
Erasmus University Rotterdam

Erasmus School of Economics

Master Thesis Econometrics and Management Science: Business Analytics & Quantitative

Marketing

Explaining Clickstreams by Layerwise Relevance

Propagation in a 2D-Convolutional Neural Network

Mathijs Kroon (451067)

Supervisor: dr. Kathrin Gruber

Second assessor: dr. Paul Bouman

Date final version: 12th November 2023

The content of this thesis is the sole responsibility of the author and does not reflect the view

of the supervisor, second assessor, Erasmus School of Economics or Erasmus University.

Abstract

The online advertisement industry has grown significantly in the last couple of years.

Predicting which specific advertisements are effective is becoming increasingly important and

predicting if users click on specific advertisements has been thoroughly researched. Finding

the reason why has been proven to be more difficult. The aim of this thesis is to uncover

the black box associated with this problem. A way to uncover in image classification why

certain classifications were made is by performing Layerwise Relevance Propagation (LRP)

on a convolutional neural network (CNN). This technique has also shown promising results

in structured data and will be adapted for the attribution problem mentioned above. Data

from the online advertising company Criteo was used, which contains clickstreams of more

than 6 million users. First, a 2D-CNN will be performed to predict which users click and

hereafter LRP will be used to see which features were important for the user to click. The

obtained model can effectively fit the existing data, however, it struggles to adapt to new

data. With the fitted model, LRP is able to explain what drove a subsample of the users to

click.

Acknowledgements

First and foremost, I would like to express my deepest gratitude to dr. Kathrin Gruber. Without

her invaluable support and guidance in every step, this thesis would not be lying in front of you. I

have always greatly enjoyed the conversations with dr. Gruber. I also want to extend my sincere

gratitude to my parents: Paul Kroon & Hester Kroon-Trouw, for their continuous support and

patience during the pursuit of my academic career.

Contents

1 Introduction 1

2 Literature Review 3

2.1 Attribution Modelling . 4

2.1.1 Rule-Based Heuristics . 4

2.1.2 Algorithmic Approaches . 4

2.1.3 Deep Learning . 5

2.2 Convolutional Neural Network . 6

2.2.1 Layers and Set-ups . 7

2.3 Performance Measures . 8

2.4 Explainable Artificial Intelligence . 9

3 Data 9

4 Methodology 12

4.1 Benchmark Models . 12

4.1.1 Last Touch Attribution . 12

4.1.2 Shapley Value . 13

4.2 2D-Convolutional Neural Network . 14

4.2.1 Input Layer . 14

4.2.2 Convolutional Layer . 15

4.2.3 Pooling Layer . 18

4.2.4 Dense and Output Layer . 18

4.2.5 Training the Network . 19

4.3 Layerwise Relevance Propagation . 20

5 Results 21

5.1 Benchmark Models . 21

5.1.1 LTA . 22

5.1.2 Simplied Shapley Value . 23

5.2 2D-Convolutional Neural Network . 23

5.3 Comparison Benchmark model and 2D-CNN . 25

5.4 Layerwise Relevance Propagation . 25

6 Conclusion 29

References 31

A Performance Measures Simple One-Layer 2D-CNN Per Epoch 36

B Programming Code 36

C Packages Used 37

1 Introduction

The digital advertising market in the Netherlands grew with 13% in 2022, to more than 3.5

billion euros, according to a report by Deloitte (Digital Advertising Spend 2022 the Netherlands,

2023). In comparison, the total value of the offline advertising branch, such as magazines, radio,

newspapers and TV was 1.6 billion euros. Six years earlier, in 2016, the combined sum was lower

than the current online value. At that time, the total value of the advertising sector was 3.2

billion euros, with both online and offline accounting for 50% of the market. With an increasing

digital advertising budget, companies will also want to invest in optimizing the allocation online.

The advertising budget can go to several digital channels, which include website advertising,

boosting social media posts, email marketing and website search engines (Kurdi, 2022). HTTP

cookies help websites keep track of your visits and activity, with third-party cookies also giv-

ing insights into past browser behaviour (Greenberg, 2003). These cookies, therefore, make it

possible to observe which advertisements have been seen, before a customer decides to click

on a specific advertisement. All of this information that is collected by websites is called the

clickstream. From this behaviour, websites are able to better decide on whom to present which

advertisement, such that it reaches optimal attention. Every advertisement seen by a user is also

referred to as its journey and every separate advertisement is called a touchpoint. The process

of finding the importance of certain advertisements, and their position for the customers to click

or convert, is called the attribution problem (Shao & Li, 2011).

The attribution problem in the literature is historically based on rule-based heuristics, where

those rules decide how much weight would be given to a specific touchpoint. Examples hereof

include the First Touch Attribution and Last Touch Attribution, where either the first touchpoint

or the final touchpoint receives all of the attribution. It can easily be understood that these

methods are heavily biased and do not give any insights into a specific customer. Research shifted

more towards algorithmic approaches, with the usage of the Shapley Value (Shapley, 1997).

Another algorithmic approach included hidden Markov Models in the work of Anderl, Becker,

Von Wangenheim and Schumann (2016), which started including differences in attribution values

for different stages of the customer journey. With the ongoing inflow of data and more advanced

methods which can make better use of the data, the application of these prior techniques has

been restricted to specific factors. Therefore, the field of deep learning was introduced to uncover

more complex patterns.

Modelling attribution with deep learning has been done with several approaches with specific

goals in mind. Research by Arava, Dong, Yan, Pani et al. (2018) and Ren et al. (2018) has been

focussed on predicting whether a series of touchpoints would lead to a click. The problem with

1

these kinds of methods is, that it remains difficult to pinpoint what eventually led to the click,

whereas that is what is important for the allocation of digital advertising budgets. The methods

are not regarded as ”explainable”, which is about opening the ”black box”, thus understanding

what drove the model to make certain decisions (Rios, Gala, Mckeever et al., 2020). A model

that is used in this field due to its ability to learn complex features and at the same time be

able to explain these, is the Convolutional Neural Network. It has been used in a lot of image

detection data (Montavon, Binder, Lapuschkin, Samek & Müller, 2019), and recent research by

Rios et al. (2020) and Wang et al. (2017) has paved the way for structured data. The reason for

choosing this model by the authors is that the technique of Layerwise Relevance Propagation

(LRP) could be used to explain the findings of the model. The field of trying to explain the

findings of a model is also referred to as Explainable Artificial Intelligence (E-AI). Layerwise

Relevance Propagation is such an E-AI technique, where every decision of the model is evaluated

by assigning relevance scores to the different inputs of the model. Via this way, heatmaps can

be generated which can easily pinpoint for different users what was important for driving the

decision.

The decision can still be click or conversion, the focus in this thesis will be on the click.

The rationale behind this is that the focus of online advertising is not only to sell products, it

could also be to generate attention for certain websites and services. Focussing on the click will

keep an open scope and not limit the research only to the sales market. Solving the attribution

problem for the clicks is already a difficult task which has been mainly researched by trying

to get the right predictions for who clicked and who did not, not about explaining the click.

Delving more into the field of (E-AI) could comprise the predictive accuracy of the model, this

accuracy is however not the scope of this thesis. The scope of this thesis is more into explaining,

for predictions that the model thinks for certain would have clicked, what drove that click. Using

the E-AI techniques on structured data has already been done by Rios et al. (2020) for explaining

customer churn, this did however not incorporate any form of sequential data. Research by Wu,

Huang and Sutherland (2022) on predictive maintenance did include sequential data, the only

downside of their model is that it uses the implicit assumptions that the further back in time,

the smaller the attribution must be. Even though this assumption might hold for extremely

large sequences, it disregards the significant amount of time an individual spends on the web

in current times. The implication of that time is that it is not abnormal to assume that a

user might see a lot of advertisements during an individual web visit, with all equal attribution

values.

To contribute to the field of E-AI, this thesis attempts to answer the two following questions:

2

i) Can a 2D Convolutional Neural Network (2D-CNN) be used to accurately determine Click for

online advertisements? and ii) Can Layerwise Relevance Propagation be used to explain the

findings from the 2D-CNN?. The first question is there to ensure that the predictions that

are going to be explained in the second question make sense. To answer these questions, an

online advertising dataset is going to be needed. In the ideal scenario, one which is very rich

in both users and categorical information. The one used in this thesis is one from Criteo, an

international advertising company, first used by Diemert Eustache, Meynet Julien, Galland and

Lefortier (2017). It contains 30 days of internet traffic for more than 6 million users. The

categorical information is unfortunately anonymized, which is true for all free online datasets

due to privacy reasons.

Empirical results demonstrate that the 2D-CNN is better at predicting clicks than simple

rule-based and algorithmic approaches present in the literature. It scored better in terms of AUC,

precision, accuracy and F1-measure compared to the LTA and Shapley Value approach. The

model is unfortunately not able to fit very well, which should not directly disregard the findings

of the model, as generalization is an issue in deep learning (Barbiero, Squillero & Tonda, 2020).

