
Erasmus University Rotterdam

Erasmus School of Economics

MSc Econometrics and Management Science - Quantitative Finance

October 29, 2023

Proximal-Parameter Updates in a Score-Driven
Dynamic Nelson-Siegel Framework

Author

Pieter van der Vleuten

Author

482012

Supervisor

Dr. Rutger-Jan Lange

Second Assessor

Prof. dr. Michel van der Wel

Abstract

The goal of this thesis is to fabricate a yield curve forecasting tool that beats widely used

benchmark methods like the dynamic conditional score filter and the Kalman filter. To this

end, we propose a novelty to the literature by applying the proximal-parameter (ProPar) filter
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forecasts yield curves via time-varying level, slope, and curvature factors. ProPar updates the

factors by maximizing the log-likelihood contribution of the current observation while penalizing
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1 Introduction

Grasping the dynamic development of the term structure is important in many areas of finance, in-

cluding managing financial risk, pricing financial assets, allocating portfolios, valuing capital goods,

and conducting monetary policy. Being able to model the yield curve allows one to make predic-

tions. This thesis combines the proximal-parameter (ProPar) filtering method introduced by Lange

et al. (2022) and the popular dynamic Nelson and Siegel (1987) framework, intending to fabricate

a yield curve forecasting tool that beats the popular benchmark models.

The Nelson-Siegel framework is a popular way to model the yield curve by its level, slope, and

curvature factor via a parametric function. Diebold and Li (2006) establish that the dynamic version,

in which the factors are treated as dynamic processes, is appropriate for yield curve forecasting.

The main challenge in the dynamic Nelson-Siegel framework is how to accurately predict the time-

varying factors that are used to construct yield curve forecasts. This is where the ProPar filtering

method comes into play. The ProPar filter updates the factors by maximizing the log-likelihood

contribution of the current observation while adding a penalty centered around the one-step-ahead

prediction. This setup implies an implicit stochastic-gradient update and has several advantages

over its more commonly used explicit counterpart (Lange et al., 2022).

This study is the first to use proximal parameter updates in a dynamic Nelson-Siegel framework.

Numerous filtering methods have already been applied to the framework, among others the popular

Kalman filter (Koopman et al., 2010) and the dynamic conditional score (DCS) filter (Quaedvlieg

and Schotman, 2022). Considering the promising findings on proximal parameter updates of Lange

et al. (2022), we aim to fabricate a yield forecasting tool that resembles the application op the

ProPar filter to the Nelson-Siegel framework.

This brings us to the research questions:

1. Is the score-driven dynamic Nelson-Siegel model with proximal-parameter updates a suitable

framework for forecasting the term structure of interest rates?

2. Is the ProPar filter in a Nelson-Siegel framework able to outperform several widely-used bench-

mark models, among which its explicit counterpart and the popular Kalman filter?

To evaluate the ProPar filtering method and several benchmark methods in a dynamic Nelson-

Siegel framework, this thesis forecasts U.S. yields. A data set containing monthly U.S. yields derived

from government bonds is provided by Liu and Wu (2021). We utilize data from a period of 50
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years ranging from November 1971 to October 2021, and 16 different maturities ranging from 3 to

180 months.

We distinguish two variants of the dynamic Nelson-Siegel model. First, we discuss a model in

which only the level, slope, and curvature factors are considered to be time-varying. We refer to this

model as the NS3F model. Second, we additionally treat the shape parameter that governs the shape

of the factor loading matrix as time-varying. We call this model the NS4F model. The time-varying

factors in both models are predicted using the ProPar filter. To answer the research question, we

make a direct comparison with three benchmark filtering methods: the dynamic conditional score

(DCS) filter, which is the explicit equivalent of the ProPar filter; the widely used Kalman filter; and

the self-devised GAS-Kalman filter, resembling the Kalman filter but utilizing an autoregressive

score specification for the factor dynamics. Next to these advanced filtering methods, we also

compare the results with rather straightforward models such as the first-order vector autoregressive

(VAR[1]) model and a naive forecasting model.

We conduct a simulation experiment involving the generation of yield data with four different

specifications. These specifications encompass the three- and four-factor Nelson-Siegel frameworks,

utilizing both a generalized autoregressive score (GAS) model and a state-space model for modeling

the dynamic process of the factors. The results from the simulation demonstrated that the ProPar

filter, along with the considered benchmark filtering methods, exhibits the capability to fit the

data and provide out-of-sample yield forecasts that closely approximate the “true model”, i.e. the

model that uses the true parameter values. Notably, the Kalman filter outperforms the benchmark

methods in terms of out-of-sample forecasting within this simulation scenario.

However, the findings from the empirical study using U.S. yield data reveals a different perspec-

tive. In this context, the ProPar filtering method surpasses its benchmark filtering methods, albeit

by a narrow margin, in terms of out-of-sample yield forecasting. Unexpectedly, the naive forecasting

model beats the advanced ProPar filter in terms of out-of-sample forecasting. This result confirms

the persistence in the factors, and warns for the problem of overfitting.

The results show that the ProPar filter is an appropriate method for yield forecasting via the

Nelson-Siegel framework. It can predict the one-step-ahead yield curves at least as well as its explicit

counterpart, which is the dynamic conditional score filter, or the popular Kalman filter. Although

the danger of overfitting is clearly present when working with yield data, this thesis provides a

promising foundation for proximal parameter updates in a Nelson-Siegel framework.

The remainder of this thesis is structured as follows. In the next part of this section, Section 1.1,
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we discuss relevant literature on yield forecasting and the ProPar filter. Section 2 gives a detailed

introduction to the Nelson-Siegel framework, while Section 3 walks through the steps of the ProPar

filtering method. The simulation experiment in Section 4 validates the use of the ProPar filtering

method in the Nelson-Siegel framework, whereas the empirical study in Section 5 applies the concept

to real-world data. Finally, Section 6 answers the research questions and offers concluding remarks.

1.1 Literature Review

Precisely modeling the yield curve enables accurate predictions regarding future outcomes. For

instance, according to Harvey (1989), the term structure of interest rates can be used to forecast

economic growth. Harvey (1991a), Harvey (1991b), Harvey (1991c), Harvey et al. (1992), Harvey

(1993), and Morrison (1992) conclude that a simple interest-rate-based model works in almost all

of the G-7 countries, while Alvarez et al. (1992) apply the model effectively in an emerging country.

Discrepancies in the yield curves of countries can potentially anticipate variations in economic

growth. An implication of economic growth generally leads to the desire to forecast financial stock

returns. This can also be accomplished by looking at the term structure (Campbell, 1987; Fama

and French, 1989).

As one would anticipate, much literature has been devoted to modeling yield curves. However,

methods with the purpose of yield curve forecasting have received relatively limited attention.

When it comes to yield curve modeling, no-arbitrage models and equilibrium models emerge as

the main techniques. The class of arbitrage-free models, elaborated on by Hull and White (1990)

and Heath et al. (1992), is not appropriate for forecasting as its primary focus is to achieve a

precise fit of the yield curve cross-sectionally. On the other hand, equilibrium models (among

others Vasicek (1977) and Cox et al. (1985)) are based on dynamics influenced by the short rate,

making them potentially relevant to forecasting. However, its literature concentrates on obtaining

an accurate fit within the sample data, rather than out-of-sample forecasts. Besides, studies that

do use affine equilibrium models to forecast out-of-sample consistently conclude that the models

perform inadequately (Duffee, 2002; Egorov et al., 2006).

Alternatively, the class of Nelson-Siegel models, stemming from Nelson and Siegel (1987), enjoys

immense popularity in practical applications, captivating the interest of financial market practition-

ers and central banks alike (Svensson, 1994; BIS, 2005). Nelson and Siegel (1987) propose a flexible,

smooth parametric function that aims to fit the term structure. Their model can capture many of

the typically observed shapes that the yield curve assumes over time. The base model consists of
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three factors that represent the level, slope, and curvature of the yield curve and thus convey some

level of economic interpretation. The prominent study of Diebold and Li (2006) comes up with a

dynamic version of the Nelson-Siegel model that produces encouraging forecasting results. It treats

the level, slope, and curvature factors as three time-varying processes. They estimate the dynamic

aspect of the factors using a vector autoregressive (VAR) process and use the predicted factors to

construct yield curve forecasts.

Diebold and Li (2006) decide to fix the shape parameter λt, which determines the shape of the

factor loadings, at a prespecified value to enhance simplicity, convenience, and numerical trustwor-

thiness. Fixing λt ensures a linear setting for the estimation of the time-varying factors. Koopman

et al. (2010) contribute to the literature by treating the shape parameter λt as a fourth latent

factor, resulting in a nonlinear dynamic model. Also, they introduce time-varying volatility, where

Diebold and Li (2006) assume a constant variance for each maturity and for the full sample. The

most important finding of Koopman et al. (2010) is that a time-varying shape parameter and a

time-varying volatility both lead to significant improvements in the model fit.

Finding accurate forecasts of the Nelson-Siegel factors is key to generating accurate yield curve

forecasts. Diebold and Li (2006) use cross-section least squares to estimate the three factors at

each point in time. Subsequently, they model the dynamics of these estimated factors via a rather

simple VAR(1) process. Diebold et al. (2006) introduce a state-space formulation of the Nelson-

Siegel model, treating the three factors as unobserved processes and modeling them using VAR

processes. Koopman et al. (2010) adopt this approach, with state-space representation of the

Nelson-Siegel model as a fundamental component. They consider the linear problem with a fixed

shape parameter as a linear Gaussian state-space model, which they estimate via the Kalman filter

(Kalman, 1960). As the Kalman filter method is only applicable to models that possess linearity

in the state vector and the extensions that are considered by Koopman et al. (2010) introduce

nonlinearities, they locally linearize the observation equation. This leads to the extended Kalman

filter (Anderson and Moore, 2012). As the linearizations in the observation equation may lead to

losses in accuracy, Quaedvlieg and Schotman (2022) model the time-varying shape parameter using

a dynamic conditional score (DCS) specification. DCS is an observation-driven modeling principle,

which proposes to update parameters in the direction of their likelihood gradient, i.e. the score

function.

Lange et al. (2022) introduce the proximal-parameter (ProPar) filter method, which updates

parameters by maximizing the observation log-density with respect to the parameter vector while
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penalizing the weighted, squared Euclidean norm relative to the one-step-ahead prediction. This

implies an implicit stochastic-gradient update. According to Lange et al. (2022), the ProPar filter

method broadens several attractive properties of explicit score-driven models (e.g. the DCS speci-

fication used by Quaedvlieg and Schotman (2022)) from the local to the global setting. Moreover,

it possesses stronger contraction properties, resulting in an effective filter notwithstanding several

types of misspecification. This thesis will model the dynamic factors of the dynamic Nelson-Siegel

framework using the proximal-parameter (ProPar) filter method. Not only will we see whether the

combination of this rather new filtering method and the Nelson-Siegel framework provides a good

yield forecasting tool, but also what the dynamic estimation and forecasting performances of the

ProPar filter method are compared to its explicit variant.

2 Nelson-Siegel framework

To examine the effect of the ProPar filter within the Nelson-Siegel framework, we initially consider

the level, slope, and curvature factors as the only time-varying factors. Section 2.1 presents the

resulting observation equation and the dynamic process of the three factors. Later on, in Section

2.2, we extend the model with time-varying shape parameter λt.

2.1 Dynamic Nelson-Siegel model

The observation equation of the Nelson-Siegel three-factor base model, from here on referred to as

the NS3F model, is given by

yt = Λ(λ)βt + ϵt, ϵt ∼ NID(0,Σϵ), (1)

where yt = (yt(τ1), ..., yt(τN ))
′ is the vector containing N yields at time t, βt contains the K = 3

time-varying (level, slope, and curvature) factors, and ϵt = (ϵ1t, ..., ϵNt)
′ is the disturbance vector.

Λ(λ) is the N × 3 factor loading matrix which elements depend on shape parameter λ > 0 and for

which the (i, j)th element is given by

Λij(λ) =


1, j = 1

(1− e−λτi)/λτi j = 2

(1− e−λτi − λτie
−λτi)/λτi j = 3.

(2)

In the NS3F model where shape parameter λ is assumed to be constant over time, Λ(λ) will be

denoted as Λ for convenience.
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The dynamics of βt can be described by any dynamic model. Similar to Diebold and Li (2006),

we use a rather simple first-order vector autoregressive (VAR[1]) model given by

βt+1 = ω +Φβt + ηt+1, ηt ∼ NID(0,Ση), (3)

in which ω is a K × 1 vector of constants, Φ the K ×K autoregressive coefficient matrix, and ηt

the K × 1 disturbance vector zero zero mean and variance Ση.

It is important to note that the level, slope and curvature factors do not literally represent the

level, slope and curvature of the yield curve. Instead, the level factor equals the long-term yield

(y(∞)), as the factor loadings are 1 for the level factor and 0 for the slope and curvature factors

when the maturity is ∞. It is fair to assume that the long-term yield, and hence the level factor, are

positive from an economic perspective. The slope factor can be explained as the instant yield minus

the long-term yield (y(0) − y(∞)) as the sum of factor loadings in this construction is 1 for the

slope factor and 0 for the level and curvature factor. As yield curves are generally upward sloping,

implying y(0) < y(∞), the slope factor is negative on average. Thus, it is important to distinguish

the slope and the slope factor of the yield curve, as they tend to have a different sign. The curvature

factor is highly correlated to more complex portfolio of yields. Diebold and Li (2006) define the

curvature factor as twice the two-year yield minus the sum of the ten-year and three-month yields

(2y(24)− y(3)− y(120)). This factor can be either positive or negative.

