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Abstract

For FedEx Express, it is necessary to offer competitive prices and reliable services to attract cus-

tomers. Achieving this depends on the efficiency of their operational processes. One of these

processes is the movement of parcels between different depots through hubs. By strategically posi-

tioning these hubs, this linehaul process can be optimized.

This research aims to optimize the location of a new hub from a limited number of possibilities.

To determine this location, we focus on minimizing linehaul costs while respecting the service time

conditions. A vital cost component is the transportation by trucks. The advantages of routing

via hubs should be reflected when determining these costs. Compared to the traditional modeling

of economies of scale, we propose an alternative method by introducing fixed and variable arc

costs to capture the complexity of the network of FedEx Express. We extend the literature on

hub location problems and propose a genetic algorithm to tackle this NP-hard problem. The

genetic representation reflects which new hub location is chosen and whether we allow transportation

between two locations.

We test our approach on seven instances using four experiments. The algorithm consistently

selects one hub location for smaller instances across various runs. However, the algorithm encounters

difficulties when applied to an extensive network with closely located alternatives. It selects different

neighboring locations while the obtained linehaul costs are similar. Even though the algorithm

identifies an area with high potential, it fails to find the exact optimal location for these instances.

To improve the algorithm’s performance, future research is necessary. Finally, we emphasize that the

magnitude of the fixed arc costs relative to the variable arc costs influences the network optimization.

When using this alternative modeling approach, we recommend making an informed decision on

these cost components by analyzing the existing network.
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1 Introduction

FedEx Express handles time-guaranteed door-to-door shipments. In Europe, it operates an extensive

road network comprising sorting centers. The shipment of packages through their network is divided

into two processes, as seen in Figure 1. First, packages are collected and delivered to and from

customers through a depot, known as the pickup and delivery (PUD) process. The transportation

of packages between different depots through hubs is called the linehaul process. These processes

are separated by fixed cut-off times.

Within a linehaul network, packages are classified based on their product type, origin, and

destination. We refer to a collection of packages with the same characteristics as a commodity.

Each commodity is transported via one or more hubs to consolidate package flows and reduce

transportation costs. The specific path taken by a commodity from its origin to destination is

defined as its route. The number of hubs encountered during transit is referred to as the number of

hub touches.

Figure 1: Representation of package transport.

There are several benefits to optimizing hub locations for FedEx Express. The company can
offer faster and more reliable deliveries. Increasing these service levels makes FedEx Express more

competitive. Moreover, it leads to a reduction in overall costs. To be precise, optimizing hub

locations will enhance the consolidation of packages.

This research aims to determine the optimal new hub location from a finite set of possibilities. To

achieve this, we minimize the linehaul costs consisting of three components. The first component is

a fixed cost incurred upon establishing and maintaining a hub. The second component is associated

with transferring commodities between trucks and storing them temporarily at a hub. Finally, the

third component is the cost of transportation via trucks. When determining this last component,

it is crucial to take into account the benefits of routing commodities through hubs.

In classical Hub Location Problems, these economies of scale are often modeled by applying

a constant discount factor to the cost of transportation between hubs. As a result, all hubs are

directly connected, and the number of hub touches is restricted to at most two. However, such

a modeling approach may fail to capture the complexity of the FedEx Express network by being

overly restrictive.

This study proposes an alternative approach to model the economies of scale. As we focus on

the strategic decision of establishing a new hub by constructing routes for commodities, the time

scheduling of these routes is beyond the scope of this research. Therefore, the precise consolidation

of commodities is unknown, and the number of required trucks cannot be ascertained. Consequently,
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the transportation costs are estimated through linearization. We incorporate a variable cost per

unit of commodity transported and include a fixed cost for transportation between two locations to

avoid underestimating linehaul costs.

Our approach provides flexibility as it allows commodities to be routed via more than two hubs,

which can lower the linehaul costs. Moreover, hub locations do not have to be directly connected,

removing the need for transport between all hub combinations. Additionally, the allocation of depots

to hubs is optimized within the model. This flexibility provides advantages over the traditional

practice of assigning depots to a single or all hubs.

Furthermore, optimizing hub locations in the FedEx Express network involves additional con-

straints. These include a service time condition and considering multiple product types, with

specific hubs having different processing capabilities. We introduce this problem as the Multiple-

Product Uncapacitated p-Hub Location and Arc Problem (MP-UpHLAP). This paper establishes

the NP-hardness of the MP-UpHLAP. To address this complex problem, we propose a genetic

algorithm (GA). The genetic information determines the selection of the new hub location and the

permissibility of transportation between different locations.

Without the presence of developed alternative algorithms, we cannot verify the GA’s ability

to identify the optimal location. Therefore, we investigate whether the GA consistently converges

towards a single hub location. When the GA is unable to achieve this, it suggests that the algorithm

is unsuccessful in identifying the optimal hub location. We consider three real-world networks and

four experimental instances. We observe that randomness within the GA and the number of possible

locations do not directly impact the obtained linehaul costs in a significant way. However, when

presented with extensive networks and closely situated hubs, the GA faces challenges in achieving

convergence towards a singular location. To be precise, the algorithm selects different neighboring

locations across various runs. We conclude that the GA fails to find the exact optimal location for

these instances, even though it identifies an area with high potential. Further research is necessary

to improve the performance of the GA and its analysis.

Finally, we recognize that specific instance parameters related to the alternative modeling ap-

proach can affect the optimal solution and, therefore, the outcome of GA. FedEx Express must make

an informed decision regarding the values of these parameters. By increasing the maximum number

of hub touches, the GA may lower the linehaul costs by further consolidating commodities. There

is, however, a trade-off between the allowed number of hub touches and the computation time.

Additionally, the magnitude of fixed arc costs drives the design of the network as it impacts the

locations between which transportation is allowed. When these costs increase, depots are connected

to fewer hubs directly.

The remainder of this paper has the following structure. The MP-UpHLAP is formally intro-

duced in Section 2, and Section 3 discusses the relevant literature. We elaborate on our solution

approach in Section 4, and Section 5 presents the experimental results. Finally, Section 6 remarks

on the findings, limitations, and recommendations.
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2 Problem Description

The objective is to locate a new hub in the current network to minimize the linehaul costs. To

achieve this, we consider a finite set of possible locations. This section formalizes the problem by

introducing the mathematical notation (see Table 1).

2.1 Mathematical Representation

Let G = (V,A) be a connected graph representing the linehaul network, where V is the set of nodes.

We partition V into three disjoint subsets: D represents the depots, He represents the existing hubs,

and Hp represents the potential new hubs. We define H as the set of all hubs, i.e., H = He ∪ Hp.

The set A contains directed arcs between the nodes, such that the arcs (i, j), (j, i) ∈ A if and only

if i ∈ H, j ∈ D ∪He and i ̸= j. It is worth noting that the graph is incomplete since there are no

direct connections between depots and between potential hubs.

Table 1: Description of sets and parameters.

Description

V Set of nodes

D Set of depots

H Set of hubs

He Set of existing hubs

Hp Set of potential hubs

A Set of arcs

K Set of commodities

P Set of products

υk Volume of commodity k

ti,j Travel time of arc (i, j)

pv Processing time of node v

sk Maximum service time of commodity k

ζ Maximum number of hub touches

bph Binary parameter that is equal to 1 if product p

can be routed via hub h, and 0 otherwise

fh Fixed cost of hub h

κp
v Variable cost of node v for product p

δi,j Fixed cost of arc (i, j)

τi,j Variable cost of arc (i, j)

Let K be the set of commodities that must be

transported through the graph, and let vk be the vol-

ume of commodity k ∈ K. We define o(k) and d(k) as

the origin and destination depot of commodity k ∈ K,

respectively. Further, P represents the different prod-

uct types, such that p(k) ∈ P corresponds to the

product type of commodity k ∈ K.

For each commodity, we seek to find a path in the

graph that connects its origin and destination depot.

Each arc (i, j) ∈ A has a travel time ti,j , and ev-

ery node v ∈ V has a processing time pv. We define

the service time of a path as the sum of the travel

times and processing times of the arcs and nodes in

the path. A feasible path, or route, for commodity

k ∈ K has at most ζ hub touches, and the service

time does not exceed the maximum service time sk.

Additionally, b
p(k)
h = 1 must be satisfied for every

hub on the route. Here, bph indicates whether prod-

uct type p ∈ P can be routed via hub h ∈ H. Moreover, only one new hub h ∈ Hp is established.

We assume every commodity has a route in G for ζ ≥ 2, independent of the location of the new hub.

The objective is to find routes for all commodities that minimize the linehaul costs consisting

of three components. Firstly, a fixed cost fh is incurred when hub h ∈ H is established. The second

component involves a variable cost κpv that is charged for every volume unit of product type p ∈ P

routed through a node v ∈ V . Finally, the third component comprises transportation costs. These

costs consist of a fixed cost δi,j that is charged when the arc (i, j) ∈ A is included in any of the

routes, in addition to a variable cost τi,j that is incurred for each unit volume routed via the arc.
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3 Literature Review

This chapter provides an in-depth review of the current research on the problem and positions our

work within the existing literature.