The main goal of this thesis, again, is also not to get the highest accuracy or best-generalized

model, but to explain the findings. Therefore, only the users for which the model with the

highest prediction predicted that a click would occur, have been further analysed. The 100

best-predicted clicks have been backpropagated and relevance scores have been assigned to the

features of the input journeys. From these combined scores, it is found which categories in what

touchpoints were important for click.

The remainder of this thesis is structured as follows. Section 2 delves further into past

research on the attribution problem, CNNs and E-AI. Hereafter, section 3 sheds more insights

on the Criteo dataset and which data hereof is used. Section 4 explains how the different

benchmark models, the 2D-CNN and LRP work and section 5 the results that follow from it.

The final section 6 will summarize the results and discuss some suggestions for further research.

The used code can be found in Appendix B.

2 Literature Review

Websites and tech companies have gathered enormous amounts of data and allowed researchers

to investigate and test new research hypotheses. At the same time, increased computer power

and the availability of cloud computing have allowed a significant amount of research to be done

on these topics. This section dives into prior research and provides an overview of its current

state. The literature review contains four sections. First, section 2.1 will provide information

3

about attribution modelling and the different methods used. Section 2.2 explains more about

how different Neural Networks can be used to model attribution. Hereafter, section 2.3 will dive

into different performance measures which can be used to assess the different models. The final

section 2.4 will give the relevance of keeping the research explainable and how this has been

done in the past.

2.1 Attribution Modelling

As mentioned in the introduction, the attribution problem is defined by finding the contribution

every touchpoint had in the decision for a customer to click or not click. Several different

solutions to the attribution problem have been proposed in the literature and these can be

divided into three categories: 1) Rule-Based Heuristics, 2) Algorithmic approaches and (3)

Deep Learning.

2.1.1 Rule-Based Heuristics

Rule-based approaches have been around for a long time and are more straightforward to un-

derstand. The first-touch attribution (FTA) and last-touch attribution (LTA) methods assign

full credit to respectively the first or last touch point for the click (Ji, Wang & Zhang, 2016).

The touchpoints which are encountered after or before that touchpoint are deemed unimportant.

Research by Berman (2018) has shown that they are heavily biased. The time-decay model is

another rule-based model, which gives more credit to touchpoints closer to the click. The last

contribution will therefore receive maximum credit (Nisar & Yeung, 2018). Information regard-

ing the categorical features of a touchpoint is however omitted and research by Lovett (2009) has

shown it is more useful for short-lived deals or promotional offers. Since some researchers had a

concern that the intrinsic value of each touchpoint cannot be credited easily, every impression

is given equal weight in the Uniformly Distributed Attribution model (Nisar & Yeung, 2018).

All of these methods rely on simple, yet understandable, rules which can give a distorted

view of reality and are not based on any actual features of the data.

2.1.2 Algorithmic Approaches

To overcome the issues from the previous section, research has shifted from rule-based heuristics

to algorithmic approaches. The same research that shows the LTA is biased, comes with the

Shapley Value as a well-working alternative, based on the game theory research by Shapley

(1997). Each campaign is seen as a ’player’ and conversion becomes the ’payoff’, the Shapley

Value is the average of all marginal contributions to all possible coalitions. Shapley Value Ana-

4

lysis then quantifies the outcome of the cooperative effect of the campaign and media platforms.

With this method, Berman (2018) is able to increase advertising efficiency. The drawback of

this method is that as the number of campaigns increases, the number of potential coalitions

can grow exponentially. Research by (Zhao, Mahboobi & Bagheri, 2018) gave therefore two

suggestions for improvement on this method. The first improvement is instead of making all

possible coalitions, only create the ones that exist which include the specific channel. The second

suggestion is an improvement of this method, which also included the ordering of the inputs.

Research by Anderl et al. (2016) takes a different turn, by looking at Markov Models. A

dynamic Hidden Markov Model was designed, to further identify the importance of different

campaigns. With this method, they were able to distinguish the importance of campaigns in

different stages of the decision process. It also included other customer data for the touchpoints

and a clear distinction between customer- and firm-initiated channels. A combination of the

Markovian model and the Shapley Value is created in the work of Singal, Besbes, Desir, Goyal

and Iyengar (2019). With their Counterfactual Adjusted Shapley Value metric for attribution,

they were able to calculate attribution in a more robust way compared to previous research.

Hama, Mase and Owen (2022) researched the performance of the explaining power of the

Shapley value in a deletion test, which is a test in which the relevance of a feature is defined

by its importance in classifying an object. This would be tested by removing features and then

reassessing the predictive accuracy of the input. They find that the Shapley value is not optimal

for finding an optimal ordering here and therefore will not be helpful in explaining its finding.

To counter this problem, they use Integrated Gradients and Local Interpretable Model-Agnostic

Explanations to explain their classifications. Both are beyond the scope of this research, however,

one of them which they mention and do not test is the Layerwise Relevance Propagation (LRP),

which will be further explained in section 2.4. Another downside of the Shapley Value is that

it only looks at campaigns, not at additional data related to the touchpoint and therefore an

information loss occurs. Due to these limitations, another method will be explored in this

research.

2.1.3 Deep Learning

To uncover relations between touchpoints and be able to incorporate categorical features, other

frameworks have to be utilized. Deep learning models have been extensively used in contempor-

ary research and are the solution to finding complex patterns. Attention mechanisms are used in

these models to focus on relevant parts of the import data (Niu, Zhong & Yu, 2021). Arava et al.

(2018) used attention mechanisms to create a Deep Neural Net with Attention for Multi-channel

5

Multi-touch attribution model, which predicted if a series of events could lead to a conversion. It

also incorporated demographics, behaviour and control variables, to reduce the estimation bias.

Around the same time, a Dual-attention Recurrent Neural Network was proposed by Ren et al.

(2018), which is also able to look at sequential user patterns, impression-level and click-level

user actions to derive conversion attribution. These types of neural networks are however not

known for their interpretability. Research by Wu et al. (2022) on predictive maintenance and

Arras, Montavon, Müller and Samek (2017) on sentiment analysis has shown promising results

with this technique and LRP, which will be later discussed. The assumption is however made

that the further back in time, the less relevance is given towards the data. The purpose of this

research is to regard them as equal and to see what decisions the network makes. This is a

more realistic assumption since the number of advertisements observed by a person in one web

visit can be numerous and quickly after each other. If one would automatically assume that

the more recent observations are more important, a bias can occur. The RNN will therefore be

disregarded in this research.

There is however a type of Neural Network that has been mainly used for Explainable

Artificial Intelligence (E-AI), which is a Convolutional Neural Network (CNN). It was first

mainly used in explaining images (Montavon et al., 2019) and was later also used in explaining

structured data (Rios et al., 2020) (Wang et al., 2017). The reason behind this was that the

convolutional layers were better at feature extraction and able to do this with a reduced number

of parameters, compared to a network with the same number of layers (Albawi, Mohammed &

Al-Zawi, 2017). It works by not looking at single variables or features, but when its input goes

to a node, it passes through a filter and can learn relations between inputs.

2.2 Convolutional Neural Network

The first usage of a convolutional neural network can be traced back to the work of Fukushima

(1980), whose Neocogntiron is regarded as a predecessor of the networks used later. Due to

limited computing power, the usage of the model was limited at that time. When this increased

in the 1990s, the first notion of using convolution, was in the work of LeCun et al. (1989). A

network by some of the same authors, the LeNet-5 (LeCun, Bottou, Bengio & Haffner, 1998),

was an important breakthrough in popularizing CNNs and the reason they could hereafter be

more widely used. This model was used successfully in recognizing hand-written digits. The

results of Convolutional Neural Networks have been outstanding in the past 15 years, mainly in

image processing and voice recognition. The usage of CNNs has also shifted towards structured

data, examples include customer churn in the work of Rios et al. (2020) and heart disease

6

prediction by Singhal, Kumar and Passricha (2018). In the following section, the backgrounds

of the different layers and set-ups will be given.

2.2.1 Layers and Set-ups

A Convolutional Neural Network is different from a standard Artificial Neural Network in the

way that it contains two extra layers, a convolutional and a pooling layer. The first layer,

respectively, is also the namesake of the model. This layer works as a filter, where it can filter

the input matrix to obtain features or find important aspects of the data. When looking at the

problem of facial recognition, a face objectively has several features, which would be eyes, a nose

and a mouth. The nose can then again be divided into several optic features, such as two lines for

a shaft and two circles for the holes. The goal of the filter is thus to extract the edges of the shaft

and holes, which can later be combined into a nose. This filter is just a linear combination of the

inputs and weights, however, non-linearity is needed, which ensures that the model can learn

and recognize complex features (Sharma, Sharma & Athaiya, 2017). An activation function is

added to these linear combinations to solve this. LeNet-5 discusses a sigmoid activation and uses

a hyperbolic tangent, however, Krizhevsky, Sutskever and Hinton (2012) point out both have

slow learning time and therefore introduced the usage of the Rectified Linear Units (ReLU)

activation function for the CNN. The advantage of the ReLU is that it is not bounded for

positive values and prevented the gradient from vanishing. The ReLU activation is hereafter in

the literature chosen above the more classical hyperbolic tangent or sigmoid activation function

(Ramachandran, Zoph & Le, 2017).