2.2 Time-varying shape parameter

We extend the NS3F model by allowing the shape parameter λt to vary over time. The logarithm of

λt will be added as a fourth time-varying factor to ensure positivity of λt. The K = 4 time-varying

factors are captured in θt = (β1t, β2t, β3t. The observation equation of the four-factor Nelson-Siegel

model (NS4F model) becomes

yt = Λ(λt)βt + ϵt, ϵt ∼ NID(0,Σϵ). (4)

We again assume that the dynamics of the factors are captured by a VAR[1] model given by

θt+1 = ω +Φθt + ηt+1, ηt ∼ NID(0,Ση). (5)

Compared to the VAR model in Equation 3, the dimensions of ω, Φ, ηt and Ση change as K = 4 in

the NS4F model.
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3 ProPar filter

This section explains how the proximal-parameter (ProPar) filtering method from Lange et al.

(2022) works and applies it to the Nelson-Siegel framework from Section 2. First, we only consider

the NS3F model in which the level, slope, and curvature are the three time-varying factors (Section

3.1). Thereafter, Section 3.2 proclaims the estimation procedure of the ProPar filtering method

applied in the NS4F model, where the time-varying shape parameter causes nonlinearities in the

filter.

3.1 ProPar filter in the NS3F model

Lange et al. (2022) propose the ProPar filtering method, which can approximate the true observation

density po(·|θot , ψo,Ft−1) of the variable of interest yt, observed at different times, t = 1, ..., T . The

variable θot is a time-varying parameter vector that can take values in the parameter space Θo,

while ψ is a vector of static parameters, and Ft−1 represents the information available at time t−1.

The latter two symbols are suppressed in the density for readability. The postulated density p(·|θt)

contains the K× 1 vector of time-varying parameters θt that is in the non-empty convex parameter

space Θ ⊆ RK . The predicted and updated parameters are denoted as θt|t−1 and θt|t respectively,

and stand for the estimates of θt based on the information available at times t−1 and t respectively.

The main challenge of any filtering method is determining how the predicted factors θt|t−1 should

be updated after observing yt to get the updated factors θt|t. In the ProPar filtering method, the

factors are updated by maximizing the logarithmic observation density log p(yt|·) while subjecting

it to a weighted l2 penalty centered at the prediction θt|t−1. This approach satisfies the two criteria

of being in accordance with the likelihood (i.e., the parameter update yields an improved fit) and

regularizing the deviation of the update from the prediction. The parameter update becomes

θt|t := argmax
θ∈Θ

f(θ|yt, θt|t−1, Pt), (6)

where

f(θ|yt, θt|t−1, Pt) := log p(yt|θ)−
1

2
||θ − θt|t−1||2Pt

. (7)

f(θ|yt, θt|t−1, Pt) represents the regularized log-likelihood contribution in which ||x||2Pt
= xPtx is the

squared l2 norm with respect to a K ×K positive-definite penalty matrix Pt. In the NS3F model,

we have that K = 3. Note that the vector of time-varying factors θt only contains the level, slope,

and curvature factors in the NS3F model, which are also represented by the vector βt. However, for
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generality, we stick to the notation with θt as the same logic applies when more factors are added

to the θt vector.

To determine the validity of the use of the ProPar filter for this NS3F model, we evaluate the

concavity of the logarithmic observation density. The Hessian matrix of the logarithmic observation

density is given in Appendix B.2. The negative definiteness of the Hessian implies concavity of the

observation density in all βt dimensions. Hence, the ProPar update step can be applied appropriately

for the NS3F model.

The first-order condition of Equation 6 can be rewritten as

θt|t = θt|t−1 +Ht∇(yt|θt|t)

= θt|t−1 +HtΛ
′Σ−1
ϵ (yt − Λβt|t), (8)

where Ht := P−1
t is the learning-rate matrix and ∇(yt|θt|t) := (∂ log p(yt|θ)/∂θ)|θ=θt|t is the score

vector which equals Λ′Σ−1
ϵ (yt −Λβt|t) as derived in the mathematical derivations in Appendix B.1.

The evaluation of the score is at the updated θt|t, not the prediction θt|t−1 which is the case in explicit

counterparts such as the dynamic conditional score (DCS) filtering method. As a result, Equation 8

acts as an implicit gradient method. The framework resembles implicit stochastic-gradient methods

due to the random and stochastic nature of θt|t, which is based on the observed data yt.

As the observation equation in the NS3F model is linear in the three factors, the ProPar update

step can be computed analytically. The ProPar update step becomes

βt|t = βt|t−1 +Ht∇(yt|θt|t)

= βt|t−1 +HtΛ
′Σ−1
ϵ (yt − Λβt|t)

= βt|t−1 +HtΛ
′Σ−1
ϵ yt −HtΛ

′Σ−1
ϵ Λβt|t

⇐⇒
(
I +HtΛ

′Σ−1
ϵ Λ

)
βt|t = βt|t−1 +HtΛ

′Σ−1
ϵ yt

⇐⇒ βt|t =
(
I +HtΛ

′Σ−1
ϵ Λ

)−1(
βt|t−1 +HtΛ

′Σ−1
ϵ yt

)
=

(
I −Ht(I + Λ′Σ−1

ϵ ΛHt)
−1Λ′Σ−1

ϵ Λ
)(
βt|t−1 +HtΛ

′Σ−1
ϵ yt

)
(9)

= βt|t−1 +Ht(I + Λ′Σ−1
ϵ ΛHt)

−1Λ′Σ−1
ϵ (yt − Λβt|t−1)

= βt|t−1 +Ht(I + Λ′Σ−1
ϵ ΛHt)

−1∇(yt|θt|t−1), (10)

where I denotes the identity matrix. To get to Equation 9, we use the Woodbury matrix identity.

In the derivation of Equation 10, we exchanged θt with βt to enhance readability. Nevertheless,

moving forward, we will revert to using the notation of θt. The result of Equation 10 is that
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the linear ProPar update is not an implicit gradient update anymore, which significantly reduces

computation time.

We let penalty matrix Pt depend on predictive Fisher matrix. The predictive Fisher matrix in

the NS3F model is defined as

It|t−1 = −E
[
H(yt|θt)

∣∣θt|t−1

]
= Λ′Σ−1

ϵ Λ, (11)

where H(yt|θt) denotes the Hessian matrix which is explicitly derived in Appendix B.2 and is given

by −Λ′Σ−1
ϵ Λ. The considered penalty matrices in the three-factor model are given by

Pt = ρβIkt|t−1 = ρβ[Λ
′Σ−1
ϵ Λ]k, k ∈ {0, 1}, (12)

where ρβ denotes a penalty scalar. The two penalty matrices that we consider are essentially a

scalar multiple of the identity matrix (k = 0) and a scalar multiple of the predictive Fisher matrix

(k = 1). The predictive Fisher matrix has full rank as long as shape parameter λ is not too close

to zero (resulting in the second column of Λ to converge to the first) or too large (resulting in the

third column of Λ to converge to the second).

When we use a scalar multiple of the predictive Fisher matrix (k = 1) for penalty matrix Pt and

the model is linear in the time-varying factors, which is the case in the NS3F model, we can rewrite

the update step of the ProPar filter as follows:

θt+1|t+1 = θt+1|t +Ht(I + Λ′Σ−1
ϵ ΛHt)

−1∇(yt|θt|t−1)

= θt+1|t + ρ−1
β [Λ′Σ−1

ϵ Λ]−1(I + Λ′Σ−1
ϵ Λρ−1

β [Λ′Σ−1
ϵ Λ]−1)−1∇(yt|θt|t−1)

= θt+1|t + ρ−1
β [Λ′Σ−1

ϵ Λ]−1(I + ρ−1
β I)−1∇(yt|θt|t−1)

= θt+1|t + (ρβ + 1)−1[Λ′Σ−1
ϵ Λ]−1∇(yt|θt|t−1)

= θt+1|t + ρ̃−1
β [Λ′Σ−1

ϵ Λ]−1∇(yt|θt|t−1)

= θt+1|t + H̃t∇(yt|θt|t−1),

where H̃t is the learning-rate matrix with penalty scalar ρ̃β. The last line of the derivation denotes

the update step of the DCS filter (see Appendix C). Hence, when the model is linear in the time-

varying factors, and we use a penalty matrix that is a scalar multiple of the predictive Fisher matrix,

the ProPar filter and the DCS filter converge to the same filter, as rescaling can be done via the

linear transformation in the penalty scalars ρProParβ = 1 + ρDCSβ .

To complement the update step, we need a prediction step that generates one-step-ahead fore-

casts. We assume the dynamics of the factors to be captured by the VAR[1] model in Equation 3.
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Thus, we consider the prediction step to be the one-step-ahead forecast of that VAR[1] model:

θt+1|t = ω +Φθt|t, (13)

with K × 1 vector of constants ω and K ×K coefficient matrix Φ.

All remaining unknown static parameters are contained in ψ = (λ, vec(Σϵ)
′, ω′, vec(Φ)′, ρβ)

′ and

are estimated by maximizing the log-likelihood expressed in terms of prediction errors

l(ψ) = −NT
2

log(2π)− T

2

N∑
i=1

log γi −
1

2

T∑
t=1

(yt − Λβt|t−1)
′Σ−1
ϵ (yt − Λβt|t−1), (14)

where γi denotes the ith eigenvalue of Σϵ. Note that for the second term in Equation 19, we use

the sum of the logarithms of eigenvalues of Σϵ instead of the logarithms of the determinant of Σϵ,

as this term is more stable.

We compare the ProPar filter to three benchmark filtering methods, namely the dynamic con-

ditional score (DCS) filter, the Kalman filter, and the GAS-Kalman filter, which is a self-devised

version of the Kalman filter that is based on GAS-dynamics in the factors instead of a Gaussian-

dynamics. The update and prediction steps of all filters are given in Table 1. As can be seen, the

ProPar, DCS and Kalman filters have the same prediction steps for the factors. The update step

differs, although the structures are similar. In the GAS-Kalman filter, the score is used in both

the update and the prediction step. The GAS specification that we assume for the factor dynamics

implies that the score evaluated at today’s states contributes to next period’s states, hence the

presence of the score in the prediction step. Detailed derivations and explanations of the considered

benchmark filtering methods can be found in Appendix C. Other benchmark models that we use for

comparison are straightforward models such as a first-order vector autoregressive (VAR[1]) model

on the factors and a ‘naive forecasting’ model which forecasts the one-step-ahead factors as today’s

fitted factors.
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Table 1: Filtering methods and models used in the four-factor Nelson-Siegel framework

ProPar filter
βt|t = βt|t−1 +Ht(I + Λ′Σ−1

ϵ ΛHt)
−1Λ′Σ−1

ϵ (yt − Λβt|t−1)

βt+1|t = ω +Φβt|t

DCS filter
βt|t = βt|t−1 +HtΛ

′Σ−1
ϵ (yt − Λβt|t−1)

βt+1|t = ω +Φβt|t

Kalman filter

βt|t = βt|t−1 +Bt|t−1Λ
′(ΛBt|t−1Λ

′ +Σϵ)
−1(yt − Λβt|t−1)

Bt|t = Bt|t−1 −Bt|t−1Λ
′(ΛBt|t−1Λ

′ +Σϵ)
−1ΛBt|t−1

βt+1|t = ω +Φβt|t

Bt+1|t = ΦBt|tΦ
′ +Ση

GAS-Kalman filter

βt|t = βt|t−1 +Bt|t−1Λ
′(ΛBt|t−1Λ

′ +Σϵ)
−1(yt − Λβt|t−1)

Bt|t = Bt|t−1 −Bt|t−1Λ
′(ΛBt|t−1Λ

′ +Σϵ)
−1ΛBt|t−1

βt+1|t = ω +Φβt|t +HtΛ
′Σ−1
ϵ (yt − Λβt|t)

Bt+1|t = ΦBt|tΦ
′ +HtΛ

′Σ−1
ϵ ΛBt|tΛ

′Σ−1
ϵ ΛH ′

t

VAR[1] model
βt|t = argminβ(yt − Λβ)′(yt − Λβ)

βt+1|t = ω +Φβt|t

Naive forcasting model
βt|t = argminβ(yt − Λβ)′(yt − Λβ)

βt+1|t = βt|t

Note: The table reports the explicit equations of the ProPar filter, three benchmark filtering methods (the

dynamic conditional score (DCS) filter, the Kalman filter and a version of the Kalman filter that is based

on GAS specified factor dynamics (GAS-Kalman)), and two other benchmark models (a first-order vector

autoregressive (VAR[1]) model and a naive forecasting model) in the three-factor Nelson-Siegel framework.

The time-varying factors are the level, slope, and curvature factor that are contained in βt. Detailed

derivation of the ProPar filter can be found in Section 3, and derivations of the DCS, Kalman and GAS-

Kalman filters can be found in Appendix C.

3.2 ProPar filter in the NS4F model

In this section, we apply the ProPar filtering method to the NS4F model. The four time-varying

factors are modeled through θt = (β′t, log λt)
′. The main challenge compared to the NS3F model, is

that the observation equation becomes nonlinear in the factors. This nonlinearity means that the

update step cannot be solved analytically. Therefore we have to perform a numerical optimization

at each time step to compute the factor updates from Equation 6.

Again, we let penalty matrix Pt depend on the predictive Fisher matrix. The predictive Fisher
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matrix in the NS4F model is given by

It|t−1 = −E
[
H(yt|θt)

∣∣θt|t−1

]
(15)

=

 Λ(λt|t−1)
′Σ−1
ϵ Λ(λt|t−1) Λ(λt|t−1)Σ

−1
ϵ Λ̇(λt|t−1)βt|t−1

β′t|t−1Λ̇(λt|t−1)
′Σ−1
ϵ Λ(λt|t−1) β′t|t−1Λ̇(λt|t−1)

′Σ−1
ϵ Λ̇(λt|t−1)βt|t−1

 , (16)

where H(yt|θt) denotes the Hessian matrix which is explicitly derived in Appendix B.2, and Λ̇ is

the derivative of Λ with respect to log λt. The considered penalty matrices in the NS4F model are

given by

Pt =

ρβI3 0

0 ρλ

 Ikt|t−1, k ∈ {0, 1}. (17)

where ρλ represents a penalty scalar that only penalizes the log λt factor. Again, the two penalty

matrices that we consider are essentially a matrix multiple of the identity matrix (k = 0) and a

matrix multiple of the predictive Fisher matrix (k = 1).