3.1 Hub Location Problem

The problem of finding the optimal location of hubs within a network is commonly referred to as

the Hub Location Problem (HLP). In their paper, Alumur et al. (2021) provide a comprehensive

overview of classical HLPs and their problem formulations. These HLPs route demand flows through

the network and aim to minimize the routes’ total cost (distance, time) or the maximum cost

(distance, time) of a single route. The typical assumptions made in HLPs are:

❑ Demand flows between origin-destination nodes can be directed through hubs.

❑ There are benefits associated with routing flows through hubs, i.e., economies of scale.

❑ The distances between all nodes satisfy the triangular inequality.

❑ The objective depends on the hub locations and the routing of the demand flows.

Our problem satisfies these conditions, and the focus is on literature that considers a general network

topology1 as this coincides with our research.

The Uncapacitated Hub Location Problem (UHLP) (O’Kelly, 1992) assumes that hubs have no

capacity limit and a fixed cost is associated with opening a hub. One of the model’s decisions is to

determine the number of hubs to be established. If this number is given as input, the problem is

known as the Uncapacitated p-Hub Location Problem (UpHLP) (O’kelly, 1987). In our research,

we aim to place only one new hub in the network. However, the solution approaches for UHLPs

can often easily be adjusted to fit pUHLPs.

HLP’s are generally divided into two categories: single allocation and multiple allocation. In the

former, all incoming and outgoing volumes of a non-hub can only be routed via a single hub, whereas

in the latter, the volume can be split up and come in or go out through all hubs. Campbell (1994)

presented the first linear programming formulations for both allocation types.

In our research, the hubs to which a depot is allocated are optimized within the model. It is re-

lated to the Uncapacitated r-Allocation Hub Location Problem, presented by Mokhtar et al. (2019),

where each non-hub is allocated to exactly r hubs. This assumption, however, is too restrictive for

our problem as the number r may vary per depot and is unknown in advance.

The modeling of economies of scale in HLPs is strongly related to the optimal number of hub

touches. In most research, a constant discount factor is used to reflect the benefits of routing flows

through hubs (Alumur et al., 2021). This factor is multiplied by the cost (distance, time) of arcs

1 Some studies assume a specific network structure, such as hub-and-spoke or tree, which is then utilized in their
model (Alumur et al., 2021).
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between hubs, or hub arcs. This approach, in combination with the triangle inequality, results in

an optimal solution where flows have at most two hub touches, and all hubs are fully connected

(Alumur et al., 2021). To reduce the complexity of the problem, the formulations and heuristics are

conditioned on this result.

Given the cost structure considered in our paper, hubs may not be directly connected. Addi-

tionally, having more than two hub touches may be optimal. Therefore, evaluating the literature on

alternative modeling approaches for economies of scale is necessary. Alumur et al. (2021) provide

an up-to-date overview on the approaches that have been explored. It is worth noting that for these

approaches, the literature is generally limited to exact algorithms.

Several studies explore using non-linear or piece-wise linear cost functions to determine trans-

portation costs per arc (O’Kelly and Bryan, 1998; Horner and O’Kelly, 2001). Other studies have

incorporated discount factors only when the flow through the arc exceeds a certain threshold (Pod-

nar et al., 2002). Also, Brimberg et al. (2020) relax the triangular inequality condition, which can

lead to an optimal solution with more than two hub touches.

Furthermore, Kimms (2006) models the economies of scale using fixed vehicle costs. The ob-

jective depends on the number of vehicles necessary to route flows via arcs. These models focus

less on the strategic decision of establishing hubs and are referred to as Network Decision Problems

(NDPs). Their solution may be sensitive to fluctuations in daily demand as this can change the

number of necessary vehicles. Other studies have extended this approach by allowing for multiple

vehicle types to be selected per arc in the network (Van Essen, 2009; Serper and Alumur, 2016).

To prevent connecting all hubs directly, another possibility is to select a subset of hub arcs by

including fixed hub arc costs. This is a variant of the UHLP, known as the Incomplete Hub Network

Problem (IHNP) (Alumur et al., 2009; de Sá et al., 2018) or Hub Arc Location Problem (HALP)

(Nickel et al., 2001). In contrast to our problem, fixed costs on arcs between hubs and non-hubs are

not considered. These costs are deemed irrelevant in classical single allocation problems since every

non-hub is connected to only one hub. Finally, the multiple allocation UHLP with fixed arc costs

is introduced by Yoon and Current (2008) and O’Kelly et al. (2015). While not considering all our

problem’s features, these papers are the only HLP studies that align with our approach. This leads

us to conclude that our problem considers a relatively new angle on economies of scale.

Many more extensions of classical HLPs have been explored in the literature. One current area

of research involves incorporating uncertainty in both demand and cost. Contreras et al. (2011b)

introduce the Stochastic Hub Location Problem (SHLP), and Correia et al. (2018) extend their

work to include multiple periods and hub capacities. Recently, Ghaffarinasab (2022) proposed a

formulation for the SHLP with demand following a Bernoulli distribution.

To our knowledge, no research has incorporated all the features considered in this paper. We

extend the classical UpHLP to account for fixed arc costs and multiple product types. We formally

introduce our problem as the Multiple-Product Uncapacitated p-Hub Location and Arc Problem

(MP-UpHLAP). Before discussing solution approaches, it is important to determine the complexity

of the problem. In Appendix A, we present proof demonstrating the NP-hardness of the MP-
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UpHLAP with |H| ≥ 3. This result holds even when fixed arc costs are excluded, and the maximum

number of hub touches is restricted to at most two.

3.2 Solution Approaches

Several methods are proposed to solve HLPs, with an overview presented in Farahani et al. (2013)

and Contreras and O’Kelly (2019). Exact algorithms such as Branch-and-Bound (Tanash et al.,

2017), Branch-and-Cut (Labbé et al., 2005), and Benders Decomposition (de Sá et al., 2018) have

been applied to HLPs. Notably, Contreras et al. (2011a) achieve promising outcomes by applying

Benders decomposition to solve the UHLP, solving instances up to 200 nodes to optimality.

Our goal is to solve large-scale problems with up to 400 nodes. To the extent of our knowledge,

this falls within the highest tier of HLP sizes. Additionally, we consider four distinct product types

contributing to the problem’s complexity. Consequently, we focus on metaheuristics to tackle this

problem. These algorithms generally exploit that HLPs consist of two components: hub selection

and allocation of non-hubs to hubs. We explore approaches for single and multiple allocation HLPs,

although the former has received more extensive research attention.

Various types of iterative local search algorithms have been applied to solve HLPs. Algorithms

such as Generalized Variable Neighborhood Search (GVNS), Tabu Search (TS), and Generalized

Randomized Adaptive Search Procedure (GRASP) use a combination of randomization and local

search to improve a candidate solution iteratively. To do so, neighborhood structures are specified

that are problem-specific. The efficacy of these methods was initially demonstrated by Klincewicz

(1992). He uses TS and GRASP to solve the single allocation pUHLP, utilizing a single neighbor-

hood to switch between hub configurations. Non-hubs are directly allocated to the closest open hub.

Furthermore, Ghaffarinasab et al. (2017) address the multiple allocation UHLP using TS and solve

instances with up to 100 nodes using the same neighborhood structure. Commodities are directly

routed through the least-cost hub(s) in their approach.

The single allocation UHLP has been further studied by Abyazi-Sani and Ghanbari (2016) and

Guan et al. (2018), who not only switch between hub configurations but also included neighborhoods

that reallocated non-hubs and changed the number of hubs. While Abyazi-Sani and Ghanbari (2016)

propose a TS using a candidate list for selecting hubs, Guan et al. (2018) utilize a learning-based

probabilistic TS. Here, the probability of selecting a hub depends on how frequently that option has

been chosen earlier in the algorithm. This method outperforms Abyazi-Sani and Ghanbari (2016)’s

TS in computation time and attempts to solve instances with up to 900 nodes.

Various alternative metaheuristics have been applied to HLPs that aim to explore a large search

space and find high-quality solutions without relying heavily on the problem structure. For instance,

Simulated Annealing (SA) is used to solve the single allocation UpHLP with up to 200 nodes, as

studied by Ernst and Krishnamoorthy (1996). Their approach uses similar neighborhoods as itera-

tive local search algorithms, but transitions are randomly selected using an acceptance probability.
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In addition, Meyer et al. (2009) proposes an Ant Colony Optimization (ACO) algorithm for the

single allocation UpHLP. This method uses a colony to optimize the hub selection and the allocation

of non-hubs to hubs. Instances with up to 200 nodes are considered.

A Genetic Algorithm (GA) for the single allocation UHLP was first proposed by Abdinnour-

Helm (1998) and since then has been extensively studied (Cunha and Silva, 2007; Van Essen, 2009).

The algorithm determines which hubs to open and directly allocates non-hubs to the closest open

hub. Topcuoglu et al. (2005) and Kratica et al. (2007) extend this method by allocating non-hubs

to hubs part of the individuals in the GA to explore a larger solution space. Additionally, Marić

et al. (2013) include two local search heuristics to improve every individual in the GA. They solve

instances with up to 900 nodes within a reasonable time and claim to obtain a high-quality solution.

The multiple allocation Capacitated HLP is solved using a GA by Lin et al. (2012). The indi-

viduals reflect the hub configuration and the routes taken by commodities. Capacity violations are

incorporated into the fitness function by including a penalty term. This study considers instances

with 40 nodes.

