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Abstract

Treatment effect estimation is a popular field of study, but the frequently used clas-
sical methods like OLS and mean-based estimators break down in the presence of
outliers. Outliers can be difficult to detect and remove, therefore caution is war-
ranted when using those methods. Furthermore, a theoretical understanding of the
effects of infinitesimal levels of contamination on treatment effect estimates value
and, most specifically, variance is not sufficiently studied. This thesis derived ex-
pressions for the influence function (IF) and change-of-variance (CVF) function for
three different treatment-effect estimators: the difference-in-means estimator, the
regression-adjusted estimator and the difference-in-intercepts estimator. Addition-
ally, this thesis compares the classical estimators with (more) robust alternatives in
a simulation study and a real-life data application. It is shown that classical estima-
tors are biased for infinitesimal levels of contamination, and that robust alternatives
are promising.
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1 Introduction
Everywhere we look around us, whether it be in business, personal or governmental set-
tings, we are interested in knowing about the results of “doing something rather than
doing something else”. This can be as small as wondering about the health benefits of
cycling to work every day instead of taking the car or as big as finding the effect of imple-
menting new environmental European Union legislation on CO2-emissions. The effect(s)
of a treatment or change on a response or outcome variable is called the treatment effect.
Because it is such a generic concept, interest for the effect of a treatment on a response
variable is found in many areas of research as well, including medicine (Hollingsworth
et al., 2006; Dechartres et al., 2013; and Austin and Stuart, 2015), the social and eco-
nomic sciences (Angrist, 2004; Sampson et al., 2006; and King et al., 2007) and policy
making (Johansson and Palme, 2002; Shambaugh, 2004; and Criscuolo et al., 2012).

Though treatment effects have many interested, its estimation can sometimes still
cause trouble. The fundamental problem is that of the unobservable counterfactual (i.e.
what would have been the individual’s outcome in case they had (not) been given the
treatment, instead). A naive comparison between observations with and without the
treatment, leaves the door open to selection bias. The ’gold-standard’ to solve the selec-
tion bias problem is to opt for randomised controlled trials (RCT). In the field of economics
and econometrics, (large-scale) experiments are often very costly and researchers have to
work with observational data instead, and then apply statistical methods (e.g. matching)
to overcome this problem. However, in other fields of research, like medicine, RCTs are
more the norm. This paper focuses on applications for RCTs and methods for working
with observational data are beyond the scope of this paper.

Even though the problem of selection bias can be solved by using RCTs, another
problem often occurs when moving from simulations to real data: outliers. Outliers
are deviating observations that threaten the (distributional) robustness: “the shape of
the true underlying distribution deviates slightly from the assumed model” (Huber and
Ronchetti, 2009, Chapter 1). In real-life data sets, outliers are nothing out of the ordinary
(Rousseeuw and Leroy, 1987; and Zaman et al., 2001) and much research is performed to
tackle this issue (e.g. Hampel et al., 1986; Rousseeuw and Leroy, 1987; Barnett et al.,
1994; and Rocke and Woodruff, 1996). Overviews of possible outliers, detection meth-
ods and applications can be found in the research articles by Hodge and Austin (2004);
Rousseeuw and Hubert (2018); and Grentzelos et al. (2021).

An intuitive illustration emphasising the critical importance for robust methods is one
about governmental subsidies to low-income households: In general, the target group has
a lower level of education (if any at all), but some individuals eligible for the financial
assistance are highly educated entrepreneurs (i.e. the outliers) with not yet profitable
start-ups. For the majority of the group it is likely that the aid is used for paying off
debts and making ends meet. However, let us now assume that the entrepreneurs can
attain large returns on their financial assistance because of successful investments. Evalu-
ating the assistance’ success with classic instruments, the few entrepreneur’s high returns
of investment will draw the treatment estimate for the entire group towards them and
the researcher is left with a (positively) biased conclusion. Overcoming problems like
such is a challenge that is met by the field of robust statistics and is critical to many
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studies, as classical approaches like OLS and popular estimators such as the sample mean
can break down in the presence of just a single outlier (Rousseeuw and Wagner, 1994;
and Rousseeuw and Leroy, 1987, Chapter 2 & Baharudin et al., 2012, respectively). One
example of a robust estimator is the MM-estimator (Yohai, 1987), showing both high
breakdown properties and being efficient.

The general problem regarding outliers is that the observed data does not follow the
assumed underlying distribution perfectly and that, in reality, it is almost always impos-
sible to know the true data generating process. As a result, wrongful assumptions leading
to the usage of an improper model can increase the bias and variance of an estimator sig-
nificantly. In general, but also in treatment effect studies, prevention hereof is critical for
a proper analysis. This thesis takes a theoretical approach using influence functions (IF)
and change-of-variance functions (CVF), which are expressions to evaluate an estimator’s
robustness to infinitesimal levels of contamination. More specifically, this thesis evaluates
the effect of just a few outliers in a sample on the value and variance of several M-type
(Huber, 1964) treatment-effect estimators. To do so, the Tukey-Huber contamination
model (Tukey, 1962; Huber, 1964) is used to introduce this distributional contamination.
If an estimator’s IF and CVF approach infinity, the estimator’s value or variance is not
robust to outliers, respectively.

In treatment effect analysis, there are generally two estimating methods: The first
one is the simple, classical difference-in-means estimator (unadjusted) and the second is
a regression-adjusted estimator, where additionally covariates are included. The benefit
of using the former is that it is unbiased, whereas the latter is consistent, but biased
in smaller samples. On the other hand, the regression-adjusted estimator can give more
precise estimates due to a lower estimator variance (Lin, 2013). In the context of outliers,
it is therefore interesting to explore the differences of the effect of outliers between the
classical difference-in-means estimator and regression adjusted techniques. For example,
if the regression-adjusted estimator’s CVF is unbounded, the estimator’s variance can
inflate, thus making regression-adjusted useless.

As an addition to the scientific literature in this field, this thesis explores the IF and
CVF of three different treatment effect estimators; one unadjusted and two regression-
adjusted estimators. Firstly, the classical average treatment effect estimator (the difference-
in-means estimator) Ȳ1−Ȳ0 is explored. Next, the first regression-adjusted estimator (Lin,
2013) is the estimated coefficient of the treatment indicator variable in the regression of
the response variable on the binary treatment indicator variable T, covariates X and an
interaction between the two (now with demeaned covariates). The second regression-
adjusted estimator is a two-stage estimator (Liu and Yang, 2020; Lei and Ding, 2020),
where the response variable Y is regressed on (demeaned) covariates X for the treatment
and control group separately, after which the difference between the regression constants is
computed. Since all three estimators are M-type estimators, the IFs and CVFs are derived
following the approach and notations of Zhelonkin (2013). Additionally, robust alterna-
tives are investigated and compared to the classical estimators in a simulation study and a
data application. For the unadjusted estimator, the robust alternatives evaluated are the
difference-in-trimmed-means and the difference-in-medians estimators and the MM- and
the Krasker-Welsch-estimator (KW-estimator) are discussed for the regression-adjusted
estimators.
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As a line of focus, this thesis investigates the following main question:

“What are good estimators to use for contaminated, multivariate data in a randomised
experiment, based on the influence- and change-of-variance function?”

This main question can be further divided into more specific sub-questions:

• What expressions represent the influence- and change-of-variance functions for dif-
ferent M-type treatment-effect estimators?

• Do different types of outliers affect the influence- and change-of-variance function
differently? If so, what are the differences?

• What are more robust alternatives to the naive treatment-effect estimators and how
do they change both functions?

• How do the theoretical expressions relate to the practical applications and results?

A general conclusion is that it is advisable to use robust alternatives to the classical
estimators. The median has bounded IF and CVF and the MM-estimator is also robust to
outliers (good leverage points excluded). Though both options are promising, it is critical
to be mindful about their methods and the way outliers affect the estimates. The median
estimate is strongly affected by the distribution (density) around the “clean” median in
the presence of outliers and can still provide biased results, especially for smaller treat-
ment effects. The MM-estimator gives less biased results, on average, and has a lower
variance, but it can underestimate the variance in the presence of good leverage points.
Moreover, regression-adjusted estimators do not, per definition, lose their advantage of
increased estimate precision (compared to the unadjusted estimator) when outliers are
present. This strongly depends on the type and strength of the contamination.

The remainder of this paper is structured as follows: Section 2 continues discussing
the developments of robust statistics and presents the literature introducing the different
types of treatment effect estimators. Section 3 provides theory on specific topics regarding
outliers and treatment effects, including details about influence- and change-of-variance
functions and the Neyman-Rubin causal model. Next, Section 4 summarises the IF- and
CVF-derivations and comments on their robustness. After this, Section 5 describes the
experimental settings for the simulation study and the real-data analysis, alongside a
description of this data set. The methodology for the analysis is provided in Section 6.
Thereafter, the study results are presented in Section 7 and a discussion and conclusion
is shared in Section 8.

2 Literature Review
This section provides an overview of the literature in the field of treatment effect evaluation
and robust statistics. Firstly, the central principle of treatment effects and randomised
studies is discussed in Section 2.1. Next, Section 2.2 provides an overview of different
estimators that can be used for treatment effect analysis. Lastly, Section 2.3 gives a brief
overview of some robust statistics’ developments, including a section discussing influence-
and change-of-variance functions.
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2.1 Treatment effect & causal inference

Treatment effect and causal inference are central concepts in many areas of statistics and
data analysis, including medicine, economics, and the social sciences (see the aforemen-
tioned examples in Section 1. The goal of treatment effect analysis is to determine the
causal effect of a treatment or intervention on an outcome variable, by comparing the
outcomes of treated and untreated individuals. The true treatment effect is described as:
τ = E[Yi1−Yi0], where Y1 represents the outcome variables for the treatment group and Y0

represents the control group. However, for individual i, observations Yi1 and Yi0 can never
both be observed. This is known as the counterfactual problem. It is therefore crucial to
be aware of the principles laid out in the well-known Neyman-Rubin causal model, as de-
scribed by Holland (1986). This is an approach based on a potential outcomes framework
first introduced by Neyman (1923) and work by Rubin (1974, 1977, 1978, 1980). This
thesis also operates within this framework.

Naively comparing results between treatment and control groups can lead to biased
conclusions. The self-selection into treatment (or control) causes a disbalance between
(unobserved) covariates between the groups. Besides the treatment, other covariates also
have predictive power towards the outcome variable, and hence this introduces selection
bias. In observational studies, there is much research in the field of covariates balancing
(e.g. Imai and Ratkovic, 2014) to overcome this problem. However, the ’gold standard’
to estimate causal effects within treatment effect analysis are RCTs, where individuals
are randomly assigned to either the treatment or control group. RCTs minimise (on
average) selection bias and ensure that any differences in outcomes between the groups
are due to the treatment and not other factors, again, on average. This statement strongly
relates to the independence assumption E(Yt) = E(Yt|T = t) for t = 0, 1 (control and
treatment group, respectively) as laid out by Holland (1986). In turn, this allows for a
direct comparison between the treatment and control group. An extensive review of the
use (and misuse) of RCTs is provided by Deaton and Cartwright (2018). Though an RCT
is not always feasible or ethical in all cases, there are still plenty of studies where this
type of experiment is possible, such as Naci and Ioannidis (2015); Berkhemer et al. (2015);
Yusuf et al. (2016); and Stolberg et al. (2018) in the field of medicine. Applications like
these are also the focus of this thesis.

2.2 Different types of treatment effect estimators

This section summarises relevant developments in the field of treatment effect analysis.
Specifically, it describes the differences between different estimation models in an RCT
setting.

2.2.1 One-stage estimators

Treatment-effect estimation has been a field of interest ever since the introduction of
the intention-to-treat (ITT) estimator (estimating the effect of (random) assignment to
treatment) by Neyman (1923). This estimator computes the average of the outcome
variables in the treatment group and subtracts the average of the control group:

τ̂unadj = Ȳ1 − Ȳ0
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In later literature, this estimator is referred to as the unadjusted estimator. It is shown
to be an unbiased estimator for τ with variance S2

1

N1
+

S2
0

N0
− S2

τ

N
(Neyman, 1923), where S2

1 ,
S2
0 , and S2

τ are the finite-population variances of Yi1 and Yi0 and τi, respectively. Since
S2
τ cannot be estimated without further assumptions, it is often removed and standard

error estimation is considered conservative (Lei and Ding, 2020). Additional benefits of
this estimator are that it does not requires any assumptions on model specification or
statistical distributions, and the treatment effect can be either homo- or heterogeneous.
It only requires the existence of (hypothetical) counterfactual observations. Deaton and
Cartwright (2018) summarise the discussion regarding the validity of this assumption.

This unadjusted estimator, though unbiased, does not include any pre-treatment co-
variates, which when included can lower the estimator’s variance if they show predictive
power (Fisher, 1932). In case there is no predictive power, this estimator is asymptotically
efficient. Some early works using covariates are (Fisher, 1936; and Kempthorne, 1952),
where the treatment effect is commonly estimated by the coefficient of the treatment in-
dicator in the OLS-fit of the outcome variable on the treatment indicator variable and
the covariates. Estimators like these are named regression-adjusted estimators.

y = µ̂+ τ̂RAT +Xβ̂ + ε̂

Including those additional covariates into the analysis, leads to an at least even as
efficient estimator compared to the unadjusted estimator. When doing so, a constant
(homogeneous) treatment effect estimator is implicitly assumed. However, in case the
treatment effect are heterogeneous and the treatment and control group are unequal in
size, an influential critique by Freedman (2008) shows that the estimator can be even less
efficient than the unadjusted estimator and the variance estimate can even be inconsistent
for the true variance under randomised treatment effect settings.

Reacting to Freedman (2008), Lin (2013) proposed a simple solution, introducing
another estimator: a consistent and an at least as efficient estimator is the treatment
effect indicator’s coefficient from the OLS fit of the outcome variable on the treatment
indicator, the covariates and an interaction term between the treatment indicator and the
demeaned covariates:

y = µ̂+ τ̂LinT +Xβ̂ + T (X − X̄)γ̂ + ε̂

In the respective paper the estimator’s name is the interaction estimator, but in gen-
eral literature, including this thesis, this is also called a regression-adjusted estimator.
Numerically, this is similar to choosing two different treatment indicator coefficients for
both groups (i.e. heterogeneity). The interaction design should always be preferred
unless one of the following two statements hold: the design in perfectly balanced (i.e.
Ntreatment = Ncontrol) and there is no heterogeneity in the estimated coefficients (Negi and
Wooldridge, 2021). If any of these hold true, there is no efficiency gain in using the in-
teraction design over the regression-adjustment design without the intereaction term and
the latter is even preferred to preserve degrees of freedom. Additionally, Lin (2013) shows
that the Huber-White sandwich standard error (White (1980a, 1980b)) proposed a consis-
tent covariance matrix estimator for OLS, named the Huber-White because the estimator
is the sample analog of Huber’s (1967) formula for asymptotic variance of the maximum
likelihood estimator when the model is incorrect) estimate is consistent or asymptotically
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conservative. Though critiqued by Freedman (2006), Huber-White standard errors are
still relevant here, as estimates are still consistent even for incorrect regression models. It
should also be noted that both Freedman (2008) and Lin (2013) operate under the finite
population paradigm where all population units are observed in the sample. This implies
that uncertainty in the estimators is because of assignment into treatment and control
and not due to sampling for a population (Negi and Wooldridge, 2021).

2.2.2 Two-stage estimators

Interestingly, Lin’s estimator numerically equals a two-stage estimator, where the estima-
tor is the difference between two (i.e. treatment and control) OLS-regression intercepts,
as is performed by Liu and Yang (2020) and Lei and Ding (2020). In the first step, esti-
mates for the coefficients’ and the intercept’s coefficients are obtained separately, for the
treatment and control group.

y = µ̂+ (X − X̄)β̂ + ε̂, for both the treatment and control group separately.

Then, the treatment effect is estimated by subtracting the intercept estimate of the control
group of that of the treatment group:

τ̂ = µ̂1 − µ̂0

It is implicitly assumed that the population treatment effect is a constant difference
between the population treatment and control groups (see paragraph 4.4 in Holland,
1986). This two-stage estimator is also biased in finite samples, but Lei and Ding (2020)
do suggest a bias-adjusted estimator based on the leverage score (hat-matrix). They also
include a bias formula that extends the bias formula in Lin (2013) to the multivariate
case.

