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Abstract

This paper considers the application of sustainability in a multi-item stochastic lot-sizing

problem by coordinating shipments using augmented ϵ-constraint with bi-objective

modeling. The stochastic demand uncertainty is modeled using static, static-dynamic,

and static receding horizon approaches with extensions for capacity limitation and

aggregated service levels. Additionally, a variable neighborhood descent meta-heuristic is

applied to the static-dynamic model. The results show that a significant reduction of

periods with shipments can be achieved with a slight increase in total cost in all methods.

This provides a cost-efficient way to reduce carbon footprint in transportation.

Furthermore, a performed sensitivity analysis shows that the results are consistent with

changes in the problem scale and parameters.

Keywords: stochastic lot-sizing, shipment coordination, sustainability, static,

static-dynamic, metaheuristic
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1 Introduction

Climate change poses a wide range of risks of economic and societal damages

(Diaz & Moore, 2017). With the United Nations proposing the 2030 Agenda for

Sustainable Development (United Nations, 2015), EU countries have progressed towards

the set sustainability goals (Carrillo, 2022). However, transportation is still a significant

source of pollution with logistic activities accounting for 5.5% of the global greenhouse

gas emissions, most of which arise from freight transportation (McKinnon et al., 2015).

Freight transportation still largely depends on fossil fuels, which significantly contribute

to emissions (Zhang et al., 2022). Furthermore, Rizet et al. (2014) found that

transportation CO2 emissions can be reduced by decreasing shipment frequency.

Therefore, it is vital to consider sustainable approaches in supply chain management.

Production planning has shifted from a focus on pure cost minimization to

considering the environmental impact of production models (Khaled et al., 2022).

Dynamic lot-sizing problems are commonly used in supply chain modeling in the context

of inventory planning or production scheduling in industrial environments, i.e., to model

shipments from a supplier to a retailer. In such cases, due to varying product life cycles,

the demand is stochastic and non-stationary (Tunc et al., 2014). Therefore, achieving

sustainability requires consideration of both the overall cost minimization and the

environmental impact. Usually, the objective of lot-sizing is cost minimization while

maintaining a predetermined non-stockout probability. However, in response to the global

climate crisis, the green transition, and corporate sustainability goals, it is necessary to

extend supply chain models to account for the environmental impact. Often, lot-sizing

optimizes order plans on a per-item basis leading to many small shipments, which leads

to an increase in overall emissions.

This thesis introduces an extension of lot-sizing with shipment coordination. This

is modeled using a bi-objective approach to empirically assess the cost-benefit trade-offs

between minimizing cost and the environmental impact. To model the demand

uncertainty, this thesis first proposes a model using a static approach where the decisions

of the amount and the timing of production are made for the entire planning period.
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Secondly, a static-dynamic approach where the order periods are decided in advance but

the order quantities can be adjusted after the demand is realized (Bookbinder & Tan,

1988). Additionally, a receding horizon approach is presented in which the planning is

implemented for a limited number of periods and re-planned after demand has been

realized (Tavaghof-Gigloo & Minner, 2021). This approach is often used to model

empirical implementations of dynamic lot-sizing (Tavaghof-Gigloo & Minner, 2021).

To further account for empirical application when the logistics system is limited by

transportation capacity or a worker shortage (Wang et al., 2022), the model is extended

with capacity constraints. Finally, in cases with a large variety of products, using an

aggregate service level across all products, in addition to a per-product service level, can

lead to cost reductions (Sereshti et al., 2021). Therefore, the aggregate service approach

is introduced to the model to further reduce the total cost and the number of emissions.

The structure of this thesis is as follows: First, the literature review and the

motivation of the thesis are presented. Second, the static and static dynamic versions of

the stochastic lot-sizing model are introduced. Third, additional model extensions and a

metaheuristic method are discussed. Next, the analysis of the data set, model evaluation,

and sensitivity analysis are performed. Lastly, the conclusion is presented.

2 Theoretical Framework

Since the initial lot-sizing sizing model proposed by Harris (1913), such lot-sizing

models have been widely researched (Aloulou et al., 2014; Glock et al., 2014). To deal

with uncertainty, researchers have applied dynamic and stochastic methods to lot-sizing

models (Aloulou et al., 2014; Glock et al., 2014).

Bookbinder and Tan (1988) examined three ways to model lot-sizing problems

with stochastic demand uncertainty. Firstly, a static approach where the decisions of

amount and timing are made for the entire planning period. Secondly, a static-dynamic

approach where the order periods are decided in advance but the order quantities can be

adjusted after the demand is realized. Lastly, a dynamic approach where the production

amount and timing can be readjusted at every period.
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Bookbinder and Tan (1988) present an initial single-item static model with a cycle

α service level, that ensures that the non-stockout probability at the end of any period

does not become negative. Furthermore, Helber et al. (2013) introduce an additional

βccycle fill rate service level that ensures the probability that demand in a period is filled

from the current inventory. Similarly, Tempelmeier and Herpers (2011) extend the model

for multiple items using a δ service level that limits the ratio of the expected and the

maximum backlog. Additionally, Tempelmeier (2011) and Tempelmeier and Herpers

(2010) introduce additional heuristic methods to solve the problem.

Furthermore, Sereshti et al. (2021) extend on previous static models by

introducing multi-item static models across various service levels, including aggregate

service levels. They additionally introduce a receding horizon approach, also called the

rolling horizon approach, which involves re-evaluating the model after each period based

on realized demand. Their approach also includes an additional penalty parameter to

penalize any service-level violations. Moreover, Tavaghof-Gigloo and Minner (2021) show

that replanning opportunities improve performance when there is no capacity limit, and

Forel and Grunow (2022) integrate receding horizon with demand forecasting.