For the prediction step, we consider the one-step-ahead prediction of the VAR[1] model in

Equation 5 that is assumed to capture the dynamics of θt. This results in the following linear

first-order specification:

θt+1|t = ω +Φθt|t. (18)

Compared to Equation 13, the dimensions of ω and Φ change as θt consist of four factors instead

of three.

The remaining unknown static parameters are ψ = (vec(Σϵ)
′, ω′, vec(Φ)′, ρβ, ρλ)

′, which are

estimated by maximizing the log-likelihood in terms of prediction errors. This log-likelihood is

given by

l(ψ) = −NT
2

log(2π)− T

2

N∑
i=1

log γi −
1

2

T∑
t=1

(
yt − Λ(λt|t−1)βt|t−1

)′
Σ−1
ϵ

(
yt − Λ(λt|t−1)βt|t−1

)
. (19)

We compare the ProPar filter to three benchmark filtering methods, namely the dynamic condi-

tional score (DCS) filter, the Kalman filter, and the self-devised GAS-Kalman filter. An overview of

the update and prediction steps can be found in Table 2. Appendix C provides detailed derivations

of the update and prediction steps for these benchmark filters. Table 2 also contains the other

benchmark models that are considered (VAR[1] model and ’Naive Forecasting’ model).
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Table 2: Filtering methods and models used in the four-factor Nelson-Siegel framework

ProPar filter
θt|t = θt|t−1 +Ht∇(yt|θt|t)

θt+1|t = ω +Φθt|t

DCS filter
θt|t = θt|t−1 +Ht∇(yt|θt|t−1)

θt+1|t = ω +Φθt|t

Kalman filter

θt|t = θt|t−1 +Qt|t−1Z̆
′
t(Z̆tQt|t−1Z̆

′
t +Σϵ)

−1
(
yt − Z(θt|t−1)

)
Qt|t = Qt|t−1 −Qt|t−1Z̆

′
t(Z̆tQt|t−1Z̆

′
t +Σϵ)

−1Z̆tQt|t−1

θt+1|t = ω +Φθt|t

Qt+1|t = ΦQt|tΦ
′ +Ση

GAS-Kalman filter

θt|t = θt|t−1 +Qt|t−1Z̆
′
t(Z̆tQt|t−1Z̆

′
t +Σϵ)

−1
(
yt − Z(θt|t−1)

)
Qt|t = Qt|t−1 −Qt|t−1Z̆

′
t(Z̆tQt|t−1Z̆

′
t +Σϵ)

−1Z̆tQt|t−1

θt+1|t = ω +Φθt|t +Ht∇(yt|θt|t)

Qt+1|t = ΦQt|tΦ
′ +Ht∇2(yt|θt|t)Qt|t∇2(yt|θt|t)′H ′

t

VAR[1] model
θt|t = argminθ

(
yt − Λ(λ)β

)′(
yt − Λ(λ)β

)
θt+1|t = ω +Φθt|t

Naive forcasting model
θt|t = argminθ

(
yt − Λ(λ)β

)′(
yt − Λ(λ)β

)
θt+1|t = θt|t

Note: The table reports the explicit equations of the ProPar filter, three benchmark filtering methods (the

dynamic conditional score (DCS) filter, the Kalman filter and a version of the Kalman filter that is based

on GAS specified factor dynamics (GAS-Kalman)), and two other benchmark models (a first-order vector

autoregressive (VAR[1]) model and a naive forecasting model) in the four-factor Nelson-Siegel framework. The

time-varying factors are the level, slope, and curvature factor and shape parameter λt, which are all contained

in θt. Detailed derivation of the ProPar filter can be found in Section 3, and derivations of the DCS, Kalman

and GAS-Kalman filters can be found in Appendix C.

4 Simulation experiment

To evaluate whether the ProPar filtering method and the benchmark methods can estimate and

forecast yield curves in the Nelson-Siegel framework, we first perform a simulation study. In the

simulation study, we generate yield data following two different model specifications. We start

with an observation-driven model, in which the yield data is generated following a generalized

autoregressive score (GAS) specification (Section 4.1). It would be unfair to limit the comparison to

only this specification, as the Kalman filter exhibits a greater degree of misspecification in this setup
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than filters that are based on score-driven factor dynamics. Therefore, we also compare estimation

and forecasting performances in a state-space Nelson-Siegel framework, in which the time-varying

factors follow a Gaussian autoregressive model (Section 4.2). For both model specifications, the

ProPar filter is misspecified and is expected to be beaten by the correctly specified benchmark

filtering method.

4.1 Generalized autoregressive score specification

In the GAS specification, we generate yield data according

yt = Λ(λt)βt + ϵt, ϵt ∼ NID(0,Σϵ),

θt+1 = ω +Φθt +Ht∇(yt|θt),

in which θt consists of the time-varying factors, which is βt for the three-factor (NS3F) model and

additionally log λt in the four-factor (NS4F) model. ∇(yt|θt) denotes the score vector of θ at time

t, which is derived in Appendix B.1. We choose θ0 = 0 as a starting point and Ht to be the inverse

of the penalty matrix from Equation 12 (NS3F model) and Equation 17 (NS4F model) with k = 0.

The true parameter values can be found in the first columns of Table 3 and 4 for the NS3F and

NS4F models respectively. In the NS3F model, λ is set to 0.05, which is close to the value of 0.0609

that is proposed by Diebold and Li (2006). For convenience, the covariance matrix Σϵ is set to 0.2

times the identity matrix. This setting is not very realistic when we compare it to real yield data,

as yield data is usually highly correlated and hence has positive covariances. The parameters ω

and Φ are chosen such that the long term mean of the factors, which is given by µ = (IK −Φ)−1ω,

equals (5,−5,−1)′ in the three-factor case, and (5,−5,−1,−3)′ in the four-factor case. The level

factor is generally positive, the slope factor is usually negative and the curvature factor can both

be positive or negative (Diebold and Li, 2006). The logarithm of the shape parameter is in the

long-term centered around −3 which is also a realistic value. Therefore, we consider this to be

appropriate values for the long-term means. The penalty scalars ρβ and ρλ are chosen arbitrarily

and quite high, as low values result in large outliers using this setup.

In the simulation setup, we choose the set of maturities τ = {6, 12, 24, 60} of size N = 4.

Moreover, we set T = 1000 where the estimation is done on a train set consisting of the first 800

time points, and the out-of-sample forecasting performance is evaluated on the final 20% of the data.

We perform 250 replications, after which the parameter estimates, log-likelihood, and mean squared

forecast error (MSFE) are computed as the average over the 250 iterations × 200 observations. We
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refer to the correctly specified DCS filter where the true parameter values are used as the ‘true

model’. We have to note that it is computationally intensive to estimate 21 (for the NS3F model)

and 26 (for the NS4F model) parameters. This also explains the choice for the relatively low sample

size and number of replications. Especially in the four-factor framework, in which the the proximal

parameter update needs a numerical optimization at each time step, the estimation problem becomes

computationally heavy. Because of limitations in time and computational power, we cannot ensure

that the static parameter estimates correspond to the global optimum of the log-likelihood. This

can affect the parameter estimation accuracy and thus the state filtering performance.

The estimation results and forecasting performance of the ProPar filter and the benchmark

filters in the NS3F and the NS4F model are displayed in Tables 3 and 4 respectively. The tables

suggest that the filters based on score-driven factor dynamics are better in estimating the parameters

compared to the Kalman filter as they generally provide both smaller biases and standard deviations.

This makes sense as the data-generating process also implies that the factor dynamics are score-

driven. The biggest differences in parameter estimation among the score-driven filters are the

estimates for the penalty parameters ρβ (and ρλ in the NS4F model). It is coherent that the DCS

filter estimates this penalty term close to its true value, as the data is correctly specified for this

filter. The ProPar filter and the GAS-Kalman filter can, to some extent, correct for misspecification

via the penalty scalars.

Next to that, the DCS filter and the ProPar filter provide the best model fit for both the NS3F

and the NS4F model. They both beat the correctly specified DCS filter with true parameter values

in terms of model fit. This means the true residuals are bigger than the residuals that result from

the fitted values of these filters. Nevertheless, the differences with the other filters are small. In

the NS3F model, the DCS filter (best model fit) beats the Kalman filter (worst model fit) by only

1.22% and in the NS4F model, the DCS filter (best model fit) beats the Kalman filter (worst model

fit) by only 2.44%.
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Table 3: Simulation results of various filtering methods in the three-factor Nelson-Siegel model using generalized

autoregressive score generated data.

Truth ProPar filter DCS filter Kalman filter Kalman filter (OD)

λ 0.05 0.0338 (0.0164) 0.0473 (0.0203) 0.0197 (0.0107) 0.0444 (0.0225)

Σ11 0.2 0.1988 (0.0088) 0.1989 (0.0089) 0.1644 (0.0092) 0.1892 (0.0088)

Σ22 0.2 0.1998 (0.0102) 0.1999 (0.0102) 0.1677 (0.0105) 0.1910 (0.0102)

Σ33 0.2 0.1992 (0.0097) 0.1992 (0.0097) 0.1703 (0.0098) 0.1914 (0.0096)

Σ44 0.2 0.2005 (0.0094) 0.1997 (0.0093) 0.1732 (0.0094) 0.1933 (0.0093)

Σ12 0 -0.0013 (0.0073) -0.0011 (0.0073) -0.0346 (0.0076) -0.0104 (0.0072)

Σ13 0 -0.0016 (0.0069) -0.0012 (0.0070) -0.0326 (0.0069) -0.0099 (0.0067)

Σ14 0 -0.0007 (0.0067) 0.0000 (0.0067) -0.0265 (0.0072) -0.0075 (0.0066)

Σ23 0 -0.0009 (0.0071) -0.0007 (0.0071) -0.0311 (0.0077) -0.0090 (0.0071)

Σ24 0 -0.0006 (0.0067) -0.0002 (0.0067) -0.0268 (0.0069) -0.0074 (0.0066)

Σ34 0 0.0002 (0.0070) 0.0002 (0.0070) -0.0267 (0.0076) -0.0068 (0.0069)

ω1 0.1 0.1579 (0.4509) 0.1729 (0.3549) 0.3236 (1.7324) 0.2167 (0.3680)

ω2 -0.1 -0.1578 (0.4186) -0.1696 (0.3267) -0.1108 (1.5215) -0.1943 (0.3462)

ω3 -0.02 -0.0276 (0.8009) -0.1330 (0.6343) 2.6113 (3.0511) -0.1658 (0.7481)

Φ11 0.98 0.9302 (0.1330) 0.9585 (0.0566) 0.8966 (0.1329) 0.9497 (0.0563)

Φ22 0.98 0.9362 (0.0815) 0.9467 (0.0691) 0.9201 (0.0844) 0.9402 (0.0739)

Φ33 0.98 0.7699 (0.3169) 0.8051 (0.2919) 0.6062 (0.3242) 0.7932 (0.2785)

Φ12 0 0.0269 (0.0881) 0.0028 (0.0493) 0.0430 (0.0858) 0.0197 (0.0532)

Φ13 0 0.0228 (0.1343) 0.0099 (0.1065) -0.0147 (0.1802) 0.0376 (0.1135)

Φ23 0 -0.0171 (0.1504) 0.0014 (0.1343) 0.0202 (0.1782) -0.0060 (0.1454)

ρβ 50 22.2988 (3.9727) 50.2614 (5.5820) 73.6125 (7.8607)

σβ 0.1038 (0.0089)

l(ψ̂) -1967.7 -1957.5 -1956.2 -1980.0 -1977.8

MSFE 0.2009 0.2041 0.2043 0.2019 0.2020

Note: The table reports the estimation results and forecasting performance of the ProPar filter, the DCS filter, the Kalman filter

and the observation-driven variant of the Kalman filter (OD) in the three-factor Nelson-Siegel framework. The data is generated

using a generalized autoregressive score model. For each static parameter in the model, the true value, the estimates and its

standard deviation (between brackets) are given. Also, the log-likelihood value on the train-sample, l(ψ̂), and the mean squared

forecast error (MSFE) on the test data are displayed for each filtering method. The ‘true’ log-likelihood and MSFE are those of

the DCS filter where the ‘true’ parameter values are used. The estimates, log-likelihood values and MSFEs are obtained by taking

the average over 250 iterations, and the standard deviation is the standard deviation over 250 iterations. The 250 simulated data

sets each consist of T = 1000 observations and a train/test-split of 80/20 is used.
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Table 4: Simulation results of various filtering methods in the four-factor Nelson-Siegel model using generalized autore-

gressive score generated data.

