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— Abstract —
In this research we construct and evaluate a recurrent neural network using input returns features

to predict asset rankings. We investigate to what extent this complex system outperforms a
simpler linear system and alternative complex system definitions. The main findings of this

research can be categorized over two perspectives. From an empirical asset ranking perspective, we
find that our complex system exploits the same market inefficiencies as a linear system, but also

learns to allocate assets with true extreme tail rankings exclusively to the lower predicted
percentiles. We identify that the use of volatility-oriented features can explain this exclusive

allocation property and can lead to significantly improved Spearman correlation coefficient scores
between predicted and true rankings. On the other hand, we find that ranking on volatility is
detrimental on a portfolio level. We find that the inferiority of our long-short portfolio can be

attributed to an imbalance of asset with extreme returns, due to the exclusive allocation of assets
with extreme returns to the short portfolio. Finally, we find no substantial differences on portfolio

level between our recurrent network and alternative complex system architectures.
——
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1 | Introduction

Some of the most pervasive equity factors such as price momentum by Jegadeesh and Titman
[1993] and short-term reversal by Jegadeesh [1990] rely on past returns to predict future stock re-
turns. However, practical application of these strategies present limitations such as the existence
of momentum crashes by Daniel and Moskowitz [2013] and Daniel and Moskowitz [2016].

In an attempt to overcome these limitations, two strands of research can be identified. The first
strand of research focuses on reformulation of the asset’s return series to which the momentum
or reversal strategy is applied. One such reformulation is residual momentum as proposed by
Blitz et al. [2011]. This implementation is successful in terms of absolute and risk-adjusted
metrics as well as greater performance consistency with reduced portfolio crashes. Another
reformulation by Chen et al. [2021] successfully proposes the use of a non-parametric method
to redefine returns to ranks and signs before application of the momentum strategies. Chen
et al. [2021] attribute their success to a reduced sensitivity to saliency considerations of market
participants. All in all, this strand of research illustrates the promise of transformations to crude
inputs such as cumulative returns for momentum-based portfolio construction strategies.

The second strand of research focuses on the application of momentum strategies to asset return
forecasts. In this strand of research, the prominent global advance of machine learning presents
itself through the proposal of complex system architectures. In one such work, Murray et al.
[2021] apply machine learning to predict ranks from cumulative returns. They conduct this
research on the US equities in the CRSP universe of assets between 1926-2022. They claim to
extract signals with strong predictive power for future returns and their portfolios present an
alpha factor distinct from both momentum and reversal. On the other hand, their investigation
excludes a comparative analysis to simple linear parametric systems. In light of these results, we
extend the research by Murray et al. [2021] by further investigating the superiority of machine
learning for portfolio construction solely based on asset performance/return statistics. To this
end, we first conduct a comparative analysis of a complex parametric neural network to a set of
simpler linear parametric benchmarks. Specifically, we consider a system that implements both
convolutional and recurrent neural networks to predict the relative ranking of an asset within a
cross-section based on only its own historical performance in the form of its cumulative returns.
Therefore, the first goal of this research is to determine more insight into the question,

To what extent do complex neural networks improve over simpler linear system definitions for
financial portfolio construction purposes?

Through this critical question on the application of machine learning, we attempt to answer
whether the predictive power in the proposed complex systems is due to their specific architecture
or because they are simply data-driven and parametric. We conduct this analysis in a recent
time period 1995-2022 as well as an equally-weighted portfolio setting in the CRSP and S&P500
asset universes. We do this in order to shed light on performance during this recent time period
and on the practical applicability for investment respectively.

Furthermore, we consider whether alternative system configurations/architectures can improve
over the investigated complex neural network architecture. In this architecture recurrent neural
networks are used. However, these networks exhibit deficiencies including limited parallelizable
training, exploding/vanishing gradients and difficulty with long-term dependencies as identified
by Hochreiter and Schmidhuber [1997] and Goodfellow et al. [2016]. Consequently, Vaswani
et al. [2017] proposed transformer system architectures levering self-attention in an attempt to
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overcome the previous deficiencies. Transformers leveraging this self-attention mechanism have
been successfully implemented by Zhou et al. [2019] to predict returns of commodity metals.
In another setting they have been used for ranking purposes in currency ranking tasks by Poh
et al. [2021]. For portfolio management, Kisiel and Gorse [2023] utilize transformers to predict
positions of assets within a portfolio space. Therefore, we propose the use of these attention-
based frameworks by Vaswani et al. [2017] as an alternative system architecture to recurrent
neural networks. Furthermore, we investigate the use of ranked instead of absolute cumulative
returns in line with Chen et al. [2021]. Therefore, the second goal of this research is to determine,

To what extent do attention-based neural network system architectures improve upon recurrent
neural network system architectures for momentum-based asset ranking prediction?

and,

To what extent do ranked input feature definitions improve upon absolute input feature
definitions for momentum-based asset ranking prediction?

Finally, we analyse whether the investigated machine learning systems identify other market
inefficiencies besides those already identified and utilized in linear systems and in classical mo-
mentum and reversal factor approaches. Therefore, the third goal of this research is to determine,

To what extent do machine-learning based asset rank predictions differ from linear asset rank
predictions and classical factor portfolios?

In order to answer these research questions, we utilize a complex recurrent neural network using
past returns to predict the future rank of an asset. Alternatively, we consider a linear system and
a self-attention based neural network. In our methodology, we describe these systems and address
the difference between the self-attention and LSTM complex neural-network frameworks as well
as the use of ranked and non-ranked inputs. In this research, we use the equally-weighted decile
ten minus decile one portfolio in the CRSP and S&P500 asset universes. We exclusively estimate
our systems on the CRSP universe, but analyse performance on the S&P500 as well, in order
to gain insight into performance on this realistic subspace with regard to practical investments.
As an initial analysis, we consider the performance of classical non-parametric benchmarks in
our data. For the benchmarks, we immediately identify general limitations in profitability as
observed by extensive periods of flat cumulative returns as well as severe drawdowns. This
further motivates our investigation into the potential of parametric alternatives.

The main findings of this research can be categorized over two perspectives. From an empirical
asset ranking perspective, we find that our complex machine-learning based system exploits the
same market inefficiencies as a linear system, but also learns to allocate assets with true extreme
tail rankings exclusively to lower predicted percentiles. We identify that the use of volatility-
oriented features can explain this exclusive allocation property. We build this finding on the fact
that neural networks present the ability to access volatility related features through their inher-
ent complexity and that these features themselves are inherently predictable in equity returns.
In addition, we connect this finding to the negative relationship between idiosyncratic volatility
and returns that was established by Chen and Petkova [2012] which is clearly apparent in our
regression results. Furthermore, we find that the use of volatility-based features by our complex
neural networks can lead to a significantly improved Spearman correlation coefficient between
predicted rank and the ranked next periods return. On the other hand, from a portfolio con-
struction perspective we find that ranking on volatility is detrimental for portfolio performance.
On a decile portfolio level, our complex system fail to achieve an increasing return pattern and
present a significant volatility skew in the lower deciles. Consequently, we achieve a D10-D1

3



Extreme learning - Thesis MSc. Quantitative Finance Reinier Vos 583868

portfolio that loads strongly on the low volatility, momentum and reversal factor and is inferior
to the portfolio constructed through a linear system’s predictions. We find that this inferiority
is attributed to complex system’s prediction signal missing out on the benefits of cancelling
extreme returns, due to their exclusive allocation to of assets with extreme returns to the D1
portfolio. Consequently, we observe a decreased average return and increased average volatility
in the D10-D1 portfolio. Specifically, we observe that this increased volatility of D10-D1 occurs
due to differences in the recovery speed between D10 and D1 around drawdowns. Finally, we
find no substantial differences between our proposed complex configurations on a portfolio level
or with regard to empirical asset ranking ability. Specifically, the superiority of systems utilizing
LSTM’s or self-attention sub-modules or ranked inputs is not clearly apparent.

This work has implications for researchers and practitioners who intend to predict the cross-
section of asset ranks explicitly. Our research shows that connection between the Spearman cor-
relation coefficient score and portfolio performance is limited. Specifically, this occurs because
the Spearman correlation coefficient scores overall ranking performance and is not concerned
about the loss of asymmetry/imbalance of the solution. The predictions from our complex
systems serve as an example case for such an asymmetric solution, where the Spearman corre-
lation coefficient is improved, yet the overall rank distribution becomes practically undesirable.
Consequently, we do not recommend the use of this metric to measure/predict portfolio per-
formance for predictions from systems with distinctly different empirical structures such as the
’X’-shape and ’inverted U’-shape presented in this research. Furthermore, in our research we
identify that the use of a ranked target definition can amplify its relationships to other vari-
ables such as volatility. As a result of these amplified relationships, a system optimized for
asset ranking might indeed attain this superior empirical asset ranking structure with inferior
portfolio performance. Finally, the findings in this work have implications for future research
on momentum-based strategies intending to leverage on complex system configurations. The
general superiority of a linear system on portfolio level can be interpreted as evidence against
an increase in the complexity of financial prediction systems. Specifically, this research can be
interpreted as a critical review of the work by Murray et al. [2021], who limit the analysis of
their complex parametric system to non-parametric benchmarks. More generally, this research
stands in contrast to works such as Gu et al. [2020] and Kelly et al. [2021] advocating for the
prominence of complex systems in finance.

This main limitations of this research are threefold. First of all, we estimate our systems on US
equity data contained in the CRSP dataset and evaluate on the S&P500 universe of assets. This
attempt at ’transfer learning’ is shown to be inadequate, yet without a comparison to systems
estimated on S&P500 specifically. Secondly, we limit our analysis on portfolio level to metrics
capturing performance. However, practical considerations such as turnover, transactions costs
and the impact of implementation lag are not considered. Finally, in this research we limit
ourselves to use of end-of-month returns and do not consider the effects (e.g. seasonality) at
this specific calendar frequency.

In what follows, chapter 2 provides the methodology of this research. Before considering the
results of the proposed methodology, a description of the data and our initial analysis on the
non-parametric benchmarks is provided in chapter 3. Subsequently, we consider the results of
our systems in chapter 4. This analysis is performed from two main perspectives. Namely, one
on empirical asset ranking ability in the cross-section and one on a portfolio level. Finally, a
conclusion is presented in chapter 5.
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2 | Methodology

2.1 Portfolio construction and non-parametric benchmarks

In this research we analyse portfolio performance of our systems in CRSP and S&P500 asset
universes. Note that this research will utilize ’transfer learning’ for the S&P500 asset universe.
This means that any parametric system will solely be trained on the CRSP universe data, yet we
also evaluate the out-of-sample performance of this same system on S&P500 asset universe. In
these asset universes we setup equally-weighted decile portfolios according to the methodology
of Jegadeesh and Titman [1993] and adhered to by Murray et al. [2021]. Thus, the breakpoints
for these deciles correspond to those assets exchanged on the NYSE alone in case CRSP data
is used. On the other hand, if only the high market-capitalization S&P500 universe of assets
is considered, no subset of assets is used to construct the breakpoints. After allocating all
assets under consideration to a decile, equally weighted portfolios are setup. The 10-1 decile
portfolio (D10-D1) forms the main portfolio for analysis. Any constructed portfolio is evaluated
by computation and analysis of its (cumulative) return. Unless otherwise defined we analyse
the excess risk free rate return. Specific attention is paid to crashes in return quantified by
downturn and risk-adjusted return quantified by Sharpe ratio’s. Within the entire cross-section
of assets, the difference between predicted and true ranking is quantified by the Spearman rank
correlation coefficient.

In this research we will compare portfolios against a set of classical benchmarks. Explicit perfor-
mance comparison is done against the momentum MOM factor Jegadeesh and Titman [1993],
the short term reversal REV factor Jegadeesh [1990] and the residual momentum RESMOM
factor as proposed by Blitz et al. [2011]. In this research we also employ the use of factor
spanning regressions. In this case we include the three factor Fama-French model (Mkt, SMB,
HML) by Fama and French [1992] appended by the reversal (REV ) from Jegadeesh [1990],
residual momentum (RESMOM) by Blitz et al. [2011] and low-volatility factor (LowV ol) by
Blitz and Van Vliet [2007]. All risk factors are based on the signals defined by the previous set
of authors and are constructed using equal-weighting schemes in their respective universes.

2.2 Linear parametric system benchmarks

In the research we intend to answer the question on the the cost and gain of system complexity by
evaluating the performance of complex parametric systems versus a simple but parametric linear
systems. This stands in contrast to the non-parametric benchmarks in section 2.1, which are
not data-driven/parameterized. To this end, we introduce two linear system definitions whose
parameters are optimized to predict ranks rather than absolute returns. As input feature set,
these linear systems utilize the logarithmic, absolute excess market returns over the previous
12 months as independent variables. These corrected returns are used in an attempt to reduce
market timing effect, by implying an assumed CAPM − β coefficient equal to 1. Although
we recognize that this assumption is imperfect, we also note that computation of the actual
CAPM − β coefficient would be prone to estimation error. The inputs are used to predict the
normalized rank return rnorm as defined in Equation 2.2. Mathematically these linear systems
can be represented as,
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rnormt,i = ω +
t−1∑

s=t−12

θs · log (1 + (rs,i − rs,m)) (2.1)

where rt,i denotes the return of asset i at time step t. rt,f represents the equally-weighted
market return at time step t. θs indicates the coefficient of the associated time step. log
indicates the natural logarithm. ω indicates the intercept term which is included to account
model misrepresentation. Note that ω will play no role when the predictions of all assets with
a specific time step assets are ranked. Furthermore, for the target variable definition we follow
Murray et al. [2021]. They construct a target variable dubbed the normalized ranked return and
denoted for asset i at time step t as,

yt,i = rnormt,i = Φ−1

(
rank(rt,i; rt)

Nt + 1

)
(2.2)

where Φ−1 is the inverse cumulative Gaussian distribution function. rank represents the rank-
ing operator applied to rt,i, but logically subject to the entire set of returns; rt. The ranking
operation labels an asset as an integer in 1, . . . , Nt. Although the Φ−1 function is unbounded, its
empirical bounds are governed by the cross-section size (Nt). For our data set with a maximum
Nt ≈ 6500, the target variable is bounded by [−3.6; 3.6]. It is important to recognize that this
rnorm definition maps a uniformly distributed variable (the ranked return) to the Gaussian space.
Therefore, this transformation procedure is dubbed the ’Gaussian ranking’ transformation pro-
cedure. This definition is considered theoretically beneficial with regard to model assumptions,
since we can use normally distributed instead of uniformly distributed ranks in a regression.

For our comparative purposes we optimize this system in two ways. The first includes a con-
ventional weighted least-squares (WLS) setting in which we opt for a look-back window of 120
months, i.e. 10 years. We opt for this size of look-back as it is inline with the Nmonths

Nparameters
ratio of

≈ 9 chosen for the construction of residual momentum by Blitz et al. [2011], but also to invoke
stability through periods with financial crashes. Furthermore, we utilize the weighted version
of least squares to account for the changes in cross-section size through time as visualized in
Figure 3.1. As such, the sample weight is only governed by the assets time step t and equal to 1

Nt

where Nt indicates the cross-section size at time step t. All in all, this configuration is dubbed
to the excess-market returns weighted least-squares and abbreviated to rtnXmkt−WLS.

Secondly, we optimize the system using exactly the same methodology as we choose for the com-
plex systems described next in section 2.3. This means we optimize the Spearman correlation
coefficient (subsection 2.4.1) with cross-sectional sampling (subsection 2.4.2) for the linear sys-
tem with an expanding window training set and a fixed validation window of 5 years. This also
means that similarly to the complex systems, the performance of the linear system is evaluated
on the validation set after an epoch of training and is subject to early stopping. This is con-
figuration is included in the investigation for completeness and can be used to answer whether
the optimization scheme plays a role in the results. All in all, this configuration is dubbed to
the excess-market returns Linear system and abbreviated to rtnXmkt − Linear. It should be
noted that we generally expect close alignment between these two linear configurations due to
the equivalence between the optimization objectives as addressed in chapter B.

2.3 Complex parametric systems

In this research, we define a set of four complex system configurations. We consider one ’base’
complex configuration and three extensions. Our base configuration is the convolutional and
long-short term neural network designed by Murray et al. [2021], abbreviated as CNN-LSTM
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in their work. It should be noted that compared to the methodology of Murray et al. [2021],
we deviate through the use of excess market returns, explicit Spearman correlation optimiza-
tion and cross-sectional batch sampling. These changes addressed in full throughout the rest
of this chapter. They are implemented to better align the system’s implementation with its
practical use case (portfolio-construction), but ultimately are not a cause for significant changes
in performance. In other words, these changes can be considered as attempts to reduce poten-
tial limitations in the original methodology, yet without substantially changing the practical
performance of the systems.

2.3.1 Input and target variables

The input set as defined by Murray et al. [2021] contains 12 cumulative (excess risk-free rate)
returns constructed over the period [t−12, t−1]. Once again, In an attempt to reduce the effects
of market timing we propose the use of excess market returns instead. This set of cumulative
excess market returns is denoted as CRst,i . Mathematically, the cumulative return over m
months, CRmt,i , in % can be expressed as,

CRst,i =

t−13+s∏
j=t−12

(1 + (rj,i − rj,m))

 · 100% (2.3)

where rt,i denotes the return of asset i at time step t. rt,m represents the equally-weighted
market return at time step t. Thus, the set of inputs can be defined as {CR1t,i , . . . , CR12t,i}.
This will form the complete input set xt,i, which contains an additional ’sequence’ dimension
(s) of size 12. As an example, xt,i,1 denotes CR1t,i .

As an alternative to the absolute cumulative excess return, we investigate the use of the cu-
mulative rank denoted as CP over the period [t − 12, t − 1]. We hypothesise that this ranked
definition should improve performance on this asset ranking objective through its focus on rela-
tive performance rather than the absolute version of the cumulative return inputs. Furthermore,
this definition might be more robust/stable as Chen et al. [2021] argue that rank and sign def-
initions of returns might overcome saliency considerations in momentum signal construction.
Mathematically, the cumulative rank over s months, CPst,i , can be expressed as,

CPst,i =

t−13+s∑
j=t−12

2 ·
(
rank(rj,i; rj)

(Ns + 1)
− 0.5

)
(2.4)

where rt,i denotes the return of asset i at time step t. rank represents the ranking operator
applied to rt,i, but logically subject to the entire set of returns; rt. Nt designates the number
of assets in the considered universe at time step t. The ranking operation labels an asset as an
integer in 1, . . . , Nt, which we re-scale by 2 · (x− 0.5) to [-1,1] centered around zero. Thus, this
set of inputs can be defined as {CP1t,i , . . . , CP12t,i}. This will form the complete alternative
input set xt,i, again consisting of the ’sequence’ dimension s of size 12. Finally, it should be
noted that these systems will use the normalized ranked return (rnorm) as target variable as
defined in Equation 2.2.

2.3.2 System overview

In our research we consider convolutional and long-short term neural network system architecture
as defined by Murray et al. [2021] (called CNN-LSTM in their work) and utilized recently in
Eggebrecht and Lütkebohmert [2023]. In fact, this system consists of three main components
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and in this research is dubbed to CNN-LSTM-FNN, consisting of a convolutional neural network
(CNN) with max-pooling, a Long-Short term memory unit (LSTM) and a final feed-forward
neural (FNN) network. Later in this section, the self -attention subsystem is defined as an
alternative to the LSTM subsystem. This system is visualized in Figure 2.1.

Figure 2.1: System overview for the CNN-LSTM-FNN or CNN-Attention-FNN system operating on
cumulative returns (CR) or cumulative ranks (CP ) to predict the normalized rank return (i.e. ŷt,i or
r̂normt,i

). This system is inspired by the CNN-LSTM system in Murray et al. [2021].

Each of these three subsystems serve different purposes to obtain a rank prediction. Firstly, the
one-dimensional convolutional neural networks (CNN) are considered. Similar to their multi-
dimensional counterparts, these networks can be interpreted as spatial feature extractors as
discussed in Goodfellow et al. [2016]. This system slides a convolutional operator known as a
kernel over the input, thereby aggregating information sensitive to the parametric kernel. In an
attempt to filter the information content and reduce the memory required by the system, these
convolutional layers are often followed by pooling layers. Murray et al. [2021] opt for the use of
max-pooling (MP) layers. The CNN and MP subsystem can be represented as,

zt,i = ReLU
(
MaxPool1D

(
CNN

(
xt,i;W

CNN , bCNN
)))

where,

hCNNt,i,s = CNN
(
xt,i;W

CNN , bCNN
)
=

KernelCNN∑
k=0

xt,i,s+k ·WCNN
s + bCNN

hCNNt,i = [hCNNt,i,1 , . . . , hCNNt,i,8 ]
T

and,

hMPt,i,s = MaxPool1D (xt,i) := Max
(
xt,i,(s·KernelMP ):(s·KernelMP+strideMP )

)
hMPt,i = [hMPt,i,1 , . . . , hMPt,i,4 ]

T

(2.5)

where WCNN and bCNN represent the CNN’s parameter weight matrix (or kernel window) and
bias vector respectively. zt,i, ht,i and xt,i represent the subsystem’s output, intermediary and
input sample respectively for asset i at time step t. Note, that the kernel window slides over
the additional ’sequence’ dimension s, from s = 1 → s = 12. KernelCNN , KernelCNN and
strideMP represent the convolutional and max-pooling kernel size and the stride size respectively.
It is important to note that in the CNN and MP layers the sequence dimension reduces to
smax = 8 and smax = 4 respectively due to the aggregating operations at hand. ReLU() denotes
the nonlinear ’rectified linear unit’ activation function. This CNN subsystem is visualized in
Figure 2.2.
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Figure 2.2: CNN network overview according to the notation in Equation 2.5. The parametric convo-
lutional, max-pooling and ReLU operations are sequentially applied by sliding the respective windows
over the time-dimension (s) of the samples. Notation according to the definitions in Equation 2.5.

