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Abstract

Multiplex cinemas have gained significant popularity in recent years. These cinemas feature a

number of rooms of different sizes and screen types. The large size of these movie theatres, coupled

with diverse scheduling requirements and preferences, gives rise to a complex scheduling problem.

In this thesis, we therefore aim to develop a method to determine the optimal movie schedule for

movie theatres.

The so-called Movie Scheduling Problem consists of two parts: session demand forecasting, and

movie schedule optimization. According to our analysis, the expected demand for a session can best

be modeled using a Gradient Tree Boosting model. The movie schedule can be represented as a

network, and the problem is formulated as a Set Partitioning Problem. A comparative analysis is

conducted between Column Generation and an Adaptive Large Neighborhood Search heuristic to

solve the problem. While the former is generally able to obtain better solutions, the latter has a

much shorter running time. Finally, a method is presented wherein the session demand forecast

and the schedule optimization are combined. We use an iterative procedure in which the forecast is

updated upon the acceptance of a new schedule, aiming to capture their mutual interdependence.
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1 Introduction

In 1895 the Lumière brothers showed a short film in the first public screening (National Science and

Media Museum, n.d.). Now, almost 130 years later, there are approximately 208,000 cinema screens

around the world according to Motion Picture Association (2022). After a decline in the global

box office market in 2020 due to the COVID-19 pandemic lockdowns, the market started increasing

again in 2021 resulting in a total revenue of 21.3 billion USD.

The multiplex cinema is a very common type of movie theatre nowadays. Although there is no

agreement on the exact definition of a multiplex cinema, it is generally described as a cinema that

has multiple screening rooms (Hanson, 2019). The strength of this type of cinema is that it offers a

wide range of movies in different genres and languages to serve a broad audience.

However, the rise of this cinema type has also introduced some challenges. The great number of

different movies, screening room capacities and screen types can result in a large and complex sched-

ule. Agreements with film distributors and management requests impose additional requirements on

the schedule. Next to that, the movie exhibition business has recently undergone substantial changes,

resulting in changes in the requirements of the schedule (M. Groen, personal communication, May

12, 2023). This thesis therefore aims to develop a method to find the optimal movie schedule for

movie theatres. Optimality can be determined by identifying the key performance indicators of a

movie theatre. To find an optimal schedule, we will also need to determine how to forecast ticket

demand for both already showing movies, as well as new movies.

We use data from a large movie theatre company located in the Middle East. Ticket transaction

data and schedule information from one of their locations form the basis of our case study. These

data are especially relevant as the Middle East is expected to become one of the leading markets for

global box office revenues, signified by the expected compound annual growth rate of the movies and

entertainment market of 8.5% from 2021 to 2028 (Grand View Research, 2021). We complement

this dataset with information on logistical and managerial requirements from other companies in

the movie exhibition business, and movie characteristics retrieved from Internet Movie Database

(IMDb).

The Movie Scheduling Problem can be represented by a network with multiple layers. To forecast

the session demand, we formulate a both a linear regression model, as well as a Gradient Tree

Boosting (GTB) model, and compare their performances. Given the forecast, we can formulate the

problem as a Set Partitioning Problem. To find the optimal schedule, we compare the performance
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of Column Generation with the performance of an Adaptive Large Neighborhood Search (ALNS)

heuristic. The session demand forecasting and schedule optimization are thereafter combined in an

iterative procedure, where the forecast is updated when a new schedule is accepted.

We find that our GTB is best able to predict the demand for a session in the movie schedule.

Moreover, Column Generation is able to find slightly better solutions than our ALNS heuristic, how-

ever at the expense of a much larger running time. The result of the combination of our forecasting

and scheduling approach suggests to capture some interactions between the session demand and

movie schedule, but the method struggles to find a good solution where all schedule requirements

are satisfied.

This thesis firstly extends the existing literature on the Movie Scheduling Problem by comparing

the performance of methods trying to find an optimal schedule. Moreover, to the best of our

knowledge, we are the first to make the ticket demand forecast dependent on other showings in the

current schedule. As this problem generalizes to more stochastic scheduling problems, our methods

also contribute to other scheduling problems in the field of Operations Research. Next to that,

this thesis helps to improve the operations of multiplex cinemas. Not only the movie theatre owner

benefits from these improved performances, but also the customer as the schedule better satisfies

their needs and preferences.

This thesis is part of an internship at data consultancy Lynxx. This company is mainly active in

the analysis of data and optimization, and next to that provides data insights using visualizations.

The structure of this thesis is as follows. Chapter 2 presents the existing literature related to this

thesis. Next, Chapter 3 discusses the problem and its requirements. The mathematical formulation

and methods to solve the problem are presented in Chapter 4. The case study is introduced in

Chapter 5 and the results are thereafter analyzed in Chapter 6. Chapter 7 discusses the outcomes,

and finally Chapter 8 gives the limitations of this thesis and concludes.
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2 Literature Review

This section will outline the existing literature on the Movie Scheduling Problem (Section 2.1),

session demand forecasting (Section 2.2), other relevant Scheduling Problems (Section 2.3), and the

integration of forecasting and optimization (Section 2.4). Finally, Section 2.5 will give the concluding

remarks for the literature review.

2.1 Movie Scheduling Problem

Swami et al. (1999) were the first to formulate a model to create an optimal schedule for the movie

screening in multiplex cinemas. They distinguish between two stages, the first being the selection

of movies to include in the schedule, and the second being the creation of the schedule. Similarly,

Iniestra et al. (2006) try to forecast movie demand and allocate movies to screens. They construct

an Integer Programming model to create the weekly schedule. Note that these papers assume that

each week only one movie can be shown at each screen, which was only the case before the digital

film projector was introduced (see Appendix A for more details). Research thereafter continues to

improve this approach and relaxes this assumption.

Similar to our approach, Eliashberg et al. (2009) formulate the Movie Scheduling Problem as a

network. They subsequently model the problem as a Set Partitioning Problem, which they solve

using Column Generation combined with Lagrangian Relaxation, and using an all-pair Shortest Path

Problem as pricing problem. Next to that, they forecast the demand for a movie at a given time

using Ordinary Least Squares. A different model is used for movies that have already been running

than for new movies. Their forecast however does not take into account the effect of other movies

that are shown during that time period. Note also that in this model movie theatres still try to limit

the movie switching on one screen.

Table 1 summarizes the discussed papers considering the Movie Scheduling Problem.

2.2 Session Demand Forecasting

To create the movie schedule, the expected movie demand at a given time must be determined.

Baranowski et al. (2020) forecast cinema attendance using several Linear Regression models. They

show that cinema and movie specific variables in the model improve its predictive performance.

Next, Lawitsanon et al. (2022) also formulate a predictive model for a Movie Scheduling Problem.

They test the performance of Linear Regression models, Regression Trees and Neural Networks, and
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Table 1. Overview literature Movie Scheduling Problem

Paper Forecasting Method Scheduling Method Output

Swami et al.
(1999)

Exponential function to
forecast total gross box
office sale

BILP exact solution Weekly schedule with
one movie per screen

Iniestra et al.
(2006) Ordinary Least Squares BILP exact solution Weekly schedule with

one movie per screen

Eliashberg
et al. (2009) Ordinary Least Squares

Set Partitioning Prob-
lem with Column Gen-
eration and Lagrangian
Relaxation

Daily schedule with
preferably one movie
per screen

conclude that the Neural Network has the best overall performance. Lee et al. (2018) also work

with Machine Learning models. They construct a Cinema Ensemble Model by using seven different

Machine Learning algorithms as candidate models, and evaluate their performance to select the best

one for the specific prediction. They find that Gradient Tree Boosting most often has the most

accurate results. Likewise, Leem et al. (2023) use a Gradient Boosting algorithm. However, next to

that, they use k-means clustering to group movies with similar characteristics.

Different from this, Bardadym (1996) further investigates demand for movies by examining their

life cycle. The author makes use of the Bass model (Bass, 1969), that is often used in forecasts of

new products. More specifically, this model includes an innovation and imitation effect to forecast

how accumulated movie demand is distributed over time. The paper highlights that sharing positive

movie experiences has the largest impact on movie attendance in the early stage. Based on the

Bass model, Zhang et al. (2017) construct a model with different seasonal dummies in an alternative

seasonal structure. Their model allows for different seasonal effects of weekends and holidays and

their distinct intertemporal demand shift pattern. The empirical results do show an improved

performance of this model compared to the traditional Bass model. Tang and Dong (2021) also

proposes a new method for forecasts of new short life-cycle products. Moreover, they apply their

method on the box office market and therefore also show quantification of relevant variables. Their

method, called Multi-Evidence Dynamic Weighted Combination Forecasting, has shown to perform

better than other classical classification methods.

Table 2 summarizes the papers with session demand forecasting methods.
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Table 2. Overview Session Demand Forecasting

Paper Forecasting method

Baranowski et al. (2020) Several Linear Regression models

Lawitsanon et al. (2022) Linear Regression models, Regression Trees, Neural Network

Lee et al. (2018)
Ensemble model (Adaptive Tree Boosting, Gradient Tree Boost-
ing, Linear Discriminant, Logistic Regression, Neural Network, Ran-
dom Forest)

Leem et al. (2023) Gradient Tree Boosting with k-means clustering

Bardadym (1996) Bass model

Zhang et al. (2017) Bass model with seasonal dummies

Tang and Dong (2021) Multi-Evidence Dynamic Weighted Combination Forecasting

Note. For papers with multiple solving techniques, the method in bold is the best performing
method.

2.3 Scheduling Problems

The Movie Scheduling Problem is a type of problem included in the large set of Scheduling Prob-

lems. As suggested by Swami et al. (1999), an analogy with our problem and the parallel Machine

Scheduling Problem can be made. In this analogy, movies are represented by jobs, and screens

can be seen as non-identical machines. Then, the problem is to decide when to schedule jobs, how

often to schedule jobs of the same type, and on which machine. However, an important difference

between this problem and ours is that for the Machine Scheduling Problem the ordering of the jobs

only matters for their completion time, whereas in our problem the time interval that a machine is

working on a job is of importance. Moreover, a substantial addition of our problem to the Machine

Scheduling Problem is the uncertainty in revenue of the proposed schedule.

Another problem that could be compared to ours is the Classroom Scheduling Problem, which

is proven to be NP-hard (Bardadym, 1996). This is the problem of assigning lectures (movies) to

rooms (screens) at a given time to build a schedule. The most important distinction is however that

the lectures that need to be scheduled are fixed and their characteristics, such as group size, do not

depend on the schedule. This problem can be modeled as a Binary Integer Linear Programming

(BILP) model (Samiuddin & Haq, 2019). The problem in this paper is optimized in two stages using

the simplex method, where the first stage schedules one type of classroom, and the second stage the

other type. Yazdani et al. (2017) model the problem similarly, but thereafter investigates three solu-
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tion algorithms. Out of Simulated Annealing, Genetic Algorithm and Artificial Immune Algorithm,

the third performs best. Y. Chen et al. (2022) recently published a paper on the Classroom Schedul-

ing Problem where student and teachers’ preferences are considered in the model. In our problem

we could similarly include customer and movie screening preferences to optimize the performance of

a movie schedule. Similar to us, R. M. Chen and Shih (2013) also make the distinction between hard

and soft constraints in the Course Timetabling Problem to include student and teacher preferences.

They model the soft constraints by including a penalty in the objective function.

Finally, a relevant problem for us to examine is the Crew Scheduling Problem. This problem

considers the scheduling of crew members (movies) to tasks (screens) at a specific time. Different

from the Movie Scheduling Problem is however that all tasks must always have an assigned crew

member during the entire time horizon. Moreover, the cost or revenue of assigning a crew member

to a specific tasks needs to be determined differently than in the Movie Scheduling Problem. The

problem is generally modelled as a Set Partitioning Problem (Wen et al., 2021). However, there

exists a large number of feasible schedules for each crew member, and therefore solving techniques

and heuristics are widely discussed in the literature. Importantly, Lavoie et al. (1988) was the first

to introduce Column Generation on this specific problem, which is now a commonly used approach.

Table 3 summarizes the discussed papers in this section.

Table 3. Overview Scheduling Problems

Problem Paper Solving technique Constraints

Classroom Scheduling

Samiuddin and Haq (2019) Simplex Method Hard

Yazdani et al. (2017)

Simulated Annealing,
Genetic Algorithm,
Artificial Immune
Algorithm

Hard

Y. Chen et al. (2022) Genetic Algorithm Hard and soft

R. M. Chen and Shih (2013)
Partical Swarm Op-
timization with Local
Search

Hard and soft

Crew Scheduling Lavoie et al. (1988)
Set Partitioning Prob-
lem with Column Gen-
eration

Hard

Note. For papers with multiple solving techniques, the method in bold is the best performing
method.
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2.4 Integrated Forecasting and Optimization

As highlighted before, the Movie Scheduling Problem consist of two parts: session demand fore-

casting and schedule optimization. Ding and Niu (2013) also try to optimize a schedule that uses

forecasting input. They use forecasted parameters in their Mixed Integer Quadratic Constraint Pro-

gramming Problem, and thus model the problem in two stages. Likewise, Zhou et al. (2022) apply

the predict-then-optimize method to the reallocation in the bike-sharing network. They employ

Distributionally Robust Optimization to predict the expected reallocation, and a branch-and-price

algorithm is proposed to solve the reallocation problem. Different from our problem is that these

forecasts only depend on external factors, and not on factors that are included in the optimization

problem.

