Figure 34 in Appendix I shows that the median age of bonds is

below the estimation window length of the issue-level signal; therefore, the issue-level signal does

not rank many bonds compared to an issuer-level signal. Table 10 shows that an issuer-level signal

performs poorly; the top decile underperforms the market. In conclusion, the arbitrage opportunities

are bond-specific and cannot be harvested on the issuer level.

Table 10: Portfolio performance metrics for Returns Issue Level and Returns Issuer Level

Metric Returns Returns Issuer Returns Issuer*

Annualized Return 0.96% -0.62% -0.28%

Sharpe 0.15 -0.09 -0.05

Age 6.61 4.13 6.43

Outperformance 0.07% -1.51% -1.33%

IR 0.02 -0.41 -0.37

Note. *Returns Issuer in the last column shows results for issuer signal on subsample of Regr. Returns, bonds

that are at least 36 months of age; IG investment universe.

Two-Pass Regression For two-pass regressions, we investigate whether we increase autocorrelation

with interaction dummies and whether we should clean returns of systematic risk ex-post or ex-ante

individual arbitrage estimation. Table 24 in Appendix I shows that the autocorrelation in the signal

does not improve by including interaction dummies between the peer groups, and controlling for

systematic effects followed by individual bond-level arbitrage estimation has more substantial negative

autocorrelation than vice versa. Moreover, Table 25 in Appendix I shows that peer-group demeaning

both equity and credit returns obtain stronger negative autocorrelation than demeaning only credit

returns and that including a sector dummy increases autocorrelation further. Lastly, Figure 35 in

Appendix I shows that Boosting and Random Forest hyperparameters are estimated effectively as

there are no noticeable drops in R2 for months that we do not re-estimate the hyperparameters.

Concluding on Return Level Incremental Effects Investigation of the Returns Model dynamics

shows that 1) The Returns Model does not capture past dependencies, and including past dependencies

does not significantly affect the portfolio returns. 2) Raw mispricing is a more effective signal than
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return prediction. 3) Removing carry does improve returns slightly, but not significantly. 4) The

arbitrage opportunity is bond-specific; an issuer-level signal has lower returns than an issue-level

signal. 5) Interaction effects between peer groups do not improve autocorrelation. 6) We estimate

CSA opportunities more accurately by cleaning returns of systematic risk ex-ante than ex-post. 7)

Peer-group demeaning has higher autocorrelation, including the sector and demeaning both equity and

credit returns. In conclusion, there is little return level information to improve the Returns Model for

signalling an arbitrage opportunity on the individual bond level. We investigate information on price

level in the next section, where we discuss cointegration and error correction models.

5.3.2 Cointegration and the Error Correction Model

This section first discusses the influence of the cointegration requirement on the available sample for

estimation. Secondly, we discuss the performance of an error correction model.

In Section 4.3 we discuss that we test for cointegration on two credit time series, test on the

complete sample and a rolling window, and implement two different stationary tests. Whether we use

OAS or P c, apply a rolling window or static window on the complete sample, test on issue level or issuer

level, or force a 10% significance level instead of 5%, the conclusion remains the same: cointegration

does not occur frequently, and too few bonds remain available for a viable factor investing strategy.

A cointegration requirement leaves around 20%-30% of the sample available for signal construction.

That is 10%-15% of all bonds in the cross-section, as we cannot estimate arbitrage for bonds with an

age below three years.

Table 11 shows on the issue level that 1) OAS has less non-stationary time series than share

price. 2) The rate drops further because the two time-series are not stationary simultaneously (OAS

& Share Price < OAS or Share Price). 3) That the relatively low Case 1 + Case 4 rate drives the

cointegration rate as ∼70% of non-stationary pairs are cointegrated. 4) Lastly, this holds for stationary

and cointegration tests on the complete sample and on a 36-month rolling basis, Table 26 in Appendix

J. Because OAS primarily drives the lower rate of non-stationarity, we also examine P c, results are

similar, and we draw the same conclusion, Table 27 in Appendix J. Table 28 in the same Appendix

shows that few non-stationary pairs again drive the low cointegration rate for the issuer level. Due

to the small cointegrated sample, an investment strategy solely on the cointegrated subsample is not

feasible in practice. However, one may estimate an arbitrage strategy on the cointegrated subsample

and combine the strategy with an investment strategy on the complete sample; the cointegration

strategy may be a complement.

Table 12 shows portfolio performance for five ECMs. Spread is an ECM specification on all

bonds in the cross-section, whilst CI Spread is an ECM specification on all cointegrated bonds in

the cross-section. The table shows that ECM performance varies substantially between specifications.

Moreover, a cointegration prerequisite does not consistently improve outperformance as top decile

returns for OAS improve to (0.88% > 0.25%), whilst for the bond price, the returns decrease (0.15% <

−0.20%). Similarly, IR results are not unambiguous. Table 29 in Appendix J shows that the ECMs

generally do not show monotonicity in IR. In short, results are not unambiguous; if anything, the
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Table 11: Non-stationary ratio according to ADF and KPSS statistics and cointegration ratio accord-

ing to Johansen’s trace test for OAS and share price on issue level for the complete sample

Issue Level

Complete Sample

Non-stationary

ADF

Non-stationary

KPSS
Case 1 Case 4 Case 1 & 4

Cointegrated

with Prerequisite

Cointegrated

without Prerequisite

Alpha = 0.05

OAS 73.9% 49.1% 45.4% 3.7% 49.1%

Share Price 77.5% 56.3% 52.4% 4.0% 56.3%

OAS & Share Price 64.0% 33.9% 29.5% 4.3% 33.9% 25.1% 51.1%

Alpha = 0.1

OAS 66.6% 62.5% 52.8% 9.7% 62.5%

Share Price 71.1% 69.6% 59.6% 10.0% 69.6%

OAS & Share Price 53.5% 50.0% 37.2% 12.9% 50.0% 32.3% 61.6%

Note. Case 1 refers to non-stationary ADF and KPSS test statistic results. Case 4 refers to the ADF test

result as stationary and the KPSS test result as non-stationary; The percentage is relative to the number of

time series; The results shown are for tests around a linear trend; the results are similar for tests around a

constant.