The second subsystem considered is a form of the recurrent neural network (RNN), namely the
long-short term memory unit (LSTM) by Hochreiter and Schmidhuber [1997]. RNN networks
provide connections to previous inputs in an attempt to allow for the flow of information to
previous samples as discussed in Goodfellow et al. [2016]. These previous samples are connected
to the current one through a type of ordering, conventionally in the time dimension. These addi-
tional recurrent connections should allow this architecture to exploit local time series dynamics
to improve its prediction. The recurrent LSTM subsystem can represented as,

zt,i,s =LSTM(xt,i,s, ht,i,s−1;ψs) ∀ s ∈ {1, 2, 3, 4} (2.6)

where zt,i,s, ht,i,s and xt,i,s represent the subsystem’s output, intermediary and input sample
respectively for asset i at time step t and the sequence index s. Note that the LSTM subsystem
is applied to the sequence dimension with a remaining size of smax = 4 after application of the
CNN subsystem. The LSTM has trainable parameters ψs for each of these sequence entries,
where ht,i,0 is always initialized with zeros. In our setting, zt,i,4 forms the final output possible
and is used for any subsequent layers. For specific details on the LSTM operation we refer to
the original documentation on the long-short term memory unit by Hochreiter and Schmidhuber
[1997]. This LSTM subsystem is visualized in Figure 2.3.
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Figure 2.3: LSTM network with annotated dimensions of inputs and outputs in brackets. The blue
blocks indicate a parametric operation is conducted. In this diagram the implicit temporal structure is
visible as introduced in Figure 2.4. Notation according to the definition in Equation 2.6, where zt,i,s,
ht,i,s and xt,i,s represent this subsystem’s output, intermediary and input sample respectively for asset i
at time step t and the sequence index s.

The final subsystem considered by Murray et al. [2021] is a feed-forward neural network (FNN)
outlined in Bishop et al. [1995]. This architecture consists of a layer of fully connected neural
nodes with nonlinear activation’s functions and a final output layer leading to a scalar output.
The intention of such a network is inline with that of partial least squares (PLS) regression
by Geladi and Kowalski [1986], yet without transformation of the target variable to a new
hyperplane as well. Furthermore, the non-linear activation functions within these types of
networks expand on PLS as they allow for subsequent transformations of the hyperplane in an
attempt to further meet the optimization objective. The FNN subsystem can represented as,

zt,i = ReLU
(
xt,iW

FNN + bFNN
)

(2.7)

where WFNN and bFNN represent the FNN’s parameter weight matrix and bias vector respec-
tively. zt,i and xt,i represent the subsystem’s output and input sample respectively for asset i
at time step t. ReLU() denotes the nonlinear ’rectified linear unit’ activation function.

All in all, this CNN-LSTM-FNN architecture can be interpreted as a feature extractor applied
to the ’raw’ input features through the CNN network, after which the LSTM should be able
to leverage any time dependence between the extracted features. Finally, the FNN is able to
transform the spatial and time extracted features once more to improve scoring on the objective.

In an attempt to limit overfitting, regularization techniques are applied. Murray et al. [2021]
apply early stopping as well as dropout layers. Dropout layers are applied to other predefined
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layers and deactivate nodes therein. Many interpretations of their functionality exist, such as
the construction of implicit ensembles whenever none of the nodes are deactivated as discussed
in Goodfellow et al. [2016].

Finally, we describe the CNN-LSTM-FNN system architecture used in this research specifically.
For this system with a consistent f number of units the architecture can be described as follows
with the output dimension provided in brackets with N the number of samples,

Layer. (Output Dimension): Description
IN. (N, 1, s = 12): System inputs, either the set of CP or CR.

1. (N, f, s = 8): 1 dimensional CNN network with kernel size of 5, no input padding, stride
equal to 1 and intercept parameters included. ReLU activation function.

2. (N, f, s = 4): 1 dimensional max-pooling with kernel size and stride equal to 2.
3. (N, s = 4, f): Dimensional permutation layer, no parameters involved. This layer conducts

a transpose operation on dimensions two and three.
4. (N, f): LSTM network applied over the time dimension T (N,T, f) (also referred to as

sequence dimension (N, s = 4, f)), many-to-one output focussing on final timestep i.e.
(N,−1, f).

5. (N, f): FNN network with a fully connected layer including intercept using ReLU activa-
tion function. This layer also apply dropout with a probability of 20% inline with Murray
et al. [2021].

6. (N, 1): Output linear layer including intercept term transforms the layer’s input vector
into a scalar prediction output.

OUT. (N, 1): System outputs, the target rank prediction.

It is important to note that this specific architecture and its hyperparameters were designed,
motivated and selected by Murray et al. [2021]. In this research we build on their work and test
the potential of this system under the changes proposed and described in this and the previous
sections. Thus, this research does not intend to improve the hyperparameters of this system
through intensive hyper-parameter tuning.

Self-attention framework

To extend the set of investigated systems we consider self-attention-based networks first proposed
by Vaswani et al. [2017] which form the basis for the recent prominence in transformer models.
This self-attention mechanism is the most crucial part of such a network as it allows for the
extraction and identification of long-term dependencies between sets of spatial or temporal
features.

Figure 2.4: Implicit versus explicit temporal information flow overview as utilized by the LSTM and
self-attention frameworks respectively.

In our research, we intend to leverage the ability of these systems to identify temporal rather
than spatial dependencies. In this setting, the self-attention framework can be contrasted to that
of the Long-Short Term Memory unit (LSTM) by Hochreiter and Schmidhuber [1997]; Where
the LSTM provides the ability to establish implicit temporal connections between the layer’s
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inputs (X) of different time steps to the layer’s output (Z) as visualized in Equation 2.6, the
self-attention framework overcomes this characteristic by allowing for explicit versions of these
temporal connections. This difference is visualized in Figure 2.4, in which we annotate that
implicit connections are analogous to partial correlation, while explicit overcome this partiality.
In this figure, notice the implicit/recurrent connections through the steps of X to reach the
final output Z, where the explicit version is not recurrent and offers explicit/direct connections
between the input steps to Z. We hypothesise that allowing for this explicit temporal information
flow through self-attention networks should improve the predictive ability of the system as they
allow for direct connections between all input time step to Z. As such, if there is relevant
information contained in the earliest steps of X (e.g. CR1), the self-attention framework should
be superior in extracting it. On the other hand, we recognize beforehand that the potential
advantage of explicit connections might be limited as the informational content is expected
to diminish for inputs further from the current time step (X<t) as given in the overview of
Figure 2.4.

Figure 2.5: Self-attention network with annotated dimensions of inputs and outputs in brackets. The
blue blocks indicate a parametric operation is conducted. In this diagram the explicit temporal structure
is visible as introduced in Figure 2.4. The self-attention matrix is displayed at the bottom of the figure
and holds the dot-product scalar between the different input time steps with regard to input at time step
t. After applying the softmax operation to these dot-products the sum of these four scalars equals one.
Notation according to the definition in Equation 2.8, where zt,i,s, ht,i,s and xt,i,s represent this subsystem’s
output, intermediary and input sample respectively for asset i at time step t and the sequence index s.

The difference in temporal flow between the implicit LSTM and explicit self-attention archi-
tectures is visualized specifically in Figure 2.3 and Figure 2.5 respectively. Note that these
diagrams are a functional higher-level schematic, for additional specific notes on motivation
and implementation we refer to the original works by Hochreiter and Schmidhuber [1997] and
Vaswani et al. [2017] respectively. In Figure 2.3, recognize that the flow of information occurs
in an implicit and sequential fashion similar to the left-hand case of Figure 2.4, where the in-
put at a time step is used together with the transformed information of the previous LSTM
sub-module for the next LSTM sub-module. On the other hand, in Figure 2.5 we can recognize
a parallel rather than sequential structure through the use of matrix multiplications, with all
intermediary dimensions show in brackets. In this figure, the inputs of respective time steps are
transformed through the blue parametric ’key’ and ’query’ sub-modules networks after which
their dot product will determine how the outputs from the value network are aggregated to
a single (rather than four-dimensional) output vector. Therefore, Figure 2.5 can also be used

12



Extreme learning - Thesis MSc. Quantitative Finance Reinier Vos 583868

for taxonomic purposes; in this figure the self-attention matrix allows for the network to learn
parameters such that it can improve the attention/focus on itself through the establishment of
connections between different time-steps.

To continue, we elaborate on the mathematics involved in the (parameterized) operations con-
ducted in a self-attention network. Mathematically, self-attention by Vaswani et al. [2017] can
be defined in our setting as,

zt,i =softmax

(
Qt,iK

T
t,i√

dk

)
Vt,i = Γt,iVt,i

where,
Qt,i = xt,i,4W

Q + bQ, Kt,i = xt,iW
K + bK , Vt,i = xt,iW

V + bV

and,
xt,i = [xt,i,1, xt,i,2, xt,i,3, xt,i,4]

T

(2.8)

where Qt,i, Kt,i and Vt,i are the query, key and value matrices for a sample resulting from
transformations of the input through parametric weight (W ) and bias (b) layers. In Figure 2.5,
these matrices are setup in the blue network blocks/sub-modules with identical names. dk is the
dimension of the keys. zt,i and xt,i represent the output and input sample respectively for asset
i at time step t. Note that these samples still contain the additional ’sequence’ dimension s of
size 4, similar to definition of the LSTM given in Equation 2.6. Self-attention considers samples
with 2 dimensions (s,f) which we denote as the (s) sequence and the embedding/feature (f)
dimension. For a sample xt,i, the self-attention matrix Γt,i is setup through the dot product Qt,i

and Kt,i and subject to the softmax operator i.e. softmax
(
QKT
√
dk

)
. Thus, the ’self-attention ma-

trix’ (Γt,i, denoted in orange in Figure 2.5) is of size (1,s) for every sample and has column sums
equal to 1. The values inside these matrices, e.g. Γt,i,k can be interpreted as the ’dependence’
between sequence indices s = k (i.e. any sequence entry k) and s = 4 (i.e. the final sequence
entry). Consequently, the final matrix multiplication, denoted as ΓV applies an aggregation of
the embeddings across the sequence dimension for every element in the sequence. Therefore,
this final output should contain a mix of amplified and reduced features in its embedding dimen-
sion based on the importance to the optimization objective at hand. All in all, this framework
should be interpreted through its parameter matrices; Q, K and V . Where Q and K parameters
are optimized to amplify and reduce specific dependencies within the sequence dimension, the
parameters for V are optimized to find the best transformation and aggregation of the inputs.

In this research we consider incorporating the self-attention framework into the CNN-LSTM-
FNN system by replacing it with the LSTM component (previously defined as layer 4). Specif-
ically, the replacement is incorporated as in the previously defined architecture at step 4 as
follows,

4. (N, s = 4, f): Self-attention network applied over the time dimension i.e. (N,T, f), such
that the Γ matrix is of size (1,4). The key query and value matrices are obtained by fully
connected linear layers with f number of units without intercepts and with no activation
function applied as defined in Equation 2.8.

All in all, this research will consider four system configurations. First of all, we define the
CR − CLF and CP − CLF configurations which utilize the CNN-LSTM-FNN architecture
abbreviated to CLF . These two configurations differ in the input feature set used, namely
cumulative excess returns (CR) and cumulative ranks (CP ) respectively. The third and forth
configuration is denoted as CR−CAF and CP −CAF which uses the cumulative excess returns
(CR) and cumulative ranks (CP ) respectively as inputs. They utilize the CNN-Attention-FNN
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architecture abbreviated to CAF . For each of the four configurations previously mentioned we
opt for f = 32 number of units in every intermediary layer.

2.4 Optimization

2.4.1 Objective

In their work, Murray et al. [2021] choose minimization of the weighted mean-squared error as
their optimization objective. This loss function for asset i at time step t can be expressed as,

LMSEt,i = wt,i · (yt,i − ŷt,i)
2 (2.9)

where wt,i indicates the sample weight and yt,i and ŷt,i denote the true and predicted normal-
ized ranked return respectively. Murray et al. [2021] define wt,i = 1

Nt
in order to correct for

inconsistent universe size through time as visualized in Figure 3.1. yt,i is the normalized ranked
return as defined in subsection 2.3.1. It is important to note that the due to the structure of the
applied Φ−1 mapping as well as the squared error scaling, a minimization of this error should
inherently tends towards improved predictive ability of the tail rank compared to ranks closer
to the center rank.

It is important to acknowledge that optimization of the MSE between ranks is practically equiv-
alent to the optimization of the Spearman correlation coefficient as we illustrate in chapter B.
However, this minimization of the MSE between ranks as applied by Murray et al. [2021] can be
described as a static proxy. This is denoted as a static proxy because in their case, the compu-
tation of the error ((yt,i− ŷt,i)2) excludes an actual ranking operation applied to the predictions
(i.e. (yt,i − rank(ŷt,i, ŷt))

2). As such, the ’predicted rank’ of an asset (i.e. system’s output)
might change after ranking that asset’s prediction to all other asset predictions at the respective
time step. In other words, although the system’s output (ŷ) might be interpreted as the ’pre-
dicted rank’, in fact that interpretation is only correct after we rank the actual predictions i.e.
rank(ŷt,i, ŷt). Hence, the interpretation of ŷt,i as ’predicted rank’ is denoted as a static proxy.

Although we expect limited divergence between using this static rank proxy and the actual
ranked version, in this research we intend to use the actual ranked version. We do this in an
attempt to achieve a further alignment between the optimization routine and the practical port-
folio use-case. To this end, we utilize the ranking operation designed by Blondel et al. [2020] in
order to rank our predictions during optimization and thereby maximize the Spearman corre-
lation coefficient directly. Although a conventional ranking operation constitutes an ill-defined
ranking function, the work by Blondel et al. [2020] defines an alternative well-defined ranking
function with use-able gradients. As such, the use of this version allows us to theoretically
achieve the improved alignment between the optimization routine and the portfolio use-case.
For specific details on this alternative ranking function we refer to the work by Blondel et al.
[2020], where we opt for a regularization strength (= hyper-parameter) equal to 1 as the authors
propose. After applying this differentiable version of the ranking operation to the targets and
predictions, the to-be-maximized Spearman correlation coefficient contribution of asset i at time
step t can be represented as,
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LSPRt,i = ρSpearman (ŷt,i, yt,i, wt,i; ŷt,yt,wt)

= ρPearson

(
r̂ank(ŷt,i; ŷt), rank(yt,i;yt), wt,i; ŷt,yt,wt

)
=
wt,i · (r̂ank(ŷt,i; ŷt)−Mŷt) · (rank(yt,i;yt)−Myt)∑Nt

j wt,j

√
SŷtSyt

(2.10)

where the sum over the entire sample set at time step t is bounded between [−1, 1]. In this
equation, yt,i, ŷt,i and wt,i denote the target, prediction and weight for asset i at time step t

respectively. r̂ank denotes the differentiable ranking operation by Blondel et al. [2020] applied
to the predictions and rank denotes the conventional ranking operation applied to the targets.
Note, that besides the intermediary ranking operation, this correlation coefficient definition is
equivalent to that of Pearson correlation coefficient. Unless otherwise defined, in this research
the asset sample weights wt,i are set to 1

Nt
, where Nt denotes the number of samples at time

step t (i.e. the cross-section size of the asset universe). In that case, this scalar value can be
interpreted as the conventional Spearman correlation coefficient; it measures the linear alignment
between the ranks of two one-dimensional arrays. In Equation 2.10, Mv, Sv and Sv,u represent
the weighted mean, variance and covariance of vector v and u respectively. The complete
set of mathematical notations required for the computation of the (weighted) Spearman rank
correlation coefficient are given as follows,

ŷrankt,i = r̂ank (ŷt,i; ŷt) , yrankt,i = rank (yt,i;yt) (2.11)

Mŷt =

∑Nt
i wt,i · ŷrankt,i∑Nt

i wt,i

, Myt =

∑Nt
i wt,i · yrankt,i∑Nt

i wt,i

(2.12)

Sŷt =

∑Nt
i wt,i ·

(
ŷrankt,i −Mŷt

)2∑Nt
i wt,i

, Syt =

∑Nt
i wt,i ·

(
yrankt,i −Myt

)2∑Nt
i wt,i

(2.13)

which can be used together with the weighted covariance to compute the weighted Spearman
correlation coefficient;

Sŷtyt =

∑Nt
i wt,i ·

(
ŷrankt,i −Mŷt

)
·
(
yrankt,i −Myt

)∑Nt
i wt,i

(2.14)

ρSpearmanŷtyt
=

Sŷtyt√
SŷtSyt

. (2.15)

In this research we opt for an expanding window approach with a validation set of five years.
The first of these windows is defined as follows; 1975/01-1990/01 training set, 1990/01-1995/01
validation set and out-of-sample prediction period of 3 years between 1995/01-1998/01. After
this the training window is expanded by 3 years, yet the validation window and the out-of-
sample prediction window stay a consistent size of 5 and 3 years respectively. To further prevent
overfitting on these windows, we optimize the systems by applying early stopping. Specifically,
optimization is stopped if the validation set loss does not improve after five epochs since the
last improvement. In this case, the system with the previously defined best validation loss score
is returned. The system itself is trained for a maximum of 100 epochs, yet empirically early
stopping is observed after [25,35] epochs.
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2.4.2 Sampling

This research utilizes stochastic gradient (SGD) through the Adam optimization algorithm by
Kingma and Ba [2014] as mentioned in subsection 2.4.1. Conventionally, the sampling of batches
is done (pseudo-) randomly over the entire set. This is the methodology adhered to by Murray
et al. [2021], who define a batch size of 215. It is important to recognize that this method of
sampling places no restrictions on the origin of samples with regard to the asset space (i) or the
time dimension (t). This is done in an attempt to generate batches of consistent size. Large
(and consistent) batch sizes are advantageous as they invoke stability during model estimation
process. This can be attributed to the main assumption of SGD that a similar distribution
should be upheld across batches.

As an alternative sampling method we introduce and utilize cross-sectional sampling. In this
approach we only (pseudo-) randomly sample a timestamp (t) and construct a batch by collecting
all samples with that timestamp. As is visualized in Figure 3.1, this means that batches now
have inconsistent sizes and are at least a factor 102 smaller than in the conventional sampling
approach. Consequently, it is logical to expect more instability during the model estimation
process as the previously mentioned SGD assumptions are weaker for this approach. To re-
invoke this desired stability, we accumulate gradients across multiple batches before applying
the optimization step with this accumulated gradient. We choose to update the accumulated
gradients every 64 months which approximates nearly 5 years of data. On the other hand,
this alternative sampling approach allows for optimization of the Spearman rank correlation
coefficient (LSPR) across the asset space (i) for every time step t. Therefore, this sampling
method is required as it is exactly inline with the practical use case of the system; portfolio
construction based on ranked assets within a single period.

3 | Data

3.1 Filtering procedures and asset cross-section size

In this research we consider the CRSP data set as our focal asset universe, consisting of US equity
assets on the NYSE, NASDAQ and AMEX exchanges. We apply the same data pre-processing
rules for the inclusion of data and handling of delisted assets as Murray et al. [2021]. Besides
these steps, we further reduce the dataset through the reduction of dual (or higher multiples)
listings to a single listing. For this reduction we prefer listings in the NYSE, NASDAQ and
AMEX order. Furthermore, we also consider portfolio performance in the S&P500 universe.
For this universe we apply no specific filtering procedures. Note that return data in the CRSP
and S&P500 universes is consistently sampled at the end-of-month frequency.

Moreover, in subsection 2.3.1 the methodology for the construction of input feature set is defined.
To be considered a valid sample, assets must contain the complete information set (e.g. no
missing months) required for the construction of these features, otherwise that sample is excluded
from the data set. The result in terms of cross-section size through time from applying these
data processing steps are visualized in Figure 3.1.
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Figure 3.1: Original, single listing and final CRSP data set size through time. Final data set contains
all valid samples with input complete feature set as required for parametric systems.

3.2 Non-parametric benchmark analysis

In this research we will consider equally-weighted portfolio performance between 1995-2022
in the CRSP and S&P500 (subset of CRSP) universes. It is important to note that while
performance in S&P500 universe is considered, we always fit a system on the CRSP universe. The
reason for this is an intended focus of analysis on the CRSP universe, yet evaluation of S&P500
universe to give an indication of practical investability. To give an indication of performance
in this period and across these universes, we present the portfolio performance over time of the
equally weighted market and classical MOM by Jegadeesh and Titman [1993], reversal REV
by Jegadeesh [1990] and residual momentum RESMOM by Blitz et al. [2011] benchmarks in
Figure 3.2. The following results mainly focus on the performance of the MOM , RESMOM
and REV benchmarks as they are considered direct competitors to the proposed configurations
in this research. This is because their signals definitions are based on the same (sub)set of
information i.e. the previous months’ returns. On the other hand, the other benchmarks e.g.
HML intend to leverage on inefficiencies presented in alternative informational axes.