Carriere and Kariniotakis (2019) show an approach to simultaneously consider a forecasting

model and a decision-making strategy. Their problems in the renewable energy market use forecast

models as input into scheduling, reserves estimation and trading strategy decisions. Instead of

optimizing the forecasting and decision-making steps separately, they use the Extreme Learning

Machine variant of the Artificial Neural Network to solve the problems simultaneously. Similarly,

Stratigakos et al. (2022) examine integrated forecasting and optimization in the renewable energy

industry. They use Prescriptive Decision Trees where decisions are formulated using a Weighted

Sample Average Approximation. Thus, the locally optimal split is determined for each tree node by

directly optimizing based on the contextual information.

We also examine Bilevel Programming frameworks, or more generally Hierarchical Programming

frameworks, where one optimization problem depends on the solutions obtained at the lower levels.

Muñoz et al. (2022) provide a framework for solving Bilevel Optimization Problems, where also

contextual information can be included in the models. In our problem there is however not a clear

hierarchical structure when we assume that the forecasted demand for a session also depends on

the rest of the schedule. Namely, it is the case that the optimal schedule depends on the optimal

forecast and vice versa.

Table 4 summarizes the papers discussed in this section.
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Table 4. Overview Integrated Forecasting and Optimization

Paper Method Application

Ding and Niu (2013) Predict-then-optimize Seawater Reverse Os-
mosis System

Zhou et al. (2022) Predict-then-optimize Bike sharing network

Carriere and Kariniotakis (2019) Simultaneous optimization with
Neural Networks

Renewable energy trad-
ing

Stratigakos et al. (2022)

Simultaneous optimization with
Prescriptive Decision Trees with
Weighed Sample Average Approxi-
mation

Renewable energy in-
dustry

Muñoz et al. (2022) Bilevel Programming Electricity industry

2.5 Conclusion of the Literature Review

We highlight the most important papers from the literature review to conclude this chapter. The

paper by Eliashberg et al. (2009) serves as the starting point for this thesis. We use a similar

network formulation and modeling approach to represent and solve the problem, whilst enhancing

the problem requirements and specifications. To extend the problem formulation, we follow the

approach of R. M. Chen and Shih (2013) to incorporate soft constraints in scheduling problems.

Moreover, for predicting session demand, we make use of the findings of Lee et al. (2018) and Leem

et al. (2023), which indicate that a Gradient Tree Boosting model often yields accurate forecasts

in the movie demand context. Finally, inspiration for an approach to combine the session demand

forecast and schedule optimization is mostly taken from the predict-then-optimize method outlined

by Ding and Niu (2013) and Zhou et al. (2022).
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3 Problem Description

Before examining the problem, we will first shortly discuss some more general insights in the movie

exhibition business in Section 3.1. Additional background information about the sector is presented

in Appendix A. Secondly, we will define the Movie Scheduling Problem in Section 3.2. Finally,

the aspects relevant to forecast demand for a session will be outlined in Section 3.3. Note that

information and the problem definition in this chapter is, among other things, based on a personal

interview with an experienced professional in the movie exhibition business (M. Groen, personal

communication, May 12, 2023).

3.1 Sector Information

Multiplex cinemas typically have a number of rooms of different sizes and screen types. Moreover,

rooms can have different seat types to allow for distinct experiences. Note that each room and seat

type can have different ticket prices. An important party in the movie exhibition business is the

film distributors. Film distributors control the process of making a movie available to view by the

audience after the production process has finished. This includes the marketing and distribution of

the movie. Film distributors also form agreements with multiplex cinemas to show a movie in their

cinema. In this agreement, the share of box office sales that the distributor receives is stated, and

also some requirements can be specified which the multiplex cinema needs to satisfy.

3.2 Movie Scheduling

The Movie Scheduling Problem is the problem of assigning movies to screens at a specific time.

The weekly schedule is released three days ahead of time and covers the period from Thursday to

Wednesday. The list of movies that need to be scheduled each week is given. The goal is to create

a schedule that yields an expected box office revenue that is as high as possible. To find an optimal

schedule, a number of restrictions and requirements need to be taken into account. These restrictions

can be split into three sets: logistical, distributor, and managerial constraints.

The first set of restrictions of the problem we call the logistical constraints. Firstly, the number

of tickets sold of a specific seat type cannot exceed the number of seats of that type in the room.

Second, there is the restriction that the room for the next showing can only open after the previous

movie in that room has finished, all the guests have left the room, and the room is cleaned. Third,

it is required that only a given number of movies can start during a given time interval. The same
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holds for the number of movies ending. Next to this, within every consecutive set of a given number

of time periods, the total capacity of movie rooms starting or ending screenings during this interval

cannot exceed a given number. This is to prevent these areas from getting overcrowded and also to

make sure that enough personnel is available to for example scan tickets or prepare the room for the

next showing.

The next set of restrictions we call the distributor constraints. These constraints arise from agree-

ments between film distributors and multiplex cinema operators. The constraints differ significantly

between movies and distributors, but generally have become less restricting after the COVID-19

pandemic. The requirements can be of the following form. The first requirement can be on a weekly

basis, specifying a minimum number of showings in the evening or afternoon per week. Second, dis-

tributors can require to use a room exclusively for their movie in that week. Finally, an agreement

on the minimum number of daily showings can be in place for movies.

The final set of restrictions we call the managerial constraints. These requirements are set by

the management of the multiplex cinema, mostly to achieve a certain level of service. Note that

this set of constraints should be modeled as soft constraints. The first of such restrictions specifies

the time the first movie can start and the time the last movie must finish, since opening times of

cinemas can be flexible. Second, movies in a given number of different languages or with different

genres must start in a specified time interval to offer a wide range of movies. Third, movies should

be shown on the same set of screens as much as possible. This is to limit unnecessary confusion and

complication for visitors and staff. Finally, it is sometimes desired that at least one movie starts in

every specified time interval.

3.3 Session Demand Forecasting

To make the schedule, we also need to make a forecast on the number of people to attend a movie

at a given time. The number of ticket sales are dependent on a large number of variables. Firstly,

some general information is important in the time specific forecast. Ticket sales are dependent on

the moment of the screening, such as time of day, day of the week, public holidays, or other large

events occurring. Secondly, the weather can be affecting the number of ticket sales. Moreover,

characteristics of the movie influences tickets sold. Currently, target audience is mostly used in the

demand forecasting of a movie. The important characteristics language, genre, sequel information,

release date, cast, and directors of the movie together determine the target audience, and we therefore

consider these characteristics separately. Other suitable characteristics are the movie budget, and
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the marketing plan and budget. Note that the demand forecast is currently also largely based on

identifying equivalent movies and examining their past performance. If a movie is already showing,

the rating is also relevant in the prediction. There are two types of ratings: those provided by movie

professionals and those given by the audience. The rating provided by the audience indicates the

extent to which a positive movie experience is shared. Furthermore, for already showing movies,

historic ticket sales data can be used to improve the forecast. Finally, other sessions in the schedule

can also affect the expected session demand. Namely, if other popular movies, movies in the same

genre, or movies with the same release week show at the same time, the demand per session might

decrease because customers now need to decide what movie or session to attend.
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4 Methods

This chapter will present the methods to solve the different stages of the Movie Scheduling Problem.

First, Section 4.1 shows how to model the movie demand at a given time. Next, Section 4.2 will

introduce the approaches to optimize the movie schedule given the session demand forecast. Finally,

Section 4.3 presents the approach to combine the scheduling and forecasting methods.

4.1 Forecasting Model

To model demand for movie m at time t, we first introduce a set of general variables that can affect

the accumulative demand for the sessions. These variables are the first listed in Table 5. Next,

we also introduce a set of movie specific variables. Finally, we also allow for interaction between

sessions. For this, we need information of the current schedule. These variables are presented last

in Table 5.

Table 5. Independent Variables

General Variables

Im indicator for movie m

Ih indicator for starting time in hour h

Iω indicator for showing day ω

HOLI indicator for (public) holiday

WEATHER indicator for favourable weather for movie attendance

Movie Specific Variables

METER IMDb MOVIEmeter position

RATING IMDb audience rating 1

LANGl indicator for language l

GENREg indicator for genre g

SEQUEL indicator whether movie is a sequel

ACTOR100 indicator whether one of the maximum first three listed actors are in IMDb

top 100

ACTOR1000 indicator whether one of the maximum first three listed actors are in IMDb

top 1000

1To measure audience experience.
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DIRECT1000 indicator whether one of the maximum first three listed directors are in

IMDb top 1000

DIRECT5000 indicator whether one of the maximum first three listed directors are in

IMDb top 5000

DISTR indicator for IMDb ranking of main distributor above 500

PRODUCT indicator for movie production budget above 80,000,000 USD

RELEASE number of weeks after release date

TICKETS number of tickets sold last scheduled week (Thursday to Sunday)

Movie Schedule Variables

COUNTg number of movies in the same genre starting maximum one hour before or

after this movie

COUNTrelease number of movies with same release week starting maximum one hour be-

fore or after this movie

COUNTpop number of movies with top 5 MOVIEmeter position of the movies showing

that week starting maximum one hour before or after this movie

We use Supervised Learning since we have a target variable, namely session demand, and pre-

dictors, namely the independent variables listed in Table 5. Note that the movie schedule variables

are only included in the model when an initial schedule is known. We determine the demand for a

specific movie on an hourly basis. Two different models are introduced, and their performance will

be compared.

4.1.1 Linear Regression

We start with predicting the demand for sessions in a naive way with a linear regression model,

estimated by Ordinary Least Squares (OLS). We will test the data for skewness by determining the

Fisher-Pearson coefficient of skewness, and apply a logistic transformation of the dependent variable

if needed (Changyong et al., 2014). If a logistic transformation is applied, the model for demand,
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dmt, of movie m showing at time t is given by the equation below.

log dmt = α+
∑
m∈M

βm · Im +
∑
∀h

βh · Ih +
∑
ω∈W

βω · Iω + βHOLI ·HOLI + βWEATHER ·WEATHER

+ βMETER ·METER+ βRATING ·RATING+
∑
l∈L

βl · LANGl +
∑
g∈G

βg ·GENREg

+ βSEQUEL · SEQUEL+ βACTOR100 ·ACTOR100 + βACTOR1000 ·ACTOR1000

+ βDIRECT1000 ·DIRECT1000 + βDIRECT5000 ·DIRECT5000 + βDISTR ·DISTR

+ βPRODUCT · PRODUCT + βRELEASE ·RELEASE + βTICKETS · TICKETS

+ βCOUNTg · COUNTg + βCOUNTr · COUNTrelease + βCOUNTpop · COUNTpop + εmt

Note that we assume εmt ∼ N(0, σ2) such that the coefficients can be estimated by OLS.

4.1.2 Gradient Tree Boosting

We also model the session demand using Gradient Tree Boosting (GTB). GTB is a machine learning

method that improves the performance of decision trees sequentially by combining weak classifiers.

In our case, since the target variable is numerical, we use regression trees. The large number of

independent variables, between which some interaction might be present, makes this method a good

fit for our data. Namely, as the weights of the predictors are updated using the gradient of the loss

function, the relevance of each independent variable is determined and used in the final prediction.

Moreover, this ensures some robustness against irrelevant independent variables, limiting the degree

of overfitting. We use the commonly used Mean Squared Error as a loss function. Moreover, all

data points are used in the individual trees, since we want to limit the bias.

To correctly train the model and limit overfitting, we tune some hyperparameters. We need to

tune both boosting parameters, as well as tree-specific parameters. Firstly, we tune the learning

rate, which regulates the contribution of each tree in the final model. A high learning rate can lead

to overfitting of the model, whereas a lower learning rate slows down the training of the model.

Secondly, we tune the number of trees. A too high number of trees can again result in overfitting.

Next, we also need to do some tuning of the tree-specific parameters. We tune the parameter for

the minimum requirement on the number of samples to split a node. Furthermore, the maximum

depth of a tree need to be specified. A higher depth makes the model more likely to overfit the

data. Finally, we can also tune the maximum number of features considered at each split. This

value should be around the squared root of the total number of features.
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4.2 Scheduling Model

To formulate the problem, we first describe the main sets. Firstly, T contains the set of time periods

t, ranging from 1 to T . The subset T m contains the time periods in which movie m is allowed to

start. The subset T̂ m contains the time periods in which it is not desired, but allowed, to start

movie m. Secondly, the set of movies is expressed by M . Movie m, m ∈M , has a duration denoted

by δm and a commercial time denoted by om. Moreover, the subset M t contains the movies that

can be shown during time period t and the subset M s the movies that can be shown on screen s.

Thirdly, the set of screens is expressed by S. Screen s, s ∈ S, has a capacity of each seat type

denoted by csk, where k, k ∈ Ks, denotes the type of seat from a set of seat types of screen s.

Moreover, it has a cleaning duration ps. Subset Sm contains the screens on which movie m can be

shown. Furthermore, subset Se contains the screens with cinema type e.

To be able to introduce specific restrictions to the problem, we also introduce the following movie

characteristics and sets. For each existing movie genre, which we denote by g (g ∈ G), we create a

subset of movies Mg ⊆ M that contains all movies in that genre. At least movies with ĝ different

genres must preferably be shown in time interval τg. Moreover, for each language l that a movie is

showed in (l ∈ L), we create a subset M l ⊆ M that contains all movies in that language. At least

movies displayed in l̂ different languages must preferably be shown in time interval τl. Moreover, we

define the minimum amount of showings of movie m in the time periods in T m
req as ηm.

Furthermore, the maximum amount of movies that can start in time interval τstart is denoted

by γstart. Similarly, the maximum amount of movies that can end in time interval τend is denoted

by γend. Moreover, we can group screens in area r in subset Sr ⊆ S. Then, for each time interval

[t, t+1], the total capacity of movie rooms in Sr ending a screening at time t and the total capacity

of movie rooms in Sr starting screenings at time t+1 cannot exceed frt. Next to that, the minimum

number of daily showings of movie m on cinema type e is denoted by sme. Similarly, the maximum

number of daily showings of movie m on cinema type e ∈ E is denoted by s̄me Finally, at least one

movie must start in time interval τ̂ .

