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Abstract

This thesis presents the development of a model newly designed to create a planning schedule
for multiple components with economic dependence over a finite horizon, specifically adding
value to wind farm maintenance planning. The model includes period-dependent maintenance
costs, with the option to add maintenance constraints that limit the amount of planned preven-
tive maintenance per period. Markov decision process theory is implemented in the model to
shift the individual preventive maintenance with integrity, and optimise over the economic
dependence. The model is bench-marked with a two-component infinite Markov Decision
Process model and with a two-stage stochastic programming approach model. The limitation
of the designed model, which is a mixed-integer program, is that it only works for smaller
instances. A future research could be to use this model as a guideline for computing a heuristic
that allows larger instances, or using the mixed-integer program on a rolling horizon.
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Chapter 1

Introduction

The European climate law sets ambitious goals for reducing greenhouse gas emissions, with a
target of at least a 55% reduction by 2030 and climate neutrality by 2050. Achieving these goals
requires a significant shift in the way we produce and consume energy, and renewable sources
like wind power will play a critical role in this transition. An extra motivation for investing in
wind power is the research Way et al. (2022) by Oxford presenting that investing in sustainable
energy has a strong economic case. Switching to renewables could save the world $12 trillion,
highlighting the potential for the energy transition to be an economic opportunity rather than a
burden.

Offshore wind turbines, which face higher wind velocities compared to onshore turbines, are
an attractive source of energy. As with all systems, they are prone to failure due to component
deterioration. Maples et al. (2013) highlights that operation and maintenance costs account
for 12% of total offshore wind farm costs per year. To increase wind farm profitability, mini-
mizing maintenance costs is essential. Preventive and corrective maintenance measures are
employed to ensure the turbines continue to operate. Preventive maintenance is carried out
before a failure or breakdown occurs, in order to minimize the risk of unplanned downtime. To
optimize maintenance schedules, it is important to consider the costs of downtime and since
wind velocities are lower in the summer, it is preferable to schedule maintenance during this
season. Downtime costs can therefore be seen as period-dependent maintenance costs.

Additionally, it is important to include constraints that may limit the ability to carry out main-
tenance operations. Offshore Support Vessels and qualified crew are required for offshore
maintenance, but scheduling can be challenging due to maintenance constraints such as man-
power limitations and weather conditions that may cause high waves and wind velocities that
render the Offshore Support Vessels inoperable. A maintenance constraint in the model could
be a constraint that limits the number of maintenance jobs done per period.

Besides the challenge of period-dependent costs and maintenance constraints, wind farm main-
tenance often deals with setup costs such as mobilizing repair crews or transportation to the
wind farm. Grouping maintenance for multiple components can lead to shared setup costs and
this is called positive economic dependence. This approach can result in significant cost savings
when compared to separate maintenance activities.
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1.1. Problem Approach and Sub-questions

In current literature, there are multi-component models with economic dependence and main-
tenance constraints, and there are single-component models with period-dependent costs.
However, to the best of our knowledge, there is no multi-component model that deals with
economic dependence, maintenance constraints, and period-dependent costs. Developing
such a multi-component model can lead to a more precise maintenance schedule, reducing the
risk of costly downtime and resulting in more efficient and sustainable offshore wind energy
production. Therefore, this thesis aims to answer the following research question:

How can we determine the optimal maintenance schedule for a multi-component model with economic
dependence, given maintenance constraints and variable downtime costs?

1.1 Problem Approach and Sub-questions

To answer our research question, we will explore two approaches. A Markov Decision Pro-
cess (MDP) approach and a two-stage stochastic programming approach. In this section, the
thesis approach in chronological order with its corresponding sub-questions can be found.
The sub-questions a-e are about extending existing models such that they can be compared.
Sub-questions f-g are about extending a model such that we have reached an answer to our
research question.

Schouten et al. (2022) uses a MDP approach, and designed several one-component MDP models
with period-dependent costs, where the p-ARP and p-MBRP models are the most interesting
for our use case. These models have an infinite time horizon. We want to compare these models
to a multi-component model and the following sub-question arises:

a. How to transform the p-ARP and p-MBRP models to a two-component model?

The two-stage stochastic programming approach is used in Zhu et al. (2021) and Zhu et al.
created amongst others a deterministic extensive form (DEF) of a two-stage stochastic model
and a corresponding Progressive-Hedging-Based heuristic (DEF Heuristic). Both are multi-
component models with economic dependence for a finite time horizon. This brings the next
sub-questions:

b. How to add period-dependent costs to the DEF?
c. How to add period-dependent costs to the DEF Heuristic?

After extending the models of both approaches to a two-component model with economic
dependence and period-dependent costs, they can be compared with each other by looking at
their policies. The Two-Component p-ARP and p-MBRP models only provide policies for their
recurrent states, however, for proper comparison the policies for the transient states are also of
interest.

d. For a three-dimensional MDP, how to retrieve policies for transient states?

2



1.1. Problem Approach and Sub-questions

It is found that the transient states for the Two-Component p-MBRP model can not be retrieved
by the method used in this thesis. Additionally, the p-ARP model setting is most similar to the
setting of the two-stage stochastic programming approaches and therefore we will continue
with the p-ARP model and disregard the p-MBRP model. At this point, the two approaches are
extended to multi-component and period-dependent and the next sub-question arises.

e. Should the MDP approach, the two-stage stochastic programming approach, or both approaches be
helloo used for the final multi-component model?

For the two-stage stochastic programming approach, it is found that the computation time of
DEF is too long to obtain the full policy, and the implementation of the faster DEF Heuristic
was not successful enough. The MDP approach is therefore used for the final multi-component
model. The final two sub-questions are:

f. How can we create a multi-component model with economic dependence and period-dependent costs
helloousing the p-ARP model?
g. How to add the maintenance constraint: ’In period t we only have room for X replacements’?

This thesis is structured as follows. First, we provide a more elaborate description of the
problem in Chapter 2. Then, a brief literature review is provided in Chapter 3. We provide our
methodology in the succeeding chapters, where Chapter 4 is all about the two-stage stochastic
programming approach, and Chapter 5 is about the MDP approach. The results are provided
in Chapter 6 and the conclusions, corresponding discussions, and our recommendations for
further research are discussed in Chapter 7.
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Chapter 2

Problem Description

In this chapter, details are discussed concerning the following aspects. Period-dependent costs,
corrective and preventive maintenance, maintenance constraints, economic dependence, repair-
ing method and time horizon. The reasoning behind choices made are from the perspective of
offshore wind farm maintenance, however other use cases such as offshore solar panel plants
are applicable here too.

Period-dependent costs
Firstly, we will discuss the period-dependent costs. Offshore wind farms’ power production
is a function of the wind velocity. At a study site north of Spain, the research López et al.
(2020) found that wind turbine energy production in winter months is twice as high in summer
months, due to the wind velocity. When executing maintenance on a wind turbine, it will not
be operating and we call the loss of turnover the downtime costs. Since the wind velocities vary
throughout the year, we refer to these downtime costs as period-dependent maintenance costs.
We can predict these downtime costs with averaged period-dependent costs.

Corrective and preventive maintenance
For single components, maintenance strategies can be divided into corrective maintenance,
preventive maintenance and predictive maintenance. Corrective maintenance is performed
after a component fails, preventive maintenance is performed before a component fails, and
predictive maintenance uses data from sensors to predict when a component fails and maintains
before this time. Due to sensor uncertainties that are involved with monitoring data for
which according to Ren et al. (2021) are no studies of effective and robust approaches, we will
not consider predictive maintenance. Additionally, Zhao et al. (2022) argues that preventive
maintenance is still the preferred maintenance strategy for most enterprises. Therefore, we
will look at corrective maintenance and preventive maintenance only. In the case of corrective
maintenance, the maintenance is assumed to be done immediately.

Maintenance constraints
Offshore vessels are necessary for performing offshore maintenance and a big offshore vessel
with lengthy lead times is necessary for repairing heavy spare parts, such as a rotor blade. In this
thesis, we will focus on maintenance for smaller parts which is possible with a more available
offshore vessel. Still, executing maintenance needs a qualified crew and limited manpower
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could put a limit on the number of maintenance tasks done per month. Additionally, a wind
farm might choose to do zero maintenance tasks per month when high waves and wind speeds
are expected, as offshore vessels are not allowed to operate in hazardous weather conditions.
This all brings us to the maintenance constraints we need in our model. These should constrain
the number of planned preventive maintenance tasks per month. The corrective maintenance
will be neglected in these constraints.

Economic dependence
Furthermore, the distance to the shore and the distance between turbines cause the components
to be economically dependent. The dependency between all components is classified by Thomas
(1986) into economic dependence, random dependence, structural dependence and resource
dependence. Economic dependence means that the costs of individual maintenance is different
to the costs of joint maintenance. The average global distance to shore calculated by Dı́az and
Soares (2020) in 2020 was 18.8 km and this number is increasing. Combining vessel transport
towards the wind farm can reduce costs. Secondly, random dependence means that the failure
of one component will affect the performance of the other components. In our wind farm case,
a failure of one component may result in the whole corresponding wind turbine being in failure
mode, hence we can speak of random dependence. According to Ackermann (2005), the wind
farm distances to shore are likely to increase hence one might argue that looking at the economic
dependency is more interesting. Therefore in this thesis, only economic positive dependence
will be considered. It will be defined as the following. If any maintenance is done, set-up costs
d are charged. Performing multiple maintenance activities at the same time will share these
constant set-up costs. Here, we only account for the distance to the shore and therefore assume
that all components are in the same turbine.

Repairing method
The repairing method used for maintaining a component is that it will be replaced by an as-
good-as-new component and the failure distributions of the components are assumed to be
independent of the time of the year.

Time horizon
Schleisner (2000) states that the lifetime of a turbine is around 20 years, so for a brand-new

wind farm it could be interesting to find a maintenance schedule for 20 years. However, an
older wind farm might also be interested in re-planning their maintenance, or a wind farm
company wants a one-year free trial of using the planning tool this thesis provides. To reduce
the scope, a time horizon between one and three years is chosen.

Summary
To sum up, the following is taken into consideration in this thesis. We estimate the average
monthly wind speed and therefore have period-dependent maintenance costs. We only consider
corrective and preventive maintenance due to sensor uncertainties. Dependency between
components in practice is intricate, since components that are in the same wind turbine have
random dependence and economic dependence, and components in difference wind turbines
also have economic dependence. Due to the increasing distances to the shore and to manage
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the scope of this thesis, we will assume that all components have equal economic dependence
which are expressed in the set-up costs d. Furthermore, when maintenance is done it is assumed
to be replaced with an as-good-as-new component, the failure distribution of the components
are period-independent and a time horizon between one and three years in chosen.
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Chapter 3

Literature Review

In this chapter, we begin by providing a brief review of the relevant research and contextu-
alisation of the past decades of both multi-component maintenance in general and offshore
maintenance in particular. Next, we look at the most recent research that we could use for our
thesis while simultaneously uncovering the newest trends.

3.1 A brief review

Multi-Component Maintenance in General
In 1997, Dekker et al. (1997) conducted a review of models with economic dependence, ob-
serving three types of dependency: economic, stochastic and structural. It also distinguished
stationary from dynamic models, and within the stationary models, it defined the various
options of grouping maintenance activities to grouping corrective maintenance, preventive
maintenance, or combining the two. In this thesis, we will only group preventive mainte-
nance. Kobbacy et al. (2008) provides an overview based on dependence, planning aspect, and
the optimization approaches used. A conclusion Kobbacy et al. made is that from 1997 already
computer intensive approaches are used, like tabu search, genetic algorithms and problem
specific heuristics. Wang and Chen (2016) survey all condition based modeling which, like pre-
dictive maintenance, needs data collected from monitoring. This is not within the scope of this
thesis as we will not be considering sensor-based approaches. Lastly, the review by Zhao et al.
(2022) provides us, amongst others, with a clear overview of the different type of maintenance
in Figure 3.1.

Figure 3.1: Classification of single component maintenance strategies by Zhao et al. (2022).

From Figure 3.1, predictive maintenance is not considered in this thesis. Failure limit main-
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3.2. Latest research

tenance strategy is also not considered, as this is most suitable for components with high
reliability requirements which is not necessarily the case in this thesis. Furthermore, Zhao
et al. (2022) examined the maintenance strategies employed for industrial equipment, with
an additional fourth dependency called resource dependency, meaning that a maintenance
operation can only be arranged if the necessary resources are at hand. They also classified the
strategies for multi-component models specifically. Possible strategies for our wind farm case
out of these classifications are batch grouping, opportunistic grouping, and static preventive
grouping. A future challenge noticed by Zhao et al. (2022) is the multi-component maintenance
strategies considering maintenance constraints, and highlights its importance as models without
constraints are inconsistent with the actual maintenance requirements.