If we examine the portfolio performance in Figure 3.2 in the CRSP universe, we observe that
the REV , MOM and RESMOM benchmarks are able to generally achieve positive returns
before the 2008 crash. On the other hand, this ability is diminished when considering the
performance after 2008 and/or in the subset of S&P500 assets over the period 2001-2022. This
observation is further supported when considering Figure 3.3 which clearly present the persistent
flat/zero behaviour after 2008 of the MOM and RESMOM benchmarks. Consequently, these
benchmarks fail to recover from this crash of 2008. The REV benchmark shows diminished
drawdowns and an improved ability for recovery in both universes. On the other hand, this
signal presents limited profitability due to its lengthy periods of sustained flat performance as
observed in the period between [2010,2019].
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Figure 3.2: Equally-weighted portfolio performance for the Market, momentum, reversal and residual
momentum factor in the period 1995-2022

Figure 3.3: Equally-weighted portfolio drawdown for the Market, momentum, reversal and residual
momentum factor in the period 1995-2022

All in all, this overview of benchmark performance illustrates the unsatisfactory performance of
equally-weighted portfolios in invest-able universes such as the S&P500. In their work, Murray
et al. [2021] recognize this phenomenon and provide us with a parametric alternative to these
classical signal definitions in the CRSP universe. As discussed in chapter 2 we further append
this complex configuration with a larger set of parametric configurations. Consequently, in
this work we intend to investigate to what extend these parametric definitions are superior
in practically invest-able subspaces and if they can be further improved. This concludes our
introductory data and non-parametric benchmark analysis.
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4 | Results

In this chapter we discuss the performance and properties of our proposed system configurations.
This analysis starts the results from the optimization itself in section 4.1. After this, we continue
on to analyse the empirical asset ranking ability of our system configurations in section 4.2. We
expand on this analysis in section 4.3, where we evaluate the predictive ability in the cross-
section of assets. After these analyses we switch to an evaluation on portfolio level. This starts
with the examination of decile portfolios in section 4.4. Thereafter, we evaluate our focal D10-
D1 portfolio performance over time in section 4.5. Finally, we consider the focal portfolio’s
exposures to common risk factors in section 4.6.

4.1 Optimization analysis

In this section we provide summarizing optimization statistics for the considered configurations
as well as the non-parametric MOM , RESMOM and REV benchmark signals. As explained in
section 2.4, optimization continues until divergence of in-sample (training set) and (semi) out-of-
sample (validation set) Spearman correlation coefficient through the early stopping mechanism.
The metric results are displayed in Table 4.1 which includes error metrics (MSE & MAE) and
the Spearman rank correlation for the out-of-sample 1995-2022 period. The error for these error
metrics (MSE & MAE) is based on the difference in normalized ranked return i.e. |rnorm−r̂norm|.
Finally, to establish claims on the significant difference between prediction scores we utilize the
two-sided Diebold-Mariano test by Diebold and Mariano [2002] with results given in section D.2.

Configuration MAE MSE SPR
CR CLF32 x CRSP 1.039 (0.091) 1.825 (0.325) 0.081 (0.123)
CP CLF32 x CRSP 1.033 (0.089) 1.822 (0.352) 0.079 (0.115)
CR CAF32 x CRSP 1.294 (0.102) 2.469 (0.417) 0.071 (0.129)
CP CAF32 x CRSP 1.03 (0.09) 1.820 (0.351) 0.078 (0.126)
rtnXmkt-Linear x CRSP 1.016 (0.054) 1.801 (0.163) 0.044 (0.084)
rtnXmkt-WLS x CRSP 0.796 (0.006) 1.394 (0.015) 0.046 (0.092)
MOM (CRSP) 0.043 (0.116)
RESMOM (CRSP) 0.028 (0.109)
REV (CRSP) 0.018 (0.102)

Configuration MAE MSE SPR
CR CLF32 x (S&P500) 1.04 (0.123) 1.929 (0.576) 0.03 (0.153)
CP CLF32 x (S&P500) 1.061 (0.121) 1.912 (0.505) 0.034 (0.152)
CR CAF32 x (S&P500) 1.469 (0.485) 2.219 (0.492) 0.016 (0.18)
CP CAF32 x (S&P500) 1.062 (0.125) 1.924 (0.53) 0.027 (0.161)
rtnXmkt-Linear x (S&P500) 1.055 (0.096) 1.927 (0.319) 0.024 (0.159)
rtnXmkt-WLS x (S&P500) 0.793 (0.009) 1.398 (0.023) 0.015 (0.136)
MOM (S&P500) 0.012 (0.201)
RESMOM (S&P500) 0.005 (0.183)
REV (S&P500) 0.023 (0.159)

Table 4.1: Optimization statistics for the investigated parametric system configurations as non-
parametric benchmarks in the CRSP and S&P500 universes over the entire out-of-sample period 1995/01-
2022/12. SPR denotes the Spearman correlation coefficient. Expanding window applied for the complex
system configurations with training period starting at 15 years in 1975-1990, validation period of constant
5 years 1990-1995, refit every three years.
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To start this analysis we identify the differences between the linear and complex parametric
system configurations. We first consider Table 4.1 alongside the Diebold-Mariano test statistics
given in section D.2 for the MSE and MAE metrics. From these tables we conclude that the
complex configurations consistently provide significantly worse MAE and MSE scores compared
to the linear configurations in the CRSP universe. On the other hand, this inferiority is no longer
clear and significant in the S&P500 universe. On the other hand, in Table 4.1 we observe that
the complex configurations are able to achieve a higher Spearman correlation coefficient than
the linear system configurations. Examining, the Diebold-Mariano test results in Table D.5 we
observe that this difference is significant in the CRSP universe, yet Table D.6 also shows us that
this significance does not hold up in the S&P500 universe. Specifically, we observe a {-65,-53,
-77, -65}% decline in mean metric score in the S&P500 universe for the CR−CLF , CP −CLF ,
CR−CAF and CP −CAF configurations respectively and note that this decline is also visible
for the linear and non-parametric signals. This general observation between these universes
aligns with the works by Fama and French [2008], Fama and French [2018] and Hou et al. [2020],
who remark a relatively higher frequency of theoretically exploitable market inefficiencies in
lower market capitalization universes. What is more, is that Table D.5 and Table D.6 show us
that the complex configurations are statistically indifferent to each other in terms of Spearman
correlation coefficient in both universes, excluding the statistically significant inferiority of the
CR − CAF configuration. Therefore, in the remainder of this research we shall only consider
the difference between CR−CLF and rtnXmkt−Linear when commenting on the differences
between complex and linear configurations. We opt for this linear configuration because it is
optimized according to the same procedure as the complex configurations. In addition, we
opt for the CR − CLF configurations amongst the complex ones as it is the ’non-extended’
original/base configuration inline with the work Charting by Machines by Murray et al. [2021].

Furthermore, the mean scores in Table 4.1 and Diebold-Mariano results in Table D.5 and
Table D.6 imply that the linear system configurations (rtnXmkt − Linear and rtnXmkt −
WLS) show Spearman correlation coefficients that are not statistically significant from the non-
parametric MOM benchmark in both universes. For the linear configurations these results are
not unexpected as they likely pick up on the same market inefficiencies as the non-parametric
benchmarks and can only adjust the relative weighting of these market inefficiencies instead
of picking up on other (nonlinear) ones. On the other hand, the general insignificant scores
of the complex configurations compared to the linear and non-parametric benchmarks in the
S&P500 universe for the complex configurations imply that these systems do not extract any
additional beneficial market inefficiencies besides the linear ones. All in all, this result serves as
evidence against the transfer learning capabilities of these complex systems in terms of param-
eter estimation in the CRSP universe and subsequent out-of-sample prediction in the S&P500
universe.
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Figure 4.1: 36-month exponentially smoothed Spearman correlation coefficient over time in the CRSP
and S&P500 universes over the entire out-of-sample period 1995/01-2022/12. Expanding window applied
for the complex system configurations with training period starting at 15 years in 1975-1990, validation
period of constant 5 years 1990-1995, refit every three years.

To complete this section we consider Figure 4.1, which displays the smoothed Spearman correla-
tion coefficient over time. The exponentially smoothed version is used to improve the intended
general analysis over time as the crude scores are considered too noisy. If we examine this fig-
ure, we observe that the complex configurations are generally show larger coefficients than their
linear counterparts. Furthermore, we note that between the CRSP and S&P500 universes a sim-
ilar performance drop in smoothed score is visible through time and that this is most apparent
when comparing the sub-periods [1995, 2003] and [2005, 2020] where a drop can be observed. On
the other hand, there are clear differences. In the CRSP universe a rather stable score around
≈ 0.07 is apparent. In the S&P500 universe this decay does not seem limited to a drop, but
a downward trend. This is most clearly observed by identifying that the extreme peaks and
troughs have decreased smoothed scores over time. These observations in the S&P500 universe
might indicate that this large market capitalization universe becomes increasingly efficient over
time with regard to the exploited informational axes, leaving fewer market inefficiencies to be
exploited.

4.2 Empirical rank distributions

In this section, we attempt to analyse the empirical asset ranking ability of the parametric con-
figurations and the non-parametric benchmarks by examining their empirical rank distributions.
We do this to extend the optimization analysis in a more granular sample-focused setting. We
construct an empirical distribution map over the samples’ predictions (ŷ) and target percentiles
(y) in the out-of-sample period (1995-2022). For such a figure two cases can be considered,
namely one where we construct this grid without considering the timestamp and the other were
we do. These two cases can be visualized through the examples given in Figure 4.5 and Fig-
ure D.8 respectively. Thus, in the first case (Figure 4.5) such a map is based on the predicted
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and target percentiles (i.e. grid size 100x100) of every sample regardless of its time stamp (i.e.
no monthly time stamp considered). We annotate the mean predicted rank for that target
decile and the standard deviation of the predicted decile for that target decile in black solid and
dashed lines respectively. A similar approach can be used to attain the empirical distribution
per timestamp i.e. a specific month. In this case, we achieve Nmonths of empirical distribution
curves where the mean, 25% and 75% quantiles across these curves are presented in Figure D.8.
Comparing Figure 4.5 and Figure D.8 or Figure 4.4 and Figure D.10, it should be clear that the
general ’inverted-U’ shape or ’X’ shape in these figures is consistent through time. Therefore,
the analysis in this section will focus on the versions of the empirical rank distribution maps
without timestamp.

Figure 4.2: Empirical distribution grid based on target and prediction deciles for the CRSP and S&P500
universes in the out-of-sample period 1995/01-2022/12 for the MOM benchmark. Mean predicted rank
for that target decile and the standard deviation of the predicted decile for that target decile in solid
lines and dashed black lines respectively. Note, that a consistent colorbar numerical scale is used for all
empirical distribution heatmaps across configurations.
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Figure 4.3: Empirical distribution grid based on target and prediction deciles for the CRSP and S&P500
universes in the out-of-sample period 1995/01-2022/12 for the REV benchmark. Mean predicted rank
for that target decile and the standard deviation of the predicted decile for that target decile in solid
lines and dashed black lines respectively. Note, that a consistent colorbar numerical scale is used for all
empirical distribution heatmaps across configurations.

To start this analysis we consider the empirical distribution maps for the MOM and REV
benchmark signals given in Figure 4.2 and Figure 4.3 respectively. For these benchmarks,
two main clusters (i.e. distributional modes) can be identified from the predictive perspec-
tive (ŷ-axis) and an overall ’X’-like shape. For the MOM signal, the first predicted clus-
ter/mode contains both samples from percentile ranges (y = [0, 20]%,ŷ = [90, 100]%) and
(y = [90, 100]%,ŷ = [90, 100]%), where the coordinates are denoted as (ypercentile, ŷpercentile).
The second cluster presents a similar situation but mirrored, where assets from both distribu-
tional tails are ultimately predicted to belong to percentiles in the lower (y,ŷ = [0, 20]%) range.
For the REV signal, these clusters are similar but opposite in size; the upper cluster covers
samples from the (y = [0, 20]%,ŷ = [80, 100]%) and (y = [90, 100]%,ŷ = [80, 100]%) ranges the
and the lower cluster covers the (y = [0, 10]%,ŷ = [0, 10]%) and (y = [90, 100]%,ŷ = [0, 10]%)
ranges. This double-cluster phenomenon is dubbed a ’bimodal’ prediction structure due to the
high empirical density in the tails of the predicted (ŷ) distribution. This phenomenon has al-
ready been identified for these benchmarks as well as various other factors/characteristics by
Han [2022]. Practically, it is undesired signal property in terms of portfolio construction as the
biggest winners and biggest losers will end up in both the predicted upper (D9 & D10) and
bottom decile (D1 & D2) portfolios.

This bimodal structure should be interpreted as the signal’s general inability to properly distin-
guish the assets with a tail (i.e. very low or very high) ranking. Notice that this distinguishing
ability between tails is limited and asymmetric between the clusters’ percentile ranges. Indeed,
note that for the MOM signal we observe a relatively larger lower (i.e. low ŷ-coordinate) clus-
ter range than for the upper cluster. This can be interpreted as this signal having a higher
inclination to predict losers (with lower predicted tail ranks, ŷ ≈ 10) over winners (with higher
predicted tail ranks, ŷ ≈ 90). For the REV signal we observe the opposite case, meaning this
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signal has a higher inclination to predict winners over losers. On the other hand, it is important
to note that the bimodal structure also means that the signal does contain the power to predict
whether samples will belong to these tails (i.e. (y ≈ 10 %,ŷ) or (y ≈ 90%,ŷ) range) or not (i.e.
(y = [20, 80]%,ŷ) range). In other words, the signal exhibits the power to distinguish assets with
’extreme’ tail ranks from assets with non-tail (i.e. more center) ranks, but it cannot distinguish
properly between these tails. Finally, we observe that for both benchmarks no clearly identifi-
able increasing trend pattern exists over the true percentile (y = [35, 80]%,ŷ) range as indicated
by the flat/horizontal solid black line. This means that these benchmark signals also do not
exhibit a distinctive ability to consistently distinguish assets within this center rank range. Note
that in this section we purposefully refrain from concluding on the ratio between the correct
and incorrect samples within empirical clusters (and the heatmap in general) as we intend to
exclusively analyse this on portfolio level in subsequent sections.

Figure 4.4: Empirical distribution for the rtnXmkt − Linear system configuration over the period
1995-2022 in the CRSP universe. Expanding window applied for the linear system configuration with
training period starting at 15 years in 1975-1990, validation period of constant 5 years 1990-1995, refit
every three years. Mean predicted rank for that target decile and the standard deviation of the predicted
decile for that target decile in solid lines and dashed black lines respectively. Note, that a consistent
colorbar numerical scale is used for all empirical distribution heatmaps across configurations.

We proceed with this analysis by considering the empirical distribution structure for the linear
(rtnXmkt−Linear) system configuration. The empirical rank distributions of this configuration
is given in Figure 4.4 and aggregated over every month in Figure D.10. Examining Figure 4.4, we
observe a distributional X-like pattern similar to that of the non-parametric MOM and REV
benchmarks as given in Figure 4.2 and Figure 4.3 respectively. Deviation from this structure
is not expected as the linear system can only adjust the relative weighting between the market
inefficiencies instead of exploiting additional ones. Recall from section 4.1, that this configuration
was unable to attain a significantly improved Spearman correlation coefficient compared to the
MOM benchmark. In with this result, we observe that the empirical structure for this system
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consists of a larger lower cluster resembles the MOM structure more than the REV signal.

Figure 4.5: Empirical distribution grid based on target and prediction deciles for the CRSP and S&P500
universes in the out-of-sample period 1995/01-2022/12. Expanding window applied for the complex
system configuration with training period starting at 15 years in 1975-1990, validation period of constant
5 years 1990-1995, refit every three years. Mean predicted rank for that target decile and the standard
deviation of the predicted decile for that target decile in solid lines and dashed black lines respectively.
Note, that a consistent colorbar numerical scale is used for all empirical distribution heatmaps across
configurations.

We continue this analysis by considering the empirical distribution structure for the complex
system configurations given in Figure 4.5, Figure D.12, Figure D.13 and Figure D.14. We only
present the map for the CR−CLF here as their structures are indistinguishable in shape. For
these complex configurations, we identify a different, but similarly bimodal prediction struc-
ture. In this case, the structure resembles an ’inverted-U’ shape with two predictive modes.
The first predicted mode/cluster contains samples from the (y = [0, 20]%,ŷ = [0, 20]%) and
(y = [90, 100]%,ŷ = [0, 20]%) percentile ranges. The second cluster is less well defined, but ap-
proximately contains samples with (y = [45, 75]%,ŷ = [70, 100]%) percentile range. Within this
second cluster, the flat black lines indicate an inability to properly distinguish the true ranks
of the assets contained in this cluster. Thus, notice that the first cluster essentially contain
all samples with true extreme/tail rankings and the second cluster contains assets with true
center ranks. This result clearly differs to that of the linear/non-parametric configurations in
the fact that those configurations presented two clusters/predicted modes which contained a
mix of assets from both true tails. On the other hand, it is not immediately apparent from these
figures whether the complex configurations improve in distinguishing assets with extreme/tail
rankings from those with non-extreme/center rankings. What is clear is that these complex
configurations have the unique ability to allocate samples with true tail ranks exclusively to a
single cluster.
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All in all, the empirical structures presented Figure 4.4 and Figure 4.5 constitute three initial
findings. First of all, all considered signals (parametric & non-parametric) exhibit some ability
to distinguish assets with true center ranks from those with extreme/tail ranks. Secondly, the
complex configurations do not show an immediate and explicit improved ability to distinguish
assets with true extreme/tail rankings from each other. These complex configurations exclusively
predict assets with true extreme/tail ranks as losers (i.e. low ŷ-coordinate). This means they
differ from the linear/non-parametric signals which exhibit a split empirical structure with two
predictive clusters containing a mix of assets from both true tails. From an econometric point
of view, this means that any additional (nonlinear) market inefficiencies identified by the com-
plex systems do not substantially improve the systems ability to distinguish extremely positive
from extremely negative ranks. Rather, they are uninformative or they might further improve
distinguishing between extreme/tail and non-extreme ranks. Thirdly, this exclusive ’loser’ (i.e.
low ŷ-coordinate) prediction of all true extreme ranks displayed by the complex configurations
apparently achieves a significantly higher Spearman correlation coefficient score. This statement
follows from the results in Table 4.1 and Table D.5 discussed in section 4.1 regarding the opti-
mization statistics. Specifically, this shows that the Spearman correlation coefficient optimized
in this research allows for the near-complete ’sacrifice’ of one distributional tail. Specifically,
this sacrifice is present in Figure 4.5 by recognizing that almost none of the assets with a higher
true percentile ranks (i.e. y > 90) are correctly predicted as high percentile ranks (i.e. large
ŷ-coordinate). Hence, the system will accumulate a substantial losses in this upper true distri-
butional tail. It is important to recognize that this is not an erroneous outcome, because the
Spearman correlation coefficient scores overall performance and is not concerned about the loss
asymmetry/imbalance of a solution. However, it serves as a stark reminder that optimization
of this metric means such a ’sacrificial’/asymmetric solution is a possible outcome.

Figure 4.6: Mean Spearman correlation coefficient contribution aggregated per target percentile for the
MOM , REV benchmarks and rtnXmkt − Linear, CR − CLF system configuration over the out-of-
sample period 1995-2022 in the CRSP universe.

To complete this section we attempt to the quantify the impact of the empirical predictive
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structure to the Spearman correlation coefficient at a rank percentile level. To this end, we
consider the Spearman correlation coefficient contribution per target percentile as visualized in
Figure 4.6. This figure contains the aggregated mean contribution per target percentile over all
months in the out-of-sample period. In other words, such a figure visualizes the average contri-
bution of all samples with a specific true percentile to the total Spearman correlation coefficient.
Mathematically, we can represent the target percentile-specific (LSPRTP

) and sample-specific
(LSPRt,i) Spearman correlation coefficient contribution as,

LSPRTP
=

∑Nmonths
t

∑
∀j∈ITP,t

LSPRt,j

Nmonths

where,

LSPRt,i =
ỹt,i · ˜̂yt,i
σytσŷt

(4.1)

where ỹt,i and ˜̂yt,i indicates the demeaned and ranked target and prediction for asset i at time
step t respectively. σyt , and σŷt denote the standard deviation of the array of ranked targets
and ranked predictions for time step t respectively. Nmonths denotes the number of months in
the out-of-sample period. TP is the mathematically notation for rank percentile under consid-
eration in the integer range [1, 100]. Consequently, ITP,t denotes the subset of asset indices i
at time step t contained in target percentile TP . Besides the aggregated mean contribution,
figures concerning the contribution per target percentile for every month separately are given in
Figure D.17, Figure D.18, Figure D.21 and Figure D.22 for the MOM , REV , rtnXmkt−Linear
and CR−CLF configurations respectively. Finally, for these mean contribution arrays (SPRTP )
we present aggregated statistics in Table 4.2.

Statistics CR-CLF MOM REV rtnXmkt− Linear

sum (≈ LSPR) 0.00292 0.00200 0.00054 0.00198
mean 0.00003 0.00002 0.00001 0.00002
std 0.00015 0.00010 0.00004 0.00006
max 0.00057 0.00049 0.00017 0.00030
min -0.00052 -0.00041 -0.00021 -0.00023
sum(x|x > 0)
i.e. ’sum of positives’ 0.00618 0.00339 0.00129 0.00247

sum(x|x < 0)
i.e. ’sum of negatives’ -0.00325 -0.00139 -0.00075 -0.00049

Custom statistics CR-CLF MOM REV rtnXmkt− Linear

sum(x|x>0)
|sum(x|x<0)|
i.e. ’ratio of sums’

1.90153 2.43885 1.72000 5.04082

Sharpe ratio 0.18975 0.20657 0.13470 0.34328
Sortino ratio 0.25444 0.26441 0.13677 0.42704

Table 4.2: Mean Spearman correlation coefficient contribution statistics aggregated per target percentile
over the out-of-sample period 1995-2022 in the CRSP universe. Statistics obtained through aggregation
of results presented in Figure 4.6.