An overview with all sets and parameters that are discussed above can be found in Table B1.

4.2.1 Network Formulation

The problem can be formulated as a network. We denote the complete acyclic directed graph by

G = (V,A), where V denotes the set of nodes, and A the set of arcs. The graph contains a source

node vs and a sink node vt. All other nodes v, v ∈ V \{vs, vt}, correspond to a time period t, t ∈ T ,
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a screen s, s ∈ S, and a movie m, m ∈ M , which can be denoted by (t, (s,m)). The graph G can

be divided into subgraphs Gs, Gs = (V s, As), ∀s ∈ S, where each subgraph corresponds to a screen

s. The subset V s ⊂ V contains only the nodes corresponding to movies m that can show on screen

s (m ∈ M s), and corresponding to time periods t that are allowed for the movie m (t ∈ Tm). Also

note that there are no arcs between subgraphs. Consequently, each subgraph can be interpreted

as a layer of the network that is only connected to the source node vs and the sink node vt. The

arcs in the graph are weighted, such that the weight of the arc is defined as the negative weighted

sum of the minimum of the capacity of the screen and the expected demand for the movie of each

seat type of the screen, all of the destination node. If we denote the demand for the movie m

starting at time period t by dmt, then we can write the weight of arc ((t1, (s,m1)), (t2, (s,m2))) as

w((t1,(s,m1)),(t2,(s,m2))) =
∑

k∈Ks ρk min{csk, dm2t2k}, with ρk the weight of seat type k. Arcs exist

between the source node vs and all nodes that exist in the layer of the network. Note that also

an arc exists between the source node vs and the sink node vt indicating no showings on that

screen. Moreover, arcs exist between all nodes in subgraph and the sink node vt. Finally, arcs

((t, (s,m1)), (t+ om1 + δm1 + ps + x, (s,m2))), ∀x s.t. t ∈ T m1 , t+ om1 + δm1 + ps + x ∈ T m2 ,∀s ∈

S, ∀m1,m2 ∈M s, exist in the subgraph Gs.

The maximum size of the network can be expressed by the maximum number of nodes in the

graph. The maximum number of nodes is |V | = |T | ∗ |S| ∗ |M | + 2, and is obtained if every movie

can possibly be shown at every screen and starting each time period.

4.2.2 Set Partitioning Problem

We model the Movie Scheduling Problem as a Set Partitioning Problem, such that we select a

schedule for every screen. A path represents a partial schedule of a screen, and a path from the

source node vs to the sink node vt through subgraph Gs is a complete schedule for screen s. The

weight of path p is defined as the sum of the weights of the selected arcs, denoted by wp. We then

try to select the paths with minimum costs, such that one complete path is selected for each screen

and all other requirements are satisfied. Let decision variable xsp be one if path p is selected for

screen s, and zero otherwise. Then the problem can be formulated as follows.

min
∑
s∈S

∑
p∈P s

wpx
s
p (1)

s.t.
∑
p∈P s

xsp = 1, ∀s ∈ S (2)
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∑
s∈S

∑
p∈P s

∑
m∈Ms

t+τstart−1∑
j=t

bsjmpx
s
p ≤ γstart, ∀t ∈ T \ {T − τstart + 2, . . . , T}

(3)∑
s∈S

∑
p∈P s

∑
m∈Ms

t+τend−1∑
j=t

bs(j−δm−om)mpx
s
p ≤ γend, ∀t ∈ T \ {1, . . . ,max(δm + om)}

(4)∑
s∈Sr

∑
p∈P s

∑
m∈Ms

∑
k∈Ks

(bs(t−δm−om)mp + bs(t+1)mp)cskx
s
p ≤ frt, ∀r ∈ R,∀t ∈ T \ {1, . . . ,max(δm + om), T}

(5)∑
s∈S

∑
p∈P s

∑
t∈T m

req

bstmpx
s
p ≥ ηm ∀m ∈M (6)

∑
s∈Se

∑
p∈P s

∑
t∈Tω

bstmpx
s
p ≥ sme, ∀m ∈M, ∀e ∈ E,∀ω ∈W (7)

∑
s∈Se

∑
p∈P s

∑
t∈Tω

bstmpx
s
p ≤ s̄me, ∀m ∈M, ∀e ∈ E,∀ω ∈W (8)

xsp ∈ {0, 1}, ∀s ∈ S, p ∈ P s (9)

Here P s is the set of all paths in Gs. Moreover, bstmp is one if movie m is on path p of screen s

with time period t, and zero otherwise. Note that the set Tω contains the time periods belonging to

day ω. Constraints (2) ensure that exactly one path is selected for every screen. Next, constraints

(3) and (4) restrict the number of movies that can start or end in the same time interval, respectively.

The rooms that start and end a session within a time interval within an area of the movie theatre

is restricted by a capacity limit of the rooms specified in constraints (5). Furthermore, constraints

(6) ensure a minimum amount of showings for movies within a specified time interval. In line with

this, constraints (7) ensure a minimum amount of daily showings for movies in rooms of a certain

type. Similarly, constraints (8) ensure a maximum amount of daily showings for movies in rooms of

a certain type. Finally, (9) are the domain restrictions for our decision variables.

Next we introduce a set of soft constraints. If a soft constraint is violated, a penalty is added to

the objective value. We have the following soft constraints.

∑
s∈S

∑
p∈P s

∑
m∈Ms

∑
t∈T̂ m

bstmpx
s
p = σ (10)

∑
s∈S

∑
p∈P s

∑
m∈Ms

t+τ̂−1∑
j=t

bsjmpx
s
p ≥ 1− βt, ∀t ∈ T \ {T − τ̂ + 2, . . . , T} (11)
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∑
p∈P s

∑
t∈T ω

1

M
bstmpx

s
p ≤ ζωms, ∀ω ∈W, ∀m ∈M,∀s ∈ Sm (12)

∑
m∈Mg

∑
s∈S

∑
p∈P s

t+τg−1∑
j=t

bsjmpx
s
p ≥ agt, ∀g ∈ G,∀t ∈ T \ {T − τg + 2, . . . , T} (13)

∑
g∈G

agt ≥ ĝ − βgt , ∀t ∈ T \ {T − τg + 2, . . . , T} (14)

∑
m∈M l

∑
s∈S

∑
p∈P s

t+τl−1∑
j=t

bsjmpx
s
p ≥ alt, ∀l ∈ L,∀t ∈ T \ {T − τl + 2, . . . , T} (15)

∑
l∈L

alt ≥ l̂ − βlt, ∀t ∈ T \ {T − τl + 2, . . . , T} (16)

σ ∈ N (17)

βt ∈ {0, 1}, ∀t ∈ T \ {T − τ̂ + 2, . . . , T} (18)

ζωms ∈ {0, 1}, ∀ω ∈W, ∀m ∈M,∀s ∈ Sm (19)

agt ∈ {0, 1}, ∀g ∈ G,∀t ∈ T \ {T − τg + 2, . . . , T} (20)

βgt ∈ N, ∀t ∈ T \ {T − τg + 2, . . . , T} (21)

alt ∈ {0, 1}, ∀ ∈ L,∀t ∈ T \ {T − τl + 2, . . . , T} (22)

βlt ∈ N, ∀t ∈ T \ {T − τl + 2, . . . , T} (23)

Note that M is a very large number. More specifically, for M we can divide the time in a day by

the shortest duration of a movie, commercial time, and time required after a session. Constraint

(10) count the number of times a movie starts in an undesired (but allowed) time period. Next,

constraints (11) determine for every time period whether at least one movie starts, such that βt = 1

if no movie starts in time interval [t, t− τ̂ + 1], and βt will be zero otherwise. The constraints (12)

counts, using auxiliary variable ζωms, for each movie how many different screens are used during each

day. Furthermore, constraints (13) and (15) check if in a given time interval a movie is showing in a

genre and language, respectively. Note that if a movie is showing in time interval [t, t+ τg− 1], then

agt is one, and zero otherwise. This works similarly for languages. Then, (14) and (16) determine if

the desired number of different genres and languages is reached, respectively. Finally, (17) to (23)

specify the domains of the auxiliary variables.

Consequently, we can add the following penalty to the objective function:

λ1σ+λ2
∑

t∈T \{T−τ̂+2,...,T}

βt+λ3
∑
ω∈W

∑
m∈M

∑
s∈Sm

ζωms+λ4
∑

t∈T \{T−τg+2,...,T}

βgt +λ5
∑

t∈T \{T−τl+2,...,T}

βlt.
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Here, λi, i = 1, . . . , 5, specifies the weight of the penalties.

4.2.3 Column Generation

The number of variables in our Set Partitioning Problem ((1)-(23)) is very large, and therefore we

will apply Column Generation to solve the problem (Dantzig & Wolfe, 1960). We call the linear

relaxation of the Set Partitioning Problem in which we only use a limited number of variables xsp,

the Restricted Master Problem (RMP). To add variables to the RMP, we solve the pricing problem.

The pricing problem in our case can be approached by solving the Shortest Path Problem, where

we update the network with the dual variables. More specifically, we update the arc weights by

summing the dual values corresponding to those arcs. The reduced cost of the path depends on

the dual variables corresponding to the RMP. The reduced cost of path p on screen s is defined as

follows.

RCp
s = wp − µ(2)s +

T−τstart+1∑
t=1

µ
(3)
st

∑
m∈Ms

t+τstart−1∑
j=t

bsjmp +
T∑

t=max(δm+om)+1

µ
(4)
st

∑
m∈Ms

t+τend−1∑
j=t

bs(j−δm−om)mp

+
∑
r∈R

T−1∑
t=δm+om+1

µ
(5)
srt

∑
m∈Ms

∑
k∈Ks

csk(b
s
(t−δm−om)mp + bs(t+1)mp)−

∑
m∈M

µ(6)sm

∑
t∈T m

req

bstmp

−
∑
m∈M

∑
e∈E

∑
ω∈W

µ(7)smeω

∑
t∈T ω

bstmp +
∑
m∈M

∑
e∈E

∑
ω∈W

µ(8)smeω

∑
t∈T ω

bstmp − µ(10)s

∑
m∈Ms

∑
t∈T̂ m

bstmp

−
T−τ̂+1∑
t=1

µ
(11)
st

∑
m∈Ms

t+τ̂−1∑
j=t

bsjmp +
∑
ω∈W

∑
m∈M

µ(12)sωm

∑
t∈T ω

1

M
bstmp

−
∑
g∈G

T−τg+1∑
t=1

µ
(13)
sgt

∑
m∈Mg

t+τg−1∑
j=t

bsjmp −
∑
l∈L

T−τl+1∑
t=1

µ
(15)
slt

∑
m∈M l

t+τl−1∑
j=t

bsjmp

Note that the dual variables corresponding to constraint i are denoted by µ(i)s in the equation above.

We find the shortest path and its weight for screen s efficiently by making use of the characteristics

of a Directed Acyclic Graph. Namely, for such a graph a Topological Sorting exists and can be

found in time O(|A|+ |V |). Thereafter, we can apply a dynamic programming algorithm with time

complexity O(|A|), such that the total time complexity of finding the shortest path is O(|A|+ |V |).

Note however that we want to find k-shortest paths for each screen to explore possible path options.

We therefore do not only need to keep track of the shortest path, but also explore and recall non-

optimal paths, which increases the time complexity. We approximate the k-shortest paths by not

remembering all possible paths, but dropping possible paths if their solution is worse than k + p
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other paths.

To initialize the RMP we solve the Shortest Path Problem of the initial network for each screen

iteratively. After finding a shortest path, we update the network such that paths resulting in

infeasible combinations cannot be made.

We add the paths generated by the k-Shortest Path Problem and with a negative reduced cost to

RMP. Thereafter, we repeat the steps of resolving the RMP and finding paths with negative reduced

costs. The Column Generation procedure is stopped when n columns with negative reduced cost are

added, or when no more columns with negative reduced cost can be found by our pricing heuristic.

After we terminate the Column Generation procedure, we need to construct a feasible solution.

We can do so by using a MIP solver to solve problem (1)-(23) exactly with the generated columns.

This solution will be an approximation of the optimal solution.

4.2.4 Adaptive Large Neighborhood Search

In this section we introduce an Adaptive Large Neighborhood Search (ALNS) heuristic to solve

the problem. This approach solves the problem iteratively, and we present the pseudo-code of the

algorithm in Algorithm 1. The initial solution, s0, can be found similarly as in Column Generation

(Section 4.2.3), or the solution after performing Column Generation can be used. To start the

algorithm, also the weights of the destroy, repair and improvement operators are initialized. These

weights are updated during the algorithm by taking into account their performance. Every iteration,

a repair, destroy and improvement operator is selected and used to destroy and thereafter repair

and improve the current solution. The new solution, s′, is accepted to use in the next iteration if

it has a better objective than the current solution, or if the objective is accepted by the criteria

of simulated annealing. This criteria is derived from Kirkpatrick et al. (1983). It states that a

new solution s′, that is not an improvement on the current solution s, is still accepted as the new

solution with probability e
f(s)−f(s′)
tempiter . Here, f(s) and f(s′) denote the objective of solution s and s′

respectively. Moreover, tempiter denotes the temperature of the iteration. This is determined by the

formula tempiter = α · tempiter−1, where α is the parameter for the cooling rate. The temperature is

initialized at temp0 = z(s0)
ln(2) . Moreover, every θ iterations we try to improve the current solution by

inserting feasible sessions into the current schedule that improve the objective function. Note that

we start with inserting the session with the best contribution to the objective function, and continue

until no more sessions that improve the schedule can be found. The process is stopped when a

predefined number of iterations χ1 has occurred, or when a predefined number of non-improving
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solutions χ2 is reached. The best found solution is thereafter improved by removing sessions from

the schedule that worsen the objective. Note that a session can only be removed if it is allowed to

remove the session, such that the final solution is still feasible. Afterwards, the resulting solution is

further improved by inserting feasible sessions into the current schedule that improve the objective

function. A detailed explanation of the operators used in our ALNS algorithm can be found below.