Comparatively, for the static-dynamic approach, Bookbinder and Tan (1988)

present a single-item static-dynamic model with a cycle α service level. In the model, the

order schedule is determined and afterwards the order-up-to level is calculated. Tarim

and Kingsman (2004) further introduce a mixed integer programming (MIP) single-item

model formulation that simultaneously determines both the order-up-to level and the

order schedule. Tunc et al. (2014) expand on the Tarim and Kingsman (2004)

formulation by translating the order schedule into separate replenishment cycles (the time

between two production periods), which can efficiently solve large-scale problems to

optimality. Furthermore, Tempelmeier (2007) introduces a model with a fill rate β and a

cycle α service level. In addition, Rossi et al. (2015) extend the Tarim and Kingsman

(2004) model by incorporating various service measures using piece-wise upper and lower

bounds of the first-order loss function. Subsequently, Tunc et al. (2018) improve on the

time efficiency of the previous formulations by introducing a mixed integer programming



4

model using a dynamic cut generation approach. Özen et al. (2012) introduce two

heuristics using dynamic programming for the single-item static-dynamic problem.

Randa et al. (2019) further extend the dynamic programming methods and introduce

improvement-based local search heuristics. These heuristics use merging, splitting, and

shifting production cycles in different combinations and order of operations. They show

that a combination of these operations achieves an average optimality gap of 0.1%.

In coordinated lot-sizing problems, an additional setup cost is incurred when any

product is produced (Gao et al., 2008; Robinson et al., 2009). Robinson et al. (2009)

show that the problem is NP-complete and even deterministic demand problems are

difficult to solve on a large scale.

Capacitated lot-sizing problems have been widely studied as a separate category of

models (Quadt & Kuhn, 2008). Capacity constraints are typically added to models with

static strategy (Sereshti et al., 2021). Tavaghof-Gigloo and Minner (2021) used soft

service-level constraints to guarantee feasibility under capacity constraints.

In recent years, studies in inventory management have shifted towards finding

more sustainable ways of inventory management. Commonly, carbon dioxide (CO2)

emissions are used to measure emission reduction. Examples of such applications include

the economic order quantity (EOQ) models (Hua et al., 2011), economic production

quantity (EPQ) models (Sepehri & Gholamian, 2022), and integrated production

scheduling models (Yağmur & Kesen, 2023). Kadziński et al. (2017) show that in supply

chain modeling CO2 emissions can be significantly reduced with a slight increase in total

cost. Heck and Schmidt (2010) introduce a lot-sizing model that considers ecological

factors: power usage, CO2 emissions, and water consumption. Furthermore,

Retel Helmrich et al. (2015) present a model with a CO2 emission constraint. Similarly,

Vaez et al. (2019) propose a bi-objective lot-sizing model with total cost minimization and

CO2 emission minimization. Moreover, Liu (2016) uses lot-sizing models in a renewable

energy generation context while reducing CO2 emissions. The models show that lot-sizing

models can be effectively used for both cost minimization and emission reduction.

Subsequently, when considering lot-sizing models with bi-objective functions,
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Romeijn et al. (2014) and van den Heuvel et al. (2012) showed that finding certain

formulations of the problem can be solved in polynomial time, but that in general, the

problem is NP-hard. Earlier solution methods for bi-objective functions use the

weighted-sum approach, which determines Pareto optimal solution by systematically

changing the weights between the objective functions (Kim & De Weck, 2005). However,

this method often leads to uneven distribution of points along the Pareto front (Das &

Dennis, 1998). Additionally, Mavrotas (2009) proposes the augmented ϵ-constraint

method that efficiently produces Pareto optimal solutions. Mavrotas and Florios (2013)

and Nikas et al. (2022) provide further improvement for the method. Furthermore, Vaez

et al. (2019) apply the augmented ϵ-constraint method to a bi-objective lot-sizing

problem. Comparatively, other studies have applied the lexicographic weighted

Tchebycheff method (Liu, 2016) or proposed meta-heuristic approaches to solve

bi-objective models (Yağmur & Kesen, 2023).

This study expands on the existing literature in several ways. Firstly, it extends

the application of lot-sizing models to sustainability. Secondly, it employs a novel

approach to shipment coordination through bi-objective modeling. Furthermore, this

thesis extends the formulations to static, static-dynamic, and receding horizon

approaches. Correspondingly, the Tunc et al. (2014) static-dynamic formulation is

extended to include multiple items. This thesis further provides empirical applications by

introducing capacity constraints and the comparison between aggregate service levels and

individual service levels. Lastly, this thesis introduces a metaheuristic approach to the

static-dynamic approach.

3 Problem formulation

The focus of this analysis is on the multi-item stochastic lot-sizing problem. A

finite planning horizon with T periods and N items is considered. In each period t ∈ T in

the planning horizon, each item i ∈ N occurs a stochastic and independently distributed

demand dit with a known distribution function having a mean µit and a standard

deviation σit. Further, orders incur a fixed set-up cost fi and each unit in inventory

incurs a holding cost hi. In the capacitated version of the problem, no more units than Ct
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can be produced. Unused units are carried from one period to the next, and any demand

that exceeds inventory is back-ordered. Additionally, it is required to meet a set service

level αi for all items. See Table 1 for an overview of used parameters, random variables,

and variables.

Table 1: Static model parameters, random variables, and variables

Sets

T Set of the time periods in the planning horizon,

indexed by t

N Set of all items, indexed by i

Parameters

fi Set up costs for item i

hi Holding costs for item i

Ii,0 Inventory level for item i at period 0

αi Minimum service level for item i

P Emission setup cost in each period

M, M2 Sufficiently large numbers

µ Sufficiently small number

Random variables

Di,t Demand for item i in period t

Fi,t The cumulative distribution of the random demand

from period 1 to period t for item i

F −1
i,t (αi) The minimum value of cumulative demand δ for item i from

period 1 to period t for which P (∑t
j=1(Di,j) ≤ δ) ≥ αi

Ii,t Inventory level for item i in period t

Continued on next page
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Table 1: Static model parameters, random variables, and variables (Continued)

Variables

xi,t Production amount for product i in period t

yi,t Binary variables that equals 1 if there is production

for item i in period t, 0 otherwise

zt Binary variable that equals 1 if there is any production

in period t

s Slack variable

3.1 Static demand model

The static demand model is based on Tempelmeier (2007) and is extended for

multiple items similar to Sereshti et al. (2021).