ECMs do not provide consistent returns. Cointegration may, however, contain information for the

Returns Model. Therefore, we investigate the performance of the Returns Model on a cointegrated

subsample and a non-cointegrated subsample.

Table 12: Portfolio performance metrics for cointegration models

Option Adjusted Spread and Share Price Bond Price Return and Share Price

Metric Spread1 CI Spread1 CI Spread2 Spread1 CI Spread1

Outperformance 0.25% 0.88% 0.24% 0.15% -0.20%

IR 0.23 0.39 0.15 0.14 -0.04

Note. IG investment universe; 1rolling window stationarity and cointegration test; 2complete sample station-

arity and cointegration test; alpha = 0.05 for tests.

Table 13 shows that the Returns Model on a cointegrated or non-cointegrated subset does

not significantly out- or underperform the complete sample as both alpha t-statistics are insignificant.

However, it is striking that the Returns Model shows higher returns on the non-cointegrated subsample

than the cointegrated subsample. Within the cointegrated subsample, Table 30 in Appendix J shows

there is no monotonic increase or decrease in the portfolio returns as cointegration increases for the

Returns Model; there is no monotonic effect of cointegration on the Returns Model portfolio returns.

Table 13: Spanning regression results for the relation between Returns Model cointegrated and non-

cointegrated subsample and Returns Model complete sample portfolio returns

Variable Cointegrated subsample Non-cointegrated subsample

Alpha -0.69% 0.48%

(-1.47) (1.73)

Returns Model1 1.18** 0.84**

(45.92) (54.63)

R-squared 0.86 0.90

Note. T-statistics are in parentheses; 1complete sample; cointegration alpha = 0.05; * p < 0.05, ** p < 0.01.
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Considering all rating categories, we have shown that there is no significant effect of cointe-

gration on portfolio returns for the ECMs and the Returns Model. However, Figure 36 in Appendix

J shows that the rate of cointegrated time-series pairs is higher for lower-rated bonds. This is not

surprising, as we show in Section 3 that bond dynamics differ across rating categories. We investigate

whether larger rating buckets drive full sample results from Table 13 by splitting the cointegration

effect across rating categories. Table 14 shows alpha significance across rating buckets for a cointe-

grated and not cointegrated subsample. The first clear pattern is that, in general, alpha increases

for lower-rated bonds. The second and most important pattern is in the alpha difference column,

the difference in alpha between a cointegrated and not cointegrated subsample; namely, there is no

monotonic increase for alpha as ratings decrease. No evidence exists that a cointegrated subsample

obtains higher returns for lower-rated bonds than higher-rated ones.

Table 14: Spanning regression alpha results across (non-)cointegrated subsample and rating categories

Z-diff Cointegrated Z-diff Not Cointegrated

Rating Alpha (%) Alpha - t-statistic Alpha (%) Alpha - t-statistic Alpha Difference

AAA-AA 1.25* 2.47 1.58** 5.11 -0.32

A 1.54** 3.39 1.46** 5.99 0.08

BBB 2.02** 3.47 1.95** 4.56 0.06

BB 2.56* 2.41 2.98** 3.98 -0.42

B 4.48** 2.95 4.09** 3.79 0.39

Returns Model Cointegrated Returns Model Not Cointegrated

Rating Alpha (%) Alpha - t-statistic Alpha (%) Alpha - t-statistic Alpha Difference

AAA-AA 1.34** 2.71 1.10** 3.89 0.24

A 1.55** 3.36 1.36** 5.27 0.19

BBB 2.35** 3.6 1.44** 2.88 0.91

BB 3.6** 3.36 3.39** 3.89 0.21

B 2.09 0.89 3.42* 2.59 -1.33

Note. There is a more idiosyncratic risk for BB and B-rated bonds. Therefore, we investigate the performance

across all rating categories with quintiles instead of deciles; * p < 0.05, ** p < 0.01.

In conclusion, 1) a cointegration requirement reduces the available bond universe by 70 to 80%,

driven by a lack of non-stationarity. 2) ECMs do not provide monotonic portfolio returns. 3) The

Returns Model does not provide better returns on a cointegrated subsample. 4) A higher cointegration

rate for lower-rated bonds does not lead to higher returns on the cointegrated subsample than the

non-cointegrated subsample. Thus, no information on cointegration may improve arbitrage modelling.

5.3.3 Ornstein-Uhlenbeck and Mean Reversion

In this section, we discuss the spanning alpha of Ornstein-Uhlenbeck models over their matched return

level models, the dynamics underlying the Ornstein-Uhlenbeck model, and investigate the value added

of the mean-reversion parameter in the process. Compared to two-pass regression, we may interpret

the Ornstein-Uhlenbeck process as a third pass where we accumulate the CSA residuals.

