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Abstract

This thesis evaluates the viability of a solution method to the Nurse Rostering Problem

that combines Machine Learning (ML) and Operations Research. Furthermore, several plan-

ning approaches are examined, to determine whether it could be interesting for hospitals to

change their approach. For this method an ML model is used that predicts how good the

assignment of a nurse to a duty is, which is created by ORTEC using data from a hospital

that they are cooperating with. It is shown that a feasible schedule can not be created if the

ML model is used by itself or in combination with simple heuristics. Therefore, these predic-

tions are used in a Mixed Integer Program and a Simulated Annealing algorithm to create a

schedule. Both of these methods are able to produce schedules that are comparable to the

realized schedule in terms of quality, showing the potential of the approach. Especially the

Mixed Integer Program seems to work well as it is able to find optimal solutions for realistic

instances within several minutes. It also became clear that planning multiple departments

simultaneously can drastically reduce the usage of flex nurses at the cost of a decrease in

schedule quality.
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1 Introduction

Operations researchers have been studying employee scheduling for more than 50 years, with

new developments being made every year. A specific case of this problem is the Nurse Rostering

Problem (NRP), which is encountered by every hospital in the world. This problem aims to

create a schedule for the nurses in the hospital that is optimal w.r.t. a certain objective while en-

suring several constraints are satisfied. Often this schedule is still made manually, which is a long

and complex process. Because of this, Machine Learning (ML) and Operations Research (OR)

can be used to develop algorithms for the NRP, that are able to create a schedule automatically.

The NRP creates a schedule by assigning nurses to the different types of duties during the

day. In many cases the day is divided into three duties based on the start and end times, with

each day consisting of an early, late and night duty, however, this also depends on the hospital

and the department. The assignment that is made has to satisfy several hard constraints that

ensure that all patients can be taken care of and the nurses are not overworked. There are also

several soft constraints that do not necessarily have to be satisfied, such as the preferences of

the nurses. However, it is desirable to satisfy as many of them as possible, to create a schedule

that is optimal for both the planners and the nurses.

Many hospitals in the Netherlands currently schedule their nurses using software called

ORTECWorkforce Scheduling (OWS) (ORTEC, 2021) which is provided by ORTEC, the leading

supplier of mathematical optimization software (ORTEC, 2023). However, ORTEC noticed that

the planners at these hospitals often prefer to create a schedule manually and do not use the

optimizer, that is included in the software and creates a schedule based on the given data. This

could be an indication that there are soft constraints that have not explicitly been stated before

creating the schedule or that are hard to express mathematically, which makes it difficult to

include them in the optimization. Therefore, ORTEC decided to investigate an ML model that

finds patterns in the historical data and detects these unknown soft constraints, in order to

predict whether a nurse should be scheduled for a specific shift or not.

The idea behind these predictions is to encapsulate the unknown soft constraints and other

preferences or patterns into scores that indicate how likely it is that both the planner and the

nurse will be happy if a nurse is scheduled to work on a given day. ORTEC has currently built a

prototype of the ML model based on the models developed by Cissen (2022) and Quak (2023).

This model uses data on the realized schedules of a hospital in the Netherlands to predict these

scores. Although these predictions might help in creating a schedule that is satisfactory for both

the planners and the nurses, the predictions alone usually do not create a feasible schedule since

none of the hard constraints are imposed by the model. In order to take these constraints into

account while still using the insights of the ML model, several OR methods can be used.

Therefore, the aim of this thesis is to find out whether a solution approach that solves the

NRP by using these scores in an OR method is a viable option, as this has not been researched

in any of the found literature. It is also examined if this approach makes it possible to use

different, more computationally expensive planning approaches, where either multiple months

or multiple departments are planned simultaneously, and whether they are worth using instead

of the current approach. Furthermore, because the scores are used as an input, no investigation

is done into improving them; only the most effective way to use these scores is investigated.
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To find an answer to these questions, the scores are used in a Mixed Integer Program (MIP)

and a Simulated Annealing (SA) algorithm, after it was shown that a feasible schedule could

not be created by using the ML model by itself or in combination with simple heuristics. The

objective in these methods is to maximize the sum of these scores, as a schedule with a high total

score should be better than one with a lower score. Since it is assumed that the soft constraints

are encapsulated in the predicted scores, these do not have to be included in the objective. This

seems to simplify the model compared to the ones presented in the existing literature, which

typically use weighted sums of an often large set of soft constraints.

Because of this, the MIP performs quite well as most instances can be solved in less than five

minutes. The MIP is also able to find schedules that have a significantly higher total score than

the realized schedule. It also performs equally well on several KPIs that give an indication of the

quality of a schedule. However, the MIP does struggle with very large instances, as it is not able

to find any feasible solution for an instance consisting of over 150 nurses with a planning horizon

of three months. To solve the problem for these large instances the SA algorithm can be used

instead, which is able to find schedules that are at most 3% worse than the optimal solution.

For smaller instances the metaheuristic performs even better, finding schedules that are within

1% of the optimal solution, although it does take more time than the MIP. Another thing to

note is that the starting solution for this metaheuristic is also created using the predicted scores.

These results show the potential that this approach has and that this way of combining ML

and OR is definitely a viable option that can be used to solve the NRP. It also became apparent

that planning multiple months at once is likely not worth it as only a slight improvement can

be made. On the other hand, planning multiple departments simultaneously makes it possible

to drastically reduce the usage of flex nurses. However, since this does come at the cost of the

quality of the schedule, it is up to the hospital to evaluate this trade-off and decide whether it

is worth it.

The rest of this thesis is structured as follows: Section 2 contains an overview of the existing

literature on the NRP and the use of ML in OR techniques. Afterwards, a detailed description of

the problem is given in Section 3 as well as a description of the case that is studied. The methods

used to solve the NRP are then presented in Section 4, after which the results are discussed in

Section 5. Section 6 contains a discussion of the findings and, finally, the conclusions that are

drawn from these finding can be found in Section 7.

2 Literature Review

In this section an overview is given of the existing literature that is relevant to either the NRP or

the solution approach, that involves a combination of ML and methods from Operations Research

(OR). In Section 2.1 a summary is given of how the NRP is formulated in the literature and

how it is solved. Afterwards, the literature on the various ways that ML can be used in OR

methods is discussed in Section 2.2.
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2.1 Nurse Rostering Problem

Since employee scheduling is a problem that many companies encounter frequently, it has been

studied extensively by operations researchers. Van den Bergh et al. (2013) and Ernst et al. (2004)

both give an overview of the general problem, but while Van den Bergh et al. (2013) focus more

on the most common constraints and solution methods, Ernst et al. (2004) focus more on the

specific problems that are encountered in different employment sectors. The problem has also

been show to be NP-complete by Cooper and Kingston (1996), prompting researchers to develop

metaheuristics to solve it.

In the health care sector, employees need to be scheduled during the night and during

weekends as well, which makes the problem more complex. For this reason a lot of research

is done on scheduling in this sector, with many studies focusing on the NRP in particular. In

Section 2.1.1 and overview of the literature on the NRP is given and in Section 2.1.2 several

methods that have been used to solve the problem are presented.

2.1.1 Overview

An overview of the existing literature on the NRP is given by Burke et al. (2004b), De Caus-

maecker and Vanden Berghe (2011) and Cheang et al. (2003), who all compare the formulations

of the problem in different papers, which constraints are often included and the various solu-

tion methods that can be used. While the three papers have a lot of similarities, Burke et al.

(2004b) focuses more on the practical aspect of the problem and how it fits in the more general

context of employee scheduling in hospitals, De Causmaecker and Vanden Berghe (2011) aim to

introduce a notation that would make it easier to apply methods for the NRP to more general

problems and Cheang et al. (2003) focus more on the theoretical aspect of the problem such as

the constraints that are taken into account and the objective that is formulated.

Some research has also been done to verify whether the theoretical results in the literature are

representative of the real world. Drake (2014) surveyed several hospitals in Malaysia to examine

the validity of the constraints that are often used. From the survey it became apparent that the

constraints from the literature were indeed used, however, it could also be seen that several hard

constraints were sometimes implemented as soft constraints. Additionally, Kellogg and Walczak

(2007) showed that only 30% of the systems proposed in the literature are implemented by the

hospitals, indicating that further research is needed to bridge the gap between the theoretical

and practical solutions.

As the resulting schedule should satisfy both planners and nurses, Breugem et al. (2022)

and Burke et al. (2001b) researched how a schedule should be evaluated. While Breugem et al.

(2022) does not focus specifically on schedules for nurses, they do conclude that a balance needs

to be found between the fairness and attractiveness in a schedule. The fairness refers to an

equal distribution of the workload and attractiveness to how attractive the schedule is to each

individual nurse, e.g. how many preferences are fulfilled and how many days off they get between

shifts. To measure this attractiveness, Burke et al. (2001b) propose an algorithm that evaluates

a schedule by examining the personal schedule for each individual nurse. This evaluation method

was shown to be effective when using metaheuristics, in particular evolutionary algorithms, due

to its speed and low memory usage.
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2.1.2 Solution Methods

Since the NRP is a complex problem that can generally not be solved to optimality using stand-

ard solvers, it is often solved using metaheuristics that aim to find a good solution quickly, even

if this solution is not optimal. An example of these metaheuristics is the Variable Neighborhood

Search (VNS), which is used by Burke et al. (2004a) to solve the NRP. To improve the perform-

ance of metaheuristics, they can also be combined to create hybrid approaches, which is done

by Burke et al. (2008), who combined the VNS with heuristic ordering. This method proved to

be especially effective on smaller instances consisting of up to 20 nurses.

However, since large departments in hospitals often have more than 20 nurses, several other

metaheuristics can be used to improve the solution, as is done by Goodman et al. (2009), who use

a hybrid Greedy Randomized Adaptive Search Procedure (GRASP) and a knapsack approach

to solve the problem. Another metaheuristic that can be used to avoid local optima is the Tabu

Search (TS), which is used by Burke et al. (1998) and Bellanti et al. (2004). Burke et al. (1998)

describe the TS algorithm that was developed for nurse rostering software for Belgian hospitals

and Bellanti et al. (2004) present a TS as well as an Iterated Local Search.

Alternatively, Thompson (1996), Ceschia et al. (2023), Turhan and Bilgen (2020) and Had-

wan (2022) all use Simulated Annealing (SA) to solve the NRP. The first two use only SA

while the other two combine it with another method to create a hybrid approach. Thompson

(1996) applies SA to a simplification of the problem where skill levels are ignored. On the other

hand, Ceschia et al. (2023) does not simplify the problem and applies SA to several real-world

instances from Italian health care institutions. Turhan and Bilgen (2020) describe an algorithm

that combines the SA with the fix-and-optimize heuristic and Hadwan (2022) proposes a hybrid

of SA with a Harmony Search.

Several evolutionary algorithms have also been used to solve the NRP as is done in Kelemci

and Uyar (2007), Awadallah et al. (2015) and Wu et al. (2013), who use a Genetic Algorithm, an

Artificial Bee Colony algorithm and Ant Colony Optimization respectively. Burke et al. (2001a)

propose a hybrid of a TS and a Memetic Algorithm (MA) that is shown to outperform both

approach when they are implemented individually. A MA is also used by Aickelin et al. (2007),

who use it to obtain probabilities in their Estimation of Distribution Algorithm. Alternatively,

mathematical programming based methods can be used such as Column Generation (CG) as is

done in both He and Qu (2012) and Baeklund (2014).

2.2 ML in OR

In recent years OR and ML experts have researched methods that use ML to solve complex

combinatorial optimization problems. These methods could use only ML to solve the problem

or they could use ML as part of an algorithm or metaheuristic that is often used in OR. An

example of the former is given by Vinyals et al. (2015), who use Recurrent Neural Networks to

solve the Traveling Salesman Problem, while an example of the latter is given by Kruber et al.