Z1 = min
∑
i∈N

∑
t∈T

(fiyit + hiE[Iit]) (1)

s.t. Ii,t = Ii,0 +
t∑

j=1
(xi,j − E[Di,j]) ∀i ∈ N,∀t ∈ T (2)

xi,t ≤Myi,t ∀i ∈ N,∀t ∈ T (3)

Ii,0 +
t∑

j=1
xi,j ≥ F −1

i,t (αi) ∀i ∈ N,∀t ∈ T (4)

yi,t ∈ {0, 1} ∀i ∈ N,∀t ∈ T (5)

xi,t ≥ 0 Ii,t ≥ 0 ∀i ∈ N,∀t ∈ T (6)

In the model, the objective (1) minimizes the total setup and holding costs.

Constraint (2) is the balance constraint of the expected inventory. Constraint (3) ensures

that the set-up costs are accounted for during production. Here the number M needs to

be large enough to enforce the constraint M > maxi(F −1
0,T (α)). Constraint (4) is the

individual service level constraint that the sum of the initial inventory level and the

production quantity for item i until period t is larger or equal to the cumulative demand

required to ensure minimum service level. Lastly, constraints (5) and (6) show the
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domain of the variables.

Additionally, the net expected inventory is assumed to be positive as the amount

of negative inventory is negligible when considering large α service levels Tempelmeier

(2007).

Next, we introduce a second objective function (7) that accounts for any item’s

emissions arising from set-up costs. Constraints (8) and (9) account for an emission setup

cost when production occurs in a period t. In a shipping context, any period with

shipments incurs a penalty, thus minimizing the number of shipments and reducing the

total emission amount. The number M needs to be large enough to enforce the constraint

when production occurs for all items M2 > I.

Z2 = min
∑
t∈T

Pzt (7)

s.t.
∑
i∈N

yi,t ≤M2zt ∀t ∈ T (8)

∑
i∈N

yi,t ≥ zt ∀t ∈ T (9)

Continuing, the model is reformulated using the augmented ϵ-constraint method

(Mavrotas, 2009; Sadjadi et al., 2014; Vaez et al., 2019). Here objective (1) is

reformulated to objective (10) and objective (7) is further reformulated as the constraint

(11). Using the slack variable s only efficient solutions are produced (Vaez et al., 2019).

The parameter µ is a sufficiently small number, in the range from 10−6 to 10−3 depending

on the relative size of Z1 and Z2 (Mavrotas, 2009). The ϵ is determined in a similar

manner to Vaez et al. (2019). In constraint (11), a set of evenly distributed ϵ values are

taken in the range between the minimum and the maximum value of Z2. The maximum

value of Z2 is obtained by, firstly, solving the model with the objective function (1),

constraints (2, 3, 4, 5, 6), and the additional constraints (8) and (9). Then the maximum

value of Z2 is determined by calculating the value of the objective function (7) with the

obtained optimal decision variables. Next, the minimum value of Z2 is determined by

minimizing the objective (7) with the constraints (2, 3, 4, 5, 6, 8, 9).

min(Z1 + µs) (10)

s.t. Z2 = ϵ− s (11)
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3.2 Static-dynamic demand model

The static-dynamic formulation is based on the MIP formulation by Tunc et al.

(2014). They reformulate the problem to find the lowest-cost replenishment cycles i.e.,

the time between two production periods, in the order schedule. This is further extended

to incorporate multiple items. For each item i lowest-cost replenishment cycles are

determined. See Table 2 for used parameters and variables.

Table 2

Additional Static-dynamic model parameters, random variables, and variables

Sets

Ct,j

Set of all replenishment cycles where t and j are

successive replenishment periods

Parameters

ci,t,j

The lower bound of the cycle costs for an item

i in a cycle from period t to period j

Random variables

Gi,t,j

The cumulative distribution of the random demand

from period t to period j for item i

Variables

Xi,t,j

Binary variable that equals 1 if periods t and j are

successive replenishment (t < j) periods for item i, 0 otherwise

Si,t,j

The order-up-to level for item i in period t if t and j

are successive replenishment periods, 0 otherwise

Zt

Binary variable that equals 1 if any replenishment period

is in period t
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The static-dynamic model formulation is given below:

Z1 = min
∑
i∈N

T∑
t=1

T +1∑
j=i+1

(ci,t,jXi,t,j + hi(j − t)(Si,t,j −G−1
Di,t,...Di,j−1

(αi)Xi,t,j)) (12)

s.t. T +1∑
j=t+1

Xi,t,j −
t−1∑
j=1

Xi,j,t = 0 ∀i ∈ N, t ∈ [2, T ] (13)

T +1∑
j=2

Xi,1,j = 1 ∀i ∈ N (14)

T∑
t=1

Xi,t,T +1 = 1 ∀i ∈ N (15)

Si,t,j ≤MXi,t,j ∀i ∈ N, t ∈ [1, T ], j ∈ [t + 1, T + 1] (16)

Si,t,j −G−1
i,t,j−1(αi)Xi,t,j ≥ 0 ∀i ∈ N, t ∈ [1, T ], j ∈ [t + 1, T + 1] (17)

t−1∑
j=1

Si,j,t −
t−1∑
j=1

(Xi,j,t

t−1∑
k=j

E[Dk]) ≤
T +1∑

j=t+1
Si,t,j ∀i ∈ N, t ∈ [2, T ] (18)

Si,t,j ≥ 0, Xi,t,j ∈ {0, 1} ∀i ∈ N, t ∈ [1, T ], j ∈ [t + 1, T + 1] (19)

Where a given replenishment cycle is from period j to k − 1 and the lower bound

of the cycle cost ci,t,j can be calculated as:

ci,t,j = fi + hi

j−1∑
k=t

(G−1
i,t,j−1(αi)−

k∑
l=t

E[Di,l]) ∀i ∈ N, t ∈ [1, T ], j ∈ [t + 1, T + 1] (20)

The minimum cycle cost can be pre-calculated, which substantially reduces model run

time (Tunc et al., 2014). The objective function (12) minimizes the total costs over all

possible replenishment cycles for all items. Constraint (13) ensures that a new

consecutive cycle starts after the first one ends for each item while constraints (14) and

(15) ensure that there is a starting and an end cycle for each item. Continuing, constraint

(16) ensures that order-up-to levels are only in the replenishment periods and constraint

(17) enforces the minimum order-up-to level. Next, constraint (18) ensures that the

consecutive cycle order-up-to level is larger than the expected inventory level at the end

of the previous cycle. Lastly, constraint (19) shows the domain of the variables.