Table 15 shows that an Ornstein-Uhlenbeck (OU) process improves performance for all return

level models because most spanning alpha is positive, 95% t-statistics > 0, and significant, 45% of

t-statistics > 2. Table 31 in Appendix K shows that especially for Z-diff models portfolio returns
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substantially improve with the addition of an Ornstein-Uhlenbeck process as for 84%, 92%, and 52%,

on average for 72% of lookback window and holding period combinations the model with Ornstein-

Uhlenbeck process has significant spanning alpha over the model without. The improvement is possible

because the OU process captures a different error pattern. Figure 37 in Appendix K shows modelling

an OU process forces a more gradual mispricing pattern in the top and bottom deciles. The gradual

pattern is reflected in the OU Ensemble versus the Returns Ensemble in Figure 4a and Figure 5a

where the magnitude of the credit return at time t is lower for the OU Ensemble in the top and

bottom deciles than the Returns Ensemble whilst credit returns at time t + 1 is higher for the OU

Ensemble. The credit return at time t+ 1 is the credit return that the method harvests, reflected by

significant spanning alpha of OU relative to return level models in Table 15.

Table 15: Spanning regression average alpha t-statistic results for Model with OU and OU Kappa

sort over matched return level model

Ornstein-Uhlenbeck models Ornstein-Uhlenbeck models κ sorted

Alpha Average over all return level models Returns Model Average over all return level models Returns Model

t-stat >2 45% 48% 10% 72%

0 <t-stat <2 50% 52% 63% 28%

-2 <t-stat <0 5% 0% 27% 0%

t-stat <-2 0% 0% 0% 0%

Note. The percentage is of all spanning regressions for lookback window and holding period of one to five

months; the t-value is the alpha of the spanning regression of portfolio returns of a model with Ornstein-

Uhlenbeck process over the portfolio returns of that model without Ornstein-Uhlenbeck process; 48% is for 12

out of 25 combinations the t-value of spanning alpha is above 2, significant at 5%.

We have assessed that Ornstein-Uhlenbeck models add performance relative to return level

models. However, the primary motivation for applying Ornstein-Uhlenbeck is the mean-reversion

parameter κ in Equation (12) as the hypothesis is that explicitly modelling the mean reversion would

drive higher returns. We show that this parameter does not drive the Ornstein-Uhlenbeck performance.

Table 16 shows that the OU process does significantly outperform a sort solely on µ (2.51) of

the OU process, but by including just σ and not κ, OU actually underperforms (-1.19). Therefore, κ

does not add value in Equation (12) and does not drive the performance. The table also shows that

the OU process significantly outperforms a sort on κ (3.10), but that κ also obtains significant alpha

over the OU process (3.14). Two-way significant spanning alpha is possible because the correlation

between the two sorts is low, reflected in an R2 of 0.03; the parameter κ is not significantly related to

the portfolio construction of the OU process. Table 33 in Appendix K furthermore shows that the OU

process significantly negatively loads on Credit Momentum whilst κ loads on different factors, further

evidence that the two sorts are unrelated.

Figure 14 shows the effect of κ on the OU process; κ constrains the total mispricing in the

OU process as the sum of the cumulative error decreases for higher quintiles of k. This is reflected in

lower portfolio returns for mu portfolios with high kappa values, Table 34 in Appendix K. The value

of the mean-reversion parameter κ is not visible in the portfolios constructed from the OU process.

For the Returns Model, Table 15 shows that portfolios constructed on a sort of just κ from the OU
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Table 16: Spanning regression results for Returns with OU process over Returns with OU but µ, µ/σ

or κ sorted and results for Returns with OU κ sorted over Returns with OU

Variable Ornstein-Uhlenbeck Kappa

Alpha 1.32%* -0.37% 2.34%** 2.07%**

(2.51) (-1.19) (3.10) (3.14)

µ 0.47**

(19.21)

µ / σ 0.90**

(41.64)

κ -0.20**

(-3.35)

Ornstein-Uhlenbeck -0.15**

(-3.35)

R-squared 0.52 0.83 0.03 0.03

Note. T-statistics are in parentheses; * p < 0.05, ** p < 0.01.

process obtain significant spanning alpha over the Returns Model without the OU process. The table

also shows that this does not generalize to other return level models as only 10% of the t-statistics are

positive and significant. Table 32 in Appendix K shows that for many models even 0% of t-statistics

are significant. Therefore, we may not obtain consistent portfolio returns with k sorted portfolios.

Concluding, there is no robust value in the κ parameter of the OU process. It mainly functions

as a constraint on the total sum of mispricing in the process. The performance improvement of

Ornstein-Uhlenbeck is driven by something other than explicitly modelling mean reversion in the

cumulative sum of the error process. The substantial incremental performance improvement over

return level models is because the model estimates the total mispricing of the in-sample error process

relative to only mispricing in recent months.

Figure 14: Influence of κ on cumulative in-sample error for the Ornstein-Uhlenbeck process, where

quintile 1 contains the highest values for mu (µ) and k (κ)
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6 Conclusion and Discussion

This research aims to find the best (combination of) model(s) that capture CSA opportunities with a

factor investing portfolio perspective, where the best is reflected in break-even transaction cost.

We show that return level models and Ornstein-Uhlenbeck models can harvest CSA oppor-

tunities focusing on the bond leg only. Moreover, we may harvest the opportunities in the equity

market, too. We show that both asset classes, equity and credit, drive the divergence that creates the

arbitrage opportunity and that both asset classes contribute to the convergence and disappearance of

the opportunity. Regarding speed, half of the opportunities have converged after approximately four

months. We investigate robustness across fixed and estimated correlation categories and show that

performance deviates between model categories but that opportunities may be harvested for every

category independently. We show that a naive ensemble with equally weighted categories outperforms

a naive ensemble where all signals are equally weighted because fixed correlation signals are underrep-

resented. We show that this equally weighted ensemble outperforms any individual model within the

categories. A more sophisticated ensemble, Random Forest Model Averaging, obtains higher portfolio

returns than a naive ensemble with equally weighted categories, but considering transaction cost, a

naive ensemble with equally weighted categories outperforms Random Forest Model Averaging. We

may attractively combine the individual models and obtain an ensemble model with a yearly turnover

rate of 117% and break-even transaction cost of 1.12%. The CSA factor of the ensemble is significantly

correlated with Equity and Credit Momentum and, empirically, does not obtain significant 7-factor

spanning alpha. However, to construct the linear combination an investor would have to short bonds,

which is difficult and costly in practice (Houweling and Van Zundert, 2017).