Algorithm 1 ALNS algorithm
1: Input: Initial solution s0
2: s← s0
3: sbest ← s0
4: ωh ← 1

|D| ,∀h ∈ D ▷ Initialize weight destroy operation
5: ωh ← 1

|R| , ∀h ∈ R ▷ Initialize weight repair operation
6: ωh ← 1

|I| ,∀h ∈ I ▷ Initialize weight improvement operation
7: iter ← 1
8: while Stopping criteria not satisfied do
9: s′ ← s

10: if iter%ι = 0 then ▷ Weight adjustment
11: wD ← adjust(wD)
12: wR ← adjust(wR)
13: wI ← adjust(wI)
14: end if
15: if iter%θ = 0 then ▷ Improve current solution
16: s′ ← AddImprovingSessions(s′)
17: end if
18: hdestroy ← select(ωD) ▷ Select destroy operation
19: hrepair ← select(ωR) ▷ Select repair operation
20: himprovement ← select(ωI) ▷ Select improvement operation
21: s′ ← himprovement(hrepair(hdestroy(s

′))) ▷ Perform operations
22: if f(s′) ≤ f(sbest) then ▷ Set new best solution
23: sbest ← s′

24: end if
25: if accept(s′, s) then ▷ Set new solution for next iteration
26: s← s′

27: end if
28: iter ← iter + 1
29: end while
30: sbest ← RemoveWorseningSessions(sbest) ▷ Remove sessions that worsen schedule if allowed
31: sbest ← AddImprovingSessions(sbest) ▷ Add feasible sessions that improve schedule
32: Output: sbest

Destroy Operators

To break the current solution s, destroy operators are used. These operators destroy a solution by

removing κ showings. We select the following destroy operators to use.
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1. Random Showing Removal: This operator randomly selects κ showings and removes them

from the solution.

2. Random Screen Removal: This operator randomly selects a screen and removes all showings

on that screen. This process continues until κ showings are removed from the solution.

3. Worst Removal: This operator removes showings with the κ lowest contributions to the

objective function.

Repair Operators

After breaking the current solution s, showings might need to be added to create a feasible solution.

The following repair operators are used.

1. Random Showing Insertion: This operator randomly selects a movie or screen for which

the minimum showing requirements (constraint (2), (6) and (7)) are not met. It then randomly

inserts a screening for this movie or screen at a feasible position. This process is repeated until

all minimum showing requirements are satisfied and the solution is feasible.

2. Best Showing Insertion: This operator again randomly selects a movie or screen for which

the minimum showing requirements (constraint (2), (6) and (7)) are not met. Then, a screening

for this movie or screen is inserted at a feasible position that yields the best improvement in

the objective function. This process is repeated until all minimum showing requirements are

satisfied and the solution is feasible.

3. Worst Insertion: This operator again randomly selects a movie or screen for which the

minimum showing requirements (constraint (2), (6) and (7)) are not met. Then, a screening

for this movie or screen is inserted at a feasible position that yields the worst improvement in

the objective function. This process is repeated until all minimum showing requirements are

satisfied and the solution is feasible.

Improvement Operators

Next to repairing the solution to a feasible one, also showings might be included in the schedule to

improve the objective function. We therefore use the following insertion operators.

1. Poor Screen Insertion: This operator selects the screen that currently has the worst contri-

bution to the objective function. If possible, it inserts the screening on this screen at a feasible

position that yields the best improvement in the objective function. This process is repeated

ψ times.

25



2. Best Movie Insertion: This operator selects the movie that currently has the best contribu-

tion to the objective function. If possible, it inserts the movie on a screen at a feasible position

that yields the best improvement in the objective function. This process is repeated ψ times.

3. Expensive Screen Insertion: This operator selects the screen with the highest ticket price.

If multiple screens have the same ticket price, it picks one of these screens randomly. If possible,

it inserts a movie on this screen at a feasible position that yields the best improvement in the

objective function. This process is repeated ψ times.

Selecting and Updating Operators

We use a roulette-wheel selection procedure to pick operators. The weight of each operation is

directly proportional to its angle on the wheel. We denote ωi as the weight of operator i. The

weights are updated every ι operations by recalculating the weights according to the formula

ωnew
i =


(1− ρ)ωi + ρ ξi

νi
, if, νi ̸= 0,

(1− ρ)ωi, if, νi = 0.

(24)

Here, ρ represents the reaction factor that regulates the speed at which weight adjustments are

made. Furthermore, νi counts the number of times operator i is used in the last ι operations, and

ξi denotes the score of operator i. The score is calculated using the following rules. After the

destroy, repair and improvement operators are performed on the solution, the score of the operators

is updated as follows:

1. If the new solution s′ improves the best solution sbest, we increase the scores of the operators

that are used during the current iteration by ϵ1.

2. If the new solution s′ only improves the current solution s, we increase the scores of the

operators that are used in the current iteration by ϵ2.

3. If the new solution s′ does not improve the current solution s and the best solution sbest, we

increase the scores of the operators that are used in the current iteration by ϵ3.

It’s important to note that after the weights of all operators are updated, these weights are normal-

ized within their respective sets, and both νi and ξi are reset to 0.
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4.3 Combining Forecasting and Scheduling

As the session demand forecast and the schedule are dependent on each other, a strategy needs

to be formulated how to combine the two. Firstly, a model to predict the demand for all sessions

will be formulated without the movie schedule variables. This forecast is thereafter used in the

optimization of the schedule as explained in Section 4.2. Note that this schedule thus does not

take into account the effect of the schedule on the session demand. After the schedule is created,

the demand forecast will be updated with the current movie schedule variables. Subsequently, we

perform our ALNS heuristic on the current solution. After ALNS finished and a new solution has

been found, the session demand forecast is updated and a new iteration of the method starts. This

process is repeated until a stopping criterion is met. Firstly, the algorithm terminates when the

schedule found by ALNS in the current iteration equals the schedule of the previous iteration, such

that the forecast and solution will no longer change. Moreover, the algorithm terminates when

a given number of iterations (itermax) is reached. An overview of the approach is presented in

Algorithm 2.

Algorithm 2 Method combining forecasting and scheduling

1: d0mt ← forecastingModel() ▷ Initial session demand forecast
2: s0 ← schedulingModel(d0mt) ▷ Initial movie schedule
3: s← s0
4: iter ← 1
5: while Stopping criteria not satisfied do
6: ditermt ← forecastingModel(s) ▷ Update session demand forecast using previous solution
7: s← schedulingModel(ditermt ) ▷ Update movie schedule using updated demand forecast
8: iter ← iter + 1
9: end while

10: Output: s
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5 Case Study

A case study is conducted using data from an exhibitor in the Middle East. The dataset contains

transaction and ticket information on one of their locations, which has 24 screens. To clean the data

we consider the returns by removing the corresponding sale and return transaction from the data,

as we are interested in the number of people actually attending the movie. This results in dropping

16,268 out of 294,330 transactions. Moreover, we remove entries with highly unlikely or incomplete

information. This includes removing the entries with a negative amount of seats sold or available

(132 transactions dropped), removing the entries of films with no rating information (1 transaction

dropped), and removing the entries of films with invalid starting times (2 transactions dropped).

After cleaning the raw data, we obtain over a time interval of 2 months (30/06/2022 to 31/08/2022)

a total of 273,537 transaction data points (one data point for each transaction).

From the cleaned set of transaction data, we create a dataset such that we have one entry per

session. Note that a session is a unique combination of a movie, starting time and screen. The

summary statistics of the (numerical) data entries of this dataset are presented in Table 6. An

overview of the other characteristics of the data is presented in Table 7.

Table 6. Summary statistics sessions

Variable count mean std. dev. minimum 25% 50% 75% maximum
Admissions 7742 35.33 37.49 1 10.25 24 44 340
Tickets available 7742 66.65 65.31 0 21 42 99 349

Table 7. Overview data

Variable Unique entries Range
Transaction ID 116368 -
Session ID 7742 -
Film ID 84 -
Film genre 12 action, adventure, . . . , war
Cinema type 5 IMAX, 4DX, KIDS, standard, theatre
Experience type 2 regular, premium
Movie start times 4633 [30/06/2022 23:45, 31/08/2022 23:30]
Movie language 11 Arabic, Chinese, . . . , Turkish
Screen 24 1, 2, . . . , 24

In this case study, we reconstruct the movie schedule for the last two weeks of our available data

(18/08/2022 to 31/08/2022), considering each week separately. We provide a list of movies for these

weeks in Table B2. Note that each movie listed must be screened at least once every day.
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Next, the characteristics of each room are presented. The additional time needed after a movie

to let people leave the room and to clean the room is dependent on the size and layout of the room.

Note that the cleaning time of bigger and smaller rooms can be similar by scheduling more or less

people to clean the room.2 Since each room has only one seat type, the ticket price in a room is the

weight of the seat type. The screen information is presented in Table 8

Table 8. Screen Characteristics

Screen Additional Type Seat capacity Ticket price
time afterwards standard premium

1 15 IMAX 350 - 12.25
2 15 4DX 156 - 18.38
3 15 standard 173 - 8.58
4 15 standard 135 - 8.58
5 15 standard 135 - 8.58
6 15 standard 135 - 8.58
7 15 standard 44 - 8.58
8 15 standard 44 - 8.58
9 15 standard 44 - 8.58
10 15 standard 44 - 8.58
11 15 KIDS - 43 9.80
12 15 KIDS - 44 9.80
13 15 standard 103 - 8.58
14 15 standard 147 - 8.58
15 15 standard 105 - 8.58
16 15 standard 73 - 8.58
17 15 standard 182 - 8.58
18 15 KIDS - 90 9.80
19 15 standard 87 - 8.58
20 15 standard 111 - 8.58
21 40 theatre - 28 39.21
22 40 theatre - 28 39.21
23 40 theatre - 28 39.21
24 40 theatre - 26 39.21

Note. Additional time afterwards is in minutes; ticket prices are in USD; only non-discounted
ticket prices are considered.

Next to ticket and screen information, also some general information on the operation and

logistics of the movie theatre are needed. Firstly, for the purpose of the case study, we set the time

period t equal to one hour. Secondly, the preferred time the first movie can start is 10:00. Moreover,

the latest time that a movie should preferably finish is 3:00. Thirdly, the time before the start of the

2The minimum additional time needed after a session has finished is determined by finding the median between
the finish time and next starting time during peak hours (18:00 - 22:00).
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movie to show commercials is either 15 or 20 minutes, depending on the movie. This information is

displayed in Table B3 for the movies showing in the last two weeks of the available data.

Next, we specify the restriction on the total capacity of movie rooms starting and ending a

screening at the same time interval. Specifically, for each time interval [t, t+1], the total capacity of

movie rooms ending a screening at time t and the total capacity of movie rooms starting screenings

at time t + 1 cannot exceed a certain number frt. An illustration of this restriction is given in

Figure 2.

Figure 2. Inflow and outflow of people at time interval t to t+ 1

The value of frt is determined using the expected capacity utilization at t and the overall maxi-

mum allowed flow of people. This maximum flow is 1010 people in the entire cinema, 520 for rooms

2 to 12, and 840 for rooms 1 and 13 to 24. More specifically, to find frt, we divide the maximum

allowed flow by the nth-percentile of the capacity utilization of the time interval that t is included in.

We use this division to account for the fact that sessions do not have to be fully booked. A distinct

percentile value exists for each day and peak or non-peak hours. In this case study, we decide to

use the 80th-percentile. The capacity utilization statistics of the data are presented in Table 9. To

exemplify, we allow for [t, t + 1] on a Monday during peak-hours the rooms starting and ending a

screening at times as shown in Figure 2 to have a total maximum capacity of 1010/0.7483 ≈ 1350.

Table 9. Statistics Capacity Utilization using 80th-percentile

Time Thursday Friday Saturday Sunday Monday Tuesday Wednesday
Peak 83.43 92.86 95.43 96.21 74.83 62.39 66.06
Non-peak 39.29 60.37 78.57 84.09 36.36 32.97 30.94

Note. Values are the percentage of total capacity utilized; data between 31/06/2022 and
17/08/2022 is included in the calculations; peak hours are between 18:00 and 22:00.

Furthermore, at most fourteen movies can start a screening within every consecutive set of two

time periods. The same holds for ending movies. Moreover, each movie can have specific constraints,
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for example that it must be shown on a specific set of screens, or it must be shown a given number

of times in a given time interval. An overview of the movies with specific requirements specified

by the distributor can be found in Table B4. Additionally, the management of the movie theatre

requires that each day, there must be at least movies in four different languages screened. Similarly,

it is required that each date at least movies in five different genres are offered. Finally, we include

the desire of the management to start at least one movie every hour between 10:00 and midnight.

We currently only forecast the demand per movie at a specific time, and not per screen type,

due to limited amount of data. Therefore, we also introduce a minimum or maximum requirement

on the number of times per day that a movie must be shown at a specific screen type. This overview

is presented in Table B5.

For the movie specific independent variables, specifically METER, RATING, SEQUEL,

ACTOR100, ACTOR1000, DIRECT1000, DIRECT5000, DISTR, PRODUCT , RELEASE, we

use the information available on IMDb, retrieved 30 May, 2023. The summary statistics of this data

are presented in Table 10. The information for HOLI is retrieved from the python package holiday,

licensed by MIT. Moreover, for this case study we decide to exclude the variable WEATHER, since

the climate in the location of the case study is characterised by negligible variation in weather over

our time horizon. Finally, the variables LANGl, GENREg and TICKETS are available in the

dataset of the multiplex cinema.