Similar to the static model we introduce a second objective function (21) that

accounts for the emissions arising from set-up costs for any item. Constraints (22) and

(23) account for an emission setup cost when producing a product. The objective is then

reformulated in the same way.
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Z2 = min
∑
t∈T

PZt (21)

s.t.
∑
i∈N

T +1∑
j=t+1

(Xi,t,j) ≤M2Zt ∀t ∈ T (22)

∑
i∈N

T +1∑
j=t+1

(Xi,t,j) ≥ Zt ∀t ∈ T (23)

3.3 Receding horizon approach

In the static model, the production and setup periods are kept unchanged over the

planning horizon. However, this can reduce the responsiveness of the system and

introduce additional costs (Sereshti et al., 2021). The receding horizon approach accounts

for the realized demand by reevaluating the model after each period. This gives the static

model similar functionality to the static-dynamic model. However, in contrast to the

static and static-dynamic model, the production periods in the receding horizon approach

are not fixed and can be changed after the initial schedule. This resembles the dynamic

strategy described in Bookbinder and Tan (1988) where both the production timing and

amounts are evaluated in every period. Furthermore, the receding horizon strategy can

be applied to both static and dynamic models. However, based on computational results,

the receding horizon with the static uncertainty model is the best alternative for the

dynamic strategy (Dural-Selcuk et al., 2020).

In the receding horizon approach, the static model is initially solved for the entire

planning horizon from period 1 to period T using the augmented ϵ-constraint method.

The solution with the lowest total cost, i.e. the sum of set-up costs, holding costs, and

the emissions set-up cost (24) is fixed for the further period. The inventory of the

following period is calculated with (25)

min
∑
i∈N

∑
t∈T

(fiyit + hiE[Iit]) +
∑
t∈T

Pzt (24)

Ii,t = Ii,t−1 + xi,t −RDi,t (25)

where RDi,t is the realized demand for item i at time t. The procedure is repeated for

each further period until the end of the planning horizon.
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3.4 Model Extensions

To further extend the model, two additions are proposed. First, a production

capacity constraint is introduced, and second, aggregate service levels are considered.

3.4.1 Capacity constraint. In the capacitated lot-sizing model an additional

constraint is introduced to limit the processing and setup time to the total capacity in

the period (Quadt & Kuhn, 2008). To account for shipment coordination in an empirical

application (i.e., the size of a transport fleet) constraint (26) is introduced to limit the

total amount of production per period to maximum capacity Qt.

∑
i

xi,t ≤ Qt ∀t ∈ T (26)

In the static-dynamic model, constraint (18) limits the total amount of the order-up-to

level in each period to a maximum capacity. This effectively limits the maximum possible

production in a period. However, due to possible remaining inventory, the production

quantity is often lower than the order up-to-level. Thus, the constraint is more strict here

than in the static-capacity model where the production amount is directly limited.

Consequently, the solution quality is affected by excluding solutions that require

reordering on top of existing inventory.

3.4.2 Aggregate service level. Sereshti et al. (2021) introduce an aggregate

service level constraint for the static model that is stricter than the individual service

level constraints. They achieve a 1.5% lower cost, however, their computation time

increases by four orders of magnitude. In the model, a quantile-based approach is used by

defining a set of service levels K with an index k. The service levels become part of the

decision variables. Constraint (4) is extended to constraint (28) by introducing a binary

variable lk,i which indicates if the service level αk,i is chosen for product i. Additionally,

constraint (29) ensures that only one service level is chosen per item, and (30) is the

domain constraint. Lastly, constraint (27) ensures that the weighted sum of all of the

individual service levels does not exceed the service level αa where ∑
i wi = 1.
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∑
i

∑
k

wiαk,ilk,i ≥ αa (27)

Ii,0 +
t∑

j=1
(xi,j) ≥ F −1

i,t (αk,i)lk,i ∀k ∈ K, ∀i ∈ N, ∀t ∈ T (28)

∑
i

lk,i = 1 ∀k ∈ K (29)

lk,i ∈ {0, 1} ∀k ∈ K, ∀i ∈ N (30)

3.5 Metaheuristic approach

To account for the increased solution time for larger instances, a metaheuristic

approach is introduced for the static-dynamic model using a Variable Neighbourhood

Descend (VND) approach. For each instance of the problem, we enforce the number of

deliveries permitted n. For each item, a number of production cycles Xi,t,j are

determined with the production amount set larger than the expected demand for that

cycle (31). To meet the service requirement, it is assumed that production always occurs

in the first period. The cost of a cycle ci,t,j is determined as the sum of the setup cost fi

and holding costs hi multiplied by the expected inventory in each cycle (32). However, in

the metaheuristic, the cycle dependence is not directly enforced. In comparison, in the

static-dynamic model, the constraint (18) ensures that the consecutive cycle order-up-to

level is larger than the expected inventory level. Consequently, the cost function gives an

approximation of the true objective value as the setup costs are incurred in each cycle.

Si,t,j = G−1
i,t,j−1(αi) ∀i ∈ N, t ∈ [1, T ], j ∈ [t + 1, T + 1] (31)

ci,t,j = fi + hi

j−1∑
k=t

(Si,t,j −
k∑

l=t

E[Di,l]) ∀i ∈ N, t ∈ [1, T ], j ∈ [t + 1, T + 1] (32)

The problem is initialized with a solution of a single cycle starting at the first

period and extending over the full planning horizon. After the initialization, the

algorithm searches for improvements in the first neighborhood. If improvements are

found, the steepest decent (highest reduced cost) is picked and the VND algorithm

restarts from the first Neighbourhood. If no improvement is found, the search continues

to the next neighborhood. After reaching the final neighborhood, the number of delivery
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periods n is extended by one. The consequent solution for the number of delivery periods

n is recorded as the BestSchedulen and the search restarts from the first neighborhood.

The algorithm continues until a solution is found for all numbers of shipments from one

to T i.e., a shipment in every period.

Randa et al. (2019) show how search-based heuristics can be used in a

static-dynamic lot-sizing model. Consequently, the following neighborhoods are used for

the VND and the algorithm is described in Algorithm 1.