Offshore farm specific
The study of multi-component maintenance optimization models for wind farms began in
1997 by Van Bussel and Schöntag (1997), who was already emphasizing the significance of a
maintenance strategy for wind farms. From this point, many articles can be found concerning
the operation and maintenance aspects of large offshore wind farms, and the most relevant and
recent review is Rinaldi et al. (2021). Ren et al. (2021) gives a clear overview of all the current
problems and research done so far in offshore maintenance, and also finds that models that
are more complex are often solved by meta-heuristics. It states that major challenges include
long distance from shore, weather uncertainty, a lack of information from remote monitoring,
unpredicted failures, aging, and subjective factors.

3.2 Latest research

The most recent articles concerning maintenance optimization models using corrective and
preventive maintenance, from the year 2021 are provided below. These articles are grouped by
the nature of their models which are single-component, machine learning, meta-heuristic and
Bayesian.

Single Component with period-dependent costs
Schouten et al. (2022) considers a single-component model, and researches the effect of period-
dependent costs where the life of the component follows a discrete-time Markov Decision
Process. Schouten et al. (2022) is in line with Figure 3.1 as it provides three models following
the age dependent-, period-, and sequential maintenance strategy. The Bachelor’s Thesis
from Cremers (2022) builds upon Schouten et al. (2022), and formulated three heuristic solutions
to construct a least-cost maintenance program for a group of identical components under the
constraint of restricted manpower. It calculates the effect on costs of shifting one component to
a different maintenance time than its individual optimal maintenance time.

Machine Learning
The machine learning technique that is used the most is deep reinforcement learning, and
is used by Nguyen et al. (2022b), Nguyen et al. (2022a), Zhang et al. (2022), Chen and Wang
(2023), Zhou et al. (2022), Yousefi et al. (2022), and Pinciroli et al. (2021), where the model of
Pinciroli et al. (2021) is wind farm specific and considers multiple crews. Most of them first
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3.2. Latest research

formulated the problem as a Markov Decision Process, and then used the deep reinforcement
learning model to solve it. As Markov Decision Process suffers from the curse of dimensionality,
reinforcement learning is used to also solve the model for larger instances. These reinforcement
learning techniques are less accurate, however, have a much broader application. Finally,
the model in Zhang et al. (2023) is also wind farm specific and uses a neural network. Its
performance is tested on one wind farm and lacks further benchmarks.

Meta-heuristics
Then the meta-heuristics used are genetic algorithm by Maher et al. (2022), Chen and Feng
(2022), Bárcena and Castro (2021), particle swarm optimization is used by Dai et al. (2023), and
finally a simulated annealing algorithm is used by Tambe (2022), Franciosi et al. (2021). Zhu
et al. (2021) shows that with a progressive-hedging-based algorithm, with is a meta-heuristic,
solutions for large instances can also be found. This is bench-marked with a smaller instance
that is solved with an almost optimal mixed integer program and shows that the objective error
compared to the almost optimal mixed integer program , stays under 9.89%. A wind farm
specific meta-heuristics is used by Wang and Deng (2022). Wang and Deng (2022) implements
maintenance constraints to its multi-component model together with economic dependence.
The maintenance constraints are in the form of a time window, in which it is possible to execute
maintenance. In the first part of the article, they link the reliability of a component to the
two-parameter Weibull distribution and determine what the best values of reliability are to
perform corrective, preventive and opportunistic maintenance resulting in a big emphasis on
the tuning of parameters.

Bayesian network
Furthermore, Özgür-Ünlüakın et al. (2021) uses a dynamic Bayesian network for a system under
corrective maintenance, and Vijayan and Chaturvedi (2021) considers a model with stochastic
and economic dependence and uses a Bayesian network to form groups in the system.

Research Gap
To conclude, some trends are seen in these articles. It was remarkable that, of all the pertinent
articles discovered, more than half exploited machine learning techniques or a meta-heuristic
to solve their model. Additionally, simulation is often used to test the performance of the
model and another bench-marking method is often missing. Another observation is that it is
difficult to create an accurate model that works for larger instances. It looks like a trade-off
between the size of the instance and the accuracy of the solution. To our best knowledge,
there is firstly no multi-component model that includes period-dependent costs, and secondly
no multi-component model that includes maintenance constraints which is if importance as
highlighted by Zhao et al. (2022).
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Chapter 4

Methodology Zhu

This chapter describes two methodologies used in Zhu et al. (2021) that have a two-stage
stochastic programming programming approach with a finite horizon, and explains how
they are extended by adding the period-dependent costs. These two methodologies are both
categorised as opportunistic grouping by Zhao et al. (2022). In the paper, first, a multistage
stochastic integer program with decision-dependent uncertainty is derived, containing multiple
components and economic dependency. The paper of Zhu et al. however concludes that this
type of problem is too difficult to solve. Therefore, they provide us with a two-stage model to
approximate the exact model and this is the DEF model. The DEF model is found in Section 4.1
together with the period-dependent cost extension. Zhu et al. (2021) also states that for large-size
problems the DEF has no moderate CPU time, and therefore the article provides an efficient
heuristic to find high-quality solutions which has an objective gap of at most 9.89% from the
DEF. This is the Progressive-Hedging-Based Heuristic to which we will refer to as DEF Heuristic,
and this model with the period-dependent extension is found in Section 4.2.

Output DEF and DEF Heuristic
Important to note here, is that the DEF and DEF Heuristic produce decision variables for only
the starting period. So only the action for the starting period is received as output. By changing
the settings of the starting period, a complete policy can be found.

4.1 The DEF model

In this section, we will discuss the DEF model. The objective is to minimize the total costs in a
discretized finite planning horizon, where the total costs is the sum of costs made in the first
period and the expected maintenance costs in the periods thereafter. The basic idea for these
expected maintenance costs is to compute a number of different possible scenarios, of when
which component fails, and create the lowest-cost schedule for each scenario. We then calculate
the expected maintenance costs of all scenarios. The combination of the known costs in the
first period, and the expected costs in the periods thereafter is also why the paper calls the
DEF-model a two-stage stochastic programming maintenance model. How this is done in detail
will be discussed later. First, we will introduce some important sets, parameters and variables.
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4.1. The DEF model

Sets and parameters
Zhu et al. (2021) considers a multi-component system that consists of N = 1, 2, . . . , n compo-
nents with economic dependence. The length of the planning horizon is T, and the correspond-
ing set is the discrete finite planning horizon denoted as T = 0, 1, . . . , T. Each component i
needs r spares, in case of failure, and the total amount of spares taken into account for com-
ponent i is q. The corresponding set is R = 1, 2, . . . , q. We indicate an individual spare by Iir,
which is the rth replacement of component i. Furthermore, we denote a scenario by ω, and the
set of all scenarios is Ω. The probability that a scenario occurs is p(ω). Each scenario consists of
the lifetimes for individuals Iir, ∀i ∈ N, ∀r ∈ R. We let the lifetime of individual Iir in scenario
ω be Tω

ir . Finally, Zhu et al. (2021) considers maintenance costs that can vary per component
type i and defines the preventive and corrective maintenance costs for type i as ci,PR and ci,CR,
respectively. We will consider the same maintenance costs for each component type i, so these
variables are changed to cp and c f for the preventive and corrective maintenance respectively.

Two-stages
The maintenance decision process is divided into two stages. The first stage decision is to decide
which individuals Ii1, ∀i ∈ N should be replaced at the first period, and this decision is the same
for all scenarios. The first stage decision variables are

xi =

1, if an individual of component i is replaced at t=0,

0, otherwise.
(1)

At the start at t = 0 we also look at all the starting states ξi, for all individuals Ii1. This is an
input variable and by linking ξi to xi in the model, it is possible to make a schedule when not all
individuals Ii1 are functioning. The value of ξi is 0 when it is still functioning, and 1 if it starts
broken.
The second stage decision is to create the optimal planning schedule for each scenario at
time t ∈ T \ {0}, after the individual failure states are revealed at t = 0 and determine the
expected costs over all scenarios. The decision variables for this second stage is defined for all
i ∈ N, r ∈ R, t ∈ T , ω ∈ Ω and is

x̃rω
it =

1, if Iir is replaced at or before time t in scenario ω,

0, otherwise.
(2)

The decision variable that keeps track for all t ∈ T , ω ∈ Ω whether set-up costs d are incurred
is zω

t and is defined as

zω
t =

1, if any maintenance occurs at time t in scenario ω,

0, otherwise.
(3)

Scenarios size
For n components, q multiples per component and horizon length T we have (T + 1)nq scenarios.
Computing all these scenarios quickly adds up to memory and therefore a smaller sample size
|Ω| is chosen. Zhu et al. (2021) follows a theorem of Kleywegt et al. (2002) for |Ω|. If we aim the
solution to be ϵ-optimal with (1− α) probability, according to Zhu et al. (2021) the sample size
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4.1. The DEF model

|Ω| should satisfy

|Ω| ≥ 2σ2

(0.1σ− 0.01σ)
ln
(

n ∗ q ∗ (T + 1)
α

)
(4)

where σ equals 2T
(
∑i∈N cp + d

)
. Following this theorem, we can simply generate scenarios by

sampling from the Weibull distributions until we have enough scenarios. Following the paper
of Zhu et al., α is chosen to be 0.1, and ϵ is chosen to be 0.1σ. Therefore, the values for p(ω) all
become equal to (1/|Ω|). Details on the scenarios are computed can be found in Appendix A.1.

Auxiliary variables
Besides xi, x̃rω

it , and zω
t , Zhu et al. introduces the auxiliary variable Yrω

i to keep track of
preventive and corrective maintenance. The value for this is 1 when individual Iir in scenario
ω takes preventive replacement and is 0 when it takes corrective maintenance. In order to
compute Yrω

i , we need two extra auxiliary binaries, wrω
it and yrω

it . Firstly, wrω
it takes value 1 if

individual Iir is replaced in scenario ω at time t, and value 0 if is is not replaced. Secondly, yrω
it

takes value 1 if wrω
it = 1, and this corresponds to preventive maintenance. It takes a value of 0 if

it corresponds to corrective maintenance, or when wrω
it = 0. The DEF can be found below.
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4.1. The DEF model

DEF: min ∑
ω∈Ω

p(ω)

(
∑
i∈N

(
cp ∑

r∈R
Yrω

i + cp ∑
r∈R

(x̃rω
iT −Yrω

i )

)
+ ∑

t∈T
dzω

t

)
(5a)

x̃rω
it ≤ x̃rω

i,t+1 i ∈ N, t ∈ T \ {T}, r ∈ R, ω ∈ Ω (5b)

x̃r+1,ω
i,t+1 ≤ x̃rω

it i ∈ N, t ∈ T \ {T}, r ∈ R \ {q}, ω ∈ Ω (5c)

∑
r∈R

(x̃rω
it − x̃rω

i,t−1) ≤ zω
t i ∈ N, t ∈ T \ {0}, ω ∈ Ω (5d)

x̃1,ω
i,0 ≤ zω

0 i ∈ N, ω ∈ Ω (5e)

x̃rω
it ≤ x̃r+1,ω

i,Tω
i,r+1

i ∈ N, t ∈ {0, . . . , T − Tω
i,r+1}, r ∈ R \ {q}, ω ∈ Ω (5f)

x̃1ω
i,Tω

i1
= 1 i ∈ {j ∈ N|Tω

j1 ≤ T}, ω ∈ Ω (5g)

x̃rω
i0 = 0 i ∈ N, r ∈ R \ {1}, ω ∈ Ω (5h)

xi = x̃1ω
it i ∈ N, ω ∈ Ω (5i)

xi ≥ ξi i ∈ N (5j)

wrω
it = x̃rω

it − x̃rω
i,t−1 i ∈ N, r ∈ R, t ∈ T \ {0}, ω ∈ Ω (5k)

wrω
i0 = x̃rω

i0 i ∈ N, r ∈ R, ω ∈ Ω (5l)

wrω
it = 0 i ∈ N, r ∈ R, t ∈ {T + 1, . . . , T′}, ω ∈ Ω (5m)

yrω
it = wrω

it − wr−1,ω
i,t−Tω

ir
i ∈ N, r ∈ R \ {1}, t ∈ {Tω

ir , T′}, ω ∈ Ω (5n)

Y1ω
i = 1− w1ω

i,Tω
i1

i ∈ N, ω ∈ Ω (5o)

Yrω
i =

∑
T+Tω

ir
t=Tω

ir

∣∣yrω
it

∣∣+ ∑
Tω−1

ir
t=0 wrω

it

2
i ∈ N, r ∈ R \ {1}, ω ∈ Ω (5p)

x̃rω
it , xi, zω

t , wrω
it ∈ {0, 1} i ∈ N, r ∈ R, t ∈ T , ω ∈ Ω (5q)

yrω
it ∈ {−1, 0, 1} i ∈ N, r ∈ R, t ∈ T , ω ∈ Ω (5r)

Yrω
i ∈ [0, 1] i ∈ N, r ∈ R, ω ∈ Ω (5s)

Objective
The objective minimizes the total expected maintenance costs over a finite discretized planning
horizon, of which the costs made in the first period are known, by weighing each scenario by its
probability of occurrence. The first part determines the corrective and preventive maintenance
costs, and the second part adds the set-up costs every period any form of maintenance is done.