When these features are combined, the network can match these to a face. Combining

these features happens in a separate layer between the convolutional layers, which is called the

pooling layer. This layer can thus summarize the output. Fukushima (1980) called this process

”subsampling” and LeCun et al. (1998) used in such way it would now be called ”Average

Pooling”, which entails dividing the feature map into non-overlapping regions. The average of

these regions is then calculated, which should reduce the dimensions and ensure that it is robust

for shifts in the input. Krizhevsky et al. (2012) propose the ”Max Pooling Layer”, which does

not take the average of a non-overlapping region, but the maximum. This is useful, as it could

better focus on the most prominent features in that region.

There is no optimal setup of layers, size for the filters and the type of pooling that is used.

Therefore, different architectures are presented in the literature for different applications. The

earliest CNN was the LeNet-5 by LeCun et al. (1998), as discussed above. It is the simplest

architecture, as it is simply stacked convolution and pooling layers. The model includes two

7

convolutional layers, two pooling layers and ends with two fully connected layers. Compared

to more classical methods, like K-Nearest Neighbours and Support Vector Machines, LeNet-5

could give lower error rates with fewer parameters. The model used by Rios et al. (2020) can

be compared to this architecture. To capture more complex relations, CNN’s architectures have

grown deeper. The level of depth is open for discussion and could be regarded as a danger

for overfitting. Simonyan and Zisserman (2014) found out that pushing the depth to 16-19

layers, gave a significant improvement. The model they created to prove this, is the VGG-16

model, which helped them win the ImageNet Challenge 2014 (ILSVRC2014 Results, 2014) in

the classification and localisation tracks.

2.3 Performance Measures

To evaluate the performance of the model, different performance measures are proposed through-

out the literature. Most of the classical measures are based on the confusion matrix, which

consists of 4 cells, namely true positives (TP), false positives (FP), true negatives (TN) and

false negatives (FN). The most obvious measure would be accuracy, which is just the number

of correctly estimated observations divided by the total number of estimates. However, for a

binary model, an accuracy of 90% then suggests a correctly working model, however when 90%

of the data is in one group this can easily be reached by always predicting that group. Other

measures, such as precision and recall are therefore also common to use. Recall is the probability

that the model will be able to find the positive values and precision that the positive values are

indeed positive (Goutte & Gaussier, 2005). The F1-score is then a measure that combines both

the information of precision and recall by taking their harmonic mean. It is given by:

F1 =
2TP

2TP + FP + FN
(1)

The accuracy, precision and F1-measure are used for determining the layers of the 1D-CNN

by Rios et al. (2020). Since our data exhibits around the same number of positive and negative

values as their Telecom Customer Churn Prediction Dataset, the same performance measures

are going to be used in this research.

On top of these measures, three other measures will be used to determine the fit of the binary

model, which are the area under the curve (AUC), the Brier score and the logarithmic score.

The AUC is regarded in the literature as omnipresent to characterise the predictive power of

the model (Lieli & Hsu, 2019). The curve refers to the Receiver Operating Characteristic curve,

where the relationship between the true positive rate (TPR) and false positive rate (FPR) is

given. When an increase in TPR does not increase the FPR by the same amount, the area

8

underneath the curve grows. The larger the area underneath the AUC, the better the fit of the

model. The second one is the Brier score (Brier, 1950), which has become increasingly popular

for comparing the accuracy of binary predictions in medical research (Rufibach, 2010). The score

is the mean squared difference between predicted probabilities and the actual outcome, a Brier

score should thus be close to 0 for better accuracy. The final measure is the logarithmic score,

which measures the accuracy by taking the negative logarithm of the predicted probability

assigned to the actual outcome (Gneiting & Raftery, 2007). Again, lower logarithmic scores

imply a better model.

2.4 Explainable Artificial Intelligence

Keeping models explainable is important for several reasons. One of these is that this will

ensure that the end user will be able to interpret the findings correctly and use it in the way

it is intended. When this is being disregarded, models can produce unfair results and lead

to discrimination (Lawless & Günlük, 2020). Another important reason is that E-AI helps to

prevent ’Clever Hans’ predictors, which might follow from biases in the training data (Lapuschkin

et al., 2019). ’Clever Hans’ follows the story of a German horse, which was believed to be highly

intelligent. After further investigation, it was found that it only gave correct solutions, as it

paid close attention to the reaction of the owner. The same goes for AI, where if we want to

ensure that the models work correctly, one needs to ensure the model can generalise, instead of

from what might be deduced from the creator.

E-AI has extensively been researched in the image recognition literature ((Zeiler, Krishnan,

Taylor & Fergus, 2010) (Selvaraju et al., 2017) (Zhou, Khosla, Lapedriza, Oliva & Torralba,

2016)). A technique that has been used in the last years to explain which pixels in an image lead

to classification is Layer Wise Relevance Propagation (LRP) (Bach et al., 2015). By propagating

backwards to the network, weights are assigned to nodes and these can, in the end, be summed

to give scores to different pixels. A heatmap can then be generated to visualize which pixels

were important for classification. Predicting whether a brain MRI contains a tumour and in

which part it is located is done by Ahmed, Asif, Saleem, Mushtaq and Imran (2023) and has

great potential in the medical world. This technique can also be used in non-image contexts, as

noted in the section 2.2.

3 Data

The data used in this thesis is obtained from Criteo, which is an international advertising

company specialising in display advertisements. The data was used in a paper written for

9

Criteo by Diemert Eustache, Meynet Julien et al. (2017). Their research is also focused on the

bidding aspect of advertisements, which is beyond the scope of this research. Criteo can be seen

as the broker that provides websites with advertisements and advertisers a place to showcase

their advertisements. The dataset includes over 16 million data points collected from 30 days of

internet traffic. Every datapoint is one touchpoint from a user, which is represented by a userID.

This unique user ID allows us to create user paths for different users and map them through

time. Every touchpoint also includes a timestamp, a campaign, which is categorical, 9 other

different categorical variables, whether or not a click was present and several other information

on cost and conversion, which will be disregarded for this research. Information on the different

categorical variables is captured in table 1.

Category Campaign 1 2 3 4 5 6 7 8 9

Size 675 9 70 1.829 21 51 30 57.196 11 30

Table 1: Table with sizes of categorical variables

The discrepancy between the sizes of different categories can immediately be observed. The

enormous size of Category 7 and to a lesser extent of Category 3, could potentially cause the

model to overfit. The reason behind this is that there is only a small chunk of customers with a

specific category in the train set and they all clicked, the model will probably expect the same

category in the test set to always click, which could also be a potentially unimportant category.

For this reason, categories 3 and 7 will be omitted from the research.

The size of the paths of different users also greatly differs. There are in total 6.142.256

unique users who collectively share 16.468.027 touchpoints. The shortest path is of length 1

and the longest path is of length 880, which are respectively present in more than half of the

paths and only once. The different path lengths present are shown in figure 1. A big fraction of

the data, more than 88%, has 5 or less touchpoints. Users with a small amount of touchpoints,

do not reveal much of their preferences and might as well be accidental clicks. On the other

hand, users with an enormous amount of touchpoints in the 30 days, are also not of much use.

The reason behind this is that they are already extremely busy on the web and their behaviour

cannot be compared to the general public. Therefore, paths which have a length of more than

three clicks per day, 90 in total, are also omitted. This will leave us with 243.986 users. All

of these users will thus have a path with a length between 10 and 90. Of this group, 38.25%

clicked on the advertisement and 61.75% did not click on the advertisement.

The next step will be generating the ’images’ which are to be used for the convolutional

neural network. It is called images since the input will be shaped in such a way, that it can be

compared to the input images used in the models discussed in section 2.2.1. For the CNN to

10

Figure 1: Touchpoint Lengths

be able to train in an efficient and manageable way, a fixed path length of 10 is chosen. This

implies for paths which have more than 10 touchpoints, the final 10 touchpoints will be chosen.

The logical explanation behind this would be that after having seen 10 advertisements, how

conscious will you be of the 10 advertisements which preceded them. Due to computational

issues, it will not be possible to create heatmaps for all of the 243.986 users. An image will

thus consist of 10 rows for the different touchpoints. Every row then consists of 9 variables,

which are: Campaign, Category 1, 2, 4, 5, 6, 8, 9 and the click. All of the different clicks are

incorporated in the row, which allows CNN to also learn which rows click and which do not.

Only for the final touchpoint, the click will not be given, since this would lead to endogeneity

errors. The final click is therefore manually set to 1, which is chosen as it better fits the model

than 0.

Generating heatmaps for every user will require a lot of computational power and time, which

is not manageable and is beyond the scope of this thesis. A subsample with a size of 100 users

will therefore be selected to use for the final Layerwise Relevance Propagation. It will be more

insightful to take this sample of users predicted with high certainty that he/she is going to click,

as this is in line with the goal of this thesis in explaining what drove a user to click. Therefore,

the 100-user sample will be taken of the 10.000 users with the highest predicted probability to

click. The smallest probability is then 85%. The subsample needs to inherit the same traits as

the original data, therefore stratified subsampling will be used. A dependent variable will be

11

chosen and the subsample will inherit the same distribution for the dependent variable as the

larger sample. The dependent variable will be the occurrences of touchpoint lengths, to ensure

that all of the different users will be incorporated.