Truth ProPar filter DCS filter Kalman filter Kalman filter (OD)

Σ11 0.2 0.2060 (0.0089) 0.1991 (0.0084) 0.1517 (0.0096) 0.1838 (0.0105)

Σ22 0.2 0.2031 (0.0093) 0.2001 (0.0092) 0.1517 (0.0099) 0.1808 (0.0121)

Σ33 0.2 0.2017 (0.0085) 0.1992 (0.0089) 0.1450 (0.0103) 0.1763 (0.0115)

Σ44 0.2 0.2039 (0.0093) 0.1992 (0.0086) 0.1455 (0.0101) 0.1774 (0.0124)

Σ12 0 0.0020 (0.0069) -0.0011 (0.0070) -0.0471 (0.0074) -0.0183 (0.0083)

Σ13 0 -0.0024 (0.0065) -0.0010 (0.0066) -0.0440 (0.0066) -0.0192 (0.0086)

Σ14 0 -0.0039 (0.0066) 0.0001 (0.0063) -0.0353 (0.0067) -0.0168 (0.0077)

Σ23 0 -0.0017 (0.0064) -0.0008 (0.0067) -0.0499 (0.0071) -0.0220 (0.0085)

Σ24 0 -0.0033 (0.0063) -0.0005 (0.0063) -0.0432 (0.0065) -0.0201 (0.0077)

Σ34 0 -0.0004 (0.0059) -0.0005 (0.0066) -0.0510 (0.0072) -0.0227 (0.0089)

ω1 0.1 0.1151 (0.0348) 0.1290 (0.0876) 0.4785 (0.5835) 0.1426 (0.2309)

ω2 -0.1 -0.0856 (0.0395) -0.0954 (0.1557) -0.0146 (0.6390) -0.1945 (0.3120)

ω3 -0.02 0.0556 (0.0787) 0.0181 (0.2523) 0.3345 (0.7721) -0.0511 (0.5715)

ω4 -0.06 -0.1142 (0.0619) -0.1346 (0.2748) -0.6536 (0.9657) -0.1121 (0.2284)

Φ11 0.98 0.9737 (0.0083) 0.9575 (0.0579) 0.8844 (0.1081) 0.9693 (0.0234)

Φ22 0.98 0.9672 (0.0248) 0.9418 (0.0878) 0.7667 (0.1490) 0.9430 (0.0608)

Φ33 0.98 0.9727 (0.0312) 0.9068 (0.1775) 0.7602 (0.2422) 0.8812 (0.1861)

Φ44 0.98 0.9625 (0.0290) 0.9245 (0.1312) 0.6667 (0.2517) 0.9579 (0.0395)

Φ12 0 -0.0053 (0.0107) -0.0162 (0.0412) -0.0929 (0.0843) -0.0009 (0.0272)

Φ13 0 0.0046 (0.0088) -0.0108 (0.0729) -0.0025 (0.0851) -0.0003 (0.0490)

Φ14 0 0.0101 (0.0125) 0.0116 (0.0482) 0.1358 (0.1406) 0.0022 (0.0228)

Φ23 0 0.0032 (0.0071) -0.0009 (0.1031) 0.0175 (0.1877) 0.0276 (0.0985)

Φ24 0 0.0117 (0.0242) 0.0286 (0.0744) 0.2055 (0.1554) 0.0043 (0.0351)

Φ34 0 -0.0043 (0.0095) 0.0135 (0.1090) 0.0557 (0.1538) -0.0003 (0.0498)

ρβ 50 11.3805 (5.2538) 49.5636 (6.1272) 87.9376 (13.8258)

ρλ 50 17.2566 (7.2915) 49.8708 (8.1223) 89.0554 (16.1386)

σβ 0.1488 (0.0150)

σλ 0.0956 (0.0383)

l(ψ̂) -1967.8 -1989.6 -1955.0 -1998.9 -1998.3

MSFE 0.2009 0.2056 0.2040 0.2040 0.2039

Note: The table reports the estimation results and forecasting performance of the ProPar filter, the DCS filter, the Kalman filter

and the observation-driven variant of the Kalman filter (OD) in the four-factor Nelson-Siegel framework. The data is generated

using a generalized autoregressive score model. For each static parameter in the model, the true value, the estimates and its

standard deviation (between brackets) are given. Also, the log-likelihood value on the train-sample, l(ψ̂), and the mean squared

forecast error (MSFE) on the test data are displayed for each filtering method. The ‘true’ log-likelihood and MSFE are those of

the DCS filter where the ‘true’ parameter values are used. The estimates, log-likelihood values and MSFEs are obtained by taking

the average over 250 iterations, and the standard deviation is the standard deviation over 250 iterations. The 250 simulated data

sets each consist of T = 1000 observations and a train/test-split of 80/20 is used.19



Furthermore, both versions of the Kalman filter provide accurate yield forecasts in both the

NS3F and the NS4F models, as their MSFEs are not far from the MSFE of the correctly specified

filter. The ProPar filter and the DCS filter generate the least accurate yield forecasts in the NS3F

model, and in the NS4F model the ProPar filter has the highest MSFE. However, its predictive

performance is not too far from the Kalman filter’s, as the MSFE of the ProPar filter is only 1.09%

and 0.83% higher than that of the Kalman filter. The mean squared error of the yield forecasts of

the VAR[1] model and the naive forecast model are displayed in Table 17 in Appendix D. We see

that the forecasts of these rather simple benchmark models are less accurate than those of the more

advanced filters form Tables 3 and 4.

Next to the estimation and yield forecasting performances, we compare the filtering methods

based on filtering performance. Figures 1 and 2 graph the averaged, filtered factor values for all

filtering methods over time of the NS3F and NS4F models respectively. In both models, we can

see that, on average, the DCS filter is able to accurately estimate the level, slope, and curvature

factors, as well as the shape parameter in the NS4F model. This is not surprising as the DCS

filter is correctly specified in this setup. The Kalman filter estimates the level and slope factors in

the NS3F model accurately, but is not accurate in estimating the curvature factor or any of the

factors in the NS4F model. The ProPar method is the least effective among the filtering methods

for factor filtration. This can partly be explained by its estimate for shape parameter λ in the NS3F

model and its deviation in the log λt sequence in the NS4F model. A tiny error in the λ estimate

results in different factor loadings, and hence different estimates for the level, slope, and curvature

factors. Deviations in the shape parameter can cancel out deviations in the other factors to ensure

an optimal yield fit. The GAS-Kalman filter is not filtering accurately in the NS3F model, but

generates accurate factor estimates in the NS4F model.

These findings are confirmed by the mean and standard deviation of the mean squared forecast

errors of the factors over the 250 replications, which are given in Tables 5 (NS3F model) and 6 (NS4F

model). From these tables, we can also see that the ProPar filter is the most precarious among

the replications in the NS3F model, while the Kalman filter performs most unstable in the NS4F

model in terms of filtering the factors. Whereas the VAR[1] generates relatively good estimates of

the factors (beating the ProPar filter in the NS3F model and the Kalman filter in the NS4F model),

the naive forecast model is easy to beat.

In short, we find that for this score-driven Nelson-Siegel specification, the ProPar filter can fit

the yield training data well, but provides less accurate out-of-sample yield forecasts compared to
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the Kalman filter. This finding suggests that the ProPar filter is relatively better able to capture

the noises and patterns in the training data, whereas the Kalman filter better grasps the underlying

true patterns that generalize well to unseen data. Also, the ProPar filter is not able to filter the

effect of the factors accurately, and is significantly outperformed by the other benchmark filtering

methods. The DCS filter does a remarkably good job in filtering the effect of the factors.

(a) The average level factor over 250 replications graphed over

time

(b) The average slope factor over 250 replications graphed over

time

(c) The average curvature factor over 250 replications graphed

over time

Figure 1: The replication-averaged level, slope, and curvature factors over time in the NS3F model

with GAS-dynamics. This figure shows the filtered level (panel a), slope (panel b), and curvature (panel c) factors

in the NS3F model with GAS-dynamics averaged over the 250 replications. Next to the true simulated factor values,

the figure shows the filtered factor values of the ProPar filter, the DCS filter, the Kalman filter and the GAS-Kalman

filter.
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(a) The average level factor over 250 replications graphed over

time

(b) The average slope factor over 250 replications graphed over

time

(c) The average curvature factor over 250 replications graphed

over time

(d) The average shape parameter over 250 replications graphed

over time

Figure 2: The replication-averaged level, slope, and curvature factors over time in the NS4F model

with GAS-dynamics. This figure shows the filtered level (panel a), slope (panel b), and curvature (panel c) factors,

and the logarithm of the shape parameter (panel d) in the NS4F model with GAS-dynamics averaged over the 250

replications. Next to the true simulated factor values, the figure shows the filtered factor values of the ProPar filter,

the DCS filter, the Kalman filter and the GAS-Kalman filter.
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Table 5: Filtering performance in the NS3F model with GAS-dynamics in terms of MSFE

statistics.

ProPar filter DCS filter Kalman filter

Mean MSFE Stdev Mean MSFE Stdev Mean MSFE Stdev

Level factor 18.996 76.027 0.024 0.008 0.033 0.021

Slope factor 18.832 76.146 0.011 0.004 0.021 0.012

Curvature factor 76.351 220.491 0.024 0.018 7.883 0.346

GAS-Kalman filter VAR(1) Naive forecast

Mean MSFE Stdev Mean MSFE Stdev Mean MSFE Stdev

Level factor 5.159 22.864 0.228 0.073 3.402 0.342

Slope factor 5.199 22.928 0.387 0.137 1.827 0.175

Curvature factor 30.133 94.089 0.936 0.236 29.665 2.997

Note: The table reports the filtering performance, in terms of average mean squared forecast error over

250 replications (Mean MSFE) and standard deviation of the mean squared forecast errors from the

250 replications (Stdev) of the time-varying factors in the NS3F model. The NS3F model specification

includes a GAS structure for the dynamics of the factors. The filters that are considered are the

ProPar filter, the dynamic conditional score (DCS) filter, the Kalman filter, a version of the Kalman

filter that assumes that the dynamics of the factors are GAS-specified (GAS-Kalman), the first-order

vector autoregressive (VAR[1]) model and the naive forecast model. The mean squared errors at each

repetition are calculated over the test sample which consists of the last 20% of the simulated data.

23



Table 6: Filtering performance in the NS4F model with GAS-dynamics in terms of MSFE statistics.

ProPar filter DCS filter Kalman filter

Mean MSFE Stdev Mean MSFE Stdev Mean MSFE Stdev

Level factor 2.644 9.449 0.269 1.601 21.720 136.231

Slope factor 2.732 9.611 0.292 1.655 21.969 137.156

Curvature factor 31.739 52.661 4.936 18.312 70.140 344.420

Shape parameter log λt 0.573 0.449 0.142 0.411 0.349 0.661

GAS-Kalman filter VAR(1) Naive forecast

Mean MSFE Stdev Mean MSFE Stdev Mean MSFE Stdev

Level factor 0.126 0.743 8.109 3.737 160.890 107.438

Slope factor 0.169 0.822 17.371 5.862 261.250 120.629

Curvature factor 2.843 9.152 10.564 7.806 511.532 195.935

Shape parameter log λt 0.117 0.174 0.388 0.265 0.978 0.311

Note: The table reports the filtering performance, in terms of average mean squared forecast error over 250

replications (Mean MSFE) and standard deviation of the mean squared forecast errors from the 250 replications

(Stdev) of the time-varying factors in the NS4F model. The NS4F model specification includes a GAS structure

for the dynamics of the factors. The filters that are considered are the ProPar filter, the dynamic conditional

score (DCS) filter, the Kalman filter, a version of the Kalman filter that assumes that the dynamics of the factors

are GAS-specified (GAS-Kalman), the first-order vector autoregressive (VAR[1]) model and the naive forecast

model. The mean squared errors at each repetition are calculated over the test sample which consists of the last

20% of the simulated data.

4.2 State-space specification

To make a fair comparison between the Kalman filter and the filters that are based on score-driven

factor dynamics, we evaluate the same filters and models on data generated by the state-space

specification. The model is given by

yt = Λ(λt)βt + ϵt, ϵt ∼ NID(0,Σϵ),

θt+1 = ω +Φθt + ηt, ηt ∼ NID(0,Ση),

in which ηt is a K × 1 residual vector with zero mean and variance Ση. We choose Ση to be a

diagonal matrix, with σ2β on the diagonal entries that correspond to the level, slope, and curvature

factors, and σ2λ on the diagonal entry that corresponds to the fourth factor in the NS4F model. The

true parameters have similar values compared to the simulation with GAS specification. The true

values can be found in the first columns of Tables 7 (NS3F model) and 8 (NS4F model).

Along the same lines, we simulate 250 data sets using the specification above with a set of
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maturities τ = {6, 12, 24, 60} of size N = 4 and a sample size of T = 1000 with a train/test-split

of 80/20. The parameter estimates, log-likelihood, and mean squared forecast error (MSFE) are

determined as the average over the 250 replications. We refer to the correctly specified Kalman filter

where the true parameter values are used as the ‘true model’. We again stress that the number of

static parameters is high (21 in the NS3F model and 26 in the NS4F model) making the parameter

estimation computationally intensive. Due to time and computational power limits, we cannot

ensure that the static parameter estimates correspond to the global optimum of the log-likelihood.

This can affect the parameter estimation accuracy and thus the state filtering performance.

Tables 7 and 8 show the simulation results of respectively the NS3F model and the NS4F model

using the state-space data-generating process. As expected, the Kalman filter has the highest

accuracy in parameter estimation for both the NS3F and NS4F models, especially for the parameters

in Σϵ. Nonetheless, the parameter estimates for ω and Φ are equally, if not less, accurate in

comparison to the estimates obtained through the other filtering methods.

Moreover, the Kalman filter generally has the best model fits, beating the true model in both

the NS3F and the NS4F models. In the NS3F model, the ProPar filter even provides a better fit

than the Kalman filter, but it has the worst model fit among all filters in the NS4F model. The

DCS filter fits the data more or less equally well as the true model.

Next to fitting the train data best, the Kalman filter also provides the best yield forecasts in both

models. In the NS3F model, its MSFE is smaller than the ProPar filter’s MSFE by a tiny margin. In

the NS4F model, the Kalman filter significantly outperforms all other filters in terms of forecasting.

Based on the mean squared forecast error statistics for the other relatively basic benchmark models

presented in Table 17 in Appendix D, it can be inferred that the advanced filtering methods in

Tables 3 and 4 outperform them with respect to out-of-sample yield forecasting.