Within the models considered for the ensemble, we show that models based on idiosyncratic

returns are a significant improvement over models based on systematic returns if we create the id-

iosyncratic returns by monthly demeaning credit and equity returns with peer group returns based on

maturity, rating, and sector buckets. Controlling for peer-group equity time effects does not improve

portfolio returns. Including ∆DtD as a credit risk control improves portfolio returns, although only

sometimes significantly. Machine learning has no value added over linear controls.

For incremental model improvements we first conclude on individual bond level, then for the

two-pass, followed by cointegration, and finally the Ornstein-Uhlenbeck models.

On individual bond level there are no incremental model improvements, we show that 1) the

Returns Model does not capture past dependencies, and including equity and credit lags does not

significantly improve portfolio returns. 2) Raw mispricing, like the Returns Model, is more effective

than return prediction based on the raw mispricing. 3) Removing the carry component of credit

returns in the Returns Model does not improve portfolio returns. 4) The arbitrage opportunity is

bond-specific; an issuer-level signal underperforms a bond-level signal. The issuer-level signal even

underperforms the market.

For the two-pass regression we investigate how to correct for systematic risk, we show that 1)

ex-ante cleaning returns of systematic risk is more effective than ex-post. 2) Including interactions
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between rating, maturity, and sector buckets does not improve the effectiveness of equity time effects

as a control. This is in line with results from the models considered for the Naive Ensemble, where

peer-group equity time effects generally do not improve portfolio returns.

Regarding the cointegration model category, we show this category of models is not feasible in a

CSA factor investing strategy. 1) A cointegration requirement reduces the available bond universe by

70 to 80%, driven by a lack of non-stationary time series. 2) Return level models do not provide better

returns on a cointegrated subset, contrary to CDS-equity trading in Lovreta and Mladenović (2018).

3) A higher cointegration rate for lower-rated bonds does not lead to higher portfolio returns of the

cointegrated subset compared to the non-cointegrated subset. 4) ECMs with or without cointegration

requirements do not provide monotonic portfolio returns, are not superior to the more simple Returns

Model and are therefore not included in the CSA framework. Contrary to pairs trading in the equity

market (Rad et al., 2016), cointegration methods are not promising for a CSA factor investing strategy.

Finally, the motivation of applying Ornstein-Uhlenbeck is the possibility to explicitly model

mean reversion with the k parameter of the process. We show for Ornstein-Uhlenbeck models that

the mean-reversion parameter k in the process does not drive the significant improvement in the

portfolio returns of the Ornstein-Uhlenbeck models relative to the return level models. Specifically,

the mean-reversion parameter k constrains the total mispricing that the Ornstein-Uhlenbeck model

captures. The performance improvement from Ornstein-Uhlenbeck is due to the focus of the process

on the complete mispricing in the lookback window compared to only the most recent mispricing for

the return level models. Modifying the Ornstein-Uhlenbeck process from Avellaneda and Lee (2010)

we show promising results for CSA factor investing in corporate bonds.

This paper focuses on a factor investing strategy where bonds are ranked in the cross-section.

We do not investigate the time-varying factor of arbitrage opportunities. Wojtowicz (2014) shows

that for a CSA strategy with CDS-equity pair trading, most of the profits are made in a short time

span because most CSA opportunities occur in a small time window. Further research may indicate

whether a CSA strategy based on absolute signals instead of relative signals is more profitable than

the factor investment strategy researched in this paper.

Within an ensemble, we show that fixed equity-credit correlation models outperform estimated

equity-credit correlation models. The fact that there is a difference between fixed and estimated

correlation is logical as the correlation between equity and credits is noisy, and a strong prior may

counter some of the noise. However, a correlation equal to one is five to ten times higher than the

observed correlation, which may be steep. Therefore, understanding why a fixed correlation ensemble

shows higher returns than an estimated correlation ensemble may provide an opportunity to improve

the portfolio returns shown in this paper. Another opportunity are frequency domain models. Recent

developments for statistical arbitrage in equity markets have shown promising results in this direction

(Guijarro-Ordonez et al., 2021). An initial investigation for corporate bond markets does not show

promising results though.

Ultimately, this paper shows that we can harvest CSA opportunities using bond and equity

returns with a factor investing portfolio investment strategy in credit and equity markets.
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A Data

Table 17: Data filtering steps and effect on available investment universe

Step Description Observations Bonds Companies

0 Complete data set 3,200,834 61,267 5,462

1 Bond constituent of US Investment Grade or High Yield Index 2,280,666 42,783 4,200

3 Bond status Issued 2,034,892 38,315 3,614

4 Bonds with Dollar Denominated Equity Returns 1,677,802 31,687 3,239

5 Rating below CCC 1,624,082 31,044 3,090

6 Remove distressed bonds 1,606,068 30,951 3,085

7 At least 3 years of bond-month observations 1,352,676 17,743 2,158

Note. Step 4 is effectively a constraint to public companies only, with equity traded on a US exchange to

prevent exchange rate noise. Step 6: Distressed bonds are bonds with a price below 70% of their issue price.

Step 7: We require 36-months of observations for the estimation window, this is to speed up the estimation

process.