4 Methodology

In this section, the different methods will be discussed that form an approach to explain the

clicks in a 2D-Convolutional Neural Network. First, bench-mark methods will be evaluated in

section 4.1 to set a standard for the results. In the following section 4.2, first the basics of

a convolutional neural network will be explained and hereafter a description of the different

architectures. The final section 4.3, describes the Layerwise Relevance Propagation process.

4.1 Benchmark Models

The two benchmark models which will be used will be the Last Touch Attribution (LTA) and

the Shapley Value. The LTA will be based on the classic approach of assigning all of the credit

to the final touchpoint, which will be discussed in section 4.1.1. In the next section 4.1.2, the

Shapley Value approach will be based on the Simplified Shapley Value method by Zhao et al.

(2018).

4.1.1 Last Touch Attribution

The LTA, as also described by Ji et al. (2016), gives full credit to the final campaign of the

touchpoint. The attribution for a campaign is then calculated by the following sum:

attributioni =
total number of clicksi

total number of touchpoints
, (2)

where i indicates a certain campaign. This would imply that if two-thirds of the total number

of customers had been presented campaign X as their final campaign, campaign X received an

attribution of 66%. With attribution, different performance metrics can be calculated. The

attribution can then be seen as the probability a customer is likely to click, whereas, with the

example from above, people with campaign X would be predicted to click.

Since the number of campaigns is huge and an information loss occurs since other information

is discarded, a second calculation for the LTA is done, where categorical information is included

for calculating the attribution. The same formula as formula 2 is used, where i is one of the

unique values from the nine different categories. To calculate a score for a customer, the different

attributions for the campaign and different categories are added up and normalized between 0

12

and 1. Customers who are above a threshold, which is chosen based on results with the highest

performance measures, are then expected to click and those below do not click. These results

can then be used to calculate the needed measures.

4.1.2 Shapley Value

The Shapley Value, explained by Zhao et al. (2018) in the context of advertising attribution, is

the weighted average of its marginal contribution over all possible coalitions for each channel.

The marginal contribution is identified as:

M(j, S) = v(S ∪ {xj})− v(S), (3)

where v(S) is the utility function of S, which represents a campaign. The utility function of

v(S) will be altered to the click function c(S), which is just 1 if the collection of campaigns led

to a click and zero otherwise.

As mentioned in section 2.1, this method has to take all of the coalitions of the campaigns

present. This will not be feasible, since there are over 600 different campaigns. Therefore, the

specific method is going to be based on the Simplified Shapley Value Method as presented in

(Zhao et al., 2018). The formula for calculating the Shapley value for a specific campaign is:

ϕi =
∑

S⊆Pn{xi}

1

|S|+ 1
c(S ∪ {Xi}), i = 1, ..., p (4)

In this formula, S is every coalition of a certain campaign i in combination with a fixed

amount of p - 1, which are other campaigns that co-occur in the path of a customer with i. The

size of p will be deduced from the data. The Shapley Value of a campaign is then the weighted

average of all of the individual contributions of all coalitions, where the contribution is measured

by a click C. The coalitions excluding the certain campaign will therefore not be calculated.

This difference can be observed when comparing the two marginal contributions, where it can

be observed that in equation 4, the c(S) is not deducted, contrary to equation 3.

When all of the attributions are calculated for different campaigns in the journey, the total

value of attributions can be calculated for a new customer. The sum of all of the attributions

can then be converted to a probability of how likely this customer will be to click. After again

looking at the different performance measures, a threshold will be determined and customers

with a sum of attributions above this threshold are expected to click.

13

4.2 2D-Convolutional Neural Network

The method proposed in this thesis will be based on the idea of the 1D-CNN for structured data

by Rios et al. (2020), however, with a 2D architecture, based on the architectures from LeCun

et al. (1998) and Simonyan and Zisserman (2014). In the first four sections 4.2.1, 4.2.2, 4.2.3,

4.2.4, the different layers which are present and their parameters will be discussed. In the final

section 4.2.5, the training techniques are going to be elaborated.

4.2.1 Input Layer

The starting point for our inputs is the image which is constructed in the data pre-processing

step. The difference with the image from e.g. the LeNet-5 network, is that had a 28× 28 input

and the depth was 1, the model proposed in this thesis is 10× 9 with also a depth of 1.

Due to anonymization, the categorical data was given a number, but the size of this number

does not carry any value. The layer is therefore inputted through an embedding layer, similar to

the work of Wang et al. (2017). The idea of embeddings is to transform the input objects, which

could be words, sentences or numbers into a numerical representation (Chen, Perozzi, Al-Rfou

& Skiena, 2018). In our case, these will be the different category values and campaigns. It can

be viewed as a form of one-hot encoding, in which a value is represented by a vector with a 1 for

the unique value and 0 otherwise (Pang, Lee & Vaithyanathan, 2002). For embeddings, however,

a value between -1 and 1 is usually given and in contrast to one-hot encoding, one embedding

is not the length of all of the unique values. It does exist out of multiple numbers, but this

size is pre-determined per value. Since a specific value for a category in the first touchpoint,

should not be given the same weight as one in a later stage, every value in a touchpoint gets

an embedding, Ei. There is no optimal setting for the maximum embedding size. However

(Lakshmanan, Robinson & Munn, 2013), suggest the following formula as a rule of thumb:

Ei = max(1.6 ∗
√

unique valuesi, 600) (5)

The 1.6 and 600 are included to ensure that even when the amount of unique values is

lower in a text, enough embeddings are going to be created. Note, that with this formula the

embeddings are mainly used in contexts with objects larger than one number and might carry

a contextual meaning. A larger embedding size is more suitable for such a setting since this

could capture complex relations and an almost infinite vocabulary can be inputted, however,

this is not the case for the data used in this thesis. Equation 5 will therefore not be used, but

an alteration is made, where a minimum is put on the number of embeddings:

14

Ei = min(unique valuesi,max embed size) (6)

The idea is based on the fixed length of 50 used in the thesis of Tang et al. (2014). The

max embed size will be chosen through optimization and will be significantly lower since again

we do not have an infinite amount of words to choose from, but a fixed set of options. The

different weights that are put on the different embeddings, will be randomly chosen at the start.

Every campaign or category in a touchpoint will then be given an embedding Ec,t = e1,c,t, ..., es,c,t

for s in max embed size. When all of these embeddings are then concatenated again to create

the starting picture, a matrix will be constructed with height H = 10, following from the number

of touchpoints chosen, and width W =
∑

iEi. The input will then have size 10×
∑

iEi and is

pictured in figure 2.

Figure 2: Input Structure

4.2.2 Convolutional Layer

To give an explanation of the usage of the convolutional layer, it is best to first discuss the reasons

why this layer was added in the first place. In fully connected architectures, the way in which the

input is presented to the network is ignored (LeCun et al., 1998). However, in image recognition,

pixels that were next nearby could be correlated and combined to become local features. These

local features would then become a set of categories, which were in the case of LeNet-5 corners

and edges. As discussed in section 2.1.2, this technique is not only used in images and Rios et al.

(2020) used this feature to learn important features of structured data. This also makes sense

for the data used in this thesis, as information in the same touchpoint, e.g. the campaign and a

certain category grouped together, could be an important reason for clicking, which otherwise

might be overlooked. Another reason mentioned by LeCun et al. (1998), is that the convolution

ensures the network can learn spatially invariant features. Spatially invariant implies that it

15

does not matter where the object is located in the picture, it will be able to recognize this. How

this will work, will be further explained when the idea of the kernel is made clear. The reason,

however, why this is important for the data in this thesis, is that a combination of a previous

campaign with a click might be important, regardless of its placement in time.

With the importance of convolution in mind, the way it works can now be explained. Every

convolutional layer exists of k filters, called the kernels. The job of such a kernel is to detect a

feature and every kernel will therefore slide over the entire input. Sliding implies that the dot

product is taken from the kernel and the input data. For simplicity, an easy example will be

given of an image of 6× 6 with a kernel size of 2× 2. This kernel will carry four weights, which

will be optimized in the training steps. The kernel will go over the entire image, starting at the

top left and take the dot product with the kernel, which results in one value that will be filled

in the top left feature map. Repeat this process until every 2 × 2 area is covered in the input

image. The process with three examples for illustration is shown in figure 3. This 2× 2 area is

meant to capture the spatial invariant features, discussed before.

Figure 3: Convolution Process

The formula for the convolution step is given by (Yu, Wang, Chen & Wei, 2014):

yk = f(wk · x) (7)

where yk is the k-th feature map. This feature map is then thus the result of the activation

function f(·) for the dot product of the weights wk of the k-th features map and inputs x. The

ReLU will be used as an activation function, as discussed in section 2.2.1, and is given by the

following equation:

f(x) = max(0, x) (8)

After the first convolution step, an issue arises, which is that edges will be less frequently used

than non-edge inputs, which could lead to a potential bias. To counter this issue, padding will

be used, which is just adding zero rows around. The zeros rows are the padding and Simonyan

16

and Zisserman (2014) concluded that this substantially increased the receptive field. Figure 4

shows how the padding ensures that the shape of the input remains equal due to padding. This

process is called zero-padding or same-padding. When this is not used, it is called valid-padding.