If we analyse Figure 4.6, we observe similar contribution structure for the linear configuration and
the MOM benchmark. This aligns with the similar empirical structure observed in Figure 4.4
and Figure 4.2, where we noted that both signals show an asymmetric inclination to predict losers
(i.e. low ŷ-coordinate). Figure 4.6 shows us that this inclination invokes a positive contribution
in the left true tail (lower ranks) and a negative contribution in the right true tail (higher
ranks). Table 4.2 shows us that this inclination is beneficial overall, negative contributions
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(sum(x|x < 0)) are offset by greater positive contributions (sum(x|x > 0)). For the REV
this empirical structure is similar, but all the observations are reversed compared to the MOM
signal. Note that although the contribution structure of the linear and MOM signal are similar
in sign consistently, the linear configuration is lower in magnitude. This observations aligns
with the expectation that the linear configuration optimizes the relative weighting between the
inefficiencies captured by MOM and REV rather than identifying additional ones. On the other
hand, we observe that the contribution structure for the complex configuration is consistently
greater in magnitude. Recall from Figure 4.5 that this configuration sacrifices all high tail
ranks for the correct prediction of all lower tail ranks. Consequently, in Figure 4.6 we observe
the relatively large positive contribution in the y = [0,20] % target percentile range and large
negative contribution in the y = [85,100] % range. Interestingly, the contributions in the true
center rank ( y =[20,85]%) range are more pronounced in magnitude. While for the linear and
non-parametric signals this range carries a relatively low total contribution, for this complex
system the sum of positive contribution over the y ≈[20,50]% range clearly offsets the sum of
negative contribution over y ≈[50,85]% . All in all, in Table 4.2 we indeed observe that the
unconditional sum of the complex configurations is superior and that the ’sacrificial’ solution is
more asymmetric/imbalanced than that of the other signals. This asymmetry is clearly captured
in statistics such as the conditional contribution sums (sum(x|x > 0) & sum(x|x < 0)), standard
deviation, minimum and maximum statistics.

We end this section by presenting the conditional sum ratio (’ratio of sums’), Sharpe and Sortino
ratio over the Spearman contribution array in Table 4.2. These are included to provide alter-
native statistics to score the relationship between predicted and true asset rankings. Con-
trary to the Spearman correlation coefficient, these alternative statistics also score the asymme-
try/imbalance of the solution. Optimization of such statistics has been attempted, yet resulted
in unstable and/or vanishing gradients. Therefore, further investigation into the virtues of
optimizing these metrics is left to future work. If we examine these statistics in Table 4.2,
we observe that the linear system is consistently superior, suggesting that this configuration
achieves a better trade-off between positive and negative contributions.

4.3 Cross-sectional predictive ability

In this section, we attempt to further analyse the empirical asset ranking ability of the complex
configurations through an investigation into their predictive power in the presence of other
signals. Therefore, we employ the use of Fama-Macbeth regressions. We apply this in the
cross-section of assets over the entire out-of-sample period for the CRSP universe. Similar to
previous sections, we focus on the CR−CLF configuration due to the high resemblance across
the complex configurations.

Recall from the empirical rank distribution figures in section 4.2, that the complex configurations
differ from the linear/non-parametric signals in the ability to allocate samples with true tail
ranks to a single lower prediction cluster. This means that these configurations achieve greater
similarity in terms of the prediction ŷ for assets with true tail rankings (i.e. low or high y). It is
possible that this ’allocation’ ability and the consequent empirical ’inverted U’-shape stems from
a large negative contribution attributed to a feature that approximates the absolute magnitude
of the target variable. Mathematically, this can be represented as,

ŷt,i ∝ ξ · ût,i where ut,i = |y|t,i (4.2)

where yt,i and ŷt,i are the true and predicted rank of asset i at time step t respectively. ut,i and
ût,i denote the true and predicted absolute rank respectively. ξ denotes the coefficient attributed
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to the absolute rank prediction variable. Thus, we hypothesize that these configurations acquire
an accurate approximation of the absolute rank ût,i and that this feature is attributed a negative
contribution to the ultimate rank prediction (ŷt,i) i.e. ξ < 0. Given this hypothesis, we attempt
to interpret this ut,i variable. From an econometric point of view, one can identify a close
relationship between ut,i and the latent volatility σt,i of an asset. If we entertain this relationship,
we assume that the complex configurations can indeed acquire an accurate approximation of
ut,i, i.e. ût,i. The reason for this is two-fold. First of all, it is well established in econometrics
that volatility of equity returns can adequately be predicted through model definitions such
as the Generalized Auto-regressive Conditional Heteroskedasticity (GARCH) model proposed
by Bollerslev [1986]. Secondly, Goodfellow et al. [2016] explains/demonstrates the ability of
complex neural networks to learn nonlinear relationships such as the squared asset return, r2t,i.
Thus, these complex configurations have the ability to establish a ût,i feature and this feature
forms an adequate approximation of ut,i. Here, we interpret ut,i as the asset volatility assume
it is adequately predictable.

In the remainder of this section, we intend to formally conclude on this hypothesis mathemati-
cally presented in Equation 4.2. Therefore, we introduce an additional volatility-oriented signal
based on the squared returns. Similar to the CR − CLF and rtnXmkt − Linear signals, in
this signal we also opt for the use of excess market returns to reduce market timing effects as
addressed in section 2.2. The use of these corrected returns implies an assumed CAPM − β
coefficient equal to 1. Hence, we interpret this volatility signal as an approximation for the id-
iosyncratic rather than systemic risk of the asset. However, we recognize that this interpretation
is imperfect, due to the assumed rather than estimated CAPM − β coefficient. We define this
volatility-oriented signal as the 12-month exponentially weighted volatility estimate, σ̂EWM12t,i .
This can be mathematically represented as,

σ̂EWM12t,i =
t−1∑

j=t−12

(1− ζ)t−1−j · ζ · (rj,i − rj,m)2 (4.3)

where rt,i denotes the return of asset i at time step t. rt,m represents the equally-weighted
market return at time step t. We opt for a ζ decay rate magnitude of 0.15, resembling a
common magnitude of the α1 innovation term coefficient in a conventional GARCH(1,1) model
as proposed by Bollerslev [1986]. We note that in practice, the conclusions of this section are
quite robust to this parameter. We attribute this robustness to the focus of this analysis on the
rank implied by this signal instead of the absolute magnitude. In the remainder of this analysis,
this additional signal is referred to as volXmkt− EWM12.

rnorm CR− CLF rtnXmkt− Linear volXmkt− EWM12

rnorm 1 0.081 (0.112) 0.044 (0.08) -0.074 (0.144)
CR− CLF 1 0.465 (0.166) -0.734 (0.078)
rtnXmkt− Linear 1 -0.095 (0.176)
volXmkt− EWM12 1

Table 4.3: Mean and standard deviation for Spearman correlation coefficients between ranked signals
and target variables, computed over every month. Lower triangular section omitted. Monthly statistics
obtained from CRSP data in the out-of-sample period of 1995/01-2022/12, totalling 335 months. Incon-
sistent sample size over months as shown in Figure 3.1. Expanding window applied for the CR − CLF
and rtnXmkt − Linear system configurations with training period starting at 15 years in 1975-1990,
validation period of constant 5 years 1990-1995, refit every three years.

To continue, we consider the Spearman correlation coefficient statistics between the signals and
target in Table 4.3. Note that the correlation between the target rnorm and the CR − CLF
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and rtnXmkt − Linear signals was already presented in Table 4.1, but is shown here again.
In Table 4.3, we observe negative correlation between the target (i.e. next period rank) and
volXmkt−EWM12 signal. Furthermore, we observe a stable and substantially negative mean
correlation between the CR − CLF and volXmkt − EWM12 signals. This observation aligns
with our hypothesis mathematically presented in Equation 4.2. Indeed, from this result it is
likely that the complex configurations identify a ut,i feature and that this feature can be inter-
preted as volatility. Moreover, we notice a mean positive correlation between the CR − CLF
and rtnXmkt− Linear signals which is likely based on the comparable lower predicted cluster
of assets with true tail ranks in both signals as discussed in section 4.2. It is important to ac-
knowledge the difference in the mean correlation magnitude between the rtnXmkt−Linear and
volXmkt−EWM12 signals and the rtnXmkt−Linear and CR−CLF signals (i.e −0.095(0.176)
vs. 0.465(0.166) ). This is because this difference implies that the CR − CLF signal combines
both these signals instead aligning only with volatility.

To complete this section, we conduct two Fama-Macbeth style regressions. In the first regres-
sion, we consider whether the three prediction signals explain the cross-sectional excess-market
returns. This approach is equal to that of a conventional Fama-Macbeth procedure, except for
the use of excess-market instead of crude returns. This correction is used anyway to invoke
consistency as all signals are based on these corrected returns. For the second regression, we
consider whether the three prediction signals explain the cross-sectional ranks. Note that for
this second regression, we apply the ’Gaussian ranking’ transformation procedure to all input
and target variables involved in the regression. This procedure is introduced in subsection 2.3.1
and used for the target variable rnorm definition in Equation 2.2. In this procedure, we rank
variables to uniform distribution (bounded by (0, 1)) after which we transform them to standard
normal through the inverse Gaussian CDF mapping (Φ−1). Consequently, we omit an intercept
term from this second regression as this transformation procedure removes any existing level
in these variables. The results of the first and second regression are presented in Panel A and
Panel B of Table 4.4 respectively.

Panel A: return target
Inputs \ Target rtnXmkt rtnXmkt rtnXmkt rtnXmkt rtnXmkt rtnXmkt rtnXmkt

Intercept 0.003 (0.057) 0.003 (0.073) 0.003 (0.081) 0.003 (0.058) 0.003 (0.078) 0.003 (0.080) 0.003 (0.080)
CR− CLF 0.002 (2.018) 0.000 (1.327) 0.006 (1.837) 0.004 (0.997)
rtnXmkt− Linear 0.004 (1.633) 0.004 (0.787) 0.005 (1.696) 0.003 (0.720)
volXmkt− EWM12 -0.002 (-0.956) 0.006 (0.595) -0.002 (-0.752) 0.005 (0.307)

Panel B: rank target
Inputs \ Target rnorm rnorm rnorm rnorm rnorm rnorm rnorm
Intercept
CR− CLF 0.081 (5.102) 0.075 (4.128) 0.057 (2.487) 0.031 (1.062)
rtnXmkt− Linear 0.047 (2.938) 0.013 (0.689) 0.043 (2.682) 0.031 (1.492)
volXmkt− EWM12 -0.074 (-4.676) -0.032 (-1.365) -0.071 (-4.373) -0.049 (-1.808)

Table 4.4: Fama-Macbeth style regression mean and t-statistic results. Regression results for next
periods excess-market returns (rtnXmkt) target in panel A and for ’Gaussian ranked’ returns (i.e. rnorm,
normalized rank definition) in panel B. Both panels utilize Newey-west standard errors. For panel A,
conventional standardization is applied to input variables and intercept term is included. For panel B,
Gaussian ranking procedure is applied to both target and input variables. Hence, intercept term is
omitted for this case. Both panels based on CRSP data in the out-of-sample period of 1995/01-2022/12,
totalling 335 months. Inconsistent sample size over months as shown in Figure 3.1. Expanding window
applied for the CR − CLF and rtnXmkt − Linear system configurations with training period starting
at 15 years in 1975-1990, validation period of constant 5 years 1990-1995, refit every three years.

To start, we consider Panel A in Table 4.4 and observe that the CR − CLF predictions is
the only signal attaining significant t-stat at a 5% level when regressing the target on a single
signal. However, we also observe that this predictive power is subsumed in the presence of
the linear system’s predictions. This first analysis extends the analysis conducted in Murray
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et al. [2021], who show through similar Fama-Macbeth regressions that their MLER system’s
predictions (dubbed CR − CLF in this research) remain significant after including the set of
cumulative returns (CR inputs as defined in subsection 2.3.1) as additional regressors. The
general significance observed in Panel B, but not in Panel A can have two possible explanations.
First of all, the parametric systems are optimized to predict ranks and not returns. Secondly, in
the regression on returns the relationships between variables is likely more noisy due to outliers
and nuances in scale. On the contrary, in the ranked regression the variables have symmetric
and consistent scales which might lead to an amplification of any existing relationships.

To continue, we consider Panel B in Table 4.4. We observe that all three signals are significant in
a single independent variable regression case, with coefficient magnitudes inline with Table 4.3.
Moreover, the significantly negative coefficient for the volXmkt − EWM12 signal indicates a
negative relationship between the future rank and idiosyncratic risk as estimated by exponen-
tially weighted excess market return. This aligns with the works by Ang et al. [2006] and Chen
and Petkova [2012], who identify this same negative relationship between idiosyncratic risk and
returns in the cross-section. Therefore, we reflect to the hypothesis in Equation 4.2 and conclude
from these insights that this hypothesized proportional relationship holds and is likely due to
its beneficial effects on the predictive ability of ŷt,i with regard to yt,i.

We proceed with the remaining observations of Panel B in Table 4.4. When we consider both
rtnXmkt − Linear and volXmkt − EWM12 in the regression, we observe that both signals
remain significant. This is to be expected as these signals contain information from different
information sets, namely related to the first and second moment respectively. This statement is
supported by their low correlation in Table 4.3. Furthermore, we note that the predictive power
of CR−CLF is maintained in the presence either the rtnXmkt−Linear and volXmkt−EWM12
signal, but not if both are included in the regression. Therefore, we conclude that the CR−CLF
signal contains no additional predictive power in the cross-section of ranks over the signal already
contained in the linear and volatility related aspects. In other words, if the CR − CLF signal
contains other nonlinear and/or interactive aspects, their predictive power in the cross-section
is limited. On the other hand, the fact that in this case no signal is significant as well as the
substantial correlations in Table 4.3 indicates a potential high level of multicollinearity. Attempts
to overcome this potential multicollinearity such as the application of principle components
analysis, where unsuccessful in further identifying and decoupling the nonlinear/interactive part
of the CR− CLF signal. Therefore, this analysis is omitted and left as future work.

All in all, through the analysis of this section we find a limited cross-sectional predictive ability
of the CR − CLF signal in the presence of a linear and volatility based signal. On the other
hand, the analysis showed that predictive power of the CR − CLF signal is subsumed after
including both and not just either the linear- and volatility-based predictions. Furthermore, we
hypothesized a volatility-oriented feature could explain the empirical ’inverted U’-shape for the
complex configuration. Indeed, we observed high correlation between this complex configuration
and a volatility-oriented signal. We denoted that complex neural networks present the ability to
access volatility related features and that these features themselves are inherently predictable in
equity returns. Finally, we confirm our hypothesis through the fact that the established negative
relationship between idiosyncratic volatility and returns by Chen and Petkova [2012] is clearly
apparent in our regression results.

4.4 Decile portfolio performance

Starting in this section we continue the analysis in our research on portfolio level. In this sec-
tion, we start that analysis with an examination of the equally-weighted decile portfolios. The
portfolios’ positions are based on the rank predictions from the parametric and non-parametric
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signal definitions according to the methodology discussed in section 2.1. It is important to
recognize how this analysis on portfolio level is connected to the results presented in the em-
pirical distribution heatmaps of section 4.2. The empirical heatmaps provide us with a grid
of predicted and true ranks (i.e. (y, ŷ)), where we recall that the ’true rank’ is based on the
next periods return. On the other hand, the analysis on portfolio level considers the aggregated
asset performance achieved by a portfolio constructed on the predictions (ŷ) in terms of various
performance metrics. In addition, notice that this analysis is less granular since it considers
deciles instead of percentiles. With regard to performance metrics, we report the annualized
mean return, volatility and the Sharpe ratio (all excess risk-free rate) for the equally-weighted
decile portfolios for both universes in Figure 4.7, Figure 4.8 and Figure D.4 respectively. The
accompanying numerical values can be found in Table D.7. To aid in a comparative analysis we
also present the performance of the reversal (REV ) and residual momentum (RESMOM) fac-
tor portfolio. The latter is included instead of its MOM counterpart, due general superiority in
terms of cumulative return and drawdowns in the CRSP universe as is visible in Figure 3.2 and
Figure 3.3. Note that the decile performance statistics for the non-parametric market, MOM ,
RESMOM and REV portfolios are provided in section D.1.

Figure 4.7: Annualized mean excess (risk free rate) return across equally-weighted deciles in the CRSP
and S&P500 universes in the out-of-sample period 1995/01-2022/12. Expanding window applied for the
complex system configurations with training period starting at 15 years in 1975-1990, validation period
of constant 5 years 1990-1995, refit every three years. Histogram values correspond to those in Table D.7.
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Figure 4.8: Annualized excess (risk free rate) volatility across equally-weighted deciles in the CRSP
and S&P500 universes in the out-of-sample period 1995/01-2022/12. Expanding window applied for the
complex system configurations with training period starting at 15 years in 1975-1990, validation period
of constant 5 years 1990-1995, refit every three years. Histogram values correspond to those in Table D.7.

To start this analysis, in these figures we observe that the linear parametric configurations
(rtnXmkt −WLS & rtnXmkt − Linear) resemble each other closely in terms of general per-
formance metric structure across the deciles, yet show some numerical dissimilarities at specific
deciles. This observation is consistent across universes. Hence, we infer that implied estimated
parameters generally match which is expected due to the equivalence between the optimization
of the MSE on ranks and Spearman correlation coefficient as discussed in subsection 2.4.1 and
addressed in chapter B. Furthermore, notice from Figure 4.7 that these linear configurations as
well as the non-parametric REV signal achieves the lowest and highest mean excess return in
D1 and D10 respectively. This observation implies that the D10 portfolios on average correctly
consist of winners with larger cumulative positive returns than the cumulative negative return
of some of the losers. This statement does not hold on average in reverse for D1, because this
portfolio does not attain a negative cumulative return on average. Since we observe a clearly
positive mean return for the D10-D1 portfolio on average, this still means that the asymmetric
mix of tail ranks in the two clusters identified in Figure 4.3 and Figure 4.4 indeed results in ben-
eficial results on portfolio level. In addition, notice that for the linear parametric configurations
an increasing trend over the deciles can be identified. Hence, we deem the relative weighting
of market inefficiencies implied by the estimated parameters an adequate fit. Relating this to
Figure 4.4, this means that although there is noisier mix of true ranks within the predicted
center percentiles, the system shows an adequate ranking ability on decile portfolio level.

Next, we consider the four complex configurations and note that across the three portfolio
performance metrics these configurations present a generally identical structure over the deciles.
The clear exception is exhibited by the CR−CAF configuration which depicts consistent inferior
performance. This general alignment serves a further evidence that the solution implied by
these configurations is not substantially different. Hence, in the remainder of this analysis we
consider the performance of CR − CLF configuration as the representative solution obtained
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from our machine-learning based complex configurations. For the CR − CLR configuration,
we observe the lowest return on average in the D1 portfolio. Although the mean return is also
not negative on average, we still deem this beneficial feature of this configurations. Similarly
to the linear configuration, the imbalanced mix of true tail ranks observed in Figure 4.5 for the
lower predicted percentiles apparently still constitutes a positive cumulative return. Moreover,
note in this case the D10 portfolio does not clearly achieve the largest cumulative return on
average. Recall from Figure 4.5, that the predicted upper percentiles contain a higher relative
empirical density of center ranks than the linear/non-parametric configurations. Furthermore,
the CR − CLR configuration fails in obtaining an increasing excess-return pattern over the
portfolios. In fact, we observe a peak in D2 and noisy pattern between from D3 to D10.
Therefore, from the results in Figure 4.7 we conclude that this empirical ’inverted-U’ shape
exhibited by the complex configurations is undesirable at the decile portfolio level in terms of
this performance metric. Specifically, recall from section 4.3 that complex configurations achieve
this empirical ’inverted-U’ shape through the use of volatility-oriented features. Therefore, we
further conclude that the use of these volatility-oriented features for rank prediction purposes
might be beneficial on cross-sectional level, yet not on the aggregated portfolio level. Generally,
this serves as evidence against the general ranking ability of these configuration at an aggregate
portfolio level, which seemingly stands in contrast to the significant superiority in terms of
Spearman correlation coefficient observed in Table 4.1 compared to the linear/non-parametric
signals. From an econometric practitioners perspective, this means that the use of this metric as
a tool to predict/measure differences on aggregated portfolio level is limited. Specifically, we do
not recommend the use of this metric to measure/predict portfolio performance for predictions
from systems with distinctly different empirical structures such as the ’X’-shape and ’inverted
U’-shape.

We extend this analysis by considering the annualized excess volatility across deciles in Fig-
ure 4.8. In this case, we observe a prominent monotonically decreasing volatility skew for the
complex configurations. Thus, the predictions from these systems invoke a volatility-ranked
structure across decile portfolios. On the other hand, the linear and non-parametric signals do
not present this volatility ranking property. Instead, they show a non-uniform but more sym-
metric volatility structure with an increase in magnitude at the edge deciles. For the complex
configurations, we can explain this volatility skew by considering the regression and correlation
results in section 4.3. In this section, we establish that the complex configurations indeed use
volatility-based features in their ranking. Specifically, we identify that these volatility features
command a negative contribution to the asset rank prediction in line with the work by Chen
and Petkova [2012], which results in the observed volatility skew at portfolio level. Furthermore,
we can also connect this observation to the empirical heatmaps in section 4.2. For the com-
plex case, the ’inverted U’-shape implies all extreme ranks are allocated to the lower predicted
percentiles. On a portfolio level this means that the assets in the lower predicted percentiles
present ranks/returns at the tails of the true distribution. In addition, in this same empiri-
cal structure we notice that for a higher predicted percentile the range of true ranks reduces
(centered around the approximate true 50th rank percentile). This reduction is not indefinite,
but continues until the approximate predicted 80th percentile after it stabilizes to the true per-
centile rank y ≈ [40, 80]% range as is visible in Figure 4.5. On the other hand, the empirical
’X’-shape for the linear and non-parametric signals implies a more balanced/symmetric division
of ranks/returns over the predicted percentiles. Therefore, we conclude on two findings exhib-
ited by the complex configurations. First, the prominent volatility-skew is directly related to the
asymmetry/imbalance in (extreme) rank allocation at lower predicted percentiles. Secondly, the
decreasing and stabilizing trend in volatility is related to the decreasing and stabilizing range of
true ranks for a higher predicted percentile.