Constraints
The first constraint (5b) ensures that once an individual Iir in scenario ω is replaced, it remains
replaced. Constraints (5c) ensures that for a component type i, the replacement of individual
Iir can only take place after the previous individual is replaced. Constraints (5d) and (5e)
determine the value of zω

t , as this is 1 for a replacement at time t and 0 for no replacement in
scenario ω. Constraints (5f) and (5g) ensure that individual Iir is replaced before or at the end of
its lifetime Tω

ir . Constraint (5h) states that for r > 1, individuals Iir can not be replaced at t = 0,
as this is only possible for r = 1. Then constraint (5i) is a constraint combining the scenarios

13



4.1. The DEF model

with each other and is called the nonanticipativity constraint. It forces all decisions in the first
stage to be the same. Constraint (5j) ensures that when a component starts in failed state at
t = 0 indicated by ξi, it will be replaced. Note that for all scenarios ξi will be the same and
Tω

i1 > 0. Why Tω
i1 > 0 can be found in Appendix A.1.

Auxiliary constraints
Constraints (5k)-(5p) define the variable Yrω

i which determines whether the maintenance done
was corrective or preventive. These constraints need an extended time horizon length T′, where
T′ = T + max{Tir}. Firstly, in constraints (5k), (5l) and (5m) variable wrω

it is determined. This
gets the value of 1 if for individual Iir maintenance is done at time t and scenario ω and value
of 0 else. Using w1ω

it the first individuals, the type of maintenance Y1ω
i can be easily determined

by constraint (5o) as we can simply look if maintenance is done at the failure time of the first
component. For individuals r > 1 this is a bit harder. Here, we use yrω

it which is defined in
constraint (5n). These values remain zero if the maintenance done for Iir was corrective, and
can become 1 or -1 in case of preventive maintenance. By using the absolute values and the
values of yrω

it and the values of wrω
it , the final values for Yrω

i can be determined in constraint
(5p). A visualisation of these values for an example scenario is provided in Figure 4.1.

Figure 4.1: Visualisation of the decision variables for a component i and a scenario ω. Here, q = 3 and
the individuals Iir for r = {1, 2, 3} have life times 0,4 and 10 respectively.
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4.2. DEF Heuristic

Correction objective
In Figure 4.1 we see that the value for Yrω

i can take the value of 0.5. If this is the case, then the
individual Ii,r−1 is replaced in the horizon, but the individual Iir is not. The value for x̃rω

iT is
zero. In the objective, however, we have a deviation that causes it to have lower costs than it
should have when cp < cp. A correction is necessary to account for this deviation. Zhu et al.,
therefore, adds the correction value found in (6) to the objective value. This is not shown in
the DEF as this correction value is a constant, however, is important to note in order to get the
correct objective value.

∑
ω∈Ω

p(ω) ∑
i∈N

∑
r∈R

0.5(cp − cp)(x̃r−1,ω
iT − x̃rω

iT ) (6)

4.1.1 Period dependent costs

The DEF that accounts for period-dependent costs is called the DEF∗. In order to add period-
dependent costs, we will introduce new binary variables Ỹrω

it,PR and Ỹrω
it,CR which we can use

in the objective, without losing its linearity. They are linked to the decision variables Yrω
i and

wrω
it as Yrω

i indicates whether we are dealing with corrective or preventive maintenance, and
wrω

it denotes whether at time t we do maintenance or not. Firstly, Ỹrω
it,PR has the value 1 when

there is preventive replacement at time t in scenario ω for individual Iir, and the value 0 else.
Additionally, Ỹrω

it,CR has the value 1 when there is corrective replacement at time t in scenario ω

for individual Iir, and value 0 else. Furthermore, we extend the cost coefficients from cp and cp

to cp,t and c f ,t respectively. The DEF objective (5a) becomes

∑
ω∈Ω

p(ω) ∑
t∈T

(
∑
i∈N

∑
r∈R

(
cp,tỸrω

it,PR + c f ,tỸrω
it,CR

)
+ dzω

t

)
(7a)

where we do not need the correction from (6). Additionally, we add the constraints (8a)-(8c) to
the DEF in order to maintain the correct values for our new auxiliary variables.

Ỹrω
it,PR + Ỹrω

it,CR = wrω
it i ∈ N, r ∈ R, t ∈ T , ω ∈ Ω (8a)

Ỹrω
it,CR ≤ 1−Yrω

i i ∈ N, r ∈ R, t ∈ T , ω ∈ Ω (8b)

Ỹrω
it,PR ≤ Yrω

i i ∈ N, r ∈ R, t ∈ T , ω ∈ Ω (8c)

Constraint (8a) makes sure that when there is no replacement taking place, regardless of the
type of replacement, both Ỹrω

it,PR and Ỹrω
it,CR take the value zero. When there is replacement, either

Ỹrω
it,PR or Ỹrω

it,CR have to take the value of one and which one is determined by constraints (8b)
and (8c). If Yrω

i is zero, we have corrective maintenance and Ỹrω
it,CR takes value of 1. If Yrω

i is one,
we have preventive maintenance and Ỹrω

it,PR takes the value of 1.

4.2 DEF Heuristic

The DEF Heuristic is a faster heuristic to approximate the solution DEF would provide and
the details are provided in this section. The idea is to solve all scenarios separately and then
put these together in a Standard Progressive Hedging Algorithm to find the best values for
xi, ∀i ∈ N. Not all details of the DEF Heuristic become clear from the paper and a self-invented
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4.2. DEF Heuristic

approach was sometimes necessary. Furthermore, additions are made to implement the period-
dependent maintenance costs and this modified model is called the DEF Heuristic∗. We will
first explain the Standard Progressive Hedging Algorithm in Section 4.2.1, and then we will
explain how each scenario is solved independently in Section 4.2.2.

4.2.1 Standard Progressive Hedging Algorithm

This section explains the PHA that is used in Zhu et al. (2021) and will merge all individual
solutions into one final solution.

Algorithm 1 The Standard Progressive Hedging Algorithm

1: Initialization: Let v ← 0, ϵ̃ ← 10−2, xv
ω ← argminx(cx + Q(x, ω)), ∀ω ∈ Ω,

xv ← ∑ω∈Ω p(ω)xv
ω, and Wv

ω ← ρ (xv
ω − xv) , ∀ω ∈ Ω.

2: Update the iteration counter: v← v + 1.
3: Decomposition: xv

ω ← argminx

(
cx + Wv−1

ω x + ρ
2∥x− xv−1∥2 + Q(x, ω)

)
, ∀ω ∈ Ω.

4: Aggregation: xv ← ∑ω∈Ω p(ω)xv
ω.

5: Update price: Wv
ω ←Wv−1

ω + ρ (xv
ω − xv) , ∀ω ∈ Ω

6: Calculate converge distance: gv ← ∑ω∈Ω p(ω)∥xv
ω− xv∥, ∀ω ∈ Ω.

7: Termination: if gv < ϵ̃ then return Optimal solution xv. else Go to step 2. end if

New variables
The new variables in the standard PHA are not specifically defined in the paper for the DEF
Heuristic, and for this thesis we have chosen them to be the following. Firstly, we choose xv

ω to
be the array (x1 x2 . . . xn)

T for iteration v and scenario ω, as in the DEF the output variables
are also xi ∈ N. Secondly, the objective of the DEF is denoted by (cx + Q(x, ω)) where cx are
the first-stage costs made at t = 0, and Q(x, ω)) the costs made in periods t > 0 in scenario
ω as a result of choosing x. Thirdly, parameter ρ is introduced that represent the Lagrangian
penalty for splitting the scenarios and its value represents the trade-off between the solution
quality and computational time. As a result, the value for ρ will be chosen iteratively.

Steps explained
In the first initialization step, iteration number v is set to zero, the threshold value ϵ̃ is chosen,
for each scenario ω the array xv

ω is determined and the method for this is found in Section 4.2.2,
the average values xv are computed and finally the price arrays Wv

ω are initialized for every ω.
The second step is self-evident. The third step is the decomposition step, and nudge the values
for xi towards the average by influencing the calculation of costs when solving for one scenario.
This slightly changes the method of finding xv

ω and these changes are described in Section 4.2.3.
Steps 3-6 are self-evident. Step 7 is the termination step. We terminate if the distance gv is
smaller than ϵ̃ we return the solution. This solution are the rounded averages in xv.

4.2.2 Heuristic Solving one Scenario

We know x = (x1 x2 . . . xn)
T will be the output of this heuristic, and how exactly is de-

scribed in this section. Before we start with the heuristic, it is important to emphasize the
non-probabilistic nature of solving for a scenario ω. For a scenario ω the failure times are
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4.2. DEF Heuristic

known, and therefore finding the best solution is all about finding the perfect hindsight replace-
ment times.

Main idea of the heuristic
The main idea of this heuristic is to sort all components Iir according to their optimal replacement
times and use various ways of grouping this series. The paper refers to two theorem on which
the heuristic is based. The first theorem states that in the optimal grouping, in each group
there is at least one component that is replaced at its failure or one time unit before its failure.
Since we are adding period-dependent costs, the first theorem does no longer goes since the
optimal replacement time is not necessarily one time unit before failure. For a period-dependent
model with finite horizon, finding the optimal replacement time is NP-hard and we will use a
approximated optimal replacement time. The second theorem states that given a set of operating
individuals sorted according to their failure times, there exists an optimal solution for this set
such that maintenance activities are executed following the same order. The heuristic provided
in the paper however does not always obey this theorem, and therefor the heuristic is slightly
adjusted so this theorem is more easily followed. Although this theorem is also not valid in
a period-dependent model, we use the idea by ordering the individuals according to their
approximated optimal replacement times. We call each cluster of replacements a group, and
multiple clusters a grouping. In the heuristic, the goal is to find the grouping that have the
lowest maintenance costs. The corresponding x for the first period will be returned.

Additional variables
For this heuristic, we introduce some additional variables. For each individual Iir we have βir

which is the approximate optimal replacement time, and β′ir is the newly scheduled replacement
time. In the paper, following theorem 1, they chose the value of βir to be one period before
its failure or at its failure and introduce the variable ∆ which takes value 0 when the tentative
replacement time is at its failure, and 1 for one period before its failure. As we consider period-
dependent costs we take a different approach to the value of ∆. We will use ∆ to find βir

and allow the component to shift later when the group is formed, over replacement times
{βir, . . . , β′i,r−1 + Tir}. The approximated optimal replacement time of individual Iir is the
relation

βir = t0 − arg min
∆∈{1,2,...,Tir}

[
(∆− 1)

cp,t + d
E(Xαi ,βi)

+ ci,t0−∆,PR + ci,t0−∆+Ti,r+1−1

]
. (9)

In this relation two terms can be found. The first term is the failure period of individual, denoted
by t0. The value of t0 is β′i,r−1 + Tir for r > 1 and t0 = Tir for r=1. Iir. The second term subtracts
a value ∆ from this period. To find the value of ∆, we minimize over three terms. The first term
is a penalty term of increasing ∆ because this causes more individuals to be necessary in the
time horizon. The penalty term is dependent on the average costs of doing PM plus the set-up
costs, divided by the expectancy of the Weibull distribution denoted as E(Xαi ,βi). The second
term are the PM costs in the new PM costs, and the third term are the difference in PM costs for
the successor term. It would be more exact to calculate the PM costs for all successor but for an
approximation optimal replacement time we consider this as appropriate. Note ∆ can be no
higher than the failure time Tir. Note that when cp,t is constant over t, we follow theorem 1 and
2 from Zhu et al. again. Furthermore, we denote C(G) as the costs made for grouping G.
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4.2. DEF Heuristic

(a) Example from Zhu et al. (2021) showing tentative
times of four individuals.

(b) Visualization by Zhu et al. (2021): Options for
three values of m.

Figure 4.2: Two figures clarifying the grouping heuristic.

The Heuristic
The heuristic for solving one scenario is provided in Algorithm 2. In Step 1 the set ι is determined.
The values in this set will be the allowed sizes of shifting PM. In Step 2 we compute the best
grouping and calculate the corresponding costs C1(G) for each value in ι. In Step 2.1 we
initialize by calculating the values βi,1 for all i ∈ N with relation (9), putting the corresponding
individuals in set K, and creating an empty group G. Some details about K are the following.
Set K is a set of all operating individuals that need planning, and K′ represent the sorted set of
K according to βir. Zhu et al. (2021) shows an example to demonstrate. In this example, we have
K = {I1,5, I2,3, I3,2, I4,4} and the corresponding βir are shown in Figure 4.2a. We see that we get
K′ = {I2,3, I1,5, I4,4, I3,2}. Furthermore, we denote the ith position of an individual in our series
by K′[i]. In Figure 4.2a, K′[1] would return I2,3. In Step 2.1 we refer to the Grouping Rule which
is described in Algorithm 3. Here, the optimal grouping is determined. From this grouping, we
only take the first group g. In Step 2.3, we add all individuals of this group in grouping G, and
update set K. Then the βir for all individuals in K is updated, and if βir is bigger than the time
horizon we remove it again.