(2017) and Lodi et al. (2020) who both use ML to classify whether an algorithm could be applied

to a given instance. Another way that ML can be used as a part of an algorithm is presented

by Fitzpatrick et al. (2021) and Tayebi et al. (2022), who use ML to prune parts of the solution

space that are unlikely to be optimal, before solving the problem using a standard solver. A
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more extensive overview of the literature on ML in OR is given by Bengio et al. (2021).

Research has also been done into implementing ML into algorithms for scheduling problems.

For example, Kumar et al. (2019) use ML to solve the NRP by learning constraints from historical

schedules and solving the problem, with the learned constraints, using a standard solver. Besides

the NRP, ML has also been used to solve the Crew Pairing Problem. Yaakoubi et al. (2020) and

Tahir et al. (2021) both use ML to predict probabilities that show how likely it is that a pairing

will be in an optimal solution and they use these probabilities in a CG algorithm. Yaakoubi

et al. (2020) mainly use the predictions to obtain starting solutions for the CG and in several

algorithms that are used to speed up the CG. On the other hand, Tahir et al. (2021) also use

the predictions in the pricing problem of the CG, to ensure that no variables are added that

are very unlikely to result in an optimal solution. Additionally, Tahir et al. (2021) use a score

that is based on a ranking of the probabilities to determine which option to add, instead of

using the actual probabilities, as they saw that it decreased the run time significantly. They

argued that this decrease is caused by the fact that the score based on the ranking is discrete

and the probabilities are continuous. In the continuous case, many alternative solutions with

nearly identical values need to be evaluated as one of them might bring a slight improvement,

even if this improvement is insignificant. However, in the discrete case, these alternatives will

likely have the same score, which makes it unnecessary to evaluate them further. Therefore, the

total number of evaluated solutions is reduced and the run time is decreased.

3 Problem Description

In this section a detailed description is given of the problem at hand and the case study that

will be conducted to test the methods on real life data. Firstly, in Section 3.1 some background

information is given on the problem. Then the goals of the research are discussed in Section

3.2, after which the constraints that need to be taken into account are presented in Section

3.3. Finally, Section 3.4 describes the case that is studied, giving some additional information

specific to the hospital whose data is used, such as added constraints and assumptions.

3.1 Background Information

ORTEC supplies their scheduling software, ORTEC Workforce Scheduling (OWS) (ORTEC,

2021), to many hospitals in the Netherlands. However, they noticed that the optimizer, that

is included in OWS, is often not used and that a schedule is usually created manually by the

planners at these hospital. A possible cause for this could be soft constraints that either have

not explicitly been stated or are hard to express mathematically, which makes it difficult to

include them in the optimization. Therefore, ORTEC decided to investigate whether machine

learning (ML) could be used in an alternative solution approach that might perform better than

the one used by the current optimizer. This investigation is done in cooperation with one of

the hospitals that use OWS, who are providing historical data on the realized schedules of the

nurses for the different departments.

In this hospital each day is split up into a day (D), evening (A) and night (N) duty and for

each duty a capacity is determined at the start of the planning period. This capacity corresponds
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to the number of nurses with a certain skill that should be working during that duty to ensure

that patients get the care they need. In the rest of this report, a shift refers to one of the

slots in a duty while a duty refers to all slots together, e.g. if a given duty has a duty capacity

of three, there are three shifts of this duty that a nurse can be assigned to. The hospital in

question currently plans each of their departments individually and independent of the other

departments, which will be referred to as ‘decentralized planning’ in the rest of this thesis. Most

of these departments use an approach called ‘self-scheduling’, which consists of three rounds.

However, before this process starts, planners first compare the total contract hours for all nurses

within a department with the total required hours in that department. If the required hours

can not be filled using only the nurses within the department, flex nurses are assigned to the

department and go through the same process as the other nurses in the department.

Once the flex nurses are added, the first round starts and the nurses define their own ideal

schedule without regarding the capacity for any given duty. During this round each nurse

can also formulate three mandatory preferences that have to be satisfied in the final schedule.

Afterwards, the nurses can see the resulting schedule that is created by combining each of the

personal schedules and the duties where the capacity is either not met or exceeded. Then, in

the second round the nurses are allowed to swap shifts or change the duty that they have chosen

a shift from, in order to fix the under- or overstaffing of these duties. For each swap that a

nurse makes, they receive points indicating how flexible they were during this round. Finally, in

the third round any remaining issues are fixed by a planner and the final schedule is published.

While fixing these violations, the planners take the points from the second round into account,

to ensure that nurses that swapped many of their preferred duties are not forced to make any

other changes. Since the nurses can choose individual shifts when creating their own schedule in

the first round, the final schedule is acyclical and each duty on every day is planned individually,

which is why the same is done in the solution approach.

Currently, ORTEC has built a prototype of an ML model that finds patterns in the historical

data on the realized schedules of a given department based on the work done by Cissen (2022)

and Quak (2023). This model predicts how likely it is that a given nurse will be scheduled

for a shift of a specific duty on a given day and assigns a score between one and zero to how

‘good’ the assignments, where a very good assignment has a score of one and a bad assignment

has a score of zero. These scores should encapsulate the unknown soft constraints and other

preferences or patterns and they should give an image of how likely it is that both the planner

and the nurse will be happy with the assignment. An initial schedule can also be created based

on these scores, which can be used as a starting solution for a metaheuristic that creates a

feasible schedule. Alternatively, they could be used to prune the solution space by excluding

nurse-to-duty assignments that are highly unlikely in an attempt to improve the performance

of an algorithm. However, the predictions are only made for nurses within the department,

which means the data on the shifts done by the flex nurses or nurses from different departments

is filtered out and the external nurses need to be modeled in another way. Furthermore, the

predicted scores are seen as an input for the developed methods and not as a part of the results.

This is done because the focus in this thesis is on finding the most effective way to use the scores

and not on how the improve them.
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3.2 Aim of Research

The main goal of this thesis is to examine the viability of an approach that combines ML and

OR to solve the NRP. To do this, the resulting schedules are compared to the realized ones,

which should give an indication of the quality of these created schedules. This quality is also

used to determine to what extent the OR side of the combination is actually needed and, if it

is necessary, which OR method works best. In this comparison between methods, the runtime

needed to create the schedule is not evaluated very thoroughly and it is only discussed briefly.

This is due to the fact that the planners at the hospital stated that the runtime is not as

important, since a schedule is only made once a month and they could run it overnight. For this

reason, the runtime of methods is not investigated very thoroughly, as long as a schedule can be

created within ten hours.

Besides the evaluation of the approach itself, research is also done into alternative planning

approaches that might become possible due to the simplification of the model, caused by the

encapsulation of multiple soft constraints into a single score using the ML model. For these

alternative planning approaches, the benefits and drawbacks compared to the current situation

are evaluated, as well as the effect that they have on the performance of the OR methods.

3.3 Nurse Rostering Constraints

Many constraints need to be taken into account when creating a schedule. An important part of

creating a feasible schedule is to ensure that the coverage constraints are met, i.e. that the duty

capacity is met for each skill level of each duty on every day. Besides these coverage constraints

there are many labor laws that need to be adhered to, namely the Collective Labor Agreement

(NL: Collectieve Arbeidsovereenkomst) and the Labor Time Law (NL: Arbeidstijdenwet). Since

these laws consist of many constraints not all are taken into account during the modeling of the

problem. Based on existing literature and the rules currently used in OWS the following subset

is used in the model:

• Forward rotation, if a nurse works two days in a row, there needs to be at least 24 hours

between the start times of the shifts, e.g. if they work an evening shift they can do an

evening or night shift the next day but not a day shift.

• A nurse can work a maximum of 60 hours in a week

• A nurse can do at most 20 night shifts in 4 weeks

• A nurse needs to have at least 46 hours of rest after three or more consecutive night shifts

• A nurse can do at most five consecutive night shifts

• A nurse can do at most seven consecutive shifts if at least one of the shifts is a night shift

• A nurse needs to have at least 22 weekends off work in a year

• A nurse does not have to work exactly their contract hours in a week, but any deviations

need to be balanced out at the end of the year
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Because of these constraints it might not be possible to satisfy the coverage constraints for

every duty. Therefore, the flex nurses, briefly mentioned in Section 3.1, can be used to meet the

capacity. However, the use of these flex workers could cost the hospital more money which is

why it would be ideal to use them only if there is no other alternative.

Many different schedules could be made that satisfy these constraints and for that reason,

a criterion needs to be chosen that can be used to compare them. The criterion that is used in

this thesis is the maximization of the total score of a schedule, which is the sum of the predicted

scores of the assignments that are made in the evaluated schedule. By maximizing this, the

unknown soft constraints, that should be encapsulated into the scores by the ML model, are

taken into account in the eventual schedule. This criterion is the focal point of the solution

approach that is investigated, as it is the link between the ML model created by ORTEC and

the work done in this thesis.

3.4 Case Study

To test the performance of the methods presented in this thesis in a real world setting, a case

study is performed using data provided by the hospital that ORTEC is working with, which is

discussed in Section 3.4.1. Afterwards, several additional constraints are presented in Section

3.4.2, that might not be applicable to other hospitals. The previous work done by ORTEC is

then described in Section 3.4.3 and the alternative planning approaches that are evaluated are

described in Section 3.4.4.

3.4.1 Data

In order to test the applicability of the approach in a real world setting, data of one of the

hospitals that uses OWS is provided by ORTEC. This data was collected between 2016 and

2022 and contains information about the nurses in each department within the hospital, e.g.

when they were under contract, their contract hours and their skill level. The predetermined

capacity for each duty, previously described in Section 3.1, can also be found in the data. Besides

this data, the realized schedules are available and show which nurses actually worked a shift of

a specific duty, taking last minute changes such as sickness into account. However, the planned

schedules that were published by the planners before any last minute changes are not available,

since they are overwritten when a change is made and no copy is saved.

Since the planned schedules are not available, the realized ones are used in the ML model.

However, this does cause some complications as there is no way to verify if the planners would

still think the realized schedule is good, as it might have changed drastically since the original

planned schedule was approved. Another complication that is caused by the use of realized

instead of planned schedules is that the predetermined capacity for the duties is not always met

in the realized version since it might not always be possible to find a replacement in case of last

minute cancellations.

Ideally, the ML model would be trained on perfect information, however, since only the

realized schedule is available, the assumption needs to be made that this schedule is perfect.

This also means that the provided duty capacity is changed to match the number of nurses
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that was assigned to the duty in the realized schedule with the assumption that this change in

capacity was known beforehand.

During the development of the ML model the data of three different departments is used,

namely the Intensive Care (IC) department, the Cardiology department and the Neurology

department. The main reason for selecting these departments is their size as they consists of

68, 36 and 33 nurses, respectively, and they are, therefore, relatively large departments. Due

to their size they provide the ML model with more data to train on which should help with

getting accurate predictions. For this reason these three departments are used in this thesis as

well, to test the applicability of the proposed approach to real world data. To show some of

the differences between these departments, Figure 1 shows the number of shifts that is done by

nurses within the department and the shifts that are done by nurses from other departments,

e.g. the flex nurses.

IC C N IC C N IC C N IC C N
0

500

1000

1500

2000

2500

Day Evening Night Total

Number of shifts done in the realized schedule for each department

Nurse Groups
Department
Other Department

Figure 1: Number of shifts done by nurses within and outside of the department for each model,
where C corresponds to Cardiology and N to Neurology

In the figure it can be seen that the IC department is the biggest department but that it is

also the department that uses nurses from other department the least. On the other hand the

figure shows that the Cardiology department uses nurses from other departments the most and

that nearly a third of all shifts is done by one of these nurses. It can also be seen that there

are significantly less evening and night shifts in the Cardiology and Neurology departments

compared to the IC department.

Since there is no data on the availability of the nurses from the other departments, only the

nurses within the department are planned and the shifts that the nurses from other departments

do in the realized schedule are fixed. It is, therefore, assumed that these shifts are assigned to

the nurses beforehand and that this is known when the schedule is created. The duty capacity
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can then be lowered to take these assigned shifts into account as they no longer need to be done

by a nurse within the department. This is done to mimic the circumstances that the realized

schedule were executed in as closely as possible, in an attempt to make the comparison between

the schedules as fair as possible.