For completeness, we compare performance between the CRSP and S&P500 universes. For the
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S&P500 universe, we do observe that the complex system configurations obtain an improved
increasing pattern compared to the CRSP universe. Recall from Table 4.1 that significant supe-
riority for the complex configurations in terms of Spearman correlation coefficient is exclusively
present in the CRSP universe. If we examine Figure 4.7, we observe an improved trend for
the complex configurations in the S&P500 universe compared to the CRSP universe, yet the
general structure across deciles for these complex configurations is not explicitly/immediately
different to that of the linear and non-parametric signals. Generally, the higher resemblance
across all signals suggests that the amount of exploitable market inefficiencies might be reduced
in this larger market capitalization universe as theorized by Fama and French [2008], Fama and
French [2018] and Hou et al. [2020]. On the other hand, Figure 4.8 shows us that the complex
configurations do show differentiation in terms of volatility-skew across decile portfolios in the
S&P500 universe. All in all, these result serves as further evidence against the transfer learning
capabilities of these complex systems in terms of parameter estimation in the CRSP universe
and subsequent out-of-sample prediction in the S&P500 universe.

Figure 4.9: Mean monthly CAPM-β coefficient (i.e. market factor exposure) over deciles in the CRSP
and S&P500 universes in the out-of-sample period 1995/01-2022/12. CAPM-β coefficient estimated over
36 months of data for every asset individually. Expanding window applied for the complex system
configurations with training period starting at 15 years in 1975-1990, validation period of constant 5
years 1990-1995, refit every three years. Monthly decile average CAPM-β obtained by taking the average
of the CAPM-β coefficient (36-month estimation window) over all assets contained in that decile for that
month t.

To complete this analysis, we consider to what extent the complex configurations can decouple
risk. To this end, we consider the average CAPM −β coefficient over all assets contained in the
deciles in Figure 4.9. This coefficient is estimated over 36 months of data. This decile statistic
can be interpreted as the average sensitivity to systemic risk. Recall that in this research we
opt for the use of excess market returns to limit effect related to market timing. In fact, in
section 4.3 we use this definition to define a volatility-based signal which should serve as an
approximation of idiosyncratic risk. In the works by Ang et al. [2006] and Chen and Petkova
[2012], this idiosyncratic risk is identified to hold a negative relationship to future return and not
the systemic risk sensitivity. Indeed, from the cross-sectional regression results in Table 4.4, we
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observe a that our idiosyncratic volatility estimate commands a negative contribution to return
prediction. Now, if we consider Figure 4.9, we see that the complex configurations achieve a
CAPM − β-skew similar in shape to Figure 4.8. For the linear and non-parametric signals this
shape is approximately symmetric. Consequently, the linear and non-parametric signals attain
a negligible net CAPM − β exposure, while for this complex configuration this net exposure
is substantially negative. This observation extends to both universes. As such, the use of
excess market returns achieves the desired result for the linear parametric configuration. On the
other hand, for the complex configurations this is clearly not the case. This can be explained
through the increased importance of volatility-related features for the complex configurations
established in section 4.3. Namely, these configurations access the ability to setup volatility-
related features for prediction purposes, yet do not have the ability to decouple these into a
systemic and idiosyncratic part. Hence, there is likely a ’spillover’ effect of systemic risk into
the idiosyncratic risk approximation. This is explanation is plausible if one considers that the
complex systems only access the information contained in a single asset in their prediction. They
do not contain the essential cross-sectional information required for an adequate decoupling of
risk such as market portfolio volatility. To conclude, the results in Figure 4.9 entail that the
intention to reduce market timing through the use of excess market returns is not successful for
the complex configurations. Specifically, we attribute this to their increased focus on volatility-
related features and an inability to decouple the idiosyncratic and systemic risk components.

4.5 Focal portfolio performance

In this section, we further expand our analysis on portfolio level by considering the perfor-
mance of the focal D10 minus D1 (i.e. D10-D1) equally-weighted portfolios. The summarizing
performance of the two linear and four complex configurations over the entire out-of-sample
period [1995, 2022] is provided in Table 4.5. In addition, we provide the correlations between
the portfolios in this period and across the universes in Figure 4.14. Finally, we analyse D10-D1
portfolios’ performance over time through analysis of the cumulative return in Figure 4.10 and
Figure 4.12 and drawdown in Figure 4.13.

Configuration mean Sharpe Configuration mean Sharpe
CR CLF32 x CRSP 4.021 0.171 CR CLF32 x S&P500 4.910 0.247
CP CLF32 x CRSP 7.710 0.348 CP CLF32 x S&P500 8.287 0.431
CR CAF32 x CRSP -3.268 -0.117 CR CAF32 x S&P500 0.447 0.018
CP CAF32 x CRSP 5.034 0.219 CP CAF32 x S&P500 4.587 0.230
rtnXmkt-Linear x CRSP 11.536 0.763 rtnXmkt-Linear x S&P500 6.183 0.296
rtnXmkt-WLS x CRSP 9.178 0.543 rtnXmkt-WLS x S&P500 4.328 0.241
Mkt-RF (CRSP) 13.910 0.678 Mkt-RF (S&P500) 13.333 0.785
SMB (CRSP) 1.231 0.112 SMB (S&P500) 2.410 0.369
HML (CRSP) 4.254 0.259 HML (S&P500) -0.732 -0.070
MOM (CRSP) 0.474 0.019 MOM (S&P500) 1.820 0.063
REV (CRSP) 14.423 0.670 REV (S&P500) 4.550 0.224
RESMOM (CRSP) 3.170 0.150 RESMOM (S&P500) -0.012 -0.000
LowVol (CRSP) -7.198 -0.290 LowVol (S&P500) -1.581 -0.050

Table 4.5: Equally-weighted D10-D1 portfolio performance statistics for the investigated configurations
and common risk factor portfolios; Annualized excess (risk-free rate) mean return [%] and Annualized
excess (risk-free rate) Sharpe in the CRSP and S&P500 universes in the out-of-sample period 1995/01-
2022/12. Expanding window applied for the complex system configurations with training period starting
at 15 years in 1975-1990, validation period of constant 5 years 1990-1995, refit every three years.

To start, we examine the summarizing performance of the portfolios in Table 4.5. In previous
sections, we identified no immediate difference in the prediction structure between the complex
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configurations in terms or empirical density or portfolio performance across deciles. For the
focal portfolio, the differences are more pronounced. We observe that in both asset universes
the complex configurations using rank based inputs (i.e. CP−) as well as the systems with a
LSTM subsystem (i.e. −CLF ) outperform their counterparts in terms of mean excess return and
Sharpe ratio. On the other hand, we observe in both universes that the linear configurations’ and
REV benchmark portfolios show competitive or even superior performance on the two metrics.
Furthermore, note that the MOM and RESMOM factor portfolios score poorly on the metrics.
Finally, we recognize that in the CRSP universe the low volatility factor (LowV oL) achieves
stark negative scores on the performance metrics. One should recall that this D10-D1 portfolio
acquires a net negative CAPM-β exposure position by definition. Therefore, the fact that this
portfolio attains substantial losses suggests that such a strategy does exploit sizeable market
inefficiencies in this universe as theorized by Blitz and Van Vliet [2007]. However, we note
that the negative performance metrics suggests an inversion of portfolio positions. In addition,
we observe the diminished performance among the larger market capitalization assets in the
S&P500 universe, suggesting that the consistency of these inefficiencies is once again conditional
on asset size. All in all, the negative performance of the LowV ol portfolio the CRSP universe
could serve as evidence for the diminished performance of the complex configurations since their
volatility ranking aspect aligns them more closely with this factor.

Figure 4.10: Equally-weighted D10-D1 portfolio cumulative log return in CRSP and S&P500 universes
in the out-of-sample period 1995/01-2022/12. Expanding window applied for the complex system con-
figurations with training period starting at 15 years in 1975-1990, validation period of constant 5 years
1990-1995, refit every three years.
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Figure 4.11: Equally-weighted D10-D1 portfolio cumulative log return in CRSP and S&P500 universes
in the out-of-sample period 1995/01-2022/12 for the equally-weighted D10-D1, D10 and D1 portfolios.
Expanding window applied for the complex system configurations with training period starting at 15
years in 1975-1990, validation period of constant 5 years 1990-1995, refit every three years.

To continue, we consider the D10-D1 portfolios’ performance over time visualized in Figure 4.10.
For the complex configurations, we observe high correlation in terms of cumulative return pro-
gression in both universes. Although this serves a further evidence on the indifference of the
exploited market inefficiencies between these configurations on portfolio level, it does show that
the implementation of ranked inputs (CP−) and the LSTM subsystem (−CLF ) can provide
beneficial nuances in terms of return magnitude. On the other hand, in the CRSP universe
we observe that the cumulative return of the rtnXmkt − Linear configuration is consistently
less volatile and competitive over time to that of the complex CR − CLF configuration. On
the other hand, in the S&P500 universe we observe that an increase in cumulative return is
focused in the period before 2010, after which it flattens regardless of the configuration type.
This result aligns with the general decline in smoothed Spearman correlation coefficient scores
in this universe as shown in Figure 4.1.

In Figure 4.11, we present the cumulative return of the focal and decile portfolios separately
and identify that the main difference between the configurations presents itself in the long
D10 portfolio. Once again, these results can be connected to with the empirical heatmaps
in section 4.2 and the aggregated decile portfolio statistics in section 4.4. Indeed, the high
resemblance of the short D1 portfolios in terms of volatility can be explained by the fact that both
these configurations exhibit an empirical cluster at the lower predicted percentiles containing a
mix of assets with true extreme/tail rankings. For the linear configuration, this same empirical
mix is present in D10 resulting in higher volatility. On the other hand, the complex configuration
attains a D1 portfolio with substantially lower volatility as it contains assets with true center
rankings. All in all, the portfolio statistics in Table 4.5 and the cumulative performance over
time in Figure 4.11 clearly imply superiority of the linear configuration. This result suggests that
a mix of extreme ranks in both the D1 and D10 portfolio instead of only D1 is beneficial on the
aggregated portfolio level. This can be explained through cancellation of these extreme returns
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Figure 4.12: Equally-weighted D10-D1 portfolio cumulative log return of every calendar year in CRSP
and S&P500 universes in the out-of-sample period 1995/01-2022/12. Expanding window applied for the
complex system configurations with training period starting at 15 years in 1975-1990, validation period
of constant 5 years 1990-1995, refit every three years. Yearly reset occurs at 1st of January, meaning that
cumulative return is that observed between 01/01/year up to and including 31/12/year.

that likely occurs due to the applied long and short positions. Figure 4.7 and Figure 4.8 imply
that this cancellation causes both an increased average return and decreased average volatility
in D10-D1 for the linear configuration. Finally, it is important to recognize that this cancellation
phenomenon is implied by the lower volatility in D10-D1 compared to larger volatility in both
D1 and D10 individually observed for the linear configuration.

We complete this section by considering Figure 4.12 and Figure 4.13. In Figure 4.12, we observe
that although the calendar year cumulative return of CR−CLF is superior to that of the linear
configurations in a multitude of years, this performance is not consistent. Amongst the complex
configurations, the CP −CLF shows the highest frequency in terms of yearly out-performance,
yet we note that this is diminished in the S&P500 universe and in the CRSP universe after
2010. Furthermore, Figure 4.13 indicates how the CR − CLF configuration exhibits steeper
and more frequent drawdowns as well as a decreased recovery time than the rtnXmkt−Linear
configuration in the CRSP universe. Once again, in the S&P500 universe, these differences are
not as apparent. For the complex configurations, a general pattern around drawdowns can be
identified over various sub-periods in Figure 4.11. To illustrate, we focus on the crash of 2008
where we observe a steeper drawdown in D1 than in D10 resulting in a steep peak initially.
After the trough has been hit in both D1 and D10, the D1 portfolio recovers faster than D10.
Consequently, we observe the drawdown of D10-D1 during this recovery phase. Conceptually,
this means that the complex configuration experiences worse drawdowns due to a larger and
more frequent mismatch in relative recovery speed between D10 and D1 compared to that of
the linear configuration. Since we connected this portfolio feature to the inherent differences
between D1 and D10, we can once again associate this with the decile volatility skew observed
in Figure 4.8 and the empirical heatmaps in section 4.2.
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Figure 4.13: Equally-weighted D10-D1 portfolio drawdown in CRSP and S&P500 universes in the out-
of-sample period 1995/01-2022/12. Expanding window applied for the complex system configurations
with training period starting at 15 years in 1975-1990, validation period of constant 5 years 1990-1995,
refit every three years.

4.6 Factor spanning regression analysis

In this section, we complete our analysis on portfolio level by investigating the exposure of
the system’s portfolios to common risk factors. For this analysis, we include the three factor
Fama-French model by Fama and French [1992] appended by the reversal (REV ) from Jegadeesh
[1990], residual momentum (RESMOM) by Blitz et al. [2011] and low-volatility factor (LowV ol)
by Blitz and Van Vliet [2007]. All risk factors are based on the signals defined by the previous
set of authors and are constructed using equal-weighting schemes in their respective universes.
In this analysis we opt for the RESMOM factor instead of conventional MOM factor because
of the observed reduced drawdowns, which form a characteristic property of the RESMOM
factor. As such, a regression on RESMOM instead of its conventional counterpart should help
to shed light on this aspect as well. To begin this analysis we consider factor regression results
provided in Table 4.6 and the correlation matrices given in Figure 4.14.

To begin this analysis we consider factor regression results provided in Table 4.6 and the corre-
lation matrices given in Figure 4.14. If we consider the Pearson correlation coefficients for the
D10-D1 portfolios presented in Figure 4.14 we can clearly identify differences between the linear
and more complex parametric systems. From these matrices, we conclude that the complex
configurations are extremely correlated with a minimum coefficient of 0.97 observed between
the best (CP − CLF32) and worst (CR − CAF32) performing complex configurations in the
CRSP universe. Expectantly, this high correlation between the complex systems is accompanied
by similar correlation coefficients to the other portfolios across the complex configurations. On
the other hand, the correlation drops to ≈ {0.6, 0.8} between the linear and complex configu-
rations in the CRSP universe. If we consider the correlation of all parametric configurations
to the non-parametric factor benchmark portfolios we observe high absolute correlations to the
return-based factors REV , MOM and RESMOM in both universes for all (linear & complex)
configurations. This is to be expected because all these portfolios originate from the same infor-
mation set, albeit subsets for some of them. Furthermore, we observe high positive correlation
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Figure 4.14: Pearson correlation coefficients between system configurations’ D10-D1 portfolios and com-
mon factor portfolios in the out-of-sample period 1995/01-2022/12 in the CRSP and S&P500 universes.
All portfolios setup according to an equal weighting scheme.

to the low-volatility factor for the complex configurations, but not for the linear configurations.
This is in line with the results and conclusions drawn from Figure 4.8 which indicated that these
configurations present a volatility skew. Recall that this resulted from the exclusive allocation of
assets with true tail ranks to the lower predicted percentiles, as is visible through the empirical
’inverted U’-shape in Figure 4.5. Through the average CAPM−β in Figure 4.9 we acknowledge
that a CAPM−β skew also exists for the complex configurations. Consequently, this allocation
implies high CAPM − β in D1 and low CAPM − β in D10 for the complex systems, similar
to the definition of the low volatility factor by Blitz and Van Vliet [2007]. Finally, we notice
that the complex system configurations show substantially larger negative correlation to the
market and size factor than their linear parametric counterparts. This statement extends to
both asset universes. The larger correlation to the market aligns with the negative correlation
to the low volatility factor and the fundamental connection between these two factors. This is
because the low volatility factor obtains a net negative CAPM − β due to the shorting of large
CAPM − β assets (larger systemic volatility sensitivity) which is not completely offset by the
long position in small CAPM − β assets (larger systemic volatility sensitivity). On the other
hand, the market portfolio attains a positive CAPM − β position by simply investing in the
entire universe. Furthermore, the size factor correlation is unexpected as smaller capitalization
assets should theoretically present more frequent inefficiencies.

41



Extreme learning - Thesis MSc. Quantitative Finance Reinier Vos 583868

CRSP CR-CLF32 CP-CLF32 CR-CAF32 CP-CAF32 rtnXmkt-Linear rtnXmkt-WLS
alpha 4.841 (2.164) 7.589 (3.205) -0.38 (-0.182) 5.644 (2.498) 3.492 (1.942) 3.567 (1.61)
Mkt-RF (CRSP) -0.195 (-3.364) -0.221 (-3.608) -0.145 (-2.687) -0.19 (-3.255) -0.026 (-0.556) -0.044 (-0.952)
LowVol (CRSP) 0.375 (7.108) 0.299 (5.357) 0.328 (6.653) 0.267 (5.021) -0.092 (-1.679) -0.019 (-0.458)
SMB (CRSP) -0.869 (-11.963) -0.847 (-11.017) -1.012 (-14.911) -0.864 (-11.779) -0.388 (-6.652) -0.413 (-7.122)
HML (CRSP) 0.082 (1.352) 0.024 (0.366) 0.003 (0.052) -0.026 (-0.42) -0.214 (-4.382) -0.301 (-6.214)
RESMOM (CRSP) 0.339 (7.689) 0.326 (6.987) 0.589 (14.308) 0.444 (9.993) 0.569 (16.076) 0.642 (18.256)
REV (CRSP) 0.297 (8.38) 0.365 (9.742) 0.06 (1.801) 0.257 (7.184) 0.498 (17.491) 0.378 (13.354)

S&P500 CR-CLF32 CP-CLF32 CR-CAF32 CP-CAF32 rtnXmkt-Linear rtnXmkt-WLS
alpha 5.934 (2.676) 9.61 (4.169) 1.962 (1.053) 5.937 (2.758) 4.574 (1.812) 3.756 (1.13)
Mkt-RF (S&P500) 0.007 (0.126) -0.063 (-1.068) 0.075 (1.577) -0.021 (-0.38) 0.027 (0.415) 0.003 (0.031)
LowVol (S&P500) 0.218 (7.176) 0.104 (3.304) 0.196 (7.714) 0.103 (3.49) -0.145 (-4.212) -0.148 (-3.264)
SMB (S&P500) -0.677 (-5.227) -0.686 (-5.097) -0.974 (-8.959) -0.8 (-6.36) -0.372 (-2.525) -0.432 (-2.226)
HML (S&P500) -0.114 (-1.55) -0.121 (-1.585) -0.277 (-4.486) -0.231 (-3.24) -0.361 (-4.317) 0.004 (0.04)
RESMOM (S&P500) 0.34 (10.45) 0.385 (11.359) 0.508 (18.585) 0.4 (12.644) 0.584 (15.736) 0.232 (4.742)
REV (S&P500) 0.193 (5.632) 0.298 (8.377) 0.042 (1.462) 0.232 (6.99) 0.435 (11.17) 0.296 (5.772)

Table 4.6: Annualized factor spanning regression statistics for the investigated configurations. All values
are fitted coefficients with t-stat in brackets in the out-of-sample period 1995/01-2022/12. Expanding
window applied for the complex system configurations with training period starting at 15 years in 1975-
1990, validation period of constant 5 years 1990-1995, refit every three years. Note that Newey-West 12
lags standard errors are used for standard deviation computation.

We proceed by considering the factor exposures presented in Table 4.6. To start this analysis
we identify the differences between the linear and more complex parametric systems. From this
regression table we conclude that the α statistics is both larger and significant for the complex
configurations (excluding CR− CAF ) compared to insignificant intercepts for the linear cases.
For the linear cases an insignificant α is expected. This is because they likely pick up on the
same market inefficiencies as the RESMOM and REV factors and can only define a relative
weighting between them. On the other hand, the significant α for the complex configurations
entails that they pick up on further market inefficiencies. This is possible through their in-
herent access to more complex non-linear/interactive features as demonstrated by Goodfellow
et al. [2016]. Note that this result seems contradictory to the cross-sectional regression results
in Table 4.4, which showed us that the CR − CLF configuration had limited predictive power
in the cross-section beyond that contained in a linear and volatility-based signal. However,
Table 4.6 shows us that on portfolio level do differentiate themselves. Therefore, we attribute
the significant intercepts of these complex configurations to improved portfolio timing between
time steps. This axis of improvement stands in contrast to a consistently improved predictive
ability in the cross-section due to the identification and exploitation of sizeable and previously
unknown market inefficiencies. Instead, portfolio timing improvement arises from nuances in
the system prediction; a dynamic shift in the relative importance of features during different
market conditions (e.g. crash/recovery). Furthermore, we observe that the exposure of the lin-
ear systems is different to that of the CR−CLF configuration in terms of significant exposure
to the value (HML) and the insignificant exposure to the low volatility factor (LowV ol). The
insignificant exposure to the LowV ol factor aligns with the absence of the volatility skew ob-
served in Figure 4.8 for the linear configurations. The negative significance to the HML value
factor indicates a tilt towards growth assets. Finally, the linear and complex configurations
are similar in terms of significant exposure to residual momentum (RESMOM) and (REV )
reversal factor. This is to be expected due to all these portfolios sharing the (or parts of the)
same information set. This observation indicates that the complex configurations do not only
rank volatility, but indeed also pick up on linear momentum- and reversal-related inefficiencies.