Algorithm 2 Heuristic Algorithm for One Scenario
1: Initialization: Determine a set of values for ι, ι = {ι1, ι2, . . .}.
2: For all ι produce groupings and calculate corresponding C1(G).

2.1: Initialization:
Assign βi,1, ∀i ∈ N with relation (9).
K ← {I1,1, I2,1, . . . , In,1}.
G ← {}.

2.2: Apply Grouping Rule for K and denote the first group as g.
2.3: Update set K.

∀Iir ∈ g :
Add Iir to set G.
Replace Iir in set K with Ii,r+1.
∀Iir ∈ K :

Assign βi,r with relation (9).
if βir > T, then Remove Iir from set K.
if K is empty, then Go to step 2.4. else Go to step 2.2. end if.

2.4: Calculate C1(G).
3: For the group with lowest C1(G) return x.
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4.2. DEF Heuristic

If K is empty, we go to Step 2.4 where we calculate the costs. The costs are calculated the same
way as the objective of DEF is calculated and are the total costs with perfect hindsight over the
time horizon. For all groupings created for all values of ι, the grouping with the lowest costs is
chosen, and the corresponding x is returned.

The Grouping Rule
A set K is grouped according to the Grouping Rule and the heuristic can be found in Algorithm 3.
In Step 1, the input set K is sorted in ascending order based on βir. In Step 2, a number of
|K′| − 1 different group options are created and the group option with the lowest costs is chosen.
We call such a group option m and a visualization by Zhu et al. (2021) is shown in Figure 4.2b.

Algorithm 3 The Grouping Rule
1: Sort K in ascending order based on βir ⇒ sorted set K′.
2: Select the option m that has the lowest cost C2(G).

Group option m : m from 1 to |K′| − 1.
2.1: Let v← m and Iir ← K′[v].
2.2: For all t ∈ {βir, . . . , β′i,r−1 + Tir} choose t that produce groups with lowest C′(g):

Add individuals to group g in set K′ if βir is before t until β (K′ [v′]) > t + ι,
v′ = v + 1, v + 2, . . ..

Calculate C′(g).
2.3: Add best group g to G.
2.4: Let ϑ denote the position of the last individual grouped in Step 2.2, and update

actual
replacement times: τ′ (K′ [v′])← t, v′ = v + 1, v + 2, . . . , ϑ, v← ϑ + 1.

2.5: if v ≥ |K′|, then Go to Step 2.6. else Go to Step 2.2. end if
2.6: if K′[1] /∈ G then G ← G ∪ {(K′[1])}. end if
2.7: Compute C2(G).

3: return set G.

The procedure is the following. We initialize a group with individual K′[m], in Step 2.1. Then
in Step 2.2, we iterate over multiple values of t. For each t we add all individuals to grouping
g that have βir between t and t + ι and calculate the costs C′(g). The costs are calculated by
adding for each individual in g its individual costs δcir . The calculation of these individual costs
are have the same idea as the calculation of βir is (9) as are

δcir = −d+(ci,t0−∆ir ,PR− ci,t0−1,PR)+
∆ir − 1

E(Xαi ,βi)

(
cp,t + d

)
+(ci,t0−∆ir+Ti,r+1−1,PR− ci,t0−1+Ti,r+1−1,PR)

(10)
where t0 = β′i,r−1 + Tir if r > 1 and t0 = Tir if r=1. In Step 2.3 we add best group g to G. Then
in Step 2.4 we create the starting point of the next group and in Step 2.5 we go to Step 2.2 to
create our next group. This is done until all successors from K′[m] are put in a group, as can be
read in Step 2.5. The predecessors of K′[m] are put individually in G in Step 2.6 and the costs
are calculated in Step 2.7. These costs are the total costs made, including penalty costs for each
individual for bringing maintenance forward. The penalty cost is the same as in the paper with
a time element added: if individual Iir is grouped with Ijr(βir > β jr), then the penalty cost is
ri(cp,t + d), where ri is the number of new individuals needed to cover the planning horizon
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4.2. DEF Heuristic

due to this shift and t = β′ir + Ti,r+1 − 1. The grouping G with the lowest costs is returned as G
in Step 3.

4.2.3 Heuristic Solving one Scenario Decomposition

The calculation of costs C1(G) in Algorithm 2 is not too complex. We simply add the costs
Gv−1

ω x + ρ
2∥x − xv−1∥2 to the original C1(G). For the calculation of C′(G) and C2(G) this is

slightly different since not all individuals Ii1 are in G. Therefore, we calculate the additional
costs by

∑
Ii1∈G

(
Wv−1

ω,i xi +
ρ

2
∥xi − xi

v−1∥2
)

. (11)

Furthermore, in the decomposition step we not only adjust the calculation of costs, we also
allow the values of xi to be 1 in the Grouping Rule Algorithm 3. By adding

1a: if K′[1] = Ii1, ∀i ∈ N then βi1 ← 0 end if. (12)

to Step 1 the grouping gets the opportunity to also be replaced in the first period.
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Chapter 5

Methodology Schouten

This chapter contains all methodologies inspired by the Markov Decision Process (MDP) ap-
proach in Schouten et al. (2022). The first four sections are about about creating two-component
models and retrieving the policies. Section 5.1 provides a two-component MDP where the
components are allowed to have different Weibull parameters. Sections 5.2 and 5.3 provide the
Two-Component p-ARP and p-MBRP models that are an extension of the one-component mod-
els from Schouten et al. (2022). The model p-ARP is based on the age dependent maintenance
strategy from Zhao et al. (2022), where the policy relies on the optimal replacement age for a
component. The model p-MBRP is based on the sequential maintenance strategy from Zhao
et al. (2022) where the policy looks at the best period to replace a component unless the age
is lower than a certain critical age. In Section 5.4, a new method is created to obtain policies
of transient states. In the latter part, a multi-component MIP is designed. Section 5.5 explains
the calculations of costs when shifting PM which is implemented in the final multi-component
MIP found in Section 5.6. The final multi-component MIP is designed in such a manner that
maintenance constraints can be added.

5.1 Two-Component Markov Decision Process

In this section, we will transform the single-component MDP from Schouten et al. (2022) to a
two-component MDP. The two components are allowed to follow a different distribution.

Set of periods
As stated in the Problem Description, we assume that corrective maintenance is performed
directly and that when maintenance is done on a component, it is replaced by an as-good-as-new
component. The time is discretized into periods by discretizing one year into N periods. These
periods in one year can be extended to m multiple years, if this is the desired cycle length. The
set representing these periods is I0 and we get I0 = {1, 2, . . . , mN}.

Set of components
The set of components is k ∈ K and as we have two components we have K = {1, 2}. A
component’s lifetime is denoted by Xk and the set of possible ages for k is Ik. In the MDP
we identify a maximum age M at which the component should ultimately have preventive
replacement. We have Ik = {0, 1, . . . , M}. When a component fails it obtains age 0 and CM is
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5.1. Two-Component Markov Decision Process

performed immediately.

Set of states
In our MDP, a state i = (i0, i1, i2) is determined by the period, age of the first component, and
age of the second component, respectively. The total state space is defined by I = I0 × I1 × I2.

Set of actions
There are four actions a and are represented by the set a ∈ A = {0, 1, 2, 3}. We have a = 0
for no action and therefore no replacement, a = 1 for only replacing the first component,
a = 2 for replacing only the second component and a = 3 for replacing both components. The
state-dependent action space can be expressed as follows as A(i0, i1, i2), with i0 ∈ I0, i1 ∈ I1

and i2 ∈ I2.

A(i0, i1, i2) =


{3} if i1 ∈ {0, M}, i2 ∈ {0, M},
{1, 3} if i1 ∈ {0, M}, i2 /∈ {0, M}
{2, 3} if i1 /∈ {0, M}, i2 ∈ {0, M}
{0, 1, 2, 3} otherwise,

(13)

Transition probabilities
In case of a replacement, there is an instantaneous jump to age 0, after which the component
can reach age 1 at the end of the period, or have a failure and end with age 0 again. The failure
probability of a component k at age ik is pk

ik
and is defined by the following relation.

pk
ik
= P(Xk = ik|Xk ≥ ik) =

P(Xk = ik)

P(Xk ≥ ik)
(14)

Now, let π(i0,i1,i2)(j0,j1,j2)(a) be the transition probability from state (i0, i1, i2) to state (j0, j1, j2)
under action a ∈ A(i0, i1, i2). We find the following values for π(i0,i1,i2)(j0,j1,j2)(a). For a shorter
notation note that for all cases we have that π(i0,i1,i2)(j0,j1,j2)(a) = 0 if we do not go to the next
period, i.e. j0 ̸= i0 + 1 mod N.

π(i0,i1,i2)(j0,j1,j2)(0) =



(1− p1
i1)(1− p2

i2) for j1 = i1 + 1, j2 = i2 + 1

(1− p1
i1)p2

i2 for j1 = i1 + 1, j2 = 0

p1
i1(1− p2

i2) for j1 = 0, j2 = i2 + 1

p1
i1 p2

i2 for j1 = 0, j2 = 0

0 else.

(15a)

π(i0,i1,i2)(j0,j1,j2)(1) =



(1− p1
0)(1− p2

i2) for j1 = 1, j2 = i2 + 1

(1− p1
0)p2

i2 for j1 = 1, j2 = 0

p1
0(1− p2

i2) for j1 = 0, j2 = i2 + 1

p1
0 p2

i2 for j1 = 0, j2 = 0

0 else.

(15b)
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π(i0,i1,i2)(j0,j1,j2)(2) =



(1− p1
i1)(1− p2

0) for j1 = i1 + 1, j2 = 1

(1− p1
i1)p2

0 for j1 = i1 + 1, j2 = 0

p1
i1(1− p2

0) for j1 = 0, j2 = 1

p1
i1 p2

0 for j1 = 0, j2 = 0

0 else.

(15c)

π(i0,i1,i2)(j0,j1,j2)(3) =



(1− p1
0)(1− p2

0) for j1 = 1, j2 = 1

(1− p1
0)p2

0 for j1 = 1, j2 = 0

p1
0(1− p2

0) for j1 = 0, j2 = 1

p1
0 p2

0 for j1 = 0, j2 = 0

0 else.

(15d)

Cost parameter
The costs c(i0,i1,i2)(a) depend on period i0, ages i1, i2, and action a. It is a function of the period-
dependent preventive and corrective maintenance costs cp(i0) and c f (i0) which are period-
dependent. The setup cost for a maintenance task is denoted by d. We have the following
costs.

c(i0,i1,i2)(a) =



0 if a = 0,

cp(i0) + d if a = 1, i1 ̸= 0,

c f (i0) + d if a = 1, i1 = 0,

cp(i0) + d if a = 2, i2 ̸= 0,

c f (i0) + d if a = 2, i2 = 0,

2cp(i0) + d if a = 3, i1, i2 ̸= 0,

cp(i0) + c f (i0) + d if a = 3, i1 = 0, i2 ̸= 0,

cp(i0) + c f (i0) + d if a = 3, i1 ̸= 0, i2 = 0,

2c f (i1) + d if a = 3, i1 = 0, i2 = 0

(16)

The cost variables cp(i0) and c f (i0) are assumed to follow a sinus function such that the costs
are the lowest in the summer months and highest in the winter months. The average costs for
preventive and corrective maintenance throughout the year are cp and c f respectively. A value ∆
is used to represent the variation of downtime costs throughout the year. We find the following
formula for the time-varying costs. Here, ϕ is chosen such that the lowest maintenance costs are
obtained in the month of July.

cp(i0) = cp + ∆cp cos
(

2πi0
N

+ ϕ

)
, c f (i0) = c f + ∆c f cos

(
2πi0

N
+ ϕ

)
(17)

5.2 Two-Component p-ARP policy

In this section, we will introduce the Two-Component p-ARP policy, which has been categorised
as an opportunistic grouping by Zhao et al. (2022). This policy is most similar to the policy used
in Zhu et al. (2021) as Zhu et al.also only considers age and is therefore chosen to discuss for
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5.3. Two-Component p-MBRP policy

proper comparison.