As the hospital creates schedules on a monthly basis, the methods presented in this thesis

are evaluated on the months of April, May and June of 2022. This period is chosen because this

was the latest data that was available when the development of the ML model began. It will

also be examined in a vacuum, which means that the schedules from before or after this period

are not regarded. Additionally, the three months are split up based on full weeks, to make it

easier to match contract hours. The three months consists of 91 days between April 1st and

June 30th, which is equivalent to 13 weeks, with the first one spanning from April 1st to April

7th, the second starting on the 8th and ending on the 15th and so on. These weeks are then

assigned to a planning month based on the date of the first day in the week, which results in

the planning month of April consisting of 5 weeks, while May and June both consist of 4 weeks.

3.4.2 Case Specific Constraints

From discussions with the cooperating hospital it became apparent that several additional con-

straints are taken into account when creating the schedule on top of the labor laws. While these

constraints might not apply to other hospitals, they are included into the methods evaluated in

this thesis. The first of these added constraints is that a nurse needs at least 72 hours of rest

after three or more nights shifts, opposed to the 46 hours that are required in the labor laws.

Due to the combination of this constraint and the constraint on no more than 5 consecutive

night shifts, it becomes impossible for a nurse to do more than 20 nights shifts in 4 weeks.

This means that this constraint can be excluded from any models. Additionally, the hospital in

question handles contract hours on a monthly basis, which means that a nurse should not work

more than 17 hours, or 2 shifts, more than their contract hours in a month.

Another constraint that is taken into account by the planners, is that partial weekends should

be avoided as much as possible. These are the weekends where a nurse works either on Saturday

or Sunday but not on both days. A nurse should also not work more than three weekends in

a row, and even working three consecutive weekends should be avoided if possible. Finally,

the planners take the distribution of the evening and night shifts over the nurses into account.

In this thesis this distribution is calculated using a formula that ORTEC is currently using in

another hospital, namely:

distribution d =
∑
n∈N

(
vdn

)2
, d ∈ {A, D, weekend} (1)

Here, vdn is defined as the number of evening, night or weekend shifts that nurse n has worked

in a given period.
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3.4.3 ML model

Since the hospital is currently planning each department individually for one month at a time,

the base case focuses on doing the same. This is also the case that was considered by ORTEC

when creating the ML model. During this process the assumption was made that every shift of

a given duty is the same length, where shifts of D and A duties are 8.5 hours long and shifts of

N duties are 8 hours long and this assumption is, therefore, also made in this thesis. Because

of this assumption the constraint on the weekly working hours in a week of a nurse can never

be violated, which is why it is excluded from any models that are presented. Additionally, it is

assumed that the duty capacity for skill level s does not need to be satisfied using only nurses

with skill level s, but that it can also be filled using nurses that are more skilled.

The scores on nurse-to-duty assignments, that are predicted by the ML model, are also

assumed to be correct. This means that they are able to encapsulate the preferences of both

the planners and the nurses perfectly and that a schedule that consists of only assignments with

very high scores is considered good by both planners and nurses.

In order to evaluate the scores obtained from the ML model, a schedule is created that can

be used as a benchmark. In this schedule, each nurse is assigned the duty with the highest score

for every day, where not working is also seen as a duty. This gives an upper bound on the total

score that a schedule can have, which is why the resulting schedule is denoted as UB. However,

it is likely that this schedule is not feasible since it does not take any of the hard constraints

into account. In Table 1 the number of constraint violations for this schedule is compared to

the violations in the realized schedule for the departments that are examined. In this table the

labor laws are shown first, with the additional hospital specific constraints below them.

IC Cardiology Neurology
KPIs RS UB RS UB RS UB

Consecutive shifts 0 3 0 0 0 0
Consecutive shifts incl. night 2 15 1 1 0 0

Consecutive nights 10 13 0 0 0 1
Rest after night series 0 13 0 2 0 3

Forward rotation 121 248 17 44 8 52

Partial weekends 30 99 26 121 16 134
3+ consecutive weekends 20 46 12 28 11 28
Distribution evening shifts 5,579 6,201 2,080 1,108 2,507 2,342
Distribution night shifts 5,870 6,451 1,388 1,438 1,896 2,135

Table 1: Number of labor laws violations in schedules during April, May and June of 2022

It can be seen that the nearly all constraint are violated several times in the realized schedule,

which can be caused by last minute changes. The figure shows that especially the forward

rotation constraint is violated often in both the UB schedule and the realized schedule. This is

especially true for the IC department as this law is broken more than 100 times in the realized

schedule and nearly 250 times in the UB schedule. For all additional constraints it can also be

seen that the UB schedule contains more violations than the realized one for at least one of the

departments.
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3.4.4 Extensions

Besides the base case where a monthly schedule is made decentralized, several alternative plan-

ning approaches are examined in this thesis. For the first of these alternatives, the schedule

is made on a quarterly basis instead of a monthly basis, which is described in Section 3.4.4.1.

Afterwards, in Section 3.4.4.2 a planning approach is discussed where multiple departments are

planned simultaneously.

3.4.4.1 Decentralized Quarterly Planning

Several labor laws are based on the yearly schedule of nurses and including these constraints in

a shorter planning period often requires a more restrictive constraint, e.g. taking the minimum

of 22 weekends off in a year into account in a monthly planning is done by imposing a minimum

of 2 weekends off each month which might not be optimal. Because of this, planning longer

periods at a time allows for more freedom in how these yearly constraints are satisfied with a

yearly planning being the ideal scenario. On the other hand, nurses might not like it if schedules

are made for such a long period, since it means they would have to register their availability

and holidays more than a year in advance. For this reason, a planning horizon of three months

is chosen as this still relaxes the restrictiveness of the yearly constraints, but is also not too long

for the nurses.

3.4.4.2 Centralized Planning

Besides the decentralized planning approach, this thesis also considers a hypothetical case where

departments are planned simultaneously, which is called centralized planning. In this scenario,

there is a flex pool consisting of a number of flex nurses that need to be planned, instead of

assuming that the planners plan them manually before the rest of the schedule is created. This

means that the shifts that are filled by flex nurses are actually assigned to a specific flex nurse

by the model, which makes it possible to ensure no labor laws are violated for the flex nurses.

It also becomes possible to include the exchange or borrowing of nurses between departments

when planning. This can help when there is one department that does not have enough nurses

to meet their duty capacity and another department that has too many nurses, which means

it is not possible to meet the contract hours for all of them. Another advantage of centralized

planning is that meetings involving nurses from multiple departments could be planned easier.

When considering centralized planning, several additional assumptions need to be made.

Since it is not known in which departments each flex nurse can work and what their skill level

would be in a given department, the assumption is made that a flex nurse can work any duty,

regardless of the required skill level and the department. Additionally, no score is gained from

assigning flex nurses to duties, while assigning a flex nurse not to work on a day results in a

score of 1. This is done to model the fact that these flex nurses should only be used if there is

no other option. It is also assumed that any nurse can be borrowed by another department and

that the skill level of a nurse is lowered by one if they are borrowed. Finally, it is assumed that

nurses do not like to work in other departments, which is modeled by halving the score gained

from an assignment of a nurse to a duty if it is a duty in a different department.

15



In this experiment, the case is studied where the three departments, presented in Section

3.4.1, are planned simultaneously with a flex pool consisting of 20 flex nurses who have a contract

for 30 hours in a week. This number is chosen based on the total number of shifts that is done by

flex nurses in the realized schedule for the three departments. Since this is data from the same

hospital, the additional constraints mentioned in Section 3.4.2 are still included. Furthermore,

this centralized approach is used to create both monthly and quarterly schedules, as is done for

the decentralized one. The quarterly planning approach could also give an indication of how

the methods react to very large instances for the monthly approach, where more than three

departments need to be planned simultaneously.

4 Methodology

In this section the methods are described that are used to go from the scores, predicted by the ML

model, to a feasible schedule. First, several simple heuristics are presented in Section 4.1, after

which a Mixed Integer Program (MIP) is formulated in Section 4.2. Two metaheuristics are then

described in Section 4.3 and, finally, Section 4.4 contains a description of the experimental setup,

i.e. on what aspects the schedules are compared and how these comparisons are interpreted.

4.1 Simple Heuristics

Because the UB schedule is infeasible, as was shown in Section 3.4.3, two simple heuristics are

used to remove these violations. The first one, called Heuristic 1 (H1) uses the UB schedule as a

starting point and iteratively removes the shifts that are causing any infeasibilities. Afterwards

an attempt is made to fill the duty capacity by assigning nurses who can work the duty while

maintaining the feasibility.

The second heuristic, called Heuristic 2 (H2), works in a similar way, with the only difference

being the starting solution. For this second approach, an initial schedule is created by filling

the duty capacity, Cs
td, using the nurses with the highest probability for the given duty. To find

these nurses a list is constructed of all nurses that have a non-zero probability of doing the duty

and that are not assigned to another duty on the same day. After which the Cs
td nurses on the

list with the highest probability are assigned to the duty. However, if the number of nurses on

the list is lower than the duty capacity, all nurses on the list are assigned to the duty and the

remainder is seen as understaffing. For every day, this is done for the night, evening and day

duty consecutively. This order is chosen since it might be easier to find a flex nurse that is

willing to do a day duty than one that is willing to do a night duty. The same process that was

used to make the schedule feasible in H1 is then used to make this schedule feasible.

4.2 Mixed Integer Program

Based on the constraints from Section 3.3 and Section 3.4.2 a MIP is formulated in (2a)-(2r).
Sets:

• N is the set of nurses that work at the department

• T is the set of the days in the planning horizon

• W is the set of weeks in the planning horizon
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• Tw is the set of days in week w

• M is the set of months in the planning horizon

• M0 is the set of months in the planning horizon and the month prior to the start of the planning horizon,

m0

• Tm is the set of days within month m

• T 0 is the set of the days in the planning horizon and m0

• W 0 is the set of the weeks in the planning horizon and m0

• D0 is the set of all duties, where not working corresponds to 0, a day duty to 1, an evening duty to 2 and

a night duty to 3

• D ⊂ D0 is the set of working duties where the not working duty is excluded

• S is the set of skill levels that a nurse can belong to where 0 is the highest and can do duties of all lower

skill levels, 1 is the second highest and can do all duties except for the ones of skill level 0 and so on

• Ns is the set of nurses that are allowed to do duties in skill level s, i.e. the nurses with skill level s or

better

Parameters:

• pntd is the score that is gained if nurse n is assigned to work duty d on day t

• lk is the length of duty k

• Cs
td is the required capacity for nurses of skill level s during duty d of day t

• hnm is the number of hours that nurse n should work in the weeks that start in month m according to

their contract

• Kn is the advised minimum number of weekends off that nurse n should have in the planning period that

is derived from the yearly minimum of 22, e.g. for a planning horizon of the three months Kn = 22
4

= 5.5.

The number of weekends off nurse n has had in the previous planning periods in the year can also be taken

into account.