In conclusion, it has been shown that SAs and local search algorithms such as GVNS, TB, and

GRASP can generate high-quality solutions for HLPs. However, it should be noted that the ef-

fectiveness of the specified neighborhoods is contingent upon the assumption of single or multiple

allocation. Moreover, due to the relatively small improvement per iteration, these methods may

not be suitable for solving large-scale instances of our problem. Other metaheuristics are more

appropriate for incorporating the various aspects of the problem since their approach is more gen-

eral. Although research has been conducted on ACOs, such studies have primarily focused on small

to medium instance sizes. Consequently, a GA appears to be the most appropriate method for

resolving the MP-UpHLAP.
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4 Methodology

This section provides a detailed description of the solution approach. First, we discuss the general

aspects of GAs. Following that, we elaborate on the different elements comprising an individual in

our approach. Then, we present an overview of the implemented genetic algorithm. The following

subsections delve into the genetic operators and heuristics, further elaborating on their functional-

ities.

4.1 Framework

Genetic algorithms are optimization techniques that imitate the process of natural selection of

biological evolution to find a (sub)optimal solution to a given problem. It is a search algorithm

where a set of potential solutions is iteratively improved. While a more comprehensive explanation

of GAs can be found in Mitchell (1998) and Katoch et al. (2021), we will briefly cover the key

characteristics.

An individual in a genetic algorithm represents a candidate solution to the problem or can be

decoded into one. The individual is specified by a chromosome, a string of genetic information rep-

resenting the individual’s features. Each chromosome comprises genes, units of genetic information

that encode specific parts of the solution.

A group of individuals is called a population. Initially, a population of random individuals is

generated, or an initialization method can be used to create an initial population. The genetic algo-

rithm evaluates each individual using a fitness function that measures the individual’s performance

in solving the problem. The fitness function depends on the nature of the problem being solved.

In each iteration or generation, the aim is to improve the overall fitness of the following popu-

lation by applying genetic operators. The selection procedure is used to choose individuals for

reproduction based on their fitness values. Typically, fitter individuals have a higher probability of

being selected for reproduction. Offspring is created by combining the chromosomes of two individ-

uals using a crossover method. Lastly, mutation is applied to offspring to keep diversity within the

population, i.e., explore new regions of the search space.

The new population consists of the offspring created by the reproduction process. This process

is repeated for multiple generations until a stopping criterion is met. The stopping criterion may

be a fixed number of generations or a fixed number of generations in which no improvement was

found. The algorithm keeps track of the best individual found, which is the fittest individual.

4.2 Individual

In the proposed representation, an individual is characterized by a chromosome. Additionally, each

individual also stores a feasible solution based on the chromosome. To the best of our knowledge,

this particular representation has not been utilized in previous studies addressing hub location

problems. However, it has similarities to approaches employed in the field of telecommunications
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(Flores et al., 2003; Kulturel-Konak and Konak, 2008), particularly for network optimization. In

telecommunication applications, such a representation often generates spanning trees. The following

paragraphs provide an in-depth discussion of the components.

4.2.1 Chromosome

It is necessary to assign each arc in the graph an index based on the following rules:

(i) Let a1 = |He| ∗ (|He| − 1 + 2 ∗ |D|) and a2 = a1 + 2 ∗ |D ∪He|.

(ii) For arcs connecting existing hubs with depots and other existing hubs, unique indices are

assigned ranging from 0 to a1.

(iii) For every potential hub h ∈ Hp, the outgoing and incoming arcs are assigned distinct indices

ranging from a1 to a2.

(iv) For every node i ∈ D ∪He, all arcs (i, h) with h ∈ Hp share the same index.

(v) For every node i ∈ D ∪He, all arcs (h, i) with h ∈ Hp share the same index.

The genetic code consists of two segments. The first segment represents a potential hub h ∈ Hp.

This hub, along with the existing hubs, is considered open. The second segment consists of a2

binary genes representing the arc indices. An arc is active if the corresponding gene of its index is

set to 1, provided that it does not originate from or terminate at a closed hub.

Figure 2: Visualization of an illustrative graph. Together, the left subfigures display all arcs with their
assigned indices. The right subfigure highlights the active arcs corresponding to the presented chromosome.
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Figure 2 presents an example graph illustrating a scenario where |D| = |He| = |Hp| = 2.

Consequently, the values a1 and a2 are 10 and 18, respectively. While the left subfigures present a

feasible index assignment, the right subfigure highlights the active arcs of a given chromosome.

4.2.2 Feasible Solution

A feasible solution, denoted by R, can be represented by a set that includes a route for each

commodity. It is important to note that although the chromosome contains information about active

arcs and open hubs, the genes themselves do not directly determine the routes for commodities.

Consequently, the chromosome must be decoded into a feasible solution to evaluate an individual.

To guarantee the existence of a route for each commodity based on the subset of active arcs,

we exclusively consider chromosomes that meet this condition. This requirement necessitates the

utilization of specialized genetic operators.

The genetic operators are designed to generate new chromosomes and simultaneously decode

them into feasible solutions. To be precise, the operators construct routes of sufficient quality for

each commodity. While these routes may not be optimal given the sets of active arcs, this approach

reduces the computation time. The feasible solution is stored along with the chromosome, and this

process is discussed in more detail in Section 4.5 through Section 4.8.

4.2.3 Fitness

As mentioned in Section 2.1, the objective is to minimize the linehaul costs by opening a new hub.

To achieve this, each individual is assigned a fitness value that reflects the associated costs. While

the cost of active arcs and open hubs can be determined from the corresponding chromosome, the

remaining costs are dependent on the routes taken by commodities. Since genetic operators decode

chromosomes into feasible solutions, which are then stored, the algorithm can approximate these

costs. The fitness function denoted as F(ϱ,R), takes an individual ϱ with the corresponding feasible

solution R as input and comprises three components. The cost of a route in R is calculated as the

sum of the variable costs, including the costs related to nodes and arcs, multiplied by the volume

of the transported commodity. Additionally, the chromosome of ϱ indicates the status of hubs and

arcs. Therefore, the fitness is computed by summing the costs of all routes and adding the fixed

cost of active arcs and open hubs.

4.3 Genetic Algorithm

This section presents the main steps in the genetic algorithm, and the pseudo code is given by

Algorithm 1. The algorithm begins with the initialization of generation zero, as discussed in Section

4.5. The population size, denoted as psize, determines the number of individuals created. In the

subsequent step, a local search is performed on the top fraction lp of the individuals. Details of this

local search algorithm can be found in Section 4.9. Following the local search, the individuals with

the lowest fitness are marked as elite, as explained in Section 4.10. The corresponding elite set has

size ep × psize. Then, the algorithm continues by creating the first generation.
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Algorithm 1 Genetic Algorithm

Input: population size (psize), mutant proportion (mp), elite proportion (ep), selection proportion (sp), local search propor-
tion (lp), max. generations (Gmax), time limit (Tmax). stagnation limit (Smax).
Output: individual (ϱ).

Step 0.1: initialization
j ←− 0 and initialize time = stagnation = 0.
Generate initial population Ωj of size psize. ▷ Section 4.5

Step 0.2: local search
Perform local search on the best (lp × psize) individuals in Ωj . ▷ Section 4.9

Step 0.3: elite set
Υj ←− Ωj .
Determine the elite set Σj of size (ep × psize) from Υj . ▷ Section 4.10

Step 1: selection
j ←− j + 1
Determine the selection set Φj of size (sp × psize) from Υj−1. ▷ Section 4.6

Step 2: crossover
Generate ((1−mp − ep)× psize) new individuals Ωj by applying crossover on Φj . ▷ Section 4.7

Step 3: mutation
Generate (mp × psize) mutants Πj using Σj−1. ▷ Section 4.8

Step 4: local search
Υj ←− Πj ∪ Ωj .
Perform local search on the best (lp × psize) individuals in Υj . ▷ Section 4.9

Step 5: elite set
Υj ←− Υj ∪ Σj−1.
Determine the elite set Σj of size (ep × psize) from Υj . ▷ Section 4.10

Step 6: stopping criteria
Update time and stagnation.
If j equals Gmax then go to Step 7.
If time exceeds Tmax then go to Step 7.
If stagnation exceeds Smax then go to Step 7.
Otherwise, go to Step 1.

Step 7: best individual
If lp = 0 then perform local search on the best individual ϱ in Σj

Return best individual ϱ from Σj .

In each generation j ≥ 1, the population Υj consists of three types of individuals: mutants,

offspring, and elite individuals from the previous generation. These are represented by the sets Πj ,

Ωj , and Σj−1, respectively. The fractions of these individual types are as follows: mutants comprise

a fraction mp of the population, elite individuals make up a fraction ep of the population, and

the remaining fraction (1−mp − ep) is allocated to offspring. The selection process is explained in

Section 4.6 in where individuals from the previous generation are chosen for crossover, resulting in a

set Φj containing sp × psize individuals. The crossover operator, described in Section 4.7, generates

offspring. Further details regarding the mutation process can be found in Section 4.8. Finally,

another round of local search is performed on the top fraction lp of the offspring and mutants, and

the elite set is updated, marking the end of the generation.

The algorithm includes three stopping criteria to determine whether a new generation should

be generated. These criteria include a maximum number of generations (Gmax) and a time limit

(Tmax). Further, there is a limit (Smax) on the number of sequential iterations where the chromo-
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some of the best individual remains identical. In such cases, the algorithm terminates and returns

the individual with the lowest fitness. It is important to note that when the local search proportion

lp is set to zero, the algorithm first performs local search on this particular individual to improve

its fitness. Otherwise, if none of the stopping criteria are met, a new generation is created.