Decision variable
The decision variables is xi,a and can be interpreted as the long-run probability that the system
is in state i = (i0, i1, i2) ∈ I and the decision a ∈ A(i1, i2) is chosen. For recurrent states, the
policy can be found through xi,a by looking for which a it is larger than zero. The values of xi,a

for transient states i will always be zero and therefor the policy for these state types can not be
obtained by only looking at xi,a.

min ∑
i∈I

∑
a∈A(i)

xi,aci,a (18a)

s.t. ∑
a∈A(i)

xi,a −∑
j∈I

∑
a∈A(j)

πji(a)xj,a = 0 ∀i ∈ I (18b)

∑
i1∈Ii

∑
i2∈I2

∑
a∈A(i)

xi,a =
1

mN
∀i0 ∈ I0 (18c)

xi,a ≥ 0 ∀i ∈ I , a ∈ A(i) (18d)

Objective
The objective (18a) goes through all states and its corresponding set of actions. Here, it sums up
all probabilities that we are in state i performing action a multiplied by the corresponding costs.
The objective gives the average cost per period. To get the average costs per year the objective
value must to be multiplied by N.

Constraints
The first constraint, constraint (18b), puts the transition from one state to all its possible out-
bound states in equilibrium. Constraint (18c) makes sure that in each period i0 ∈ I equal time
is spent.

5.3 Two-Component p-MBRP policy

In this section, we will introduce the Modified Block Replacement Policy (p-MBRP) for the
two-component model, which has been categorised as an batch grouping by Zhao et al. (2022).
The advantage of block replacement is that it is easier to plan the maintenance ahead and to
coordinate maintenance of multiple components.

Critical maintenance age
Firstly, some new variables will be given. As the name says, it is a modification of the original
Block Replacement Policy, in which a component is preventively replaced after a fixed amount
of time since the previous PM. These times are fixed, regardless of the age of the component
at that time. As CM is performed directly, it could be the case that only a month-year-old
component is replaced at the planned PM. In the p-MBRP, the same block replacement fixed
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5.3. Two-Component p-MBRP policy

moments hold, however, the component is only replaced in period i0 if a critical maintenance
age t(i0) has been reached. In our two-component model, we let the critical maintenance ages be
t1
i1 and t2

i2 for the first and second components respectively.

Other decision variables
Besides xi,a we have two more of decision variables, yi0 and zi. In block replacement policies,
maintenance is performed at periods T1, T2, . . . , Tn where n ∈ N+. These policies repeat
themselves every m year. The second variable we introduce is yk

i0 for k ∈ K and indicates in
which periods PM is performed.

yk
i0 =

1, if we maintain component k preventively in period i0 ∈ I0,

0, else.
(19)

Finally, the decision variables zk
i0,ik

for k ∈ K decides for which period and age we maintain the
component k.

zk
i0,ik

=

1, if we maintain component k for age ik ∈ Ik in period i0 ∈ I0,

0, else.
(20)
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5.3. Two-Component p-MBRP policy

MILP for optimal p-MBRP
The following MILP leads to the optimal p-MBRP policy for a two-component model with
respect to the long-run average cost criterion.

min ∑
i∈I

∑
a∈A(i)

xi,aci,a (21a)

s.t. ∑
a∈A(i)

xi,a −∑
j∈I

∑
a∈A(j)

πji(a)xj,a = 0 ∀i ∈ I (21b)

∑
i1∈Ii

∑
i2∈I2

∑
a∈A(i)

xi,a =
1

mN
∀i0 ∈ I0 (21c)

xi,0 + zk
i0,ik
≤ 1 ∀i ∈ I , ∀k ∈ K (21d)

xi,k + z(3−k)
i0,i(3−k)

≤ 1 ∀i ∈ I , ∀k ∈ K (21e)

xi,k − zk
i0,ik
≤ 0 ∀i ∈ I , ik /∈ {0, M}, ∀k ∈ K (21f)

xi,3 − zk
i0,ik
≤ 0 ∀i ∈ I , ik /∈ {0, M}, ∀k ∈ K (21g)

tk
i0 + j0yk

j0 + mNyk
j0 ≤ mN + i0 ∀i0, j0 ∈ I0, ∀k ∈ K : j0 < i0 (21h)

zk
i0,ik
− yk

i0 ≤ 0 ∀i0 ∈ I0, ∀ik ∈ Ik, ∀k ∈ K (21i)

zk
i0,ik
− zk

i0,jk ≤ 0 ∀i0 ∈ I0, ∀ik, jk ∈ Ik, ∀k ∈ K : jk > ik (21j)

Myk
i0 −Mzk

i0,ik
− tk

i0 ≤ M− 1− ik ∀i0 ∈ I0, ∀ik ∈ Ik, ∀k ∈ K (21k)

Mzk
i0,ik

+ tk
i0 ≤ M + ik ∀i0 ∈ I0, ∀ik ∈ Ik, ∀k ∈ K (21l)

xi,a ≥ 0 ∀i ∈ I , ∀a ∈ A (21m)

zk
i0,ik
∈ {0, 1} ∀i0 ∈ I0, ∀ik ∈ Ik, ∀k ∈ K (21n)

yk
i0 ∈ {0, 1} ∀i0 ∈ I0, ∀k ∈ K (21o)

tk
i0 ∈N+ ∀i0 ∈ I0, ∀k ∈ K (21p)

Similarities with p-ARP
Objective (21a) and constraints (21b), (21c) and (21m) make up the p-ARP model and explana-
tion can be found in the corresponding section 5.2.

Constraints
Then, in order to explain constraints (21d), (21e), (21f) and (21g) a note should be made con-
cerning the p-MBRP model in the paper Schouten et al. (2022). Here, two constraints seem to
be forgotten as also noticed by Cremers (2022). These constraints are necessary to relate the
decision variable xi,a to the other decision variables and this is done through the variables zk

i0,ik
.

Constraints (21d) and (21e) make sure that when maintenance is done for a component k at age
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ik and period i0, the probability of doing no maintenance for that component k is zero. If k = 1
for example, and z1

i0,i1 = 1, we must set xi,0 and xi,2 to zero as actions 0 and 2 indicate that no
maintenance is done for k = 1. Constraints (21f) and (21g) constrain from the other side, namely
that the value for performing action k for k ∈ K can only be higher than zero when the value
for zk

i0,ik
allows this. Constraint (21h) ensures the following. When state i has period i0 and PM

can be done it first checks the age of current component k, and if its age is ti0 or higher, a PM
can be done. If its age is lower than the critical maintenance age ti0 , no PM can be performed.
If there is not even PM possible, yk

j0 is 0 and ti0 becomes unbouded due to the maximum age
value M. This might be useful later when we want to add maintenance constraints. Constraint
(21i) relates zk

i0,ik
and yk

i0 with each other, to ensure that maintenance for component k at age
ik can only be done if there is maintenance done for component k in period i0. In constraint
(21j) it says that when we maintain for age ik in a certain period i0, we must also maintain for
higher ages jk in this period. Finally, constraints (21k) and (21l) make sure that the value of zk

i0,ik

is equal to yk
i0 when the age of the component is higher than the critical maintenance age, and

that zk
i0,ik

is zero when the age is lower than the critical maintenance age.

5.4 Retrieving policies

In this section the methodology used to obtain the policies for the transient areas of the Markov
Chain is described. As the policies in transient areas are not interesting when wanting to know
the optimal policies with corresponding long-term costs, they are not known when solving the
Two-Component p-ARP or p-MBRP model. However, looking at the policy in these areas is
necessary when comparing Schouten’s methods with those of Zhu et al. (2021). Intuitively, when
the MDP shows a replacement for a component in state i, one might think that the states after i
would also have a replacement. However, due to economic dependence and period-dependent
costs, this is not so straightforward and a different procedure is necessary. There are two
methods we will discuss here, the Discounted Rewards method by Kallenberg, and the Markov
Manipulation heuristic. The Discounted Rewards method is a verified method however is only
applicable to retrieving policies for the Two-Component p-ARP model. Therefor, a self-designed
heuristic we call the Markov Manipulation heuristic is created to also obtain policies for the
Two-Component p-MBRP model. Using the found p-ARP policies, the performance of the
Markov Manipulation heuristic can be measured.

5.4.1 Discounted Rewards

Chapter 3 in the book Kallenberg (2011) deals with the total expected discounted reward over an
infinite planning horizon. The model is based on the effect of time on the value of money, which
overall means that its value decreases. In Chapter 3.5, Kallenberg proves that the following
dual linear program returns the optimal policy for the Two-Component p-ARP model with
discount factor α. We have no intention of working with a discount factor, and therefor we let
α = 1− 10−10. As the alpha is close to one the resulting policy is likely to be also Blackwell
optimal and hence also average optimal. The difference however, is that a Blackwell optimal
policy also prescribes optimal actions for states that are transient under the average optimal
policy.

27

Rommert
Highlight

Rommert
Sticky Note
reference?



5.4. Retrieving policies

min ∑
i∈I

∑
a∈A(i)

ci(a)xi,a (22a)

s.t. ∑
i∈I

∑
a∈A(i)

xi,a
(
δij − απij(a)

)
= β j ∀j ∈ I (22b)

β j ∈ R>0 ∀j ∈ I (22c)

xi,a ≥ 0 ∀i ∈ I , ∀a ∈ A(i) (22d)

Here, the value of β j can be chosen arbitrarily, as long as it is a positive number. Furthermore,
δij is the Kronecker delta and only takes value 1 if states i and j are the same. Finally, Kallenberg
(2011) proves that for all states i, the linear program produces a positive xia for some a, which is
the optimal policy for state i.

5.4.2 Markov Manipulation

The main idea of the Markov Manipulation heuristic is to do multiple manipulations on the
Markov Decision Chain we use in the p-ARP or p-MBRP model such that the actions of replace-
ment are forced to be actions of doing no replacement. This way, the Markov model is forced to
be in states that previously were transient and the output of our models will provide policies for
these new states. These new policies are then added to the initial policy and another iteration of
Markov Decision Chain manipulation can be done. This is done until there are no unknown
policies anymore.

Manipulation
When manipulating our Markov Decision Chain we constrain the states of which the action
is known. The set of known actions are is denoted by I∗ ⊂ I . These states are constrained by
adding the following constraints.

x(i0,i1,i2),a = 0HELLO∀i ∈ I∗, i1, i2 /∈ {0, M}, ∀a ∈ {1, 2, 3} (23a)

x(i0,i1,i2),3 = 0HELLO∀i ∈ I∗, i1 ∈ {0, M}, i2 /∈ {0, M} (23b)

x(i0,i1,i2),3 = 0HELLO∀i ∈ I∗, i1 /∈ {0, M}, i2 ∈ {0, M} (23c)

Here, (23a) makes sure that for all states i ∈ I∗ that are not along the borders of the MDP have
action 0, which is do do no replacement. Constraint (23b) ensures that if for a state i2 is initially
replaced while it is not 0 or M, the state is forced to have action 1 if i1 is 0 or M. Alongside,
constraint (23c) ensures that if for a state i1 is initially replaced while it is not 0 or M, the state is
forced to have action 2 if i2 is 0 or M. In the Result’s section 6.1 a graphical example is shown of
how one iteration is done.
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5.5 Costs shift PM

In this thesis, we consider a multi-component model with economic dependence. Since for
more than two components the MDP will grow unmanageable, we need to think of smarter
ways to group our components. We will group our components by first looking at the optimal
replacement times per individual component, and then shifting these replacement times so that
economic dependence is taken into account, and less start-up costs d needs to be paid. We use
the optimal policy R retrieved from the p-ARP model for one component. In this section, we
will demonstrate how such a shift looks like and explain how the additional costs of such a shift
is calculated.

Shifting PM

Figure 5.1: In Figure a the optimal planning for a situation with no economic dependence is shown,
where the first component is replaced at age 13 and the second component at age 9. In Figure b,c, and d
three shifting options are shown.

Grouping two components can take many formats as shown in Figure 5.1. Although when
shifting these components to a different maintenance time than their individual optimal time, it
could be that the costs for these plannings are lower than those in situation when the set-up
costs d has a positive value.

5.5.1 Preponing PM

The methodology of calculating the costs of shifting preventive maintenance forward with
multiple periods for a single component is based on the theory of Cremers (2022). She based on
the theory found in the book Tijms (2003) where it proofs that under mild conditions there exist
relative values vi(R), ∀i ∈ I , which are defined in such a way that vi(R)− vj(R) measures the
difference in the total costs when starting in state i rather than starting in state j if we follow
policy R. These values for vi(R), ∀i ∈ I are together with the long-term costs g(R) used to
calculate the difference in the long-term total costs when starting in state i and first take an
action a that is different than the optimal action Ri. This difference in long-term costs is denoted
by ∆(i, a, R). If the optimal action Ri in a state i would be 0 for example, and we choose to do
action a = 1, the difference in the long-term costs is equal to the costs when we prepone the PM.
This is exactly what we need. So, to conclude this alinea, we will use the theory of Tijms (2003)
for the relative values vi(R) and long-term costs g(R) to determine ∆(i, a, R), and then we will
use the theory of Cremers (2022) to calculate the costs of preponing PM.
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Calculation ∆(i, a, R)
For an optimal policy R, we can find the values of vi(R) and g(R) by solving the equations
(24a) and (24b). Here, ci(Ri) is the immediate cost incurred when action Ri is chosen in state i
and πij (Ri) is the transition probability from state i to state j under action Ri. Constraint (24b)
is added to pin one of the relative values and the value for q ∈ I is arbitrarily chosen. Note
that the number of constraints of (24a) and (24b) together are exactly the number of unknown
variables from vi(R)∀i ∈ I and g(R).

vi (R) = ci (Ri)− g (R) + ∑
j∈I

πij (Ri) vj (R) , ∀i ∈ I (24a)

vq = 0 (24b)

When we step beside this optimal policy in state i we find a cost difference from the long-term
total costs of

∆(i, a, R) ≈ ci(a) + ∑
j∈I

πij(a)vj(R)− g(R)− vi(R) (25)

where we do action a instead of the optimal action Ri. The approximate sign denotes that this
holds under the mild conditions stated by Tijms (2003). So, to conclude, ∆(i, a, R) is the extra
average costs incurred when we choose to take a different action a than the optimal action Ri

for state i, for once.