2.3 Robust statistics

Robust statistics is a field of statistical theory that focuses on the development of methods
that are less sensitive to outlying observations and deviations from the assumed distri-
bution. The need for robust statistical methods arises from the fact that classical statis-
tical methods, such as maximum likelihood estimation (MLE) (Hennig, 2004) and OLS
(Rousseeuw and Leroy, 1987, Chapter 2), are often sensitive to outliers, which can have
a significant impact on the estimation results. Moreover, in the field of treatment effect
estimation, the term robustness is also applied when describing the estimator’s robustness
to model misspecification. Just like robustness to outliers, this is also an important aspect
of unbiased estimates and a popular concept to research in the field of treatment effect.
In short, double robustness is a widely published concept in (non-RCT) treatment effect
studies, e.g. Kang and Schafer, 2007; Li et al., 2016; and Kurz, 2022, and entails that
for estimations that consist of two models (i.e. outcome regression and propensity score
estimation), the estimation is robust to misspecification of one of these models. Though
the topics are not complete unrelated, robustness to model misspecification lies beyond
the scope of this thesis.

In the field of robustness to outliers, treatment effect studies are represented in the
literature, including matching (Canavire-Bacarreza et al., 2021) and RCTs (Deaton and
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Cartwright, 2018) studies, but the number of papers overall is scarce. Canavire-Bacarreza
et al. (2021) explore that bad leverage points give rise to bias and that good leverage points
can break the common support condition and distort covariance balance between the two
groups. In turn, Deaton and Cartwright (2018) show that the estimation of the treatment
effect can appear bimodal, depending on the location of the outlier(s), be it in the control
or treatment group, and argue that inference on means can be difficult. In any case,
both papers show the importance of being aware of the presence of outliers and using
appropriate methods to resolve the problem of biased estimators.

2.3.1 Influence function & Change-of-Variance function

The influence function is a way to formally express the influence of an outlying obser-
vation in the sample on the estimator’s value. If the influence function is bounded, the
estimator is (bias-)robust to infinitesimal levels of contamination. The first introduction
of the influence function is by Hampel (1968, 1974), after which many extensive books
are written about robust statistics and the influence function specifically (Hampel et al.,
1986; Rousseeuw and Leroy, 1987; and Huber and Ronchetti, 2009). Similarly, the effect of
outliers of an estimator’s variance is interesting to analyse. This notion is also firstly intro-
duced by Hampel (1968), later referred to as the change-of-variance function. Rousseeuw
(1981a, 1981b) provided an important foundation for this concept. Both functions eval-
uate the effect of infinitesimal levels of contamination and therefore provide information
about robustness against a single outlying observation (in practice). Therefore, conclu-
sions about higher levels of contamination cannot be directly drawn from influence or
change-of-variance functions.

A downside of the influence function is that it is unique for every estimator and
that its derivation gets more complex for more complex estimators. Within the field of
M-estimators, Zhelonkin (2013) provided a detailed derivation for both the IF and CVF.
Overall, the change-of-variance function has received much less attention in the literature.
On the one hand, this can be due to its derivational complexity. On the other hand, it
can also be the natural results of being “the second step” in robustness analysis, whereas
finding a consistent estimator under the influence of outliers is likely to be the first step.
Furthermore, robustness evaluations of treatment effect estimation methods using IF and
CVF are underpublished, let alone for analysing the effect of different types of outliers.

2.3.2 Robust statistics for linear regression

One of the earliest contributions to robust statistics is done by Huber (1964), introducing
the so-called M-estimator in the field of regression analysis. Huber argued that the least-
squares loss function is not robust to outliers and suggests the use of more robust loss
functions, instead. The general class of M-estimators for β̂ is defined as

N∑
i=1

ϕ(yi, xi, β̂) = 0,

for some non-constant function ϕ. The least squares estimator is defined by equation∑N
i=1(yi − xiβ̂)x

t = 0, and it is therefore evident that it is part of the M-type estimators
with ϕ(y, x, β) = (y− xβ)xt. However, these estimators are only robust to outliers in the
response variable, thus only improving robustness marginally. Furthermore, an important
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extension of the introduced M-estimators by Huber, is the contribution of Tukey (1977),
introducing the Tukey loss function, also known as the Tukey biweight or bisquare loss
function. This loss function gained much popularity, as the loss function is truncated at
a threshold (i.e. bounded, and thus robust) using to a tunable parameter c and is also
robust to leverage points.

Krasker (1980) and Krasker and Welsch (1982) obtained the optimal bounded-influence
estimators (the Hampel-Krasker (HK) estimator and the Krasker-Welsch (KW) estima-
tor, respecively). These estimators are called “optimal” because, next to their influence
curves, also their change-of-variance functions are bounded, as derived by Ronchetti and
Rousseeuw (1985). However, it must be noted that Maronna et al. (1979) showed that
Generalised M-estimators (GM-estimators) break down when the number of covariates
p > 1 (the maximum breakdown point is 1

p+1
), which includes the KW-estimator men-

tioned before. Therefore, it is important to note that bounded IF and CVF do not imply
a high breakdown point (i.e. robustness to higher levels of contamination). The KW-
estimator is still considered optimal robust, but is not much applied in current research.
As Flavin (1999) phrased it: “it has not passed the basic ‘market test’ ”.

Rousseeuw (1984) approached the problem of robustness through a different lens: he
critiqued the “least squares” popularity and robustified the estimator through the “sum” in-
stead of the “squares”, introducing the least median of squares (LSM). The LMS-estimator
reaches a 50% breakdown point, though it has a very low efficiency. In the same paper, he
also introduces the least trimmed squares (LTS) estimator, which also has a 50% break-
down point but similar efficiency as an M-estimator. A downside of this alternative is its
exponentially growing computation time for larger data sets. However, in Rousseeuw and
van Driessen (2005) the FAST-LTS algorithm is introduced to solve the issue. Simultane-
ously, Rousseeuw and Yohai were also working on another alternative for M-estimators,
namely S-estimators (1984). S-estimators showed to be an improvement on M-estimators’
vulnerability to larger levels of contamination and leverage points. A downside, however,
is its low efficiency under normal errors.

Using the theory on S-estimators, Yohai (1987) introduced the estimator that, still at
the present time, can be considered the default robust linear regression estimator in the
literature: Using the best of both M- and S-estimators, Yohai combined the two methods
to create MM-estimators, benefiting from both high efficiency as well as high breakdown
properties. He shows that the MM-estimator does not have a bounded influence curve
in the formal definition, but that it is a bounded function for realistic scenarios. Yohai
also compared the KW-estimator to the MM-estimator (under normal distributions) and
concluded MM-estimators may be better than KW-estimates in the presence of larger
levels of contamination, especially in cases with more independent variables. A similar
conclusion is drawn from a data example, where KW-estimates are very similar to the
(known to be biased) OLS-estimates. An (interesting) overview of the relation between
number of covariates p, contamination level ε and the gross error sensitivity γ∗ (see Sec-
tion 3.5.2) for the two estimators is presented in its Table 1.

Lastly, to improve the robustness of maximum likelihood estimators, Cantoni and
Ronchetti (2001) developed a robust method based on the quasi-likelihood, developed for
generalised linear models.
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2.3.3 Robust location and scale estimates

As illustrated in Chapter 2.1 by Hampel et al. (1986), the arithmetic mean estimator also
is not robust to outliers. Instead, they show that, for a normal distribution, the sample
median is the most robust estimator. Provided that the sample median is a simple esti-
mator and that is shows extremely robust, there are many location estimates introduced
using the median and its features. Some exemplary papers are Siegel (1982), introducing
the repeated median estimator, where nested medians replace the single mean (Siegel,
1982); the median of squares regression (Rousseeuw, 1984), as already touched upon in
the previous section; and lastly the (generalised) medians-of-means (MOM), as is shown
by Hsu and Sabato (2014). Furthermore, the median can also be used as a scale estimate,
e.g. the median absolute deviation (MAD) estimator (first promoted by Hampel, 1974),
though it shows a low Gaussian efficiency (37%). Rousseeuw and Croux (1993) present
two alternatives to the MAD, both with higher Gaussian efficiencies at the same high
breakdown point.

Another robust estimator is the Minimum Covariance Determinant (MCD) estimator
introduced by Rousseeuw (1985), which is a variant of an iteratively reweighted mean with
weights determined by the observations’ Mahalanobis distance to the current estimate.
Though the MCD estimator has a breakdown point of up to 50% as well, it has a tendency
to underestimate the variance (excludes too many “good” observations), it only works for
symmetric distributions and is can be computationally expensive for larger data sets.

3 Theory
This section further explains important theories and concepts that lie at the foundation
of this thesis or provide important distinctions useful for next sections. This section
starts with a closer analysis of treatment effect estimation and RCTs (Section 3.1). Next,
different type of outliers are defined in Section 3.2 and the term breakdown point is defined
in Section 3.3. Then, details regarding regression inference, with a focus on the Lin (2013)
estimator, is provided in Section 3.4. Lastly, Section 3.5 explains the concepts behind
IFs and CVFs further: focusing on the steps of derivation, showing how an estimator’s
robustness can be evaluated, and providing their general expressions for M-estimators.

3.1 Treatment effect estimation & randomisation

In treatment effect analysis, we want to evaluate the difference in outcome for an individ-
ual when treated versus when not treated: E[Yi|Ti = 1]−E[Yi|Ti = 0] = E[Yi1 − Yi0]. An
immediate problem arises, namely that the counterfactual cannot be observed; an individ-
ual is treated (Ti = 1) or not (Ti = 0) , and thus only one of those terms can be observed.
Often, the observable outcome variable Yi is describes as Yi = TiYi1 + (1 − Ti)Yi0, where
Ti is the treatment status indicator and Yit are the respective outcomes when treated
(t = 1) or untreated (t = 0). This phenomenon makes the individual treatment effect
unobservable, as was first laid out in the Neyman-Rubin causal model. However, through
randomisation of the treatment Ti, the difference in means of both groups is an unbiased
estimator for the average treatment effect (ATE).
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To mathematically illustrate this statement, the following linear example is provided,
echoing Deaton and Cartwright (2018): Let us evaluate a linear causal model of the form:

Yi = βiTi +
J∑

j=1

γjxij,

where Yi is the outcome variable, βi the individual treatment effect for treatment dummy
Ti. When evaluating the difference in means, the following holds:

Ȳ1 − Ȳ0 = β̄1 +
J∑

j=1

γj(x̄1ij − x̄0ij) = β̄1 − (S̄1 − S̄0).

The first term on the far-right part of the equation is the often desired average treatment
effect (ATE) (β̄1) in the trial sample and the second term represents the difference in
sum of the net average balance of other covariates across the two groups. Now, even
with randomisation, it is unlikely that S̄1 = S̄0 precisely and it is more likely that one is
(slightly) larger than the other. However, when the analysis is repeated an infinite amount
of times and we additionally assume that there is no post-randomisation correlation of
the x-variables with Y , randomisation guarantees that this second term is asymptotically
equal to 0. Likewise, the average of the estimated ATEs converges to the true ATE in
the trial sample. Interestingly, this holds for unobserved covariates as well, under the
assumption of no post-randomisation correlation with covariates occurs.

3.2 Outlier classification

So far, this thesis has addressed outliers as there is only one kind. However, following
Rousseeuw and Leroy (1987), outliers can actually be categorised into three categories:
vertical outliers, good leverage points and bad leverage points. A visualisation in a simple
linear regression context is provided in Figure 1.

Figure 1: Classification of outliers. Source: Verardi and Croux (2009).
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Firstly, vertical outliers are those observations that fall into the “regular” range of the
independent (explanatory) variable x, but strongly differ in terms of the dependent (out-
come) variable y. In linear regression, vertical outliers can affect the intercept estimation
significantly, and can further mildly influence the regression slope coefficients. Secondly,
bad leverage points are outlying with respect to the explanatory variables. Their outcome
variable can lie either within the normal dependent variable range (as in Figure 1) or de-
viate even further from the bulk of the data. Often, they have a strong effect on both
the intercept and the slope of the estimation. Generally speaking, both vertical outliers
and bad leverage points lead to an increase in the variance estimates, as they lie far away
from the estimated regression line. Lastly, good leverage points are outlying in both the
dimensions of the explanatory and outcome variable, but in a way that they are in line
with the regression estimate created using the bulk of observations. They therefore do
not affect the regression estimate, but can decrease the estimated variance, leading to
overoptimistic conclusions about estimate certainty.

3.3 Breakdown point

The idea of an estimator’s breakdown point (concept first introduced by Hampel, 1971) is
an easily interpretable concept within robust statistics. An estimator’s breakdown point
relates closely to its influence function (Hampel, 1968), as it also aids in understanding the
robustness properties of estimators. However, a breakdown point is often investigated for
higher percentages, whereas influence functions look at infinitesimal levels of contamina-
tion. In the finite sample version of Donoho and Huber (1983), they describe a breakdown
point as the "smallest amount of contamination that may cause an estimator to take on
arbitrarily large aberrant values". When discussing breakdown points, the contamination
always is the worst possible kind (e.g. all outliers lie on one end and all approach infinity
(in case for the median estimator)). This also means that contamination levels below the
breakdown point give reliable estimates, given an generally well performing estimator.
Non-robust estimators have a breakdown point of 0% and the highest attainable level is
50%. An example of an estimator with a breakdown point of α with 0 < α < 50 is the
α-trimmed mean (Hampel, 1974).

Moreover, a difference between breakdown point analysis and influence function anal-
ysis, is the level and type of contamination: In the former, one can test larger ε values and
the type of contamination is the most adverse contamination possible (for that specific es-
timator), whereas the latter is performed at ε → 0 and relates to any contamination other
than assumed distribution F (e.g. another distribution or point-mass contamination).

3.4 Coefficient interpretation Lin (2013) estimator

This section provides background knowledge about regression coefficient interpretation,
specifically for the Lin (2013) estimator. This section illustrates how the demeaning of
the covariates of the interaction term does not introduce additional bias and eases the
regression interpretation, through comparing the differences in coefficient interpretation
between demeaning the x-variables in the interaction terms versus non-demeaning for the
Lin (2013) estimator.
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Firstly, it is important to note that the interaction term is added to the regression
to accommodate for heterogeneous effect of β on y across the treatment and control
group. The estimator/linear regression introduced by Lin (2013) is as follows, including
an interaction term where the explanatory variables are demeaned:

y = µ̂+ τ̂T + xβ̂ + (x− x̄)T γ̂ + ε̂. (1)

In linear regression analysis, one is interested in the average marginal effect of a variable,
in this application the treatment indicator T , specifically. In the above equation, the
marginal effect of T on y is estimated τ̂ +(xi− x̄)γ̂, making the average marginal effect of
T equal to τ̂ , because the marginal effect’s second term equals 0, on average. This means
that the average marginal treatment effect simply equals the coefficient of T . Thus, de-
spite the fact that x̄ is not robust to outliers, this term is canceled out, on average. This
holds for any value x̄ and γ̂.

To understand the effect of not demeaning x in the interaction term, equation (1) can
be rewritten as below by shuffling and regrouping the terms:

y = µ̂+ (τ̂ − x̄γ̂)T + xβ̂ + xT γ̂ + ε̂.

Now, the formula can be easily compared to the set-up without demeaning:

y = ˆ̃µ+ ˆ̃τT + x ˆ̃β + xT ˆ̃γ + ˆ̃ε, (2)

We see that the T coefficient has changed (ˆ̃τ = τ̂ − x̄γ̂) and all other terms remain
unchanged. When evaluating the not-demeaned alternative (2), we find that the marginal
effect of T is ˆ̃τ + xi

ˆ̃γ, making the average marginal effect ˆ̃τ + x̄ˆ̃γ. This means that in the
not-demeaned case, the bias of x̄ is introduced into the analysis, instead. Additionally,
the analysis is easier to conduct in the demeaned case, as the inference can be directly
performed from the linear regression output by any statistical software. Obviously, outliers
can still effect all estimator estimates (e.g. OLS estimates are biased in the presence of
bad leverage points), but they could be robustly estimated using a robust method like an
MM-estimator.

3.5 The influence- & change-of-variance function

First introduced by Hampel (1968, 1974), the influence function is defined as the stan-
dardised bias on the estimator because of infinitesimal point-mass contamination ε at
point z ∈ R. Mathematical representation of the influence function of estimator T at
underlying distribution F is defined as

IF (z;T, F ) = lim
ε→0

{
T (Fε)− T (F )

}
/ε,

where Fε = (1 − ε)F + ε∆z and ∆z denotes the point mass contamination at any point
z ∈ R (Tukey-Huber contamination model). Similarly, influence functions can also be
described as the marginal effect of contamination on the estimator’s derivative:

IF (z;T, F ) =
∂

∂ε
T (Fε)

∣∣∣
ε=0

. (3)

For the next parts, notation is as follows: Let FN indicate the empirical distribution of
observations z and let F be the true distribution of z. Fε indicates the contaminated
distribution. Furthermore, let T be the parameter functional such that T (F ) = τ and
T (FN) = τ̂ are the treatment effect and its estimator, respectively.
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3.5.1 Derivational steps

The derivation of an estimator’ IF starts with its score functions. A score function Ψ is the
derivative of an estimator’s loss function ρ. Giving a continuously piece-wise differentiable
loss function ρ, total loss can be minimised by differentiating ρ with respect to estimator
T and equating it to 0. Then, score functions are such that

∂

∂T
ρ(z;T, F ) = Ψ(z;T, F ) = 0.