Figure 15: Credit returns per rating category over time
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Figure 16: Credit returns per sector category over time

Figure 17: Credit returns per maturity category over time

Figure 18: Bond value-weighted correlation between credit and equity returns
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B Methodology

Figure 19: Effective time weight example for a return level and Ornstein-Uhlenbeck model with a

36-month estimation and lookback window

(a) Portfolio Blend (b) Signal Blend

Figure 20: Illustrative example of portfolio and signal blend for two uncorrelated signals

Adapted Source: Henke et al., 2020.
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C Capital Structure Arbitrage Opportunities

(a) Return level models (b) Ornstein-Uhlenbeck models

Figure 21: Results on the relation between top decile returns and autocorrelation for return level and

Ornstein-Uhlenbeck models, transparency reflects the lookback window; one month is most transpar-

ent to five months, least transparent

(a) Return level models (b) Ornstein-Uhlenbeck models

Figure 22: Autocorrelation across deciles with various lookback windows

Table 18: Average spanning alpha over lookback windows with 1-month holding period

Alpha Z-diff Z-diff DM Z-diff d Returns Returns DM Returns RD Boosting Random Forest RD dDtD B dDtD RF dDtD

Return Models 1.57% 1.60% 1.48% 0.93% 0.92% 0.55% 0.63% 0.77% 0.63% 1.00% 0.80%

OU Models 2.18% 1.76% 1.73% 1.69% 1.32% 1.11% 1.14% 1.35% 0.99% 1.09% 1.00%
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Table 19: Average spanning alpha over lookback windows and 1 to 5-month holding period

Alpha Z-diff Z-diff DM Z-diff d Returns Returns DM Returns RD Boosting Random Forest RD dDtD B dDtD RF dDtD

Return Models 1.39% 1.38% 1.30% 0.91% 0.86% 0.54% 0.62% 0.78% 0.61% 0.90% 0.73%

OU Models 1.96% 1.53% 1.52% 1.58% 1.20% 1.04% 1.05% 1.28% 0.92% 0.99% 0.93%
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D Drivers of Arbitrage

(a) Returns Ensemble (b) Ornstein-Uhlenbeck Ensemble

Figure 23: Transition probabilities

Note: Stay at top are deciles 1, 2, 3, Goes Neutral are deciles 4, 5, 6, 7, Goes to Bottom are deciles 8, 9, 10.
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Table 20: Signal rank correlation return level models (1-month lookback window) and Ornstein-Uhlenbeck models (36-month lookback window)
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Z-diff 1m 1.00 0.61 0.84 0.45 0.84 0.39 0.44 0.46 0.39 0.45 0.46 0.30 0.16 0.25 0.11 0.25 0.10 0.11 0.12 0.10 0.12 0.12

Returns 1m 0.61 1.00 0.51 0.71 0.50 0.70 0.78 0.83 0.70 0.80 0.82 0.22 0.30 0.17 0.21 0.16 0.21 0.23 0.25 0.20 0.23 0.24

Z-diff DM 1m 0.84 0.51 1.00 0.60 0.94 0.51 0.52 0.50 0.51 0.49 0.48 0.25 0.13 0.31 0.16 0.29 0.14 0.14 0.13 0.14 0.13 0.13

Returns DM 1m 0.45 0.71 0.60 1.00 0.56 0.85 0.86 0.82 0.85 0.80 0.79 0.15 0.21 0.21 0.30 0.20 0.26 0.27 0.25 0.26 0.23 0.23

Z-diff d 1m 0.84 0.50 0.94 0.56 1.00 0.58 0.52 0.48 0.58 0.49 0.47 0.25 0.12 0.29 0.14 0.30 0.15 0.14 0.12 0.15 0.13 0.12

RD 1m 0.39 0.70 0.51 0.85 0.58 1.00 0.89 0.82 1.00 0.82 0.78 0.13 0.20 0.18 0.25 0.20 0.29 0.27 0.24 0.29 0.23 0.22

B 1m 0.44 0.78 0.52 0.86 0.52 0.89 1.00 0.92 0.89 0.91 0.87 0.15 0.23 0.18 0.26 0.18 0.27 0.30 0.27 0.27 0.26 0.25

RF 1m 0.46 0.83 0.50 0.82 0.48 0.82 0.92 1.00 0.82 0.88 0.91 0.16 0.25 0.17 0.25 0.16 0.25 0.28 0.30 0.25 0.26 0.27

RD dDtD 1m 0.39 0.70 0.51 0.85 0.58 1.00 0.89 0.82 1.00 0.82 0.78 0.13 0.20 0.18 0.25 0.20 0.29 0.26 0.24 0.29 0.23 0.22

B dDtD 1m 0.45 0.80 0.49 0.80 0.49 0.82 0.91 0.88 0.82 1.00 0.91 0.14 0.23 0.16 0.24 0.16 0.25 0.27 0.25 0.25 0.30 0.27

RF dDtD 1m 0.46 0.82 0.48 0.79 0.47 0.78 0.87 0.91 0.78 0.91 1.00 0.15 0.24 0.15 0.23 0.14 0.23 0.25 0.26 0.23 0.27 0.30

OU Z-diff 36m 0.30 0.22 0.25 0.15 0.25 0.13 0.15 0.16 0.13 0.14 0.15 1.00 0.50 0.74 0.29 0.73 0.25 0.29 0.33 0.25 0.31 0.32

OU Regr. Returns 36m 0.16 0.30 0.13 0.21 0.12 0.20 0.23 0.25 0.20 0.23 0.24 0.50 1.00 0.34 0.58 0.32 0.58 0.66 0.73 0.58 0.66 0.69

OU Z-diff DM 36m 0.25 0.17 0.31 0.21 0.29 0.18 0.18 0.17 0.18 0.16 0.15 0.74 0.34 1.00 0.49 0.92 0.40 0.41 0.37 0.40 0.36 0.34

OU Returns DM 36m 0.11 0.21 0.16 0.30 0.14 0.25 0.26 0.25 0.25 0.24 0.23 0.29 0.58 0.49 1.00 0.44 0.83 0.84 0.76 0.83 0.72 0.67