As mentioned, the algorithm exploits specialized methods to create individuals. These operators

require finding the lowest-cost route in the graph for a commodity. The following subsection fo-

cuses on an exact approach to solving this problem. Afterward, the steps of the GA are explained

in detail.

4.4 Exact Route Algorithm

This section presents an exact algorithm designed to determine the lowest-cost route for a given

commodity based on various input parameters. The algorithm will be utilized by multiple genetic

operators in the proposed GA.

As previously mentioned in Section 2.1, we define a route as a path from the origin to the des-

tination depot that satisfies multiple restrictions. Specifically, for a commodity k ∈ K, a path P∗

from o(k) to d(k) must meet the following set of feasibility criteria:

(i) The number of hub touches in P∗ does not exceed the maximum ζ.

(ii) The service time of P∗ does not exceed the maximum service time of k.

(iii) Each hub in P∗ can process product type p(k).

(iv) Each hub can only be visited once in P∗.

(v) Only depots o(k) and d(k) are present in P∗.

(vi) Closed hubs can not be in P∗.

This problem closely resembles the well-known Constrained Shortest Path Problem (CSP). It is

noteworthy that the CSP is proven to be NP-hard (Hartmanis, 1982) even for a single recourse.

Hence, to address this computational complexity, we adapt the pulse algorithm by Lozano and

Medaglia (2013), which has been shown to reduce the computation time compared to complete

enumeration successfully.

Its general idea revolves around sending pulses through the graph, starting from the origin node and

progressing toward the destination node. The algorithm follows a depth-first search strategy, and as

the pulses traverse the network, the visited nodes form a path. Throughout the algorithm, the cost

and resources of these paths are tracked. When a pulse reaches the destination node, it signifies the

completion of a path. The pulse algorithm employs various pruning strategies to improve efficiency

and limit the search space. These pruning strategies aim to discard suboptimal paths early on.
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Algorithm 2 provides an overview of the adapted pulse algorithm. It takes as input a commodity

k ∈ K, an open hub h ∈ Hp, and the maximum number of hub touches ζ. Moreover, the input

includes temporary arc costs ∆, where δ̃i,j ∈ ∆ represents the temporary cost of arc (i, j) ∈ A. The

algorithm begins with a path from the origin depot, and the cost and service time are initialized

accordingly (see lines 4-5). Then, the pulse function is called, which returns the optimal path1 and

its corresponding cost.

Algorithm 2 Exact Route Algorithm

1: Input: commodity (k), new hub (h), max. hub touches (ζ), temporary costs (∆).
2: Output: optimal path (Pb).

3: Set n = o(k).
4: Set P = {n}.
5: Set µ = pn.

6: Set ς = κ
p(k)
n × vk.

7: Pb, ςb ←− Pulse Function (k, n, h, µ, ς, P, M , −, ζ, ∆).

8: Return Pb.

Algorithm 3 Pulse Function

1: Input: commodity (k), node (n), new hub (h), service time (µ), cost (ς), path (P), best cost (ςb), best path (Pb), max.
hub touches (ζ), temporary costs (∆).

2: Output: best path (Pb), best cost (ςb).

3: if feasible == True then ▷ Section 4.4.1
4: if not bounded == True then ▷ Section 4.4.2
5: if not dominated == True then ▷ Section 4.4.3
6: if n = d(k) then
7: Set Pb = P.
8: Set ςb = ς.
9: else
10: for every arc (i, j) ∈ A with i = n do
11: Set Pj = P ∪ j.

12: Set ςj = ς + τi,j × vk + κ
p(k)
j × vk + δ̃i,j .

13: Set µj = µ+ ti,j + pj .
14: P ′, ς′ ←− Pulse Function (k, j, h, µj , ςj , Pj , ςb, Pb, ζ, ∆).

15: if ς′ < ςb then
16: Set Pb = P ′.
17: Set ςb = ς′.

18: Return Pb, ςb.

Algorithm 3 shows the pulse function that considers a path P to a node n. Three pruning strategies

are applied, which are further explained in Sections 4.4.1 to 4.4.3. If the path is not pruned, the

algorithm checks whether it is complete. If not, it explores extending the current path to all nodes

with an incoming arc from n. The cost and service time of these extended paths are computed

accordingly (see lines 12-13), incorporating the temporary costs. The pulse function is recursively

called, and the algorithm keeps track of the lowest-cost path to the destination.

It is worth noting that the optimal path is never pruned, making it an exact method. The

performance of the algorithm is heavily dependent on the pruning strategies. Therefore, it is crucial

1 The optimal path corresponds to the lowest-cost route since the algorithm prunes infeasible paths.
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to adapt these strategies according to the specifications of the optimization problem. In the worst-

case scenario, no paths are pruned, and the algorithm results in complete enumeration.

4.4.1 Feasibility Pruning

As mentioned earlier, a path needs to satisfy multiple criteria. The first pruning strategy exploits

this by pruning paths that violate one or multiple restrictions. The algorithm performs a series

of checks for each path P to a node n. When n is a depot, it verifies whether n corresponds to

the destination depot. Additionally, the algorithm examines whether the service time is below the

maximum service time. If either one of the checks fails, the pulse is pruned.

On the other hand, when n is a hub, it can only be visited once, and it needs to be an open hub,

i.e., n ∈ He ∪ h. Further, the algorithm examines whether n can handle commodity k and checks if

the maximum number of hub touches constraint is satisfied. Finally, it verifies whether the minimum

service time to the destination is below the maximum service time. That is, µ+ tn,d(k) + pd(k) ≤ sk

since the quickest path from n to the destination is by connecting them directly. If any of these

checks are not passed, the path is pruned.

By employing this pruning strategy, the algorithm effectively narrows the search space by dis-

carding infeasible paths at an early stage. Particularly, exploiting the upper bound on the number

of hub touches improves the algorithm’s efficiency.

4.4.2 Bound Pruning

Due to the depth-first search strategy, the algorithm can quickly find an upper bound, denoted as ςb,

on the cost. By comparing the cost of a path P with ςb, the path can be pruned when this bound is

exceeded. The justification for this pruning strategy lies in the non-negativity of the cost parameters.

As a result, there exists no path that includes P that can improve the upper bound. Initially, ςb is

assigned an arbitrarily large value M , and it is updated throughout the algorithm when lower-cost

paths to the destination node are discovered. Consequently, the algorithm prioritizes exploring

paths with lower costs, enhancing overall computational performance.

4.4.3 Dominance Pruning

The pulse algorithm incorporates a pruning strategy based on dominance checking that keeps track

of labels for all nodes encountered during the search. A path P to node n is dominated if there is

a labeled path to node n with a lower cost, lower service time, and an equal or fewer number of

hub touches. Introducing a new label for all non-dominated paths can make the number of labels

per node relatively high. Even in small graphs, this results in a significant number of dominance

checks. Therefore, we limit the number of labels per node to three. The algorithm keeps track of

the lowest cost path, the quickest path, and an additional randomly updated path. If a path is

dominated, the path is pruned from further consideration. Otherwise, the algorithm updates the

labels accordingly.
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4.5 Initialization

Traditional initialization methods generate individuals by randomly setting each gene in its chro-

mosome to zero or one with a known probability. For this specific problem, this may result in

chromosomes that cannot be decoded into a feasible solution. To address this challenge, a heuristic

is proposed that ensures the existence of such a solution. The heuristic, outlined in Algorithm 4,

outputs an individual and is repeatedly called until the initial population has the desired size.

Algorithm 4 Initialization Heuristic

1: Input: max. hub touches (ζ).
2: Output: individual (ϱ).

3: Draw a random hub h from Hp.

4: for every arc (i, j) ∈ A do
5: Draw a random number r between 0 and 1.
6: Set δ̃i,j = δi,j × r.

7: Put δ̃i,j in ∆ for all (i, j) ∈ A.
8: Initialize R = ∅.
9: Randomize the order of the commodities in K.

10: for every commodity k in K do
11: Pk ←− Exact Route Algorithm (k, h, ζ, ∆). ▷ Section 4.4
12: Set R = R ∪ Pk.

13: for every arc (i, j) in route Pk do

14: Set δ̃i,j = 0.

15: ϑ ←− createChromosome(h,∆).
16: ϱ ←− createIndividual(ϑ,R).

17: Return ϱ.

To start, a potential hub is randomly opened. Then, each arc is assigned a temporary cost, denoted

by δ̃i,j . This cost is calculated by discounting the fixed cost of each arc with a random number

between 0 and 1. By applying this discount, diversity is introduced in the population. To our

knowledge, this discounting approach has not been investigated yet in the context of HLPs. The

costs are updated throughout the algorithm, setting it to zero for an active arc.

The algorithm iteratively solves the Exact Route Algorithm for each commodity k in a random-

ized order to diversify the population. As mentioned earlier, this algorithm finds the lowest-cost

route Pk
2, considering the temporary costs and the maximum number of hub touches. Addition-

ally, in each iteration, the temporary costs of arcs present in the lowest-cost route are set to zero,

ensuring that other commodities are encouraged to use already active arcs.