• Pmax is the maximum number of times a nurse works a partial weekend in the schedule

• Vconsec is the maximum number of consecutive weekends that a nurse is allowed to work

• Vmax is the maximum number of times a nurse is allowed to work Vconsec weekends in a row

• Ud is an upper bound on the distribution for duty d

• x∗
ntd is used to set the schedule for m0 and is equal to 1 if nurse n ∈ N ∪ F did duty d on day t and 0

otherwise

Decision variables:

• xntd is a binary variable that is equal to 1 if nurse n ∈ N ∪ F is planned to work duty d on day t

• Rnw is a binary variable that is equal to 1 if nurse n works during the weekend in week w

• Pnw is a binary variable that is equal to 1 if nurse n works a partial weekend in week w

• Vnw is a binary variable that is equal to 1 if nurse n works Vconsec weekends in a row starting in week w

maximize
∑
n∈N

∑
t∈T

∑
d∈D0

pntdxntd (2a)

subject to
∑
d∈D0

xntd = 1 n ∈ N, t ∈ T 0 (2b)

∑
n∈Ns

xntd ≥ Cs
td t ∈ T 0, d ∈ D, s ∈ S (2c)

t+9∑
t′=t

∑
d∈D

xnt′d ≤ 9 n ∈ N, t ∈ T 0 (2d)

t+7∑
t′=t

xnt′3 + 7

t+7∑
t′=t

∑
d∈D

xnt′d ≤ 56 n ∈ N, t ∈ T 0 (2e)
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t+5∑
t′=t

xnt′3 ≤ 5 n ∈ N, t ∈ T 0 (2f)

∑
d∈D

t+2∑
t′=t

xntd + 3

t−1∑
t′=t−3

xnt′3 + xnt3 ≤ 9 n ∈ N, t ∈ T 0 (2g)

xntd +

d−1∑
d′=1

xn(t+1)d′ ≤ 1 n ∈ N, t ∈ T 0, d ∈ D (2h)

∑
t∈Tm

∑
d∈D

ldxntd ≤ hnm + 17 n ∈ N,m ∈ M (2i)

∑
d∈D

xn(satw)d + xn(sunw)d ≤ 2Rnw − Pnw n ∈ N,w ∈ W 0 (2j)

∑
w∈W

Rnw ≤ |W | −Kn n ∈ N (2k)

∑
n∈N

∑
w∈W

Pnw ≤ Pmax (2l)

w+Vconsec∑
w′=w

Rnw ≤ Vconsec n ∈ N,w ∈ W 0 (2m)

w+(Vconsec−1)∑
w′=w

Rnw − Vnw ≤ Vconsec − 1 n ∈ N,w ∈ W 0 (2n)

∑
n∈N

∑
w∈W

Vnw ≤ Vmax (2o)

∑
n∈N

∑
m∈M

(∑
t∈Tm

xnt2

)2

≤ Ud d ∈ {2, 3} (2p)

xntd = x∗
ntd n ∈ N, t ∈ Tm0 , d ∈ D (2q)

xntd, Rnw, Pnw, Vnw ∈ B n ∈ N, t ∈ T, d ∈ D,w ∈ W (2r)

Here, the objective in (2a) corresponds to the maximization of the score in the schedule

and ensures that the resulting schedule stays as close to the original predictions as possible.

Constraint (2b) ensures that every nurse is either working a duty or has the day off for every

day in the planning horizon. Constraint (2c) ensures that the capacity is met for all skill levels

of every duty. Constraint (2d) imposes the maximum number of consecutive shifts a nurse can

do, which is set to nine, and (2e) imposes a maximum of seven for series that include a night

shift. Then, Constraint (2f) corresponds to the maximum number of five consecutive night

shifts. Constraint (2g) ensures that a nurse gets at least three rest days after more than three

consecutive night shifts and (2h) imposes the forward rotation constraint. Constraint (2i) ensure

that each nurse does not work more than 17 hours, i.e. 2 shifts, more than their contract hours

in a month.

Furthermore, the days satw and sunw in constraint (2j) correspond to the Saturday and

Sunday of week w, respectively. This constraint sets the variable that indicates whether a nurse

works during the weekend of a given week or not and the variable showing whether a nurse works

a partial weekend during a week. Constraint (2k) ensures that each nurse n has at least Kn

weekends off and (2l) imposes the maximum on the number of partial weekends in the schedule.

Constraint (2m) then ensures that a nurse does not work more weekends in a row than the

maximum number of consecutive weekends. Moreover, the variable that indicates whether a

nurse works the maximum allowed consecutive weekends is set using (2n), while (2o) sets the
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upper bound on the number of times this occurs. The upper bounds on the distribution of

evening and nights shifts is imposed by (2p) and the schedule for the month before the planning

horizon, m0, is fixed using (2q) to ensure no violations are made during the transition from

the end of the last month to the start of the planning horizon. This is only done for May and

June of 2022, since the period between April and June in 2022 is examined in a vacuum and it

is therefore assumed there is no schedule from March. Finally, constraints (2r) determine the

domain of the decision variables.

In this formulation the nurse-day combinations where a nurse has a score of 1 if they do not

work are pruned and, therefore, not included in the model. This is done under the assumption

that a nurse could never be assigned to a work duty one of these days in an optimal solution,

which would make it unnecessary to try to optimize the assignment on these days.

In an ideal scenario, the parameters Pmax and Vmax would be set to zero since partial weekends

and many consecutive weekends should not occur in the schedule. However, since only the

realized schedule is available and it does contain these violations, the parameters are set to the

number of times it occurs in the realized schedule. This is also done for U2 and U3, in an attempt

to make the comparison fairer and to recreate the circumstances that the realized schedule was

executed in as closely as possible.

This same formulation can be used for the quarterly planning approach, however, for the

centralized planning case the following slight changes need to be made to the MIP. The sets

N and S are defined separately for each department a ∈ A where A is the set of departments

including a dummy department for the flex nurses. Since all nurses can be borrowed, they can

all do duties in any of the departments. Therefore, the duty set is defined as the union of the

sets for all other departments, i.e. D = ∪a∈A\{flex}Da. By substituting the sets in (2a)-(2r) with

their department specific counterpart, e.g. substituting n ∈ N with n ∈ Na, a ∈ A and
∑

n∈N
with

∑
a∈A

∑
n∈Na

, the MIP can be used for this experiment.

As a result, the interpretation of the objective can be split up into two terms, namely,

the total score that the schedule gains from the assignments of the nurses within the planned

departments and the ‘score’ that is gained from the flex nurses. Since the flex nurses all have

a score of 1 if they do not work on a day and 0 otherwise, this second term only depends on

the number of shifts that are done by flex nurses. Since this number is easier to interpret than

the corresponding score, it is used in the results instead of the score. Additionally, because of

the added flex nurses and the ability to exchange nurses between departments, constraint (2c)

is replaced by the following constraint:

∑
n∈Ns

a∪Nflex∪Ns
borrow

xntd ≥ Cs
td , a ∈ A \ {flex}, t ∈ T, d ∈ Da, s ∈ Sa (3)

Where, Nflex is the set of flex nurses and N s
borrow is the set of nurses that can be borrowed for

skill s. Additionally, Pmax, Vmax, U2 and U3 are set to the sum of these parameters for the

different departments. For the partial weekends it, for example, becomes Pmax =
∑

a∈A P a
max,

where P a
max is the value of the parameter that is used when only planning department a.
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4.3 Metaheuristics

The scores are also used in two metaheuristics. In these metaheuristics a local search algorithm

is used to improve the initial solution, which in this case is UB. For this metaheuristic a schedule

is represented as a matrix, where the columns correspond to the days in the planning horizon

and the rows to the nurses. The values in this matrix then correspond to the duty that the nurse

does on the given day. An example of this representation of a schedule is shown in Figure 2.

t1 t2 t3 t4 t5

n1

n2

n3

n4

D A A

D A A N

A N N

D D D

Figure 2: Example of a representation of a schedule in the heuristic where rows correspond to
nurses, columns to days and each cell corresponds to the duty that the nurse does on the day

The neighborhoods that are used in the local search are discussed in Section 4.3.1, while

Section 4.3.2 gives a description of the Simulated Annealing (SA) algorithm that is used. Finally,

in Section 4.3.3 a Variable Neighborhood Search is presented.

4.3.1 Neighborhoods

Six neighborhoods are used in this local search that are inspired by neighborhoods that ORTEC

currently uses in their optimizer and the ones that are often used for the NRP, such as in the

work done by Ceschia et al. (2023). The first two neighborhoods consist of solutions that can

be obtained by swapping a single shift between either two or three nurses, as long as the shifts

are of different duties, and they are therefore called DutySwap2 and DutySwap3. These swaps

can be between working shifts or between at least one working shift and at least one day off.

In Figure 3 two examples are shown of possible swaps in DutySwap2, one where the swapped

shifts are on the same day and one where they are on different days.

A A

D A N

A N N

D D DD D

A A

D A N

A N N

D

t1 t2 t3 t4 t5

n1

n2

n3

n4

D

A

t1 t2 t3 t4 t5

n1

n2

n3

n4

A

D

(a) Example of same day swap

Figure 3: Examples of neighbors in DutySwap2
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A

D A N

A N

D D D

D

A

A

D A N

A N

D D D

D

A

N

t1 t2 t3 t4 t5

n1

n2

n3

n4

A

N

t1 t2 t3 t4 t5

n1

n2

n3

n4

A

(b) Example of different day swap

Figure 3: Examples of neighbors in DutySwap2 (cont.)

For the swaps where the shifts are on different days in DutySwap2, the shifts can be at most

five days apart in an attempt to keep the running time low. A swap can also only occur if the

nurses are not working on the day of their new shift, e.g. for the example in Figure 3b the swap

would not be possible if it would involve t3 instead of t4 since n1 is already doing an evening

shift on that day. The logic behind the swaps in DutySwap3 works in a similar way, however,

only the same day swaps shown in Figure 3a are considered. Additionally, in DutySwap3 only

the swaps where all three nurses are doing a different shift are considered, as a swap where at

least two of the nurses are doing the same shift would be the same as a swap from DutySwap2.

For example, a swap between n1, n2 and n4 on t2 in the schedule in the figure would result

in the same schedule as a swap from DutySwap2 between n2 and either n1 or n4. While all

possible pairs of nurses and all days are evaluated for DutySwap2, only a random sample of 500

combinations of nurses is evaluated for DutySwap3. This means that the time complexity for

DutySwap2 is O(|N |2|T |), while it is O(|T |) DutySwap3

For the third and fourth neighborhood, named SeriesSwap2 and SeriesSwap3, the neighbor-

ing solutions are obtained by swapping a series of shifts between two or three nurses. Here, a

series of shifts for nurse n is defined as a subset of consecutive days for which it holds that n

works on every day within this subset and does not work on the days right before and right after

this subset. An example of this is given in Figure 4.

A A

D N

A N N

D

n3

A

D N

N N

D A

t1 t2 t3 t4 t5

n1

n2

n4

A

A

D D D

A

t1 t2 t3 t4 t5

n1

n2

n3

n4

D D

A A

D

Figure 4: Example of neighbor in SeriesSwap2

In this figure, t2, t3 and t4 form a series for n4 which is why the shifts on these days can be

swapped with n2. As can be seen in the example, it is not necessary that the swapped period is

a series for all nurses involved in the swap, e.g. t2, t3 and t4 do not form a series for n2 because

they do not work on t3 and do work on t1 and t5, but the swap is still allowed. This is done

because the number of possible swaps would be significantly decreased if those swaps were not
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allowed. Therefore, a swap is considered as long as the period is a series for one of the nurses

and the series is longer than one day. For these two neighborhoods the same evaluation tactic

is used as for the DutySwap neighborhoods and, since |T |
2 is an upper bound on the number of

series a nurse can have, the time complexity is the same as well.

Solutions in the fifth and sixth neighborhood can be obtained by adding or removing a

single shift, respectively, which is why they are called Add and Remove. In Add a given nurse

is assigned to one of the shifts of a duty on day on which they are not working. An example of

this in terms of the solution representation in Figure 2 could be adding a D on t1 for n1. For

the neighbors in Remove a given nurse is given a day off one of the days on which they were

previously working, e.g. the D on t2 is removed for n1 in the schedule shown in Figure 2. In the

worst case of both neighborhoods all days need to be evaluated for all nurses, which means the

time complexity is O(|N ||T |) for both Add and Remove.

In an attempt to escape local optima, the moves that are made in the six neighborhoods do

not necessarily need to result in a feasible schedule. This means that during the algorithm it

will be allowed to accept infeasible solutions, however, a violation of one of the hard constraints

will introduce a weighted penalty term into the objective. This penalty term should ensure that

any infeasibilities are eventually repaired and the resulting schedule is in fact feasible. This is

also done by Ceschia et al. (2023) who modeled most of the constraints, that are considered

hard in this thesis, as soft constraints for their Simulated Annealing heuristic.