Figure 4: Padding

After having sketched the case for the 6 × 6 example, the attention can be shifted towards

the case of this thesis. The input data which resulted from the embedding layer were 10 stacked

touchpoints of size 1 ×
∑

iEi. Multiple settings for the kernel will be tried to find features.

What could be especially interesting, is to set the kernel’s height to one and the width to the

same width as the embeddings. This could help find features that are distinct for different

touchpoints. The limitation of this would be that this results in 10 dot products of a row with

the weights, which would only be 10 values and might be a too significant information loss. This

is illustrated in figure 5. Smaller kernels, which convolve within the touchpoints, will therefore

also be tried. When the kernel width is the same size as the embeddings, no padding is needed,

however, when the kernel is smaller, padding can be needed.

Figure 5: Convolution Result for One Touchpoint

The height of the convolution can however also be of a different size than 1, to include multiple

touchpoints in one convolution. This could help find features inherent to multiple touchpoints

and will be tested for several different combinations. The first combination will include only

17

the previous touchpoint and therefore a padded row of zeros needs to be implemented at t = 0

and at t = 11. Hereafter, other combinations with touchpoints around will be tested. For every

touchpoint that would be added, one extra zero row needs to be padded. Another interesting

combination would be to test whether features might exist in combination when one touchpoint

is skipped, e.g. when the filter looks at touchpoint 1 and touchpoint 3, then to 2 and 4. This is

actually just changing the step size and this stepsize is in terms of a CNN also called the stride.

Skipping one touchpoint implies changing the stride from 1 to 2.

4.2.3 Pooling Layer

After having found the different features which might be present in the data in the convolutional

layer, it will be important to differentiate between the ones that are relevant for predicting clicks

and the ones that are not important. Therefore, a pooling layer can be added which can make

this decision. Another reason it is frequently used is to reduce dimensions and the location of

features becomes less important (LeCun et al., 1998).

As mentioned in section 2.2.1, there are two types of pooling layers: Average Pooling and

Max Pooling. Pooling works in the same way as the convolutional layer with the kernels, the

output is different however. Yu et al. (2014) propose the following definition for average pooling:

yk,i,j =
1

|Ri,j |
∑

(p,q)∈Ri,j

xk,p,q, (9)

in which yk,i,j is the result for the k-th feature map in the area around (i, j), which is Ri,j

and of which its size depends on the used kernel. The sum is then taken of the different elements

in that region, which are xk,p,q and divided by the total number of elements.

To focus better on the most prominent features, max pooling (Yu et al., 2014) will be used

in this thesis, of which its formula is given by:

yk,i,j = max
(p,q)∈Ri,j

xk,p,q, (10)

where the maximum is just taken in the part of the feature map Ri,j . By taking the max-

imum, the model can separate main and side issues.

4.2.4 Dense and Output Layer

To go from the different convolutional and pooling layers to a binary output, different types of

layers have to be added. The first is a dense layer, also known as a fully connected layer. The

dense layer takes all of the neurons in a previous layer and connects them to the neurons in

18

the next layer, with the goal of matching general patterns (Gu et al., 2018). There is no fixed

rule on how many neurons this layer should have and the number of dense layers that should be

present. Famous architectures, such as LeNet-5 and VGG-16, usually have 1 to 3 layers.

The final layer is the output layer. In this layer, the classification is made as to whether

a touchpoint journey will result in a click or not. This is a binary problem and the Sigmoid

activation function will therefore be used.

4.2.5 Training the Network

After creating a set-up and establishing all of the weights per layer, the network can be trained

and the weights will be updated as long as the network can keep learning. The starting point

of all of the weights will be randomized by Keras, which is the software package that is going to

be used. In batches of a pre-defined size, the input images will be put through the network, also

known as forward propagation, and the output will be compared to the real output. The loss

function that will be used to evaluate this comparison will be the standard binary cross-entropy

loss since we are dealing with binary classification, which is given by (Ho & Wookey, 2019):

Jbce = − 1

M

M∑
m=1

[ym ∗ log(hθ(xm)) + (1− ym) ∗ log(1− hθ(xm))], (11)

where ym, xm and hθ are respectively the label, its input and the network. The first part

ensures false positives are incorporated and the second part the false negatives. Based on this

output, backpropagation is executed and the weights are updated accordingly. Optimizing these

weights iteratively is however a lengthy process and there is the risk of getting stuck in a local

minimum. For this reason, different optimizing algorithms were invented. VGG-16 and the

Imagenet both use the Stochastic Gradient Descent (SGD), however, an improvement on this

was made by Kingma and Ba (2017), with the Adaptive Moment Estimation optimizer. The

rule for optimizing the weights is:

wt = wt−1 − η
m̂t√
v̂t + ϵ

, (12)

where wt are the weights, η is the pre-defined learning rate and m̂t and v̂t are moving average

of respectively the gradient and squared gradient. Tuning the learning rate with information

on past gradients improves convergence. Also, by adaptively changing the gradients compared

to globally in SGD, the memory requirements are also significantly lower. For these reasons,

the Adam optimizer is chosen. The number of times the entire sample is propagated through

the network is called the number of epochs. The performance measures are evaluated at every

19

epoch and when it stops improving, it implies the network is overfitting.

Overfitting the network implies that the network is only suited for the given data and will

not be working for predicting the click for new data. Several precautions will be taken to be

better prepared for this issue. One is to randomly drop nodes and the arc which are connected

during training. The idea is that this thinned network will not create nodes for every exception

and be better at generalization (Srivastava, Hinton, Krizhevsky, Sutskever & Salakhutdinov,

2014). Dropout can be initialized after each layer with a percentage of how many nodes should

be dropped. Another method is to add regularizing terms to the layer weights, which can be

done in two ways. The first is the L1 regularization, also known as Lasso, which adds a penalty

term times the weights to the loss function and forces it into feature selection (Vidaurre, Bielza

& Larranaga, 2013). L2 regularization is the ridge regularizer, which adds a penalty term times

the squared weights of the loss function in order to prevent extremely large weights (Hastie,

2020).

4.3 Layerwise Relevance Propagation

The reason the 2D-CNN setup is chosen is that the Layerwise Relevance Propagation technique

can be used. The hope here is to be able to show for the entire dataset as well as for individual

samples what was important for conversion. It works by propagating backwards in the network

and giving individual Relevance scores to every node. The score is calculated with the following

formula:

R
(l)
i =

∑
j

x
(l)
i w

(l,l+1)
ij∑

i x
(l)
i w

(l,l+1)
ij

R
(l+1)
j (13)

The x′s in the equation are the inputs given, the w′s are the weights that are determined

by the model and the l′s is the layer in which a node is residing. A relevance score for node i in

layer l is thus calculated by adding up all of the different next weights times the current input

and dividing this by the combined total of the other weights and inputs. So one node will be the

sum of all of the relevance scores of the nodes following. It will make sense that the relevance

score for more used nodes, and in the end more used features, will be higher as the input of

these nodes will be higher as they are more often activated.

There are two alterations to the LRP equation, where the first is the Epsilon Rule (LRP-ϵ)

(Montavon et al., 2019). The new formula is given in this case by:

R
(l)
i =

∑
j

x
(l)
i w

(l,l+1)
ij

ϵ+
∑

i x
(l)
i w

(l,l+1)
ij

R
(l+1)
j (14)

20

A predefined epsilon is added to the denominator and reduces the relevance when the effects

on neuron j are weak or contradictory. It is therefore more used in the middle layers to filter

out spurious relations found by the kernels.

The other alteration is the Gamma Rule (LRP-γ). In the Gamma rule, positive contributions

are added to the outcome with a factor γ, which creates the following equation:

R
(l)
i =

∑
j

x
(l)
i ρ(w

(l,l+1)
ij)∑

i x
(l)
i ρ(w

(l,l+1)
ij)

R
(l+1)
j (15)

where, ρ(θ) = θ + γθ+, and θ+ = max(0, θ). Favouring the positive relevances can ensure

that the heatmaps will be easier to understand since the positive relevances will be higher. The

LRP-γ will, therefore, be used in the lower layer.

The chosen values for ϵ and γ will both be 0.25, which is in accordance with Montavon et al.

(2019). The middle layer for the Epsilon rule will be the convolutional layer since this is where

the spurious relations might occur. The lower layer for the Gamma rule will be the input layer,

as this is the final step before the heatmap is finished.

5 Results

The following section presents the empirical results of the proposed methodology. This section

will be split into three parts, first, in subsection 5.1, the results of the different benchmark

models will be given. Hereafter, in subsection 5.2, the results of the proposed 2D-CNN will be

discussed. The comparison of these models will be made in Section 5.3. This thesis aimed to

increase the explainability of neural networks, and these results are shared in the final subsection

5.4. The results were created on a MacBook Pro with M1 and the packages can be found in

Appendix C.