Table 10. Summary statistics movie characteristics retrieved from IMDb

Variable count mean std. dev. minimum 25% 50% 75% maximum
METER 71 27076.39 31157.86 132 5523.5 13585 43360 121914
RATING 71 5.83 1.27 2.80 5.00 5.80 6.80 8.80
SEQUEL 71 0.15 0.36 0 0 0 0 1
ACTOR100 71 0.11 0.32 0 0 0 0 1
ACTOR1000 71 0.23 0.42 0 0 0 0 1
DIRECT1000 71 0.01 0.12 0 0 0 0 1
DIRECT5000 71 0.10 0.30 0 0 0 0 1
DISTR 71 0.21 0.41 0 0 0 0 1
PRODUCT 71 0.20 0.40 0 0 0 0 1

Note. Only movies with release date before 17/08/2022 are included in the calculations.
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6 Results

The results of the Movie Scheduling Problem for the case study introduced in Chapter 5 are pre-

sented in this section. Firstly, Section 6.1 discusses the results of the session demand forecast models.

Secondly, the results of the schedule optimization methods given the forecast are presented in Sec-

tion 6.2. Finally, Section 6.3 shows the result when the session demand forecasting and schedule

optimization are combined.

6.1 Forecasting Results

To model the demand for movie m at time t, we tune and test two different models and compare

their performance. The first set includes the available data from 30/06/2022 to 24/08/2022. The

training set consist of 6087 sessions, which have a show time between 30/06/2022 and 17/08/2022.

The testing set consist of 851 sessions, which have a show time in week 18/08/2022 to 24/08/2022.

The second set includes the available data from 30/06/2022 to 31/08/2022. In this case, the training

set contains all data of the first seven weeks (30/06/2022 to 24/08/2022), specifically 6939 sessions.

The testing set consist of 803 sessions, which have a show time in the final week (25/08/2022 to

31/08/2022). In this section we show the results of including all independent variables in the model.

However, note that if schedule information is not yet available, we use the model fitted without the

movie schedule variables to forecast session demand.

6.1.1 Linear Regression

Before determining the estimates of the coefficients for our linear regression model, we first examine

the degree of skewness of the data by determining the Fisher-Pearson coefficient of skewness. We find

a coefficient of skewness of 2.492, signaling that the distribution is asymmetrical with more weight

in its left tail. Figure 3 shows the histogram of the dependent variable, confirming this finding. We

therefore do apply a logarithmic transformation of the dependent variable movie demand at time t.

In this case, the coefficient of skewness is -0.386, and thus the symmetry is improved.

Next, we determine the estimates of coefficients of the independent variables by OLS using the

equation presented in Section 4.1.1. The results are presented in Table B in Appendix B.

The models presented in Table B in Appendix B are used to predict the session demand in week

18/08/2022 to 24/08/2022 and week 25/08/2022 to 31/08/2022, respectively. Figure 4 compares the

true values to the predicted values of the test set. For both weeks we observe a greater variation
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Figure 3. Histogram of attendance per session

from the 45 degree line for higher demand values. Furthermore, mainly the session demand for week

18/08/2022 to 24/08/2022 shows underpredicition for higher actual values.

(a) testing set week 18/08/2022 to 24/08/2022 (b) testing set week 25/08/2022 to 31/08/2022

Figure 4. True values versus predicted values Linear Regression

6.1.2 Gradient Tree Boosting

To create our Gradient Tree Boosting (GTB) model, we firstly need to tune the hyperparameters as

described in Section 4.1.2. We tune the model using a training set consisting of weeks 30/06/2022 to

17/08/2022. The hyperparameters are tuned on this training set using a grid search with 5-fold cross
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validation. The best model is obtained by selecting the following values for the hyperparameters.

Firstly, for the boosting parameters, the learning rate is set equal to 0.1, and the number of trees

equal to 300. Next, for the tree-specific parameters, the minimum required samples to split a node

is set equal to 30, the maximum depth of a tree equal to 8, and the maximum number of features

considered at each split equal to 12.

To predict the session demand for week 18/08/2022 to 24/08/2022, we fit the model using the

data of weeks 30/06/2022 to 17/08/2022, giving an R2 of 0.725. To predict the session demand for

week 25/08/2022 to 31/08/2022, we fit the model using the data of weeks 30/06/2022 to 24/08/2022

and similarly compare the prediction to the true attendance. The R2 of the model is 0.708.

Figure 5 compares the true values to the predicted values of the test set. We observe that both

weeks show a similar pattern. In general, the observations are reasonably well centered along the

45 degree line. However, the session demand tends to be underpredicted for high actual values.

Furthermore, especially for week 25/08/2022 to 31/08/2022, the expected demand is oftentimes too

high for low true values.

(a) testing set week 18/08/2022 to 24/08/2022 (b) testing set week 25/08/2022 to 31/08/2022

Figure 5. True values versus predicted values Linear Regression

Finally, we look at the independent variables. Figure 6 shows the top 25 most important fea-

tures to forecast the session demand in week 18/08/2022 to 24/08/2022 and week 25/08/2022 to

31/08/2022 using the GTB model.

It should be noted that the set of 25 most important features comprises nearly identical features.

However, the exact contribution to the importance does differ somewhat between the models. We

observe that the movie schedule variables are highly important in our forecasting model. Note that
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this also highlights the relevance of this thesis, which integrates the session demand forecast and

the schedule optimization. Other important variables are the number of tickets sold last week, the

release week, and the public and professional rating of a movie. Note that also some of the day and

hour indicators have a high feature importance.

(a) training set weeks 30/06/2022 to 17/08/2022

(b) training set weeks 30/06/2022 to 24/08/2022

Figure 6. Feature importance of top 25 most important features
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6.1.3 Comparison Forecasting Methods

To analyse the performance of the models, we look at several evaluation metrics. Table 11 gives an

overview of these metrics.

Table 11. Overview of evaluation metrics

testing set week testing set week
18/08/2022 to 24/08/2022 25/08/2022 to 31/08/2022

Metric Linear Regression GTB Linear Regression GTB
Mean Squared Error 892.0170 720.2489 560.6710 490.1069
Root Mean Squared Error 29.8667 26.8375 23.6785 22.1384
Mean Absolute Error 19.5599 18.3297 15.5416 16.7949

Note. The metrics of Linear Regression are determined after transforming the logarithmic de-
pendent value back to its linear value.

Firstly note that the evaluation metrics are better when using week 25/08/2022 to 31/08/2022

as a testing set. This can be explained by presence of additional data from week 18/08/2022 to

24/08/2022 in the training set of this model, in contrast to the model trained solely on weeks

30/06/2022 to 17/08/2022. Furthermore, we find that the evaluation metrics for the GTB models

are in all cases better than those for the Linear Regression models, with the exception of the Mean

Absolute Error of week 25/08/2022 to 31/08/2022. This confirms the overall observation when

comparing Figure 4 to Figure 5. Hence, we decide to use our GTB models to forecast the session

demand in our scheduling models.

6.2 Scheduling Results

This section presents the results of optimizing the movie schedule for the case study presented in

Chapter 5, given the demand forecast from the GTB model. To do so, a network is constructed

as described in Section 4.2.1. Due to the large size of the problem, the network and models are

created for each day separately. Note that we do not follow the standard time-day notation, but

instead we let a day start and end at 9:00 in the morning such that movies can be scheduled during

midnight. An overview of the size of the network can be found in Table 12. Moreover, penalties

for not meeting the soft constraints need to be specified. For this case study, we set the penalty

parameters as follows: λ1 = 1100, λ2 = 50, λ3 = 100, and λ4 = λ5 = 10. Finally, note that weight

of a path is the negative of the expected total revenue obtained on a screen.

36



Table 12. Network size

Day Thursday Friday Saturday Sunday Monday Tuesday Wednesday
week: 18/08/2022 - 24/08/2022

Number of nodes 9044 9344 9344 9344 9344 9344 9344
Number of arcs 1438062 1540602 1540602 1540602 1540602 1540602 1540602

week: 25/08/2022 - 31/08/2022
Number of nodes 8272 8272 8272 8272 8272 8272 8572
Number of arcs 1248868 1248868 1248868 1248868 1248868 1248868 1343698

Note. Days start and end at 9:00.

6.2.1 Column Generation

We firstly want to remark that in this section the mathematical program solver CPLEX version 20.1

for Java is used. We begin with tuning the parameters of the Column Generation procedure. We

choose Sunday 28/08/2022 for this purpose, since we have most data available for this week, and

Sunday has the highest total attendance.

We start with determining the number of shortest paths to find (k) for each screen, to add to

the RMP if the path has a negative reduced cost. To tune this parameter, we set the termination

parameter n equal to 5000 paths, where we do finish the current iteration. Moreover, for tuning

purposes, the optimality gap when solving the final MIP ((1)-(23)) is set equal to 1%. Finally, we set

our k-Shortest Path algorithm to remember the best 100 sub-paths during the algorithm. Note that

although our pricing problem is thus solved using a pricing heuristic, due to the characteristics of

our network and problem instances, the shortest path is often included in our solution. The results

are shown in Table 13.

Table 13. Column Generation results tuning parameter k, Sunday 28/08/2022

k
Objective

value

Lower bound
on objective

value
Number of paths

in the RMP

Running time
Column

Generation
Running time

MIP
10 -55755.48 -61321.97 2376 2893 32
20 -55485.99 -61321.97 3720 2757 429
30 -55170.58 -60671.12 5041 2797 1552
40 -54388.02 -58672.67 5322 1144 224
50 -52637.29 -57453.54 5320 813 36
60 -46419.63 -54120.51 5486 655 39
70 -48317.53 -55476.13 6408 709 34
80 -45003.83 -49771.00 5548 445 9
90 -45038.07 -49837.67 6234 476 33
100 -44972.79 -49927.08 6925 477 34

Note. The lower bound is found by solving the linear relaxation of the problem ((1)-(23)); running time
is in seconds.
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We firstly observe a decrease in running time for the Column Generation procedure as we increase

k. Note that this increase mainly results from needing to do more iterations. Secondly, the objective

value has an increasing trend as k increases. This indicates that reducing the number of columns

generated in each iteration of the pricing problem typically improves the objective value whilst

increasing the overall solution time. We decide to use the value for k that gives a reasonably good

objective value for an average running time, and thus set k equal to 40.

Next, we tune the stopping criterion. To do so, we let termination of the Column Generation

procedure only happen when no more columns with negative reduced cost can be found by the

pricing heuristic. Figure 7 shows the decrease in objective function per iteration. We observe that

after 7 iterations, the decrease in the objective value diminishes. At this point, there are 5645

paths added to the Restricted Master Problem (RMP), and we therefore decide to set the stopping

criterion equal to n = 5500.

Figure 7. Column Generation result linear relaxation per iteration, Sunday 28/08/2022

We now optimize the schedule for all days using the Column Generation procedure with n = 5500,

k = 40, and p = 60. The results are presented in Table B7 in Appendix B, and visualized in Figure 8.

We observe that both the objective value and the total weight of the paths is much better for

week 25/08/2022 to 31/08/2022 than for week 18/08/2022 to 24/08/2022. This holds for both the

values per day, as well as the aggregated result. Moreover, the total penalty and running time

(Table B7) is considerably higher for week 18/08/2022 to 24/08/2022. Thus, week 25/08/2022 to

31/08/2022 is, according to this method, a much better performing week.

Next, the best objective value is obtained for the weekend days, and we notice that for week

25/08/2022 to 31/08/2022 the objective keeps improving from Thursday to Sunday. No clear trend
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Figure 8. Result Column generation

in the total penalty per day can be identified. From Table B7, we do however see a slight increase

in the running time as the objective value improves.

The detailed schedule generated for Sunday 28/08/2022 can be found in Figure C1 in Appendix C.

Note that the different colours in the schedule represent the different genres. We observe that some

movies are scheduled very often, whereas others are only scheduled once or twice. The movies

that are scheduled often have a high expected demand, and since here the expected demand is still

independent of the rest of the schedule, many sessions are scheduled to obtain a good objective

value. Moreover, almost all sessions are scheduled between 10:00 and 3:00 to avoid penalty costs of

sessions in undesired time periods.

6.2.2 Adaptive Large Neighborhood Search

We start by setting the parameters of the Adaptive Large Neighborhood Search (ALNS). We set the

parameter values as ϵ1 = 50, ϵ2 = 20, ϵ3 = 12, α = 0.999, ρ = 0.1, ι = 50, θ = 200, and we further

tune κ, ψ, and the stopping criteria. Similar as for the previous method, we use Sunday 28/08/2022

for this purpose.

We start with determining the number of sessions to destroy, κ, and the number of sessions to

add for improvement ψ. Note that for this purpose we have the stopping criteria set as χ1 = 20000

and χ2 = 12000. Table 14 shows the tuning results.
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Table 14. Objective value for tuning parameters κ and ψ, Sunday 28/08/2022 (ALNS)

κ \ψ 4 6 8 10 12 14
4 -41375.16 -48912.13 -43564.39 -45732.72 -44942.88 -45486.93
6 -47436.66 -45759.17 -46289.56 -41009.13 -48792.22 -45281.22
8 -48256.57 -46934.99 -45566.46 -45144.64 -46667.17 -46441.19
10 -47001.30 -45137.79 -40555.53 -46948.80 -45820.28 -43539.49
12 -46527.87 -46705.29 -46721.01 -45861.74 -45408.74 -45486.18
14 -40993.69 -46294.41 -46229.93 -44605.97 -47643.78 -46126.21

The results do not show an obvious relation between the objective value and the parameters.

However, if we look closely, we observe that the values for κ = 8 are generally good. Similarly, ψ = 6

shows good and stable resutls for different values of κ. We therefore decide to set κ = 8 and ψ = 6.