4.3.2 Simulated Annealing

One of the local search algorithms that is used to improve the schedule is the Simulated Annealing

(SA) algorithm, which was first introduced in Kirkpatrick et al. (1983) and applied to the NRP

by Ceschia et al. (2023). Similar to other local search based heuristics, SA starts from an

initial solution and looks for improvement by iteratively making small changes. However, it

does incorporate diversification into this local search. To regulate how much diversification

will be applied during the algorithm, SA introduces a temperature and worse solutions may be

accepted during the algorithm based on this temperature, in an attempt to broaden the search.

For this reason both the current solution and the best found solution in the previous iterations is

stored during the algorithm. The temperature that is used in SA is initialized at the maximum

temperature, Tmax, and is decreased by a cooling factor, α, until it reaches the end temperature,

Tend. This decrease takes place after a certain number of iterations, however, it could also be

decreased if a new solution is accepted a certain number of times, which is also done by Ceschia

et al. (2023). In this thesis, 150 and 75 are used for these parameters. When Tend is reached

and no new best solution has been found for 75 iterations, it is assumed that the algorithm

has found a local optimum and the temperature is therefore reset to a higher number in an

attempt to escape this local optimum, which is also done by Osman (1995) who apply SA to

the generalized assignment problem. In this thesis there is a maximum number of resets that

can occur after which the algorithm can terminate. The number that the temperature is reset

to becomes smaller with each reset, with the nth reset setting the temperature to Tmax
2n .

During each iteration of the algorithm one of the neighborhoods is randomly selected and

from this random neighborhood a solution is chosen as a candidate to be the next solution.
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The neighbor that is chosen is either a random solution in the neighborhood with probability

0.1 + 0.8 T−Tend
Tmax−Tend

or the first improvement that is found when evaluating the neighborhood

in a random order. By choosing this probability, random neighbors are chosen more often in

the first stages of the algorithm and more improvements are chosen during the later iterations,

but there is still at least a 10% chance of getting either option. This is done to allow the

algorithm to diversify more in the earlier iterations and to force the algorithm towards the

local or global optimum in the later iterations. Additionally, if the temperature is equal to the

end temperature and the first improvement in the given neighborhood is chosen, there is a 5%

probability of looking for the best improvement in the neighborhood instead of the first. This is

done in an attempt get to the local optimum faster, however, this is not done very often, since

looking for the best improvement can be quite expensive in terms of computing time.

If the candidate has a better objective than the current solution, it is always accepted and

it becomes the new current solution. However, if the objective of the candidate is lower, then

the candidate is accepted with probability exp(∆f
T ), where ∆f is the difference in objective

between the current solution and the candidate. Since the objective of the candidate is lower,

this difference will always be negative, which means that the probability will always be between

0 and 1. These iterations are repeated until either a maximum number of iterations is reached or

Tend is reached, no more resets are allowed and no new best solution is found for 100 iterations.

After this, the algorithm is terminated and the best found solution is returned.

Additionally, the weights, that determine how heavily violations of hard constraints are

penalized, are adjusted during the algorithm to prevent the weights from either being too high

or too low, since a weight that is too high will restrict the traversal of the solution space and a

very low weight will result in too many violations. This is also done by Vidal et al. (2012), who

apply this weight adjustment to regulate the proportion of feasible solutions in the population

for their Hybrid Genetic Algorithm that is applied to several Vehicle Routing Problems. The

adjustment scheme that is used in this article is used in this algorithm, i.e. if there are either

too many or too few violations the weight is multiplied by 1.2 or 0.85, respectively.

This adjustment does not occur before a nearly feasible solution is found. This is done since

the starting solution, i.e. UB, contains a large number of violations and adjusting the weights

while removing these violations would cause the weights to increase drastically, even though this

would not be necessary. This means that the initial weights do still need to be chosen correctly,

as they should be high enough to ensure that the SA will move to a nearly feasible solution.

The weights will also not be adjusted when the temperature is above a given threshold, since

a majority of the moves that are made when the temperature is high will be random moves.

This means that violations can likely not be removed effectively and the weights will again be

increased unnecessarily.

After a nearly feasible solution is found, the weights are updated every 500 iterations. To

determine whether any adjustments need to be made during one of these updates, the average

number of times each hard constraint is violated in the last 200 iterations is computed. Each

of these averages is then compared to two predetermined thresholds, corresponding to a lower

and upper bound on the average number of violations for the given constraint. If this average

is lower than the first threshold the weight is multiplied by 0.85 and if it is higher than the
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second threshold the weight is multiplied by 1.2. This average is only computed for the last 200

iterations to give the algorithm some time to adjust to the new weights.

4.3.3 Variable Neighborhood Search

Another metaheuristic that is used to improve on the initial schedule is the Variable Neigh-

borhood Search (VNS). In this algorithm the neighborhoods are explored in order of their

size, which, for the neighborhoods introduced in Section 4.3.1, is Add -Remove-SeriesSwap3 -

DutySwap3 -SeriesSwap2 -DutySwap2. Although Add and Remove have a worse theoretical com-

plexity than SeriesSwap3 and DutySwap3, they are smaller in practice which is why this order

is chosen. This is caused by the fact that the number of samples that is taken for the latter

neighborhoods is significantly larger than the number of nurses in the instance. For each of

the neighborhoods the best neighbor is found and if this neighbor is an improvement on the

current solution, then the bigger neighborhoods are not evaluated and this improvement is ac-

cepted. This metaheuristic is mainly used to test whether the diversification added by using SA

is working properly and allowing the algorithm to escape or avoid local optima.

4.4 Experimental Setup

To evaluate whether these methods are a viable option for the NRP, several criteria are used

to compare the resulting schedules to UB and the realized schedule. The first of which is the

total score of the schedule, i.e. the sum of the scores gained by assigning shifts to nurses, which

is the objective for all methods. Under the assumption that the predicted scores are correct,

a schedule with a higher score should be better than a schedule with a lower score. Since UB

is an upper bound on this score, this schedule can be seen as the perfect schedule according to

the ML model. By looking at how close the total score of a schedule is to the score of UB, the

quality of the schedule according to this model can then be determined.

Additionally, the F1-score w.r.t. the realized schedule is used as a criterion, since the as-

sumption is made that the realized schedule is perfect. This F1-score is often used to evaluate

the quality of classification models in ML, because it incorporates both the precision and recall

of the model and, therefore, gives a more complete indication of how good the model is. In this

thesis the F1-score is used to measure how close the schedules created by the methods are to

this ‘perfect’ schedule. The values presented in this thesis are all obtained using the scikit-learn

library (Pedregosa et al., 2011) for Python. To use this library the schedules are formatted as

a solution to a multiclass classification problem, where the evaluated schedule can be seen as

the predicted classifications and the realized schedule corresponds to the correct classifications.

The following formulas are then used to compute the F1-score for each class of the multiclass

classification problem, which in this case corresponds to each duty d ∈ D0:

F1d =
2× precisiond × recalld
precisiond + recalld

,where precisiond =
TPd

TPd + FPd
, recalld =

TPd

TPd + FNd
(4)

In these formulas TPd is the number of true positives, which is the number of nurse-day

combinations, i.e. the cells of the matrix in Figure 2, where both the evaluated and the realized

24



schedule contain duty d in the cell. Furthermore, the number of false positives, FPd, is the

number of cells that contain duty d in the evaluated schedule but contain another duty in the

realized schedule. Finally, the false negatives, FNd, correspond to the number of cells where the

realized schedule contains duty d and the evaluated schedule contains another duty.

After computing this F1-score for all duties, the scores can be averaged using several meth-

ods. In this thesis three averaging methods are presented, namely micro, macro and weighted

averaging. In micro averaging the multiclass aspect is ignored and the total values over all duties

are used for TP, FP and FN, which causes the F1-score to be equal to the accuracy of the model,

i.e. the proportion of samples that are correctly classified. Alternatively, in macro averaging the

unweighted mean is taken of the F1-scores of the duties, while a weighted mean is taken for the

weighted F1-score. The scores of the duties are weighed based on the number of occurrences of

the duty in the realized schedule in an attempt to take class imbalance into account.

Several KPIs are used as a third criterion in the comparison as they can help to get an idea

of how good the schedules are. This is done since a schedule could still be good even if it is

completely different from the realized schedule and even if it does not have a high total score.

The performance of a schedule on these KPIs is compared to the performance of the realized

schedule, which should give an indication of how the schedule compared to the realized one. For

this comparison the following KPIs were selected by the cooperating hospital from a list of KPIs

that ORTEC is currently using for another hospital:

• Distribution weekend shifts, which indicates how evenly these shifts are distributed between

the nurses

• Long series of consecutive workdays, i.e. the number of times a nurse works a lot of days

in a row

• Single rest days between workdays, which is the number of times a nurse has only one rest

day between two working days

• Two consecutive weekends, which is the number of times a nurse works two weekends in a

row

These KPIs are all formulated such that a lower number is better. The distribution of

weekend shifts is the only one that can not be computed by simply counting the number of

occurrences. For this KPI the same formula can be used that is used for the evening and

night shifts in Section 3.4.2. The ML model should incorporate these KPIs into the scores by

learning from the patterns in the previous schedules, which is why they are not included as soft

constraints.

The schedules that are created using the methods in this section are, therefore, compared

using the total score, the F1-score and the KPIs. Based on this comparison it is then evaluated

whether the approach combining ML and OR is able to create good schedules.

To evaluate the usefulness of the alternative planning approaches, these criteria are still

important. However, the decentralized and centralized cases are quite different and because

of that the goal of the optimization also differs between the scenarios. For the scenario with

centralized planning another goal of the approach is to examine whether the number of shifts
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done by flex nurses could be lowered by scheduling differently or exchanging nurses between

departments. For this reason the resulting schedule in this case is also evaluated on the number

of shifts done by flex nurses, besides the criteria used for decentralized planning.

For the evaluation of the differences between the monthly and quarterly planning, the quality

of the schedules is again used. This extension is included for two reasons, namely, to see how

big of an improvement is made by the extra freedom it gives in satisfying the yearly labor laws

and to evaluate the performance of the methods on larger instances. This is especially true for

the centralized case as the quarterly planning could give an indication of how the methods will

react to instances where even more departments are planned at the same time. The runtime of

the methods for the quarterly case is, therefore, also interesting.

Furthermore, the metaheuristics are only run for the quarterly case due to time constraints

and the fact that these methods are likely to be more useful for larger instances where the MIP

is no longer able to solve the problem. For this reason, the quarterly case is the one that is

mainly used to determine which of the methods works best. For the comparison of the different

methods the quality of schedules is again evaluated using the described criteria and the runtime

each model needs is also taken into account. However, this runtime should only be considered

when schedules are nearly the same quality, since this is not the main concern of the planners

as was mentioned previously.

5 Results

The results, obtained using the methods described in the previous section, are shown in this

section. The methods were implemented in C# on .Net framework 4.8 and the MIP presented

in Section 4.2 is modeled using Cplex version 22.1.1. In Section 5.1 the quality of the created

schedule is evaluated for the decentralized monthly planning approach. Afterwards, the altern-

ative planning approaches are evaluated in Section 5.2. Finally, a comparison of the different

methods and their performance is given in Section 5.3.

5.1 Quality Created Schedule

In Table 2 the average score per assignment and the runtime needed are shown for the UB

schedule, the simple heuristics, the MIP and the realized schedule. For the values in this table

the average is taken over the three planned months. The score per assignment is computed

by dividing the total score by the number of assignments that need to be made to create the

schedule and it is shown instead of the total score due to the different instance sizes between

departments and between months.
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RS UB H1 H2 MIP

IC
Score per assignment 0.6111 0.7005 0.6100 0.6244 0.6622

Runtime (s) - - 0.01 0.01 42.22

Cardio
Score per assignment 0.4576 0.5944 0.5482 0.5440 0.5711

Runtime (s) - - 0.00 0.00 1.98

Neuro
Score per assignment 0.4762 0.5603 0.5154 0.5068 0.5344

Runtime (s) - - 0.00 0.00 6.73

Table 2: Comparison of the average ML-score per assignment and runtime needed in seconds
when planning one month

Remark that the average score for UB is an upper bound on the score for the other schedules.