Calculation preponing PM
Here, we use an amended version of the relation found by Roby. The amendment is that we
removed the first term. This term is only necessary when working with components that are
already shifted and its PM is not scheduled anymore on their optimal PM state.

Figure 5.2: Variables used in relation (26) for preponing.

Let’s first go through the variables that are also shown in Figure 5.2 for clarity. We are working
with one component and therefor the denote the current state we are in by i = (i0, i1). Then, the
original execution state is b = (i0 + v, i1 + v), where v is the length of optimal periods between
the current period and the optimal execution date and is found through R. The deviation from
the original execution date i0 + v is denoted by x ∈ {−v,−v + 1, . . . ,−1, 1, . . . , ℓ}. Here, we
only consider x < 0. The new state we will plan the PM in is j = (j0, j1) = (i0 + v+ x, i1 + v+ x).
Finally, the transition probabilities are denoted by πn

ij(R) and are the n-step probabilities of
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5.5. Costs shift PM

going from state i to j in n steps under policy R.

δ(i,x) = π
(v+x)
ij ∆ (j, 1, R) + π

(v+x)
ij (R)

0

∑
k=x+1

π
(k−x)
(i0+v+x,0),(i0+v+k,k−x)∆ ((i0 + v + k, k− x) , 0, R)

(26)

The fist term, as the extra costs incurred of preponing due to the extra components that are
needed to fill up a time horizon, multiplied with the probabilities of reaching state j. The second
term are the extra costs in the periods between j and b, due to the forced shifted state. Note
that when the actions in the |x| starting periods is the same for all i0 ∈ N, this second term will
always be zero as ∆ ((i0 + v + k, k− x) , 0, R) will become zero. This happens when the costs
will not vary too much throughout the year.

5.5.2 Postponing PM

The extra costs incurred when postponing PM for a component is not easy. There are three
things that should be taken into account here. Firstly, when postponing PM the probability
on corrective maintenance is higher and therefor increase costs. Secondly, postponing PM
causes less components to be necessary in the time horizon which will decrease costs. Thirdly,
postponing PM increases the probability of not being able to follow the planning as it might fail
in between. Especially the last point makes it difficult, because it is hard to assign costs to this
schedule insecurity. However, the extra costs incurred for postponing PM will become stable
as x goes to infinity because CM is assumed to happen and after CM it will follow its optimal
policy again. However, it is not realistic to postpone with x → ∞ when making a planning. In
this section, we will first present three methods to calculate the extra costs when postponing PM
where we critically look at the method used in Cremers (2022), and at the end the probability of
CM is provided to have grip on the credibility of a planning. The same variables are used as
in 5.5.1 and for clarity an example for postponing is provided in 5.3.

Figure 5.3: Variables used in relation (27) for postponing.

Method 1
We will start with the method used in Cremers (2022). Firstly, she introduces the transition
probabilities πn

ij(R0) that are the n-step probabilities of going from state i to j in n steps under
the null-policy R0, which means a policy with no PM unless i1 = M. Furthermore, she adapts
the policy R to Rbx and substitutes this like ∆(i, a, Rbx). The new policy Rbx is an adjusted policy
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5.5. Costs shift PM

of R, where the actions between the original and new state (b0 + x, b1 + x) are restricted to be
0. The calculation for extra postponing costs are shown in (27). It calculates the extra costs for
postponing by one period by calculating the value of ∆ and multiplying it by the probability
the component reaches the corresponding state. By iteration through b and j, Cremers (2022)
states that the postponing costs are found. It is uncertain whether ∆(i, a, R) is used correctly
since Rbx is used as input.

δ(i,x) =
x−1

∑
k=0

π
(v+k)
i(i0+v+k,i2+v+k)(R0)∆

(
(i0 + v + k, i2 + v + k) , 0, Rbx

)
(27)

Method 2
As stated in Method 1, it is uncertain whether ∆(i, a, Rbx) can be used, and in order to test this
δ(i, x) is also computed when just use R in stead of Rbx. This gives us the following relation.

δ(i,x) =
x−1

∑
k=0

π
(v+k)
i(i0+v+k,i2+v+k)(R0)∆ ((i0 + v + k, i2 + v + k) , 0, R) . (28)

Method 3
As an extra method, we will calculate the extra costs incurred when postponing PM by calculat-
ing the expected difference in cost by using the theory from Tijms (2003), chapter 6.2. Here, he
introduces Vn(i, R) which is the total expected costs over the first n decision epochs when the
initial state is i and policy R is used. We find that the expected difference in cost is

δ(i,x) = π
(v)
ib (R)

(
x

∑
k=0

∑
l∈I

π
(k)
bl (Rbx)cl

(
Rbx

l

)
−
(

x

∑
k=0

∑
l∈I

π
(k)
bl (R)cl (Rl))

))
(29)

where the first part in the brackets is the total expected costs when postponing the PM by x,
and the second part in the brackets is the total expected costs when holding on the the original
policy R. This difference is multiplied by the probability of even getting to state b.

Credibility postponing
The probability of failure before the assigned PM state j = (j0, j1), when the planning is done
in state i = (i0, i1) is only dependent on ages i1 and j1 since we assume the failure is period-
independent. Say X is the lifetime of the component, the probability of failure is

pc(i1, j1) = P (X < j1|X ≥ i1) =
P (i1 ≤ X < j1)

P (i1 ≤ X)
. (30)

and can be used to measure the credibility of postponing. If the value is high, planning the
postponement might give a distorted planning as it is doomed to fail before.
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5.6 Complete multi-component MIP

With knowledge of the policy output of Schouten et al. (2022) and the extra costs incurred
when shifting PM from Cremers (2022), a final multi-component MIP is created. This approach
is categorised as static preventive grouping by Zhao et al. (2022). The problem with a multi-
component MIP for a finite horizon is that the optimal PM time is dependent on the period,
and on the PM time of the consecutive component. Therefore, optimising the planning can not
be done chronologically, and there is no resetting moment that could divide the optimization
problem into multiple stages. As a result, dynamic programming can not be considered and a
MIP has been chosen instead. This MIP has a smaller computation time than iteration through
all combinations, and through defining the input smartly the MIP’s speed can be enhanced
even more. We first introduce the sets, parameters and variables used and then provide the
MIP to find the optimal solution. The main idea of the optimal solution is that over a time
horizon T , the optimal planning is provided considering period-dependent costs and adding a
maintenance constraint to constrain the number of maintenance done in month t to be not more
than Mt. Every time a component fails and CM must be done, the model can be ran again to
obtain the new optimal planning. However, the initial planning can be used as a guidance for a
wind-farm company so they can control all operational aspects.

Sets and parameters
In our multi-component model, let Ikr be an individual where k ∈ K denotes the component,
and r ∈ R as the rth replacement. The starting ages of the components are denoted by ar

k
and for r > 1 are assumed to be zero. The starting period is t0. There are two time sets, the
main time-set that represent the planning horizon T = {t0, . . . , T}, and an auxiliary time-set
that is slightly bigger as T ′ = {t0, . . . , T′}. Finally, the size of a PM shift for individual Ikr is
expressed by xr

k ∈ Dkt = {−vkt, . . . , vkt} which is dependent on time t which is equivalent to i0
in Figure 5.2/ 5.3. Note that if costs are time-independent, vkt would become time-independent
too.

Parameters
The parameter vkt is the number of periods until the optimal replacement period. From the
p-ARP model, we obtain the optimal policy Rk for each component k ∈ K. For each period t ∈ T
we can find vkt, by looking at Rk. From equation (26) we can find the extra average costs for
shifting PM when x < 0, and from equation (27), (28) or (29) the extra average or expected costs
for shifting PM when x > 0, depending on the method chosen, can be found. Let δk((i0, i1), x)
be the extra costs for shifting PM by x for component k, when in state (i0, i1).

Variables
For every t ∈ T , we let zt be the binary variable that states whether there is any PM scheduled in
t. For every t ∈ T and every individual Ikr we have another binary wr

kt that is 1 if maintenance is
planned for Ikr in t and is 0 else. The non-negative integers br

k and jr
k are the individually optimal

replacement time and the new replacement time. Variable xr
k ∈ Z is the number of shifts done

for individual Ikr. For example, if for individual Ikr the optimal individual replacement time is
br

k = 9, but it is replaced at jr
k = 7, we find value xr

k = −2. Finally, the binary yrx
kt takes value 1 if
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5.6. Complete multi-component MIP

the PM of individual Ikr has x shifts and the starting period of the individual is t.

The MIP

min ∑
r∈R

∑
k∈K

∑
t∈T

∑
x∈Dkt

yrx
kt · δk ((t, ar

k) , x) +hi ∑
t∈T ′

dztdsjfklajdkfaddfsadsafassdafjkls (31a)

s.t. zt ≥ wr
kt ∀t ∈ T ′, ∀r ∈ R, ∀k ∈ K (31b)

wr
kt ≥ 1− |t− jr

k| ∀t ∈ T ′, ∀r ∈ R, ∀k ∈ K (31c)

b1
k = vk1 + t0 ∀k ∈ K (31d)

br
k = jr−1

k + ∑
t∈T ′

wr−1
kt · vkt + t0 ∀r ∈ R \ {1}, ∀k ∈ K (31e)

xr
k = jr

k − br
k ∀r ∈ R, ∀k ∈ K (31f)

y1x
kt0
≥ 1−

∣∣∣x1
k − x

∣∣∣ ∀x ∈ Dk1, ∀t ∈ T ′, ∀k ∈ K (31g)

yrx
kt ≥ 1−

∣∣∣t− jr−1
k

∣∣∣− |xr
k − x| ∀x ∈ Dkt, ∀t ∈ T ′, ∀r ∈ R \ {1}, ∀k ∈ K (31h)

xr
k ∈ Z ∀r ∈ R, ∀k ∈ K (31i)

br
k ∈N ∀r ∈ R, ∀k ∈ K (31j)

jr
k ∈ T ′ ∀r ∈ R, ∀k ∈ K (31k)

zt, wr
kt, yrx

kt ∈ B ∀x ∈ Dkt, ∀t ∈ T ′, ∀r ∈ R, ∀k ∈ K (31l)

Objective
The objective minimizes over the extra costs incurred a result of shifting and the total set-up
costs. The extra costs incurred as a result of shifting is calculation over time horizon T , to not
put weight on the choices make after T. Because the value of q is chosen such that there is more
than enough individuals, they might accumulate after N causing high negative values for xr

k.
At the same time, we don’t want the individuals to have preference for PM after N, and therefor
the calculation of the set-up costs is calculation over time horizon T ′.

Constraints
Constraint (31b) links the value of zt to wr

kt to make sure that it takes the value of 1 when
maintenance is done in t ∈ T ′. Constraint (31c) makes sure that wr

kt only takes the value of one
if individual Ikr is replaced at t = jr

k. Constraints (31d) and (31e) define the value of the initial
replacement time br

k. As br
k for r > 1 is dependent on the replacement times of its predecessor,

and the predecessors policies are exactly the same, we use the sum over all values of wr−1
kt to

keep the MIP linear. The number of shifts xr
k for individual Ikr is defined in constraint (31f). The

constraints (31g)-(31h) defines the binary variable yrx
kt which is necessary to compute the total

shifting costs. The value of yrx
kt may only take the value of 1 if both x equals xr

k and individual
Ikr is replaced at time t. If they both hold, the right hand side takes value of 1. If only one of
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5.6. Complete multi-component MIP

them or none of them hold, the right hand side can take the maximum value of 0. The absolute
of (x− xr

k) is linearized by the auxiliary variables ukr and skr by the the following constraints.

|x− xr
k| = ukr + skr ∀t ∈ T, ∀x ∈ Dkt, ∀k ∈ K, ∀r ∈ R (31m)

x− xr
k = ukr − skr ∀t ∈ T, ∀x ∈ Dkt, ∀k ∈ K, ∀r ∈ R (31n)

ukr, skr ∈N ∀k ∈ K, ∀r ∈ R (31o)

The same is done for the absolutes of (t− jr−1
k ) and (t− jr

k).