From this, we can consider the following equation:

EF

[
Ψ
{
z;T (F ), F

}]
= 0.

for the super population. After introducing distributional contamination F → Fε, T (Fε)
is defined by solving: ∫

Ψ
{
z;T (Fε), Fε

}
dFε = 0.

As the influence function is defined by the partial derivative of T (Fε) with respect to
ε at the limit ε → 0, the influence function is found by solving

∂

∂ε

∫
Ψ
{
z;T (Fε), Fε

}
dFε

∣∣∣
ε=0

= 0

for ∂
∂ε
T (Fε)|ε=0 = IF (z;T, F ) (equation (3)). Moreover, when evaluating robustness, it

is interesting to not only evaluate the effect on the estimator’s asymptotic value but also
to evaluate its asymptotic variance. This introduces the next fundamental element of
robustness, namely the change-of-variance function.

It is worth noting that the IF and CVF show many similarities, for example
∫
IF (z;T, F )dF =∫

CV F (z;T, F )dF = 0. These characteristics are important for the derivations of the
curves, as evident in the next section. The CVF is derived as follows:

CV F (z;T, F ) =
∂

∂ε
V (T, Fε)

∣∣∣
ε=0

=
∂

∂ε
V
{
T, (1− ε)F + ε∆z

} ∣∣∣
ε=0

.

3.5.2 Robustness evaluation

After deriving the influence function, estimator robustness can be evaluated. Following
Hampel et al. (1986), there are three measures for evaluating robustness: the gross-error
sensitivity, the local-shift sensitivity, and the rejection point. The first type of robustness
is the focal point of this thesis and is also considered the most important one within the
literature. However, the local-shift sensitivity measure is worth mentioning as well, as it
is characteristic for the median estimator, as it relates to the “wiggling” of an estimator
around the center of symmetry. Hampel et al. (1986) provide a simple comparison be-
tween the sample mean and median for all three measures.

The gross-error sensitivity is the supremum over z of the influence function’s absolute
value:

15



γ∗(T, F ) = sup
z

|IF (z;T, F )|.

It is said that an estimator is bias-robust (B-robust) if the gross-error sensitivity score
γ∗ is bounded for infinitesimal levels of contamination (Hampel et al., 1986). Simple ex-
emplary IF-applications for the arithmetic mean and robust alternatives are provided in
Hampel (1974). Note that for M-estimators, the gross-error sensitivity γ∗ is only bounded
when score function Ψ is bounded as well (Krasker, 1980), because the IF is proportional
to the score function. Moreover, also note that a breakdown point of 0% translates to
γ∗ → ∞.

For the variance, there is a similar measure κ∗ for evaluating variance-robustness (V-
robust):

κ∗ = sup
z

{
CV F (z;T, F )/V (T, F )

}
,

This V-robustness is a more stringent robustness concept than B-robustness, and V-
robustness implies B-robustness (Rousseeuw, 1981b). An estimator is V-robust if and
only if the change-of-variance sensitivity κ∗ is bounded.

3.5.3 General M-estimator expressions

Though a general understanding of the derivational steps is important, this thesis derives
the treatment estimators’ IFs and CVFs using Zhelonkin (2013)’s work on M-estimators.
For one-stage M-estimators, the IF is proportional to the score function (see Appendix
A.1 for the derivation), which means that the score function must be bounded for the IF
to be bounded. In turn, this means that an estimator’s value is robust to outliers if and
only if its score function is bounded. For a one-stage M-estimator, the influence function
is as follows:

IF (z;S, F ) = M−1Ψ1

{
z(1), S(F )

}
,

where M = −
∫

∂
∂θ
Ψ1(z, θ)dF and Ψ1 represents the score function. Moreover, for M-

estimators, the asymptotic variance can then be expressed as:

V (S, F ) =

∫
IF (z;S, F )IF (z;S, F )TdF, (4)

given some regularity conditions and symmetric distribution F (Hampel et al., 1986). For
one-stage M-estimators specifically, this resembles the following structure:

V (S, F ) =

∫
IF (z;S, F )IF (z;S, F )TdF

=M−1

∫
Ψ1

{
z(1), S(F )

}
Ψ1

{
z(1), S(F )

}T
dFM−1.

(5)

The derivation for the one-stage CVF is also included in Zhelonkin (2013)’s work, but is
omitted in this thesis.

For two-stage M-estimators, the IF, variance and CVF can also be derived. For the
IF, it extends the one-stage IF estimator to:
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IF (z;T, F ) =M−1

(
Ψ2

[
z(2), h

{
z(1), S(F )

}
, T (F )

]
+

∫
∂

∂θ
Ψ2

{
z̃(2), θ, T (F )

} ∂

∂η
h(z̃(1), η)dF · IF (z;S, F )

)
,

(6)

where M = −
∫

∂
∂ξ
Ψ2

[
z̃(2), h

{
z̃(1), S(F )

}
, ξ
]
dF .

The two-stage asymptotic variance can be described as, again following (4), now using
IF (z;T, F ) instead:

V (T, F ) = M−1

∫
a(z)a(z)T + a(z)b(z)T + b(z)a(z)T + b(z)b(z)TdFM−1, (7)

where a(z) = Ψ2

[
z(2), h

{
z(1), S(F )

}
, T (F )

]
and b(z) =

∫
∂
∂θ
Ψ2

[
z(2), h

{
z(1), S(F )

}
, T (F )

]
·

∂
∂η
h(z(1), η) · IF (z;S, F ). Moreover, Zhelonkin (2013) uses the above expressions to also

derive a general expression for the two-stage M-estimator’s CVF as well:

CV F (z;S, T, F ) = V (T, F )−M−1

(∫
D(2S)dF

)
V (T, F )

−M−1

(
∂

∂θ
Ψ2

[
z(2), h

{
z(1), S(F )

}
, θ
])

V (T, F )

+M−1

(∫ {
Aa(z)T +Ba(z)T + Ab(z) +Bb(z)T

}
dF

)
M−1

+M−1

(∫ {
a(z)AT + b(z)AT + a(z)BT + b(z)BT

}
dF

)
M−1

+M−1

(
a(z)a(z)T + a(z)b(z)T + b(z)a(z)T + b(z)b(z)T

)
M−1

− V (T, F )

(∫
D(2S)dF +

∂

∂θ
Ψ2

[
z(2), h

{
z(1), S(F )

}
, θ
])

M−1,

(8)

where D(2S) is a matrix with elements

D
(2S)
ij =

( ∂

∂h

∂Ψ2i(z
(2), h, θ)

∂θj

)T ∂h(z(1), s)

∂s
IF (z;S, F )

+
( ∂

∂θ

∂Ψ2i(z
(2), h, θ)

∂θj

)T

IF (z;T, F ),

matrix A is given by

A =
∂

∂h
Ψ2

{
z(2), h, T (F )

}∂h(z(1), s)
∂s

IF (z;S, F )

+
∂

∂θ
Ψ2

[
z(2), h

{
z(1), S(F )

}
, θ
]
IF (z;T, F ),

and matrix B has the form

B =

∫
R1

∂

∂s
h(z(1), s)dFIF (z;S, F ) +

∫
∂

∂h
Ψ2

{
z(2), h, T (F )

}
R2dFIF (z;S, F )

−
∫

∂

∂h
Ψ2

{
z(2), h, T (F )

} ∂

∂s
h(z(1), s)dFM−1

1

∫
D(1)dFIF (z;S, F )

+
∂

∂h
Ψ2

{
z(2), h, T (F )

} ∂

∂s
h(z(1), s)IF (z;S, F ),
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where matrix D(1) has elements

D
(1)
ij =

( ∂

∂θ

∂Ψ1i(z
(1), θ)

∂θj

)T

IF (z;S, F );

and matrix R(1) has elements

R
(1)
ij =

( ∂

∂h

∂Ψ2i(z
(2), h, T (F ))

∂hj

)T

+
∂h(z(1), s)

∂s
IF (z;S, F )

+
∂

∂θ

∂Ψ2i(z
(2), h, θ)

∂hj

IF (z;T, F ),

and R(2) is a matrix with elements R(2)
ij =

(
∂
∂s

∂hi(z
(1),s)

∂sj

)T

IF (z;S, F ), and M1 indicates the
first-stage’s M matrix. Furthermore, this thesis’ notation of matrix B is slightly different
from matrix B in Zhelonkin (2013), because two terms included cancel each other out
perfectly. For those interested, detailed derivations can be found in Zhelonkin (2013)’s
Appendix section, specifically sections A.3 and A.4.

4 Robustness Evaluation
In this section, the IF and CVF are derived and discussed for each of the three treatment
effect methods. The derivations closely follow the work of Zhelonkin (2013), specifically
its Sections 3.1-3.4 and appendices A.3 and A.4. This section is structured as follows:
Firstly, an overview of the different treatment effect estimators is provided (Section 4.1).
Secondly, the IF and CVF for each of the estimators are provided in subsections 4.2-4.4.
Again, robustness is evaluated for infinitesimal levels of contamination using the Tukey-
Huber contamination model Fε = (1−ε)F +ε∆z. Thirdly, an analysis of their robustness
to the different types of outliers is performed and more robust alternatives are suggested,
which form the base for this thesis’ methodology (Section 6).

4.1 Overview estimators

This thesis evaluates three different treatment effect estimators. The first two estimators
that are discussed are one-stage estimators, whereas the third is a two-stage estimator.
These three estimators are the most present estimators in the literature: the first estima-
tor is the classical, unbiased difference-in-means estimator; the second estimator adjusts
the first one by including covariates and is known to have a lower variance in clean sam-
ples; and the third estimator is the two-step equivalent of the second estimator. All three
estimators are M-estimators, allowing the use of general M-estimator derivations as pre-
sented in Section 3.5.3. An overview of the estimators and corresponding score functions
(using squared loss functions) is provided in Table 1 and detailed derivations can be found
in Appendix A.
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Table 1: Overview of the different treatment effect estimators.

Difference-in-means (DiM)
Estimator (τ̂) τ̂ = 1

N1

∑
i∈T yi − 1

N0

∑
i∈C yi

Ψ1

{
z(1), S(F )

} [
y1 − µ1

y0 − µ0

]
, with z(1) = {y1, y0} and S(F ) =

[
µ1

µ0

]
Ψ2

[
z(2), h

{
z(1), S(F )

}
, T (F )

]
µ1 − µ0 − τ = S(F )T

[
1
−1

]
− τ ,

with z(2) empty; h
{
z(1), S(F )

}
= µ1 − µ0 and T (F ) = τ

Regression adjusted (RA)
Estimator (τ̂) y = µ̂+ τ̂T + xT β̂ + T (x− x̄)T γ̂ + ε̂

Ψ1

{
z(1), S(F )

} (
y − µ− τ̃T − xTβ − T (x− µx)

Tγ
)

1
T
x

T (x− µx)

,

with z(1) = {y, x, T} and S(F ) =
[
µ τ βT γT

]
Ψ2

[
z(2), h

{
z(1), S(F )

}
, T (F )

]
τ̃ − τ = S(F )T


0
1
0
0

− τ ,

with z(2) empty; h
{
z(1), S(F )

}
= τ̃ and T (F ) = τ

Difference-in-intercepts (DiI)

Estimator (τ̂) Step 1: yi = µ̂T + (xi − x̄)T β̂T + ε̂i for i ∈ T = 0, 1
Step 2: τ̂ = µ̂1 − µ̂0

Ψ1

{
z(1), S(F )

} 
(
y1 − µ1 − (x1 − µx1)

Tβ1

) [ 1
x1 − µx1

]
(
y0 − µ0 − (x0 − µx0)

Tβ0

) [ 1
x0 − µx0

]
,

with z(1) = {y1, x1, y0, x0} and S(F ) =
[
µ1 βT

1 µ0 βT
0

]
Ψ2

[
z(2), h

{
z(1), S(F )

}
, T (F )

]
µ1 − µ0 − τ = S(F )T


1
0
−1
0

− τ ,

with z(2) empty; h
{
z(1), S(F )

}
= µ1 − µ0 and T (F ) = τ

4.2 Difference-in-means estimator

The difference-in-means (DiM) estimator is an unbiased estimator for the average treat-
ment effect. It is powerful in its simplicity and easy to compute. As can also be found in
Table 1, the estimator is as follows:
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τ̂ =
1

N1

N1∑
i∈T

yi −
1

N0

N0∑
i∈C

yi

Though the estimator is a one-step estimator, its IF is constructed using two score
functions: The first-stage score function is there to compute the (arithmetic) means (i.e.
two mean IF functions stacked on top of each other) and the second one is for computing
the final estimator (i.e. subtraction operator). Appendix A.2 shows the detailed deriva-
tions for this estimator. Both score functions are derived using a squared loss function
and can be found below:

Ψ1

{
z(1), S(F )

}
=

[
y1 − µ1

y0 − µ0

]

Ψ2

[
z(2), h

{
z(1), S(F )

}
, T (F )

]
= µ1 − µ0 − τ = S(F )T

[
1
−1

]
− τ,

where z(1) = {y1, y0}, S(F ) =

[
µ1

µ0

]
, z(2) is empty, h

{
z(1), S(F )

}
= µ1−µ0 = S(F )T

[
1
−1

]
and T (F ) = τ . Also note that Ψ1 is a 2× 1-vector and that Ψ2 is a scalar.

Using the two-stage M-estimator IF formula (6), it is found that

IF (z;T, F ) = y1 − y0 − τ, (9)

where we use that ∂Ψ2

∂h
= 1, ∂h(z(1),θ)

θ
=

[
1
−1

]
and M = 1. It is evident that the estimator

is not (value-)robust to outliers in either the treatment or control group, as they directly
impact the influence function.

The CVF can be computed using the same elements and formula (8). The difference-
in-means CVF is

CV F (z;S, T, F ) = 3V (T, F ) + 2

∫ {
a(z)A+ b(z)2

}
dF +

{
a(z) + b(z)

}2
, (10)

where a(z) = −A = Ψ2 and b(z) =
[
1 −1

]
Ψ1 =

[
1 −1

]
IF (z;S, F ). Please note that

IF (z;S, F ) = Ψ1

{
z(1), S(F )

}
=

[
y1 − µ1

y0 − µ0

]
, as M1 = 1. The detailed CVF derivation can

be found in Appendix A.3. It is evident that the boundedness of the CVF is determined
by the boundedness of IF (z;T, F ) through V (T, F ) (see asymptotical variance expres-
sion (4)) and IF (z;S, F )/Ψ1 through b(z). Note that Ψ2 is a constant, therefore making
a(z)/A bounded and making IF (z;T, F ) unbounded only through Ψ1.

Evaluating robustness properties, it is evident that this estimator is neither V-robust
nor B-robust as IF and CVF are both unbounded. This is due to its fragile score func-
tion, explaining why the arithmetic means is not robust to infinitesimal levels of data
perturbation. Specifically, outliers in both the treatment and control group can draw the
arithmetic mean ȳ → (−)∞, inflating both the IF and CVF of the estimator to ∞ as well.
The estimator would be robust to infinitesimal levels of contamination with a bounded
Ψ1. This thesis addresses two alternative estimators, replacing the arithmetic means: the
median and the α-trimmed mean.
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4.2.1 Robust alternatives

The first robust estimator to consider is the difference-in-medians (DiMed) estimator:

τ̂ = y
(N1+1)/2
1 − y

(N0+1)/2
0 ,

where, for both the treatment and control group, y are ordered observations, such that
y(1) and y(N) are the minimum and maximum of y, respectively. The corresponding score
function is

Ψ1,DiMed

{
z(1), S(F )

}
=

[
− y1−η1

|y1−η1|
− y0−η0

|y0−η0|

]
,

where η represents the median. The score function is derived from the absolute loss
function ρ = |y − η|, by taking the derivative with respect to true median η. Just like
for the means, the two score functions for the treatment and control group are stacked
together into one Ψ1. It must be noted that the elements in Ψ1 is not defined at their
medians, because then y = η ⇔ y − η = 0, setting the denominatior to 0 (this explains
its local-shift sensitivity). It can easily be shown that the elements in Ψ1,DiMed take on
either 1 or -1 (-1 for yt > ηt and +1 for yt < ηt), and thus is a bounded score function.
This also leads to bounded IFDiMed

IFDiMed(z;S, F ) =

[
sign(y1)
2f(M)
sign(y0)
2f(M)

]
(Hampel et al., 1986),

where M = F−1(0.5) (for a normal distribution f(M) = ϕ(0)). For symmetric distribu-
tions and under no contamination, the median is an unbiased estimator for the population
mean. Under contamination, however, it must be noted that the median does not remove
or down-weight the outliers. Instead, the median estimator moves a little in the direction
of the outlier (i.e. the contaminated estimate is now be the initial estimate’s neighbour-
ing observation). This also explains its IF and CVF bounded properties: introducing one
outlier in the sample will never make the estimator approach infinity, but rather take on
another finite value. According to an example by Hampel et al. (1986) in Section 2.5c,
the median is the most (V -)robust estimator for a (standard) normal distribution. In
terms of CVF, the difference-in-median CVF equals that of the difference-in-means CVF
structure in (10), now with robust Ψ1 and IFmedian(z;S, F ) bounded alternatives.