• Merge two cycles (Algorithm 3)

• Split a cycle in two without increasing the number of delivery periods (Algorithm 4)

• Shift the timing of a cycle for a single item (Algorithm 5)

• Shift the timing of all deliveries at a time (Algorithm 6)

• Split a cycle to increase the number of allowed shipments (Algorithm 2)

The full algorithm is described in Algorithm 1. The final neighborhood is described below

(Algorithm 2) while the other neighborhoods are described in Appendix A.
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Algorithm 1 The VND algorithm
1: Initialise:

2: terminate = False, improvement = False, n - number of shipments

3: Schedule = None

4: for n in range(T ) do

5: while not terminate do

6: Schedule, improvement←MergeCycles(Schedule)

7: if not improvement then

8: Schedule, improvement← ShiftT iming(Schedule)

9: if not improvement then

10: Schedule, improvement← DivideCycle(Schedule)

11: if not improvement then

12: Schedule, improvement← ShiftT imingAllCycles(Schedule)

13: if not improvement then

14: BestSchedulen = Schedule

15: Schedule← IncreaseShipments(Schedule)

16: terminate = True

17: end if

18: end if

19: end if

20: end if

21: end while

22: end for

23: return BestSchedulen ∀n ∈ T



16

Algorithm 2 Increase shipments
1: Input: Schedule

2: Initialise:

3: AllProductionPeriods = GetProductionPeriods(solution)

4: FreePeriods = range(T ) not in AllProductionPeriods

5: for FreePeriod in FreePeriods do

6: NewSchedule = Schedule

7: for item, ProdPeriodsItem in Schedule do

8: NewSchedule[item] = ProdPeriodsItem + FreePeriod

9: end for

10: if CalcCost(NewSchedule) < CalcCost(Schedule) then

11: BestSchedule = NewSchedule

12: end if

13: end for

14: return BestSchedule
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4 Empirical example

4.1 Data

In papers considering numerical examples in stochastic lot-sizing, researchers often

use a small number of periods (10 to 20) in the planning horizon and a similar amount of

items (Sereshti et al., 2021; Tavaghof-Gigloo & Minner, 2021; Tempelmeier, 2007;

Tempelmeier & Hilger, 2015). This thesis uses a small-scale data set with N = 10 items

and T = 12 periods to simulate yearly planning. The period demand is generated

similarly to Helber et al. (2013). The expected demands per item E[Di] are drawn from a

discrete uniform distribution with a range [150, 300]. Further, the expected inter-period

demand E[Dit] for item i in period is drawn from a normal distribution with a mean

value of E[Di] and standard deviation E[Di] · Vip. Consequently, the inter-period demand

is normally distributed with mean E[Dit] a standard deviation E[Di] · Vd. Example item

expected demands are shown in Table 3 and example period expected demands are shown

in Table 4.

The holding costs hi as set as consecutive integers hi = i ∈ {1, 2, ..., N}. The

setup costs fi are dynamically set using the average expected demand for an item, the

time between orders (TBO), and the holding costs (33) (Helber et al., 2013). Therefore

the setup costs are not a direct model input but are kept at a ratio depending on the

other model input parameters.

fi =

∑
t∈T E[Di,t]

T
· TBO2 · hi

2 ∀i ∈ N (33)

The emissions penalty Pt is determined as the sum of the setup costs in a period (34).

This makes the emissions penalty dynamic relative to other parameters and gives a good

middle ground between the emissions penalty not being impactful on the final solution

and dominating the solutions.

Pt =
∑
i∈N

fi ∀t ∈ T (34)
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The random elements are pseudo-randomly generated using the Python random

library. The pseudo-random period demands are reused with each model, allowing the

models to be fairly compared. In each further iteration, data sets are generated with

sequential seeds, thus ensuring further reproducibility.

Table 3

Example expected demands for items i ∈ N

i 1 2 3 4 5 6 7 8 9 10

E[Di] 165 200 173 292 246 191 254 245 294 252

Table 4

Example expected demands for items i ∈ N in period t ∈ T

t

1 2 3 4 5 6 7 8 9 10 11 12

i 1 194 317 171 182 154 131 192 171 168 179 153 211

2 185 108 256 160 304 268 58 155 193 110 144 290

3 263 174 204 149 97 201 162 250 128 175 231 187

4 206 276 374 294 453 354 270 502 363 399 359 350

5 192 348 191 304 298 345 203 291 149 248 313 212

6 239 212 182 231 142 211 124 251 233 120 144 52

7 286 173 95 268 273 258 152 330 263 327 108 279

8 182 266 256 395 379 151 230 239 247 248 202 221

9 309 192 433 389 271 464 385 300 50 99 149 369

10 153 208 286 393 244 225 301 347 273 168 237 298
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In the capacity-constrained models, the shipment capacity Q in a period is

determined in equation (35) by the sum of all item expected demand EDi times the

capacity coefficient q = 3.

Q =
∑
i∈N

E[Di] · q (35)

For the aggregated service level, Sereshti et al. (2021) show that a set of 11 service level

choices provides a good trade-off between computation time and accuracy. Therefore, the

target aggregate service level of αa = 0.95 is chosen, and the set K of 11 service level

options is equally distributed between 0.8 and 0.9999.

Lastly, in the ϵ-constraint method, the epsilon values are distributed between the

objective value with the lowest cost and the largest number of shipments Z1 and the

objective value with the lowest emissions penalty and the least number of shipments Z2.