Adding maintenance constraint
As stated as one of the goals of this thesis, maintenance limitations should be taken into account.
This is done by constraining the amount of PM for each month. This is done by adding the
following constraint maintenance

∑
k∈K

∑
r∈R

wr
kt ⩽ Mt ∀t ∈ T (31p)

where Mt is the maximum PM that can be scheduled every month.
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Chapter 6

Results

In this chapter the results are presented. It consists of three sections. Section 6.1 shows the
results about the Two-Component p-ARP and p-MBRP models and policy retrieval methods.
Section 6.2 presents the results concerning the extended DEF Model and DEF Heuristic model
where period-dependent costs are added. Using the Two-Component p-ARP and DEF models
two approaches as a benchmark, the performance of the Multi-Component MIP is measured
and provided in Section 6.3. Section 6.3 also evaluates δ(i, x). We perform our computational
study on a computer with Dual-Core Intel Core i5, 1.6 GHz, 4 gigabytes of RAM. The language
used is Java, and is used to implement the algorithms with the solver of CPLEX v22.1.0.

6.1 Extending Schouten to Two-Component Models

In this section, the implementation of the original p-ARP and p-MBRP models from Schouten
et al. (2022) evaluated, the extensions to two-component models are measured, and the methods
concerning transient state policies are tested.
The implementation of the original p-ARP and p-MBRP models has been successful. When
using the same settings as used in the paper, the exact same average yearly costs have been
found. The values of the paper can be found in Appendix B, and the values of this thesis can be
found in Table 6.1, in columns 2 and 6.

Table 6.1: Yearly costs for the original p-ARP and p-MBRP models with α = 12 months and β = 2 in
columns 2 and 6. Yearly costs for the extended Two-Component p-ARP and p-MBRP models with α1 = 9
months, α2 = 12 months and β1 = β2 = 2 in columns 3-5 and 7-9. Furthermore, we let c̄ f = 50, c̄p = 10,
d = 0, M = 12. Results for multiple ∆ values are shown.

∆ p-ARP Two-Component p-ARP p-MBRP Two-Component p-MBRP
k = 1 k = 2 total k = 1 k = 2 total

0% 40.098 53.160 40.098 93.258 40.311 53.771 40.369 94.140
0.1% 40.035 53.152 40.035 93.187 40.263 53.764 40.263 94.027
0.2% 39.701 53.009 39.701 92.709 39.855 53.717 39.855 93.572
0.3% 39.224 52.686 39.224 91.910 39.338 53.309 39.338 92.647
0.4% 38.461 52.282 38.461 90.743 38.556 52.902 38.556 91.458
0.5% 37.635 51.629 37.635 89.264 37.773 52.005 37.944 89.948
CPU < 1 s 10 s 3 s 5 min
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6.1. Extending Schouten to Two-Component Models

The average yearly costs of the Two-Component p-ARP and p-MBRP models are also found in
Table 6.1. The second component used in the two-component models has the same shape and
scale parameters as the component in the original p-ARP and p-MBRP models. Since the set-up
costs d are set to zero, the costs caused for each component can be calculated independently.
You might notice that the column ’total’ is the sum of columns k = 1 and k = 2. It becomes clear
that the extension of the p-ARP model is completely successful as all the costs of the second
component are the exact same as the costs made in the original model. The p-MBRP extension
has also been successful, as the values are almost for every ∆ exactly the same. We see that for
∆ = 0.0 and ∆ = 0.5 there is a small difference that stays below the 0.5%.

Retrieving Policies of Transient States

First, a demonstration of one iteration of the Markov Manipulation method is provided in
Figure 6.1. Then the results for finding all the p-MBRP states for two i0 values are provided.
Finally, the Markov Manipulation method is compared to the Discount Reward Model from
Kallenberg using the results for the Two-Component p-ARP model.
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6.1. Extending Schouten to Two-Component Models

Markov Manipulation Demonstration
It is chosen to create a three-dimensional plot to demonstrate one iteration of the Markov
Manipulation to firstly emphasize the difficulty of finding the actions as we are dealing with
three dimensions and economic dependence. Secondly, to clearly show how an iteration is done.
Note that states 0 for i1 and i2 indicate that they are in failed state and replacement is required.
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(a) Actions for all recurrent states.
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(b) Forced input for p-ARP model where lighter
blocks denote they have been modified.
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a = 0iiiiii a = 1iiiiii a = 2iiiiii a = 3

(c) Output, actions of new transient states come to
light.
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(d) Actions for all recurrent states together with
newly obtained actions.

Figure 6.1: Progress of one iteration Markov Chain manipulation in order to retrieve the p-ARP for
transient states too. Model used for the time period of one year and we let d = 5, c f = 50, cp = 10 and
∆ = 0.2. Components 1 and 2 follow α1 = 6, α2 = 12 and β1 = β2 = 2. Policies for i0 = {9, 10, 11, 12} are
shown.

38



6.1. Extending Schouten to Two-Component Models

Results extending p-MBRP policies with Markov Manipulation
Figure 6.2 shows on the left the known recurrent state policies, and on the right the policies
in transient states found with Markov Manipulation for i0 = 1. The Markov Manipulation
solutions appear coherent. Note that when the states i1 and i2 are 0, this means they are in
failed state and is also why the block for (0,0) is has the colour of action 3 which is to replace
both components. Figure 6.3 also shows on the left the known recurrent state policies and it
is remarkable that so many action are known. Beacuse i0 = 7 corresponds to July, and is the
cheapest month for maintenance, states wait for PM until this month is reached. On the right
the found policies are shown. These policies are not coherent and even show different policies
for known recurrent actions. We conclude that the p-MBRP policies can not be found with the
Markov Manipulation method.
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(a) p-MBRP for recurrent states at i0 =1
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i 2

(b) p-MBRP for all states

Figure 6.2: Plot revealing actions for transient states from p-MBRP model using the Markov Manipulation
method. We let d = 5, c f = 50, cp = 10, M > 12, and ∆ = 0.2. Components 1 and 2 follow α1 = 6,
α2 = 12 and β1 = β2 = 2.
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6.1. Extending Schouten to Two-Component Models
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(a) p-MBRP for recurrent states at i0 =7
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(b) p-MBRP for all states

Figure 6.3: Plot revealing actions for transient states from p-MBRP model using the Markov Manipulation
method. We let d = 5, c f = 50, cp = 10, M > 12, and ∆ = 0.2. Components 1 and 2 follow α1 = 6,
α2 = 12 and β1 = β2 = 2.

Discount reward model Kallenberg
The transient state policies for p-MBRP model can not be found with the Markov Manipulation
heuristic. To test whether it is possible for the p-ARP model, we compare the policies found
for the p-ARP model with the Markov Manipulation heuristic to the policies found with the
acknowledged discount reward theory in Figure 6.4.
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(a) p-ARP policies found with the Markov Manipu-
lation heuristic for i0 =1
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(b) p-ARP policies found with the discounted re-
ward theory for i0 =1

Figure 6.4: Figure revealing actions for transient states from p-ARP model. We let d = 5, c f = 50, cp = 10,
M > 12, and ∆ = 0.2. Components 1 and 2 follow α1 = 6, α2 = 12 and β1 = β2 = 2.

Our investigation of the policies for i0 = 1 are not identical. To support this, we looked at
the policies for all i0 ∈ I′ and have found that 8.8% of the found policies were different. We
conclude that the Markov Manipulation heuristic is not a proper method to obtain transient
state policies.
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6.2. Extending Zhu

6.2 Extending Zhu

There are two models in the paper Zhu et al. (2021) to which an attempt is done to implement
them. These models are already multi-component models, and only the period-dependent costs
feature was to be added. The performance of the two original models and their extension are
provided in this section. We decide to use the discount reward theory for comparing policies in
transient states.

Firstly, the two models DEF and DEF Heuristic are implemented. To check whether this was
succesfully done we compare the objective values of the models when using the same setting
the paper described they have used. Also, the same scenarios been used. The objective values
found by the paper are shown in Appendix B. The objective values found in this thesis are
provided in Table 6.2. The implementation of the DEF has been successful, as we find the
objective values to have a deviation of no more than 1.1% to the objective values in the paper. A
reason for this small deviation could be the choice of costs c f ,i, as the paper randomly draws
these values from a uniform distribution and displays a rounded to one decimal value. We have
used these rounded values but perhaps the paper uses slightly different costs. Furthermore, the
values for DEF∗ are the same as those of DEF, however the computation time is longer. This
is due to the extra variables and constraints DEF∗ uses. The results concerning the heuristic
tell us a different story. We find different heuristic objectives than the paper finds. They find
a maximum objective gap of 9.89%, however our maximum objective gap is 61%. Obviously,
some decisions in the implementation are made differently. As we are eventually searching for
the policy, we have computed the policy for t = 1 for both DEF as DEF Heuristic to see whether
there is also a big difference found in the policy at the starting period. These policies can be
found in Figure 6.5. Additionally, our heuristic that is adapted to the period-dependent costs
show higher objectives than the original DEF Heuristic for ∆ = 0.0.

Table 6.2: Results of the objective value from the implemented DEF model, DEF model∗, DEF Heuristic
and DEF Heuristic∗. Here the asterisk ∗ implies that it is an adjusted model to period-dependent costs.
We let d = 5, ∆ = 0, first component starts in failure mode, ξ1 = 1, and other components have start age
2. We let |Ω| = 1000, c f ,1 = 14.4, c f ,2 = 11.4, c f ,3 = 9.4, c f ,4 = 8.0. Scenarios are the same as in the paper.

n T DEF DEF∗ DEF Heuristic DEF Heuristic∗

Obj. CPU(s) Obj. CPU(s) Obj. CPU(s) Obj. CPU(s)

2 5 25.82 58 25.82 130 29.29 1 29.99 3
7 28.67 96 28.67 713 42.52 2 44.65 8
9 33.14 490 N/A >1 hour 53.49 2 58.66 9

3 5 26.79 79 26.79 310 30.21 2 32.21 9
7 30.41 265 N/A >1 hour 46.22 2 49.94 20

4 5 29.97 250 29.83 979 36.47 2 38.88 10

In Figure 6.5 we can find the policies for t = 1 computed with DEF and the DEF Heuristic. The
policies are not in line with each other. The policies found with DEF are more conservative than
the policies found with DEF Heuristic. The computation time for the DEF policies was over 15
hours, and retrieving the policies for all i0 ∈ T would take too longer than a week.
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6.2. Extending Zhu
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(a) DEF policies for i0 =1

0 1 2 3 4 5 6 7 8 9 10 11 12

0
1
2
3
4
5
6
7
8
9

10
11
12

i1

i 2
(b) DEF Heuristic policies for i0 = 1

Figure 6.5: Plot showing difference in policies between DEF and DEF heuristic. We let d = 5, q = 5,
T = 5, n = 2, c f = 50, cp = 10 and ∆ = 0.0. Components 1 and 2 follow α1 = 6, α2 = 12 and β1 = β2 = 2.
Computation time for DEF policies was over 15 hours.

Performance DEF∗ and DEF Heuristic∗

In order to see the added value of our DEF∗ and DEF Heuristic∗, we compute the objective
for different values of ∆. Here, we do not choose N to be the number of months in a year, but
we choose the value of 5. That means that the year is divided in 5 periods. As a results from
equation (17), the middle period is the least costly. As we are working with expected costs over
a time horizon, we use the DEF objective to compare the models with each other. For the DEF
this means that the optimal solution is determined when ∆ = 0.0, and that the new objective is
calculated with costs that obey the new ∆ value. For the DEF Heuristic this means that simply
the optimal solution is computed, as the varying costs are already used throughout the heuristic.
The results can be found in Table 6.3.

Table 6.3: Objective values of the DEF, DEF∗, DEF Heuristic and DEF Heuristic∗ for difference ∆. We let
d = 5, T = 5, n = 2, first component starts in failure mode, ξ1 = 1, and other components have start age
2. We let c f ,1 = 14.4, cp,1 = 1, c f ,2 = 11.4, and cp,2 = 1. Scenarios are the same as in the paper.

∆ spaDEF spaDEF∗ savings DEF Heuristic DEF Heuristic∗ savings
0.0 25.82 25.82 0.0% 29.3 30.0 -2.7%
0.1 27.29 27.27 0.07% 30.3 31.4 -3.6%
0.2 28.76 28.72 0.14% 31.4 32.7 -4.1%
0.3 30.23 30.18 0.17% 32.44 34.12 -5.2%
0.4 31.70 31.63 0.22% 33.49 35.48 -6.0%
0.5 33.17 33.08 0.27% 34.54 36.86 -6.9%

From Table 6.3 we see that DEF∗ performs slightly better than DEF and longer computation
time pays of in the objective value. We also see that the DEF Heuristic∗ performs worse than
the original model. We will therefor not continue to work with DEF Heuristic∗.
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6.3 Multi-Component MIP Model

The first part of section will be fully devoted to the characteristics of δ(i, x) and which of the
three postponing methods mentioned in Section 5.5.2 should be chosen to determine the value
of δ(i, x) when x is larger than 0. The second part of this section, measures the performance of
the Multi-Component MIP Model when no maintenance constraints and probability constraints
are used.