Another alternative for the arithmetic mean estimator is the α-trimmed mean (DiMT).
Here, the score function does not change, but z(1) is trimmed. After sorting, the outer
most α percentage of all observations (within each group) are removed from the sample.
If the estimator is successful in perfectly removing all outliers, the estimator remains un-
biased and the variance decreases. Moreover, removing outer observations from (clean)
thicker-tailed distributions (e.g. Cauchy) leads to a decrease in the variance estimate,
whereas the trimmed mean is a less efficient estimator (compared to the basic arithmetic
mean) in the thinner-tailed normal distribution. Furthermore, decreasing the trimming
percentage converges the estimator towards the difference-in-means estimator and increas-
ing it converges the estimator towards the difference-in-medians estimator, for both value
and variance.
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It must be noted that this alternative does not have a bounded IF or CVF function.
This is because outliers are only removed if they fall in the α-percentage tails of the sample.
Rather, the IF and CVF represent the effects of infinitesimal levels of contamination
anywhere in the sample (i.e. in this thesis, at any point-mass ∆z). Still, this can be an
interesting estimator to consider for practical applications, and is therefore included in
the analysis.

4.3 One-stage regression-adjusted estimator

A way to extend the difference-in-means estimator is through including covariates with
predictive power to the analysis. Not only the covariates, but also an interaction term
between the covariates and the binary treatment variable is added to the regression model,
such that it can deal with possible heterogeneity. This estimator is called the Regression-
Adjusted OLS-estimator (RA OLS). Copying Table 1, the estimator τ̂ is obtained from
the OLS-regression

y = µ̂+ τ̂T + xT β̂ + T (x− µ̂x)
T γ̂ + ε̂.

Similar to the difference-in-means estimators, despite the estimator itself being a one-
stage estimator, there are two score functions. The first one is to estimate all coefficients
in the regression:

Ψ1

{
z(1), S(F )

}
=

(
y − µ− τ̃T − xTβ − T (x− µx)

Tγ
)

1
T
x

T (x− µx)


with z(1) = {y, x, T} and S(F )T =

[
µ τ̃ βT γT

]
and the second score function is to

attain the coefficient matching the treatment indicator variable:

Ψ2

[
z(2), h

{
z(1), S(F )

}
, T (F )

]
= τ̃ − τ = S(F )T


0
1
0
0

− τ

with z(2) empty, h
{
z(1), S(F )

}
= τ̃ = S(F )T


0
1
0
0

 and T (F ) = τ . Please note that the

treatment indicator coefficient τ̃ in Ψ1 has been given a tilde, to be able to differentiate τ
between the two score functions (the true treatment effect estimator in Ψ2 is also named
τ , following notation in the other estimators). Also note that Ψ1 is a 2(p+ 1)× 1-vector
with p equal to number of covariates and that Ψ2 is a scalar.

This estimator is a two-stage M-estimator, where we get its IF using (6):

IF (z;T, F ) = Ψ2

[
z(2), h

{
z(1), S(F )

}
, T (F )

]
+


0
1
0
0


T

M−1
1 Ψ1

{
z(1), S(F )

}
,

22



where we use that ∂Ψ2

∂h
= 1, ∂h(z(1),θ)

θ
=

[
0 1 0T 0T

]
, M = 1 and the first-stage influence

function IF (z;S, F ) = M−1
1 Ψ1

{
z(1), S(F )

}
. These elements can be used to derive the

asymptotic variance, using (4):

V (T, F ) =

∫
IF (z;T, F )IF (z;T, F )TdF

=

∫
Ψ2

2dF + 2


0
1
0
0


T

M−1
1

∫
Ψ1

{
z(1), S(F )

}
dF

+


0
1
0
0


T ∫

M−1
1 Ψ1

{
z(1), S(F )

}
Ψ1

{
z(1), S(F )

}T
M−1

1 dF


0
1
0
0



=
[
0 1 0T 0T

]
V ar(S, F )


0
1
0
0

 = V ar(τ̃),

(11)

where we used that
∫
Ψ2dF =

∫
Ψ1dF = 0 and the expression for the first-stage vari-

ance V (S, F ), as seen in equation (7). Using the two-stage M-estimator CVF function
(equation (8)), this gives a CVF formula of the same structure as the difference-in-means
CVF (equation (10)), now with a(z) = Ψ2 and b(z) =

[
0 1 0T 0T

]
IF (z;S, F ). Notes

for the CVF derivation can be found in Appendix A.4. Again, the unboundedness of the
CVF depends on the unboundedness of IF (z;S, F )/Ψ1.

When analysing the estimator’s (B-)robustness, we can see that the total effect of
IF (z;S, F ) on IF (z;T, F ) is restricted to only its second row (out of 2(p+1) rows). This
second line equals the following:

(
y− µ− τ̃T − xTβ − T (x− µx)

Tγ
)
· T (for convenience,

this is denoted as Ψ1,2). In this thesis, we assume no misspecification of treatment status,
thus the second term T cannot be an area of concern. The former term, however, re-
sembles the error term between the true outcome variable and the expected value. With
vertical outliers, the x-value does not deviate much from µx, but outcome variable y de-
viates much, therefore causing Ψ1,2 → ∞. Depending on whether the outlier lies in the
treatment or control group, either τ̂ changes (treatment group) or both τ̂ and µ̂ (control
group) are affected. This is because the line of estimation shifts vertically towards the
outlier, relatively uneffecting its slope coefficients. For bad leverage points, x and y both
deviate from the regression line, making the residual large. In the worst case, Ψ1,2 → ∞.
In turn, this outlier can draw the estimation line towards itself to minimise the otherwise
(even) larger residual. Bad leverage points in the control group can alter all estimators µ̂,
τ̂ , β̂, and γ̂ and in the treatment group only τ̂ and γ̂ are expected to change significantly.
For good leverage points, we see that the residual is low, and can therefore draw Ψ1,2

down to 0, making IF (z;T, F ) finite and nearing 0 as Ψ2 → 0.

Similar effects are seen for the variance and CVF: As evident from (11), the variance is
restricted to only the variance from the treatment indicator coefficient; other estimators’
variances are not included, as desired. For vertical outliers, IF (z;T, F ) and IF (z;S, F ) →
∞, therefore also inflating V (T, F ) and b(z). Clearly, the CVF is not bounded for vertical
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outliers. The same holds for bad leverage points. For good leverage points, the overall
variance decreases slightly (more for each additional good leverage point). A similar effect
can be seen in the CVF, which is larger than 0, but bounded. Again, good leverage points
have a bounded effect in the sense that the change-of-variance sensitivity κ∗ is bounded,
but they can cause the variance (and CVF) to “falsely” move downwards.

4.3.1 Robust alternatives

This thesis discusses two robust alternatives: The first one, is Yohai (1987)’s MM-
estimator with Tukey biweight loss functions (Tukey, 1977), provided that it is the de-
fault estimator in the literature and has a high breakdown point. The second is the
KW-estimator (Krasker 1980; Krasker and Welsch 1982), since it is the most V-robust
estimator in the literature and the focus of this thesis lies at infinitesimal levels of con-
tamination.

For the MM-estimator, tuning parameters c0 = 1.548 and c1 = 4.685 are applied to
the Tukey biweight loss functions. A formal derivation of the IF and CVF using an MM-
estimator lies beyond the scope of this thesis, but Yohai (1987) shows that a consistent
estimator with a 50% breakdown point can be achieved with high efficiency, when errors
are normally distributed. Following the regression structure of the OLS alternative, this
estimator is called the Regression-adjusted MM-estimator (RA MM). The Tukey loss
function is as follows:

ρ(r) =

{
c2

6

(
1−

[
1− ( r

c
)2
]3)

, if |r| ≤ c

c2

6
, otherwise

(12)

with score function

Ψ(r) =

{
r
[
1− ( r

c
)2
]2
, if |r| ≤ c

0, otherwise
(13)

where r = ui

s
is the scaled residual and c is a positive tuning parameter. c = 1.548 in the

first step to tune for high breakdown and c = 4.658 in the second step for high efficiency.

The KW-estimator does have a bounded influence function of the form:

IF (z;T, F ) = Ψ{(y − xβ)A−1xT},

where A is a p× p matrix satifying

A = E
[
2ϕ

( a

σ|A−1xT |
)
− 1

]
xTx.

The estimator is a Modified Least Squares (MLS) estimator and is the optimal V-robust
estimator for linear regression (Ronchetti and Rousseeuw, 1985). However, it is also shown
to have a low breakdown point in multivariate data and it is interesting to compare the
results of the MM- and KW-estimator in this a simulation with little contamination. This
estimator is called the regression-adjusted KW-estimator (RA KW).
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4.4 Two-stage difference-in-intercepts estimator

As mentioned earlier, this estimator is a two-stage estimator, where two individual re-
gressions are run, after which the estimator is the difference between the two intercept
estimates. Following Table 1, the covariate coefficients and intercepts for both the treat-
ment and control group can be estimated through (step 1)

yt = µ̂t + (xt − x̄t)
T β̂t + ε̂t for t = 0, 1.

Then (step 2), the final the difference-in-intercepts (DiI OLS) estimator is

τ̂ = µ̂1 − µ̂0.

The corresponding two score functions are Ψ1

Ψ1

{
z(1), S(F )

}
=

(y1 − µ1 − (x1 − µx1)
Tβ1)

[
1

x1 − µx1

]
(y0 − µ0 − (x0 − µx0)

Tβ0)

[
1

x0 − µx0

]
 ,

where z(1) = {y1, y0, x1, x0} and S(F )T =
[
µ1 βT

1 µ0 βT
0

]
and Ψ2 is

Ψ2

[
z(2), h

{
z(1), S(F )

}
, T (F )

]
= µ1 − µ0 − τ = S(F )T


1
0
−1
0

− τ,

where z(2) is empty, h
{
z(1), S(F )

}
= µ1 − µ0 = S(F )T


1
0
−1
0

 and T (F ) = τ Also note

that Ψ1 is a 2(p+1)×1-vector with p equal to number of covariates and that Ψ2 is a scalar.

Again, using the two-stage M-estimator IF equation (6), the difference-in-intercept
IF can be constructed:

IF (z;T, F ) = Ψ2

[
z(2), h

{
z(1), S(F )

}
, T (F )

]
+


1
0
−1
0


T

M−1
1 Ψ1

{
z(1), S(F )

}
,

where we use that ∂Ψ2

∂h
= 1, ∂h(z(1),θ)

θ
=


1
0
−1
0


T

, M = 1 and the first-stage influence

function IF (z;S, F ) = M−1
1 Ψ1{z(1), S(F )}. These elements can be used to derive the

asymptotic variance, using (4) and following similar steps as for in (11):

V (T, F ) =
[
1 0T −1 0T

]
V ar(S, F )


1
0
−1
0

 = V ar(µ1) + V ar(µ0),
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where we used that
∫
Ψ2dF =

∫
Ψ1dF = 0 and the expression for the first-stage variance

V (S, F ), as seen in equation (7). Using the two-stage M-estimator CVF function (equation
(8)), this gives a CVF formula of the same structure as the difference-in-means CVF
(equation (10)), now with a(z) = Ψ2 and b(z) =

[
1 0T −1 0T

]
IF (z;S, F ). Notes for

the CVF derivation can be found in Appendix A.5. Again, the unboundedness of the
CVF depends on the unboundedness of IF (z;S, F )/Ψ1.

F

4.4.1 Robust alternative

Similar to the one-stage regression adjusted estimator, robust alternatives are the MM-
estimator (DiI MM) and the KW-estimator (DiI KW). For the MM-estimator, the same
loss functions and tuning parameters as in the regression-adjusted method are used.

5 Data & experimental set-up
This section describes the data for a simulation study (Section 5.1) and a real-data set
application (Section 5.2). The former includes a brief explanation on the experimental
set-up regarding number of observations and different type of outliers included, as well.

5.1 Simulation study

A simulation study is conducted to analyse the effects of the three types of outliers on
the three value- and variance-estimates. Each measurement is repeated 500 times and a
sample sizes of N = 2000 is used. The DGP is the following model:

y0 = α + β1x1 + β2x2 + β3x3 + ε,

y1 = y0 + τ,
(14)

where x1, x2, x3 ∼ N
(00

0

 ,

 1 0.5 0.25
0.5 1 0.05
0.25 0.05 1

), ATE τ = 0.25, β1 = β2 = β3 = 1,

α = 0 and ε ∼ N(0, 1). yt represents the outcome variables for the treatment (t = 1)
and control (t = 0) groups. Treatment is randomly assigned using a binomial distribution
with probability p = 0.4.

5.1.1 Outliers

The contamination is added to the sample through replacing a small percentage of the
data with a point mass outlier. Contamination is randomly determined with a binomial
distribution with probability of c = 0.01. The contamination level is kept low, to keep this
thesis’ focus on infinitesimal levels of contamination. Outliers are put in the treatment
group, the control group and in both groups together. The next paragraphs describe the
exact contamination for the three different types of outliers: bad leverage points, good
leverage points and vertical outliers. In all three cases, the contamination is such that
it is hard to detect in simple explanatory analysis. This is done by plotting the outliers
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approximately 2 standard deviations from the variable’s mean. This requires the compu-
tation of y’s standard deviation:

As y is the sum of 4 normal distributions, y also follows a normal distribution. Its mean
is obtained by simply adding all other distributions’ means, which equals µ(0) = 0 (control
group) or µ(1) = 0.25 (treatment group). For its variance, the following formula is used,
provided that the x-variables are correlated to each other and ε is sampled independently.

V ar(y) = β2
1V ar(x1) + β2

2V ar(x2) + β2
3V ar(x3)+

2β1β2Cov(x1, x2) + 2β1β3Cov(x1, x3) + 2β2β3Cov(x2, x3) + V ar(ε).

Filling in the numbers as presented in the DGP model (14), this gives yt ∼ N
(
µt, 5.525

)
,

with translates to an approximate standard deviation of 2.35.

Following the outlier classification in Section 3.2, the data manipulations to mimic
outliers is described next. In the outliers formulas that follow, a ∗ indicates a contam-
inated variable, meaning that variable lies far away from its mean. In this section, the
contamination does not discriminate between treatment or control groups, but follows the
random observations chosen by the binomial distribution over all observations. Note that
the simulation also focuses on the scenarios where the contamination lies in the treatment
or control group solely. The subscript t indicates the location of the outlier, either the
treatment (t = 1) or control group (t = 0).

Firstly, bad leverage points are described: in this scenario, an observation’s explana-
tory variables are altered, such that the point lies far away from the regression line. The
outcome variables lies at its mean and the explanatory variables lie approximately two
standard deviations from the mean.

zi,blp =
[
yi = ȳt, x

∗
1i = x∗

2i = x∗
3i = 2

]
(15)

Alternatively, the deviation from the regression line can be increased through changing
the y-value in the opposite direction. A second type of bad leverage points is constructed
as follows:

zi,blp2 =
[
y∗i = ȳt − 4.7, x∗

1i = x∗
2i = x∗

3i = 2
]

(16)

Secondly, good leverage points show deviating values for both its explanatory variables
and outcome variable, but in line with the regression line for the uncontaminated sample.
Good leverage points are constructed as follows:

zi,glp =
[
y∗i = ȳt + 6;x∗

1i = x∗
2i = x∗

3i = 2
]
. (17)

Lastly, vertical outliers are also computed. Now, the outcome variable y is altered,
such that the outcome variable is located at approximately two standard deviations from
its mean, while the explanatory variables are in the middle of their distribution. Vertical
outliers are constructed as follows:

zi,vert =
[
y∗i = ȳt + 4.7, x1i = x2i = x3i = 0

]
(18)

To illustrate the effect of outliers in the sample, a visualisation of the three types
of outliers in both the treatment and control group is presented in Figure 2. The plots
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show the residuals against the squared Mahalanobis distance. The residuals are computed
using an MM-estimator (Yohai, 1987), using the default settings of the lmrob function
of package robustbase (Maechler et al., 2023) in R (i.e. Tukey-biweight loss functions
for both steps, with respective tuning parameters c0 = 1.548 and c1 = 4.685) to provide
a 50% breakdown point at a 95% efficiency level. For the (standardised) residuals, a
horizontal cut-off point of 2.5 is chosen. The (squared) Mahalanobis distances are also
robustly computed using the fast implementation of the MCD-estimator (Rousseeuw and
Driessen, 1999). The vertical cut-off line is placed at χ2

3(0.95). Note that these images
represent a single sample and that the simulation study averages the results over 500
samples.