OU Z-diff d 36m 0.25 0.16 0.29 0.20 0.30 0.20 0.18 0.16 0.20 0.16 0.14 0.73 0.32 0.92 0.44 1.00 0.47 0.40 0.34 0.47 0.36 0.32

OU RD 36m 0.10 0.21 0.14 0.26 0.15 0.29 0.27 0.25 0.29 0.25 0.23 0.25 0.58 0.40 0.83 0.47 1.00 0.87 0.76 1.00 0.75 0.67

OU B 36m 0.11 0.23 0.14 0.27 0.14 0.27 0.30 0.28 0.26 0.27 0.25 0.29 0.66 0.41 0.84 0.40 0.87 1.00 0.86 0.87 0.84 0.77

OU RF 36m 0.12 0.25 0.13 0.25 0.12 0.24 0.27 0.30 0.24 0.25 0.26 0.33 0.73 0.37 0.76 0.34 0.76 0.86 1.00 0.75 0.79 0.83

OU RD dDtD 36m 0.10 0.20 0.14 0.26 0.15 0.29 0.27 0.25 0.29 0.25 0.23 0.25 0.58 0.40 0.83 0.47 1.00 0.87 0.75 1.00 0.75 0.67

OU B dDtD 36m 0.12 0.23 0.13 0.23 0.13 0.23 0.26 0.26 0.23 0.30 0.27 0.31 0.66 0.36 0.72 0.36 0.75 0.84 0.79 0.75 1.00 0.85

OU RF dDtD 36m 0.12 0.24 0.13 0.23 0.12 0.22 0.25 0.27 0.22 0.27 0.30 0.32 0.69 0.34 0.67 0.32 0.67 0.77 0.83 0.67 0.85 1.00
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E Robustness of Findings

(a) Spanning alpha (b) Turnover (c) Break-even transaction cost

Figure 24: Performance Naive Ensemble and Naive Ensemble Eqw for a 1-month holding period

Figure 25: Random Forest model selection of return level and Ornstein-Uhlenbeck models with fixed

and estimated correlation, based on SHAP values as fraction of total sum of SHAP values
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(a) Outperformance (b) Information ratio

Figure 26: Random Forest performance results for rolling and expanding window

Figure 27: Random Forest Spearman rank results for a rolling and expanding window
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(a) Standardized depth (b) Standardized n trees (c) Standardized prediction

(d) Rank standardized depth (e) Rank standardized n trees (f) Rank standardized prediction

Figure 28: Effect of (rank) standardization and hyperparameters on loss
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F Naive Ensemble Eqw

Figure 29: Hit ratio results for ensembles and individual models, averaged over lookback windows

Figure 30: Cumulative outperformance Ensemble Eqw for 12-month holding period

Table 21: Spanning regression alpha results for top decile factor over the market

Top Value EquityMomentum Size CSA LowRisk CreditMomentum EquityReversal CreditReversal

Alpha 2.85%** 1.62%* 1.36%* 1.34%* 0.64%** 0.11% -2.16% -24.39%**

(3.09) (2.32) (2.33) (2.23) (2.73) (0.12) (-1.90) (-13.42)

Market 0.20** 0.15** 0.08 1.42** 0.11** 0.16* 0.25** 0.13

(3.02) (2.96) (1.94) (33.10) (6.27) (2.46) (3.08) (1.02)

R-squared 0.03 0.02 0.01 0.76 0.10 0.02 0.03 0.00

Note. T-statistics are in parentheses; * p < 0.05, ** p < 0.01.
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G Model Performance High Yield

Table 22: Ensemble and Z-diff performance metric results for quintile portfolios and 1-month holding period in the High-Yield investment domain

Reference Model Ensemble Models

Näıve Model Selection Random Forest Model Selection Ornstein-Uhlenbeck Returns Ornstein-Uhlenbeck + Returns

High Yield Z-diff Naive Ensemble Naive Ensemble Eqw 1-month Target 2-month Target 3-month Target Fixed Corr. Estimated Corr. Fixed Corr. Estimated Corr. Fixed Corr. Estimated Corr.

Avg. Annualized Return 3.79% 4.16% 3.78% 5.29% 5.18% 4.61% 4.51% 3.97% 4.50% 2.98% 4.57% 3.24%

Std. Dev 7.94% 10.32% 10.05% 7.10% 7.76% 8.17% 7.43% 10.75% 8.81% 10.74% 8.11% 10.78%

Sharpe 0.48 0.40 0.38 0.74 0.67 0.56 0.61 0.37 0.51 0.28 0.56 0.30

Outperformance 0.71% 1.08% 0.70% 2.21% 2.10% 1.53% 1.43% 0.89% 1.42% -0.10% 1.49% 0.16%

TE 5.34% 4.34% 5.13% 5.12% 5.13% 5.11% 4.93% 4.81% 5.34% 5.07% 5.36% 5.37%

IR 0.13 0.25 0.14 0.43 0.41 0.30 0.29 0.18 0.27 -0.02 0.28 0.03

BE TC 0.18% 0.34% 0.30% 0.30% 0.31% 0.29% 0.50% 0.44% 0.34% 0.21% 0.39% 0.27%
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H Model Performance Equity Markets

(a) Outperformance (b) Information ratio

Figure 31: Performance results across deciles for Naive Ensemble Eqw in the equity market
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I Return Level

Figure 32: R-Squared for Returns Model and Returns Model with lags, 1992 - 2022

Table 23: Returns Model error exposure to ∆DtD

Model ∆DtD

% Significant Beta 11%

Average R-squared: 0.03

Median R-squared: 0.01

Figure 33: Cumulative default probability predicted by structural model for all bonds in the cross-

section
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Figure 34: Ratio of non-NaN signal values for issuer- and issue-level signal with median bond age in

the cross-section, 1992 - 2022

Figure 35: R-Squared for Boosting and Random Forest first pass with ∆DtD, 1992 - 2022