When we look at the averaged, filtered factor values, which are graphed in Figures 3 and 4 for

the NS3F and NS4F models respectively, we see that the ProPar filter and the Kalman filter are

best able to accurately estimate the factors. The ProPar filter provides the most accurate factor

estimates in the NS3F model, but can be quite inaccurate in the NS4F model as it makes unusual

jumps at some points in time. The inaccuracy of the ProPar filter in the NS4F model comes from

the low shape parameter estimates. The long-term mean of the logarithm of the shape parameter

seems to be around −3.5 (Figure 4), resulting in a different factor loading matrix Λ which affects

the estimates of the other factors. The Kalman filter is most accurate in the NS4F model in terms

of filtering, and does especially a good job when estimating the shape parameter λt. The DCS
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and GAS-Kalman filters are unable to precisely estimate the curvature factor in the NS3F model.

This can be explained by the deviation in the estimate for shape parameter λ (see Table 7). As

a result, the factors loadings are different, implying a different long-term mean for the curvature

factor. Also, these filters exhibit a high degree of misspecification in this simulation setup.

Tables 9 and 10 present the mean and standard deviation of the mean squared forecast errors

of the factors over the 250 replications for the NS3F and NS4F models respectively. These tables

suggest that, on average, the factor estimation accuracy in the NS3F model does not differ substan-

tially, except for the naive forecast model which is significantly less accurate. In the NS4F model,

the relatively and unstable forecast error of the ProPar filter is noteworthy. The ProPar estimates

are significantly less accurate than those of a simple VAR[1] model. The Kalman filter is clearly

able to most accurately filter out the factors when a state-space specification is used.

Overall, for a state-space Nelson-Siegel specification, the Kalman filter is superior to the other

filters in terms of model fit and yield forecasting accuracy and filtering performance. In the NS3F

model, the differences with the other filtering methods are limited, but in the NS4F model the

Kalman filter excels compared to the ProPar filter, the DCS filter, and the GAS-Kalman filter.

This result is not surprising as the Kalman filter is the only filter that is correctly specified in this

setup.
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Table 7: Simulation results of various filtering methods in the three-factor Nelson-Siegel model using state-space

generated data.

Truth ProPar filter DCS filter Kalman filter Kalman filter (OD)

λ 0.05 0.0576 (0.0150) 0.0835 (0.0152) 0.0541 (0.0151) 0.0896 (0.0099)

Σ11 0.2 0.4143 (0.0199) 0.4459 (0.0228) 0.1981 (0.0168) 0.3660 (0.0218)

Σ22 0.2 0.3860 (0.0172) 0.4185 (0.0221) 0.1986 (0.0155) 0.3456 (0.0212)

Σ33 0.2 0.3652 (0.0161) 0.3917 (0.0190) 0.1988 (0.0140) 0.3283 (0.0188)

Σ44 0.2 0.3573 (0.0159) 0.3697 (0.0165) 0.1992 (0.0148) 0.3209 (0.0174)

Σ12 0 0.1959 (0.0152) 0.2285 (0.0197) -0.0018 (0.0130) 0.1521 (0.0198)

Σ13 0 0.1706 (0.0137) 0.2047 (0.0182) -0.0009 (0.0113) 0.1338 (0.0184)

Σ14 0 0.1337 (0.0132) 0.1708 (0.0175) -0.0020 (0.0115) 0.1076 (0.0186)

Σ23 0 0.1690 (0.0133) 0.1998 (0.0177) -0.0018 (0.0112) 0.1317 (0.0173)

Σ24 0 0.1399 (0.0127) 0.1700 (0.0163) -0.0022 (0.0112) 0.1090 (0.0162)

Σ34 0 0.1484 (0.0126) 0.1693 (0.0152) -0.0016 (0.0106) 0.1124 (0.0147)

ω1 0.1 0.1548 (0.2992) 0.1194 (0.0937) 0.1575 (0.1800) 0.1228 (0.0998)

ω2 -0.1 -0.1638 (0.2637) -0.0722 (0.0976) -0.1541 (0.1586) -0.0547 (0.0956)

ω3 -0.02 -0.0796 (0.4246) -0.0726 (0.1381) -0.1021 (0.3821) -0.1204 (0.2928)

Φ11 0.98 0.9680 (0.0480) 0.9533 (0.0841) 0.9686 (0.0236) 0.9635 (0.0198)

Φ22 0.98 0.9631 (0.0382) 0.9536 (0.0979) 0.9655 (0.0224) 0.9750 (0.0174)

Φ33 0.98 0.9451 (0.1057) 0.9579 (0.0697) 0.9405 (0.1039) 0.9540 (0.1155)

Φ12 0 0.0026 (0.0398) -0.0222 (0.0679) 0.0007 (0.0206) -0.0104 (0.0154)

Φ13 0 0.0050 (0.0630) -0.0067 (0.0554) 0.0062 (0.0470) 0.0013 (0.0321)

Φ23 0 -0.0012 (0.0612) -0.0098 (0.0773) -0.0041 (0.0442) 0.0025 (0.0327)

σβ 0.3 0.3042 (0.0150)

ρβ 2.0194 (0.2651) 6.0372 (0.9980) 10.1391 (0.9873)

l(ψ̂) -2683.2 -2651.9 -2676.4 -2671.6 -2725.7

MSFE 0.3820 0.3857 0.3909 0.3853 0.3978

Note: The table reports the estimation results and forecasting performance of the ProPar filter, the DCS filter, the Kalman

filter and the observation-driven variant of the Kalman filter (OD) in the three-factor Nelson-Siegel framework. The data is

generated using a state-space model. For each static parameter in the model, the true value, the estimates and its standard

deviation (between brackets) are given. Also, the log-likelihood value on the train-sample, l(ψ̂), and the mean squared forecast

error (MSFE) on the test data are displayed for each filtering method. The ‘true’ log-likelihood and MSFE are those of the

Kalman filter where the ‘true’ parameter values are used. The estimates, log-likelihood values and MSFEs are obtained by taking

the average over 250 iterations, and the standard deviation is the standard deviation over 250 iterations. The 250 simulated

data sets each consist of T = 1000 observations and a train/test-split of 80/20 is used.
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Table 8: Simulation results of various filtering methods in the four-factor Nelson-Siegel model using state-space generated

data.

Truth ProPar filter DCS filter Kalman filter Kalman filter (OD)

Σ11 0.2 0.4385 (0.0868) 0.4551 (0.0369) 0.1947 (0.0176) 0.3571 (0.0432)

Σ22 0.2 0.4123 (0.0664) 0.4485 (0.0415) 0.1949 (0.0176) 0.3468 (0.0443)

Σ33 0.2 0.4094 (0.0623) 0.4496 (0.0388) 0.1961 (0.0174) 0.3472 (0.0461)

Σ44 0.2 0.4127 (0.0716) 0.4369 (0.0383) 0.2012 (0.0157) 0.3538 (0.0441)

Σ12 0 0.2075 (0.0519) 0.2408 (0.0375) -0.0057 (0.0141) 0.1407 (0.0367)

Σ13 0 0.1726 (0.0445) 0.2185 (0.0377) -0.0052 (0.0132) 0.1242 (0.0388)

Σ14 0 0.1351 (0.0435) 0.1813 (0.0341) -0.0052 (0.0132) 0.1020 (0.0378)

Σ23 0 0.1945 (0.0432) 0.2397 (0.0382) -0.0045 (0.0131) 0.1396 (0.0400)

Σ24 0 0.1525 (0.0471) 0.2000 (0.0359) -0.0035 (0.0122) 0.1138 (0.0390)

Σ34 0 0.1776 (0.0490) 0.2213 (0.0351) -0.0026 (0.0130) 0.1306 (0.0376)

ω1 0.1 0.1477 (0.1260) 0.0778 (0.4230) 0.1882 (0.2173) 0.1088 (0.1251)

ω2 -0.1 -0.1545 (0.1696) -0.1941 (0.3758) -0.2620 (0.3523) -0.1241 (0.1515)

ω3 -0.02 0.0156 (0.3717) 0.0504 (0.5733) -0.0417 (0.5633) -0.0765 (0.3069)

ω4 -0.06 -0.1463 (0.2566) -0.4170 (0.7373) -0.2012 (0.4340) -0.0865 (0.1778)

Φ11 0.98 0.9700 (0.0320) 0.9027 (0.1423) 0.9580 (0.0451) 0.9694 (0.0277)

Φ22 0.98 0.9597 (0.0461) 0.9301 (0.0892) 0.9358 (0.0704) 0.9690 (0.0364)

Φ33 0.98 0.9009 (0.1932) 0.8767 (0.1571) 0.8712 (0.1723) 0.9429 (0.1427)

Φ44 0.98 0.9506 (0.0819) 0.7994 (0.2894) 0.9166 (0.1232) 0.9620 (0.0551)

Φ12 0 0.0033 (0.0213) -0.0459 (0.0908) 0.0004 (0.0300) -0.0042 (0.0154)

Φ13 0 0.0070 (0.0597) 0.0282 (0.1325) 0.0077 (0.0554) 0.0015 (0.0440)

Φ14 0 0.0052 (0.0238) -0.0606 (0.1053) 0.0008 (0.0319) -0.0089 (0.0185)

Φ23 0 -0.0120 (0.0734) 0.0120 (0.1137) 0.0045 (0.1019) 0.0092 (0.0534)

Φ24 0 0.0046 (0.0301) -0.0493 (0.0790) 0.0008 (0.0560) -0.0135 (0.0390)

Φ34 0 0.0218 (0.0973) 0.0787 (0.1683) 0.0256 (0.0940) 0.0125 (0.0663)

σβ 0.3 0.3108 (0.0176)

σλ 0.2 0.1841 (0.0277)

ρβ 4.9744 (12.6103) 6.6160 (5.7863) 14.1730 (9.2888)

ρλ 21.6095 (15.5668) 17.5815 (10.4315) 27.4077 (8.3792)

l(ψ̂) -2812.4 -2914.0 -2815.3 -2794.3 -2897.0

MSFE 0.4371 0.4912 0.4749 0.4424 0.5118

Note: The table reports the estimation results and forecasting performance of the ProPar filter, the DCS filter, the Kalman filter

and the observation-driven variant of the Kalman filter (OD) in the four-factor Nelson-Siegel framework. The data is generated

using a state-space model. For each static parameter in the model, the true value, the estimates and its standard deviation (between

brackets) are given. Also, the log-likelihood value on the train-sample, l(ψ̂), and the mean squared forecast error (MSFE) on the

test data are displayed for each filtering method. The ‘true’ log-likelihood and MSFE are those of the Kalman filter where the ‘true’

parameter values are used. The estimates, log-likelihood values and MSFEs are obtained by taking the average over 250 iterations,

and the standard deviation is the standard deviation over 250 iterations. The 250 simulated data sets each consist of T = 1000

observations and a train/test-split of 80/20 is used. 28



(a) The average level factor over 250 replications graphed over

time

(b) The average slope factor over 250 replications graphed over

time

(c) The average curvature factor over 250 replications graphed

over time

Figure 3: The replication-averaged level, slope, and curvature factors over time in the NS3F model

with state-space-dynamics. This figure shows the filtered level (panel a), slope (panel b), and curvature (panel c)

factors in the NS3F model with state-space-dynamics averaged over the 250 replications. Next to the true simulated

factor values, the figure shows the filtered factor values of the ProPar filter, the DCS filter, the Kalman filter and the

GAS-Kalman filter.
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(a) The average level factor over 250 replications graphed over

time

(b) The average slope factor over 250 replications graphed over

time

(c) The average curvature factor over 250 replications graphed

over time

(d) The average shape parameter over 250 replications graphed

over time

Figure 4: The replication-averaged level, slope, and curvature factors over time in the NS4F model

with state-space-dynamics. This figure shows the filtered level (panel a), slope (panel b), and curvature (panel c)

factors, and the logarithm of the shape parameter (panel d) in the NS4F model with state-space-dynamics averaged

over the 250 replications. Next to the true simulated factor values, the figure shows the filtered factor values of the

ProPar filter, the DCS filter, the Kalman filter and the GAS-Kalman filter.
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Table 9: Filtering performance in the NS3F model with state-space-dynamics in terms of

MSFE statistics.

ProPar filter DCS filter Kalman filter

Mean MSFE Stdev Mean MSFE Stdev Mean MSFE Stdev

Level factor 1.639 3.382 1.442 0.641 1.290 0.616

Slope factor 1.544 3.413 1.657 0.592 0.998 0.241

Curvature factor 8.535 17.636 11.892 8.817 7.069 4.840

GAS-Kalman filter VAR(1) Naive forecast

Mean MSFE Stdev Mean MSFE Stdev Mean MSFE Stdev

Level factor 1.852 0.986 1.531 0.571 3.756 0.421

Slope factor 2.351 1.139 1.591 0.382 2.238 0.281

Curvature factor 12.056 9.727 14.240 9.546 29.845 3.108

Note: The table reports the filtering performance, in terms of average mean squared forecast error over

250 replications (Mean MSFE) and standard deviation of the mean squared forecast errors from the

250 replications (Stdev) of the time-varying factors in the NS3F model. The NS3F model specification

includes a state-space structure for the dynamics of the factors. The filters that are considered are the

ProPar filter, the dynamic conditional score (DCS) filter, the Kalman filter, a version of the Kalman

filter that assumes that the dynamics of the factors are GAS-specified (GAS-Kalman), the first-order

vector autoregressive (VAR[1]) model and the naive forecast model. The mean squared errors at each

repetition are calculated over the test sample which consists of the last 20% of the simulated data.
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Table 10: Filtering performance in the NS4F model with state-space-dynamics in terms of MSFE statistics.