To continue, we consider the performance amongst the complex configurations. If we examine
the exposures presented in Table 4.6, we notice that the CR − CAF network obtains no sig-
nificant intercept. This aligns with the consistent inferior performance; reducing the potential
magnitude of the intercept term. On the other hand, in this table we also note that this reduced
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intercept can be caused by an increase in exposures to the risk factors compared to the −CLF
configurations. The ranked based self-attention network (CP − CAF ) does show a significant
intercept alongside the identified increased exposure. What’s more is that configurations with
the ranked inputs (i.e. CP−) and the LSTM-subsystem (−CLF ) improve over their alternative
counterparts. Indeed the CP −CLF acquires superiority in the intercept term to the other con-
figurations in both universes. Considering previous results and the comments made at the start
of the previous paragraph, we attribute this superiority amongst the complex configurations to
a improvement portfolio timing. Inline with the decile performance, correlation and optimiza-
tion results presented in previous sections, we generally do not observe substantial differences
in exposures between CR − CLF and CP − CLF in the CRSP universe. Specifically, in the
CRSP universe we observe that the complex configurations show negative exposure to the size
factor indicating alignment with larger market capitalization assets such as those contained in
the S&P500 universe. Here, we observe no substantial changes in the exposures of the complex
configurations besides a significant exposure to the market. In this universe, the size exposure
is also significantly negative indicating a tilt towards to the larger capitalization assets in this
large S&P500 market capitalization universe. Similarly, the exposures to return-based factors
RESMOM and REV have generally remained unchanged. The exposure to the LowV ol factor
has remained unchanged as well. This is to be expected as these complex systems have been
identified to implicit rank volatility and as such will do so regardless of the universe they are
operating in.

Figure 4.15: 6-factor regressions’ 12-month exponentially smoothed residual for the system focal portfo-
lios in CRSP and S&P500 universes in the out-of-sample period 1995/01-2022/12. Associated exposures
given in Table 4.6. Expanding window applied for the complex system configurations with training period
starting at 15 years in 1975-1990, validation period of constant 5 years 1990-1995, refit every three years.

We further expand this analysis by considering the stability of the residual/error distribution
of the previous 6-factor regressions as presented in Figure 4.15. In this figure we consider the
12-month exponentially smoothed residual time series instead of their original counterpart in an
attempt to shed light on the stability of the residual series’ mean. In general, we observe stability
across all configurations in the CRSP universe except for the crashing periods [2000,2003],
[2008,2010] and [2020,2022]. In there periods, we generally observe relatively larger smoothed
positive residuals for the complex configurations compared to the linear configurations. This
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observation can serve as evidence in favour of an improved portfolio timing aspect of the complex
configurations. This is because a larger positive residual can be interpreted as out-performance
of the portfolio over its estimated (linear) portfolio based on the factor portfolios. In the S&P500
universe, this same conclusion can be drawn except for the linear rtnXmkt−WLS configuration
which shows a more volatile pattern even outside the previously identified periods. This is likely
due to the increased exposures of this configuration which might cause an improved fit generally,
but a more divergent one during specific sub-periods when factor portfolios might show increased
correlation amongst themselves.

CR-CLF D10-D1 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
alpha (CRSP) 4.841 (2.164) -2.273 (-1.579) 1.613 (2.003) 0.747 (0.96) 1.381 (1.724) 1.006 (1.352) 1.08 (1.496) 0.76 (0.941) 1.379 (1.712) 2.526 (2.862) 2.568 (2.376)
Mkt-RF (CRSP) -0.195 (-3.364) 0.065 (1.75) 0.038 (1.816) 0.06 (2.985) -0.004 (-0.178) -0.037 (-1.931) -0.064 (-3.438) -0.069 (-3.31) -0.091 (-4.387) -0.096 (-4.186) -0.13 (-4.633)
LowVol (CRSP) 0.375 (7.108) -0.23 (-6.765) -0.1 (-5.243) 0.004 (0.192) 0.024 (1.258) 0.057 (3.235) 0.072 (4.225) 0.109 (5.726) 0.122 (6.441) 0.146 (7.027) 0.145 (5.703)
SMB (CRSP) -0.869 (-11.963) 0.509 (10.887) 0.187 (7.17) 0.026 (1.034) -0.06 (-2.318) -0.131 (-5.445) -0.21 (-8.953) -0.248 (-9.463) -0.318 (-12.174) -0.329 (-11.488) -0.36 (-10.262)
HML (CRSP) 0.082 (1.352) -0.082 (-2.091) -0.019 (-0.873) 0.047 (2.215) 0.061 (2.806) 0.076 (3.751) 0.09 (4.597) 0.062 (2.815) 0.062 (2.834) 0.035 (1.475) 0.0 (0.015)
RESMOM (CRSP) 0.339 (7.689) -0.248 (-8.742) -0.09 (-5.657) 0.016 (1.012) 0.041 (2.62) 0.089 (6.057) 0.116 (8.161) 0.107 (6.75) 0.108 (6.785) 0.128 (7.378) 0.091 (4.272)
REV (CRSP) 0.297 (8.38) -0.125 (-5.494) -0.037 (-2.869) -0.008 (-0.613) -0.001 (-0.044) 0.017 (1.472) 0.038 (3.329) 0.058 (4.518) 0.095 (7.477) 0.125 (8.93) 0.172 (10.031)

CR-CLF D10-D1 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
alpha (S&P500) 5.934 (2.676) -1.928 (-1.204) -2.149 (-1.831) -1.998 (-1.775) -1.188 (-1.297) -0.232 (-0.299) -0.155 (-0.2) -0.019 (-0.024) 1.232 (1.557) 2.4 (2.397) 4.006 (3.754)
Mkt-RF (S&P500) 0.007 (0.126) -0.039 (-0.948) -0.036 (-1.218) 0.066 (2.29) 0.019 (0.809) 0.009 (0.432) 0.015 (0.772) 0.025 (1.241) -0.005 (-0.27) -0.02 (-0.786) -0.032 (-1.161)
LowVol (S&P500) 0.218 (7.176) -0.206 (-9.396) -0.091 (-5.653) -0.007 (-0.48) 0.028 (2.22) 0.042 (4.015) 0.043 (4.071) 0.067 (6.168) 0.063 (5.797) 0.052 (3.826) 0.012 (0.806)
SMB (S&P500) -0.677 (-5.227) 0.411 (4.394) 0.415 (6.06) 0.187 (2.838) 0.012 (0.226) -0.139 (-3.086) -0.132 (-2.918) -0.109 (-2.361) -0.187 (-4.05) -0.196 (-3.351) -0.266 (-4.264)
HML (S&P500) -0.114 (-1.55) 0.04 (0.755) 0.039 (0.996) 0.063 (1.69) 0.096 (3.17) 0.054 (2.12) -0.063 (-2.44) -0.063 (-2.416) -0.058 (-2.21) -0.036 (-1.082) -0.074 (-2.088)
RESMOM (S&P500) 0.34 (10.45) -0.255 (-10.829) -0.118 (-6.862) -0.029 (-1.741) 0.01 (0.75) 0.028 (2.435) 0.073 (6.451) 0.07 (6.042) 0.08 (6.923) 0.057 (3.898) 0.086 (5.457)
REV (S&P500) 0.193 (5.632) -0.081 (-3.27) -0.137 (-7.587) -0.078 (-4.484) -0.04 (-2.853) -0.017 (-1.389) 0.027 (2.28) 0.058 (4.729) 0.052 (4.226) 0.105 (6.815) 0.112 (6.793)

Table 4.7: Annualized alpha statistics for the CR−CLF configuration. All deciles portfolios are excess
market returns, except for the D10-D1 portfolio. All values are fitted coefficients with t-stat in brackets
in the OOS period 1995/01-2022/12. Expanding window applied with training period starting at 15
years in 1975-1990, validation period of constant 5 years 1990-1995, refit every three years. Note that
Newey-West 12 lags standard errors are used for standard deviation computation.

rtnXmkt-Linear D10-D1 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
alpha (CRSP) 3.492 (1.942) -2.461 (-1.861) -0.335 (-0.413) 0.142 (0.177) 1.236 (1.686) 1.148 (1.57) 1.51 (2.107) 0.815 (1.292) 0.889 (1.04) 0.585 (0.62) 1.031 (0.96)
Mkt-RF (CRSP) -0.026 (-0.556) 0.07 (2.059) 0.025 (1.202) -0.027 (-1.313) -0.065 (-3.435) -0.057 (-3.006) -0.065 (-3.532) -0.038 (-2.322) 0.004 (0.159) 0.022 (0.909) 0.045 (1.604)
LowVol (CRSP) -0.092 (-1.679) -0.084 (-2.688) 0.025 (1.303) 0.066 (3.52) 0.072 (4.179) 0.087 (5.066) 0.08 (4.752) 0.074 (5.006) 0.098 (4.862) 0.018 (0.805) -0.176 (-6.955)
SMB (CRSP) -0.388 (-6.652) 0.428 (9.977) -0.026 (-0.986) -0.085 (-3.268) -0.125 (-5.245) -0.179 (-7.534) -0.201 (-8.658) -0.204 (-9.979) -0.212 (-7.655) -0.174 (-5.671) 0.04 (1.147)
HML (CRSP) -0.214 (-4.382) -0.039 (-1.083) 0.11 (5.006) 0.129 (5.927) 0.137 (6.865) 0.112 (5.655) 0.116 (5.957) 0.08 (4.683) 0.02 (0.854) -0.021 (-0.818) -0.253 (-8.666)
RESMOM (CRSP) 0.569 (16.076) -0.363 (-13.927) -0.12 (-7.499) -0.074 (-4.673) -0.021 (-1.425) 0.018 (1.23) 0.069 (4.862) 0.11 (8.838) 0.095 (5.666) 0.155 (8.35) 0.206 (9.76)
REV (CRSP) 0.498 (17.491) -0.209 (-9.997) -0.135 (-10.464) -0.084 (-6.655) -0.064 (-5.549) -0.019 (-1.671) -0.003 (-0.291) 0.032 (3.165) 0.067 (4.912) 0.136 (9.101) 0.289 (16.966)

rtnXmkt-Linear D10-D1 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
alpha (S&P500) 4.574 (1.812) -3.164 (-2.195) -1.358 (-1.215) -0.88 (-0.976) -0.196 (-0.211) 0.993 (1.421) 1.221 (1.678) 0.969 (1.125) 1.031 (1.163) -0.022 (-0.023) 1.409 (0.84)
Mkt-RF (S&P500) 0.027 (0.415) -0.044 (-1.188) -0.026 (-0.926) 0.025 (1.11) -0.003 (-0.119) -0.019 (-1.088) 0.006 (0.313) 0.019 (0.849) 0.047 (2.087) 0.012 (0.508) -0.017 (-0.396)
LowVol (S&P500) -0.145 (-4.212) -0.098 (-4.948) -0.004 (-0.242) 0.087 (7.026) 0.077 (6.051) 0.06 (6.241) 0.055 (5.529) 0.075 (6.34) 0.029 (2.401) -0.034 (-2.627) -0.243 (-10.586)
SMB (S&P500) -0.372 (-2.525) 0.232 (2.759) 0.211 (3.238) 0.056 (1.062) -0.005 (-0.097) -0.063 (-1.55) -0.118 (-2.771) -0.036 (-0.708) -0.089 (-1.716) -0.053 (-0.953) -0.14 (-1.429)
HML (S&P500) -0.361 (-4.317) 0.141 (2.945) 0.068 (1.828) 0.065 (2.178) 0.072 (2.35) 0.015 (0.655) -0.014 (-0.578) 0.024 (0.83) -0.072 (-2.448) -0.08 (-2.54) -0.22 (-3.964)
RESMOM (S&P500) 0.584 (15.736) -0.303 (-14.32) -0.165 (-10.051) -0.111 (-8.366) -0.045 (-3.306) -0.009 (-0.899) 0.013 (1.181) 0.067 (5.334) 0.088 (6.723) 0.187 (13.454) 0.28 (11.369)
REV (S&P500) 0.435 (11.17) -0.167 (-7.49) -0.155 (-9.009) -0.057 (-4.079) -0.051 (-3.549) -0.044 (-4.044) 0.002 (0.2) 0.02 (1.538) 0.082 (5.966) 0.102 (6.959) 0.268 (10.368)

Table 4.8: Annualized alpha statistics for the rtnXmkt − Linear configuration. All deciles portfolios
are excess market returns, except for the D10-D1 portfolio. All values are fitted coefficients with t-stat in
brackets in the OOS period 1995/01-2022/12. Expanding window applied with training period starting
at 15 years in 1975-1990, validation period of constant 5 years 1990-1995, refit every three years. Note
that Newey-West 12 lags standard errors are used for standard deviation computation.

Finally, we expand this analysis by considering the exposures of all decile portfolios for the
complex CR − CLF and linear rtnXmkt − Linear configurations as presented in Table D.8
and Table D.9. For the LowV ol, SMB, RESMOM and REV factors these results are also
visualized in Figure 4.16 and Figure 4.17 for the CRSP and S&P500 universe respectively. Due
to the high correlation between the complex configurations presented in Figure 4.14, we only
conduct this analysis for the CR − CLF configurations. Note that all decile portfolios are
regressed with on excess market portfolio returns.

We start this analysis by considering the intercept (α) for both configurations. We observe that
neither configuration is able to achieve a significant intercept for D1. On the other hand, for the
CR−CLF configuration D9 & D10 are significant in the CRSP universe, yet show the noisy/flat
pattern across deciles previously observed in Figure 4.7. The linear configuration shows fewer
deciles with significant intercepts, which aligns with remarks made in the previous paragraphs;
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Figure 4.16: Factor exposure magnitude across deciles for the Mkt − RF , LowV ol, SMB, HML,
RESMOM and REV equally-weighted factor portfolios. Exposures presented for the CR-CLF and
rtnXmkt-Linear system configurations in the out-of-sample period 1995/01-2022/12 for the CRSP uni-
verse. Note that factor exposure for deciles (excluding D10-D1) is computed by using the portfolio returns
excess market returns.

Figure 4.17: Factor exposure magnitude across deciles for the Mkt−RF , LowV ol, SMB, RESMOM
and REV equally-weighted factor portfolios. Exposures presented for the CR-CLF and rtnXmkt-Linear
system configurations in the out-of-sample period 1995/01-2022/12 for the S&P500 universe. Note that
factor exposure for deciles (excluding D10-D1) is computed by using the portfolio returns excess market
returns.
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this configuration likely picks up on the same linear effects as the RESMOM and REV factors.

To continue, we observe that the complex configuration attains significant and decreasing expo-
sure to the market in the CRSP universe in D6 to D10. Since the decile portfolios present the
results for excess market returns, this indicates that these portfolios likely increasingly contain
assets with lower CAPM-beta assets (i.e. βCAPM < 1). This can be expected as the previous
results in Figure 4.8 indicated that these portfolios show lower volatility which is indirectly re-
lated to this CAPM relationship. Moreover, this significant market exposure is not observed in
the S&P500 universe further indicating that these portfolios are neutral towards this factor in
the higher market capitalization asset space. Contrary to the complex configuration, the linear
configuration shows significant negative exposure to the market in D4 to D7. This significant
exposure similarly fades in the S&P500 universe.

If we proceed by analysing the exposure to the LowV ol factor, we observe clear differences
between the linear and complex configurations. We observe that this exposure to this factor
increases and changes in sign in D5 and D4 in the CRSP and S&P500 universe respectively for
the complex configuration. While this exposure clearly increases in the CRSP universe over this
subset, this pattern is not as pronounced in the higher deciles for the S&P500 universe. From
the difference in exposure between universes we conclude that the complex system’s volatility
ranking ability seems stronger in the CRSP universe than the larger capitalization S&P500
universe. On the other hand, this statement does not seem to hold for the high volatility assets;
The significant negative exposure is observed for D1 and D2 regardless of the universe and is
similar in magnitude. This indicates that selection of high volatility assets is less related to the
assets’ market capitalization size. Finally, for the linear configuration we do not observe the
same pattern as for the complex configuration. The exposure structure is a bit more symmetric
in both universes; with negative exposure in the tails and more positive exposures near the
center deciles. This indicates that the tails (D1 and D10) both contain high volatility assets
which aligns with the results shown in Figure 4.11 and Figure 4.8.

With regard to the value factor HML we obtain no net exposure for complex configurations
but do so for the linear configurations. Analysing the decile exposures we can observe that
this is caused by a steeper decile in D10 exposure specifically for the linear configurations.
Consequently, the D10-D1 portfolio neutralizes the HML-axis for the complex configuration,
while this does not occur for the linear configuration. This means that the linear configurations
attain a general tilt towards value firms.

Next, we consider the decile exposures to the RESMOM and REV factors. Due to the input
feature set of the configurations aligning with information contained in these factors, we expec-
tantly observe high significant throughout the deciles. Over the deciles we note an increasing
exposure pattern between D1 to D10 for these factors across configurations and universes. This
can be interpreted as the linear and complex configurations consistently picking up on the same
linear inefficiencies captured in these factors. However, we observe that while this trend is clearly
present for the linear case, the complex configuration shows a diminished trend after D5.

Finally, we consider the exposure to the size factor, SMB. We notice a decreasing exposure
pattern from D1 to D6 for both configurations across universes, with positive exposures for
the lowest deciles D1 and D2. For the complex configurations this pattern is almost strictly
decreasing in both universes while the linear configuration presents a noisier pattern near the
outer deciles (i.e. D1,D2, D9 and D10) in the CRSP universe. For the linear configuration we
observe a less strict decreasing pattern, especially in the S&P500 universe.

All in all, from this analysis we conclude that the complex configuration mainly differs from its
linear counterpart in its exposure to the LowV ol and HML factor. However, we noted that
the difference with regard to the HML factor is not as distinctly present over the deciles. We
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observe that both configurations take a short position on small capitalization assets through the
exposure to the SMB factor. For the complex configurations we can combine this observation
with the remarks on the LowV ol, RESMOM and REV factor exposures; it is apparent that this
configuration tends to allocate assets with higher volatility (−LowV ol), lower previous perfor-
mance/returns (−RESMOM & −REV ) and relatively smaller market capitalization (+SMB)
to the lowest deciles. This ranking focus is clearly visible across universes in the lower deciles
(D1 to D4) which present positive trending patterns for the LowV ol, RESMOM and REV
factors. On the other hand, for the higher deciles (D6-D10) with negative size exposures we
observe that these factors show a much noisier pattern with a diminished or non-existent trend.
The exposures to the return-based RESMOM and REV factors do show us that the complex
system still resembles the linear system in terms of exposures, yet this is mainly present in the
lower deciles. On the other hand, we observe that it differentiates from the linear system in
terms of its trending LowV ol exposure in these same lower deciles. Hence, we conclude that this
complex system is still clearly resembles the classical RESMOM and REV benchmark similar
to the linear case, yet expands on these by leveraging on volatility for its ranking purposes in
the lower deciles. Generally, the upper deciles show noisier patterns with regard to these as-
pects. Hence, we conclude that for the complex configurations the lower deciles generally contain
smaller market capitalization assets. Smaller market capitalization theoretically contain more
exploitable market inefficiencies and as such the ranking ability of complex systems improves for
these assets with regard to the set of market inefficiencies captured by the LowV ol, RESMOM
and REV factors.

5 | Conclusion

In this research we considered whether complex neural-network systems are able to improve
over simpler linear systems as well as non-parametric methods in terms of financial portfolio
construction. Specifically, we attempt to determine whether self-attention and ranked input
definition could improve over non-ranked definitions and LSTM-based networks as well as linear
systems when provided only the monthly returns as input set. To this end, we set up sets of
inputs, system definitions, optimization procedures and portfolio construction frameworks in
chapter 2. To start our analysis we considered the performance of the non-parametric bench-
marks in chapter 3. For these benchmarks, we identify general limitations in profitability as
observed by excessive drawdowns and extensive periods of flat cumulative return.

After implementing these parametric systems we analysed the optimization results in section 4.1.
Here, we observe that the complex system configurations are able to achieve significantly higher
Spearman correlation coefficients than the linear configurations in the CRSP universe. On the
other hand, the significant superiority is not exhibited in the S&P500 universe. Furthermore,
we show that complex system configurations are not significantly different to each other. In
addition, we observed that the Spearman correlation coefficient metric score declines over time,
with a more severe and constant decile in the S&P500 universe.

In section 4.2, we analyse the empirical asset ranking ability of signals by examining their
empirical rank distributions. From this analysis we constitute three findings. First of all, all
considered signals (parametric non-parametric) exhibit some ability to distinguish assets with
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true center ranks from those with extreme/tail ranks. Secondly, these complex configurations
exclusively predict assets with true extreme/tail ranks as losers. In practice, this means that we
obtain an ’inverted U’-shape in the empirical distribution. The linear/non-parametric signals do
not show this exclusivity property and present an empirical ’X’-shape. Thirdly, this exclusive
loser prediction of all true extreme ranks displayed by the complex configurations achieves a
significantly higher Spearman correlation coefficient score.

In section 4.3, we further analyse the empirical asset ranking ability of the complex configurations
through an investigation into their predictive power in the presence of other signals through
Fama-Macbeth style regressions. From this analysis we find a limited cross-sectional predictive
ability of the complex system’s signal in the presence of a linear and volatility based signal.
On the other hand, the analysis showed that predictive power of the complex system’s signal is
subsumed after including both and not just either the linear- and volatility-based predictions.
Furthermore, we hypothesized a volatility-oriented feature could explain the empirical ’inverted
U’-shape for the complex configuration. Indeed, we observed high correlation between this
complex configuration and a volatility-oriented signal. We denoted that complex neural networks
present the ability to access volatility related features and that these features themselves are
inherently predictable in equity returns. Finally, we confirm our hypothesis through the fact
that the established negative relationship between idiosyncratic volatility and returns by Chen
and Petkova [2012] is clearly apparent in our regression results.