Subsequently, we determine the stopping criteria. We therefore run the algorithm for a large

number of iterations. the result is shown in Figure 9.

Figure 9. ALNS objective value per iteration, Sunday 28/08/2022

We observe that after around 3500 iterations we get stuck in a local optimum for a long time.

After escaping this local optimum, the objective value only improves with approximately 3%. Note

that the total running time increases with the total number of iterations. However, the number of

iterations performed before being trapped in a local optimum differs per instance, and we should

therefore also not stop the algorithm too early. Taking all this into account, we decide to stop the

algorithm after 10000 iterations (χ1 = 10000) or 6000 non-improving iterations (χ2 = 6000).

The movie schedule for all days is now optimized using ALNS with parameters κ = 8, ψ = 6,

χ1 = 10000, and χ2 = 6000. The results are presented in Table B8 in Appendix B, and displayed in

Figure 10.
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Figure 10. Result ALNS

The objective value and total weight of paths is better for week 25/08/2022 to 31/08/2022 than

for week 18/08/2022 to 24/08/2022, for both the individual as well as the aggregated results. The

weekend days have the best objective value and total path weight. Furthermore, the total penalty is

slightly higher for week 18/08/2022 to 24/08/2022 than for week 25/08/2022 to 31/08/2022. Note

from Table B8 that the running times are constant over all instances.

The detailed schedule generated for Sunday 28/08/2022 can be found in Figure C2 in Appendix C.

We observe that no movies are scheduled in undesired time periods (3:00 to 10:00). Moreover, some

movies are again scheduled often, whereas other movies are only in the schedule once or twice.

Finally, we have a closer look at some penalty parameters using ALNS. We again use the schedule

of Sunday 28/08/2022 for this purpose. Firstly, the sensitivity of parameter λ1 is analyzed. This

penalty parameter corresponds to constraint (10), which penalizes the use of undesired time periods.

Note that we leave all other parameters unchanged. The results are shown in Table 15.

Table 15. Sensitivity analysis λ1, Sunday 28/08/2022 (ALNS)

λ1 Objective value Total weight paths
Total number of undesired

time periods used (σ)

0 -60229.64 -66229.64 33
400 -50480.95 -65180.95 22
800 -42661.90 -57061.90 11
1200 -45485.76 -51185.76 0
1600 -44622.52 -49922.52 0
∞ -44679.01 -50179.01 0

We notice that as λ1 increases up to a value of 1200, both the objective value and the total weight

41



of all paths increase. This signals that as constraint (10) becomes more restricting, the resulting

solutions show a decreasing trend in the total expected revenue. From λ1 equal to 1200 onward,

an increase in the value of λ1 does not significantly affect the solution. Hence, from this value,

constraint (10) becomes a hard constraint.

Secondly, we analyze the sensitivity of penalty parameter λ3. This parameter corresponds to

constraint (12), which makes the use of multiple screens for each movie less attractive. Table 16

presents the results.

Table 16. Sensitivity analysis λ3, Sunday 28/08/2022 (ALNS)

λ3 Objective value Total weight paths

Total number of screens
used for each movie

(
∑

ω∈W

∑
m∈M

∑
s∈Sm ζωms)

0 -47661.77 -53161.77 63
100 -46186.86 -51886.86 57
200 -42079.68 -51679.68 48
300 -34837.29 -49237.29 48
400 -31618.31 -48418.31 42
500 -28417.26 -48417.26 40
600 -26531.77 -47531.77 35
700 -20835.53 -48135.53 39
800 -18980.67 -46180.67 34
900 -15107.07 -45707.07 34
1000 -12025.49 -44025.49 32

We observe that the objective value and total weight of all paths increase as the penalty parameter

λ3 increases. Moreover, we note that as the value of λ3 increases, also the total number of screens

used for each movie decreases. This signals that increasing penalty parameter λ3 results in an

improved fulfillment of the preference for movies to be shown on the same set of screens. However,

this has a worsening effect on the total weight of the paths that can be achieved.

6.2.3 Comparison Scheduling Methods

We compare the performance of Column Generation and ALNS heuristic, by firstly looking at the

results for all days presented in Table B7 and Table B8. Looking at aggregate result of week

18/08/2022 to 24/08/2022, we observe that ALNS obtains solutions with a better total objective

value, whereas the aggregated path weight is better for the solution obtained by Column Gener-

ation. This difference is caused by the much higher aggregate penalty value for the solution of

Column Generation. Next, the solutions obtained by Column Generation for week 25/08/2022 to
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31/08/2022 have a better objective value and total paths weight than the solutions obtained by

ALNS. Specifically, the solutions obtained by Column Generation have an approximately 9% better

objective value and total path weight, with respect to the solution obtained by ALNS. The total

penalty lies around the same value for the two methods for this week. Finally, we observe that for

all instances the total running time is much higher for Column Generation than the ALNS heuristic.

Comparing the detailed schedule of Sunday 28/08/2022 presented in Figure C1 and Figure C2,

we observe that the schedule obtained by Column Generation shows less variation than the schedule

obtained by ALNS. In other words, the amount of times each movie is scheduled is more evenly

distributed in the schedule obtained by ALNS than in the schedule obtained by Column Generation.

Namely, in the schedule obtained by Column Generation, movies HO00009116 and HO0009294 are

scheduled very often, and most other movies are scheduled only once or twice. In the schedule

obtained by ALNS these two movies are still scheduled regularly, however less times than in the

schedule for Column Generation, and other movies are also scheduled more often.

Increasing Instance Size

The results shown so far are for time periods equal to one hour. To make a more precise schedule,

we need to make the time periods smaller. In this section we present the results obtained when

setting the time period equal to 15 minutes. Note that we only change the stopping criteria of the

methods, and leave all other instance and method parameters unchanged.

Making the time periods smaller results in a larger network. Specifically, the amount of nodes

in our network formulation increases to around four times its original count, and the amount of

arcs to approximately twenty times its original count. The stopping criterion of Column Generation

is set equal to 10000 paths in the Restricted Master Problem. Figure B1 in Appendix B displays

the trajectory of the objective value per iteration, showing some convergence towards the end. The

stopping criteria of ALNS is set to χ1 = 20000 and χ2 = 12000. Figure B2 presents the objective

value per iteration, showing clear convergence from around 6000 iterations.

Using these stopping criteria, we compare the two different methods in Figure 11 for the instance

of Sunday 28/08/2022. In Figure B3 in Appendix B, we display the first 2000 seconds of this figure.

Moreover, Table B9 shows the final results.

43



Figure 11. Comparison Column Generation and ALNS over time in seconds, Sunday 28/08/2022

Column Generation obtains a solution with a better objective value and total weight of paths

than ALNS. Note that the penalty is approximately equal between the two solutions. However,

the running time of Column Generation to obtain a solution better than that of ALNS is much

longer than the total running time of ALNS. More specifically, the total running time of Column

Generation is around 17 times as high as the running time of the ALNS heuristic to obtain the final

solution.

6.3 Combining Forecasting and Scheduling

In this section, the forecasting and optimization methods are combined as described in Section 4.3.

The initial session demand forecast is made using the GTB model without movie schedule variables.

We use the Column Generation methods with parameters k = 40, p = 60, and n = 5500 to perform

the first movie schedule optimization. We thereafter iteratively update the demand forecast using

the GTB model with movie schedule variables, and re-optimize the movie schedule from the current

solution using the ALNS heuristic with parameters ϵ1 = 50, ϵ2 = 20, ϵ3 = 12, α = 0.999, ρ = 0.1,

ι = 50, θ = 200, κ = 8, ψ = 6, χ1 = 10000, and χ2 = 6000.

We run the method for Sunday 28/08/2022. Firstly, we determine the number of iterations to

perform. Figure 12 displays the objective value per iteration of the method combining forecasting

and scheduling (Algorithm 2).

The figure shows some under- and overshooting pattern in the first few iterations, but appears to

be stabilizing from around iteration 7 at an objective value of approximately -38000. We therefore

decide on 8 iterations (itermax = 8) for this instance.
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Figure 12. Objective value per iteration combining forecasting and scheduling, Sunday 28/08/2022

Setting itermax = 8 gives a final solution for Sunday 28/08/2022 with objective value -38796.63

and total path weights of -49496.63. The penalty is thus 10700. Taking the initial solution of Sunday

28/08/2022 as presented in Figure C1, the total running time of this method is 1863 seconds. The

detailed schedule is presented in Figure 13. Note that the sessions that changed with respect to the

initial schedule (Figure C1) have a striped, red border. We observe that the resulting schedule shows

more variation than the initial solution, such that the amount of times each movie is scheduled is more

evenly distributed. Moreover, five sessions are scheduled during undesired time periods, whereas in

the initial schedule only one. This mostly explains the higher penalty score of the final solution.
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Figure 13. Schedule combining forecasting and scheduling Sunday 28/08/2022
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7 Conclusion

This thesis examined the Movie Scheduling Problem for movie theatres. The recent changes in the

movie exhibition business and the many preferences for and restrictions on the schedule create a

large and complex scheduling problem. In this thesis, we therefore aimed to develop a method to

find the optimal movie schedule for movie theatres.

To answer the research question, logistical, distributor, and managerial requirements are speci-

fied. The optimal movie schedule is defined as the schedule with the highest total ticket revenue with

as little violation of the soft (managerial) requirements as possible. We analyze the problem in two

stages, using a case study from a multiplex cinema in the Middle East to test the methods. Firstly,

we formulated models to forecast the demand for a session. General, movie specific, and schedule

specific variables are determined, and using these variables the performance of a linear regression

model and a Gradient Tree Boosting (GTB) model are compared. The evaluation metrics signal

that the GTB model captures the interactions in the data best, and the GTB model is therefore our

preferred model.

Secondly, methods to optimize the movie schedule given the demand for the sessions are defined

and their performance is evaluated. The problem is represented as a network with multiple layers,

and a Set Partitioning Problem is formulated. To solve the model, the performance of Column

Generation with a k-Shortest Path Problem as pricing heuristic is compared to an Adaptive Large

Neighborhood Search (ALNS) heuristic. The solutions obtained by Column Generation have an

approximately 9% better objective value and total ticket revenue than the solutions obtained by

ALNS for all instances. The total running time of Column Generation is however 9 to 45 times

larger than that of ALNS. This larger running time can especially create problems when the problem

instance size increases. Moreover, the total penalty of the solution obtained by ALNS is rather

constant, whereas total penalty of the solution obtained Column Generation shows much more

variation. A high penalty possibly occurs if insufficient well performing paths are created by Column

Generation when the stopping criterion is satisfied. This signals that the performance of Column

Generation is more dependent on the tuning of the parameters. Considering all this, the preferred

scheduling method is thus largely dependent on the available solving time, desired quality of the

solution, and the problem instance size.

Finally, the session demand forecasting and schedule optimization methods are iteratively com-

bined to determine the final optimal schedule. This approach tried to capture the dependency of the
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movie schedule on the expected demand for a session, and vice versa. We chose to use the solution

obtained by Column Generation as initial solution, used the GTB model to update the demand

forecast, and used our ALNS heuristic to update the schedule. The resulting final schedule is much

different from the initial schedule. The main differences are that the amount of times each movie is

scheduled is more evenly distributed in the final solution compared to the initial solution, and that

the final solution uses more undesired time periods to schedule movies. From these observations we

conclude that interactions between the expected demand for a session and schedule are to a certain

extend captured by this iterative method, but the method struggles to find an optimal solution with

little violation of the soft constraints.
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8 Discussion

The methods presented in this thesis are able to obtain desirable movie schedules, but also have

some limitations. To improve, the following limitations can be further analyzed and the methods

can be extended.

Looking at the session demand forecast, we firstly note that the forecast is based on the data

of 6087 or 6939 sessions for week 18/08/2022 to 24/08/2022 or week 25/08/2022 to 31/08/2022,

respectively. This is a relatively small amount of data, especially when considering the amount of

possible sessions for which the demand needs to be predicted. To improve, we should collect more

data such that we obtain a larger set of training data. Next to that, other session information could

be recorded to analyze whether inclusion of these other explanatory variables in the forecasting

model improves its performance. To improve the forecast without much additional data, we could

research the success of a clustering approach, where for example similar movies are clustered and

a demand forecast is done per cluster of movies. Contrary to making the forecast less specific

by grouping data, the forecast can be made more detailed by predicting the movie demand per

session for a certain ticket price or room type. This allows the scheduling method to have demand

predictions differing per experience or seat type. Furthermore, our current Gradient Tree Boosting

(GTB) model can be further developed by additional tuning of the parameters and design choices.

Moreover, we currently use the observed attendance data to predict session demand. However, these

data do not take into account demand for sessions that are sold out or sessions that do not exist

in the past schedule. Modeling techniques that do take this into account can be investigated to

overcome this limitation. Finally, the performance of other non-linear (machine learning) methods

can be analyzed and compared to our current model of choice.

Furthermore, our movie schedule optimization methods exhibit some limitations, pointing out

promising suggestions for further research. First of all, we note that none of the introduced methods

are able to guarantee optimality of the obtained solution. Another important limitation of our

scheduling methods is the size of the problem representation. Specifically, adding more movies or

screens to the problem instance, or making the size of the time periods smaller, quickly increases

the total size of the network and therefore the number of possible paths. Furthermore, to further

improve the performance of Column Generation, we could continue tuning the parameters and

analyze different stopping criteria. Moreover, an exact pricing problem such as the Shortest Path

Problem can be implemented after our current pricing heuristic is not able to find any paths with
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reduced cost. Another suggestion for further research is to extend the method to a branch-and-

price framework, also analyzing different branching rules. As well as for the other methods, also

the performance of the Adaptive Large Neighborhood Search (ALNS) heuristic could possibly be

improved by further tuning of its parameters. Moreover, the introduction of other destroy, repair,

or improvement operations could lead to the construction of better solutions. In line with this, the

exploration of different neighborhoods in the local search can help improving the solution.