The number of chosen ϵ values determines the maximum number of different scenarios

that are analyzed while increasing the solution time. Each added ϵ returns a solution

with a number of shipments between the minimum and the maximum number of

shipments. 12 evenly distributed ϵ values are chosen to show the optimum objective for

each possible number of shipments. The µ value takes as µ = Z2
Z1
· 0.001 to take account of

the relative size between Z2 and Z1. M is taken as 100000 to enforce the set-up

constraints. Table 5 shows the full overview of the used parameters.
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Table 5

Parameters used

Description

Number of items N = 10

Number of periods T = 12

Target service level for item i αi = 0.95

Time between orders TBO = 3

Inter-period variation of demand Vip = 0.3

Coefficient of variation of demand Vd = 0.3

Holding cost for item i hi = 1, 2, 3, ..., N

Capacity coefficient q = 3

Aggregate service level target αa = 0.95

Product weight wi = 1
N

Number of ϵ values chosen 12

Sufficiently large numbers M = 100000, M2 = 20

Sufficiently small number µ = Z2
Z1
· 0.001
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5 Results

The obtained results are presented in the following section. Firstly, the

performance of the models and the extensions are evaluated, followed by a cost-benefit

analysis of the coordinated models against the uncoordinated ones. Secondly, the

metaheuristic approach is assessed and compared to the static-dynamic method. Lastly, a

sensitivity analysis is performed to demonstrate the consistency of the results.

5.1 Model evaluation

In this section, the model performance is evaluated. The models and their

extensions were implemented in the commercial solver GUROBI version 10.0.1 using

Python 3.11, solved with a 4 Core 2.30GHz processor using 8 threads and applied to the

synthetic data set described in the previous section. Each model has 12 iterations; two to

calculate the minimum and maximum boundary for the ϵ-constraint method, and a

further 10 iterations for the ϵ values. Each iteration of the model, including every

iteration of the augmented ϵ-constraint method, is given a 900-second time limit and an

optimality gap of 0.001. The results are based on 100 simulations for all models except

the static aggregate service levels model where only 10 simulations were performed due to

the long run-time of the model.

All models, except the aggregated service level model, were solved until optimality

in all iterations. Table 6 shows the number of shipments in the uncoordinated optimal

solutions and the model statistics are presented in Table 7.
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Table 6

The optimal number of shipments in the uncoordinated model

Uncoordinated optimal

number of shipments

7 8 9 10 11 12 Total Mean

Static 1 4 20 67 8 100 9.77

Static-dynamic 2 12 76 10 100 9.94

Static capacity 1 7 35 52 5 100 10.89

Static-dynamic capacity 6 43 43 8 100 10.53

Aggregate service levels 1 1 2 4 2 10 9.5

Receding horizon 2 19 79 100 11.77

Table 7

Model result overview

Model Average

simulation

time (s)

Average time

per iteration

(s)

Solved to

optimality

Average

optimality

gap

Worst

optimality

gap

Static 4.92 0.41 Yes - -

Static-dynamic 3.55 0.3 Yes - -

Receding-horizon

(1st iteration)

5.1 0.43 Yes - -

Receding-horizon total 24.4 0.15 Yes - -

Static capacity 7.82 0.65 Yes - -

Static-dynamic capacity 13.4 1.12 Yes - -

Static aggregated

service levels

8165.1 680.4 No 6.8% 14.6%

In all models, coordinating shipments allows a reduction in the number of
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shipments with a slight increase in the estimated cost while not breaching the service

level requirements. In the static model, the uncoordinated solution required an average of

9.77 shipments. In each iteration, reducing the number of shipments to 4, a 59% average

reduction in the number of shipments incurs an average 0.9% increase in cost. Similarly,

in the static-dynamic model, where the uncoordinated optimal solution required an

average of 9.94 shipments, a 59% reduction in the number of shipments to 4 shipments

incurs a 2.0% increase in cost. This relation can be seen in Figure 1. Furthermore, Table

8 shows the average cost increase compared to the uncoordinated model solution. Since

the static-dynamic model solutions have a lower cost than the static model, they are also

more sensitive to cost increases. This also means that the static-dynamic model has a

greater cost impact from shipment coordination. Additionally, as visible in Figure 1, the

static-dynamic has an equivalent cost for a single shipment and provides an average of

11.5% reduction of cost for all other numbers of shipments. Thus the static-dynamic

model outperformed the static model by having a lower computation time and lower cost.

Figure 1 . Model comparison
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Table 8

Increase in cost compared to the uncoordinated solution

Number of

shipments

Static Static-

dynamic

Static

capacity

Static-dynamic

capacity

Static aggregated

service levels

11 0.0% 0.0% 0.0% 0.0% 0.0%

10 0.0% 0.0% 0.0% 0.0% 0.0%

9 0.0% 0.0% 0.0% 0.1% 0.0%

8 0.1% 0.3% 0.2% 0.2% 0.0%

7 0.2% 0.5% 0.3% 0.5% 0.0%

6 0.4% 1.0% 0.7% 1.1% 0.8%

5 0.6% 1.4% 1.4% 10.0% 1.3%

4 0.9% 2.0% 1.9%

3 3.2% 9.8% 6.39%

2 12.8% 35.9% 26.6%

1 51.0% 131.1% 104.4%

Similarly to the effect shown in Sereshti et al. (2021), the aggregated service levels

reduced the cost at all numbers of shipments while maintaining the same service level.

The reduction of the number of shipments is similar to the static model with a 55%

reduction in the number of shipments incurring a 1.9% increase in cost. This is achieved

even without achieving optimality at all numbers of shipments and with an increased

solving time.

Further, when looking at the capacitated models, the uncoordinated solution of

the static capacity model requires on average 1.12 more shipments than the static model.

Similarly, the static-dynamic capacity model requires 0.57 more shipments than the

uncapacitated model. In the coordinated approach, the capacitated static and

static-dynamic models become infeasible with less than 5 shipments. However, the

reduction in the number of shipments is still possible until that level. In the static model,
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a reduction in the number of shipments by 63.3% to 4 shipments can be achieved with a

1.4% increase in cost. Similarly, in the static-dynamic capacity model, a reduction in the

average number of shipments of 52% to 5 shipments can be achieved with a 1.1% increase

in cost. The models differ in the formulation of the capacity constraints i.e., in the static

method the production amount is directly constrained while in the static-dynamic

method the maximum order-up-to level is limited. The tighter bound of the dynamic

model is highlighted in Figure 1 where at five shipments the dynamic solution provides a

worse solution than the static method.