The initialization method finishes by creating an individual. The function createChromosome takes

a hub h ∈ Hp and the temporary costs as inputs and constructs a chromosome. The first component

of the chromosome is set to h. The genes in the second component are determined based on whether

there is an active arc (i, j) ∈ A, defined by δ̃i,j = 0, with the corresponding index. If such an arc

exists, the gene is set to 1, otherwise it is set to 0.

2 There exists a route for each commodity since we consider the entire network.
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To evaluate the individual, its fitness must be determined. The generated chromosome is already

decoded into a feasible solution within the method. This solution includes the lowest-cost routes for

all commodities stored in R. Given the subset of active arcs, these routes may not be optimal due

to their dependency on the order of commodities and temporary costs. However, as explained in

Section 4.2.3, such a solution is used to approximate the linehaul costs and reduce the computation

time. The function createIndividual generates an individual, storing the chromosome and feasible

solution provided as input. Finally, the fitness is determined using these two components, with the

fitness function F(ϱ,R) being called as explained in Section 4.2.3.

4.6 Selection

The selection operator generates a set of individuals that are considered for crossover. This set com-

prises both elite individuals and mutants from the previous generation. Furthermore, tournament

selection is employed as the selection procedure to expand the selection set and ensure diversity.

This procedure involves randomly selecting ts distinct individuals from the previous population

and subsequently including the one with the lowest fitness value in the selection set. It is worth

noting that individuals with identical chromosomes cannot be present in the selection set to ensure

solution diversity. The tournament size ts determines the number of individuals participating in

each selection round, influencing overall diversity. The process is repeated until sp × psize individ-

uals are chosen for crossover. By including mutants and elite individuals, together with applying

tournament selection, the algorithm explores new solutions while still including the best traits from

the previous generation.

4.7 Crossover

Crossover methods commonly produce offspring by combining the chromosomes of two parent in-

dividuals based on a predefined rule. This process typically involves alternating segments from

the parent chromosomes to generate a new chromosome when dealing with binary chromosomes.

However, such an approach may yield offspring that can not be decoded into a feasible solution.

Hence, we present a crossover method similar to the initialization procedure. Again, a temporary

cost is assigned to each arc, and an exact or heuristic approach is used to find (sub-)optimal routes.

The proposed method, displayed by Algorithm 5, produces one or two offspring and is iteratively

applied until the desired number of offspring is created.

First, two distinct parent individuals are randomly selected from the selection set. The poten-

tial hub that is open in the first parent is again selected. Then, the crossover operator assigns a

temporary cost δ̃i,j to each arc based on whether the arc is active in either of the parent individuals.

If the arc is active in at least one parent, the cost is set to a random percentage of the fixed cost

of the arc. This percentage is consistent for all arcs to control the randomness while maintaining

some degree of diversity. In addition, there is a mutation component where arcs that are inactive

in both parents are also assigned such a cost with a probability pmut. This mutation allows the
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offspring to activate different arcs than their parents. The remaining arcs, which are neither active

in the parents nor subject to mutation, are assigned an arbitrarily large value M .

Algorithm 5 Crossover

1: Input: selection set (Φ), max. hub touches (ζ), mutation probability (pmut), heuristic proportion (hp).
2: Output: individuals (ϱ1, ϱ2).

3: Randomly select 2 distinct parent individuals φ1 and φ2 from Φ.

4: for q ←− 1 to 2 do
5: Set h to the open potential hub of φq .
6: Draw a random number r1 between 0 and 1.

7: for every arc (i, j) ∈ A do
8: Draw a random number r2 between 0 and 1.

9: if arc (i, j) is active for φ1 and/or φ2 then

10: Set δ̃i,j = δi,j × r1.
11: else if r2 < pmut then
12: Set δ̃i,j = δi,j × r1.
13: else
14: Set δ̃i,j = M .

15: Put δ̃i,j in ∆ for all (i, j) ∈ A.
16: Initialize Rq = ∅.
17: f ←− 1.
18: Randomize the order of the commodities in K.

19: for every commodity k in K do
20: if f < hp × |K| then
21: Pk ←− Exact Route Algorithm (k, h, ζ, ∆). ▷ Section 4.4
22: else
23: Pk ←− Heuristic Route Algorithm (k, h, ζ, ∆, (φ1, φ2)). ▷ Section 4.7.1

24: Set Rq = Rq ∪ Pk.
25: f ←− f + 1.

26: for every arc (i, j) in route Pq do

27: Set δ̃i,j = 0.

28: ϑq ←− createChromosome(h,∆).
29: ϱq ←− createIndividual(ϑq ,Rq).

30: if the open potential hub of φ1 and φ2 is identical then
31: Return ϱq .

32: Return ϱ1, ϱ2.

The operator then proceeds to iterate over the commodities in a randomized order. The al-

gorithm determines the lowest-cost route using the Exact Route Algorithm if a fraction hp of the

commodities has yet to be considered. It is worth noting that the arcs with a temporary cost of

M are never activated. In the Exact Route Algorithm, bound pruning leads to immediate pruning

of a path that contains such an arc. Consequently, the number of considered routes is significantly

reduced, leading to lower computation time compared to a scenario where all arcs are considered.

Generally, we expect the number of active arcs to decrease significantly over the first generations,

which accelerates the crossover operator.
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Once a sufficient number of commodities have been processed, the algorithm switches to a heuris-

tic approach. The Heuristic Route Algorithm, explained in Section 4.7.1, exploits the previously

activated arcs to improve the computational efficiency further. In the worst-case scenario, the exact

algorithm is called by the heuristic. The parameter hp influences the quality of the solution since

more sub-optimal routes may be selected when it is set low.

Each resulting route3 is added to the feasible solution R. Additionally, in each iteration, the

temporary costs of arcs present in the lowest-cost route are set to zero, encouraging subsequent

commodities to utilize those arcs. Finally, the crossover operator constructs offspring by creating

a chromosome. Again, the constructed routes in R are used to approximate the linehaul costs,

determining the offspring’s fitness. If the open potential hub in the second parent is different from

the first parent, the process is repeated for the other hub. However, one offspring is returned if the

open potential hub is the same.

To clarify this operator, an example is given in Figure 3 where we consider the illustrative graph

presented in Figure 2. The genes set to zero in both parents remain zero in the offspring, except for

genes subject to mutation. The constructed routes determine the values of the remaining genes.

Figure 3: Crossover example.

3 The existence of a route is ensured by the feasibility of both parents.
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4.7.1 Heuristic Route Algorithm

The Exact Route Algorithm discussed in Section 4.4 optimizes the lowest-cost routes. However,

it is worth noting that optimizing these routes may not always be the primary objective since it

may lead to high computation times. Therefore, we propose an alternative approach, introducing

a heuristic to reduce the running time of the GA. The Heuristic Route Algorithm is incorporated

into the crossover operator, requiring two parent individuals as additional input.

The main idea is to swiftly identify routes of satisfactory quality whenever possible. This is

achieved by leveraging the observation that when all arcs in a given route are already active, the

route’s cost tends to be relatively low, indicating its suitability. Algorithm 6 gives an overview of

the heuristic. It examines the routes of commodity k ∈ K in the solutions stored for both parent

individuals. If all arcs in both routes have a temporary cost of zero, the algorithm returns the

lowest-cost route. On the other hand, if all arcs in only a single route have a temporary cost of

zero, the algorithm selects the respective route. However, if both routes do not meet this condition,

the algorithm proceeds to solve the Exact Route Algorithm.

Algorithm 6 Heuristic Route Algorithm

1: Input: commodity (k), new hub (h), max. hub touches (ζ), temporary costs (∆), individuals (ϱ1, ϱ2).
2: Output: best path (Pb).

3: Let P1 and P2 be the routes of commodity k in the solutions of ϱ1 and ϱ2, respectively.
4: Initialize check1 = check2 = True.

5: for every arc (i, j) in P1 do

6: if δ̃i,j ̸= 0 then
7: Set check1 = False.
8: break

9: for every arc (i, j) in P2 do

10: if δ̃i,j ̸= 0 then
11: Set check2 = False.
12: break

13: if check1 == check2 == True then
14: Set Pb to lowest-cost route between P1 and P2.
15: else if check1 == True then
16: Set Pb = P1.
17: else if check2 == True then
18: Set Pb = P2.
19: else
20: Pb ←− Exact Route Algorithm (k, h, ζ, ∆). ▷ Section 4.4

21: Return Pb.

4.8 Mutation

In traditional mutation operators, random changes are typically introduced to individual genes

with a predefined probability, or entirely new chromosomes are randomly generated. However, as

mentioned in Section 4.5, these operators may not be applicable as they may result in chromosomes

that cannot be decoded into feasible solutions. To overcome this problem, the algorithm creates

mutants from scratch while utilizing elite individuals. This algorithm is repeatedly called until the

desired number of mutants is achieved, expanding the solution space explored by the GA.
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The mutation operator is presented in Algorithm 7. The process begins by randomly selecting

an individual from the elite set. Subsequently, a closed hub is chosen associated with the elite

individual. Opening this alternative hub for the mutant can be interpreted as a mutation of the

first segment of the chromosome. However, directly copying the second segment is not possible, as

it may lead to issues with the feasibility.