Choice of computation δ(i, x)
Recall, that the computation of δ(i, x) only looks at one-component p-ARP models. For this
δ(i, x) part of this section, we use a component in state i = (1, 1), so period i0 = 1 and age
i1 = 1.Additionally, the same variables v, b and j are used as in the example Figures 5.2 and 5.2.

0 2 4 6 8 10 12 14 16 18
0

5 · 10−2

0.1

0.15

X

f(
X
)

α=10, β=2
α=10, β=4

Figure 6.6: Probability distribution function a dicretised Weibull distribution. Scale and shape parameters
are denoted by α and β respectively. X = 0 means that the component has failed before reaching age 1.
The optimal replacement times, b, are indicated with the green dot.

To illustrate δ(i, x) its characteristics we will work with two Weibull distributions. Both have
shape parameter α = 10, one has scale parameter β = 2 and the other has scale parameter β = 4.
Their distributions are shown in Figure 6.6 where X is the lifetime of a component and each
value f (X) the probability that the component fails between age X and age X + 1. It is clear
from the figure that the variance for a larger β is smaller. The green dots in the figure are the
optimal replacement times b where they both have age 7. We will use these two distribution to
compute the values for δ(i, x). We denote δ1, δ2 and δ3 as the δ(i, x) values for a certain x, for
which the postponing values are calculated with Method 1, 2 and 3 respectively. The values are
shown in the left axis of Figure 6.7.
There are four points to highlight concerning rich Figure 6.7. Note that for x = 0, the component
will be replaced in state b, the green dot in Figure 6.6. Firstly in Figure 6.7 there is no difference
between the δ’s that use Method 1 or Method 2 for determining the postponing effect, and
the suspicion against changing the policy in Method 1 was redundant. Secondly, when going
to larger values of x, we find that the δ-values tend to converge to a fixed value. The reason
for this is that the probability of reaching the corresponding ages become smaller when x
increases. Also, the instant costs of executing PM is multiplied by this probability, so when the
probability is low the instant costs of PM is neglected. This is the reason why for δ1 there is
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6.3. Multi-Component MIP Model
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Figure 6.7: On this figures’ left y-axis, you can find the values of δ retrieved using Method 1 and Method
2, indicated by δ1 and δ2, respectively, as well as the values of δ retrieved with Method 3, indicated by
δ3. These values correspond to the same Weibull distributions shown in Figure 6.6. The corresponding
values of pc are plotted on the right y-axis.

a small decrease for x = 6. Thirdly, δ values for the two distributions become constant for at
different values. After x = 0, the values corresponding to β = 4 have a steep rise and go toward
20, 25, whereas the values corresponding to β = 2 go toward 10. As the distribution for β = 4
has a lower variance, the chances of getting CM are fiercer when planning after x = 0. Due
to the probabilities multiplied of even getting in a state after v are highest just after x = 0 the
δ values result having higher values. Higher values than the δ values for a distribution with
β = 2. Fourthly, the sudden drop for δ3 might have been noticed. As δ3 calculates the difference
in expected costs over a certain time period, the expected costs when following the normal
policy has increase of costs at i0 = v + 7. This is the originally planned PM. As these expected
costs are subtracted to the expected costs when doing no maintenance, a sudden drop can be
found for x = 7. The values of δ1 and δ2 do not have this drop as they calculate the average
expected difference in costs. As δ1 and δ2 are more stable it is most appropriate to use these for
a more consistent model.

Performance Multi-Component MIP Model
Here, the Two-Component MDP and the DEF model are compared and analyze the differences
in policies. We use the equation of Tijms (2003) in Chapter 6.2 to determine the average costs
over a finite horizon. The equation is

VT(i, R) =
T

∑
t=1

∑
j∈I

π
(t)
ij (R)cj(Rj) (32)

where R is the policy we want to test, T is the length of the time horizon, π the transition matrix,
cj(Rj) the immediate costs when in state j and chosing action Rj, and i is the starting state. A
state is i = (i0, i1, i2) for a 2 component model where i0 is the period and i1 and i2 denote the age
of the component. When the age is 0, it means that a component is in failure state and it needs
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6.3. Multi-Component MIP Model

to be replaced immediately. We will compare the policies computed by the Two-Component
p-ARP model, the multicomponent MIP and the DEF heuristic.

Table 6.4: Average costs for four different models for different starting ages.Setting used are d = 5,
c f = 50, cp = 10, ∆ = 0.2 and M = 12. Components 1 and 2 follow α1 = 6, α2 = 12 and β1 = β2 = 2.

Starting ages Two-Component p-ARP Multi-component MIP DEF Heuristic
1, 1 76.2 74.8 138.1
1, 5 99.3 113.6 144.4
1, 10 123.7 87.8 152.6
5, 1 113.6 113.6 141.2
10,1 113.6 113.6 141.2

average 123.45 127.73 146.41

In Table 6.4 you can find the average costs for three models computed by (32) for different
starting ages. Also, for all combination of starting states i1, i2 ∈ M the average is computed to
represent the difference in performance clearly. The policy differences for the Two-Component
p-ARP and Multi-Component MIP is provided for i0 = 7 in Figure 6.8. From this figure, it
becomes clear that the Multi-Component MIP model has a stronger bias for replacing the two
components at the same time. A reason for this, is that the costs for δ(i, x) does not completely
represent the extra costs of shifting, making the value of d be stronger in the objective than the
shifting costs.
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(a) Two-Component p-ARP policies for i0 =7
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(b) Multi-Component MIP policies for i0 =7

Figure 6.8: Figure revealing actions for transient states from p-ARP model. We let d = 5, c f = 50, cp = 10,
M > 12, and ∆ = 0.2. Components 1 and 2 follow α1 = 9, α2 = 12 and β1 = β2 = 2.
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Chapter 7

Discussion and Conclusions

In this chapter, the conclusions of this thesis together with the discussion points are presented
in three sections starting with the MDP approach in Section 7.1, followed by discussing the
stochastic approach in Section 7.2 and thirdly the Multi-Component MIP is treated in Section 7.3.
Future recommendations are provided in Section 7.4.

7.1 MDP approach

The p-ARP and p-MBRP original model have been implemented such that the results are identi-
cal, and we conclude that the paper of Schouten et al. (2022) is clear and concise. Furthermore,
the two-component extensions have been rewarding because the extended p-ARP could be
used to measure the performance of the designed Multi-Component MIP. The p-MBRP was
less appropriate because we could not retrieve the transient state policies, and it is decided to
not extend this model because the age replacement principle of the DEF was more in line with
the p-ARP model. Additionally, the two component p-MBRP results were almost identical for
every ∆, differing slightly by less than 0.5% for two cases. Throughout the computation, we
have found the the value of M can impact the output of the p-MBRP model. Unfortunately, the
paper of Schouten et al. does not clarify the value of M used in its Table 2 and perhaps this is
the reason for the < 0.5% deviation.

Furthermore, a creative attempt has been done to retrieve policies, but results have shown
that this method called Markov Manipulation is not working correctly. Nevertheless, the
acknowledged Discounted Reward method by Kallenberg was successfully implemented for
the p-ARP policies, yielding satisfactory outcomes. Here, we have made the assumption that
by choosing the discount factor α as close to 1 as Java allows, the obtained policy is the actual
policy.

7.2 Stochastic approach

The successful implementation of the DEF model and its extended version, DEF∗, accounting
for period-dependent costs, marks an advancement in this thesis. The extension DEF∗ performs
better when period-dependent costs are present. However, it is worth noting that the integration
of period-dependent costs in DEF∗ comes at the expense of increased computation time due to
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7.3. Multi-Component MIP

the additional variables and constraints. In our quest for more efficient computational times,
we explored the DEF Heuristic as an alternative. Unfortunately, we encountered challenges in
properly implementing the DEF Heuristic, and the DEF Heuristic∗ did not yield any improve-
ment over the original DEF Heuristic. The DEF Heuristic relies on two theorem, that do not
hold anymore when taking period-dependent costs in account. Too much needed to be adapted,
at the expense of the quality.

While the DEF model holds promise for both short-term planning and situations where long-
term costs are of lesser importance, the computation times are too long to obtain the full policy
and test its performance next to the two-component p-ARP model and Multi-Component MIP.
The exploration of the DEF Heuristic and DEF Heuristic∗ offers valuable lessons for future
research, emphasizing the significance of appropriately adapting heuristic approaches and
addressing complex cost structures.

7.3 Multi-Component MIP

The Multi-Component MIP is a model that creates a planning schedule for multiple compo-
nents that can follow different distributions. The model allows period-dependent costs, and
maintenance constraints can be easily added. For wind farm operations, this can be valuable as
it enables the careful planning of maintenance activities, along with the allocation of necessary
resources and manpower.

For this Multi-Component MIP, first an analysis is done concerning computing δ(i, x) for x > 0.
It is found that method 1 and 2 produce identical values and that these values are more con-
sistent than the values produced by method 3, as they compute the expected average costs
difference and not the expected costs difference. Consequently, method 1 is chosen for compu-
tation δ. Additionally, it is found that the δ(i, x) value does not represent the chance of getting
CM which might influence the performance of the Multi-Component MIP.

Promising results were obtained during testing the Multi-Component MIP with two com-
ponents, where a comparison against the two-component p-ARP model is done. The Multi-
Component is tested for two components and the expected average costs over a time period
of 12 months, was 3% below the expected average costs of the two-component p-ARP model.
The Multi-Component MIP model can be improved by constraining the value of pc into the
model to discourage the use of high δ values. As the Multi-Component MIP computes a policy
for a finite horizon and the two-component p-ARP model computes a policy for an infinite
horizon, the objective of the Multi-Component MIP has potential to drop below the objective of
the p-ARP model.

7.4 Future recommendations

The Multi-Component MIP can be used as a guideline for designing a heuristic for larger
instances with the same use case. Using the Multi-Component MIP, the heuristic can be tested
for smaller instances and be bench-marked. Another approach is to use the Multi-Component
MIP on a rolling horizon, enabling planning for a longer time horizon.
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Appendix A

Additional Theorem

A.1 Weibull distribution

The Weibull distribution is a continuous probability distribution that is often used to model the
lifetime or failure times of systems or events. It is characterized by two parameters: the scale
parameter (α) which mostly determines the location and the shape parameter (β) which mostly
determines the spread.

The CDF of the Weibull distribution is given by:

P(X ≤ x) = FX(x) =

1− e−(x/α)β
x ≥ 0

0 x < 0
(33)

Probabilities Schouten
In Schouten, we use a descretised Weibull distribution to compute P(X = x), the probability
that X fails at age x. We use P(X = x) = FX(x + 1)− FX(x), where x = 0 denotes the situation
where an individual fails in its first period.
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(a) CDF of Weibull distribution, scale and share pa-
rameters are α = 5 and β = 2 respectively.
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(b) CDF of Inverse Weibull distribution, scale and
share parameters are α = 5 and β = 2.
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A.1. Weibull distribution

Sampling scenarios
Where in the model of Schouten the age i1 = 0 denotes that an individual fails in its first
year,Zhu et al. interprets this as the individual starting off in failure mode and starts computing
lifetimes from i1 = 1 by the following methodology:

1. Generate a random number x in (0,1)
2. Round F−1

X (x) to closest integer
3. If the result is 0, return 1.

The inverse Weibull distribution is used to randomly pick the lifetime, and is plotted for
α = 5, β = 2 in A.1.1b. The relation for this distribution is

F−1
X (x) =

α (− ln(1− x))1/β 0 ≤ x < 1

0 else.
(34)

To be consistent between the two methods, we will adjust the method mentioned above by
replacing 2. and 3. by

1. Return ⌈F−1
X (x))⌉

Important to note here, is that when sampling the scenarios, the lifetimes are rounded to
integers, and a lifetime of 0 is not allowed. This might cause the expectancy of the computed
lifetimes to deviate slightly from the distributions’ original mean.
Often, we deal with individuals that have been used for some periods and therefore has an age
g. As we can not have any scenario that has age i1 = 0, we are not allowed to use this age and
simply subtract it by one for the next period. In this case, we use the following methodology to
generate the lifetime it still has left.

1. Generate a random number x in (0, 1)
2. Return max{1, ⌈F−1

X (x))⌉ − g}.
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Appendix B

Tables from other papers

Figure B.0.1: Table 2 from Schouten et al. (2022)
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Figure B.0.2: Tabel 1 from Zhu et al. (2021) where they indicate the DEF model with ’Solver’ and the
DEF Heuristic with ’Algorithm 4’.
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