Finally, a start in the integration of session demand forecasting and schedule optimization has

been made. A possible first research extension in this area could be to analyze the trajectory of

the optimal solution over many more iterations. Subsequently, the effect of updating the demand

forecast more frequently can be examined. By improving this method, the relation between the

session demand and the movie schedule could be captured better, resulting in movie schedules with

a higher actual revenue.

50



References

Baranowski, P., Korczak, K., & Zając, J. (2020). Forecasting cinema attendance at the movie show

level: Evidence from poland. Business Systems Research: International journal of the Society

for Advancing Innovation and Research in Economy, 11 (1), 73–88.

Bardadym, V. A. (1996). Computer-aided school and university timetabling: The new wave. In E.

Burke & P. Ross (Eds.), Practice and theory of automated timetabling (pp. 22–45). Springer

Berlin Heidelberg.

Bass, F. M. (1969). A new product growth for model consumer durables. Management Science,

15 (5), 215–227.

Carriere, T., & Kariniotakis, G. (2019). An integrated approach for value-oriented energy forecasting

and data-driven decision-making application to renewable energy trading. IEEE transactions

on smart grid, 10 (6), 6933–6944.

Changyong, F., Hongyue, W., Naiji, L., Tian, C., Hua, H., Ying, L., et al. (2014). Log-transformation

and its implications for data analysis. Shanghai archives of psychiatry, 26 (2), 105.

Chen, R. M., & Shih, H. F. (2013). Solving university course timetabling problems using constriction

particle swarm optimization with local search. Algorithms, 6 (2), 227–244.

Chen, Y., Bayanati, M., Ebrahimi, M., Khalijian, S., et al. (2022). A novel optimization approach for

educational class scheduling with considering the students and teachers’ preferences. Discrete

Dynamics in Nature and Society, 2022.

Dantzig, G. B., & Wolfe, P. (1960). Decomposition principle for linear programs. Operations Re-

search, 8 (1), 101–111.

Ding, Q., & Niu, Z. (2013). Optimizing and scheduling of super large-scale seawater reverse osmosis

desalination system. 2013 10th IEEE International Conference on Control and Automation

(ICCA), 705–711.

Eliashberg, J., Hegie, Q., Ho, J., Huisman, D., Miller, S. J., Swami, S., Weinberg, C. B., & Wierenga,

B. (2009). Demand-driven scheduling of movies in a multiplex. International Journal of

Research in Marketing, 26 (2), 75–88.

Grand View Research. (2021). Middle East Movies Entertainment Market Size, Share Trends

Analysis Report By Product (Movies, Music Videos), By Country, And Segment Forecasts,

2021 - 2028.

Hanson, S. (2019). Screening the World. Springer.

51



Iniestra, J. G., López, E. A., María del Pilar, & Gorina, N. V. (2006). Optimal allocation of movies

to screens in movie theaters. IIE Annual Conference.Proceedings, 1–5.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science,

220 (4598), 671–680.

Lavoie, S., Minoux, M., & Odier, E. (1988). A new approach for crew pairing problems by col-

umn generation with an application to air transportation. European Journal of Operational

Research, 35 (1), 45–58.

Lawitsanon, P., Hanthanunchai, K., Chanachanchai, N., Mahanin, S., & Polvichai, J. (2022). Improv-

ing the movie showtime scheduling problem by integrated artificial intelligence techniques.

2022 19th International Joint Conference on Computer Science and Software Engineering

(JCSSE), 1–6.

Lee, K., Park, J., Kim, I., & Choi, Y. (2018). Predicting movie success with machine learning

techniques: Ways to improve accuracy. Information Systems Frontiers, 20, 577–588.

Leem, S., Oh, J., & Moon, J. (2023). Towards an effective over-the-top platform service: A machine

learning approach for box office analysis. 2023 IEEE International Conference on Big Data

and Smart Computing (BigComp), 413–416.

Motion Picture Association. (2022). 2021 THEME Report. https://www.motionpictures.org/wp-

content/uploads/2022/03/MPA-2021-THEME-Report-FINAL.pdf

Muñoz, M., Pineda, S., & Morales, J. (2022). A bilevel framework for decision-making under uncer-

tainty with contextual information. Omega, 108, 102575.

National Science and Media Museum. (n.d.). A very short history of cinema. https : / / www .

scienceandmediamuseum.org.uk/objects-and-stories/very-short-history-of-cinema

Samiuddin, J., & Haq, M. A. (2019). A novel two-stage optimization scheme for solving university

class scheduling problem using binary integer linear programming. Operations Management

Research, 12 (3-4), 173–181.

Stratigakos, A., Camal, S., Michiorri, A., & Kariniotakis, G. (2022). Prescriptive trees for integrated

forecasting and optimization applied in trading of renewable energy. IEEE Transactions on

Power Systems, 37 (6), 4696–4708.

Swami, S., Eliashberg, J., & Weinberg, C. B. (1999). Silverscreener: A modeling approach to movie

screens management. Marketing Science, 18 (3), 352–372.

52

https://www.motionpictures.org/wp-content/uploads/2022/03/MPA-2021-THEME-Report-FINAL.pdf
https://www.motionpictures.org/wp-content/uploads/2022/03/MPA-2021-THEME-Report-FINAL.pdf
https://www.scienceandmediamuseum.org.uk/objects-and-stories/very-short-history-of-cinema
https://www.scienceandmediamuseum.org.uk/objects-and-stories/very-short-history-of-cinema


Tang, Z., & Dong, S. (2021). A total sales forecasting method for a new short life-cycle product in the

pre-market period based on an improved evidence theory: Application to the film industry.

International Journal of Production Research, 59 (22), 6776–6790.

Wen, X., Sun, X., Sun, Y., & Yue, X. (2021). Airline crew scheduling: Models and algorithms.

Transportation Research Part E: Logistics and Transportation Review, 149, 102304.

Yazdani, M., Naderi, B., & Zeinali, E. (2017). Algorithms for university course scheduling problems.

Tehnicki vjesnik/Technical Gazette, 24.

Zhang, X., Hou, G., & Dong, W. (2017). Modelling movie attendance with seasonality: Evidence

from china. Applied Economics Letters, 24 (19), 1351–1357.

Zhou, Y., Li, Q., Yue, X., Nie, J., & Guo, Q. (2022). A novel predict-then-optimize method for

sustainable bike-sharing management: A data-driven study in china. Annals of Operations

Research, 1–33.

53



Appendix

A Background Information

A.1 Changes in the movie exhibition business

As explained by a professional in the movie exhibition business, the sector has undergone some

substantial changes during the last 15 years (M. Groen, personal communication, May 12, 2023).

Roughly 10 years ago, movie theatres started updating their 35mm film projectors to digital film

projectors. When using the 35mm film projector, each screen would (preferably) only show one

movie because these 35mm films were heavy, fragile, and expensive. Distributors would pay the

costs of these 35mm films. To smoothen the transition to digital film projectors, distributors had to

pay a virtual print fee (VPF) to movie theatres for every digital copy they distributed to them. This

way the distributors helped paying for these much more expensive digital projectors. This however

still meant that movie theatres most often only had one digital copy of a movie available, such that

unique movies were still not shown with overlap. In the recent years, this VPF is no longer in use.

The COVID-19 pandemic created another big change in the business. Before, movies were

typically shown in the cinema exclusively for around four months. This period is called the window

of a movie. However, due to the closer of movie theatres because of governmental restrictions, movies

became available on streaming platforms much sooner. As a lasting result, the window of a movie is

nowadays around two to three months. Another consequence is that the agreements between movie

theatres and distributors have become less strict or long lasting, allowing the movie theatres to have

more scheduling freedom.
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B Tables and Figures

Table B1. Sets, parameters and variables

Sets

T set of time periods

T m set of time periods that movie m can start

T̂ m set of time periods that movie m is not desired to start

T m
req set of time periods that movie m is required to have minimum ηm showings

T ω set of time periods in day ω

M set of movies

M t set of movies that can be shown during time period t

M s set of movies that can be shown on screen s

Mg set of movies that have genre g

M l set of movies that are shown in language l

S set of screens

Sm set of screens on which movie m can be shown

Se set of screens with cinema type e

Sr set of screens in area r

Ks set of seat types in room s

G set of movie genres

L set of movie languages

R set of areas in the movie theatre

W set of days in the week

E set of cinema types

V set of nodes in network G

A set of arcs in network G

V s set of nodes in network Gs corresponding to screen s

As set of arcs in network Gs corresponding to screen s

P s set of paths on network Gs corresponding to screen s

Parameters

δm duration of movie m

55



om commercial time of movie m

csk capacity of seat type k in room s

ps duration of cleaning room s

ĝ minimum number of different genres that must be shown in time interval

of length τg

l̂ minimum number of different languages that must be shown in time interval

of length τl

γstart maximum amount of movies that can start in time interval of length τstart

γend maximum amount of movies that can end in time interval of length τend

frt maximum on the total capacity of movie rooms in Sr ending a screening at

time t and the total capacity of movie rooms in Sr starting screenings at

time t+ 1

s̄me maximum number of daily showings of movie m on cinema type e

τ̂ time interval in which at least one movie must start

dmtk expected demand for movie m starting in time period t and seat type k

wa weight of arc a

wp weight of path p

ρk weight of seat type k

λi weight of penalty i

Decision variables

xsp whether path p is selected for screen s

Auxiliary variables

σ number of sessions starting in undesired starting time periods

βt whether in time interval [t, t+ τ̂ − 1] are no movies starting

ζωms whether movie m is showing on screen s during day ω

agt whether a movie with genre g is showing in time interval [t, t+ τg − 1]

βgt counting the number of genres in time interval [t, t + τg − 1] below the

desired level

alt whether a movie with language l is showing in time interval [t, t+ τl − 1]

βlt counting the number of languages in time interval [t, t + τl − 1] below the

desired level
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Table B2. Overview Movies per week

week week
Movie 18/08/2022 - 24/08/2022 25/08/2022 - 31/08/2022
HO00009079 x x
HO00009195 x x
HO00009117 x x
HO00009113 x x
HO00009115 x x
HO00009339 x
HO00008890 x x
HO00009334 x x
HO00009042 x
HO00009279 x
HO00009332 x
HO00009274 x
HO00009293 x x
HO00008989 x
HO00009331 x
HO00009119 x x
HO00009320 x
HO00009294 x x
HO00008983 x x
HO00009304 x x
HO00009116 x
HO00009338 x
HO00009271 x x
HO00009326 x
HO00009284 x
HO00009286 x
HO00009288 x x
HO00009253 x
HO00009238 x
HO00008779 x
HO00009292 x
HO00009313 x
HO00009316 x
HO00008982 x x
HO00007665 x x
HO00009287 x
HO00009114 x
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Table B3. Overview commercial time

15 minutes 20 minutes
HO00008983 HO00009079
HO00009286 HO00009195
HO00008779 HO00009117
HO00007665 HO00009113

HO00009115
HO00009339
HO00008890
HO00009334
HO00009042
HO00009279
HO00009332
HO00009274
HO00009293
HO00008989
HO00009331
HO00009119
HO00009320
HO00009294
HO00009304
HO00009116
HO00009338
HO00009271
HO00009326
HO00009284
HO00009288
HO00009253
HO00009238
HO00009292
HO00009313
HO00009316
HO00008982
HO00009287
HO00009114

Note. Only the movies that show between 18/08/2022 and 31/08/2022 are displayed.
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Table B4. Overview distributor restrictions

Movie Minimum
afternoons

Minimum
evenings

Screen
requirements

Minimum daily
showings

week: 18/08/2022 - 24/08/2022

HO00009334 1 1 must at least
show on IMAX -

HO00009294 - - - 10
week: 25/08/2022 - 31/08/2022
HO00009331 - 2 - -

HO00009116 - - exclusive on
screen 1 and 2 18

HO00009286 - - KIDS only 3

Note. Only the movies that show between 18/08/2022 and 31/08/2022 and have distributor
restrictions are displayed; the minimum afternoons and evenings are per week; afternoon time is
between 12:00 and 18:00; evening time is between 18:00 and 00:00.