Figure 2: Exemplary outlier simulation.
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5.2 National Supported Work Demonstration

For the real-data application, data from the National Supported Work (NSW) Demon-
stration is used. The NSW was a temporary employment program, operating in ten dif-
ferent sites across the United States in the mid-1970s. The program was designed to help
disadvantaged workers get back into the working force by providing them with sheltered-
environment jobs and counseling sessions. The duration of the program ranged between
9 and 18 months, afterwhich the workers were forced to find regular jobs. Unlike many
other federal sponsored programs, the NSW program assigned qualified applicants com-
pletely randomly. Qualified applicants are AFDC women, ex-drug addicts, ex-criminal
offenders and high-school dropouts. The initial study was conducted by LaLonde (1986),
comparing both the NSW experimental setting with observational findings from different
studies (i.e. Panel Study of Income Dynamics (PSID) and Current Population Survey-
Social Security Administration (CPS-SSA) groups). LaLonde received much response to
his work: e.g. Dehejia and Wahba (1999, 2002) introduced propensity score matching to
the study and applied it to only a subset of the data, to include more variables in their
analysis; Smith and Todd (2005) and Diamond and Sekhon (2013) further extended their
work by comparing different matching and analysis techniques.

Following LaLonde (1986), this thesis specifically uses the male experimental NSW
data, which is available in the nws R data package. In this sample, there are 297 treat-
ment observations and 425 control observations (i.e. 41% of observations belongs to the
treatment group). Applicant information available are his age, years of education, racial
information (dummies for black and hispanic), marital status, high school dropout status,
earnings in 1975 and earnings 1978. The latter is the outcome variable and all other vari-
ables are gathered pre-treatment. Data gathering was done through interviews, making
earnings self-reported. In line with LaLonde (1986), all earnings are reported in 1982
USD. Simple descriptive statistics are reported in Table 2, where they are split by treat-
ment group. Generally speaking, both groups are approximately similar and both strongly
represent minority groups (80% is black, 11% is hispanic, and only 16% is married), are
poorly educated (78% has no high school degree) and have low incomes (median income
of $936.31, compared to a nationwide median income of $24,832.941; 40% has no pre-
treatment income at all). Moreover, the sample is relatively young, with an average age
of 24.5 years old.

1$11,800 is the median income in 1975 (United States Consensus Bureau), but when corrected for
inflation to get the equivalent in 1982 USD, the 1975 median income in 1982 USD is $24,832.94 (CPI
Inflation Calculator). As a control measure: the reported median income in 1982 was $23,430 (United
States Consensus Bureau)
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Table 2: Descriptive statistics experimental (male) NSW sample.

Variables Treatment Control

Age 24.63
(6.686)

24.45
(6.590)

Education 10.38
(1.818)

10.19
(1.619)

Black 0.800
(0.400)

0.800
(0.400)

Hispanic 0.094
(0.293)

0.113
(0.317)

Married 0.168
(0.375)

0.158
(0.365)

No degree 0.731
(0.444)

0.814
(0.389)

Earnings 1975 3,066
(4,875)

3,027
(5,201)

Proportion 1975 zero-earners 0.374
(0.485)

0.419
(0.494)

Earnings 1978 5,976
(6,924)

5,090
(5,718)

Proportion 1978 zero-earners 0.226
(0.419)

0.304
(0.460)

Number of observations 297 425
The table values represent the sample group means, followed by their standard deviation in parentheses.

6 Methodology
This section covers the required methodology for each of the three treatment estimators.
For each of them, both the classical estimators and their robust alternatives are discussed.
The described methodology is applied using the aforementioned data with programming
language R (R Core Team, 2023). Where needed, specific R-functions are mentioned to
allow for reproduction. The seed is set to 123.

6.1 Difference-in-means estimators & robust alternatives

This section discusses the methodology for the difference-in-means estimator and its two
robust alternatives. There are two separate sections for the value and standard error
estimation, both also including details on implementation in R.

6.1.1 Estimators

Difference-in-means
The difference-in-means estimator is the first estimator to consider. It estimates the dif-
ference in the treatment group’s outcome variable mean and the control group’s outcome
variable mean, via the arithmetic means. More specifically, this is computed as follows:

τ̂DiM =
1

N1

N1∑
i∈T

yi −
1

N0

N0∑
i∈C

yi = ȳ1 − ȳ0.
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Difference-in-trimmed-means
As shown in Section 4.2, the arithmetic mean is not a robust estimator for the population
mean. One alternative that is used in this analysis is the difference-in-α-trimmed-means,
where the α% most outer observations are removed from the sample, prior to computing
the arithmetic mean:

τ̂DiMT =
1

N∗
1

N∗
1∑

i∈T

y∗i −
1

N∗
0

N∗
0∑

i∈C

y∗i = ȳ∗1 − ȳ∗0,

where N∗
t represent the number of observations remaining in the treatment (t = 1) and

control (t = 0) groups after trimming (both groups are α-trimmed separately). For each
group, this is represented by N∗

t = (1−α)Nt, such that 1
2
·α ·Nt observations are trimmed

from both the high- and low end of yt. y∗t is also the remaining subset of y’s after trimming
for both the treatment and control group. An advantage of trimming is the excluding
of outliers in the estimation, therefore reducing the bias. On the downside, trimming
too much can lead to overoptimistic conclusions due to estimating a too narrow standard
deviation. Trimming can also be tricky for non-symmetric distributions. These two esti-
mators are computed using the difference-in-means function from the estimatr package
(Blair et al., 2022) in R. This research applies α = 0.1, such that 5% of observations is
removed on each end.

Difference-in-medians
Another robust alternative is the difference-in-medians estimator:

τ̂DiMed = y
(N1+1)/2
1 − y

(N0+1)/2
0 ,

where the observations in both groups are separately ordered from lowest to highest and
the estimate directly corresponds to the difference in median observations. In the case
of an even number of observations, the estimate is the average between the middle two
observations. Each of the two terms can then individually be replaced by y

Nt/2
t +y

(Nt/2+1)
t

2
.

The estimator is computed by using the median function twice, and evaluating their
difference.

6.1.2 Standard errors

Difference-in-(trimmed-)means
For the difference-in-(trimmed-)means, standard errors are computed using the formula:

SE(τ̂DiM(T )) =
ȳ
(∗)
1 − ȳ

(∗)
0√

(N
(∗)
1 −1)S

2(∗)
1 +(N

(∗)
0 −1)S

2(∗)
2

N
(∗)
1 +N

(∗)
0 −2

(
1

N
(∗)
1

+ 1

N
(∗)
0

) , (19)

where S2
t refers to the variance of yt of the treatment (t = 1) or control (t = 0) group

and ∗ refers to the trimmed variants. The difference-in-means standard error is computed
simultaneously with the value estimate by the difference_in_means function.

Difference-in-medians
Obtaining the standard error for the difference-in-medians estimator, requires a more
manual approach: In the simulation study, the difference-in-medians estimate is com-
puted R = 500 times, such that the standard error can be estimated from the sampling

31



distribution formed by the 500 estimates. For the NSW application, the data is not sim-
ulated repeatedly as is done in the simulation study. The difference-in-medians estimator
(value) is computed using the median function, which only outputs a value estimate.
For the NSW application, standard errors are computed using bootstrapping, where the
difference-in-medians estimate is re-estimated B times. The B obtained estimates approx-
imate the sampling distribution, therefore allowing standard error approximation. The
bootstrapping procedure translates to repeating the following two steps B times:

1. The NSW data is resampled with replacement to obtain bootstrap sample b of size
N .

2. For each bootstrap sample b, τ̂DiMed,b is computed (i.e. τ̂b).

Then, the standard error can be approximated by:

SE(τ̂DiMed) =

√√√√ 1

B − 1

B∑
b=1

(τ̂b − τ̄)2,

where average τ̄ = 1
B

∑B
b=1 τ̂b and this thesis samples B = 2000 bootstraps in total. A

similar procedure is applied to the difference-in-intercept estimators.

6.2 Regression-adjusted estimators & robust alternatives

This section discusses the methodology for the regression-based estimators described in
Sections 4.3 and 4.4, meaning both the one-stage regression-adjusted estimator and the
two-stage difference-in-intercepts estimator. In the classical variants, they are estimated
using OLS. For the robust alternatives, an MM-estimator with Tukey beweight loss func-
tions and the KW-estimator are implemented. All variants’ methodology is presented
for the two regression-adjusted estimators, including a description for implementation
algorithms. Lastly, a brief paragraph is dedicated to describe the standard errors compu-
tation.

6.2.1 Estimators

OLS
The first estimator to be discussed is the classical OLS estimator. Even though the OLS
estimator is an M-estimator (Huber, 1964) with a squared loss function, β̂ can also be
estimated by

β̂OLS = (XTX)−1XTy,

Note that notation for X here is in capitals, referring to the whole data set, instead of
individual level, as was the case in Section 4 (i.e. instead of p-length vector x, here n× p
matrix X is used). For both regression-adjusted estimators, this is solved through using
R function lm from the stats package.

MM-estimator
As a robust alternative to OLS, MM-estimators are implemented. As already mentioned,
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MM-estimators combine M-estimators and S-estimators. The MM-estimator is a multi-
stage estimator. Prior to evaluating the stages, the M- and S-estimator elements are
presented: For M-estimators (Huber, 1964) of location, β̂M is

β̂M = argmin
b

N∑
i=1

ρ
(yi − xT

i b

σ

)
.

and M-estimators of scale σ̂M can be found as the solution for

1

N

N∑
i=1

ρ
(yi − xT

i b

σ̂M

)
= δ, (20)

for a given value b (i.e. σ̂M(b)), where δ = EF

[
ρ(x

σ
)
]

(for consistency at model dis-
tribution F ) and ρ is a chosen loss function, validating some regulatory assumptions.
Next, S-estimators (Rousseeuw and Yohai, 1984) of location can be computed using the
M-estimator of scale σM :

β̂S = argmin
b

σ̂2
M(b), (21)

where σ̂M(b) is the solution of equation (20). In turn, the S-estimator of scale equals
σ̂S = σ̂M(β̂S). It is evident that the S-estimator is dependent on the M-estimator for both
its location and scale estimates. The M-estimator of scale is dependent on a b estimate,
for which β̂S turns out to be a good fit. Also, location S-estimator equation (21) can be
rewritten as

β̂S = argmin
b

n∑
i=1

ρ
(yi − xT

i b

σ̂S

)
. (22)

Now that all sub-parts and underlying mechanisms are established, the MM-estimator
steps can be provided (Yohai, 1987):

1. Obtain initial scale location estimate T0:
It is critical for the breakdown point of the final estimator that this initial estimate
has a high breakdown point. In this thesis, an initial S-estimator is used.

2. Compute residuals & M-scale estimate:
The residuals ri(T0) = yi−T T

0 xi are computed and used as input for computing the
M-scale σ̂M(ri(T0)). In this step, the loss function ρ0 in equation (20) for solving
σ̂M(ri(T0)) is the Tukey biweight loss function with tuning parameter c0 = 1.548,
tuned for high breakdown.

3. Compute the MM-estimate β̂MM :
β̂MM can be found through the location S-estimator:

β̂MM = argmin
b

n∑
i=1

ρ1

(
ri(b)/σ̂S

)
, (23)

where σ̂S = σ̂M(ri(T0)) and ρ1 is the second Tukey biweight loss function, with
tuning parameter c1 = 4.685, tuned for high efficiency.
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The estimator is estimated using the lmrob function from the robustbase package (Maech-
ler et al., 2023), which is further explained in the next section.

KW-estimator
Krasker and Welsch (1982) names the estimator the modified least squares (MLS) esti-
mate, which is defined by β̂ in

N∑
i=1

Ψ
{
(yi − xiβ̂)A

−1xT
i

}
= 0,

where Ψ is the Huber score function and matrix A is a k × k matrix satifying

A = E
[
2ϕ

( a

σ|A−1xT |
)
− 1

]
xTx.

Matrix A exists for sufficiently large a, specifically

a ≥
√

π

2

σ

E||x||
.

a represents the tuning parameter of the Huber function. The Huber loss- and score
functions are as follows:

ρ(r) =

{
r2

2
, if |r| ≤ a

a(|r| − a
2
), otherwise

Ψ(r) =

{
r, if |r| ≤ a

a · sign(r), otherwise

Note that the Huber score (loss) function equals the least squares score (loss) function for
|r| ≤ a.

6.2.2 Solving algorithms

OLS
The OLS estimates can be constructed in one simple step, as the formula provided in
Section 6.2.1 only includes the (raw) data and does not other required estimates. No
additional algorithms are necessary, beyond the aforementioned lm function.

MM-estimator
MM-estimates are in theory more complex and require multiple solving algorithms. MM-
estimates are constructed using the lmrob function from the robustbase package (Maechler
et al., 2023). As an alternative to the “MM ” method, this function’s method can also
be called the “SM ” method, because it computes an S-estimate as the starting value for
the M-estimate afterwards. This thesis refers to the two stages as the S-step and the
M-step. For each of the steps, the lmrob function performs a different algorithm, which
is discussed in the next paragraphs.

In the S-step, it is important that the starting values have a high breakdown point.
Since S-estimators can be tuned for a high breakdown point, it is an effective choice to
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use an S-estimator. However, unlike in the the third step by Yohai (1987), the computa-
tion for the initial estimator cannot be dependent on another (scale) estimate. Treating
the S-estimator as a weighted least squares estimator, Salibian-Barrera and Yohai (2006)
developed the FAST-S estimator (available in R in the lmrol.S function in the robustbase
package (Maechler et al., 2023)) based on so-called improvement steps. These improve-
ment steps are repeated until convergence and form the middle section of the I-step
algorithm:

1. Start with m sets of starting values β0

2. For all m sets, perform the improvement steps until convergence

3. Return β̂S corresponding to the estimator with the lowest M-scale estimate over all
m sets,

where one improvement iteration (step 2) consists of the following three steps, beginning
with current estimate β̂k:

1. Compute M-estimate of scale σ̂M(β̂k)

2. Update weights

wi(β̂k) =
Ψ0

(
(yi − xT

i β̂k)/σ̂M(β̂k)
)

(yi − xT
i β̂k)/σ̂M(β̂k)

3. Obtain a new location estimate β̂k+1

β̂k+1 = argmin
b

1

n

n∑
i=1

wi(β̂k)(yi − xT
i b)

2

Then, for every iteration σ̂M(β̂k+1) ≤ σ̂M(β̂k). In this thesis, Ψ0 used in step 2 represents
the Tukey biweight score function with tuning parameter c0 = 1.548 (the default value in
R).

Now that the starting value β̂S and corresponding scale estimate σ̂S = σ̂M(β̂S) are
established, the function continues with the M-step. In the M-step, an IRLS algorithm is
run, which resembles the following, for current estimate β̂k:

1. Update weights

wi(β̂k, σ̂S) =
Ψ1

(
(yi − xT

i β̂k)/σ̂S

)
(yi − xT

i β̂k)/σ̂S

2. Obtain weighted least squares solution

β̂k+1 = argmin
b

1

n

n∑
i=1

wi(β̂k, σ̂S)(yi − xT
i b)

2,
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where it is important to note that σ̂S does not change throughout the iterations and that
Ψ1 used in step 1 represents the Tukey biweight score function with tuning parameter
c1 = 4.685 (the default value in R). The algorithm starts with β̂0 = β̂S and is repeated
until convergence. Evidently, the finding of β̂MM is dependent on σ̂S, which affects which
observations are excluded (i.e. given a low weight) from the analysis, i.e. filtering out the
outliers. This is expected to work nicely for vertical outliers and bad leverage points, but
as good leverage points actually contribute to the decrease of σ̂, it is expected that good
leverage points stay included in the MM-regression.

KW-estimator
The KW-estimator is computed following the SAS™ software code in Mehta (2023). The
algorithm consists of three steps:

1. Compute OLS start values and compute the DFFITS values for each observation.
The DFFITS-value for an observation is the difference in OLS estimates with or
without omitting that observation:

d(xi) = DFFITSi =
xiβ̂ − xiβ̂(i)

s(i)
√
hi

=
h

1
2
i (yi − xiβ̂)

s(i)(1− hi)
(Krasker and Welsch, 1982),

= (xiA
−1xT

i )
1
2

such that A = 1
N

∑
i w

2
i

{
d(xi)

}
xT
i xi. s(i) and β̂(i) are the usual estimates for σ

and β, but without the ith observation and hi = xi(X
TX)−1xT

i (i.e. the diagonal
elements of hat matrix X(XTX)−1XT ). The residuals of this regression are called
RESold.