In an ideal scenario, where the ML model predicts perfectly, this would be equal to the score

for the realized schedule, but this is not the case for these instances. In the table it can be seen

that making UB feasible using H1 results in a big decrease in score. However, it is still higher

than the score for the realized schedule. The scores for H1 and H2 also seem to be quite close

to each other, even though they start from different starting solutions. It should, however, be

noted that these heuristics do not always give a feasible solution, which is caused by the fact

that changes are made without considering long term consequences. This could result in cases

where it is impossible to fill the duty capacity while maintaining feasibility due to the scheduled

shifts on the surrounding days for the nurses that are skilled enough to fill this capacity.

The table also shows that the MIP comes quite close to the upper bound on the score and

that, on average, it can be solved within a minute for all three departments. The runtime does

seem to increase considerably for larger instances as, the average runtime for the IC department

increases drastically compared to the two smaller departments.

The micro, macro and weighted F1-score are shown for the four schedules in Figure 5, with

an average again being taken over the three instances for each department. As mentioned before,

this F1-score should give an indication of how similar the resulting schedule is to the realized

schedule.

0.0 0.2 0.4 0.6 0.8

micro

macro

weighted

IC

0.0 0.2 0.4 0.6 0.8

Cardiology

0.0 0.2 0.4 0.6 0.8

Neurology

Model
UB
MIP
H1
H2

Comparison F1-score for different models

Figure 5: F1-scores w.r.t. the realized schedule for each model

The figure shows that the F1-score decreases when going from UB to H1, which is to be

expected when looking at the decrease in score. It can also be seen that the F1-scores from the

MIP and UB are nearly the same and that they are even slightly higher for the MIP. This could
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be an indication that there are factors that could not be recognized by the ML model and that

these missed factors are then included by the MIP. This would then correct some mispredictions

and result in a higher F1-score.

These F1-scores do still seem to be pretty low, with the Cardiology and Neurology depart-

ment having scores around 0.6, which means the schedules are not very close to the realized

schedule. However, as mentioned before, the schedules can still be good even if they are quite

different from the realized one. To determine the quality of these schedules, the KPIs can be

computed and then compared to the one for the realized schedule, which is shown in Figure 6.

In the figure the dashed blue line corresponds to the value of the KPIs in the realized schedule

and all bars correspond to the percentual difference with this value. Here, bars left of the blue

line show an improvement and bars right of the line show that the schedule performed worse on

the KPI. Again the average is taken over the instances.
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Comparison KPIs realized schedule, probs. (with capacity) and MIP in percentages

Figure 6: KPI comparison where all values are scaled as a percentual deviation from the realized
schedule

The table shows that the schedule from the MIP performs quite well on the KPIs and that

they are either close to realized ones or an improvement on most of them. However, it can be

seen that removing the infeasibilities from the realized schedule does come at a cost, as one of the

KPIs gets significantly worse for all departments. For the IC department this is the number of

single rest days, while it is the KPI on more than five consecutive duties for both the Cardiology

and the Neurology department.

5.2 Alternative Planning Approaches

In this section the alternative planning approaches are evaluated. First, the results for the

centralized monthly planning approach are presented in Section 5.2.1 and compared to the results

for the decentralized approach. Then the quarterly cases for both approaches are discussed in

Section 5.2.2 and Section 5.2.3. For the results of the SA algorithm in these sections, the best

found solution from several runs of the algorithm is presented. This schedule is chosen because

the main objective in this section is to evaluate the planning approach, which can done more

fairly when using the best solution that can be found. However, a more in depth analysis of

the different runs is given in Section 5.3, since the results in this section can give an overly
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optimistic outlook on the performance of this method. For all runs the following parameters

are used: Tmax = 10, Tend = 0.5, α = 0.99, the maximum number of resets is set to 2 and the

maximum number of iterations is 100,000. An example of the initial weights that are chosen

and their progression during the algorithm can be found in Appendix A for one of the runs.

5.2.1 Centralized Monthly Planning

Table 3 again shows the average score per assignment and the runtime for several schedules.

However, in this table the number of shifts done by flex nurses is shown as well. For the MIP

the results are also shown for the decentralized case and the centralized one, to compare the

two approaches. The flex nurses are excluded in the computation of the score per assignment in

this table. Furthermore, the MIP is run with a time limit of four hours and the optimality gap

is also shown in the table. This gap is the one reported by Cplex when reaching this time limit.

All four values are again averaged over the three planned months.

RS UB H1 H2 MIP MIP-Decentral

Score per assignment 0.5383 0.6389 0.5567 0.5412 0.5811 0.6075
Flex shifts 426.33 652.33 289 211 138.33 426.33

Opt. gap (%) - - - - 1.951 -
Runtime (s) - - 0.06 0.07 14,413.45 152.81

Table 3: Comparison of ML-score per assignment, runtime needed in seconds, the number of
duties done by flex nurses and the optimality gap reported by Cplex

In the table it can be seen that the score per assignment for the simple heuristics is a lot

lower than the UB. These heuristics are also not guaranteed to result in a feasible schedule, as

was the case with decentralized planning. Although shifts can be done by flex nurses and these

flex nurses seem to be used less in the heuristics, there are still several days where the duty

capacity can not be met without violating any constraints. This is due to the fact that there can

be days where more than 20 flex nurses are needed and, while this can be solved by adding more

flex nurses, this is not always possible in reality. Most of these days are during a weekend, as

the added constraint on consecutive worked weekends appears to be especially tough to satisfy

using these simple changes.

Furthermore, the table shows that the MIP is able to obtain a nearly optimal solution as the

average optimality gap is around 2%. However, it was not able to obtain an optimal solution for

any of the three months, which is why the average runtime is equal to four hours. It can also

be seen that the MIP is able to decrease the number of flex shifts by 288 shifts compared to the

decentralized MIP, which is a 67% decrease. This does, however, come with a 4.34% decrease

in the score per assignment.

To see how close the generated schedules are to the realized schedule, Figure 7 shows the

F1-scores w.r.t. the realized schedules.
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Figure 7: F1-scores w.r.t. the realized schedule for each model

In the figure it can be seen that the F1-scores for the MIP are a lot lower than the ones

from UB, unlike in the decentralized case where the MIP even performed better for several

instances. However, this could be a consequence of the decrease in the number of shifts done by

flex nurses as these shifts need to be done by nurses within the department, which results in a

lower F1-score. It can also be seen that the simple heuristics perform even worse than the MIP,

even though they need more flex shifts and are infeasible.

Finally, a comparison of the KPIs to the realized schedule is presented in Figure 8. For this

figure the KPIs are scaled in the same way as was done in the decentralized case. It should

also be noted that the flex nurses are excluded in the calculation of these KPIs, as it is hard

to measure the KPIs for flex nurses in the realized schedule and including them only in the

generated methods would be unfair.
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Figure 8: KPI comparison where all values are scaled as a percentual deviation from the realized
schedule

The MIP again seems to perform worse than in the decentralized case, which is likely due

to the decrease in flex shifts. However, the MIP still performs similarly to the realized schedule

on four of the six KPIs, even with the 67% decrease in flex shifts.
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5.2.2 Decentralized Quarterly Planning

For the decentralized quarterly planning approach, the average score per assignment and the

runtime needed are computed for all methods. In Table 4 a comparison is made between the

monthly and quarterly approach for the simple heuristics and the MIP. Note that there might

be slight differences between the scores per assignment in this table and the ones in Table 2.

This is due to the way the average is taken for these scores, as the scores in Table 2 are obtained

by first computing the average score per assignment for each month and then taking the average

of these averages for the three months. Therefore, the difference in length between the months

is not taken into account, while this difference is taken into account when computing the scores

in this table. For the metaheuristics only the quarterly case is presented because of the reasons

mentioned in Section 4.4. The runtime for SA is also not completely know, since the best solution

is chosen for multiple runs and most runs were done without keeping track of the runtime. For

this reason, the runtime is shown for the single run that was timed, as a lower bound on the

time needed for all runs.

H1 H2 MIP SA VNS
Monthly Quarterly Monthly Quarterly Monthly Quarterly Quarterly Quarterly

IC
Score per assignment 0.6096 0.6001 0.6255 0.6192 0.6636 0.6680 0.6644 0.6565

Understaffing 55 46 22 25 - - - -
Runtime (s) 0.03 0.05 0.03 0.04 126.66 4,992.30 >2,727.59 212.60

Cardio
Score per assignment 0.5477 0.5424 0.5438 0.5378 0.5710 0.5725 0.5716 0.5593

Understaffing 24 20 5 11 - - - -
Runtime (s) 0.01 0.01 0.01 0.01 5.96 85.48 >3,537.28 95.22

Neuro
Score per assignment 0.5152 0.5105 0.5063 0.5064 0.5340 0.5367 0.5361 0.5218

Understaffing 91 90 39 49 - - - -
Runtime (s) 0.01 0.01 0.01 0.01 20.19 135.78 >4,567.92 72.24

Table 4: Comparison of the ML-score per assignment and runtime needed in seconds when
planning three months as well as the amount of understaffing in the schedule

The table shows that the average score per assignment decreases when creating a quarterly

schedule for both H1 and H2. However, this decrease in score does come with a decrease in

the number of times the duty capacity is not met for H1. But despite this, the heuristic is still

not able to find a completely feasible schedule. Additionally, the table shows that the score per

assignment increases by around 0.5% for the MIP when planning quarterly instead of monthly.

But the runtime needed also increases significantly, with the MIP even taking more than an

hour for the IC department.

It can also be seen that the score per assignment for the SA and VNS is quite close to the one

obtained by the MIP. The schedule created using SA even has a slightly higher score than the

one created using the MIP for the monthly case. However, the table also shows that the running

time needed for both metaheuristics is significantly higher than the time needed to obtain the

optimal solution using the MIP. Additionally, the use of SA is able to make the gap to the

optimal solution smaller for all departments compared to the VNS. However, this improvement

does come at a cost as the runtime needed increases drastically when using SA instead of VNS.

The F1-scores and KPIs for the quarterly approach do not change much from the monthly

case, which is why they are not shown. However, they can be found in Appendix C.
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5.2.3 Centralized Quarterly Planning

For the centralized quarterly planning approach the MIP is not able to find a feasible solution,

even after several hours. It can, therefore, not be compared to the monthly planning. But this

comparison can still be made for the simple heuristics, which is done in Table 5. In this table

the results for the MIP are shown for the monthly case, which can be compared to the results

for the metaheuristics. Since the total runtime is again not known for the multiple runs of the

SA algorithm, the time needed for a single run is shown as a lower bound in this table as well.

H1 H2 MIP SA VNS
Monthly Quarterly Monthly Quarterly Monthly Quarterly Quarterly

Score per assignment 0.5557 0.5422 0.5410 0.5290 0.5815 0.5868 0.5786
Flex shifts 867 1,001 633 846 415 492 640

Understaffing 126 97 79 67 - - -
Runtime (s) 0.18 0.21 0.21 0.34 43,240.35 >13,112.771 7,307.042

Table 5: Comparison of ML-score per assignment, runtime needed in seconds and the number
of duties done by flex nurses

It can be seen that the quarterly case of the heuristics seems to perform worse than the

monthly case based on the score and the flex shifts. However, the quarterly approach is again

able to produce a schedule that is closer to being completely feasible.

The table also shows that the score per assignment for the schedules created by SA with

the quarterly approach is slightly higher than the score of monthly MIP. However, this increase

in score does come at a cost as the number of flex shifts is increased by 77. Furthermore, it

can again be seen that SA is able to outperform the VNS as it does better on both the score

and flex shifts, but SA does likely take more than twice as long. In terms of runtime, using

the metaheuristics with the quarterly approach also seems to outperform the monthly MIP.

Although it is hard to evaluate the runtime for SA, the different runs can be run in parallel

which means that the runtime should not increase by too much.