After these analyses into the empirical ranking ability of our systems, we consider performance
on portfolio level. In section 4.4, we analysed the decile portfolios’ performance statistics. We
observed that the complex systems generally showed a non-monotonically increasing pattern in
excess return from D1 to D10. In addition, we observe a substantial volatility skew over the
deciles peaking in the predicted lower deciles. Hence, for the complex configurations We conclude
that the use of these volatility-oriented features for rank prediction purposes might be beneficial
on cross-sectional level, yet not on the aggregated portfolio level. This stands in contrast to
the significant superiority in terms of Spearman correlation coefficient of these configurations.
Hence, we do not recommend the use of this metric to measure/predict portfolio performance
for predictions from systems with distinctly different empirical structures such as the ’X’-shape
and ’inverted U’-shape.

In section 4.5 continue the analysis on portfolio level, by considering the focal portfolio D10-D1.
This analysis shows that the complex systems are inferior to the linear counterparts in common
performance metrics. In addition, the complex configurations show great similarity on portfolio
level amongst themselves. This result further suggests that ranking on volatility is detrimental
on the aggregated portfolio level. This is attributed to these configurations missing out on
the benefits of cancelling extreme returns, due to their exclusive allocation to of assets with
extreme returns to the D1 portfolio. Consequently, we observe a decreased average return and
increased average volatility in the D10-D1 portfolio. Specifically, we observe that this increased
volatility of D10-D1 occurs due to differences in the recovery speed between D10 and D1 around
drawdowns.

In section 4.6 we completed our analysis on portfolio level by investigating the exposure of the
system’s portfolios to common risk factors. We first noted that a high correlation between the
complex configurations further indicated that these systems are not distinctly different from
eachother. To continue, the D10-D1 factor regression analysis shows a significant negative
tilt towards size and, expectantly, positive exposures to the return-based factors REV and
RESMOM across configurations and universes. Furthermore, for the complex configurations a
significantly positive tilt towards the LowV ol factor is observed. We expanded this analysis by
considering the exposures of every decile portfolio. In the exposures we observe a clear trending
exposure patterns exists between D1 and D5 with regard to the SMB, REV , RESMOM
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and LowV ol factor for the complex configurations. Ultimately, we concluded that the complex
system still clearly resembles the classical RESMOM and REV benchmark similar to the linear
configuration, yet expands on these by leveraging on volatility for its ranking purposes in the
lower deciles. Generally, the upper deciles show noisier patterns with regard to these aspects.

All in all, in this research we implemented and analysed a set of complex machine-learning
based configurations. From our analysis we concluded that a linear parametric system is able
to attain competitive or superior performance on portfolio level to these more complex signal
implementations. Furthermore, we conclude that nuances between the complex configurations
might exist, but their general performance in not significantly distinguishable. In an attempt to
determine the difference between a linear and more complex parametric system’s prediction, we
identified that the complex implementations utilize volatility related features in their predictions.
While the use of these features is beneficial on an empirical asset ranking level in the cross-
section, improved performance was not visible on portfolio level resulting in portfolios with
lower average returns and higher volatility.

Our research presents three main limitations. First of all, we estimate our systems on US equity
data contained in the CRSP dataset and evaluate on the S&P500 universe of assets. This
attempt at ’transfer learning’ is shown to be inadequate, yet without a comparison to systems
estimated on S&P500 specifically. Secondly, we limit our analysis on portfolio level to metrics
capturing performance. However, practical considerations such as turnover, transactions costs
and the impact of implementation lag are not considered. Finally, in this research we limit
ourselves to use of end-of-month returns and do not consider the effects (e.g. seasonality) at
this specific calendar frequency.

Finally, we provide recommendations for future work. First of all, in section 4.2 we provide
examples of alternative statistics to score the relationship between predicted and true asset
rankings. Contrary to the Spearman correlation coefficient, these alternative statistics also
score the asymmetry/imbalance of the solution. We do not further investigate the optimization
of such metrics which remain unexplored. Secondly, in section 4.4 we recognize that the complex
systems fail at decoupling risk into idiosyncratic and systemic parts. Since we denote a significant
importance of risk proxied by volatility in our complex systems, we recommend further work
into an improved reduction of market effects in asset returns and risk. Third of all, we observe
significant intercepts in our spanning regression results in section 4.6, yet acknowledge that our
attempts are limited in terms of identification of their specific sources.
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A | Additional analysis: complex net-
work comparison over time

Temporal information flow analysis of self-attention and recurrent networks

In this section, we investigate whether the differences in implicit and explicit temporal in-
formation flow structures as discussed in subsection 2.3.2 are apparent between the CAF and
CLF configurations. To this end, consider again high-level subsystem overview of the LSTM
and self-attention framework given in Figure 2.3 and Figure 2.5 respectively. Both systems
utilize 4 time steps of inputs denoted {Xt−4, . . . , Xt−1} to obtain a single output denoted as
Zt−1. All of these vectors are of dimension f , which in our configurations is set equal to 32. In
order to analyse the difference in temporal information flow, we setup the correlation matrices
between one of the time-step inputs (i.e. Xt−j) and the output signal Zt−1 for every sample. In
this correlation matrix of dimension (64, 64) we focus on the non-symmetric and non-diagonal
(32, 32) matrix sub-block. If we rank the Pearson correlation coefficients observed within this
against the matrix sub-block for the other time steps in the [0, 1] and aggregate the result a mean
statistic over this entire sub-block we obtain 4 sets of scalar mean ranked Pearson correlation
coefficients. These statistics can be analyzed over time in an attempt to determine whether
the implicit or explicit network structures exhibit differences in temporal informational flow. A
clear limitation of this analysis is the fact that both of these networks are designed to allow
for nonlinear and interactive effects which will not captured by the linear Pearson correlation
coefficient. However, we continue the analysis anyway in an attempt to shed light on the linear
aspect of the temporal information flow. The procedure to setup these aggregated statistcis is
visualized in Figure A.1.

Figure A.1: Procedure for subsystem input and output to obtain a set of 4 scalar aggregated correlation
statistics.

We hypothesize that the LSTM-based networks should generally focus on the closest time step
(i.e. t−1) as every subsequent time step is ’deeper’ in the system and harder to reach. As such,
we expect that the inputs associated with this time step t− 1 should obtain a consistent higher
rank than the other time steps. Furthermore, we might also be logical because of the expected
higher relevancy of more recent time steps to the prediction objective. On the other hand, the
self-attention framework allows for the explicit temporal flow. As such we hypothesise that in
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contrast to the LSTM-based networks (i.e. CLF ) the self-attention networks (i.e. CAF ) might
exhibit less consistency in correlation ranks, obtaining a noisier pattern.

The results of this analysis are displayed in Figure A.2. In general, we do not observe that
there is a distinct structure of correlation ranks for the CLF configurations. In addition, the
hypothesized less strict importance of time steps for the CLF configurations is also not apparent.
In fact, main contributor to the change in input time step importance seems to be the refitting
period as annotated by the red dashed vertical lines. All in all, this analysis shows us that the
importance of different time steps of inputs to the output is indifferent between the respective
subsystems. Note that this conclusion only hold with regard to their linear contribution as was
captured by the Pearson correlation coefficient.

Figure A.2: Mean ranks of correlation statistics for the complex configurations defined in chapter 2.
Results obtained in CRSP universe and in the out-of-sample period 1995/01-2022/12. Expanding window
applied for the complex system configurations with training period starting at 15 years in 1975-1990,
validation period of constant 5 years 1990-1995, refit every three years. New refitted out-of-sample sub-
period start indicated by the red dashed vertical lines.
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B | On the relationship between MSE
and SPR optimization

In this section we address the equivalence between optimization of the Spearman rank correlation
coefficient and optimization of the MSE between true and predicted rank. We define the true
rank and predicted rank as yt,i and ŷt,i respectively. To achieve this equality we prove the
equivalence between MSE minimization and Pearson correlation coefficient maximization. This
proof can then analogously be extended to MSE rank minimization and Spearman correlation
coefficient.

First, we consider MSE minimization and show that the optimization is focused on maximization
of the product between vectors y and ŷ. Mathematically, this is represented through,

argminθ L = (y −M(x; θ))2

= y2 − 2 · y ·M(x; θ) +M(x; θ)2

= y2 − 2 · y · ŷ + ŷ2, where ŷ =M(x; θ)

argmaxθ L = −y2︸︷︷︸
Not optimized

+2 · y · ŷ − ŷ2︸︷︷︸
*

∝ y · ŷ − ŷ2︸︷︷︸
*

(B.1)

where M(x; θ) denotes the prediction model M() subject to parameters θ and input data x. For
the Pearson correlation coefficient we show that the optimization is focused on maximization of
the product between vectors y and ŷ as well. Mathematically, this is represented as,

argmaxθ L =
(y − µy)(ŷ − µŷ)

σyσŷ

=
y · ŷ − µy · ŷ − µŷ · y + µy · µŷ

σyσŷ

∝ y · ŷ
σŷ︸︷︷︸
∗

(B.2)

where µ and σ are the mean and standard deviation respectively. It is important to note that
the variance term (annotated by ∗) of the prediction vector is proportional to ŷ2 or σŷ. All
in all, one should recognize from both these derivations that a parameterized system intent on
maximizing either the Pearson correlation coefficient or minimizing the mean-squared error is
similar. The system will maximize the ’product’ term (y · ŷ) and minimize the ’variance’ term
(σŷ or ŷ2).
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C | Charting By Machines Repro-
duction results

In this appendix we present the result for our reproduction attempt of Charting by Machines by
Murray et al. [2021]. In their research, Murray et al. [2021] dub their system to the CNN-CLF
and its predictions to MLER. In our research, we replicate this system in chapter 2 which we
call CR-CLF in our research. In this appendix we adhere to their signal definition and also
call our signal predictions MLER. Compared to their system, the CR − CLF configuration
differs in the fact that it uses cumulative returns based on excess market return. In their case,
they opt for the use of risk free rate returns. In practice, no difference is encountered from
this setting. All in all, the methodology and data as described by Murray et al. [2021] are
followed in an attempt to reproduce two main results. First, the Spearman rank correlation for
a variety of system configurations is provided in Table C.1. Secondly, the descriptive statistics
associated with the decile portfolios for the first out-of-sample period (MLER

1927/01,1963/06
i,t for

1963/07 ≤ t ≤ 1974/12) are provided in Table C.2. Finally, the cumulative log excess (risk-free
rate) return for the MLER10−1 portfolio of this out-of-sample period are provided in Figure C.1
and Figure C.2.

Table C.1: Spearman rank correlation in percent for system configurations described by Murray et al.
[2021] in Charting by Machines Table 1. The CBM row indicates the original results and Thesis row
indicates the reproduction attempt results.

Dependent
variable

Weighting
methodology

FNN
MAE

CNN
MAE

LSTM
MAE

CNN-LSTM
MAE

CBM rnorm EWPM 6.9 9.1 10.1 10.6
Thesis rnorm EWPM 6.8 6.6 10.1 10.3

nparameters 9217 16897 17217 37889

Table C.2: Mean excess return (r̄) in % and annualized Sharpe ratio for the CNN-LSTM system
architecture described by Murray et al. [2021] in Charting by Machines Table 5. Results are shown for the
decile portfolios in the 1963/07 ≤ t ≤ 1974/12 out-of-sample period based on the MLER

1927/01,1963/06
i,t

predictions. Decile breakpoints are computed using only NYSE stocks. The CBM row indicates the
original results and Thesis row indicates the reproduction attempt results.

Portfolio MLER1 MLER2 MLER3 MLER4 MLER5 MLER6 MLER7 MLER8 MLER9 MLER10 MLER10−1

CBM r̄ -0.90 -0.47 -0.26 -0.14 -0.20 -0.03 0.15 0.07 -0.03 0.25 1.15
Sharpe -0.56 -0.32 -0.19 0.10 -0.15 -0.03 0.12 0.06 -0.02 0.17 1.16

Thesis r̄ -0.86 -0.46 -0.15 -0.29 -0.15 0.05 0.01 0.15 0.05 0.31 1.17
Sharpe -0.57 -0.33 -0.11 -0.22 -0.11 0.04 0.01 0.12 0.04 0.21 1.29
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Figure C.1: Cumulative log return for
MLER10−1 portfolio as presented in Charting
by Machines Figure 2 by Murray et al. [2021].

Figure C.2: Cumulative log returns for
MLER10−1 portfolio from the reproduction at-
tempt.

By comparing all of the results from the reproduction attempt to those in the original Charting
by Machines paper, we conclude general and consistent close alignment between results. Finally,
we present the decile portfolio statistics in Table C.3 to conclude this overview of results.

Table C.3: Annualized Sharpe ratio and mean monthly in [%] excess return for MLER, MOM and
REV signal portfolios in the CRSP and S&P500 universes in the period 1995/01-2014/12. CRSP1926x
denotes portfolios constructed using the CNN-LSTM model trained on all available CRSP data up to 1994
while CRSP1975x denotes only data between 1975-1995 is used. x<Dataset> denotes the out-of-sample
data set.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D10m1
CRSP1926xCRSP r̄ 0.272 0.656 0.643 0.641 0.587 0.94 0.794 0.706 0.944 0.969 0.697

Sharpe 0.136 0.36 0.408 0.45 0.459 0.747 0.647 0.573 0.719 0.571 0.462

CRSP1975xCRSP r̄ 0.333 0.61 0.71 0.743 0.62 0.877 0.666 0.768 0.911 1.057 0.724
Sharpe 0.136 0.308 0.413 0.476 0.435 0.645 0.55 0.639 0.783 0.799 0.381

MOM (CRSP) r̄ 0.316 0.619 0.713 0.792 0.735 0.667 0.737 0.853 0.721 1.011 0.695
Sharpe 0.112 0.304 0.428 0.549 0.563 0.539 0.615 0.721 0.556 0.559 0.279

REV (CRSP) r̄ 0.318 0.388 0.728 0.821 1.098 0.902 0.962 0.705 0.743 0.386 0.067
Sharpe 0.251 0.283 0.492 0.566 0.722 0.622 0.632 0.5 0.567 0.297 0.113
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D | Complete tables and figures

D.1 Non-parametric benchmark decile excess return, volatility
and Sharpe

Figure D.1: Equally-weighted decile portfolio annualized mean excess return in the CRSP and S&P500
universes in the OOS period 1995/01-2022/12.
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Figure D.2: Equally-weighted decile portfolio annualized return volatility in the CRSP and S&P500
universes in the OOS period 1995/01-2022/12.

Figure D.3: Equally-weighted decile portfolio annualized Sharpe in the CRSP and S&P500 universes
in the OOS period 1995/01-2022/12.
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D.2 Optimization score related Diebold-Mariano test statistics

MAE x CRSP CR CLF32 CP CLF32 CR CAF32 CP CAF32 rtnXmkt-Linear
CR CLF32
CP CLF32 0.0001
CR CAF32 0.0000 0.0000
CP CAF32 0.0000 0.0645 0.0
rtnXmkt-Linear 0.0000 0.0013 0.0 0.0059
rtnXmkt-WLS 0.0000 0.0000 0.0 0.0000 0.0

Table D.1: p-values for Diebold-Mariano 2-sided tests applied to monthly MAE statistics for system
configurations over the period 1995-2022 in the CRSP universe. Expanding window applied for the
complex system configurations with training period starting at 15 years in 1975-1990, validation period
of constant 5 years 1990-1995, refit every three years.

MAE x S&P500 CR CLF32 CP CLF32 CR CAF32 CP CAF32 rtnXmkt-Linear
CR CLF32
CP CLF32 0.0000
CR CAF32 0.0000 0.0000
CP CAF32 0.0000 0.5007 0.0
rtnXmkt-Linear 0.0297 0.3953 0.0 0.3104
rtnXmkt-WLS 0.0000 0.0000 0.0 0.0000 0.0

Table D.2: p-values for Diebold-Mariano 2-sided tests applied to monthly MAE statistics for system
configurations over the period 1995-2022 in the S&P500 universe. Expanding window applied for the
complex system configurations with training period starting at 15 years in 1975-1990, validation period
of constant 5 years 1990-1995, refit every three years.

MSE x CRSP CR CLF32 CP CLF32 CR CAF32 CP CAF32 rtnXmkt-Linear
CR CLF32
CP CLF32 0.5987
CR CAF32 0.0000 0.0000
CP CAF32 0.4394 0.7071 0.0
rtnXmkt-Linear 0.0003 0.0004 0.0 0.0003
rtnXmkt-WLS 0.0000 0.0000 0.0 0.0000 0.0

Table D.3: p-values for Diebold-Mariano 2-sided tests applied to monthly MSE statistics for system
configurations over the period 1995-2022 in the CRSP universe. Expanding window applied for the
complex system configurations with training period starting at 15 years in 1975-1990, validation period
of constant 5 years 1990-1995, refit every three years.
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MSE x S&P500 CR CLF32 CP CLF32 CR CAF32 CP CAF32 rtnXmkt-Linear
CR CLF32
CP CLF32 0.2200
CR CAF32 0.0000 0.0000
CP CAF32 0.7062 0.1764 0.0
rtnXmkt-Linear 0.9484 0.5632 0.0 0.9104
rtnXmkt-WLS 0.0000 0.0000 0.0 0.0000 0.0

Table D.4: p-values for Diebold-Mariano 2-sided tests applied to monthly MSE statistics for system
configurations over the period 1995-2022 in the S&P500 universe. Expanding window applied for the
complex system configurations with training period starting at 15 years in 1975-1990, validation period
of constant 5 years 1990-1995, refit every three years.

SPR x CRSP CR CLF32 CP CLF32 CR CAF32 CP CAF32 rtnXmkt-Linear rtnXmkt-WLS MOM REV
CR CLF32
CP CLF32 0.4057
CR CAF32 0.0001 0.0017
CP CAF32 0.0608 0.2441 0.0007
rtnXmkt-Linear 0.0000 0.0000 0.0001 0.0
rtnXmkt-WLS 0.0000 0.0000 0.0000 0.0 0.6273
MOM 0.0000 0.0000 0.0000 0.0 0.7709 0.4260
REV 0.0000 0.0000 0.0000 0.0 0.0000 0.0002 0.0139
RESMOM 0.0000 0.0000 0.0000 0.0 0.0006 0.0000 0.0000 0.3253

Table D.5: p-values for Diebold-Mariano 2-sided tests applied to monthly SPR (Spearman correlation
coefficient) statistics for system configurations and benchmarks over the period 1995-2022 in the CRSP
universe. Expanding window applied for the complex system configurations with training period starting
at 15 years in 1975-1990, validation period of constant 5 years 1990-1995, refit every three years.