ProPar filter DCS filter Kalman filter

Mean MSFE Stdev Mean MSFE Stdev Mean MSFE Stdev

Level factor 67.721 700.699 3.338 18.734 1.094 1.072

Slope factor 77.837 746.710 3.292 15.226 1.252 1.086

Curvature factor 178.729 1354.838 14.783 51.997 6.533 11.240

Shape parameter log λt 10.465 87.865 2.012 13.395 0.568 0.523

GAS-Kalman filter VAR(1) Naive forecast

Mean MSFE Stdev Mean MSFE Stdev Mean MSFE Stdev

Level factor 5.092 29.315 12.491 6.967 168.640 105.416

Slope factor 5.534 25.084 20.516 9.993 288.753 122.624

Curvature factor 21.999 76.427 19.654 15.231 551.239 204.266

Shape parameter log λt 5.256 44.681 1.263 0.880 1.995 1.028

Note: The table reports the filtering performance, in terms of average mean squared forecast error over 250

replications (Mean MSFE) and standard deviation of the mean squared forecast errors from the 250 replications

(Stdev) of the time-varying factors in the NS4F model. The NS4F model specification includes a state-space

structure for the dynamics of the factors. The filters that are considered are the ProPar filter, the dynamic

conditional score (DCS) filter, the Kalman filter, a version of the Kalman filter that assumes that the dynamics of

the factors are GAS-specified (GAS-Kalman), the first-order vector autoregressive (VAR[1]) model and the naive

forecast model. The mean squared errors at each repetition are calculated over the test sample which consists of

the last 20% of the simulated data.

5 Empirical study

To see whether the ProPar filter in the Nelson-Siegel framework is suitable for forecasting yield

curves, we apply the method to U.S. yield data. After discussing the yield data in Section 5.1, we

present our findings in Section 5.2.

5.1 Yield data

The yield data that is used to perform the empirical study is provided by Liu and Wu (2021) and

consists of U.S. yields derived from government bonds. The sample ranges from November 1971 to

October 2021 and covers 600 monthly observations. It contains yields with a maturity of 1, 2, ...,

360 months. However, for this research, we only consider a subset of N = 16 maturities as these

contain sufficient information to construct yield curves. The chosen maturities range from 3 to

180 months. Figure 5 displays a short-, medium- and long-term yield over time. Some remarkable
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periods in time are the early 1980s recession in which annual inflation peaked at almost 15%, the

bursting of the dot-com bubble around 2000, and the great recession in 2008.

Figure 5: Short-, medium-, and long-term U.S. yields over time. This figure shows short-, medium-, and

long-term U.S. yields that correspond to a maturity of 6 months, 2 years and 10 years respectively, over the period of

November 1971 to October 2021.

Table 11 presents descriptive statistics of the data, which reveal that longer-term yields tend to

be higher than shorter-term yields. This reflects the expectation of higher interest rates in the future

and implies the generally positive slope of the yield curve. From maturities of at least 9 months, we

see that the volatility decreases by maturity. When one looks at the autocorrelation coefficients, one

can see that the yield curves tend to display a certain degree of persistence over time. Also, yields

for long maturities are more persistent than yields for shorter maturities. Changes in the yield

curve typically occur gradually rather than abruptly, reflecting the gradual adjustment of market

expectations and economic factors. Moreover, according to the cross-correlation matrix in Table 16

(Appendix A), yields for different maturities have high cross-correlations. These reflections are all

in line with several commonly observed patterns and characteristics of the yield curve.

When one fits the Nelson-Siegel model to the yield curve at each point in time, one can find the

factor values that result in the best fit. In the NS3F model, one needs to find an appropriate value

for λt. The shape parameter determines the maturity at which the loading on the curvature factor

achieves it maximum. For this purpose, it is common to use medium-term maturities. Similar to

Diebold and Li (2006), we choose a maturity of 30 months. The λt value that maximizes the loading

on the curvature factor at 30 months is 0.0609. Hence, we fix shape parameter λt in the three-factor
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Table 11: Descriptive Statistics of the U.S. Yield Data

Maturity Mean Stdev Min Max r1 r12 r60

3 4.533 3.530 0.009 15.946 0.989 0.860 0.547

6 4.689 3.583 0.028 16.133 0.990 0.869 0.557

9 4.801 3.597 0.045 16.107 0.990 0.875 0.568

12 4.886 3.596 0.064 15.962 0.990 0.881 0.580

18 5.022 3.591 0.106 15.943 0.991 0.890 0.602

24 5.122 3.558 0.123 15.719 0.992 0.896 0.619

30 5.215 3.513 0.114 15.545 0.992 0.900 0.631

36 5.316 3.482 0.123 15.569 0.992 0.904 0.636

48 5.497 3.410 0.172 15.475 0.992 0.907 0.645

60 5.631 3.326 0.231 15.195 0.993 0.910 0.652

72 5.767 3.273 0.313 14.989 0.993 0.912 0.652

84 5.868 3.209 0.382 14.950 0.993 0.911 0.649

96 5.956 3.157 0.445 14.941 0.993 0.914 0.646

108 6.028 3.108 0.488 14.945 0.993 0.914 0.643

120 6.086 3.039 0.530 14.939 0.993 0.910 0.643

180 6.406 2.989 0.734 14.914 0.992 0.912 0.634

Note: The table reports the summary statistics for the U.S. zero-coupon bond

rates for different maturities (denoted in months). The data ranges from

November 1971 until October 2021, resulting in T = 600 monthly observations.

For each of the N = 16 maturities, the mean, standard deviation (Stdev),

minimum and maximum, and autocorrelations r1, r12, and r60 on 1, 12, and

60 month lags respectively are shown.

model to 0.0609. Note that we only impose this constraint in preliminary research to describe the

level, slope and curvature factor. The λt estimate in the NS3F model is obtained as described in

Section 3. Table 12 displays several statistics about these factors. Again, the level factor is reflected

by the long-term yield as the slope and curvature loadings shrink to zero when maturity increases.

Hence, it is not surprising that the level factor is generally positive. The slope factor is closely

related to the short-term yield minus the long-term yield. Thus, its sign depends on the shape of

the yield curve, but is generally negative as yield curves tend to be increasing. The curvature factor

usually affects medium-term yields. In the NS3F model, it is clear that the factors are persistent.

Especially the level factor which has an autocorrelation on its 12-month lag of 0.906. In the NS4F

model, the factors are not highly persistent. This can be caused by the outliers that are present

in the level, slope, and curvature factors as soon as the shape parameter changes over time. This

may have consequences for the dynamic modeling of the factors, as persistence is a fundamental
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component in any time series model.

Table 12: Descriptive Statistics of the estimated factors in the three- and four-

factor Nelson-Siegel model

NS3F model Mean Stdev Min Max r1 r12 r60

Level 6.571 2.860 0.794 14.223 0.992 0.906 0.606

Slope -1.996 1.871 -5.561 5.275 0.956 0.521 -0.061

Curvature -1.462 2.688 -8.157 8.091 0.931 0.631 0.230

NS4F model

Level 6.913 3.279 -6.105 41.931 0.785 0.691 0.386

Slope -2.457 2.401 -30.087 11.376 0.640 0.308 0.006

Curvature -1.388 3.509 -37.147 21.902 0.496 0.289 0.027

log λt -3.011 0.575 -5.606 -1.089 0.532 0.158 0.059

Note: The table reports the summary statistics for the estimated factors in the three-

and four-factor Nelson-Siegel models. The data used is U.S. yield data ranging from

November 1971 until October 2021, resulting in T = 600 monthly observations. For

each of the factors the mean, standard deviation (Stdev), minimum and maximum,

and autocorrelations r1, r12, and r60 on 1, 12, and 60 month lags respectively are

shown.

Figure 6 graphs the estimated factors over time. The level, slope, and curvature factors behave

similar across the three- and four-factor models. At some points in time, when we allow the shape

parameter of the factor loadings to be dynamic, the level, slope, and curvature factors contain

outliers. At these time points, the yield curve takes on unusual shapes. The four time-varying

factors take on extreme values in order to fit these shapes. For instance, in the period just after

1980, we detect two points in time at which the level, slope, and curvature take on unusual values in

the NS4F model compared to the factor values from the NS3F model. When we look at the yields

around that period in Figure 5, we see that the 10-year yield is lower than the 6-months and 2-year

yields, indicating that the yield curve was not monotonically increasing as usual.

The relatively high values of λt in the NS4F model correspond to points in time where the

yield curve was not monotonically increasing. During the periods where the yield curve was clearly

increasing, for instance between 2010 and 2015 where according to Figure 5 the long-term yield

is clearly higher than shorter-term yields, shape parameter λt is estimated to be lower and less

volatile.
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(a) The level, slope and curvature factors in the NS3F model

over time

(b) The level, slope and curvature factors in the NS4F model

over time

(c) The fixed shape parameter (NS3F model) versus the time-

varying shape parameter (NS4F model) over time

Figure 6: Factor values from the Nelson-Siegel three- and four-factor models over time. This figure shows

the estimated level, slope, and curvature factors in the NS3F model (panel a), the estimated level, slope, and curvature

factors in the NS4F model (panel b), and the time-varying shape parameter λt (panel c). In the NS3F model, shape

parameter λt is fixed at a value of 0.0609.

5.2 Findings

As the yield data contains N = 16 maturities the number of parameters, especially in Σϵ, becomes

large. To ensure computational convenience, we impose several constraints. First of all, we force

the estimate of Σϵ to be a scalar multiple of the covariance matrix of yields of the train sample,

i.e. Σ̂ϵ = σ̂ϵCov(y) where σϵ is a scalar. Secondly, for the learning-rate matrix Ht, we use the

inverse of the penalty matrices form Equation 12 (NS3F model) and Equation 17 (NS4F) using

k = 1, implying we use a multiple of the predictive Fisher matrix as penalty matrix. However, to

enhance convenience, we assume the mixed partial derivatives of βt and log λt are zero such that the
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upper-right and lower-left block matrices of the predictive Fisher matrix are zero in the four-factor

case. Hence, the learning-rate matrix in the four-factor model becomes

Ht =

ρ−1
β I3 0

0 ρ−1
λ

 I−1
t|t−1

=

ρ−1
β

[
Λ(λt|t−1)

′Σ−1
ϵ Λ(λt|t−1)

]−1
0

0 ρ−1
λ

[
β′t|t−1Λ̇(λt|t−1)

′Σ−1
ϵ Λ̇(λt|t−1)βt|t−1

]−1

 ,
where Λ̇(λ) is the derivative of Λ(λ) with respect to log λ. Lastly, in the NS4F model, we only have

to estimate ω4, Φ44 and ρλ. The other parameter estimates equal the corresponding estimates from

the NS3F model, except for the off-diagonal elements in the fourth row/column of Φ which are set

to zero. Moreover, we take the logarithm of the estimate of λ from the NS3F model as the initial

value for the log λ0 in the NS4F. In this way, the NS4F model can converge to the NS3F model (by

setting ω̂4 = 0, Φ̂44 = 1, and ρ̂λ = ∞), implying that the performance of the NS4F model is at least

as good as the performance of the NS3F model.
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Table 13: Estimation results and forecasting performance of the ProPar filtering

method and various benchmark filtering methods on the three- and four-factor Nelson-

Siegel model using U.S. yield data.

NS3F model ProPar filter DCS filter Kalman filter Kalman filter (OD)

λ 0.0439 0.0439 0.0403 0.0397

σϵ 0.0208 0.0208 0.0015 0.0014

ω1 0.1636 0.1636 0.1885 0.1895

ω2 -0.1959 -0.1959 -0.1282 -0.2027

ω3 -0.2189 -0.2189 -0.1914 -0.2845

Φ11 0.9833 0.9833 0.9783 0.9808

Φ22 0.9493 0.9493 0.9558 0.9534

Φ33 0.8646 0.8646 0.9402 0.8408

Φ12 0.0129 0.0129 0.0052 0.0138

Φ13 0.0180 0.0180 0.0226 0.0259

Φ23 0.0182 0.0182 0.0159 0.0126

ρβ -0.1157 0.8843 0.1275

σβ 0.6153

l(ψ̂) -4100.5 -4100.5 3359.1 3222.1

MSFE 0.0313 0.0313 0.0319 0.0309

NS4F model

ω4 -0.0292 0.0063 -0.6709 0.0061

Φ44 0.9916 1.0022 0.7867 1.0019

ρλ 301.1769 424.5833 1.8982E+12

σλ 0.3398

l(ψ̂) -4076.8 -4094.2 3967.0 3252.2

MSFE 0.0301 0.0302 0.0311 0.0305

Note: The table reports the estimation results and forecasting performance of the ProPar filter,

DCS filter, Kalman filter, and the observation-driven version of the Kalman filter in the three-

(NS3F) and four-factor (NS4F) Nelson-Siegel framework on U.S. yield data. The estimates

for the static parameters are shown. Also, the log-likelihood value on the train sample, l(ψ̂),

and the mean squared forecast error (MSFE) on the test data are displayed for each filtering

method. The U.S. yield data consists of T = 600 monthly observations (November 1971 until

October 2021) and N = 16 different maturities per point in time (ranging from 3 months to

15 years). The train sample uses the first 80% of the data, and the remaining 20% is used for

out-of-sample forecasting evaluation.
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Table 13 shows the results of the NS3F and NS4F models using all filtering methods. As shown

in Section 3.1, the update step of the ProPar filter can be rewritten to the update step of the DCS

filter when the a scalar multiple of the predictive Fisher matrix is used as penalty matrix and the

observation equation is linear in the factors. The two filters converge to the same filter and the

linear transformation in the penalty scalar ρβ makes their estimates differ by exactly one.

Also, we see that the log-likelihood on the train sample is extremely high for the Kalman filters.

This is a result of the estimate for σϵ, the scalar with which the covariance matrix of yields is

multiplied to get the estimate for Σϵ. As yield data is highly correlated (see the correlation matrix

in Table 16), the covariance matrix of yields has a very low determinant, namely 2.385E-35. The

Kalman and GAS-Kalman filter estimate σϵ around 0.0015, resulting in Σ̂ϵ with a determinant of

1.566E-80. This near-zero determinant suggests multicollinearity, which is inevitably present in the

highly correlated yield data. The multicollinearity problem is beyond the scope of this research,

but the low determinant of Σ̂ϵ explains why the log-likelihood value is this high. We can therefore

not draw any valid conclusions on which filter has the best model fit.