To assign temporary costs to each arc, the following rules are employed: inactive arcs in the

elite individual are assigned their fixed cost, while active arcs have their fixed cost discounted by

a random factor between 0 and 0.5. By reducing the cost of previously active arcs, we increase

the likelihood of re-activating these promising arcs for the mutant. The algorithm proceeds by

solving the Exact Route Algorithm for the commodities in a randomized order while updating the

temporary costs of activated arcs. The algorithm terminates by creating the chromosome for the

mutant, storing the resulting feasible solution, and determining its fitness.

Algorithm 7 Mutation

1: Input: elite individuals (Σ), max. hub touches (ζ).
2: Output: individual (ϱ).

3: Randomly select an individual φ1 from Σ
4: Draw h from Hp \ h∗ where h∗ represents the open potential hub of φ1.
5: Draw a random number r between 0 and 0.5.

6: for every arc (i, j) ∈ A do
7: if arc (i, j) is active for φ1 then

8: Set δ̃i,j = δi,j × r.
9: else
10: Set δ̃i,j = δi,j .

11: Put δ̃i,j in ∆ for all (i, j) ∈ A.
12: Initialize R = ∅.
13: Randomize the order of the commodities in K.

14: for every commodity k in K do
15: Pk ←− Exact Route Algorithm (k, h, ζ, ∆). ▷ Section 4.4
16: Set R = R ∪ Pk.

17: for every arc (i, j) in route Pk do

18: Set δ̃i,j = 0.

19: ϑ ←− createChromosome(h,∆).
20: ϱ ←− createIndividual(ϑ,R).

21: Return ϱ.

4.9 Local Search

In previous sections, we discussed the genetic operators, which exploit constructed routes to ap-

proximate the linehaul costs associated with an individual. However, given the set of active arcs,

these routes may be sub-optimal due to their dependency on the order of commodity consideration

and the use of temporary costs. To address this, we incorporate a local search that aims to lower

an individual’s fitness. This is done by re-optimizing the routes given a fixed set of active arcs. As

a result, routes are optimized independently, and the resulting fitness reflects the lowest possible

linehaul costs given the corresponding chromosome.
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The local search, presented in Algorithm 8, begins by initializing the temporary cost of each arc.

For active arcs in the individual, the temporary cost δ̃i,j is set to zero. Conversely, for arcs that are

inactive, the temporary cost is set to an arbitrarily large valueM to ensure their inactivity and speed

up4 the local search. Subsequently, the Exact Route Algorithm is called on all commodities, and the

resulting routes are saved in the set R. Finally, the algorithm calls the function updateIndividual,

which updates the stored solution and determines the new fitness of the individual.

Algorithm 8 Local Search

1: Input: max. hub touches (ζ), individual (ϱ).
2: Output: individual (ϱ).

3: Set h to open potential hub of ϱ.

4: for every arc (i, j) ∈ A do
5: if arc (i, j) is active in ϱ then

6: Set δ̃i,j = 0.
7: else
8: Set δ̃i,j = M .

9: Put δ̃i,j in ∆ for all (i, j) ∈ A.
10: Initialize R = ∅.

11: for every commodity k in K do
12: Pk ←− Exact Route Algorithm (k, h, ζ, ∆). ▷ Section 4.4
13: Set R = R ∪ Pk.

14: ϱ ←− updateIndividual(ϱ,R).

15: Return ϱ.

4.10 Elite Set

The inclusion of an elite set within GAs serves the purpose of accelerating convergence towards

(sub-)optimal solutions. This subset, with a size equal to ep × psize, is updated every generation by

identifying the individuals that have demonstrated superiority. This is reflected by their holding

of a low fitness value. By selecting these individuals, the population preserves individuals that

exhibit promising genetic traits. Importantly, it should be mentioned that the elite set is designed to

maintain population diversity. To achieve this, individuals with identical chromosomes are excluded

from the set.

4 In general, the execution of local search on an individual requires less time compared to generating offspring using
the Exact Route Algorithm within the same generation, due to the immediate pruning of a more significant number
of routes.

25



5 Computational Results

In this section, we present the results regarding the GA. To begin, we tune the algorithm parameters,

examining the effects of different settings on two specific instances. The results are given in Section

5.2. We apply these settings to all real-world networks, as outlined in Section 5.3. Here, the results

of the GA are discussed in more detail. Moreover, four experiments are conducted to investigate

the effects of various factors on the algorithm’s performance and outcome, as shown in Section 5.4.

The genetic algorithm is implemented in Java, using the Eclipse IDE for Java Developers version

4.27.0. The experiments are run on a single thread of an 11th Gen Intel(R) Core(TM) i7-1185G7

CPU, with 32GB of RAM. Next, we elaborate on the test instances.

5.1 Test Instances

We consider three real-world networks characterized by depots and hubs operating independently.

Additionally, we generate four experimental instances to evaluate the performance of the GA. In

this section, we introduce the instances by discussing the sets and parameters related to the graphs

representing the networks.

5.1.1 Real-world Instances

Table 2 provides an overview of the set cardinalities for each real-world network. The networks are

classified based on their sizes, and we refer to them as small, medium, and large. This can be done

since the cardinalities of the sets increase across the instances, except for the number of product

types, which remains constant. The number of depots ranges between 46 to 197, while the number

of existing hubs ranges from 5 to 21. Additionally, 46 to 185 potential hub locations are considered,

and each hub is assigned a unique index.

Compared to the small network, the number of commodities increases by factors of 2.98 and 7.12

for the medium and large network, respectively. Consequently, we expect that the computational

time required for generating a single offspring, mutant, or initial individual will increase across the

instances. This is due to the larger number of commodities that need to be routed and the likelihood

of having more routes to consider, given the greater number of existing hubs.

Table 2: The set cardinalities for real-world networks.

Network |V| |D| |He| |Hp| |A| |K| |P|
small 97 46 5 46 5172 1836 4
medium 181 83 13 85 18634 5468 4
large 403 197 21 185 89354 13064 4

For each node and commodity, the associated parameters are provided. The time and cost of

driving a single truck between any two nodes are also known. However, as mentioned earlier, the

transportation costs are estimated through linearization. The variable arc cost is estimated by

dividing the cost per truck by the given truck capacity. Furthermore, the fixed cost is set as a

percentage of the cost per truck. This percentage m and the maximum number of hub touches ζ

are treated as instance parameters, which will be further discussed in Section 5.2.
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5.1.2 Experimental Instances

To further investigate the performance of our genetic algorithm, we design four additional networks:

m–A, m–B, l–A, and l–B. The networks m–A and m–B are intended to be comparable in size to

the small network. To achieve this, we derive these sub-networks from the medium network by

randomly dividing the sets of depots, existing hubs, and potential hubs into two distinct subsets.

To maintain feasibility, we exclusively consider commodities from the original set K that have both

their origin and destination depots within the sub-network. This process results in two distinct sets

of commodities for m–A and m–B. Similarly, the instances l–A and l–B are created to be comparable

in size to the medium network and are obtained by utilizing the large network.

Table 3 provides an overview of the set cardinalities. In each experimental instance, parameter

values are adopted from the real-world network, except for the maximum service time, which is set

to infinity to avoid infeasibility problems.

Table 3: The set cardinalities for experimental networks.

Network |V| |D| |He| |Hp| |A| |K| |P|
m–A 97 46 6 45 5262 2001 4
m–B 100 47 7 46 5668 1884 4
l–A 203 98 10 95 22786 5643 4
l–B 206 99 11 96 23408 5816 4

5.2 Parameter Tuning

In this section, we observe the effects of various parameters in the GA to enhance its performance.

For clarity, the parameters ζ and m are associated with the instances rather than the algorithm

itself. For this tuning process, we fix their values at ζ = 2 and m = 0.75. However, we will

investigate the influence of these instance parameters in our subsequent analyses.

In Section 4, we introduced eleven algorithm parameters, including three stopping criteria. These

stopping criteria are set as follows: Gmax = ∞, Smax = 30 and Tmax = 18.000 seconds. These values

are chosen to ensure a reasonable balance between computational efficiency and exploring potential

solutions. Furthermore, we set the tournament size parameter ts to three, which is relatively low.

This setting increases the likelihood of selecting individuals with lower fitness values, promoting

exploring the search space and maintaining diversity within the population. The selection propor-

tion parameter sp is set to 0.65, which is relatively high. This ensures that a sufficient number of

non-elite individuals and non-mutants are considered for crossover.

As a result, we are left with six parameters that require tuning. Initially, these parameters are

set the following values: psize = 20× |H|, ep = 0.2, pm = 0.05, mp = 0.05, hp = 1, and lp = 0. This

implies that the Heuristic Route Algorithm and the local search are not applied. We allow a mild

level of mutation by setting the two corresponding mutation parameters relatively low.

Optimizing all parameters simultaneously would lead to excessive experiments and unmanage-

able computation time. Therefore, we evaluate the parameters individually and iteratively update

our model throughout the analysis. By systematically varying the value of each parameter, we

observe its impact on the outcome of the GA. Based on these observations, we intend to make
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informed decisions regarding their optimal values. We focus on optimizing the real-world small and

medium network for practical reasons. It is important to acknowledge that there are limitations to

this approach. First, not all possible parameter settings are considered, which limits our findings.

Additionally, as we only examine two specific test instances, the obtained results may be sensitive

to the characteristics of these instances. Nevertheless, this approach allows us to observe the effects

of the GA parameters to the best of our capabilities within the allowed time.