A simulation of the receding horizon approach can be seen in Figure 2. Here the

period refers to the period where the production decisions are reevaluated. The graph

shows the trade-off between cost and the number of shipments. The inclusion of the

emissions penalty is visible in the convex shapes of the graphs. With the ϵ-constraint

method, the model calculates solutions between the lowest cost and the lowest emission

solution. In periods 10, 11, and 12 only a single solution is found as the lowest-cost

solution is also the lowest emission solution. Since the receding horizon approach

considers production in the current period, not the complete production plan, and

incorporates realized demand, the model must produce in additional periods if necessary

to meet the service level requirement. In this simulation, production occurred in periods

1, 3, 5, 7, and 9 compared to the expected 3 production periods in the initial production

plan. However, this improves on the uncoordinated solution which has a mean of 11.77

shipments. Moreover, when looking at the solution values, in period 7, production

occurred only for 2 out of the 10 items. Comparatively, in period 11, the model expected

to produce in the following period, however, less demand was realized and no further

production was needed. Nevertheless, since the receding horizon method determines the

production on the lowest total cost (objective (24)), this effect can be mitigated by

increasing the emission penalty term P . Moreover, the increase in the emission penalty

term can be used to enforce a maximum required number of shipments while still

allowing production deviations to meet the service level requirements. This can also be

accomplished by using a nonlinear penalty that increases with the number of shipments.
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Figure 2 . Receding horizon approach

5.2 Metaheuristic approach

In the following section, the metaheuristic approach is evaluated and compared

with the results of the static-dynamic method. Over all of the iterations, the

metaheuristic achieved less than 1.5% average optimality gap (Table 9). Smaller

optimality gaps were achieved in the solutions with fewer shipments. Similarly to the

static-dynamic model, the effects of coordinating shipments can be derived from the

metaheuristic approach. In the heuristic, the average of the lowest cost number of

shipments is 8.86. Further, in each iteration, the number of shipments can be reduced by

an average of 54.8 % to 4 shipments, with a 1.94 % increase in cost. This effect can also

be seen for a single simulation in Figure 3. Additionally, the run time was reduced by an

order of magnitude (0.66 seconds for the heuristic versus 3.55 seconds for the

static-dynamic model). Conclusively, the metaheuristic is a successful alternative to the

optimal model by achieving comparative results while decreasing the total run-time.
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Table 9

Metaheuristic average optimality gaps over 100 simulations

Number of

shipments

1 2 3 4 5 6 7 8 9 10 11

Optimality

gap (%)

0.00 0.00 0.44 0.77 0.56 0.71 0.87 1.01 1.20 1.32 1.27

Figure 3 . Metaheuristic comparison with the static-dynamic model

5.3 Sensitivity analysis

In the sensitivity analysis, all of the models are tested with differing parameters to

show the consistency of the results. In each scenario, some model attributes are modified

and the rest are kept constant to the initial model (Table 5). For each scenario, 10

synthetic data sets are generated and each data set is applied to all models. The time

constraint per iteration is set to 60 seconds compared to 900 seconds in the full models.

An exception was made for the scenario N = 15, T = 18 where the time limit was set to

120 seconds due to the aggregate service level model not finding an initial solution in 60

seconds. The complete list of scenarios is shown in Table 10 and the figures from all
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sensitivity analysis scenarios are shown in Appendix B.

Table 10

Sensitivity analysis scenario parameters

Scenario change

Number of items N = {5, 15}

Number of periods T = {6, 18}

Number of items and periods N, T = {(5, 6), (5, 18), (15, 6), (15, 18)}

Target service level for item i αi = {0.90, 0.99}

Time between orders TBO = {1, 5}

Inter-period variation of demand Vip = {0.1}

Coefficient of variation of demand Vd = {0.1}

Holding cost for item i hi = {5.5, 5.5, ..., 5.5}, {1, 1, 1, 1, 1, 10, 10, 10, 10, 10}

Capacity coefficient q = {2}

Aggregate service level target αa = {0.90}

The model comparison with changes in the number of items and periods can be

seen in Table 11. Increasing the number of items and the number of shipments

significantly increases the run time. However, the static, static-dynamic, static-capacity,

and receding horizon models achieved optimality in all scenarios. Furthermore, the

aggregate service level model achieved optimality only in the smallest scenario while

having a large optimality gap in the other scenarios.

The metaheuristic approach showed a significant run time decrease when

compared with the static-dynamic model in all scenarios with an average optimality gap

lower than 1.5%. This displays that the heuristic approach is useful when dealing with

larger instances where the MIP models can not achieve optimality in a feasible time. The

effects of additional items and periods with shipment coordination can be seen in Figure

4. Because of the larger planning horizon, in the static and static-dynamic models, a
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62.5% reduction in the number of shipments can be made with a 2% increase in cost.

However, with a capacity limitation, the coordination opportunities are limited as it

requires a few large shipments that are constrained by the available capacity.

Moreover, Figure 5 and Figure 6 show the effect of changing time between orders

and by proxy changing the setup costs. In Figure 5 where setup costs are lower, the

marginal cost of decreasing the number of shipments is increased. Comparatively, in

Figure 6 where the setup costs are high, the marginal increase of total costs when

decreasing the number of shipments becomes minimal. This shows that the impact of

coordination has a lower downside in situations with high setup costs. However, when

adjusting the holding costs per item there is no significant change to the cost of shipment

coordination as seen in Figure 7 and Figure 8.

Conclusively, the sensitivity analysis shows that the models are consistent with

changes in the number of periods, the number of items, and variations in the input

parameters.



30

Table 11

Sensitivity analysis model comparison

Scenario Static Static-dynamic Static

capacity

Static-dynamic

capacity

Aggregated

service levels

Receding

horizon

Metaheuristic

N = 5
Runtime (s) 2.85 1.80 4.01 4.98 480.45 9.72 0.30

Avg opt gap (%) - - - - 4.83 - 0.97

N = 15
Runtime (s) 6.91 3.98 12.20 27.65 669.48 17.39 0.35

Avg opt gap (%) - - - - 14.25 - 0.79

T = 6
Runtime (s) 0.63 0.37 1.59 1.61 455.60 1.41 0.11

Avg opt gap (%) - - - - 2.80 - 0.46

T = 18
Runtime (s) 14.18 12.71 17.57 52.43 677.11 58.43 1.06

Avg opt gap (%) - - - 0.36 8.43 - 0.95

N = 5, T = 6
Runtime (s) 0.24 0.42 0.45 0.60 36.96 0.87 0.06

Avg opt gap (%) - - - - - - 0.36

N = 15, T = 6
Runtime (s) 0.66 1.67 1.98 2.01 536.26 1.71 0.18

Avg opt gap (%) - - - - 4.00 - 0.48

N = 15, T = 18
Runtime (s) 62.31 45.93 82.59 172.99 1364.33 295.60 5.89

Avg opt gap (%) - - - 1.44 6.55 - 0.62

N = 5, T = 18
Runtime (s) 14.88 16.42 19.85 79.02 523.26 62.97 1.23

Avg opt gap (%) - - - 0.06 5.31 - 1.08
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Figure 4 . Scenario N = 15 T = 18