2. Define new variables and compute weights for a weighted OLS estimate:

k = 1.5
√
p ·

√
p

N
, setting parameter a to 1.5

√
p, as suggested by Krasker & Welsch

kwl =
k

|DFFITS|

w =

{
kwl, if kwl ≤ 1

1, otherwise

Compute a new estimate using the computed weights and, again, compute the
DFFITS-values. (DFFITSnew). The residuals of this regression are called RESnew.

3. Update the weights using DFFITSnew, now adjusted by the previous residuals:

DFFITSi = DFFITSnew · RESnew

RESold

and re-iterate the weighted OLS estimate. Set RESold = RESnew and compute new
values for DFFITSnew and RESnew using the latest weighted regression model.

Step 3 is iterated until convergence (i.e. the maximum difference between the current and
new estimate is 0.05) or until a number of iterations is reached (for this thesis, this is set
to 500). The algorithm uses the lm function to run the (weighted) regressions and uses
the DFFITS function from the CRAN package to compute the DFFITS values.
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6.2.3 Standard errors

OLS
For the OLS estimators, robust standard errors are computed using the packages sandwich
and lmtest in R. This is done to correct reported standard errors for heteroskedasticity
in the sample (i.e. heteroskedasticity-consistent standard errors). Classic standard errors
are replaced with Huber-White standard errors (White (1980a, 1980b)), giving variance
(XTX)−1XTΩX(XTX)−1. Ω is estimated by sample covariance matrix S (classical OLS
variance estimation uses Ω = σ2I, such that the variance reduces to σ(XTX)−1). The R-
function vcovHC in package sandwich (Zeileis et al., 2022) allows for different estimation
methods, providing more flexibility to the OLS assumption of constant variance. This
thesis uses the “HC0 ” type, such that S = diag(e21, ..., e

2
N).

MM-estimator
For the MM-estimators, the asymptotic variance formula as mentioned in Croux et al.
(2004) is used. The paper mentions multiple variants, but this thesis uses “Avar1s”, which
is robust against outliers and heteroskedasticity. However, it does assume symmetric
error terms, which may be too restrictive and possibly does not hold in practice. The
asymptotic variance is computed as follows:

Avar1s(β̂MM) = AE(Ψ2XTX)A

= σ2[E(ΨXTX)]−1E(Ψ2XTX)[E(ΨXTX)]−1,
(24)

where A = σ[E(ΨTXTX)]−1. The regression coefficient standard errors for covariate j
can then be computed through:

ŝe(β̂MM,j) =

√
1

N
Âvar1s(β̂MM)jj

for j = 1, ..., p. When estimating the elements, β̂MM and σ̂S are used (also for Ψ̂) and
expectation E(.) is approached by 1

N

∑N
i=1.

KW-estimator
The KW-estimator is a weighted-OLS estimate. Therefore, the (HC0) standard errors are
similar as for the regular OLS estimator, but now including the weights, such that the
variance is (XTWX)−1XTWΩWX(XTWX)−1, where W = diag(w1, ..., wN).

bigbreak

7 Results

7.1 Simulation

This section presents the simulation results based on the data generation process and
outlier contamination as described in Section 5.1. The results are illustrated in Figures
4 and 5, grouped by type of contamination, but an alternative representation (grouped
by estimator) can be found in Appendices B.2 and B.3 (a de-medianed version to better
allow for comparison in changes in variance). As a baseline, the estimation results are
presented for the clean sample in Figure 3 below. This section only presents and com-
ments on the treatment effect estimates, but estimates for the full set of covariates can
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be found in Appendix B.1.

Figure 3: Estimation results for the clean sample

As expected, all estimators are consistent in the clean sample and there is a clear differ-
ence in variance among the estimators. The difference-in-means based estimators show
significantly larger variances compared to the estimators including covariates in the anal-
ysis. Furthermore it shows that the classical estimators have a lower variance and that
between the regression-adjusted and difference-in-intercepts estimators, the variances are
equal.

After having evaluated the estimators in the clean sample, assessing the effect of out-
liers is next. Boxplots for the different estimators for each type of contamination are pre-
sented in Figures 4 and 5. Firstly, findings corresponding to the difference-in-means based
estimators are presented, followed by a discussion on the covariates-including estimators.
Lastly, the two groups are compared and contrasted, with a focus on the differences be-
tween the “classical” estimators (i.e. the difference-in-means and the regression-adjusted
estimator using OLS). For variance inferences, centered boxplots are created for an easier
comparison between the estimators (Appendix B.3).
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Bad leverage points 2 (T&C) Bad leverage points 1 (T&C)

Bad leverage points 2 (T) Bad leverage points 1 (T)

Bad leverage points 2 (C) Bad leverage points 1 (C)

Figure 4: Boxplots treatment effect estimation bad leverage points
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Good leverage points (T&C) Vertical outliers (T&C)

Good leverage points (T) Vertical outliers (T)

Good leverage points (C) Vertical outliers (C)

Figure 5: Boxplots treatment effect estimation good leverage points and vertical outliers

Firstly, a comparison between the difference-in-means estimators is made: Across
all forms of contamination, the three estimators react in the same direction, but the
difference-in-medians estimator often stays closest to the true treatment effect. For all
three estimators, the estimates are biased for the bad leverage points 2, good leverage
points and vertical outliers, when the contamination is present in only one of the groups.
Moreover, the differences between the difference-in-means estimator and its trimmed vari-
ant are minimal, because the outliers, as simulated in this study, do not lie far enough in
the tails to be trimmed away (only noticeable differences for good leverage points, whose
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y-values lie more than 2 standard deviations away from its mean). Comparing variances,
it can be noted that the difference-in-medians estimator has a larger absolute variance, but
that it is less volatile to outliers. Moreover, when the center of the distribution thickens
(as is the case with bad leverage points 1), the difference-in-medians’ variance decreases
noticeably, while the other two estimators are more invariant to observation distributions
(provided similar means).

Secondly, the regression-adjusted and the difference-in-intercepts estimators are dis-
cussed: It is very evident that the OLS-estimators are a lot more unstable than the MM-
and KW-estimators (they are in fact the most volatile estimators in this study). More
specifically, the OLS-estimates are strongly biased for bad leverage points and vertical out-
liers. For good leverage points, however, they are consistent and have a decreased variance
estimate (as expected). Furthermore, for vertical outliers in both groups and in the control
group only, the OLS variance estimates are lower compared to that of the clean sample,
whereas this is not the case for vertical outliers in the treatment group (see Appendix
B.3 for a clearer comparison). This is probably because the variance (partly) “moves”
towards the regression intercept estimate in the former two groups, whereas in the latter
all variance remains for the treatment effect estimate. In contrast, the MM-estimators
are very stable both in terms of bias and variance. Similarly to the OLS-estimator, the
KW-estimator is also unstable and biased in the presence of outliers: For bad leverage
points, its performance lies in between that of OLS and MM, but for vertical outliers it
has not improved compared to OLS. Zooming in, this can be explained due to the KW-
estimator identifying the bad leverage points well, but the weights are too far from 0 to
remove all aberrant effects. For vertical outliers, the outliers are not identified correctly
and no observations are signficantly down-weighted.

Lastly, differences between the two aforementioned groups of estimators is discussed.
A first observation worth noting, is that for all four types of contamination, on average,
all estimators stayed consistent when the contamination was evenly spread between both
groups (i.e. 1% contamination in both groups/randomly over the entire sample). It
is likely the case that the contamination in one group is canceled out by the other, as
is visible when evaluating intercept estimates in Table 5 in Appendix B.1. However,
the non-robust estimators’ variances then did increase, relatively to the clean sample.
Furthermore, similar to the clean sample case, estimator variances remained significantly
reduced with the addition of covariates in the estimators, even when those covariates
are contaminated. Note that this observations cannot automatically be extended to all
variations of contamination, but refers to the contamination as simulated in this thesis.
Lastly, comparing the “classical” difference-in-means estimator and the OLS-regression
estimator, there are a few differences to be noted: In general, the OLS estimator reacts
more strongly to outliers in term of bias in the value estimates and increases in relative
variance. This holds specifically true for vertical outliers and bad leverage points 2.
However, for all types of contamination, the regression-adjusted variances remained only
a fraction of that of the difference-in-means estimate. Moreover, OLS-estimates are robust
to good leverage points, while the difference-in-means estimator is not. In turn, OLS fails
for bad leverage points 1, where the difference-in-means estimator remains unbiased there.
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7.2 NSW data application

This section provides the results from using different estimation methods on the NSW
data set. The results are summarised in Table 3 (estimates for all additional covariates can
be found in Appendix C.1) and it must be noted that none of the regression-adjusted esti-
mates passed the Shapiro-Wilk’s test for normality of the error terms. The table includes
the results from the three difference-in-means based estimators; a simple regression as
presented in the data’s original paper by LaLonde (1986), using the same covariates; the
regression-adjusted estimator similar to the previous estimator, now with demeaned co-
variates in an interaction term with the treatment indicator as introduced by Lin (2013);
and its two-step equivalent as mentioned in Lei and Ding (2020), using demeaned co-
variates as well. It must be noted, that the first two results in the first line replicate the
results as presented in LaLonde (1986), but here “HC0” type standard errors are reported.

Table 3: NSW results treatment effect

Difference-in-
means

Linear
Regression Lin (2013) Difference-in-

intercepts

Means 886.30∗

(488.20)
OLS 791.44∗

(485.65)
OLS 785.37

(483.57)
OLS 785.37

(493.25)

Trimmed 718.38∗

(368.07)
MM 432.83

(401.31)
MM 412.62

(403.82)
MM 574.94

(761.86)

Medians 485.61
(648.82)

KW1 789.26
(484.77)

KW1 754.77
(472.05)

KW1 768.86
(478.42)

1: The KW-estimators did not converge, but bounced between two local minima. Estimates of one
minima are still included because the estimates were relatively close to each other and to show the
similarity to the OLS estimates.
Treatment-effect estimates, robust standard errors in parentheses.*** p<0.01, ** p<0.05, * p<0.1

It is immediately visible that there is much variability in treatment effect estimates
between the estimators. This suggests the presence of outliers in the sample, therefore
creating interest for investigating the sample in more detail. Figure 6 shows the obser-
vations’ standardised residuals plotted against their squared Mahalanobis distances. For
the standardised residuals, the MM-estimator as in Lin (2013) is used and the squared
Mahalanobis distances are computed using the MCD-estimator (fast implementation as
introduced by Rousseeuw and Driessen (1999)) center and covariance. The cut-off lines
are placed at 2.5 and χ2

7(0.95), respectively:
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Figure 6: Robust standardised residuals against squared Mahalanobis distance

The plot shows data with many outliers, both in the explanatory variables and the out-
come variables. Vertical outliers are observations with a small Mahalanobis distance, but
a large residual (15 observations); Good leverage points have small residuals, but a large
Mahalanobis distance from the center (90 observations); and bad leverage points are those
observations in the top right box (3 observations). So, the majority of the outliers are
good leverage points, followed by a fair share of vertical outliers. In total, 15% of the data
is categorised as outliers, with 16,5% contamination in the treatment group and 13,9% in
the control group. Similar plots, now excluding agesquared and plots for the two treat-
ment groups individually can be found in Appendix C.2. When agesquared is omitted, the
squared Mahalanobis distance “only” ranges till 65 and observations in minority groups
(i.e. married, hispanic, caucasian, etc) are more present “at the top”, rather than the
Mahalanobis distance being predominantly age-dependent). Complementing the plots for
the separate treatment groups, Tables 10 and 11 in Appendix C.3 and C.4, respectively,
provide an overview of the data for the top 15 standardised residuals (vertical outliers &
bad leverage points) and Mahalanobis distances (good leverage points), respectively. In
the former table, the 13 observations with the highest standardised residuals are also the
13 highest earners (1978 income).

As a further deep-dive, it is interesting to evaluate the outcome variable’s histogram
(outliers in the y-direction). Figure 7 shows histograms of the outcome variable, for both
the treatment and control groups. Both groups are strongly skewed to the right and
have a long and narrow tail. The treatment group specifically has one observation whose
outcome variable lies extremely far away from the majority of observations. For reference,
removing this one observation from the treatment group, decreases its mean by $76.08.
Moreover, the difference-in-means estimate for earnings over $20, 000 (17 observations in
total) is $4, 774, whereas this is only $515 for the group with earnings below $20, 000
(it drops even to $ − 7 when excluding the group with earnings = 0). This shows that
the difference-in-means estimate is strongly affected by the relatively small group of men
in the higher end of earnings (for the top 10 largest earnings, the difference-in-means
estimator reaches $8, 819).
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Figure 7: Histograms outcome variable (earnings 1978)

Next, it is interesting to evaluate the (differences in) estimates in Table 3. In the first
column, it can be noted that the different estimators provide significantly different values
for the treatment effect. This is attributable to the strong skewness in the outcome vari-
able’s distribution. For both groups, trimming on the left side removes only $0-earners
while trimming on the right removes the top 5% of earners, which represent most of the
distribution’s long tail, specifically for the treatment group. This differences in right tails,
explain why the difference-in-trimmed-means estimate is lower than the regular difference-
in-means estimate. It is likely that the trimmed variant therefore presents a better image
of the true effect, but it is difficult to determine the best cut-off point and to know when
the observations are outliers or not, and thus to set the trimming percentage correctly.
The third estimator in this category is the difference-in-medians estimator. It is difficult
to draw conclusions about the validity of this estimator. On the one hand, the median
and mean do not coincide in non-symmetric distributions, but the sample median would
then be smaller, therefore making the median no longer a consistent estimator for the
mean. On the other hand, there are some obvious outliers in the sample (undoubtedly
the largest earnings observation in the treatment group), making the median a better fit
for centrality. Additionally, the difference-in-medians estimate lies significantly closer to
the regression-adjusted MM-estimates than the other two do. Furthermore, considering
their variances, the findings align with those of the simulation study, where the median
variant has the largest variance and the trimmed-mean variant has the smallest.

Comparing the middle two columns (the regression-adjusted estimates), there is a clear
division present between the different estimators, as is to be expected in a sample with
outliers. The MM-estimator removes/significantly downweights (i.e. weights < 0.1) 15
observations, including the 13 highest earners from the analysis, which are the strongest
vertical outliers and all three bad leverage points (see Appendix C.3 for details on those
observations). After doing so, there is no longer enough evidence to conclude that the
NSW employment program has a significant effect on the participants’ posterior earnings.
Despite not fully converging, the KW-estimates resemble more to the OLS-estimates than
to the MM-estimates, for both variance and value estimates. This might be because of
the larger share of vertical outliers in the sample (in the simulation, it can be noted that
the KW-estimator performs similar to OLS in the presence of vertical outliers) or because
the percentage of outliers in the sample is higher and the KW-estimator simply breaks
down. In any case, it failed to identify the outliers correctly and the handful of obser-
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vations that were downweighted, still had weights relatively close to 1. Moreover, the
MM-estimates have the lowest standard errors, which again signals there are outliers in
the sample. However, as established earlier, the majority of the outliers are good leverage
points and none of the estimators filters those out. Therefore, it is likely that all three
estimators underestimate the variance.

Furthermore, the differences between the simple linear regressions and the Lin (2013)
estimators are small, signaling negligible heterogeneous effects of the covariates on the
outcome variable, across the treatment and control groups. Moreover, none of the added
interaction terms have a significant effect on earnings in 1978 (Appendix C.1). Also,
roughly half of the covariates originally included in the analysis by LaLonde (1986) do
not have a significant effect on the outcome variable, which can explain the (slight) in-
crease in standard error in the MM-Lin (2013) estimator (i.e. adding the interaction
terms leads to a decrease in degrees of freedom and lack of additional explanatory value).
Probably attributable to the outliers, but the same does not hold true for OLS.

Lastly, the regression-adjusted estimators are compared to the difference-in-intercepts
estimators. For OLS, the estimates are equivalent (there is a slight difference in standard
error, which is due to the bootstrapping of the latter estimator’s standard error), as
was expected. Interestingly, this does not hold for the MM-estimators. Here, we see an
estimate that deviates from the regression-adjusted MM-estimates, with a significantly
enlarged standard error. Checking differences in weights gave no significant results: Most
observations removed in the Lin (2013) regression are also removed in the two individual
MM-regression for the difference-in-intercepts estimate, and vice versa. There were some
small differences, but the weights remained small (i.e. weights < 0.15, in both MM-
regressions). Another explanation can be with regards to the bootstrapping procedure
to estimate the difference-in-intercepts’ variance. Provided that there are many good
leverage points, there could exist bootstrap samples with (relatively) many good leverage
points (in only one treatment group), such that those outliers dominate the regression
line. Hence, they can affect the intercept estimate, creating a wide array of estimates
and therefore a large variance estimate. Similar to the regression-adjusted estimators, the
KW-estimator did not converge but bounces between two local minima. Results for one
of those minima is still included to show the resemblance to OLS.