5.2.1 Population Size

We let the population size in our genetic algorithm depend on the number of hubs in the network.

The number of existing hubs impacts the possible routes, suggesting that a larger solution space

may exist when more existing hubs are present. On the other hand, the population size also needs

to depend on the number of potential hubs. For each potential hub, there should be individuals

in the initial population where the hub is open. Therefore, we consider psize ∈ {5× |H|, 10× |H|,
20× |H|, 30× |H|}.

Table 4: GA results for different values of psize.

Network psize
Minimum

fitness value
Best
hub

Number of
generations

Comp.
time (sec.)

Avg. comp. time
generation (sec.)

Time %
initialization

small 5 × |H| 96650.10 65 139 191 1.35 1.05%
10 × |H| 96668.50 65 104 299 2.81 1.34%
20 × |H| 96608.99 65 83 492 5.76 1.63%
30 × |H| 96681.09 65 72 649 8.73 1.85%

medium 5 × |H| 256215.08 133 131 2885 21.55 1.39%
10 × |H| 255700.54 133 131 5818 43.41 1.50%
20 × |H| 256421.93 133 112 9704 84.50 1.59%
30 × |H| 256082.42 133 128 16410 125.30 1.48%

Table 4 presents the GA results for different values of psize. Regardless of the population size, the

same potential hub is open for both networks. For the small network, the lowest fitness value is

found when psize = 20 × |H|, while for the medium network, psize = 10 × |H| performs the best.

It is, however, necessary to recognize that the differences are minimal. For the small and medium

network the maximum variation in fitness is 0.06% and 0.28%, respectively. Furthermore, Figure 4

illustrates the progression of the minimum fitness value until the final stagnation phase. The GA

converges slower for population sizes 20× |H| and 30× |H| compared to the other values.

As the population size grows, the average computation time per generation rises. These increases

are proportional to each other, which is to be expected. Moreover, the initialization process takes

longer for larger values of psize. However, the percentage of time spent in the initialization heuristic

remains relatively stable and is mainly influenced by the number of generations. Larger populations

tend to result in fewer generations, particularly for the small network.
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Figure 4: Evolution of the minimum fitness value until stagnation for different values of psize.

(a) small

(b) medium

Considering the limitations of our parameter tuning approach, making an informed decision on the

best parameter value is difficult since the differences are minor. Based on the convergence rate, we

select 10 × |H| as the population size. This setting allows the GA to explore a broader solution

space compared to 5× |H| while maintaining a reasonably low computation time.

5.2.2 Elite Proportion

The elite proportion, denoted by ep, is expected to influence the performance of the GA. Reducing

the elite proportion results in more offspring per generation and more non-elite individuals consid-

ered for crossover, leading to higher diversity. However, there is a risk of losing valuable information

regarding which arcs should be active and which hub should be open. Conversely, increasing the

elite proportion reduces the number of offspring per generation. While preserving well-performing

arcs and hubs, fewer non-elite individuals are selected for crossover. This may restrict the search

space for potential solutions. We examine three values for ep, namely 0.1, 0.2, and 0.3.

Table 5: GA results for different values of ep.

Network ep
Minimum

fitness value
Best
hub

Number of
generations

Comp.
time (sec.)

Avg. comp. time
generation (sec.)

small 0.1 96741.94 65 67 247 3.53
0.2 96668.50 65 104 299 2.81
0.3 96858.77 65 78 194 2.40

medium 0.1 256935.51 133 84 3928 45.24
0.2 255700.54 133 131 5818 43.41
0.3 256437.05 133 146 5659 38.03

Table 5 presents an overview of the GA results, using 0.2 as the baseline for comparison. Across

the different elite proportions, the fitness value varies slightly. The differences are at most 0.20%

and 0.48% for the small and medium network, respectively. Again, the same hub is consistently
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opened for both networks. Figure 5 illustrates the progression of the minimum fitness value until

the final stagnation phase for both networks. Setting ep to 0.1 for the small network leads to slower

convergence, while for the medium network, all values of ep exhibit a similar convergence pattern.

When ep is decreased to 0.1, the average computation time per generation slightly increases

due to the higher number of offspring created per generation. However, the total computation

time decreases since the number of generations significantly reduces. This may indicate premature

convergence when too few well-performing individuals are preserved. When ep is set to 0.3, the

computation time decreases, primarily because fewer offspring are created per generation.

Based on these results, we select ep = 0.2 as it balances maintaining diversity and preserving

well-performing individuals, resulting in the lowest fitness value for both networks. Again, it is

necessary to emphasize that this decision is made while only observing the slightest differences in

fitness.

Figure 5: Evolution of the minimum fitness value until stagnation for different values of ep.

(a) small

(b) medium

5.2.3 Mutation Proportion and Mutation Probability

The GA incorporates two mutation parameters to preserve diversity in the active arcs and the open

hub. The mutation probability (pm) is incorporated into the crossover operator, and the mutation

proportion (mp) determines the number of mutants. These parameters are tuned simultaneously.

Initially, a mild level of mutation is allowed by setting both parameters to 0.05. The results are

summarized in Table 6, where the values 0, 0.05, and 0.1 are explored for these parameters.
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The same hub is consistently selected for both networks across all parameter combinations. The

maximum difference in fitness is 0.80% for the small network and 1.59% for the medium network.

Interestingly, setting mp to zero tends to lower the fitness compared to other mp values. However, a

notable exception exists within this pattern for the medium network, particularly when mutations

are entirely excluded, i.e., mp = pm = 0. Furthermore, setting the mutation probability to zero

could cause early stagnation, given that the number of generations is low for both networks for this

parameter value. Setting pm to 0.1 tends to increase the fitness.

As expected, increasing mp results in a higher time percentage spent in the mutation operator.

Additionally, it comes with an increase in the average computation time per generation. Gener-

ating mutants takes longer than producing offspring since fewer routes are immediately pruned.

Furthermore, the average computation time per generation increases as pm increases following the

same reasoning. No clear pattern emerges regarding the total computation time, as the number of

generations varies significantly across the different parameter settings.

Overall, the impact of the mutation parameters on fitness seems minimal, with the differences

falling within the range of 1.59%. Therefore, it is difficult to recognize pronounced patterns. There

is no evidence indicating that mutants lead to improved solutions. Since including mutants increases

the average computation time per generation, it is suggested that mp = 0 is preferable. Addition-

ally, pm is set to 0.05. This choice is motivated by the consideration that pm = 0 might result in

premature convergence, while pm = 0.1 tends to result in higher fitness values.

Table 6: GA results for different values of pm and mp.

Network pm mp
Minimum

fitness value
Best
hub

Number of
generations

Comp.
time (sec.)

Avg. comp. time
generation (sec.)

Time %
crossover

Time %
mutants

small 0 0 96448.83 65 61 146 2.29 96.58% 0%
0.05 96651.16 65 65 175 2.57 86.86% 9.14%
0.1 96608.99 65 65 188 2.79 79.26% 17.55%

0.05 0 96219.68 65 103 252 2.38 98.02% 0%
0.05 96668.50 65 104 299 2.81 88.29% 9.36%
0.1 96668.50 65 104 285 2.68 81.05% 17.19%

0.1 0 96608.99 65 58 279 2.51 97.49% 0%
0.05 96815.65 65 69 181 2.54 88.95% 8.84%
0.1 96985.76 65 88 296 3.28 81.08% 16.89%

medium 0 0 259769.66 133 75 2767 35.42 97.22% 0%
0.05 256526.64 133 83 3286 38.14 84.94% 12.48%
0.1 256169.79 133 158 6566 40.84 75.02% 23.82%

0.05 0 255859.37 133 104 3672 34.31 98.04% 0%
0.05 255700.54 133 131 5818 43.41 85.96% 12.50%
0.1 256788.18 133 125 5386 42.19 76.59% 22.02%

0.1 0 256634.06 133 152 5910 38.13 98.65% 0%
0.05 256826.51 133 160 6848 42.11 87.78% 11.16%
0.1 257623.40 133 136 6218 44.80 78.39% 20.28%

5.2.4 Heuristic Route Algorithm

Initially, the heuristic proportion (hp) is set to 1, which ensures that the Exact Route Algorithm

is applied to all commodities. Incorporating the Heuristic Route Algorithm aims to accelerate the

crossover operator. By setting hp below 1, the heuristic algorithm is invoked for (1−hp) proportion

of the commodities. Table 7 presents the results for hp ∈ {0, 0.05, 0.1, 0.2, 0.3, 0.6, 1}, with hp = 1

as the baseline.
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Applying the heuristic algorithm successfully leads to a reduction in the average computation

time per generation. Specifically, for the small and medium network, it is reduced by factors of 3.97

and 4.97, respectively, when hp is lowered to zero. Generally, the lower the value of hp, the quicker

the crossover operator becomes. Consequently, the total computation time tends to decrease when

hp is set to a lower value.

Interestingly, there is no observable relation between the value of hp and the minimum fitness

value. For these instances, setting hp below one can either cause an increase or reduction in fitness.

However, the observed differences are relatively small. Moreover, setting hp to zero for the medium

network results in a different open hub than other values of hp. The achieved fitness for hub 137 is

very similar to that of hub 133, suggesting similar performance. This indicates that the algorithm

may struggle to identify the best hub.