Table 24: First and second pass influence of interaction dummies and difference ex-ante and ex-post

return cleaning of systematic risk on autocorrelation and R2

Model RD RD ID Returns Returns RD Returns RD ID Returns RD ID Reversed

Autocorrelation -0.070 -0.066 -0.014 -0.077 -0.073 -0.068

R-Squared 0.052 0.057 0.072 0.090 0.094 0.072

Table 25: First and second pass influence of demeaning credit and equity returns with and without

sector bucket

Model Credit Credit and Equity Credit with Sector Credit and Equity with Sector

Autocorrelation -0.073 -0.076 -0.082 -0.085

R-Squared 0.569 0.568 0.644 0.643
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J Cointegration

Table 26: Non-stationary ratio according to ADF and KPSS statistics and cointegration ratio accord-

ing to Johansen’s trace test for OAS and share price on issue level and rolling basis

Issue Level

Rolling

Non-stationary

ADF

Non-stationary

KPSS
Case 1 Case 4 Case 1 & 4

Cointegrated

with Prerequisite

Cointegrated

without Prerequisite

Alpha = 0.05

OAS 82.6% 45.7% 42.5% 3.3% 45.7%

Share Price 82.6% 48.1% 44.4% 3.8% 48.1%

OAS & Share Price 68.7% 24.5% 21.2% 3.3% 24.5% 11.9% 52.0%

Alpha = 0.1

OAS 75.1% 62.5% 53.8% 8.7% 62.5%

Share Price 75.0% 65.4% 55.6% 9.8% 65.4%

OAS & Share Price 57.1% 42.6% 31.8% 10.8% 42.6% 26.0% 64.1%

Note. Case 1 refers to non-stationary ADF and KPSS test statistic results. Case 4 refers to the ADF test

result as stationary and the KPSS test result as non-stationary; The percentage is relative to the number of

36-month windows in the data; The results shown are for tests around a linear trend; the results are similar

for tests around a constant.

Table 27: Non-stationary ratio according to ADF and KPSS statistics and cointegration ratio accord-

ing to Johansen’s trace test for price full return and share price on issue level for complete sample

Issue Level

Complete Sample

Non-stationary

ADF

Non-stationary

KPSS
Case 1 Case 4 Case 1 & 4

Cointegrated

with Prerequisite

Cointegrated

without Prerequisite

Alpha = 0.05

OAS 74.7% 58.4% 53.1% 5.3% 58.4%

Share Price 77.5% 56.3% 52.4% 4.0% 56.3%

OAS & Share Price 64.2% 36.6% 30.8% 5.7% 36.6% 14.8% 46.1%

Alpha = 0.1

OAS 68.4% 70.7% 59.4% 11.3% 70.7%

Share Price 71.1% 69.6% 59.6% 10.0% 69.6%

OAS & Share Price 54.0% 54.6% 39.3% 15.3% 54.6% 24.4% 58.2%

Note. Case 1 refers to non-stationary ADF and KPSS test statistic results. Case 4 refers to the ADF test

result as stationary and the KPSS test result as non-stationary; The percentage is relative to the number of

time series; The results shown are for tests around a linear trend; the results are similar for tests around a

constant.
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Table 28: Non-stationary ratio according to ADF and KPSS statistics and cointegration ratio accord-

ing to Johansen’s trace test for OAS and share price on issuer level for complete sample and on rolling

basis

Issuer Level

Complete Sample

Non-stationary

ADF

Non-stationary

KPSS
Case 1 Case 4 Case 1 & 4

Cointegrated

with Prerequisite

Cointegrated

without Prerequisite

Alpha = 0.05

OAS 74.8% 55.4% 47.4% 8.0% 55.4%

Share Price 89.2% 72.8% 68.9% 3.9% 72.8%

OAS & Share Price 67.3% 42.4% 34.2% 0.5% 34.7% 23.1% 70.3%

Alpha = 0.1

OAS

Share Price

OAS & Share Price 54.9% 57.5% 38.0% 6.8% 44.8% 26.1% 78.6%

Issuer Level Rolling

Alpha = 0.05

OAS 0.0% 0.0% 0.0% 0.0% 0.0%

Share Price 0.0% 0.0% 0.0% 0.0% 0.0%

OAS & Share Price 68.9% 24.8% 21.4% 3.4% 24.8% 21.0% 50.0%

Alpha = 0.1

OAS 0.0% 0.0% 0.0% 0.0% 0.0%

Share Price 0.0% 0.0% 0.0% 0.0% 0.0%

OAS & Share Price 57.5% 43.4% 32.3% 11.1% 43.4% 25.8% 62.0%

Note. Case 1 refers to non-stationary ADF and KPSS test statistic results. Case 4 refers to the ADF test

result as stationary and the KPSS test result as non-stationary; The percentage for complete sample is relative

to the number of time series; The percentage for rolling is relative to the number of rolling windows; The

results shown are for tests around a linear trend; the results are similar for tests around a constant.