5.1 Benchmark Models

Two different benchmark models have been tested, the LTA and the Simplified Shapley Value.

The results of both methods are in respective sections 5.1.1 and 5.1.2. As stated in section

4.1.1, different thresholds for a probability to click are tested to find the optimal threshold. The

performance measures for these different thresholds for all of the different models are plotted in

Figure 6. The graphs show for the different performance measures which model performs best.

21

(a) Accuracy (b) Precision

(c) Recall (d) F -score

Figure 6: Accuracy, Precision, Recall and F1-Score measures for four different models across
varying benchmarks

5.1.1 LTA

The LTA is tested for two different types of data, first for only the campaign, and later also based

on the different categories. The blue lines in Figure 6 are for the LTA based on the campaign

only. The accuracy and precision curves are nearly flat for the different percentages, which

indicates that the decisions are being made at random. The F1 score and Recall are higher for

the percentage between 10% and 20%, yet quickly drop hereafter. This can be explained by

the fact that with a higher threshold, more observations are predicted to be negative, therefore

increasing false negatives which is in the denominator of both. In Figure 6 the orange line is

the situation when categories are added to the decision-making. It can be observed that the

accuracy and precision exhibit similar behaviour compared to the situation before adding the

categories and are expected to be close to random. The fact that the recall is close to one is due

to the fact that the model will in this case predict all cases to be positive.

The performance time of both models is within seconds. Due to the bad performance of the

22

measures for the different percentages, both LTA models will not be regarded as informative.

5.1.2 Simplied Shapley Value

The Simplified Shapley Value will be evaluated in the same way as the previous benchmark

model, in Figure 6 it is the green line. The Simplified Shapley Value only takes a few seconds

to run, which can be attributed to the implementation of the simplification. It can be observed

that there is a more clear point where an optimal value would be chosen in the middle, at around

55%. Even though this is an optimal point, it is still not a point that proves this is an optimal

model as the measures are still close to being random.

5.2 2D-Convolutional Neural Network

In the following Table 3, the results are presented for the different setups of the model. The

model is trained with an 80/20 training and test split, however, it is unsuccessful in fitting

the model to the test set. The measures to prevent overfitting from section 4.2.5, dropout

and kernel regularizers, have been initialized, however, did only prevent the model from fitting.

When overfitting measures prevent the model from fitting, underfitting could also be present,

which occurs when the model is too simple to fit the data. Different set-ups are presented in this

section, to try and find the optimum between under- and overfitting, however with the current

model none were successful in fitting.

In the following Table 2 some of the tested hyperparameters are given in bold the ones which

were best for the starting set. These were hereafter used for the choice of different layers. The

number of epochs is fixed since the model did not show any significant change hereafter.

Parameter Values

Epochs 10
Embedding size 3, 5, 10
Batch size 32, 64, 128

Table 2: Hyperparameters Settings for the 2D-CNN

Different model architectures were tested, where the first main choice is in the type and

number of layers, kernel sizes and number of filters. To begin with the type of layers. The

choice is between adding pooling layers after the convolutional layer or skipping these. For

the same architectures as in Table 3, the model performed worse when a pooling layer was

introduced. For this reason, the pooling layer is skipped in the results. Apart from the ones

in Table 3, other kernel sizes have also been tested, which include looking at 2 touchpoints

instead of 1 for the full-row kernel and also looking at more than 2 observations in the past. All

23

Layers Padding Kernel Filters Dense AUC Accuracy Precision Recall F1

1 Valid (2,1) 50 10 0.836 0.766 0.718 0.641 0.678
Valid (2,1) 150 50 0.832 0.762 0.714 0.635 0.672
na (1,69) 50 10 0.819 0.754 0.704 0.614 0.656
na (1,69) 150 10 0.838 0.769 0.725 0.640 0.680

2 na (1,69) 50
Valid (2,1) 50 50 0.840 0.771 0.728 0.641 0.682
na (1,69) 250
Valid (2,1) 100 50 0.849 0.779 0.739 0.652 0.693
na (1,69) 300
Valid (2,1) 200 100 0.856 0.784 0.784 0.658 0.699
na (1,69) 50
Same (2,1) 50 50 0.832 0.764 0.720 0.627 0.671
na (1,69) 250
Same (2,1) 100 50 0.852 0.781 0.744 0.652 0.696
na (1,69) 300
Same (2,1) 200 100 0.857 0.784 0.746 0.660 0.701

3 na (1,69) 50
Same (2,1) 10
Same (2,1) 2 2 0.849 0.778 0.732 0.663 0.696
na (1,69) 150
Same (2,1) 50
Same (2,1) 25 10 0.851 0.780 0.734 0.666 0.698
na (1,69) 200
Same (2,1) 100
Same (2,1) 50 20 0.841 0.771 0.724 0.649 0.685
na (1,69) 300
Same (2,1) 150
Same (2,1) 50 20 0.867 0.793 0.751 0.688 0.718

Table 3: Results of the different setups for the CNN. Different number of layers, filters, dense
layer nodes and kernel sizes, with either Valid and Same padding, from section 4.2.2, have been
tried.

of these did not yield any extra performance gains and therefore the choice was made for the

models which are now in Table 3. It can be observed that adding complexity to the model has

resulted in improved performance measures. All of the best measures are for the setup with the

most layers and filters. An important note with these findings is that the differences are very

small and it can be argued whether the increase in time and complexity is worth the 0.2%. The

last option of the double-layer architecture took 38 seconds per epoch, whereas it took over 9

minutes per epoch for the triple-layer architecture. In Section 2.2.1, 16-19 layers were suggested,

however, this was the case for larger and more complex image data and would not work in this

context, since the data is smaller and simpler. The training time would then also experience an

exponential increase.

24

5.3 Comparison Benchmark model and 2D-CNN

In the next Table 4 the AUC, Brier- and logarithmic score of the different benchmarks and

the 2D-CNN are given. It can be observed for all of the benchmark models that the AUCs

are close to 0.5 which indicates that the choices from the model are not significantly different

from a random choice. The AUC for the 2D-CNN of 86.7% indicates that the model is well

in distinguishing between the two classes. Also in terms of the Brier and logarithmic score, it

outperforms the other three models.

Model AUC Brier Logarithmic

LTA: Campaign 0.531 0.355 1.697
LTA : Campaign & Category 0.519 0.295 0.807
Simplified Shapley Value 0.522 0.287 0.968
2D-CNN 0.867 0.136 0.423

Table 4: Different AUC values for the four different models: LTA: Campaign, LTA: Campaign
& Category, Simplified Shapley Value & 2D-CNN

The optimal values for the 2D-CNN have also been added to the plots of the benchmark

models in Figure 6 to further show the difference in performance between the benchmarks and

the 2D-CNN. The different values for the different thresholds have not been included in these

graphs for the 2D-CNN. The reason behind this is that since the model uses a sigmoid activation

to create the predictions, the predictions are automatically scaled to the 50% threshold.

The 2D-CNN outperforms all three models on almost all of the measures, whereas only the

LTA with categories included outperforms on recall. Noted with this measure should be that

for only predicting positive values, it will always be high and the combination of this with the

other measures shows it should not be trusted solely. From these measures combined, it can

be concluded that the 2D-CNN is a better model compared to the benchmarks for the specific

dataset. Unfortunately, it is not well in generalizing and further research is needed if one wants

to achieve that goal.

5.4 Layerwise Relevance Propagation

Since the results from the 2D-CNN showed that it failed to generalize well, the simplest archi-

tecture is chosen for the LRP. In combination with the computational burden it proved to be to

back-propagate every entry through the network, a one-layer 2D-CNN is chosen as the model.

A choice is made for five filters and two nodes in the dense layer. The results of this network

are in Table 5. This model took 3 minutes to run 10 epochs. In Appendix A the ineffectiveness

to fit a validation is shown for 100 epochs, which took 46 minutes. Here it can also be observed

that the model succeeds in fitting the train set and therefore will only be used in the following

25

results.

AUC Accuracy Precision Recall F1 Brier Logarithmic

0.800 0.739 0.684 0.588 0.632 0.177 0.528

Table 5: Performance Measures 1 Layer 2D-CNN

As specified in section 3, a stratified subsample of 100 observations will be taken of all of

the observations above 0.85%. In Figure 7a the distribution of the different lengths present in

the data for customers between 10 and 90 touchpoints is presented, in Figure 7b for the 10.000

highest predictions to have clicked and in Figure 7c of the stratified subsample of 100. Running

this sample took 107 minutes, which comes down to about a minute per user. It can be observed

that the distribution for the different subsamples behaves in the same way, only in Figure 7c

less smooth, which is expected as it is heavily downsampled. A note with this downsampling

is that this is not based on any of the other features of the data. The other features which are

present or dominant might differ, however since we are also focussing on a specific subsample of

the data, those with a high prediction of clicking, this is expected.