The estimates of ρλ are of significantly higher magnitude than the estimates of ρβ, indicating

that the time-varying sequences βt and log λt should be penalized differently to get the best model

fit. One could also look into a filter with different penalty scalars for the level, slope, and curvature

factors, which is beyond the scope of this research.

The GAS-Kalman filter provides the most accurate out-of-sample yield forecasts in the NS3F

model. The Kalman filter generates the highest out-of-sample mean squared forecast error among all

filters. When we let log λt vary over time, we see that all model fits and forecasting performances

increase. The GAS-Kalman filter increases the least, which is also indicated by its parameter

estimates for ω4, Φ44 and ρλ which are closest to the settings that make the NS4F model converge

to the NS3F model (ω4 = 0, Φ44 = 1, and ρλ = ∞). The ProPar filter beats the DCS filter by a

tiny margin in terms of forecasting and has an MSFE that is 3.2% smaller than the MSFE that

the Kalman filter can attain. The gain from adding the shape parameter as a fourth factor is not

as large as one would anticipate after reading the work of Koopman et al. (2010). However, as our

NS4F model is highly restrictive, implying that the estimated level, slope, and curvature factors are

the same in both models, the gain is marginal.

Table 14 reports the MSFE statistics for the simple benchmark models. The filtering methods

from Table 13 are able to beat all the simple benchmarks, except for the naive forecasting model in

a four-factor framework. This finding suggests that the factors are sufficiently persistent in order
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to be explained by this simple model. Moreover, the naive forecasting model, which includes fewer

parameters and assumptions, is less prone to overfitting and therefore leading to better generaliza-

tion to new, unseen data. Nevertheless, the difference in MSFE between the ProPar filter and the

naive forecasting model is small (4.2%).

Table 14: Yield forecasting performance

of several benchmark models.

MSFE

VAR[1] βt 0.0358

VAR[1] on θt 0.1139

Naive βt forecast 0.0351

Naive θt forecast 0.0289

Note: The table reports the forecasting per-

formance, in terms of the mean squared fore-

cast error (MSFE) of out-of-sample yield fore-

casts. The models that are considered are

the first-order vector autoregressive (VAR[1])

model and a naive forecasting model on the

factors in the three- and four-factor Nelson-

Siegel framework. The factors in the three-

factor framework are denoted by βt, while

the factors in the four-factor framework are

denoted by θt. The U.S. yield data consists

of T = 600 monthly observations (November

1971 until October 2021) and N = 16 differ-

ent maturities per point in time (ranging from

3 months to 15 years). The training sample

uses the first 80% of the data, and the remain-

ing 20% is used for out-of-sample forecasting

evaluation.

We have to judge our filtering methods not only on the yield forecasts, but also on their ability

to predict the state vector. The optimal factor values, which we derived in Section 5.1 via cross-

sectional regressions, are graphed in Figure 7 along with their predicted values from the considered

methods. One can easily see that the Kalman filter and the naive forecasting model consistently

provide the most accurate state predictions on the test sample. While the ProPar, DCS and GAS-

Kalman filters are able to predict reasonably close to the optimal pattern of the level, slope, and

curvature factors, the predictions of the shape parameters seem almost constant. This can be

explained by the relatively high estimates of penalties on the shape parameter ρλ from Table 13.
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These views are confirmed by the mean squared forecast error statistics of the factor values, given

in Table 15. The MSFE statistics from this table indicate the difference between the method’s state

prediction and the optimal state that would result in the best fit.

In short, predicting the one-step-ahead state can best be done in a naive way, by setting the

prediction equal to today’s fitted values. This method also generates the most accurate out-of-

sample yield forecasts. However, given the highly restricted version of the four-factor Nelson-Siegel

framework that we use for the more advanced filters in this empirical study, the results of the

Kalman and ProPar filters are promising. The Kalman filter is able to accurately predict the state

vector, and the ProPar filter generates precise out-of-sample yield forecasts.
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(a) The optimal level factor and its estimates over time (b) The optimal slope factor and its estimates over time

(c) The optimal curvature factor and its estimates over time (d) The optimal shape parameter and its estimates over time

Figure 7: Factor estimates from the four-factor Nelson-Siegel model over time. This figure shows the

optimal level (panel a), slope (panel b), and curvature (panel c) factors and the logarithm of the time-varying shape

parameter log λt (panel d), along with six factor estimates. The estimates are obtained using the ProPar filter, the

DCS filter, the Kalman filter, the GAS-Kalman filter, the VAR(1) model and the naive forecasting model. The

methods are trained on monthly U.S. yield data ranging from November 1971 to October 2011. The test sample

ranges from November 2011 to October 2021, which is graphed in the figure. The optimal factor values are obtained

via cross-sectional least squares.
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Table 15: Out-of-sample state filtering performance.

MSFE of

ProPar filter

MSFE of

DCS filter

MSFE of

Kalman filter

MSFE of

GAS-Kalman filter

MSFE of

VAR(1)

MSFE of

naive forecast

Level factor 0.224 0.245 0.068 0.243 1.217 0.054

Slope factor 0.327 0.351 0.071 0.343 1.080 0.064

Curvature factor 1.034 0.965 0.192 0.840 2.347 0.169

Shape parameter log λt 0.209 0.218 0.043 0.178 0.084 0.028

Note: The table reports the filtering performance, in terms of the mean squared forecast error (MSFE) from a method’s factor

estimate to the optimal factor value. The methods that are considered are the ProPar filter, the dynamic conditional score (DCS)

filter, the Kalman filter, the GAS-Kalman filter, a first-order vector autoregressive (VAR[1]) model and a naive forecasting model.

All methods are applied to the four-factor Nelson-Siegel framework. The U.S. yield data that is used consists of T = 600 monthly

observations (November 1971 until October 2021) and N = 16 different maturities per point in time (ranging from 3 months to 15

years). The training sample uses the first 80% of the data, and the remaining 20% is used for calculating the out-of-sample filtering

performances which are given in the table.

6 Conclusion

This thesis aims to find an answer to the questions of whether the ProPar filter in a dynamic

Nelson-Siegel framework is suitable for forecasting yield curves, and whether the ProPar filter can

outperform several widely-used benchmark filters in this framework.

The simulation experiment demonstrates that the ProPar filter, the dynamic conditional score

(DCS) filter, the Kalman filter, and the GAS-Kalman filter are all capable of estimating the pa-

rameters in the Nelson-Siegel framework reasonably well for at least one of the considered model

specifications. Furthermore, these filters exhibit a good fit to the data, closely approximating the

correctly specified filter with the true parameter values. This holds true for both the three- and

four-factor models, as well as for both the state-space and generalized autoregressive score data

specifications.

In terms of out-of-sample forecasting, these advanced filtering methods outperform simpler

benchmark models such as the first-order vector autoregressive (VAR[1]) model and the naive fore-

casting model. Notably, the Kalman filter excels in out-of-sample forecasting, demonstrating its

ability to effectively capture underlying patterns that generalize well to unseen data in the simula-

tion context. Surprisingly, this advantage persists even when the Kalman filter has a higher degree

of misspecification compared to other filters. The simulation setup reveals that the specification of

factor dynamics plays a significant role in the filtering performance of these methods. Specifically,

the DCS filter demonstrates the highest filtering accuracy in the GAS-specified factors, while the
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Kalman filter is superior in filtering the factors in the state-space setting.

Despite the ability of the Kalman filter to predict yields most accurately in the simulation

experiment, the empirical study using U.S. yield data suggests that the ProPar filter offers slightly

improved one-month-ahead yield forecasts compared to other advanced filtering methods. The

ProPar filter appears to have the ability to distill the underlying driving factors of yield curves

effectively. It’s noteworthy that although the Kalman filter seems to predict the state vector most

accurately, it exhibits the highest mean squared yield forecast error among the four filters. This

indicates that the true factors in real yield data may be described by a Gaussian process, but

effectively filtering the state vector does not guarantee more accurate yield forecasts.

Surprisingly, the naive forecasting model, which predicts the factors one month ahead based on

today’s fitted values, marginally outperforms the ProPar filter in out-of-sample forecasting. This

result not only confirms the persistence of the factors but also serves as a cautionary note about

overfitting when dealing with yield data. The outstanding out-of-sample forecasting performance of

this simple model highlights that a model with fewer assumptions and parameters is less susceptible

to overfitting and, consequently, leads to better generalization to new, unseen data.

Besides the theoretical implications of our results, we stress their practical benefits. Namely,

the ProPar filter is able to accurately forecast the yield curve in times of crisis. Examples of such

events/periods are:

• On June 23, 2016, the United Kingdom’s Brexit referendum took place. The unexpected

result, where the majority voted to leave the European Union, led to market uncertainty and

a flight to safety. The yield curve dropped on average by 26.8%. It is interesting to note that

the ProPar filter kept the MSFE at a level of 0.121, while the Kalman filter has an average

squared forecast error of 0.165. The DCS filter and the GAS-Kalman filter did a reasonable

job with an MSFE of 0.120 and 0.123 respectively. Surprisingly, the naive forecasting model

has a mean squared error loss of only 0.105 after this event.

• On July 31, 2019, The Federal Open Market Committee (FOMC) cut the federal funds rate

by 0.25% to a target range of 2.00-2.25%. This marked the first rate cut since the financial

crisis. This event caused the yield curve to drop by 19.1%. The Kalman filter forecasted the

yield curve with a mean squared error of 0.185, whereas the ProPar filter, the DCS filter, the

GAS-Kalman filter and the naive forecasting model provided more accurate forecasts leading

to an MSFE of 0.164, 0.163, 0.170, and 0.151 respectively.
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• The global COVID-19 pandemic led to a significant economic downturn. The Fed responded

with aggressive monetary policy, cutting rates and implementing quantitative easing measures,

impacting short and long-term yields. From December 2019, when the virus is believed to

have originated, to March 2020, when the virus was officially declared to be a pandemic, the

yield curve collapsed by 78.4%. The ProPar filter, the DCS filter, and the GAS-Kalman filter

again did a reasonable job in this volatile period, forecasting the yield curve with a mean

squared error of 0.172, 0.171, and 0.180 respectively. Again, the Kalman filter stayed behind

with an MSFE of 0.213. The naive forecasting model, which generally provides the most

accurate out-of-sample yield forecasts, has a mean squared forecast error of 0.254 during this

period.

Upon examining the findings from both the simulation experiment and the empirical study, it

becomes evident that implementing proximal parameter updates within a score-driven Nelson-Siegel

framework yields a viable model for forecasting the term structure of interest rates. Furthermore,

the ProPar filter outperforms other advanced filtering methods in predicting the yield curves, albeit

with relatively minor distinctions. The fact that the naive forecasting model provides slightly more

accurate out-of-sample yield forecasts indicates that overfitting is something we need to be cautious

about when working with yield data. However, given the highly restrictive Nelson-Siegel version

upon which the ProPar filter is applied, the application of proximal parameter updates in a Nelson-

Siegel framework is promising.

The findings of this research can be helpful in a lot of fields, for instance in the field of finance and

investments. Accurate yield curve forecasting helps investors, financial institutions, and portfolio

managers make informed decisions regarding bond investments, interest rate expectations, and asset

allocation strategies. Minor improvements in yield predictions can already lead to a great deal of

profit.

Moving forward, there are several promising directions for future research in this domain. As

Koopman et al. (2010) already show using the Kalman filter, allowing the volatility to vary over

time can be beneficial when forecasting the yield curve. It can be interesting to see how the ProPar

filter performs in that setup. Furthermore, one can allow for a time-varying mean (often referred

to as shifting end-points) using the ProPar filter. This thesis has limited the use of the ProPar

filter to the Nelson-Siegel model, but there are already numerous extensions of this model, such as

the extension from Svensson (1994), that can yield an interesting application for the ProPar filter.

Lastly, being aware of potential multicollinearity issues and employing appropriate techniques to
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handle them is crucial when using the Nelson-Siegel model in yield curve modeling. Although

the ProPar filter could benefit from adjustments to prevent overfitting and multicollinearity, our

approach opens the door to a promising new field of research.
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A Correlation

Table 16: Correlation matrix

y(3) y(6) y(9) y(12) y(18) y(24) y(30) y(36) y(48) y(60) y(72) y(84) y(96) y(108) y(120) y(180)

y(3) 1.000 0.999 0.997 0.994 0.988 0.983 0.977 0.972 0.962 0.954 0.946 0.939 0.933 0.927 0.923 0.901

y(6) 1.000 0.999 0.998 0.993 0.988 0.983 0.979 0.969 0.962 0.954 0.948 0.942 0.936 0.931 0.909

y(9) 1.000 0.999 0.996 0.993 0.988 0.984 0.976 0.968 0.961 0.955 0.949 0.943 0.939 0.917

y(12) 1.000 0.998 0.996 0.992 0.988 0.981 0.974 0.967 0.961 0.956 0.950 0.946 0.924

y(18) 1.000 0.999 0.997 0.995 0.989 0.984 0.978 0.973 0.968 0.963 0.958 0.938

y(24) 1.000 0.999 0.998 0.994 0.990 0.985 0.980 0.976 0.971 0.967 0.948

y(30) 1.000 1.000 0.997 0.994 0.990 0.986 0.982 0.978 0.974 0.956

y(36) 1.000 0.999 0.996 0.993 0.990 0.986 0.983 0.979 0.962

y(48) 1.000 0.999 0.997 0.995 0.992 0.990 0.987 0.972

y(60) 1.000 0.999 0.998 0.996 0.994 0.991 0.979

y(72) 1.000 0.999 0.998 0.997 0.995 0.984

y(84) 1.000 1.000 0.999 0.997 0.988

y(96) 1.000 1.000 0.999 0.991

y(108) 1.000 0.999 0.994

y(120) 1.000 0.996

y(180) 1.000

Note: The table reports the correlation matrix of the 16 zero-coupon bond rates, where y(τ) denotes the yield with maturity τ in months.