Since the F1-scores are again very similar to the ones for the monthly case, they can be found

in Appendix C instead of this section. On the other hand, there are some differences in the KPIs

between the monthly MIP and the metaheuristics. For this reason, they are shown in Figure 9

and they are again scaled to represent a percentual deviation from the realized schedule. In this

figure the simple heuristics are left out since they did not change much from the monthly case.
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Figure 9: KPI comparison where all values are scaled as a percentual deviation from the realized
schedule

The two metaheuristics seem to perform quite similarly on the KPIs, as differences on a

given KPI seem to be balanced out by another KPI. Furthermore, the figure shows that the

metaheuristics perform worse than the monthly MIP on most KPIs, although the difference

does not appear to be that big. This means that, although the score can be improved by

planning quarterly instead of monthly, this does cause a worse performance on the number of

flex shifts and the KPIs.

5.3 Comparison Methods

A more in depth comparison of the methods is presented in this section. Since the simple

heuristics are not able to satisfy the duty capacity, they are not included in this comparison,

which means the focus is on the MIP and the two metaheuristics. First a small analysis is done

on the effect the size of the MIP has on the time needed to find the first feasible solution. This is

done to find a possible explanation for the struggles the MIP has with the centralized quarterly

approach and can be found in Section 5.3.1. Afterwards, the SA algorithm is analyzed in more

detail. As mentioned in the previous section, several runs are done due to the random elements

in the algorithm and the differences between these runs are examined in Section 5.3.2. Finally,

the methods are compared to each other for the different planning approaches in Section 5.3.3.

5.3.1 Time Until First Feasible Solution MIP

Since the MIP struggled to find any feasible solution for the centralized quarterly approach,

the time it took to find the first feasible solution and the number of variables in the model are

analyzed for the other instances. Using these numbers, the scatter plots in Figure 10 can then

be created, which should give an indication of the performance of the MIP for different instance

sizes.
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Figure 10: Comparison of the number of variables in the MIP and the time needed to find a
feasible solution

The first thing that stands out from the figure is that there are very few large instances.

However, from the points that are in the scatter plot, it seems that there is a superlinear relation,

e.g. quadratic or exponential, between the number of variables in the MIP and the time it takes

to find a feasible solution. This is to be expected since the NRP is known to be NP-hard, which

means that finding any feasible solution to the problem is likely also NP-hard. This would also

explain why the MIP struggles to find a feasible solution for the centralized quarterly planning

approach, as the MIP has 130,799 variables for this instance, which is more than twice the

number of variables of the largest instance that could be solved in this figure.

Another thing to note is that the MIP is also not able to improve on a feasible solution when

providing a warm start for the centralized quarterly case. This shows that it is not just hard to

find an initial feasible solution for such a large instance, but also to go from one feasible solution

to another.

5.3.2 Analysis Runs SA

To examine how the solution develops during the SA algorithm and how the resulting schedule

is created, the current and best found objectives is shown for each iteration in Figure 11, as

well as the penalty that is incurred by the violations of constraints. In this figure only feasible

solutions are considered for the best found objective, which is why the line only starts after a

feasible solution is found. The figure shows one run for each of the three departments used in

the decentralized approach and a run for the centralized instance.
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Figure 11: Total score of schedule for current and best found solution as well as penalty incurred
by violations of constraints in current solution during iterations of SA

For all four instances a trade-off can be seen between the total score and the feasibility of

the solution in the first stages of the algorithm, as the score is lowered to remove the violations.

However, the figure also shows that the algorithm is able to improve the total score drastically

after removing most violations. For the decentralized instances several sudden drops in the

current total score can be seen, which correspond to the temperature resets and, while it may

not be as clear for the centralized case, similar decreases can still be seen. From the increase in

the best found total score it can be seen that these resets are able to improve the best found

solution for three of the four instances. For the Cardiology and Neurology department this only

seems to improve the solution slightly, but for the centralized case this improvement is a lot

more evident.

For the Cardiology department there also seems to be a slight decrease in the best found

objective. This could be due to the added case specific constraints, such as the number of partial

weekends, for which a certain number of violations is allowed. Since a penalty is still incurred

for a violation even if it is within this allowed number, a solution with a worse objective but with

close to 0 of these violations could be considered better than one with the maximum allowed

number of violations. It can also be seen that the penalty on violations still moves up and

down slightly after finding a feasible solution. This shows that the weights on the penalties are
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likely set properly as there is a balance between keeping the solution feasible and traversing the

solution space freely by allowing some violations.

Another thing to note is that the first feasible solution for the centralized case is found

after around 30 minutes, which is the point where the orange line starts. It can also be seen

that the best found total score does not change often after this feasible solution is found. This

might indicate that it is hard to improve the solution while moving from one feasible solution

to another and that allowing some infeasibility is able to make this easier.

Due to the random elements that are included in the SA algorithm, several runs of the

algorithm were done with different seeds. Table 6 shows the highest and the lowest optimality

gap for the schedules that are obtained from 20 runs of the algorithm, as well as the range, mean

and the standard deviation of the different runs. In order to make the results reproducible, the

number from 1 to 20 are used as the random seeds for the runs. Since the optimal solution is

not known for the centralized case, the gap is computed using an upper bound that is found by

relaxing the quadratic constraints on the distribution of evening and night shifts and using the

solution from SA as a warm start. A short analysis is done on the quality of this upper bound

in Appendix B, which shows that it seems to be a very good bound.

IC Cardiology Neurology Centralized

Mean 0.933 0.347 0.432 3.486
Standard dev. 0.297 0.119 0.234 0.711

Min 0.544 0.155 0.110 2.478
Max 1.485 0.524 0.859 4.554

Table 6: Information on the optimality gap of the solutions of SA runs with different seeds for
the centralized case the gap is calculated to an upper bound found by relaxing the quadratic
constraints and solving the MIP

The table shows that the range increases quite drastically between departments as it is tripled

when going from the Cardiology department to the larger IC department and then doubled when

going from the IC department to the centralized approach. With this the standard deviation

also doubles with every step, showing that the algorithm does indeed become less consistent

for larger instances. However, the Neurology department seems closer to the IC department in

terms of both the range and standard deviation, even though it is nearly the same size as the

Cardiology department. This could be an indication that there are other factors that influence

the consistency of the algorithm besides the size of the instance.

To give a more detailed insight into the different runs, Figure 12 contains histograms of the

optimality gap for the schedules that are obtained using the different seeds. In this histogram

bins of 0.05% are used for the decentralized instances while bins of 0.1% are used for the

centralized instance.
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Figure 12: Histogram showing frequency of obtaining a solution with given optimality gap from
SA with bins of width 0.05 for the decentralized departments and bins of width 0.1 for the
centralized approach

The figure shows that there does not seem to be a clear bias towards the better or worse

solutions, as the Cardiology and Neurology departments seem pretty balanced, the IC depart-

ment seems to lean slightly towards the better solutions and the centralized approach might be

slightly biased towards worse solutions. It can also be seen that there are no really big peaks,

which shows that the gaps are spread quite evenly.

5.3.3 Comparison

Since the metaheuristics could not be run for the monthly approaches due to time constraints,

the methods are mainly compared using the quarterly cases. Additionally, it is quite unlikely

that the metaheuristics are able to outperform the MIP for the decentralized monthly case, since

the optimal solution can be found within several minutes. Even if the metaheuristics would be

able to find the same solution faster, this difference in time would likely not be very significant.

The score per assignment and runtime for the best found solutions of the SA and VNS are

shown in Table 7 for the decentralized quarterly approach. The optimality gap is shown in the

table as well, where the gap is calculated as the difference in total score between the optimal

solution, found by the MIP, and the solution provided by the evaluated method. For SA the

results are shown for the best of the 20 previously presented runs and a single run that is done

with 0 as the random seed, independent of the other runs. This is done to show the difference

in the results if the algorithm is run one time and if it is run multiple times with different seeds.
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SA
MIP Single run Best run VNS

IC
Score per assignment 0.6680 0.6615 0.6644 0.6565

Opt. gap (%) - 0.975 0.544 1.726
Runtime (s) 4,992.30 2,727.59 - 212.60

Cardio
Score per assignment 0.5725 0.5710 0.5716 0.5593

Opt. gap (%) - 0.271 0.155 2.313
Runtime (s) 85.48 3,537.28 - 95.22

Neuro
Score per assignment 0.5367 0.5342 0.5361 0.5218

Opt. gap (%) - 0.470 0.110 2.775
Runtime (s) 135.78 4,567.92 - 72.24

Table 7: Comparison of ML-score per assignment and runtime needed in seconds as well as the
gap to the optimal solution

It can be seen that the score per assignment for the SA and VNS is quite close to the

optimal one obtained by the MIP, as the gap between the two is below 3% for all departments.

Additionally, it can be seen that SA is able to make the gap to the optimal solution smaller

for all departments compared to the VNS regardless of whether a single run or multiple runs

are done. Doing multiple runs of SA also improves the solution quite a bit as the gap is nearly

halved for all departments.

In terms of runtime the MIP and VNS seem to perform equally well for the two smaller

departments, as both are able to find a schedule within a couple of minutes, while the SA

algorithm needs more than an hour for these instances. However, the MIP needs nearly 90

minutes to find the optimal solution for the larger IC department. On the other hand, VNS is

able to find a solution that is quite close to the optimal one within 4 minutes and an even better

solution can be found using a single run of SA, although this does require around 45 minutes.

Additionally, if multiple runs of SA can be done in parallel, the runtime should not increase

too drastically and a solution that is only around 0.5% worse than the optimal solution can be

found.

For the centralized quarterly case, Table 8 shows the score per assignment, the number of flex

shifts and runtime. In the table these values are shown for the metaheuristics and the schedule

that is obtained by connecting the monthly schedules obtained using the MIP for the monthly

case. The table also contains the optimality gap to the upper bound described in the previous

section and the results for SA are again shown for both a single run and the best run.
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MIP SA
Monthly Single run Best run VNS

Score per assignment 0.5815 0.5789 0.5868 0.5786
Flex shifts 415 587 492 640

Opt. gap (%) 2.351 4.677 2.478 5.296
Runtime (s) 43,240.35 13,112.77 - 7,307.04

Table 8: Comparison of the objective, score per assignment, the number of shifts done by flex
nurses, runtime needed in seconds and optimality gap to an upper bound found by relaxing the
quadratic constraints and solving the MIP

The table shows that the schedule that is created by connecting the monthly schedules from

the MIP has the best score per assignment and the lowest number of flex shifts. Doing multiple

runs of SA results in the second best performance on these objectives, as the score is even slightly

higher for this schedule but more flex shifts are needed which results in the optimality gap being

slightly bigger. It can also be seen that doing a single run of SA is already able to outperform

the VNS as it does better on both the score and flex shifts, but the difference is quite small.

Although the MIP is able to produce the best schedule, it does have a runtime of around 12

hours, while the VNS takes 2 hours and a single run of SA about 4 hours. Additionally, multiple

runs of SA can again be done in parallel, which should not increase run time too much and

can result in a schedule that is a lot closer in quality to the one created by the MIP. However,

another factor that should be taken into account in this comparison is the fact that the KPIs

for the metaheuristics are slightly worse, which was shown in Section 5.2.3.

6 Discussion

Based on the results shown in Section 5, it seems that the planning of nurses using a combination

of ML and OR works quite well. It is also shown that only ML or a combination of ML and a

simple heuristic is not enough to create a schedule, but that either a MIP or a metaheuristic is

needed. By encapsulating soft constraints into the scores that are predicted by the ML model,

it becomes possible to formulate the problem with only one term in the objective instead of a

weighted sum, which is most commonly used in literature. The problem is also simplified by

excluding the soft constraints, which allows for the addition of quite complex constraints, such

as the quadratic constraints on the distribution of shifts between nurses. Due to these changes,

the MIP also seems to perform quite well and it is able to provide schedules that are similar

in quality to the realized schedule based on the KPIs the cooperating hospital has provided,

although it is not able to create schedules that are similar to the realized one. It is also able to

create a schedule with a significantly higher total score than the realized schedule, which implies

that the found schedule is better than the realized one according to the scores. However, the

MIP does seem to struggle with very large instances. This can be seen with the centralized

quarterly planning approach, where the MIP is not able to find a feasible solution or improve on

a given feasible solution due to the large number of variables. An explanation for these struggles

could be that there seems to be a superlinear correlation between the number of variables in the

MIP and the time it needs to find a feasible solution.
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Additionally, planning three months at a time instead of one month does not seem to improve

the schedules by much, even though there is more freedom in how the yearly labor laws are

satisfied. This means that it is likely not worth the extra effort that the nurses and planners

need to put in to create these quarterly schedules. On the other, the centralized planning

approach is able to reduce the number of shifts that need to be done by flex nurses significantly.