8 Discussion and Conclusion
This thesis has researched the effects of infinitesimal level of contamination on three differ-
ent treatment-effect estimators. For each classical estimator, the IF and CVF are derived
and it can be concluded that all formulas are unbounded. Furthermore, the simulation
and NSW data study also show interesting differences between the different estimators,
which are discussed in this section.

The derivation of the IF and CVF functions for the classical estimators are in line
with previous literature. Treatment effect estimators including the arithmetic mean or
those which apply OLS are prone to outliers and have both an unbounded IF and CVF.
This finding is also confirmed by the simulation study, where the estimates are biased
and often have an inflated variance in the presence of outliers. Moreover, for small levels
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of contamination and non-extreme outliers (i.e. this thesis’ simulation) there is a clear
stability-variance trade-off between the regression-adjusted OLS and difference-in-means
estimators. Though both estimators are biased, the OLS estimate reacts significantly more
strongly to outliers than the difference-in-means estimator does, both in terms of bias and
variance increase. That being stated, OLS variance as an absolute number still remains
lower than that of the unadjusted estimator for all types of contamination. This relation
is probably variable to the exact type of contamination and can differ for different settings
of outliers (i.e. different level of contamination and location of point mass contamination).

Starting with the difference-in-means estimators, the robust alternatives under-performed
in terms of estimate improvement. Despite the median being the most robust estimator
of location in the literature (Hampel et al., 1986), its estimates had a visible bias in the
presence of outliers (because of its local-shift sensitivity) and its variance is significantly
larger than that of the mean. This shows the robust estimators do not necessarily provide
unbiased results in practice. However, despite its larger variance in absolute terms, it did
present a much more stable variance in the presence of outliers. Moreover, the relatively
large bias can be explained by the fact that the treatment effect to be estimated is small,
causing a small deviation to have a relatively large effect on the bias. This suggests that
the difference-in-medians estimator performs better when the treatment effect is larger
(i.e. the same distribution, only with a larger mean). Similarly, an increase in the number
of sampled observations or a more dense distribution around the median can possible also
decrease the bias, as the values of the near observations are more alike, and hence a smaller
deviance is obtained in the presence of outliers. Furthermore, the difference-in-medians
plots remain unchanged for far more extreme point mass contamination, as the median
estimates are solely influenced by the observations around the initial median, which re-
main unchanged. The same holds true for the difference-in-trimmed-means estimator. In
the case of more extreme point mass contamination, the estimator even improves, because
it is now more successful in removing the outliers. Furthermore, the latter estimator has
a significantly smaller variance compared to the difference-in-medians estimator. Again,
there is an interesting trade-off between these two estimators: both can handle extreme
outliers well, but the median is better resistant against larger levels of contamination,
whereas the trimmed-mean is preferred for its smaller variance in scenarios with smaller
levels of contamination. However, it is difficult to determine a good trimming percentage.
Therefore, the median can be used as a first step to prioritise robustness and different
trimming percentages can be used as a second step to possibly gain efficiency without
introducing bias. Also, in scenarios where the contamination lies not too far in the tails,
the median estimator is also preferred, to ensure the “exclusion” of the outliers.

Moreover, comparing the unadjusted and adjusted estimators created a discussion
about when observations can be classified as outliers, provided that it differs between
the two types of estimators: small percentages of bad leverage points where the outcome
value lies closely to its mean, would not get noted as an outlier and would hardly af-
fect the difference-in-means estimate, while it can have a significant impact on the OLS
estimate. Moreover, the different types of outliers could not even be classified without
measuring/including the explanatory variables, whereas this can affect the applied eco-
nomic/social/scientific inference greatly. Therefore, my personal preference would go to
regression-adjusted approaches.
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The most robust regression-adjusted estimator is the MM-estimator: It outperforms
all other estimators (both in terms of bias and variance) and is very successful in removing
the most strong and influential outliers. As a recommendation from this study, it would
be to apply the MM-estimator in analysis on non-simulated data, where the presence
of outliers is likely. However, one must not forget to check the required assumptions,
such as the normality/symmetry of error terms. Therefore, a combination of various
methods can be helpful when evaluating data. Moreover, the MM-estimator does not
remove good leverage points from its analysis and it is therefore likely that it underesti-
mates the treatment effect variance. Interpreting the results of just-significant estimates
should therefore be done with caution and a critical eye could be laid on the standardised
residuals-Mahalanobis distance plot (using the MM-estimator and the MCD estimator)
to be mindful about the possible presence of good leverage points.

Additionally, the poor performance of the KW-estimator (despite being optimal ro-
bust) can be explained by the usage of the DFFITS-values for computing the weights:
e.g. in the presence of only one bad leverage point, the DFFITS-value of this outlier is
very large (and very small for all most other observations), significantly down-weighting
this outlier. However, when there are multiple bad leverage points, β̂(iblp) might not be
much different from β̂, because the remaining bad leverage points still exert a strong
influence on β̂. As a result, the DFFITS-values for all bad leverage points individually
are only small, therefore not down-weighting the outliers (enough).

Suggestions for further research would be to extend the simulation study, to dive deeper
into the (difference-in-intercepts-)MM-estimator and to revisit the papers using the NSW
data set. Firstly, it would be interesting to further investigate the differences in bias
and variance between the difference-in-means estimator and OLS. Both IFs and CVFs are
unbounded, but this gives little information about practical implications. For example,
it is possible for the OLS variance to exceed that of the difference-in-means estimator,
even when this is not the case in this thesis’ simulation. It is interesting to further
understand the implications of unbounded IFs and CVFs in different experimental settings
(e.g. number of data points, initial sample distributions, level of contamination, location
of point mass contamination) and to find possible relations between them. Secondly,
Table 3 in Section 7 showed a discrepancy between the value and variance estimate of the
regression-adjusted MM-estimators and the difference-in-intercepts variant, whereas this
was not found for OLS. A better understanding of (bootstrapping) the MM-estimator and
its intermediate steps can potentially explain this difference. More knowledge about the
differences in estimates can further contribute to the area of analysing the effect of outliers
on (robust) estimators. Lastly, it can be interesting to replicate the multiple studies using
the NSW data (and the comparative data sets perhaps as well) using robust methods,
and to evaluate if the practical inference still holds true.
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A IF & CVF derivations

A.1 Derivation IF one-step M-estimators

The derivation starts with the system of equations Ψ1

{
z, S(F )

}
dF = 0 and its contam-

inated version Ψ1
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dFε = 0. Taking the derivative with respect to ε at ε = 0
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{
z, S(F )

}
= 0

⇔ IF (z;S, F ) =
(
−

∫
∂

∂θ
Ψ1(z, θ)dF

)−1

Ψ1

{
z, S(F )

}
,

where the derivative with respect to θ is evaluated at θ = S(F ).

A.2 Derivation IF mean

The derivation starts with the notion that the mean score function Ψ
{
z, S(F )

}
⇒

∫
(y−

µ)dF = 0 ⇔ argminµ

∑N
i=1(yi − µ)2, using a squared loss function. Then, the derivation

start with the derivative of the contaminated score function:

∂

∂ε

∫
Ψ
{
z, S(Fε)

}
dFε

∣∣∣
ε=0

=
∂

∂ε

∫ {
y − S(Fε)

}
dFε

∣∣∣
ε=0

= 0

⇔ ∂

∂ε

[ ∫
(1− ε)

{
y − S(Fε)

}
dF + ε

∫ {
y − S(Fε)

}
d∆z

]∣∣∣
ε=0

= 0

⇔ −
∫ {

y − S(Fε)
}
dF

∣∣∣
ε=0

+
∂

∂ε

∫ {
y − S(Fε)

}
dF

∣∣∣
ε=0

+ y − S(F ) = 0

⇔ −
∫ {

y − S(F )
}
dF +

∂

∂ε

[ ∫
ydF −

∫
S(Fε)dF

]∣∣∣
ε=0

+ y − µ = 0

⇔ − ∂

∂ε
S(Fε)

∫
dF

∣∣∣
ε=0

+ y − µ = 0

⇔ IF (z;S, F ) = y − µ

A.3 Derivation CVF difference-in-means estimator

The derivation starts by using the two-stage M-estimator CVF expression in (3.7) by Zh-
elonkin (2013), described in Theory Section 3.5.3. This derivation starts by analysing
all terms individually and then combining them to get the final CVF expression for
the difference-in-mean estimator. To start off: a(z) = Ψ2 = µ1 − µ0 − τ and b(z) =[
1 −1

]
Ψ1

{
z(1), S(F )

}
.

Matrix A equals
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A =
∂

∂h
Ψ2

{
z(2), h, T (F )

}∂h(z(1), s)
∂s

IF (z;S, F )

+
∂

∂θ
Ψ2

[
z(2), h

{
z(1), S(F )

}
, θ
]
IF (z;T, F )

=
[
1 −1

] [y1 − µ1

y0 − µ0

]
− (y1 − y0 − τ)

= −(µ1 − µ0 − τ)

= −Ψ2 = −a(z).

For matrix B, elements R2, R1 and D(1) are required, which will be derived first:

matrix D(1) has elements

D
(1)
ij =

( ∂

∂θ

∂Ψ1i(z
(1), θ)

∂θj

)T

IF (z;S, F ) = 0

since
∂Ψ1

∂θ
=

[
1 0
0 −1

]
, and therefore

∂

∂θ

∂Ψ1

∂θ
= 0,

making it a full zero-matrix; matrix R1 has elements

R
(1)
ij =

( ∂

∂h

∂Ψ2i

{
z(2), h, T (F )

}
∂hj

)T ∂h(z(1), s)

∂s
IF (z;S, F )

+
∂

∂θ

∂Ψ2i

{
z(2), h, θ

}
∂hj

IF (z;T, F ) = 0

since
∂Ψ2

∂h
= 1, and therefore

∂

∂h

∂Ψ2

∂h
=

∂

∂θ

∂Ψ2

∂h
= 0,

making it a full zero-matrix, as well; and lastly matrix R2 has elements:

R
(2)
ij =

( ∂

∂s

∂hi(z
(1), s)

∂sj

)T

IF (z;S, F ) = 0

since
∂h

∂s
=

[
1
−1

]T
, and therefore

∂

∂s

∂h

∂s
= 0,

also making this last sub-matrix a zero-matrix. Now, matrix B can be constructed: Note
that since the three matrices R2, R1 and D(1) are all zero-matrices, terms including those
matrices can immediately be omitted

B =

∫
R1

∂

∂s
h(z(1), s)dFIF (z;S, F ) +

∫
∂

∂h
Ψ2

{
z(2), h, T (F )

}
R2dFIF (z;S, F )

−
∫

∂

∂h
Ψ2(z

(2), h, T (F ))
∂

∂s
h(z(1), s)dFM−1

1

∫
D(1)dFIF (z;S, F )

+
∂

∂h
Ψ2

{
z(2), h, T (F )

} ∂

∂s
h(z(1), s)IF (z;S, F )

=
∂

∂h
Ψ2

{
z(2), h, T (F )

} ∂

∂s
h(z(1), s)IF (z;S, F )[

1
−1

]T
IF (z;S, F ) = b(z).
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Now, only D(2S) should be computed to derive the CVF: matrix D(2S) has elements:

D
(2S)
ij =

( ∂

∂h

∂Ψ2i

{
z(2), h, θ

}
∂θj

)T ∂h(z(1), s)

∂s
IF (z;S, F )

+
( ∂

∂θ

∂Ψ2i

{
z(2), h, θ

}
∂θj

)T

IF (z;T, F )

since
∂Ψ2

∂θ
= −1, and therefore

∂

∂h

∂Ψ2

∂θ
=

∂

∂θ

∂Ψ2

∂θ
= 0,

also making it a zero-matrix. Now, the generic two-stage M-estimator CVF can be shrunk
down through omitting the zero-matrices terms and combining lines 3 and 4, since both
a(z) and b(z) are scalars:

CV F (z;S, T, F ) = V (T, F )−M−1

(∫
D(2S)dF

)
V (T, F )

−M−1

(
∂

∂θ
Ψ2

[
z(2), h

{
z(1), S(F )

}
, θ
])

V (T, F )

+M−1

(∫ {
Aa(z)T +Ba(z)T + Ab(z) +Bb(z)T

}
dF

)
M−1

+M−1

(∫ {
a(z)AT + b(z)AT + a(z)BT + b(z)BT

}
dF

)
M−1

+M−1

(
a(z)a(z)T + a(z)b(z)T + b(z)a(z)T + b(z)b(z)T

)
M−1

− V (T, F )

(∫
D(2S)dF +

∂

∂θ
Ψ2

[
z(2), h

{
z(1), S(F )

}
, θ
])

M−1

= V (T, F )− 0 + V (T, F )

+ 2

∫ {
− a(z)A+ b(z)2

}
dF +

{
a(z) + b(z)

}2
+ V (T, F )

= 3V (T, F ) + 2

∫ {
− a(z)A+ b(z)2

}
dF +

{
a(z) + b(z)

}2

where each term in the second (final) step represents a full line in the general formula
(first step).

A.4 Derivation CVF one-stage regression-adjusted estimator

Generally, the derivation and final outcome are very similar to these of Appendix A.3
for the derivation of the difference-in-means CVF. The outcome therefore is also similar,
only substituting for different score- and IF-functions. Three notes to add to the previous
derivation are:

1. Matrix A still equals −Ψ2, but it deserved a more general derivation:

A =
∂

∂h
Ψ2

{
z(2), h, T (F )

}∂h(z(1), s)
∂s

IF (z;S, F )

+
∂

∂θ
Ψ2

[
z(2), h

{
z(1), S(F )

}
, θ
]
IF (z;T, F )

=
[
0 1 0T 0T

]
IF (z;S, F )− (Ψ2 +

[
0 1 0T 0T

]
IF (z;S, F ))

= −Ψ2 = −a(z).
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2. ∂Ψ1

∂θ
as seen in the steps for computing D(1) now equals −zzT with z =


1
T
x

T (x− µx)

.

However, then still ∂
∂θ

∂Ψ1

∂θ
= 0, so the D(1) remains a zero-matrix.

3. ∂h
∂s

as seen in the steps for computing R
(2)
ij is


0
1
0
0


T

, but ∂
∂s

∂h
∂s

= 0 remains. In similar

fashion, B = b(z), still.

A.5 Derivation CVF difference-in-intercepts estimator

Generally, the derivation and final outcome are very similar to these of Appendix A.3 for
the derivation of the difference-in-means CVF. Just like the regression adjusted version in
Appendix A.4, the outcome therefore is also similar, only substituting for different score-
and IF-functions. Two similar notes to add to the difference-in-means CVF derivation
are:

1. ∂Ψ1

∂θ
as seen in the steps for computing D(1) now equals

−
[

1
x1 − µx1

] [
1 x1 − µx1

]
−
[

1
x0 − µx0

] [
1 x0 − µx0

]
.

However, then still ∂
∂θ

∂Ψ1

∂θ
= 0, so the D(1) remains a zero-matrix.