B Mathematical derivations

B.1 Score vectors

Both the ProPar filter as well as its explicit version make use of the score vector of the observation

density in order to update the factors. In the linear NS3F model from Equation 1, the log-density

of observation yt is given by

log p(yt|βt) = −N
2
log(2π)− 1

2
log |Σϵ| −

1

2
(yt − Λ(λ)βt)

′Σ−1
ϵ (yt − Λ(λ)βt), (20)

and has a corresponding score vector denoted by

∇(yt|βt) =
∂

∂βt
log p(yt|βt) = Λ(λ)′Σ−1

ϵ

(
yt − Λ(λ)βt

)
. (21)

In the NS4F model, the observation equation (Equation 4) becomes nonlinear in the factors.

All dynamic factors are captured in θ′t = (β′t, log λt). The log-density of observation yt becomes

log p(yt|θt) = −N
2
log(2π)− 1

2
log |Σϵ| −

1

2
(yt − Λ(λt)βt)

′Σ−1
ϵ (yt − Λ(λt)βt), (22)

with corresponding score vector

∇(yt|θt) =

 ∂
∂βt

log p(yt|θt)
∂

∂ log λt
log p(yt|θt)

 =

 Λ(λt)
′Σ−1
ϵ

(
yt − Λ(λt)βt

)(
yt − Λ(λt)βt

)′
Σ−1
ϵ Λ̇(λt)βt

 , (23)
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where Λ̇(λ) = ∂Λ(λ)
∂ log λ .

B.2 Hessian matrices

To determine the validity of the use of the ProPar filter, we evaluate the concavity of the logarithmic

observation density. The NS3F model with observation log-density given in Equation 20, has Hessian

matrix

H(yt|βt) =
∂2

∂βt∂β′t
log p(yt|βt) = −Λ(λ)′Σ−1

ϵ Λ(λ). (24)

This Hessian is negative definite as the function

f(x) = x′
(
− Λ(λ)′Σ−1

ϵ Λ(λ)
)
x

achieves its unique maximum at

∇xf(x) = −2Λ(λ)′Σ−1
ϵ Λ(λ)x = 0 ⇐⇒ x = 0

as the columns of Λ(λ) are all strictly positive column vectors and Σϵ (and thus Σ−1
ϵ ) is a positive

definite matrix by definition. Hence,

x′
(
− Λ(λ)′Σ−1

ϵ Λ(λ)
)
x = f(x) ≤ f(0) = 0, ∀x ∈ R3,

x′
(
− Λ(λ)′Σ−1

ϵ Λ(λ)
)
x < 0, ∀x ∈ R3 \ {0},

which is a sufficient condition for −Λ(λ)′Σ−1
ϵ Λ(λ) to be negative definite. The negative definiteness

of the Hessian matrix implies that the log-likelihood is concave in β, which suggests the ProPar

filter method to be appropriate for the NS3F model.

In the nonlinear NS4F model, the observation log-density is denoted in Equation 22. Its Hessian

matrix is given by

H(yt|θt) =
∂2

∂θt∂θ′t
log p(yt|θt) =

 ∂2

∂βt∂β′
t
log p(yt|θt) ∂2

∂βt∂ log λt
log p(yt|θt)

∂2

∂ log λt∂β′
t
log p(yt|θt) ∂2

∂(log λt)2
log p(yt|θt)

 , (25)

with entries

∂2

∂βt∂β′t
log p(yt|θt) = −Λ(λt)

′Σ−1
ϵ Λ(λt),

∂2

∂ log λt∂β′t
log p(yt|θt) =

(
yt − Λ(λt)βt

)′
Σ−1
ϵ Λ̇(λt)−

(
Λ̇(λt)βt

)′
Σ−1
ϵ Λ(λt),

∂2

∂(log λt)2
log p(yt|θt) =

(
yt − Λ(λt)βt

)′
Σ−1
ϵ Λ̈(λt)βt −

(
Λ̇(λt)βt

)′
Σ−1
ϵ Λ̇(λt)βt,

where Λ̇(λ) = ∂Λ(λ)
∂ log λ and Λ̈(λ) = ∂2Λ(λ)

∂(log λ)2
.
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C Benchmark filters

C.1 Dynamic conditional score filter

The only difference between the ProPar filter and the dynamic conditional score (DCS) filter is in

the update step. The update step of the DCS filter is analytically solvable, as the score is evaluated

at the prediction instead of the update itself. Hence, the update step for the explicit filter is given

by

θt|t = θt|t−1 +Ht∇(yt|θt|t−1),

The prediction step that complements the update step is for the DCS filter the same as for the

ProPar filter (given in Equation 18). For completeness, the prediction step is

θt+1|t = ω +Φθt|t, (26)

Both steps hold for the NS3F and NS4F model, but the factors included in θt and the dimensions

of the static parameters are different.

C.2 Kalman filter

Although this thesis focuses on score-driven dynamic processes, the widely used Kalman filter

operates on state-space models. This filter assumes that the time-varying factors are modelled via

the following Gaussian autoregressive model:

θt+1 = ω +Φθt + ηt+1, ηt+1 ∼ NID(0,Ση),

where ηt+1 is the K × 1 vector of residuals with zero mean and variance matrix Ση.

As the Kalman filter is only applicable to models that possess linearity in the state vector, we

distinguish the Kalman filter steps for the NS3F model (Appendix C.2.1) and the NS4F model (Ap-

pendix C.2.2). The latter model contains log λt as a fourth factor which introduces nonlinearities.

The extended Kalman filter, which has already been applied to the NS4F model before by Koopman

et al. (2010), locally linearizes the observation equation after which the regular Kalman filter can

be applied.
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C.2.1 Kalman filter in the NS3F model

In the linear three-factor Nelson-Siegel framework, the regular Kalman filter can be used. The

Kalman update step for this model is given by

βt|t = βt|t−1 +Bt|t−1Λ
′(ΛBt|t−1Λ

′ +Σϵ)
−1(yt − Λβt|t−1),

Bt|t = Bt|t−1 −Bt|t−1Λ
′(ΛBt|t−1Λ

′ +Σϵ)
−1ΛBt|t−1,

where βt|t are the updated factors and Bt|t the updated estimate of the mean squared error (MSE)

matrix. The Kalman prediction step is denoted as

βt+1|t = ω +Φβt|t,

Bt+1|t = ΦBt|tΦ
′ +Ση.

Note that for the Kalman filter, we do not need to estimate any learning-rate matrix Ht. How-

ever, we do need an estimate for Ση. This estimate is obtained, together with the estimates for λ,

Σϵ, µ and Φ, by maximizing the prediction error decomposition.

C.2.2 Kalman filter in the NS4F model

Since allowing the shape parameter to be time-variant implies a nonlinear estimation system, we

make use the extended Kalman filter. This extended filter locally linearizes the function Zt(θt) =

Λ(λt)βt at θt = θt|t−1. The linearized model becomes

yt = Zt(θt|t−1) + Z̆t · (θt − θt|t−1) + ϵt, ϵt ∼ NID(0,Σϵ),

where Z̆t =
∂Zt(θ)
∂θ

∣∣∣
θ=θt|t−1

. The update steps are now defined as

θt|t = θt|t−1 +Qt|t−1Z̆
′
t(Z̆tQt|t−1Z̆

′
t +Σ+

ϵ )
−1(yt − Z(θt|t−1)),

Qt|t = Qt|t−1 −Qt|t−1Z̆
′
t(Z̆tQt|t−1Z̆

′
t +Σ+

ϵ )
−1Z̆tQt|t−1,

where θt|t are the updated factors and Qt|t the updated estimate of the mean squared error (MSE)

matrix.

The prediction steps of the factors and the estimate of the MSE matrix are the same as in the

linear NS3F model, and for completeness given by

θt+1|t = ω +Φθt|t,

Qt+1|t = ΦQt|tΦ
′ +Ση.
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C.3 GAS-Kalman filter

An additional benchmark filter that we come up with, is a self-devised version of the Kalman

filter. The filter is similar to the Kalman filter in the sense that it calculates the estimates of the

states and their uncertainty matrices recursively over time using incoming measurements. However,

the GAS-Kalman filter assumes the dynamics of the factors to be captured by the generalized

autoregressive score (GAS) model instead of the vector autoregressive (VAR) model. The state-

vector θt is modelled as

θt+1 = ω +Φθt +Ht∇(yt|θt).

Similar to the Kalman filter, we distinguish the prediction and update steps for the NS3F

model (Appendix C.3.1) and the NS4F model (Appendix C.3.2), as the NS4F model introduces

nonlinearities in the observation equation.

C.3.1 GAS-Kalman filter in the NS3F model

In the three-factor Nelson-Siegel framework, the update steps are the same as for the regular Kalman

filter. For completeness, these steps are given by

βt|t = βt|t−1 +Bt|t−1Λ
′(ΛBt|t−1Λ

′ +Σϵ)
−1(yt − Λβt|t−1),

Bt|t = Bt|t−1 −Bt|t−1Λ
′(ΛBt|t−1Λ

′ +Σϵ)
−1ΛBt|t−1,

Prediction steps of the state-vector and its MSE matrix change to

βt+1|t = E[βt+1|Ft]

= E
[
ω +Φβt +Ht∇(yt|βt)|Ft

]
= ω +Φβt|t +Ht∇(yt|βt|t)

Bt+1|t = V[βt+1|Ft]

= V
[
ω +Φβt +Ht∇(yt|βt)|Ft

]
= ΦBt|tΦ

′ +HtV
[
Λ′Σ−1

ϵ (yt − Λβt)|Ft
]
H ′
t

= ΦBt|tΦ
′ +HtV

[
Λ′Σ−1

ϵ Λβt|Ft
]
H ′
t

= ΦBt|tΦ
′ +HtΛ

′Σ−1
ϵ ΛBt|tΛ

′Σ−1
ϵ ΛH ′

t,

where E[·] and V[·] denote the expectation and variance respectively, and Ft is the information set

at time t. It is not common to use the score for prediction purposes. However, the assumed data
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generating process suggests that the one-step-ahead state depends on today’s score. Therefore, the

score evaluated at today’s updated state contributes to the one-step-ahead prediction.

C.3.2 GAS-Kalman filter in the NS4F model

When we treat a fourth factor, log λt, as time-varying in the Nelson-Siegel framework, the model

becomes nonlinear in the state-vector. We locally linearize the function Z(θt) = Λ(λt)βt at θ =

θt|t−1. The update equations are the same as in the extended Kalman filter in Appendix C.2.2. For

completeness, the update steps are given by

θt|t = θt|t−1 +Qt|t−1Z̆
′
t(Z̆tQt|t−1Z̆

′
t +Σ+

ϵ )
−1(yt − Z(θt|t−1)),

Qt|t = Qt|t−1 −Qt|t−1Z̆
′
t(Z̆tQt|t−1Z̆

′
t +Σ+

ϵ )
−1Z̆tQt|t−1,

The prediction however changes as the state equation is different. The prediction equations of

θ and its MSE estimate become

θt+1|t = E[θt+1|Ft]

= E
[
ω +Φθt +Ht∇(yt|θt)|Ft

]
= ω +Φθt|t +HtE

[
∇(yt|θt)|Ft

]
Qt+1|t = V

[
θt+1|Ft

]
= V

[
ω +Φθt +Ht∇(yt|θt)|Ft

]
= ΦQt|tΦ

′ +HtV
[
∇(yt|θt)|Ft

]
H ′
t.

Note that for the expressions E[∇(yt|θt)|Ft] and V[∇(yt|θt)|Ft] it is not straightforward to find

an analytical solution as the elements of ∇(yt|θt) are nonlinear in θt. We therefore again locally

linearize the function ∇(yt|θt) at θt = θt|t. We get

∇(yt|θt) = ∇(yt|θt|t) +∇2(yt|θt|t)(θt − θt|t),

where ∇2(yt|θt|t) =
∂∇(yt|θt)

∂θ′t

∣∣∣
θt=θt|t

and hence

E
[
∇(yt|θt)|Ft

]
= E

[
∇(yt|θt|t) +∇2(yt|θt|t)(θt − θt|t)|Ft

]
= ∇(yt|θt|t)

V
[
∇(yt|θt)|Ft

]
= V

[
∇(yt|θt|t) +∇2(yt|θt|t)(θt − θt|t)|Ft

]
= ∇2(yt|θt|t)Qt|t∇2(yt|θt|t)′
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resulting in the prediction steps

θt+1|t = ω +Φθt|t +Ht∇(yt|θt|t),

Qt+1|t = ΦQt|tΦ
′ +Ht∇2(yt|θt|t)Qt|t∇2(yt|θt|t)′H ′

t.

D Simulation results benchmark models

Table 17: Out-of-sample yield forecasting performance

VAR(1) Naive forecast

NS3F model with GAS dynamics 0.219 0.309

NS3F model with state-space dynamics 0.757 0.798

NS4F model with GAS dynamics 1.449 0.316

NS4F model with state-space dynamics 2.388 0.552

Note: The table reports the out-of-sample yield forecasting performances of

two benchmark models in the simulation study in terms of mean squared

forecast error (MSFE). The benchmark models are the first-order vector au-

toregressive (VAR[1]) model and the naive forecast model. The models are

applied to the three-and four-factor Nelson-Siegel framework in which the dy-

namics of the factors are generated using either a GAS model or a state-space

model. Each of the 250 simulated data sets consist of T = 1000 observations.

For the calculation of the MSFE, only the test samples are used, which con-

tain the last 20% of each data set. The MSFE statistic that is displayed in

the table is the average over four maturities, 200 test observations and 250

repetitions.
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