Table B5. Overview daily requirements on number of screenings per room type

Movie maxKIDS maxIMAX max4DX maxtheatre
week: 18/08/2022 - 24/08/2022
HO00009117 - - 3 6
HO00009115 - 5 2 7
HO00008890 9 - - -
HO00009334 - 3 - -
HO00009293 - - - 1
HO00008983 7 - - -
HO00009284 1 - - -
HO00008982 1 - - 4
HO00007665 1 - - 1
HO00009287 1 - - -
week: 25/08/2022 - 31/08/2022
HO00009113 1 - - -
HO00009115 - - - 2
HO00008890 5 - - -
HO00009042 1 - - 1
HO00009293 2 - - -
HO00009294 1 - - -
HO00008983 6 - - -
HO00009116 - 5 4 8
HO00009271 - - - 3
HO00009286 6 - - -
HO00009313 - - - 1
HO00008982 - - - 1
HO00007665 - - - 1

Note. We do not provide a minimum or maximum if the room type is not applicable to a movie.
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Table B6. OLS regression results

weeks 30/06/2022 to 17/08/2022 weeks 30/06/2022 to 24/08/2022
Variable coefficient P > |t| coefficient P > |t|
Intercept 0.2633 0.019 0.3248 0.004
HO00008779 0.750 0.000 0.625 0.000
HO00009211 0.179 0.358 0.146 0.456
HO00009215 -0.437 0.076 -0.644 0.010
HO00008989 0.178 0.025 0.118 0.132
HO00007665 0.241 0.001 0.151 0.023
HO00008983 -0.208 0.072 -0.155 0.148
HO00009156 -0.079 0.607 0.042 0.782
HO00008998 0.169 0.342 0.092 0.612
HO00009042 0.355 0.000 0.305 0.000
HO00009189 0.999 0.000 1.111 0.000
HO00008995 -0.280 0.136 -0.244 0.197
HO00009045 2.049 0.000 2.197 0.000
HO00009113 -0.070 0.089 -0.061 0.124
HO00008951 1.049 0.000 0.979 0.000
HO00009109 0.062 0.764 -0.044 0.829
HO00009016 0.230 0.450 0.197 0.525
HO00008777 0.550 0.011 0.459 0.035
HO00009073 -0.327 0.075 -0.327 0.079
HO00009191 -0.392 0.042 -0.392 0.045
HO00009208 -0.627 0.004 -0.675 0.002
HO00009200 -0.925 0.000 -0.967 0.000
HO00009145 -0.747 0.000 -0.662 0.000
HO00009209 0.852 0.003 0.888 0.002
HO00008961 0.251 0.342 0.244 0.371
HO00008982 0.031 0.345 0.032 0.308
HO00009190 0.250 0.018 0.341 0.001
HO00009192 -0.525 0.000 -0.406 0.000
HO00009195 1.495 0.000 1.575 0.000
HO00009203 -1.934 0.000 -1.673 0.000
HO00009205 -0.738 0.015 -0.747 0.014
HO00009120 0.060 0.784 0.012 0.957
HO00009202 -0.033 0.869 -0.019 0.928
HO00009140 -0.234 0.034 -0.172 0.099
HO00009161 -0.338 0.000 -0.385 0.000
HO00009224 -0.235 0.117 -0.132 0.379
HO00009197 -0.028 0.892 -0.078 0.707
HO00009079 0.729 0.000 0.853 0.000
HO00009255 -0.438 0.032 -0.380 0.064
HO00009273 -0.419 0.021 -0.453 0.012

Continued on next page
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Table B6 – Continued from previous page
weeks 30/06/2022 to 17/08/2022 weeks 30/06/2022 to 24/08/2022

Variable coefficient P > |t| coefficient P > |t|
HO00009272 0.116 0.437 0.085 0.572
HO00009246 -1.196 0.000 -1.199 0.000
HO00009008 0.663 0.001 0.569 0.005
HO00009267 -0.191 0.122 -0.151 0.221
HO00009223 0.805 0.000 0.864 0.000
HO00008890 -0.374 0.000 -0.266 0.003
HO00009242 -0.017 0.881 0.040 0.730
HO00009282 -0.483 0.001 -0.567 0.000
HO00008890 0.000 0.000 0.000 0.000
HO00009214 0.540 0.000 0.437 0.000
HO00009274 -0.156 0.383 -0.277 0.134
HO00009025 1.481 0.000 1.296 0.000
HO00009262 -0.110 0.740 -0.050 0.880
HO00009254 0.375 0.054 0.292 0.136
HO00009115 -0.292 0.001 -0.339 0.000
HO00009275 -0.575 0.000 -0.490 0.000
HO00009288 0.591 0.000 0.764 0.000
HO00009281 -0.671 0.000 -0.638 0.000
HO00009247 0.365 0.000 0.228 0.001
HO00009119 0.316 0.011 0.473 0.000
HO00009292 -0.456 0.000 -0.421 0.000
HO00009284 0.119 0.100 -0.023 0.794
HO00009287 0.289 0.098 0.247 0.106
HO00009117 0.080 0.246 0.122 0.122
HO00009302 -2.064 0.000 -1.999 0.000
HO00009279 -0.403 0.001 -0.165 0.112
HO00009305 -0.221 0.199 -0.278 0.107
HO00009253 0.524 0.000 0.628 0.000
HO00009316 0.000 0.305 -0.740 0.000
HO00009304 0.000 0.024 -0.249 0.001
HO00009293 0.000 0.002 0.184 0.060
HO00009334 0.000 0.060 -0.458 0.011
HO00009271 0.000 0.018 0.532 0.000
HO00009332 0.000 0.261 0.106 0.610
HO00009338 0.000 0.000 -0.106 0.492
HO00009238 0.000 0.143 0.151 0.388
HO00009294 0.000 0.001 0.321 0.002
HO00009286 0.000 0.002 0.000 0.000
HO00009116 0.000 0.078 0.000 0.000
HO00009114 0.000 0.038 0.000 0.000
HO00009320 0.000 0.001 0.000 0.232
HO00009313 0.000 0.001 0.000 0.406

Continued on next page
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Table B6 – Continued from previous page
weeks 30/06/2022 to 17/08/2022 weeks 30/06/2022 to 24/08/2022

Variable coefficient P > |t| coefficient P > |t|
HO00009326 0.000 0.025 0.000 0.153
HO00009331 0.000 0.038 0.000 0.777
HO00009339 0.000 0.163 0.000 0.000
Ih=0 0.170 0.012 0.218 0.001
Ih=1 -0.315 0.032 -0.306 0.037
Ih=2 -0.327 0.343 -0.357 0.299
Ih=3 0.000 0.000 0.000 0.129
Ih=4 0.000 0.406 0.000 0.040
Ih=5 0.000 0.023 0.000 0.549
Ih=6 0.000 0.026 0.000 0.011
Ih=7 0.000 0.096 0.000 0.000
Ih=8 0.000 0.194 0.000 0.318
Ih=9 -1.346 0.001 -1.358 0.001
Ih=10 -0.913 0.000 -0.946 0.000
Ih=11 -0.654 0.000 -0.664 0.000
Ih=12 -0.564 0.000 -0.568 0.000
Ih=13 -0.272 0.000 -0.272 0.000
Ih=14 0.060 0.236 0.073 0.135
Ih=15 0.142 0.006 0.150 0.002
Ih=16 0.290 0.000 0.284 0.000
Ih=17 0.347 0.000 0.382 0.000
Ih=18 0.619 0.000 0.634 0.000
Ih=19 0.745 0.000 0.758 0.000
Ih=20 0.831 0.000 0.859 0.000
Ih=21 0.821 0.000 0.812 0.000
Ih=22 0.485 0.000 0.549 0.000
Ih=23 0.396 0.000 0.428 0.000
Imonday -0.196 0.000 -0.197 0.000
Ituesday -0.275 0.000 -0.256 0.000
Iwednesday -0.278 0.000 -0.256 0.000
Ithursday 0.003 0.938 0.016 0.709
Ifriday 0.203 0.000 0.232 0.000
Isaturday 0.535 0.000 0.581 0.000
Isunday 0.523 0.000 0.556 0.000
Iholiday 0.276 0.000 0.274 0.000
METER 0.000 0.064 0.000 0.000
RATING 0.347 0.000 0.334 0.000
LANGturkish -0.070 0.089 -0.061 0.124
LANGrussian 0.540 0.000 0.437 0.000
LANGjapanese 0.115 0.369 0.066 0.560
LANGarabic -0.941 0.000 -1.024 0.000
LANGindia 0.332 0.000 0.243 0.000

Continued on next page

62



Table B6 – Continued from previous page
weeks 30/06/2022 to 17/08/2022 weeks 30/06/2022 to 24/08/2022

Variable coefficient P > |t| coefficient P > |t|
LANGtagalog 0.000 0.000 0.427 0.002
LANGchinese 0.000 0.000 0.151 0.388
LANGenglish 0.631 0.000 0.630 0.000
LANGgermany 0.365 0.000 0.228 0.001
LANGkorean -0.456 0.000 -0.421 0.000
GENREhorror -0.088 0.271 -0.024 0.751
GENREthriller -0.302 0.000 -0.236 0.002
GENREaction 0.047 0.497 0.103 0.103
GENREanimation 0.210 0.039 0.142 0.110
GENREcomedy 0.547 0.000 0.527 0.000
GENREbiographical 0.284 0.000 0.244 0.000
GENREdrama -0.747 0.000 -0.662 0.000
GENREadventure 0.445 0.000 0.534 0.000
GENREfamily 0.119 0.100 0.298 0.000
GENREcrime 0.000 0.000 -0.249 0.001
GENREromance 0.000 0.000 0.106 0.610
GENREwar 0.000 0.000 -0.106 0.492
SEQUEL 0.277 0.000 0.205 0.001
ACTOR100 -0.141 0.064 -0.119 0.122
ACTOR1000 -0.011 0.880 0.027 0.708
DIRECT1000 0.031 0.345 0.032 0.308
DIRECT5000 -0.467 0.000 -0.489 0.000
DISTR -0.448 0.000 -0.407 0.000
PRODUCT 0.545 0.000 0.631 0.000
RELEASE -0.109 0.000 -0.099 0.000
TICKETS 0.000 0.027 0.000 0.002
COUNTg -0.012 0.041 -0.018 0.002
COUNTrelease 0.007 0.347 0.003 0.657
COUNTpop 0.027 0.000 0.025 0.000
R2 0.473 0.469

Note. Columns 2 and 3 show the regression results for the data of weeks 30/06/2022 to
17/08/2022; columns 4 and 5 show the regression results for the data of weeks 30/06/2022
to 24/08/2022.
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Table B7. Results Column Generation

Objective value
Total weight

paths Total penalty Running time
week: 18/08/2022 - 24/08/2022

Thursday -33203.70 -38903.70 5700 1210
Friday -29379.92 -45779.92 16400 1363
Saturday -41820.80 -50820.80 9000 3599
Sunday -29931.33 -53031.33 23100 3331
Monday -18446.46 -35446.46 17000 1308
Tuesday -22638.50 -34338.50 11700 1333
Wednesday -16968.02 -33468.02 16500 1339
Aggregated -192388.73 -291788.73 99400 13483

week: 25/08/2022 - 31/08/2022
Thursday -40762.31 -45962.31 5200 950
Friday -47353.12 -52053.12 4700 982
Saturday -51143.01 -57643.01 6500 1013
Sunday -55531.72 -61431.72 5900 1106
Monday -30772.94 -36372.94 5600 1006
Tuesday -31179.95 -36779.95 5600 1019
Wednesday -26943.43 -34343.43 7400 948
Aggregated -283686.48 -324586.48 40900 7024
Note. Running time is in seconds.

Figure B1. Large Instance Column Generation result linear relaxation per iteration, Sunday
28/08/2022

64



Table B8. Results ALNS

Objective value
Total weight

paths Total penalty Running time
week: 18/08/2022 - 24/08/2022

Thursday -28832.62 -34532.62 5700 78
Friday -31733.03 -37433.03 5700 76
Saturday -43240.08 -49340.08 6100 80
Sunday -40542.98 -46742.98 6200 75
Monday -24759.50 -31059.50 6300 87
Tuesday -25011.72 -30611.72 5600 76
Wednesday -24695.48 -30595.48 5900 82
Aggregated -218815.41 -260315.41 41500 554

week: 25/08/2022 - 31/08/2022
Thursday -36820.64 -42120.64 5300 103
Friday -41579.11 -47279.11 5700 82
Saturday -45725.66 -51025.66 5300 73
Sunday -46186.86 -51886.86 5700 70
Monday -26994.59 -32594.59 5600 86
Tuesday -27262.07 -32362.07 5100 74
Wednesday -27104.98 -32904.98 5800 79
Aggregated -251673.91 -290173.91 38500 567
Note. Running time is in seconds.

Figure B2. Large Instance ALNS objective value per iteration, Sunday 28/08/2022
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Figure B3. Comparison Column Generation and ALNS over time in seconds (partial), Sunday
28/08/2022

Table B9. Results large instance, Sunday 28/08/2022

Objective value
Total weight

paths Total penalty Running time
Column
Generation

-75026.71 -80326.71 5300 30687

Adaptive Large
Neighborhood
Search

-60673.83 -66073.83 5400 1857

Note. Running time is in seconds.
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C Schedules

Figure C1. Schedule Column Generation Sunday 28/08/2022

67



Figure C2. Schedule ALNS Sunday 28/08/2022
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D Description programming code

In this section, a brief overview of the Python and Java code used in this thesis will be presented.

The code adheres to the case study outlined in Chapter 5 and methodology outlined in Chapter 4.

The Python Project contains three directories collecting the data and making the demand forecast.

The Java Project contains four Packages importing instances and executing the described methods.

D.1 Python code

The directories Data_collection and Data_preprocess collect and prepare the data for our case

study, respectively. The directory Data_collection contains files scraping websites such as IMDb

to collection real time movie information and ratings. The directory Data_preprocess contains files

analyzing the data and transforming the transaction dataset into a clean set of session data.

The directory Attendance_forecast tunes, trains and analyzes the Linear Regression model and

Gradient Tree Boosting (GTB) model described in Section 4.1. It also contains the file GTB_call_java

with the trained GTB models that is called from our Java code to update the demand forecast.

D.2 Java code

The package movieNetwork contains classes to construct the network presented in Section 4.2.1.

Classes represent movies, screens and time periods, and other characteristics of the problem such as

areas of the movie theatre, genres, languages, and screen types. Moreover, the classes representing

nodes, arcs, paths and the network are expressed in this package.

Moreover, the package SPP contains classes constructing the Set Partitioning Problem, the

Column Generation framework, the k-Shortest Path Problem, and the feasible initial solution. In

the class generating the Set Partitioning Problem, the software package CPLEX is used.

Furthermore, classes to run the ALNS algorithm can be found in the package ALNS. The class

Framework contains all steps of Algorithm 1. The classes containing all destroy, repair, and im-

provement operators are called from the class Framework to perform the operations on the current

solution.

Lastly, the package CaseStudy contains classes to import the data, run the different methods,

and analyze the solution. The instances described in Chapter 5 can be imported with time periods

of 5 minutes, 15 minutes, or 1 hour. The classes Forecast and ForecastAndSchedule call the Python

code to update the demand forecast based on the current schedule.
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