(a) Full Data (n = 243.986) (b) First subsample (n = 10.000) (c) Final subsample (n = 100)

Figure 7: Histograms of Distribution of Touchpoint Lengths for (a) The Full Data, (b) The First
Subsample and (c) The Final Subsample

After propagating backwards towards the network and finding the relevance scores, heatmaps

are generated based on the scores. In Figure 8 four sample heatmaps are shown. The starting

point for the heatmap is the image constructed of the variables and paths of a user, as discussed

in Section 3. The different touchpoints are represented on the y-axis and the features on the

x-axis. Every cell in the heatmap represents a feature from a specific touchpoint. The brighter

a cell is, the more relevant the variable is for clicking and vice versa for dark cells. It can be

observed that the relevance scores show different behaviour for different users, which implies

that for different users, different variables were important for conversion.

It can be observed that the heatmaps for the different sample customers are quite scattered

around the journeys and it is therefore interesting to see at which coordinates the highest

relevance scores for the different customers are found. From this finding, it can be deducted

26

(a) User 111 (b) User 14079

(c) User 17115 (d) User 24736

Figure 8: Four illustrative heatmaps from users with touchpoints on y-axis and features on
x-axis. The brighter a certain cell is, the more relevant the specific feature is.

which variables or at which path, the customer is most likely to click. These findings are

presented in Table 6 and 7.

Touchpoint 1 2 3 4 5 6 7 8 9 10

Frequency 28% 10% 9% 7% 9% 9% 7% 6% 13% 2%

Table 6: Relative Frequences Most Relevant Touchpoints

Category Campaign 1 2 4 5 6 8 9 Click

Frequency 27% 1% 2% 0% 2% 6% 2% 2% 58%

Table 7: Relative Frequences Most Relevant Categories

What immediately can be observed is that for 58% of the users, the click of a previous

27

touchpoint gave the highest relevance score. Whether or not someone clicked before is thus a

good indication for clicking in the future. On its own, this will not be seen as an interesting

finding, however, in combination with the findings of Table 6 more insights can be drawn.

Also, the type of campaign had for 27% of the users the highest relevance score. The highest

relevance scores are found in the 10th and 9nd to last touchpoint. Putting more emphasis on

these touchpoints for this specific group of customers can thus be beneficial to advertisers. The

specific values that ranked highest among the different categories have also been evaluated,

however, due to the limited number of observations, 100, no obvious value stood out.

When all of the heatmaps for the different customers are added in a single picture, an

overview will be given of how the different cells behave in contrast to each other. This overview

is given in Figure 9.

Figure 9: Sum of all heatmaps from the subsample of 100 users

The values with the highest and lowest relevance are interesting for an advertiser to focus

on. The overview can, however, give a distorted view since it could be that some variables are

extremely positive for one and negative for the other, which would cancel each other out and

give relevances close to zero. A min-max normalization is therefore applied to the heatmaps and

the result can be found in Figure 10.

As the scores are normalized over the columns, the relation within a touchpoint is a bit

distorted. The normalization is more interesting to compare the relevance scores over the touch-

points. The aggregated heatmap sheds insight into which features to focus on at specific points

in a clickstream. It can be observed that some have more importance in earlier touchpoints,

28

Figure 10: Sum of all heatmaps from the subsample of 100 users, normalized

whereas others are more important in the later touchpoints.

6 Conclusion

In this thesis, a novel method is proposed to open the ”black box” associated with deep learn-

ing and the attribution problem. The idea is, without making assumptions for the last ten

touchpoints, to find what drove a customer to click. The method that is going to be used is a

Convolutional Neural Network after which Layerwise Relevance Propagation is used to explain

the findings of the network. In previous literature, the CNN has been tested for structured data,

only research on sequential data is missing. This research aims to fill that gap.

To evaluate the results, the Criteo dataset is benchmarked against two more industry stand-

ard approaches, the LTA and the Simplified Shapley Value approach. Results show both bench-

marks fail to provide accurate predictions and that the CNN is able to fit on the given dataset.

It only fails to generalize thereafter and overfits. More complexity to the model implied better

performance measures, with as a downside an increasing computing time. The characteristics

of the data are different from the characteristics of the image data previously used with a CNN,

therefore rapidly expanding the number of layers would not be the best idea. Therefore, the

choice was made to stop after 3 layers, since the improvements found at this level were not

significant enough.

Since the goal of this thesis is to explain the findings and not find the best-generalised model,

a simple model is hereafter used for the LRP. This simple model only had one convolutional

29

layer which contained five filters. The reason behind this is that the LRP with these settings

already took about 1 minute per user. The findings of the LRP show that for the most sure

findings of the network, it is able to generate insights on a customer level and also on a group

level. These insights can hereafter be used by advertisers to better tailor their advertisements

for specific users.

Referring back to the original questions asked in Section 1, (i) the 2D-CNN can accurately

determine which users click on an online advertisement. A note with this finding is that the

model is not able to generalize yet, with the current set-up it will only fit the data. Then for

ii, LRP can be used to explain the findings from the 2D-CNN. Due to computational issues, a

simpler model was used to prove this for a subset. With more computing power, LRP can be

performed on more complex models and for larger datasets. For the sake of this thesis, it was

only relevant to prove it worked.

The biggest limitation follows hereof, is the anonymized nature of the dataset. An interesting

field of further research would therefore be to conduct this research with non-anonymized data.

When the relations between categories are better known, with clear distinctions between those

that are objectively closer and farther apart, the network its ability to fit new data can be

enhanced. This can be done by placing categories that are more or related, close to each

other, such that filters can be made more effectively. Value could also be added by exploring

other factors for a more effective CNN, potentially by integrating elements inspired by the

Dual-attention Recurrent Neural Network (Ren et al., 2018). This network assumes that older

touchpoints are less relevant and that might need to be adjusted, following the result of the

aggregated heatmap.

30

References

Ahmed, F., Asif, M., Saleem, M., Mushtaq, U. F. & Imran, M. (2023). Identification and

prediction of brain tumor using vgg-16 empowered with explainable artificial intelligence.

International Journal of Computational and Innovative Sciences, 2 (2), 24–33.

Albawi, S., Mohammed, T. A. & Al-Zawi, S. (2017). Understanding of a convolutional neural

network. In 2017 international conference on engineering and technology (icet) (pp. 1–6).

Anderl, E., Becker, I., Von Wangenheim, F. & Schumann, J. H. (2016). Mapping the customer

journey: Lessons learned from graph-based online attribution modeling. International

Journal of Research in Marketing , 33 (3), 457–474.

Arava, S. K., Dong, C., Yan, Z., Pani, A. et al. (2018). Deep neural net with attention for

multi-channel multi-touch attribution. arXiv preprint arXiv:1809.02230 .

Arras, L., Montavon, G., Müller, K.-R. & Samek, W. (2017). Explaining recurrent neural

network predictions in sentiment analysis. arXiv preprint arXiv:1706.07206 .

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R. & Samek, W. (2015). On pixel-

wise explanations for non-linear classifier decisions by layer-wise relevance propagation.

PloS one, 10 (7), e0130140.

Barbiero, P., Squillero, G. & Tonda, A. (2020). Modeling generalization in machine learning: A

methodological and computational study. arXiv preprint arXiv:2006.15680 .

Berman, R. (2018). Beyond the last touch: Attribution in online advertising. Marketing Science,

37 (5), 771–792.

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly weather

review , 78 (1), 1–3.

Chen, H., Perozzi, B., Al-Rfou, R. & Skiena, S. (2018). A tutorial on network embeddings.

arXiv preprint arXiv:1808.02590 .

Diemert Eustache, Meynet Julien, Galland, P. & Lefortier, D. (2017). Attribution modeling

increases efficiency of bidding in display advertising. In Proceedings of the adkdd and

targetad workshop, kdd, halifax, ns, canada, august, 14, 2017 (p. To appear). ACM.

Digital Advertising Spend 2022 the Netherlands. (2023, 5). Retrieved from https://view

.deloitte.nl/TMT-AdSpendStudy.html

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of

pattern recognition unaffected by shift in position. Biological cybernetics, 36 (4), 193–202.

Gneiting, T. & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation.

Journal of the American statistical Association, 102 (477), 359–378.

Goutte, C. & Gaussier, E. (2005). A probabilistic interpretation of precision, recall and f-score,

31

https://view.deloitte.nl/TMT-AdSpendStudy.html
https://view.deloitte.nl/TMT-AdSpendStudy.html

with implication for evaluation. In European conference on information retrieval (pp.

345–359).

Greenberg, E. (2003). What are cookies. , 33 , 76. doi: 10.1097/00152193-200306000-00059

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., . . . Chen, T. (2018). Recent ad-

vances in convolutional neural networks. Pattern Recognition, 77 , 354-377. Retrieved from

https://www.sciencedirect.com/science/article/pii/S0031320317304120 doi:

https://doi.org/10.1016/j.patcog.2017.10.013

Hama, N., Mase, M. & Owen, A. B. (2022). Deletion and insertion tests in regression models.

arXiv preprint arXiv:2205.12423 .

Hastie, T. (2020). Ridge regularization: An essential concept in data science. Technometrics,

62 (4), 426–433.

Ho, Y. & Wookey, S. (2019). The real-world-weight cross-entropy loss function: Modeling the

costs of mislabeling. IEEE access, 8 , 4806–4813.