2. ∂h
∂s

as seen in the steps for computing R
(2)
ij is


1
0
−1
0


T

, but ∂
∂s

∂h
∂s

= 0 remains. In

similar fashion, B = b(z), still.
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B Additional tables and figures simulation study

B.1 Estimation results for the full set of covariates
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Table 5: Results individual regressions difference-in-intercepts OLS-estimator

OLS (T) OLS (C)
int. x1 x2 x3 int. x1 x2 x3

Clean 0.250
(0.001)

0.999
(0.002)

1.000
(0.002)

1.002
(0.001)

-0.002
(0.001)

1.001
(0.001)

1.001
(0.001)

0.998
(0.001)

BLP2 (T&C) 0.153
(0.002)

0.918
(0.003)

0.853
(0.004)

0.834
(0.004)

-0.100
(0.001)

0.920
(0.002)

0.852
(0.003)

0.827
(0.003)

BLP2 (T) 0.153
(0.003)

0.917
(0.003)

0.856
(0.005)

0.834
(0.005)

-0.001
(0.001)

0.998
(0.001)

1.002
(0.001)

1.000
(0.001)

BLP2 (C) 0.249
(0.001)

0.999
(0.002)

0.999
(0.002)

1.004
(0.001)

-0.103
(0.002)

0.916
(0.002)

0.849
(0.003)

0.827’
(0.003)

BLP1 (T&C) 0.196
(0.001)

0.953
(0.002)

0.918
(0.002)

0.908
(0.002)

-0.057
(0.001)

0.955
(0.001)

0.918
(0.002)

0.902
(0.002)

BLP1 (T) 0.196
(0.002)

0.952
(0.002)

0.921
(0.003)

0.907
(0.002)

-0.001
(0.001)

0.998
(0.001)

1.002
(0.001)

1.000
(0.001)

BLP1 (C) 0.249
(0.001)

0.999
(0.002)

0.999
(0.002)

1.004
(0.001)

-0.059
(0.001)

0.952
(0.001)

0.916
(0.002)

0.904
(0.001)

GLP (T&C) 0.250
(0.001)

0.999
(0.002)

1.000
(0.002)

1.002
(0.001)

-0.002
(0.001)

1.001
(0.001)

1.002
(0.001)

0.998
(0.001)

GLP (T) 0.250
(0.001)

0.997
(0.002)

1.003
(0.002)

1.000
(0.001)

-0.001
(0.001)

0.998
(0.001)

1.002
(0.001)

1.000
(0.001)

GLP (C) 0.249
(0.001)

0.999
(0.002)

0.999
(0.002)

1.004
(0.01)

-0.002
(0.001)

0.999
(0.001)

1.001
(0.001)

1.001
(0.001)

VERT (T&C) 0.297
(0.001)

0.999
(0.002)

1.000
(0.002)

1.002
(0.001)

0.045
(0.001)

1.001
(0.001)

1.002
(0.001)

0.998
(0.001)

VERT (T) 0.297
(0.002)

0.997
(0.002)

1.003
(0.002)

1.000
(0.001)

-0.001
(0.001)

0.998
(0.001)

1.002
(0.001)

1.000
(0.001)

VERT (C) 0.249
(0.001)

0.999
(0.002)

0.999
(0.002)

1.004
(0.001)

0.046
(0.001)

0.999
(0.001)

1.001
(0.001)

1.001
(0.001)

All results are significant for α = 0.01. Items in parentheses are estimator variances
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Table 6: Results individual regressions difference-in-intercepts MM-estimator

MM (T) MM (C)
int. x1 x2 x3 int. x1 x2 x3

Clean 0.251
(0.01)

1.001
(0.002)

0.999
(0.002)

1.001
(0.001)

-0.001
(0.001)

1.000
(0.001)

1.001
(0.001)

0.999
(0.001)

BLP2 (T&C) 0.2517
(0.001)

1.001
(0.002)

0.999
(0.002)

1.001
(0.001)

-0.001
(0.001)

1.000
(0.001)

1.001
(0.001)

0.999
(0.001)

BLP2 (T) 0.249
(0.001)

1.003
(0.002)

0.999
(0.002)

1.001
(0.001)

0.001
(0.001)

1.000
(0.001)

0.999
(0.001)

1.001
(0.001)

BLP2 (C) 0.253
(0.001)

0.997
(0.002)

1.001
(0.002)

1.002
(0.002)

-0.002
(0.001)

1.000
(0.001)

1.002
(0.001)

1.001
(0.001)

BLP1 (T&C) 0.252
(0.001)

1.001
(0.002)

0.999
(0.002)

1.001
(0.001)

-0.001
(0.001)

1.000
(0.001)

1.001
(0.001)

0.999
(0.001)

BLP1 (T) 0.249
(0.001)

1.003
(0.002)

0.999
(0.002)

1.001
(0.001)

0.001
(0.001)

1.000
(0.001)

0.999
(0.001)

1.001
(0.001)

BLP1 (C) 0.253
(0.001)

0.997
(0.002)

1.001
(0.002)

1.002
(0.002)

-0.002
(0.001)

1.000
(0.001)

1.002
(0.001)

1.001
(0.001)

GLP (T&C) 0.252
(0.001)

1.001
(0.002)

0.999
(0.002)

1.001
(0.001)

-0.001
(0.001)

1.000
(0.001)

1.001
(0.001)

0.999
(0.001)

GLP (T) 0.249
(0.001)

1.003
(0.002)

0.999
(0.002)

1.001
(0.001)

0.001
(0.001)

1.000
(0.001)

0.999
(0.001)

1.001
(0.001)

GLP (C) 0.253
(0.001)

0.997
(0.002)

1.001
(0.002)

1.002
(0.002)

-0.003
(0.001)

1.000
(0.001)

1.002
(0.001)

1.001
(0.001)

VERT (T&C) 0.252
(0.001)

1.001
(0.002)

0.999
(0.002)

1.001
(0.001)

-0.001
(0.001)

1.000
(0.001)

1.001
(0.001)

0.999
(0.001)

VERT (T) 0.249
(0.001)

1.003
(0.002)

0.999
(0.002)

1.001
(0.001)

0.001
(0.001)

1.000
(0.001)

0.999
(0.001)

1.001
(0.001)

VERT (C) 0.253
(0.001)

0.997
(0.002)

1.001
(0.002)

1.002
(0.002)

-0.002
(0.001)

1.000
(0.001)

1.002
(0.001)

1.001
(0.001)

All results are significant for α = 0.01. Items in parentheses are estimator variances
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Table 7: Results individual regressions difference-in-intercepts KW-estimator

KW (T) KW (C)
int. x1 x2 x3 int. x1 x2 x3

Clean 0.250
(0.001)

1.001
(0.002)

0.999
(0.002)

1.000
(0.001)

-0.000
(0.001)

1.000
(0.001)

0.998
(0.001)

1.001
(0.001)

BLP2 (T&C) 0.200
(0.002)

0.957
(0.002)

0.924
(0.002)

0.915
(0.002)

-0.053
(0.001)

0.959
(0.001)

0.924
(0.002)

0.909
(0.002)

BLP2 (T) 0.200
(0.002)

0.955
(0.002)

0.927
(0.003)

0.914
(0.003)

-0.001
(0.001)

0.998
(0.001)

1.002
(0.001)

1.000
(0.001)

BLP2 (C) 0.249
(0.001)

0.999
(0.002)

0.999
(0.002)

1.004
(0.001)

-0.054
(0.001)

0.955
(0.001)

0.922
(0.002)

0.911
(0.002)

BLP1 (T&C) 0.215
(0.001)

0.969
(0.002)

0.946
(0.002)

0.941
(0.002)

-0.039
(0.001)

0.971
(0.001)

0.947
(0.001)

0.935
(0.001)

BLP1 (T) 0.215
(0.002)

0.967
(0.002)

0.949
(0.002)

0.940
(0.002)

-0.001
(0.001)

0.998
(0.001)

1.002
(0.001)

1.000
(0.001)

BLP1 (C) 0.249
(0.001)

0.999
(0.002)

0.999
(0.002)

1.004
(0.001)

-0.039
(0.001)

0.969
(0.001)

0.945
(0.001)

0.937
(0.001)

GLP (T&C) 0.250
(0.001)

0.999
(0.002)

1.000
(0.002)

1.002
(0.001)

-0.002
(0.001)

1.001
(0.001)

1.002
(0.001)

0.998
(0.001)

GLP (T) 0.250
(0.001)

0.997
(0.002)

1.003
(0.002)

1.001
(0.001)

-0.001
(0.001)

0.998
(0.001)

1.002
(0.001)

1.000
(0.001)

GLP (C) 0.249
(0.001)

0.999
(0.002)

0.999
(0.002)

1.004
(0.001)

-0.002
(0.001)

0.999
(0.001)

1.001
(0.001)

1.001
(0.001)

VERT (T&C) 0.297
(0.001)

0.999
(0.002)

1.000
(0.002)

1.002
(0.001)

0.045
(0.001)

1.001
(0.001)

1.002
(0.001)

0.998
(0.001)

VERT (T) 0.297
(0.002)

0.997
(0.002)

1.003
(0.002)

1.001
(0.001)

-0.001
(0.001)

0.998
(0.001)

1.002
(0.001)

1.003
(0.001)

VERT (C) 0.249
(0.001)

0.999
(0.002)

0.999
(0.002)

1.004
(0.001)

0.047
(0.001)

0.999
(0.001)

1.001
(0.001)

1.001
(0.001)

All results are significant for α = 0.01. Items in parentheses are estimator variances
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B.2 Alternative representation boxplots

Difference-in-means Difference-in-trimmed-means

Difference-in-medians

Figure 8: Boxplots difference-in-means based treatment effect estimators.
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Regression-adjusted (OLS) Regression-adjusted (MM)

Regression-adjusted (KW)

Difference-in-intercepts (OLS) Difference-in-intercepts (MM)

Difference-in-intercepts (KW)

Figure 9: Boxplots treatment effect estimates including covariates.
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B.3 Centered boxplots

Difference-in-means Difference-in-trimmed-means

Difference-in-medians

Figure 10: Centered boxplots difference-in-means based treatment effect estimators.
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Regression-adjusted (OLS) Regression-adjusted (MM)

Regression-adjusted (KW)

Difference-in-intercepts (OLS) Difference-in-intercepts (MM)

Difference-in-intercepts (KW)

Figure 11: Centered boxplots treatment effect estimates including covariates.
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C Additional tables and figures NSW data study

C.1 Estimation results for the full set of covariates

Table 8: Results regression-adjusted estimators

Linear
Regression Lin (2013)3

OLS MM KW1 OLS MM KW1

constant 4,938
(3,699)

12,034∗∗∗
(2,761)

5,100
(3,593)

5,125∗∗∗
(275)

11,133∗∗∗
(3,589)

8.8856∗∗

(3915)

T 791
(456)

433
(401)

763
(475)

785
(484)

413
(404)

755
(472)

age -34
(197)

-370∗∗
(167)

-43
(194)

-101
(211)

-318
(199)

-102
(211)

age2 0.92
(3.21)

5.69∗∗
(2.77)

1.09
(3.16)

1.77
(3.36)

5.44∗
(3.18)

1.79
(3.36)

education 213
(165)

-16
(138)

206
(161)

19
(218)

21
(177)

22
(217)

black -1,767∗∗
(768)

-2,404∗∗∗
(767)

−1, 731∗∗

(740)
-2,319∗∗
(1,081)

-2,558∗∗
(1,047)

−2, 297∗∗

(1,070)

hispanic -146
(985)

-834
(934)

-102
(960)

-306
(1,320)

-259
(1,265)

-282
(1,309)

married 562
(685)

869
(566)

478
(651)

-23
(795)

173
(725)

-35
(790)

nodegree -532
(759)

-828
(650)

-534
(745)

-936
(894)

-1,107
(880)

-935
(894)

T:age 204
(452)

-93
(372)

176
(439)

T:age2 -2.79
(7.45)

0.56
(6.27)

-2.36
(7.28)

T:education 476
(348)

-38
(292)

452
(341)

T:black 1,330
(1,541)

165
(1,525)

1,275
(1,529)

T:hispanic 75
(2,028)

-1,646
(1,872)

40
(2,021)

T:married 1,466
(1,443)

1,714
(1,157)

1,505
(1,417)

T:nodegree 1,042
(1,552)

759
(1,316)

951
(1,512)

1: The KW-estimators did not converge, but bounced between two local minima. Estimates of one
minima are still included because the estimates were relatively close to each other and to show the
similarity to the OLS estimates.
3: The covariates in the interaction term are demeaned
Treatment-effect estimates, robust standard errors in parentheses.*** p<0.01, ** p<0.05, * p<0.1
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Table 9: Results individual regressions difference-in-intercepts estimators

Difference-in-
intercepts3

OLS
(T)

OLS
(C)

MM
(T)

MM
(C)

KW1

(T)
KW1

(C)

constant 5,909∗∗∗
(404)

5,125∗∗∗
(277)

4,654∗∗∗
(444)

4,079∗∗∗
(380)

5,877∗∗∗
(390)

5,108∗∗∗
(272)

age 103
(399)

-101
(246)

-411
(314)

-339∗
(202)

81
(392)

-106
(210)

age2 -1.01
(6.71)

1.77
(4.11)

6.07
(5.41)

5.78∗
(3.24)

-0.65
(6.54)

1.87
(3.34)

education 495
(307)

19
(226)

12
(245)

25
(176)

477∗
(265)

33
(211)

black -990
(1,332)

-2,319∗∗
(997)

-2,321∗∗
(1,137)

-2,620∗∗
(1,051)

-1,029
(1,090)

-2,171∗∗
(1,003)

hispanic -231
(1,842)

-306
(1,266)

-1,864
(1,375)

-328
(1,257)

-341
(1,495)

-145
(1,246)

married 1,444
(1,123)

-22.65
(784)

1,846∗∗
(893)

203
(731)

1,367
(1,145)

-107
(763)

nodegree 107
(1,240)

-936
(936)

-345
(978)

-1,112
(886)

102
(1,249)

-923
(892)

1: The KW-estimators did not converge, but bounced between two local minima. Estimates of one
minima are still included because the estimates were relatively close to each other and to show the
similarity to the OLS estimates.
3: All covariates are demeaned
Treatment-effect estimates, robust standard errors in parentheses.*** p<0.01, ** p<0.05, * p<0.1

C.2 Alternative Mahalanobis distance plots

Figure 12: Standardised residuals plotted against the Mahalanobis distance squared, ex-
cluding the agesquared variable.

67



Figure 13: Standardised residuals plotted against the Mahalanobis distance squared, for
the treatment group only.

Figure 14: Standardised residuals plotted against the Mahalanobis distance squared, for
the control group only.
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C.3 Covariate information observations with largest standardised
residuals

Table 10: Covariates 15 observations with the largest standardised residuals (bad leverage
points & vertical outliers)

id T Age Age2 Educ. Bl
ack Hisp. Mar

ried
No
deg.

Inc.
1978

Out
lier

St.
res.

Mah.
dist.2 w

82 1 28 784 11 1 0 0 1 60,308 VERT 9.19 3.37 0
386 0 21 441 10 1 0 0 1 39,484 VERT 5.81 0.89 0
291 1 25 625 14 1 0 1 0 36,647 VERT 4.98 11.30 0
127 1 27 729 13 1 0 0 0 34,099 VERT 4.90 4.56 0
475 0 21 441 14 1 0 0 0 29,408 VERT 4.00 6.69 0
609 0 26 676 8 0 0 1 1 30,248 BLP 3.94 23.03 0
116 1 31 961 9 0 1 0 1 26,818 VERT 3.73 13.73 0
3 1 30 900 12 1 0 0 0 24,909 VERT 3.45 4.82 0
33 1 26 676 11 1 0 1 1 26,372 VERT 3.39 7.03 0
425 0 23 529 11 1 0 0 1 23,483 VERT 3.26 2.10 0
84 1 40 1600 11 1 0 0 1 23,006 BLP 3.18 20.35 4.4e−6

264 1 27 729 12 1 0 0 0 22,163 VERT 2.97 4.42 1.6e−2

423 0 25 625 10 1 0 0 1 20,942 VERT 2.87 1.80 3.5e−2

595 0 36 1296 7 1 0 0 1 20,781 VERT 2.83 12.89 4.4e−2

38 1 42 1764 14 1 0 0 0 20,506 BLP 2.70 39.17 7.8e−2

Weights and standardised residuals are computing using the Lin (2013) structured MM-estimator and
the Mahalanobis distance is computed using the MCD estimator.
These 15 observations are the (only) removed/downweighted (i.e. weight < 0.1) in the Lin (2013)
structured MM-estimator.
The first 13 observations as listed here, are also (in almost identical order) the top 13 highest earners
(income 1978).
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C.4 Covariate information observations with largest squared Ma-
halanobis distances

Table 11: Covariates 15 observations with the largest squared Mahalanobis distances
(good leverage points)

id T Age Age2 Ed
uc.

Bl
ack Hisp. Mar

ried
No
deg.

Inc.
1978

Out
lier

St.
res.

Mah.
dist.2 w

453 0 55 3025 3 1 0 0 1 5,844 GLP -0.11 351.45 1.00
559 0 54 2916 11 1 0 0 1 7,813 GLP 0.23 300.15 0.99
471 0 50 2500 10 0 1 0 1 0 GLP -1.24 169.12 0.72
563 0 50 2500 8 1 0 1 1 8,997 GLP 0.56 162.80 0.94
236 1 49 2401 8 0 0 1 1 16,717 GLP 1.29 156.26 0.70
34 1 48 2304 4 1 0 0 1 6,552 GLP 0.36 124.39 0.97
75 1 46 2116 13 1 0 0 0 647 GLP -0.57 82.46 0.94
41 1 46 2116 8 1 0 1 1 3,094 GLP -0.44 80.31 0.96
72 1 45 2025 5 1 0 1 1 8,547 GLP 0.45 79.30 0.96
266 1 46 2116 8 1 0 0 1 0 GLP -0.64 73.57 0.92
303 0 45 2025 11 1 0 0 1 11,796 GLP 1.19 62.71 0.74
571 0 45 2025 9 1 0 0 1 4,845 GLP 0.08 59.38 1.00
535 0 44 1936 9 1 0 1 1 12,359 GLP 1.29 53.41 0.70
60 1 41 1681 4 1 0 1 1 7,285 GLP 0.32 53.37 0.98
106 0 44 1936 11 1 0 0 1 0 GLP -0.59 50.89 0.93

Weights and standardised residuals are computing using the Lin (2013) structured MM-estimator and
the Mahalanobis distance is computed using the MCD estimator.
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