However, this does come at a cost, as the KPIs and the total score get worse. Since the evaluation

of this trade-off between the use of flex nurses and the quality of the schedule can differ heavily

between hospitals, and even between different planners, the results regarding these findings are

left open for interpretation.

From the results it can also be seen that the SA algorithm is able to find nearly optimal

solution for smaller instances as a schedule can be found that is at most 1% worse than the

optimal solution for all departments, but it does take a long time. For larger instances the

metaheuristic is still able to find reasonably good solutions as the total score of the resulting

schedule is higher than the score of the realized schedule and the optimality gap is 3% if multiple

runs are done with different seeds. Additionally, SA is shown to outperform VNS for all instances,

although it does take more time. It should also be noted that SA is able to find an initial feasible

solution quite fast for larger instances, as it is able to find a feasible solution in 30 minutes while

the MIP is not able to find any feasible solution even after more than 5 hours. This initial

feasible solution also has a fairly good objective, which could be useful if only a limited amount

of time is available to run the metaheuristic. Furthermore, the SA algorithm is quite consistent

for different random seeds for smaller instances, which means that running it once is likely

enough since other runs will give comparable results. However, for larger instances, especially

the centralized cases, SA becomes less consistent and it is definitely useful to do several runs

with different seeds as it could result in quite large improvements. Adjusting the weights during

the algorithm is also very helpful as less time needs to be spent on the tuning of the initial

weights. It also helps in finding a balance between the feasibility of the schedule and flexibility

when traversing the solution space, since this balance can require different weights in different

areas of the solution space.

The assumption that the realized schedule is good and the assumption that the ML model

is able to predict perfectly are both unrealistic and these inputs are only used since there is

no alternative. However, if a good schedule, e.g. the planned schedule, would be available and

an ML model would be able to create perfectly predicted scores based on this good schedule,

the MIP and SA could still be applied to these inputs without any changes. Because of these

methods it might not even be necessary that the predictions from the ML model are perfect,

since it could be seen that some mistakes in the ML model could be fixed by the MIP, as was

shown by the increase in F1-score when using the MIP for the decentralized monthly planning

approach.

The assumption that are made regarding the borrowing of nurses might also not be com-

pletely realistic, as the hospital indicated that the head nurse at the department usually indicates

which nurses can be borrowed and which skill level they can do in another department. This

should, therefore, differ between nurses, but because this data is not stored, the assumption

needed to be made that all nurses could be borrowed and that they would be one skill level

40



lower in the other department. However, this could also be fixed relatively easily as long as the

data is available.

It should also be noted that, due to the limited number of instances, it is hard to verify

whether these results are widely applicable or that they are very specific to the instances that

are available. This is also why the number of runs with different seeds in the evaluation of the

robustness of the SA is kept quite low, as there is no real way of verifying whether the results

can be generalized or that they rely on the fact that the instances just happen to be very easy

or very hard to solve.

7 Conclusion

This thesis examines whether it is possible to plan nurses using a combination of ML and OR.

To do this ORTEC developed an ML model that predicts scores that indicate how good the

assignment of a nurse to a duty on a given day is. This score is then used as the objective in a

MIP and a SA algorithm, where the total score of all assignments should be maximized. Using

these methods several different planning approaches are also evaluated to determine whether it

could be interesting to for the hospital to change their approach.

These methods were tested on data from one of the hospitals that ORTEC is working with,

who provided data on three departments. Using this data the months of April, May and June

of 2022 were planned, which showed that the combination of ML and OR seems to work. The

methods are able to create schedules that outperform the realized schedule based on the predicted

scores and perform equally well as the realized schedule on several KPIs. It could also be seen

that some imperfections in the predictions of the ML model could be fixed by applying the OR

methods, which implies that it might not be necessary to have a completely perfect ML model.

For most instances the MIP can be used to create this schedule and is able to provide optimal

solution fairly quickly. However, it is not possible to solve very large instances using the MIP.

To create a schedule for these large instances the SA algorithm can be used, which was shown

to produce schedules with an optimality gap that is smaller than 5%. However, it does take

quite a long time as an hour is needed for each of the smaller instances and around three hours

is needed for the larger instances. If multiple runs can be done, the resulting schedule can be

improved further as the gap becomes smaller than 3% and the runtime should not increase too

drastically, as long as they can be done in parallel. Additionally, an initial feasible solution is

found relatively quickly, which could be used as a warm start in a MIP or in another heuristic

that might be faster.

It could also be seen that the current planning approach the hospital is using, which is to

plan each department independently on a monthly basis, seems to be the best approach to use.

Since planning on a quarterly basis only gives a small improvement over the monthly planning, it

is likely not worth the extra effort that nurses and planners need to put in to make this possible.

However, planning multiple departments simultaneously does make it possible to reduce the

usage of flex nurses drastically, although the quality of the schedule does become worse. It

could, therefore, differ between hospitals if this trade-off is worth it or not.

These results show the potential of solution methods that combine ML and OR to solve

the NRP by predicting how good an assignment would be and then using these predictions
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to create a schedule. This has not been investigated in any of the found literature, although a

similar approach has been applied to the Crew Pairing Problem. Additionally, the SA algorithm,

developed in this thesis, seems to be the first time that a heuristic approach is used as the OR

side of the method for scheduling problems, as others focused on using MIPs and making these

models solvable using, for example, column generation.

These findings do, however, rely quite heavily on the assumption that the ML model is able

to predict scores that are a reasonably accurate representation of the reality, which might be

unrealistic. Even if the OR methods are able to fix some minor imperfections, larger inaccuracies

will still carry over into the resulting schedule.

Furthermore, it could be interesting to see whether the MIP could be made solvable for

larger instances by applying column generation, because of how well the MIP seems to perform

on the small instances and because this also done for the Crew Pairing Problem by Tahir et al.

(2021) and Yaakoubi et al. (2020). This would eliminate the need to use metaheuristics as all

instances could then be solved with the MIP.

An alternative to this would be to investigate ways to improve the SA algorithm. This could

be done by speeding up the exploration of neighborhoods by evaluating several neighbors at the

same time using parallel processing. This was not done in this thesis because the cooperating

hospital indicated that the runtime was not very important, but it could still be useful for

hospitals that do need a solution quickly. The algorithm could also be improved by applying

hyper parameter tuning on the parameters, such as the start and end temperature, the number

of resets and the cooling factor. Due to time constraints this was not possible in this thesis

and instead only a small number of alternatives was tested with the best ones being chosen as

the ones used. Other algorithms might also be interesting to investigate, such as evolutionary

algorithms that are often used for the NRP in traditional approaches where no ML is used. The

allowing of infeasibilities and adjusting of weights for the penalty terms for these infeasibilities

could still be used in these other algorithms as this showed promising results with SA.

Alternatively, research could be done into changes in the ML model based on the results

in this thesis. The ML model currently uses several features that are influenced by the nurses

schedule for the previous day or week. For these features a rolling window approach is used

where nurses are assigned the duty with the highest predicted score when determining the value

of these features. However, the results showed that this method of assigning duties to nurses is

flawed and it could, therefore, be interesting to use the MIP to assign the duties for this rolling

window, especially since the MIP is able to solve small instances within seconds.
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Appendix A Weights SA

Figure 13 shows the weights for each of the penalty terms corresponding to a violation of one

of the constraints. The progression of the weight during the iterations of the SA algorithm is

shown for the three departments and the centralized approach.
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Figure 13: Weights for the penalty terms in objective corresponding to violations during itera-
tions of the SA algorithm

The figure shows that the weights are decreased drastically after a feasible solution is found.

This shows that keeping the weights the same would be very restrictive during these iterations,

which could make it quite hard to traverse the solution space.
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Appendix B Evaluation Upper Bound

To evaluate the upper bound that is used to determine the optimality gap for the centralized

quarterly case, the same relaxation is performed for each department. The results of that

relaxation are shown in Table 9, together with how heavily the relaxed constraints are violated.

IC Cardio Neuro Central

Total score 4133.619 1875.575 1611.809 -
Total score relaxed 4140.614 1875.901 1613.890 8863.279

Gap (%) 0.169 0.017 0.13 -
Violation evening distr. (%) 17.71 7.26 5.35 7.67
Violation night distr. (%) 6.03 0.00 13.54 0.00

Table 9: Comparison of total score, runtime needed in seconds and the number of duties done
by flex nurses

The table shows that the relaxation seems to be a very strong upper bound as the gap is

very small for all departments. It can also be seen that the Cardiology department and the

centralized approach have a similar degree of violation, which is good since the department has

the smallest gap between the regular and relaxed models.
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Appendix C Additional Results

Decentralized Quarterly Approach

Figure 14: F1-scores w.r.t. the realized schedule for each model

Figure 15: KPI comparison where all values are scaled as a percentual deviation from the realized
schedule
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Centralized Quarterly Approach
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Figure 16: F1-scores w.r.t. the realized schedule for each model
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Figure 17: Number of shifts done by nurses within and outside of the department for each model
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SA Runs

IC Cardiology Neurology Centralized
seed Total score Gap (%) Total score Gap (%) Total score Gap (%) Total score Flex shifts Gap (%)

1 4,095.464 0.923 1,871.144 0.236 1,607.714 0.254 7,207.633 568 4.554
2 4,111.146 0.544 1,870.151 0.289 1,609.337 0.153 7,297.037 505 2.835
3 4,108.728 0.602 1,871.463 0.219 1,609.100 0.168 7,262.885 534 3.547
4 4,089.304 1.072 1,871.464 0.219 1,608.184 0.225 7,258.916 562 3.908
5 4,106.928 0.646 1,871.559 0.214 1,609.057 0.171 7,225.525 547 4.115
6 4,108.101 0.617 1,869.276 0.336 1,609.014 0.173 7,297.807 519 2.984
7 4,105.121 0.689 1,872.201 0.180 1,610.033 0.110 7,232.403 563 4.218
8 4,098.920 0.839 1,872.675 0.155 1,607.520 0.266 7,254.666 560 3.933
9 4,091.802 1.012 1,870.786 0.255 1,606.137 0.352 7,282.598 530 3.280
10 4,104.784 0.698 1,869.571 0.320 1,601.169 0.660 7,252.120 573 4.109
11 4,089.667 1.063 1,866.917 0.462 1,600.585 0.696 7,299.255 528 3.069
12 4,072.228 1.485 1,867.762 0.417 1,600.813 0.682 7,242.386 542 3.869
13 4,106.028 0.667 1,866.122 0.504 1,603.537 0.513 7,259.221 528 3.521
14 4,093.053 0.981 1,865.749 0.524 1,597.961 0.859 7,315.670 492 2.478
15 4,089.887 1.058 1,867.041 0.455 1,601.008 0.670 7,305.725 486 2.522
16 4,076.455 1.383 1,868.177 0.394 1,601.170 0.660 7,314.939 495 2.520
17 4,103.359 0.732 1,867.403 0.436 1,601.115 0.663 7,230.514 574 4.364
18 4,078.175 1.341 1,868.458 0.379 1,604.733 0.439 7,308.134 489 2.529
19 4,073.956 1.443 1,866.909 0.462 1,603.167 0.536 7,295.819 514 2.950
20 4,098.339 0.854 1,866.526 0.482 1,605.415 0.397 7,207.189 555 4.412

Table 10: Results for different seeds of SA
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