SPR x S&P500 CR CLF32 CP CLF32 CR CAF32 CP CAF32 rtnXmkt-Linear rtnXmkt-WLS MOM REV
CR CLF32
CP CLF32 0.1604
CR CAF32 0.0054 0.0001
CP CAF32 0.4673 0.0094 0.0013
rtnXmkt-Linear 0.4731 0.1565 0.3350 0.6696
rtnXmkt-WLS 0.1326 0.0446 0.9151 0.2252 0.3215
MOM 0.0358 0.0044 0.4293 0.0267 0.1452 0.8119
REV 0.5675 0.3481 0.6621 0.7314 0.9074 0.4443 0.5092
RESMOM 0.0030 0.0001 0.0660 0.0017 0.0145 0.3767 0.0795 0.2304

Table D.6: p-values for Diebold-Mariano 2-sided tests applied to monthly SPR (Spearman correlation
coefficient) statistics for system configurations and benchmarks over the period 1995-2022 in the S&P500
universe. Expanding window applied for the complex system configurations with training period starting
at 15 years in 1975-1990, validation period of constant 5 years 1990-1995, refit every three years.
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D.3 Parametric configurations decile portfolio statistics and fac-
tor exposures

CRSP D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D10-D1
CR CLF32 (mean) 11.93 16.11 15.61 15.34 14.63 14.56 14.02 14.69 15.98 15.96 4.02
CR CLF32 (volatility) 32.17 25.34 22.02 19.74 17.82 16.68 16.04 15.51 15.17 15.45 23.51
CR CLF32 (Sharpe) 0.37 0.64 0.71 0.78 0.82 0.87 0.87 0.95 1.05 1.03 0.17
CP CLF32 (mean) 9.25 15.51 15.25 16.29 15.48 14.75 14.89 15.63 15.71 16.96 7.71
CP CLF32 (volatility) 30.73 24.98 21.90 19.81 18.38 17.71 16.54 15.83 16.09 16.17 22.16
CP CLF32 (Sharpe) 0.30 0.62 0.70 0.82 0.84 0.83 0.90 0.99 0.98 1.05 0.35
CR CAF32 (mean) 16.74 13.61 14.57 14.41 14.19 15.06 14.43 13.65 14.72 13.47 -3.27
CR CAF32 (volatility) 35.09 24.78 21.03 18.84 17.76 16.92 16.12 15.82 14.89 14.08 27.93
CR CAF32 (Sharpe) 0.48 0.55 0.69 0.77 0.80 0.89 0.90 0.86 0.99 0.96 -0.12
CP CAF32 (mean) 9.60 16.53 16.70 16.37 15.87 15.37 14.50 14.56 14.17 14.64 5.03
CP CAF32 (volatility) 31.07 25.54 23.13 20.14 18.50 17.11 16.01 14.98 14.84 15.72 22.99
CP CAF32 (Sharpe) 0.31 0.65 0.72 0.81 0.86 0.90 0.91 0.97 0.96 0.93 0.22
rtnXmkt-Linear (mean) 9.25 11.79 12.11 13.07 13.60 14.27 14.51 15.22 16.84 20.78 11.54
rtnXmkt-Linear (volatility) 29.17 21.02 18.89 17.42 17.02 16.60 17.04 17.92 20.29 27.31 15.12
rtnXmkt-Linear (Sharpe) 0.32 0.56 0.64 0.75 0.80 0.86 0.85 0.85 0.83 0.76 0.76
rtnXmkt-WLS (mean) 8.94 13.07 12.15 12.87 13.91 13.26 14.45 14.25 15.71 18.12 9.18
rtnXmkt-WLS (volatility) 31.27 22.04 19.76 17.51 17.22 16.29 16.63 17.44 19.00 25.24 16.90
rtnXmkt-WLS (Sharpe) 0.29 0.59 0.62 0.74 0.81 0.81 0.87 0.82 0.83 0.72 0.54

MOM (mean) 15.87 12.12 12.90 13.17 12.66 12.17 14.05 14.44 15.83 16.34 0.47
MOM (volatility) 35.42 23.36 19.79 17.85 16.57 15.69 15.80 16.24 17.86 23.41 24.95
MOM (Sharpe) 0.45 0.52 0.65 0.74 0.76 0.78 0.89 0.89 0.89 0.70 0.02
REV (mean) 9.07 10.38 11.19 12.38 12.09 12.68 13.24 14.15 14.23 23.49 14.42
REV (volatility) 22.95 18.24 17.38 16.94 16.86 17.28 18.41 19.90 22.44 33.13 21.53
REV (Sharpe) 0.40 0.57 0.64 0.73 0.72 0.73 0.72 0.71 0.63 0.71 0.67
RESMOM (mean) 14.31 14.87 13.15 13.14 13.16 13.21 13.30 15.13 14.12 17.48 3.17
RESMOM (volatility) 31.81 22.29 19.11 17.52 16.55 15.72 15.89 16.44 17.26 23.10 21.13
RESMOM (Sharpe) 0.45 0.67 0.69 0.75 0.80 0.84 0.84 0.92 0.82 0.76 0.15

S&P500 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D10-D1
CR CLF32 (mean) 11.85 11.23 12.33 12.21 12.74 13.11 13.53 14.17 15.38 16.76 4.91
CR CLF32 (volatility) 28.27 22.01 19.88 17.37 15.95 15.44 15.55 14.77 15.78 15.88 19.88
CR CLF32 (Sharpe) 0.42 0.51 0.62 0.70 0.80 0.85 0.87 0.96 0.98 1.06 0.25
CP CLF32 (mean) 9.17 11.21 12.41 12.24 14.17 13.69 12.74 14.89 15.35 17.46 8.29
CP CLF32 (volatility) 26.50 22.24 18.95 17.85 16.73 15.52 15.57 15.86 16.03 16.26 19.23
CP CLF32 (Sharpe) 0.35 0.50 0.66 0.69 0.85 0.88 0.82 0.94 0.96 1.07 0.43
CR CAF32 (mean) 13.49 12.13 12.79 14.15 14.31 12.75 12.62 13.00 14.10 13.94 0.45
CR CAF32 (volatility) 31.23 22.67 19.65 17.60 16.64 15.82 15.37 14.87 14.58 14.58 24.83
CR CAF32 (Sharpe) 0.43 0.54 0.65 0.80 0.86 0.81 0.82 0.87 0.97 0.96 0.02
CP CAF32 (mean) 9.96 11.75 11.63 14.38 13.94 13.32 14.63 14.50 14.68 14.55 4.59
CP CAF32 (volatility) 26.70 22.09 19.94 17.78 16.88 16.25 15.69 14.89 14.97 16.06 19.94
CP CAF32 (Sharpe) 0.37 0.53 0.58 0.81 0.83 0.82 0.93 0.97 0.98 0.91 0.23
rtnXmkt-Linear (mean) 9.57 11.44 12.54 12.75 13.63 14.27 14.44 15.09 13.85 15.75 6.18
rtnXmkt-Linear (volatility) 25.44 20.08 17.92 16.55 15.40 15.70 15.71 16.81 17.04 22.60 20.89
rtnXmkt-Linear (Sharpe) 0.38 0.57 0.70 0.77 0.89 0.91 0.92 0.90 0.81 0.70 0.30
rtnXmkt-WLS (mean) 10.88 13.40 12.25 12.25 13.33 13.99 13.33 13.70 14.97 15.21 4.33
rtnXmkt-WLS (volatility) 22.72 18.11 16.97 16.06 15.72 16.26 16.08 16.83 18.10 24.07 17.96
rtnXmkt-WLS (Sharpe) 0.48 0.74 0.72 0.76 0.85 0.86 0.83 0.81 0.83 0.63 0.24

MOM (mean) 12.54 12.91 14.19 13.30 13.85 12.71 13.00 13.08 13.38 14.36 1.82
MOM (volatility) 32.23 22.90 19.34 17.18 15.97 15.07 15.02 14.65 14.95 19.27 28.89
MOM (Sharpe) 0.39 0.56 0.73 0.77 0.87 0.84 0.87 0.89 0.90 0.75 0.06
REV (mean) 10.45 10.50 11.26 13.07 13.49 13.51 15.04 15.63 15.43 15.00 4.55
REV (volatility) 19.13 16.75 15.22 15.64 15.68 16.12 17.17 17.90 20.82 27.47 20.31
REV (Sharpe) 0.55 0.63 0.74 0.84 0.86 0.84 0.88 0.87 0.74 0.55 0.22
RESMOM (mean) 13.63 12.15 14.13 12.49 12.74 13.69 14.79 13.63 12.29 13.62 -0.01
RESMOM (volatility) 31.69 22.09 19.20 17.44 15.71 15.06 14.56 15.08 15.71 18.28 28.29
RESMOM (Sharpe) 0.43 0.55 0.74 0.72 0.81 0.91 1.02 0.90 0.78 0.75 0.00

Table D.7: Decile equally-weighted portfolio statistics for the investigated configurations. Annualized
excess return [%], excess volatility [%] and Sharpe ratio [-] for complex and linear system configuration,
MOM , RESMOM and REV signal portfolios in the CRSP and S&P500 universes in the period 1995/01-
2022/12. Expanding window applied with training period starting at 15 years in 1975-1990, validation
period of constant 5 years 1990-1995, refit every year.
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Figure D.4: Annualized excess (risk free rate) Sharpe ratio across equally-weighted deciles in the CRSP
and S&P500 universes in the OOS period 1995/01-2022/12. Expanding window applied for the complex
system configurations with training period starting at 15 years in 1975-1990, validation period of constant
5 years 1990-1995, refit every three years. Histogram values correspond to those in Table D.7.

CR-CLF D10-D1 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
alpha (CRSP) 4.841 (2.164) -2.273 (-1.579) 1.613 (2.003) 0.747 (0.96) 1.381 (1.724) 1.006 (1.352) 1.08 (1.496) 0.76 (0.941) 1.379 (1.712) 2.526 (2.862) 2.568 (2.376)
Mkt-RF (CRSP) -0.195 (-3.364) 0.065 (1.75) 0.038 (1.816) 0.06 (2.985) -0.004 (-0.178) -0.037 (-1.931) -0.064 (-3.438) -0.069 (-3.31) -0.091 (-4.387) -0.096 (-4.186) -0.13 (-4.633)
LowVol (CRSP) 0.375 (7.108) -0.23 (-6.765) -0.1 (-5.243) 0.004 (0.192) 0.024 (1.258) 0.057 (3.235) 0.072 (4.225) 0.109 (5.726) 0.122 (6.441) 0.146 (7.027) 0.145 (5.703)
SMB (CRSP) -0.869 (-11.963) 0.509 (10.887) 0.187 (7.17) 0.026 (1.034) -0.06 (-2.318) -0.131 (-5.445) -0.21 (-8.953) -0.248 (-9.463) -0.318 (-12.174) -0.329 (-11.488) -0.36 (-10.262)
HML (CRSP) 0.082 (1.352) -0.082 (-2.091) -0.019 (-0.873) 0.047 (2.215) 0.061 (2.806) 0.076 (3.751) 0.09 (4.597) 0.062 (2.815) 0.062 (2.834) 0.035 (1.475) 0.0 (0.015)
RESMOM (CRSP) 0.339 (7.689) -0.248 (-8.742) -0.09 (-5.657) 0.016 (1.012) 0.041 (2.62) 0.089 (6.057) 0.116 (8.161) 0.107 (6.75) 0.108 (6.785) 0.128 (7.378) 0.091 (4.272)
REV (CRSP) 0.297 (8.38) -0.125 (-5.494) -0.037 (-2.869) -0.008 (-0.613) -0.001 (-0.044) 0.017 (1.472) 0.038 (3.329) 0.058 (4.518) 0.095 (7.477) 0.125 (8.93) 0.172 (10.031)

CR-CLF D10-D1 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
alpha (S&P500) 5.934 (2.676) -1.928 (-1.204) -2.149 (-1.831) -1.998 (-1.775) -1.188 (-1.297) -0.232 (-0.299) -0.155 (-0.2) -0.019 (-0.024) 1.232 (1.557) 2.4 (2.397) 4.006 (3.754)
Mkt-RF (S&P500) 0.007 (0.126) -0.039 (-0.948) -0.036 (-1.218) 0.066 (2.29) 0.019 (0.809) 0.009 (0.432) 0.015 (0.772) 0.025 (1.241) -0.005 (-0.27) -0.02 (-0.786) -0.032 (-1.161)
LowVol (S&P500) 0.218 (7.176) -0.206 (-9.396) -0.091 (-5.653) -0.007 (-0.48) 0.028 (2.22) 0.042 (4.015) 0.043 (4.071) 0.067 (6.168) 0.063 (5.797) 0.052 (3.826) 0.012 (0.806)
SMB (S&P500) -0.677 (-5.227) 0.411 (4.394) 0.415 (6.06) 0.187 (2.838) 0.012 (0.226) -0.139 (-3.086) -0.132 (-2.918) -0.109 (-2.361) -0.187 (-4.05) -0.196 (-3.351) -0.266 (-4.264)
HML (S&P500) -0.114 (-1.55) 0.04 (0.755) 0.039 (0.996) 0.063 (1.69) 0.096 (3.17) 0.054 (2.12) -0.063 (-2.44) -0.063 (-2.416) -0.058 (-2.21) -0.036 (-1.082) -0.074 (-2.088)
RESMOM (S&P500) 0.34 (10.45) -0.255 (-10.829) -0.118 (-6.862) -0.029 (-1.741) 0.01 (0.75) 0.028 (2.435) 0.073 (6.451) 0.07 (6.042) 0.08 (6.923) 0.057 (3.898) 0.086 (5.457)
REV (S&P500) 0.193 (5.632) -0.081 (-3.27) -0.137 (-7.587) -0.078 (-4.484) -0.04 (-2.853) -0.017 (-1.389) 0.027 (2.28) 0.058 (4.729) 0.052 (4.226) 0.105 (6.815) 0.112 (6.793)

Table D.8: Annualized alpha statistics for the CR − CLF configuration. All deciles portfolios are
excess market returns, except for the D10-D1 portfolio. All values are fitted coefficients with t-stat in
brackets in the OOS period 1995/01-2022/12. Expanding window applied with training period starting
at 15 years in 1975-1990, validation period of constant 5 years 1990-1995, refit every three years. Note
that Newey-West 12 lags standard errors are used for SE computation.
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rtnXmkt-Linear D10-D1 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
alpha (CRSP) 3.492 (1.942) -2.461 (-1.861) -0.335 (-0.413) 0.142 (0.177) 1.236 (1.686) 1.148 (1.57) 1.51 (2.107) 0.815 (1.292) 0.889 (1.04) 0.585 (0.62) 1.031 (0.96)
Mkt-RF (CRSP) -0.026 (-0.556) 0.07 (2.059) 0.025 (1.202) -0.027 (-1.313) -0.065 (-3.435) -0.057 (-3.006) -0.065 (-3.532) -0.038 (-2.322) 0.004 (0.159) 0.022 (0.909) 0.045 (1.604)
LowVol (CRSP) -0.092 (-1.679) -0.084 (-2.688) 0.025 (1.303) 0.066 (3.52) 0.072 (4.179) 0.087 (5.066) 0.08 (4.752) 0.074 (5.006) 0.098 (4.862) 0.018 (0.805) -0.176 (-6.955)
SMB (CRSP) -0.388 (-6.652) 0.428 (9.977) -0.026 (-0.986) -0.085 (-3.268) -0.125 (-5.245) -0.179 (-7.534) -0.201 (-8.658) -0.204 (-9.979) -0.212 (-7.655) -0.174 (-5.671) 0.04 (1.147)
HML (CRSP) -0.214 (-4.382) -0.039 (-1.083) 0.11 (5.006) 0.129 (5.927) 0.137 (6.865) 0.112 (5.655) 0.116 (5.957) 0.08 (4.683) 0.02 (0.854) -0.021 (-0.818) -0.253 (-8.666)
RESMOM (CRSP) 0.569 (16.076) -0.363 (-13.927) -0.12 (-7.499) -0.074 (-4.673) -0.021 (-1.425) 0.018 (1.23) 0.069 (4.862) 0.11 (8.838) 0.095 (5.666) 0.155 (8.35) 0.206 (9.76)
REV (CRSP) 0.498 (17.491) -0.209 (-9.997) -0.135 (-10.464) -0.084 (-6.655) -0.064 (-5.549) -0.019 (-1.671) -0.003 (-0.291) 0.032 (3.165) 0.067 (4.912) 0.136 (9.101) 0.289 (16.966)

rtnXmkt-Linear D10-D1 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
alpha (S&P500) 4.574 (1.812) -3.164 (-2.195) -1.358 (-1.215) -0.88 (-0.976) -0.196 (-0.211) 0.993 (1.421) 1.221 (1.678) 0.969 (1.125) 1.031 (1.163) -0.022 (-0.023) 1.409 (0.84)
Mkt-RF (S&P500) 0.027 (0.415) -0.044 (-1.188) -0.026 (-0.926) 0.025 (1.11) -0.003 (-0.119) -0.019 (-1.088) 0.006 (0.313) 0.019 (0.849) 0.047 (2.087) 0.012 (0.508) -0.017 (-0.396)
LowVol (S&P500) -0.145 (-4.212) -0.098 (-4.948) -0.004 (-0.242) 0.087 (7.026) 0.077 (6.051) 0.06 (6.241) 0.055 (5.529) 0.075 (6.34) 0.029 (2.401) -0.034 (-2.627) -0.243 (-10.586)
SMB (S&P500) -0.372 (-2.525) 0.232 (2.759) 0.211 (3.238) 0.056 (1.062) -0.005 (-0.097) -0.063 (-1.55) -0.118 (-2.771) -0.036 (-0.708) -0.089 (-1.716) -0.053 (-0.953) -0.14 (-1.429)
HML (S&P500) -0.361 (-4.317) 0.141 (2.945) 0.068 (1.828) 0.065 (2.178) 0.072 (2.35) 0.015 (0.655) -0.014 (-0.578) 0.024 (0.83) -0.072 (-2.448) -0.08 (-2.54) -0.22 (-3.964)
RESMOM (S&P500) 0.584 (15.736) -0.303 (-14.32) -0.165 (-10.051) -0.111 (-8.366) -0.045 (-3.306) -0.009 (-0.899) 0.013 (1.181) 0.067 (5.334) 0.088 (6.723) 0.187 (13.454) 0.28 (11.369)
REV (S&P500) 0.435 (11.17) -0.167 (-7.49) -0.155 (-9.009) -0.057 (-4.079) -0.051 (-3.549) -0.044 (-4.044) 0.002 (0.2) 0.02 (1.538) 0.082 (5.966) 0.102 (6.959) 0.268 (10.368)

Table D.9: Annualized alpha statistics for the rtnXmkt − Linear configuration. All deciles portfolios
are excess market returns, except for the D10-D1 portfolio. All values are fitted coefficients with t-stat in
brackets in the OOS period 1995/01-2022/12. Expanding window applied with training period starting
at 15 years in 1975-1990, validation period of constant 5 years 1990-1995, refit every three years. Note
that Newey-West 12 lags standard errors are used for SE computation.

D.4 Empirical distribution maps

Figure D.5: Empirical distribution grid based on
target and prediction deciles for the CRSP universe
in the OOS period 1995/01-2022/12 for the MOM
benchmark.

Figure D.6: Empirical distribution grid based on
target and prediction deciles for the CRSP universe
in the OOS period 1995/01-2022/12 for the REV
benchmark.
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Figure D.7: Empirical distribution for the CR −
CLF system configuration over the period 1995-
2022 in the CRSP universe. Expanding window
applied for the complex system configuration with
training period starting at 15 years in 1975-1990,
validation period of constant 5 years 1990-1995, re-
fit every three years.

Figure D.8: Aggregated results of the empiri-
cal distribution over time for the CR − CLF sys-
tem configuration over the period 1995-2022 in the
CRSP universe. Expanding window applied for the
complex system configuration with training period
starting at 15 years in 1975-1990, validation pe-
riod of constant 5 years 1990-1995, refit every three
years.

Figure D.9: Empirical distribution for the
rtnXmkt − Linear system configuration over the
period 1995-2022 in the CRSP universe. Expanding
window applied for the linear system configuration
with training period starting at 15 years in 1975-
1990, validation period of constant 5 years 1990-
1995, refit every three years.

Figure D.10: Aggregated results of the empirical
distribution over time for the rtnXmkt − Linear
system configuration as well as theMOM andREV
benchmarks over the period 1995-2022 in the CRSP
universe. Expanding window applied for the sys-
tem configuration with training period starting at
15 years in 1975-1990, validation period of constant
5 years 1990-1995, refit every three years
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Figure D.11: Empirical distribution grid based on
target and prediction deciles for the CRSP universe
in the OOS period 1995/01-2022/12 for the CR −
CLF configuration.

Figure D.12: Empirical distribution grid based on
target and prediction deciles for the CRSP universe
in the OOS period 1995/01-2022/12 for the CP −
CLF configuration.

Figure D.13: Empirical distribution grid based on
target and prediction deciles for the CRSP universe
in the OOS period 1995/01-2022/12 for the CR −
CAF configuration.

Figure D.14: Empirical distribution grid based on
target and prediction deciles for the CRSP universe
in the OOS period 1995/01-2022/12 for the CP −
CAF benchmark.
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D.5 Spearman contribution plots

Figure D.15: Spearman correlation coefficient
contribution aggregated per target percentile for
the MOM benchmark over the out-of-sample pe-
riod 1995-2022 in the CRSP universe. Mean con-
tribution over time dimension per target percentile
given in blue.

Figure D.16: Mean spearman correlation coeffi-
cient contribution aggregated per target percentile
the REV benchmark over the out-of-sample period
1995-2022 in the CRSP universe. Mean contribu-
tion over time dimension per target percentile given
in blue.

Figure D.17: Spearman correlation coefficient
contribution aggregated per target percentile for the
CR − CLF complex system configuration over the
out-of-sample period 1995-2022 in the CRSP uni-
verse. Mean contribution over time dimension per
target percentile given in blue.

Figure D.18: Spearman correlation coefficient
contribution aggregated per target percentile for
the CP − CLF system configuration over the out-
of-sample period 1995-2022 in the CRSP universe.
Mean contribution over time dimension per target
percentile given in blue.
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Figure D.19: Spearman correlation coefficient
contribution aggregated per target percentile for
the CR − CAF system configuration over the out-
of-sample period 1995-2022 in the CRSP universe.
Mean contribution over time dimension per target
percentile given in blue.

Figure D.20: Spearman correlation coefficient
contribution aggregated per target percentile for
the CP − CAF system configuration over the out-
of-sample period 1995-2022 in the CRSP universe.
Mean contribution over time dimension per target
percentile given in blue.

Figure D.21: Spearman correlation coefficient
contribution aggregated per target percentile for the
rtnXmkt − Linear system configuration over the
out-of-sample period 1995-2022 in the CRSP uni-
verse. Mean contribution over time dimension per
target percentile given in blue.

Figure D.22: Mean Spearman correlation coeffi-
cient contribution aggregated per target percentile
for the complex system configurations (CR−CLF ,
CP − CLF , CR − CAF & CP − CAF ) as well as
rtnXmkt−Linear and the MOM and REV bench-
marks over the out-of-sample period 1995-2022 in
the CRSP universe. Mean contribution over time
dimension per target percentile given in blue.
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E | Python script description

This results in this research were obtained by the python scripts contained in the zipfile Ex-
tremeLearning MScThesisQF RWVOS 583868. It consists of one main jupyter notebook and
multiple python scripts. In this appendix we describe these script. The files are given in the
following list,

NAME.FILETYPE: DESCRIPTION

• requirements.txt: Lists all environment package requirements.

• Extreme learning.ipynb: Main python notebook that allows for data pre- and post-processing
and system implementation and estimation. Note that this file uses pytorch for its system
implementation and estimation. This notebook calls functions provided in the .py script
files.

• utility EL.py: This script contains all ’utility’ definitions including all definitions required
for the data pipelines (i.e. dataprocessor and backtester). Note that model and optimiza-
tion related functions are not included in this script.

• models EL.py: This script contains all functions/classes which are used to setup models and
fit them and properly store any results. Note that the models/functionality in this script is
built to work with pytorch. Note that this file uses pytorch for its system implementation
and estimation.

• runner EL.py: This script forms the runner file. It mainly consists of functions which calls
all functions and sets up all class instances required to properly train a single estimation
window out of the multiple estimation windows involved in the experiment.
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