ILSVRC2014 Results. (2014). Retrieved from https://image-net.org/challenges/LSVRC/

2014/results

Ji, W., Wang, X. & Zhang, D. (2016). A probabilistic multi-touch attribution model for online

advertising. In Proceedings of the 25th acm international on conference on information

and knowledge management (pp. 1373–1382).

Kingma, D. P. & Ba, J. (2017). Adam: A method for stochastic optimization.

Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012). Imagenet classification with deep convo-

lutional neural networks. Advances in neural information processing systems, 25 .

Kurdi, B. (2022). The role of digital marketing channels on consumer buying decisions through

ewom in the jordanian markets. International Journal of Data and Network Science. doi:

10.5267/j.ijdns.2022.7.002

Lakshmanan, V., Robinson, S. & Munn, M. (2013). Machine learning design patterns?: solutions

to common challenges in data preparation, model building, and mlops. 390.

Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W. & Müller, K.-R. (2019).

Unmasking clever hans predictors and assessing what machines really learn. Nature com-

munications, 10 (1), 1096.

Lawless, C. & Günlük, O. (2020). Fair and interpretable decision rules for binary classification.

In Neurips workshop.

LeCun, Y., Boser, B., Denker, J., Henderson, D., Hubbard, W. & Jackel, L. (1989). Handwrit-

ten digit recognition with a back-propagation network. Advances in neural information

processing systems, 2 .

32

https://www.sciencedirect.com/science/article/pii/S0031320317304120
https://image-net.org/challenges/LSVRC/2014/results
https://image-net.org/challenges/LSVRC/2014/results

LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998). Gradient-based learning applied to

document recognition. Proceedings of the IEEE , 86 (11), 2278–2324.

Lieli, R. P. & Hsu, Y.-C. (2019). Using the area under an estimated roc curve to test the

adequacy of binary predictors. Journal of Nonparametric Statistics, 31 (1), 100–130.

Lovett, J. (2009). A framework for multicampaign attribution measurement. Forrester Research.

February , 19 .

Montavon, G., Binder, A., Lapuschkin, S., Samek, W. & Müller, K.-R. (2019). Layer-wise rel-

evance propagation: an overview. Explainable AI: interpreting, explaining and visualizing

deep learning , 193–209.

Nisar, T. M. & Yeung, M. (2018). Attribution modeling in digital advertising: An empirical

investigation of the impact of digital sales channels. Journal of Advertising Research,

58 (4), 399–413.

Niu, Z., Zhong, G. & Yu, H. (2021). A review on the attention mechanism of deep learning.

Neurocomputing , 452 , 48–62.

Pang, B., Lee, L. & Vaithyanathan, S. (2002, July). Thumbs up? sentiment classification using

machine learning techniques. In Proceedings of the 2002 conference on empirical methods

in natural language processing (EMNLP 2002) (pp. 79–86). Association for Computational

Linguistics. Retrieved from https://aclanthology.org/W02-1011 doi: 10.3115/1118693

.1118704

Ramachandran, P., Zoph, B. & Le, Q. V. (2017). Searching for activation functions. CoRR,

abs/1710.05941 . Retrieved from http://arxiv.org/abs/1710.05941

Ren, K., Fang, Y., Zhang, W., Liu, S., Li, J., Zhang, Y., . . . Wang, J. (2018). Learning

multi-touch conversion attribution with dual-attention mechanisms for online advertising.

In Proceedings of the 27th acm international conference on information and knowledge

management (pp. 1433–1442).

Rios, A., Gala, V., Mckeever, S. et al. (2020). Explaining deep learning models for structured

data using layer-wise relevance propagation. arXiv preprint arXiv:2011.13429 .

Rufibach, K. (2010). Use of brier score to assess binary predictions. Journal of clinical epidemi-

ology , 63 (8), 938–939.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D. & Batra, D. (2017). Grad-cam:

Visual explanations from deep networks via gradient-based localization. In Proceedings of

the ieee international conference on computer vision (pp. 618–626).

Shao, X. & Li, L. (2011). Data-driven multi-touch attribution models. In Proceedings of the

17th acm sigkdd international conference on knowledge discovery and data mining (pp.

33

https://aclanthology.org/W02-1011
http://arxiv.org/abs/1710.05941

258–264).

Shapley, L. S. (1997). A value for n-person games. Classics in game theory , 69 .

Sharma, S., Sharma, S. & Athaiya, A. (2017). Activation functions in neural networks. Towards

Data Sci , 6 (12), 310–316.

Simonyan, K. & Zisserman, A. (2014). Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556 .

Singal, R., Besbes, O., Desir, A., Goyal, V. & Iyengar, G. (2019). Shapley meets uniform:

An axiomatic framework for attribution in online advertising. In The world wide web

conference (pp. 1713–1723).

Singhal, S., Kumar, H. & Passricha, V. (2018). Prediction of heart disease using cnn. Am Int

J Res Sci Technol Eng Math, 23 (1), 257–261.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. (2014). Dropout:

a simple way to prevent neural networks from overfitting. The journal of machine learning

research, 15 (1), 1929–1958.

Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T. & Qin, B. (2014). Learning sentiment-specific

word embedding for twitter sentiment classification. In Proceedings of the 52nd annual

meeting of the association for computational linguistics (volume 1: Long papers) (pp.

1555–1565).

Vidaurre, D., Bielza, C. & Larranaga, P. (2013). A survey of l1 regression. International

Statistical Review , 81 (3), 361–387.

Wang, X., Yu, L., Ren, K., Tao, G., Zhang, W., Yu, Y. & Wang, J. (2017). Dynamic attention

deep model for article recommendation by learning human editors’ demonstration. In

Proceedings of the 23rd acm sigkdd international conference on knowledge discovery and

data mining (pp. 2051–2059).

Wu, H., Huang, A. & Sutherland, J. W. (2022). Layer-wise relevance propagation for interpret-

ing lstm-rnn decisions in predictive maintenance. The International Journal of Advanced

Manufacturing Technology , 1–16.

Yu, D., Wang, H., Chen, P. & Wei, Z. (2014). Mixed pooling for convolutional neural networks.

In Rough sets and knowledge technology: 9th international conference, rskt 2014, shanghai,

china, october 24-26, 2014, proceedings 9 (pp. 364–375).

Zeiler, M. D., Krishnan, D., Taylor, G. W. & Fergus, R. (2010). Deconvolutional networks.

In 2010 ieee computer society conference on computer vision and pattern recognition (pp.

2528–2535).

Zhao, K., Mahboobi, S. H. & Bagheri, S. R. (2018). Shapley value methods for attribution

34

modeling in online advertising. arXiv preprint arXiv:1804.05327 .

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. (2016). Learning deep features

for discriminative localization. In Proceedings of the ieee conference on computer vision

and pattern recognition (pp. 2921–2929).

35

A Performance Measures Simple One-Layer 2D-CNN Per Epoch

(a) Loss (b) Accuracy

(c) AUC

Figure 11: Loss, Accuracy and AUC for both Train and Validation set.

B Programming Code

A brief description of the code used in this thesis can be found below. All of the scripts are in the

Jupyter Notebook format and written to be used independently. The versions of the packages

that were used are in Appendix C.

LTA.ipynb, contains the code for both the LTA: Campaigns model and the LTA: Campaigns

and Categories model. Also contains the code to create the graphs, were the results from

Shapley.ipynb and CNN.ipynb are used.

Shapley.ipynb, contains the code for the Simplified Shapley Value. The code uses the Sim-

plifiedShapleyAttributionModel.py which was obtained from https://github.com/ianchute/shapley-

attribution-model-zhao-naive.

CNN.ipynb, contains the different CNN models which were tested. Different techniques

36

tried can be found in the comments. Creating one hyperparameter optimization was unfortu-

nately not feasible due to computational issues.

LRP.ipynb, contains the process to perform the LRP on a created 2D-CNN. The back-

propagation in this process is specifically made for the chosen one-layer 2D-CNN.

C Packages Used

The versions of the following packages are used throughout this thesis. Note that Keras is an

interface for the TensorFlow library.

Package Version

keras 2.13.1
tensorflow 2.13.0rc1
polars 0.18.9
pandas 2.0.2
numpy 1.24.3
scikit-learn 1.2.2

Table 8: Overview of packages

37

	Introduction
	Literature Review
	Attribution Modelling
	Rule-Based Heuristics
	Algorithmic Approaches
	Deep Learning

	Convolutional Neural Network
	Layers and Set-ups

	Performance Measures
	Explainable Artificial Intelligence

	Data
	Methodology
	Benchmark Models
	Last Touch Attribution
	Shapley Value

	2D-Convolutional Neural Network
	Input Layer
	Convolutional Layer
	Pooling Layer
	Dense and Output Layer
	Training the Network

	Layerwise Relevance Propagation

	Results
	Benchmark Models
	LTA
	Simplied Shapley Value

	2D-Convolutional Neural Network
	Comparison Benchmark model and 2D-CNN
	Layerwise Relevance Propagation

	Conclusion
	References
	Performance Measures Simple One-Layer 2D-CNN Per Epoch
	Programming Code
	Packages Used