Figure 5 . Scenario TBO = 1 Figure 6 . Scenario TBO = 5

Figure 7 . Scenario

hi = {1, 1, 1, 1, 1, 10, 10, 10, 10, 10}
Figure 8 . Scenario hi = {5.5, 5.5, ..., 5.5}
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6 Conclusion

This thesis investigates reducing emissions by coordinating shipments in the

multi-item stochastic lot-sizing problem. Moreover, this thesis analyses the trade-offs

between cost minimization and emission reduction. The models use the augmented

ϵ-constraint bi-objective modeling and analyze static, static-dynamic, and static receding

horizon methods of demand uncertainty. Additionally, extensions with capacity

limitations and aggregated service levels are considered. The theis shows that a

significant reduction of periods with shipments can be achieved with a slight increase in

total cost. This provides a cost-efficient way to reduce carbon footprint in transportation.

Next, a variable neighborhood descent meta-heuristic was introduced for the

static-dynamic method. The metaheuristic achieved an average optimality gap of 0.74%

while reducing the run time by 82.3% compared to the static-dynamic method. This

shows that the metaheuristic is a useful alternative to the mixed integer programming

formulation of the static-dynamic method.

Finally, a sensitivity analysis was performed for all models showing that the

models are consistent when the parameters and scale of the models are varied.

Furthermore, the sensitivity analysis showed that the coordination of shipments has lower

marginal costs in scenarios with high setup costs.

Consequently, this thesis shows how operations research modeling can be used to

progress towards sustainability goals. The shipment coordination and similar methods

can be effectively used in supply chain management to reduce emissions with a minor cost

increase. These methods can also be further integrated into decision-support systems.

Since the analysis in this thesis was performed using a random, synthetically

generated data set, in further research, the models introduced in this thesis can be tested

using real empirical data. Additionally, the metaheuristic approach considers the

uncapacitated static-dynamic model and can be expanded using capacity limitations,

minimum order requirements, or other extensions. Similarly, shipment coordination can

be applied using dynamic uncertainty where the production decisions and the production

quantities are recalculated every period.
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Appendix A

VND neighbourhoods

Algorithm 3 Merge cycles
1: Input: Schedule

2: Initialise:

3: improvement = False

4: for item, ProdPeriodsItem in Schedule do

5: NewSchedule = Schedule

6: for i in range(len(ProdPeriodsItem)− 1) do

7: (a, b) = ProdPeriodsItem[i]

8: (c, d) = ProdPeriodsItem[i + 1]

9: NewSchedule[item] = ProdPeriodsItem[: i] + (a, d)+

ProdPeriodsItem[i + 1 :]

10: if GetNumPeriods(NewSchedule) == GetNumPeriods(Schedule) then

11: if CalcCost(NewSchedule) < CalcCost(Schedule) then

12: improvement = True

13: Schedule = NewSchedule

14: end if

15: end if

16: end for

17: end for

18: return Schedule, improvement
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Algorithm 4 Split cycles
1: Input: Schedule

2: Initialise:

3: improvement = False

4: AllProductionPeriods = GetProductionPeriods(solution)

5: for item, ProdPeriodsItem in Schedule do

6: NewSchedule = Schedule

7: FreePeriods = AllProductionPeriods not in ProdPeriodsItem

8: Combinations = GetPossibleCombinations(FreePeriods)

9: for NewPeriods in Combinations do

10: NewSchedule[item] = ProdPeriodsItem + NewPeriods

11: if CalcCost(NewSchedule) < CalcCost(Schedule) then

12: improvement = True

13: Schedule = NewSchedule

14: end if

15: end for

16: end for

17: return Schedule, improvement
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Algorithm 5 Shift cycles
1: Input: Schedule

2: Initialise:

3: improvement = False

4: AllProductionPeriods = GetProductionPeriods(solution)

5: for item, ProdPeriodsItem in Schedule do

6: NewSchedule = Schedule

7: FreePeriods = AllProductionPeriods not in ProdPeriodsItem

8: ShiftPeriods = ProdPeriodsItem− [FirstPeriod, LastPeriod]

9: for FreePeriod in FreePeriods do

10: for ShiftPeriod in ShiftPeriods do

11: NewSchedule[item] = ProdPeriodsItem− ShiftPeriod + FreePeriod

12: if CalcCost(NewSchedule) < CalcCost(Schedule) then

13: improvement = True

14: Schedule = NewSchedule

15: end if

16: end for

17: end for

18: end for

19: return Schedule, improvement
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Algorithm 6 Shift all cycles
1: Input: Schedule

2: Initialise:

3: improvement = False

4: AllProductionPeriods = GetProductionPeriods(solution)

5: FreePeriods = range(T ) not in ProdPeriodsItem

6: ShiftPeriods = ProdPeriodsItem− [FirstPeriod, LastPeriod]

7: for FreePeriod in FreePeriods do

8: for ShiftPeriod in ShiftPeriods do

9: NewSchedule = Schedule

10: for item, ProdPeriodsItem in Schedule do

11: if ShiftPeriod in ProdPeriodsItem then

12: NewSchedule[item] = ProdPeriodsItem−ShiftPeriod+FreePeriod

13: end if

14: end for

15: if CalcCost(NewSchedule) < CalcCost(Schedule) then

16: improvement = True

17: Schedule = NewSchedule

18: end if

19: end for

20: end for

21: return Schedule, improvement
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Appendix B

Sensitivity analysis figures



43



44



45



46



47



48



49



50



51



52



53



54



55



56



57



58



59