Table 29: Information ratio per quintile and decile for the Error Correction Models

Model Spread 1m Spread 2m Spread 3m CI Spread 1m CI Spread 2m CI Spread 3m CI Spread 1m Tot CI Spread 2m Tot CI Spread 3m Tot

Q1 0.41 0.46 0.46 0.32 0.32 0.27 0.29 0.29 0.29

Q2 0.43 0.38 0.29 0.18 -0.09 0.09 0.26 0.26 0.01

Q3 0.14 0.08 -0.04 0.26 0.02 0.17 0.02 0.02 0.03

Q4 -0.02 -0.05 0.08 0.10 -0.02 0.12 -0.08 -0.08 -0.03

Q5 0.05 0.10 0.14 0.17 -0.01 0.18 0.03 0.03 0.13

D1 0.23 0.43 0.41 0.39 0.29 0.42 0.15 0.17 0.14

D2 0.45 0.34 0.40 0.18 0.25 0.06 0.26 0.16 0.37

D3 0.47 0.44 0.19 0.04 -0.02 -0.11 0.29 0.21 -0.12

D4 0.30 0.26 0.34 -0.05 -0.11 -0.06 0.15 0.02 0.13

D5 0.21 0.06 0.01 0.21 0.04 -0.08 0.05 -0.02 -0.14

D6 0.04 0.08 -0.08 0.13 -0.02 0.24 0.00 0.12 0.17

D7 0.00 0.02 0.12 -0.12 -0.07 0.14 -0.07 -0.03 -0.02

D8 -0.04 -0.11 0.02 -0.30 0.04 -0.20 -0.07 -0.04 -0.03

D9 0.11 0.15 0.14 0.10 0.07 -0.07 -0.05 0.06 0.11

D10 0.00 0.05 0.12 -0.03 -0.04 0.05 0.08 0.11 0.12

Table 30: Spanning regression alpha results for Returns Model over the market for different levels of

cointegration

Returns Model with LB 3

Variable Top Middle Bottom

Alpha 3.84%** 3.58%** 4.69%**

(4.85) (3.90) (4.96)

Note. T-statistics are in parentheses; * p < 0.05, ** p < 0.01.
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Figure 36: Cointegration ratio across rating groups for OAS and share price

Note. Cointegration ratio is on a rolling basis and issue level. The rating average is smoothed over a 6-month

window, i.e. 6 observations.
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K Ornstein-Uhlenbeck

Figure 37: In-sample errors for top and bottom decile of Returns Model with and without OU process

Table 31: Spanning regression alpha t-statistic results for Model with OU process over Model without

Raw Demeaned Two-Pass Two-Pass with ∆DtD

Model Z-diff Returns Z-diff Returns Z-diff Returns Boosting Random Forest Returns Boosting Random Forest

2 < t-stat 84% 48% 92% 24% 52% 56% 12% 44% 30% 20% 32%

0 ≤ t-stat ≤ 2 16% 52% 8% 56% 48% 44% 88% 56% 70% 64% 52%

-2 ≤ t-stat < 0 0% 0% 0% 20% 0% 0% 0% 0% 0% 16% 16%

t-stat < -2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Note. The percentage is of all spanning regressions for lookback window and holding period of one to five

months; the t-value is the alpha of the spanning regression of portfolio returns of a model with Ornstein-

Uhlenbeck process over the portfolio returns of that model without Ornstein-Uhlenbeck process; 84% is for 21

out of 25 combinations the t-value of spanning alpha is above 2, significant at 5%.

Table 32: Spanning regression alpha t-statistic results for Model with OU Kappa sort over Model

without

Raw Demeaned Two-Pass Two-Pass with dDtD

Model Z-diff Returns Z-diff Returns Z-diff Returns Boosting Random Forest Returns Boosting Random Forest

2 < t-stat 0% 72% 0% 0% 0% 0% 16% 8% 0% 0% 12%

0 ≤ t-stat ≤ 2 8% 28% 20% 80% 20% 72% 84% 92% 100% 100% 88%

-2 ≤ t-stat < 0 92% 0% 80% 20% 80% 28% 0% 0% 0% 0% 0%

t-stat < -2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Note. The percentage is of all spanning regressions for lookback window and holding period of one to five

months; the t-value is the alpha of the spanning regression of portfolio returns of a model with Ornstein-

Uhlenbeck process, sorted by k, over the portfolio returns of that model without Ornstein-Uhlenbeck process;

84% is for 21 out of 25 combinations the t-value of spanning alpha is above 2, significant at 5%.
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Table 33: Spanning regression results for Returns with OU process over Returns without OU, σ or κ,

the market, and four common corporate bond factors

Variable Ornstein-Uhlenbeck Kappa

Alpha 1.32%* -0.37% 2.34%** 1.50%** 1.63%* 2.07%** 2.85%** 1.96%**

(2.51) -1.19 (3.10) (2.67) (2.52) (3.14) (5.04) (3.16)

µ 0.47**

(19.21)

µ / σ 0.90**

(41.64)

κ -0.20**

(-3.35)

Ornstein-Uhlenbeck -0.15**

(-3.35)

Market 0.17 0.47** -0.93** -0.27**

(1.14) (11.55) (-6.35) (-6.80)

Size -0.10 -0.10

(-1.54) (-1.45)

LowRisk -0.01 -0.54**

(-0.22) (-7.99)

Value -0.07 -0.09

(-0.78) (-1.07)

Credit Momentum -0.49** 0.06

(-9.70) (1.15)

R-squared 0.52 0.83 0.03 0.48 0.28 0.03 0.31 0.12

Note. T-statistics are in parentheses; first five columns have OU portfolio returns as dependent variable; last

three columns have kappa sorted portfolio returns as dependent variable; * p < 0.05, ** p < 0.01.

Table 34: Portfolio returns for kappa and mu double-sorted quintile portfolios

Mu

Kappa 1 2 3 4 5

1 0.10% 0.36% 0.27% 0.01% 0.18%

2 0.52% 0.55% 0.79% 0.89% 0.49%

3 1.04% 1.23% 1.04% 1.07% 0.67%

4 2.21% 1.49% 1.25% 1.10% 0.75%

5 2.81% 1.63% 1.48% 1.31% 0.86%
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