The objective of applying the heuristic is to effectively reduce the average generation time without

significantly increasing the fitness value. Based on the observations, hp = 0.1 is selected. This

choice reduces the average computation per generation by factors of 3.22 and 3.75 for the small and

medium network, respectively, while ensuring that the fitness does not increase by more than 0.10%

for these instances.

Table 7: GA results for different values of hp.

Network hp
Minimum

fitness value
Best
hub

Number of
generations

Comp.
time (sec.)

Avg. comp. time
generation (sec.)

small 0 96096.88 65 99 64 0.60
0.05 96631.80 65 72 58 0.70
0.1 96054.75 65 113 89 0.74
0.2 96054.71 65 89 99 1.00
0.3 96608.99 65 78 95 1.14
0.6 96030.87 65 132 252 1.86
1 96219.68 65 103 252 2.38

medium 0 256235.15 137 111 880 6.91
0.05 256095.08 133 108 1187 9.46
0.1 256052.90 133 84 886 9.14
0.2 255665.65 133 99 1290 12.09
0.3 255490.13 133 129 1650 12.16
0.6 255463.72 133 129 2871 20.84
1 255859.37 133 104 3672 34.31

5.2.5 Local Search

The local search proportion (lp) is tuned to investigate whether improving the fitness of individ-

uals leads to better results. Among other things, this could be achieved by a better selection of

individuals for crossover. The results for lp ∈ {0, 0.05, 0.1, 0.2, 0.3, 0.6, 1} are presented in Table 8.

Increasing the local search proportion tends to result in longer computation times as the average

computation time per generation increases. This is a consequence of the additional time spent on

this operator. When local search is applied to all offspring, the average computation time per

generation increases by factors of 4.64 and 3.99 for the small and medium network, respectively.

This increase is relatively high since local search relies on the Exact Route Algorithm, while the

crossover operator benefits from applying the heuristic approach.
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When we compare the obtained fitness values with lp = 0, we conclude that including local

search tends to improve the fitness. Specifically, local search on the top 5% of offspring already

improves the GA outcome. However, the differences are small, and there is no guarantee that

increasing lp above 0.05 will further improve the fitness. Remarkably, the same solution is obtained

for the small network in five out of seven GA runs. For the medium network, the lowest fitness is

achieved for lp = 0.05 and lp = 1, with a difference of only 0.01%. These two solutions, however,

correspond to different open hubs.

Table 8: GA results for different values of lp.

Network lp
Minimum

fitness value
Best
hub

Number of
generations

Comp.
time (sec.)

Avg. comp. time
generation (sec.)

Time %
local search

small 0 96054.75 65 83 119 0.74 0%
0.05 95988.70 65 135 126 0.87 12.70%
0.1 95988.70 65 87 85 0.92 21.18%
0.2 96608.99 65 69 95 1.29 34.74%
0.3 95988.70 65 76 119 1.47 44.54%
0.6 95988.70 65 89 233 2.54 63.52%
1 95988.70 65 125 439 3.44 74.03%

medium 0 256052.90 133 84 886 9.14 0%
0.05 255100.46 137 144 1503 9.88 14.84%
0.1 255241.60 133 155 1631 10.00 25.51%
0.2 255499.19 133 103 1401 12.76 39.47%
0.3 255287.28 133 159 2785 16.88 50.02%
0.6 255568.95 133 85 2474 27.65 63.38%
1 255126.59 133 193 7163 36.48 77.51%

The local search proportion is set to 0.05 as it results in the lowest fitness value and increases the

average computation time the least for both networks. Figure 6 provides the average improvement

per generation the local search achieves. The improvement is most significant in the first generation,

reaching around 1.70%. After approximately 20 − 30 generations, it stabilizes around 0.15% for

the small network and 0.45% for the medium network. This stabilization occurs as fewer arcs

remain active, resulting in minimal differences that can be achieved by re-optimizing the routes of

commodities. Alternatively, the local search could be applied only in the first few generations.

Figure 6: Average improvement per generation achieved by local search for lp = 0.05.

(a) small (b) medium

5.3 Results Real-world Instances

Table 9 presents the GA results for all real-world networks using the previously obtained parameter

settings. The stopping criteria have been updated as follows: Gmax = ∞, Smax = 30 and Tmax =
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86.400 seconds. For the small network, the algorithm achieves a fitness of 95988.70 with hub 65

in just over two minutes. The same hub is consistently open in all GA runs during the parameter

tuning phase. In the case of the medium network, the GA achieves a fitness of 255100.46 with hub

137 in just above 25 minutes. As observed earlier, the algorithm struggles to find the best hub,

as at least two hubs have been selected while tuning the parameters. This issue will be further

investigated in the subsequent subsection. Moving on to the large network, the GA requires nearly

five hours to complete, resulting in an individual with a fitness of 523171.78, in which hub 393 is

open.

Figure 7 illustrates the progression of the minimum fitness value for all networks until the final

stagnation phase. A similar pattern is observed, with the most significant reduction occurring in

the first 30− 40% of the computation time.

Figure 7: Evolution of the minimum fitness value until stagnation.

(a) small

(b) medium

(c) large
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Table 9: GA results for real-world networks.

Network
Minimum

fitness value
Best
hub

Number of
generations

Nr. active
arcs

Avg. nr.
hub touches

Comp.
time (sec.)

Avg. comp. time
generation (sec.)

Time %
initialization

Time %
crossover

Time %
local search

small 95988.70 65 135 191 1.015 126 0.87 5.56% 80.16% 12.70%
medium 255100.46 167 114 443 1.387 1503 9.88 4.72% 80.37% 14.84%
large 523171.78 393 134 568 1.492 16930 118.01 5.93% 80.51% 13.53%

Furthermore, Figure 8 displays the average number of hub touches in the solution corresponding

to the best individual across the generations. For all networks, this number initially increases

significantly and then stabilizes. In the case of the small network, it stabilizes below the initial

level. It is suspected that the medium and large network might benefit from allowing more hub

touches, which will be further investigated in the following subsection.

The time percentage spent on initialization, crossover, and local search remains relatively stable

across different networks. As mentioned earlier, the crossover operator speeds up throughout the

algorithm. This can be seen in Figure 10, which depicts the computation time per generation for

the large network. The most significant decrease occurs in the first 20 generations, mainly due to a

significant decrease in active arcs per individual. As a result, more routes are immediately pruned

in the Exact Route Algorithm. This is demonstrated by Figure 9 for the best individual in the large

network.

Figure 8: Evolution of the average number of hub touches in the corresponding solution
of the best individual until stagnation.

Figure 9: Evolution of the number of active
arcs in the best individual for the large

network until stagnation.

Figure 10: Computation time per generation for
the large network until stagnation.
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5.4 Experiments

We carry out four experiments to investigate the performance and stability of the GA. Since this

problem has not been studied before, no alternative algorithms have been developed. Therefore,

we cannot confirm whether the GA finds the optimal location. The two experiments in Sections

5.4.1 and 5.4.2 are designed to demonstrate the performance of the GA. These experiments focus

on whether the GA consistently converges towards one location. When the GA cannot achieve this,

it indicates that the algorithm cannot identify the optimal location. The last two experiments focus

on two instance parameters related to the alternative modeling approach of the economies of scale.

Specifically, in Section 5.4.3, we examine the impact of the maximum number of hub touches on

the algorithm. In Section 5.4.4, we explore whether altering the size of the fixed cost relative to the

variable cost impacts the GA solution.

5.4.1 Randomness

The initialization, crossover, selection, and mutation operators are subject to random factors. To

assess the impact of randomness within the GA, we conduct 20 independent GA runs on each of

the three real-world networks and the four experimental networks. The results obtained from these

runs provide insights into the stability of the GA.

For practical reasons, specific stopping criteria are implemented. In the first generations, the

most significant improvement is observed. Subsequently, this rate of improvement diminishes, even-

tually leading to algorithmic stagnation. As a result, a decision is made to restrict the number

of generations. For small- and medium-sized networks, the rate of improvement becomes marginal

after 50 generations. Therefore, the maximum number of generations (Gmax) is set to 50 for these

instances. For the large network, however, Gmax is set to 65 due to the more significant number

of generations before stagnation. The additional stopping parameters, Smax and Tmax, are left

unbounded. Notably, the deliberate choice of limiting the number of generations, rather than im-

posing a time limit, is made to maintain comparability across results. The aim is to prevent the

total number of generations from influencing the outcome of the GA.

Table 10: Overview of 20 GA runs.

Network
Average
fitness

Median
fitness

Max. deviation
from average (%)

Best hub

across runs1
Avg. comp.

time (sec.)2
Avg. comp. time

generation (sec.)2

small 96322.02 96352.53 0.35% 65 (100%) 46 0.92
m–A 102235.49 102175.1 0.88% 58 (100%) 45 0.75
m–B 78410.49 78436.88 0.19% 81 (100%) 41 0.70
medium 256439.73 256388.95 0.43% 133 (85%) 587 10.20
l–A 222228.62 222221.20 0.13% 137 (95%) 601 10.14
l–B 225750.84 225929.88 1.55% 170 (100%) 760 14.01
large 527573.13 524980.32 1.40% 393 (95%) 10038 135.08
1 Most frequent established hub across the runs, with the percentage of times it is chosen shown in parentheses.

2 Network indicator computed by taking the average of the median runs based on the obtained fitness.

Table 10 presents an overview of the obtained results. The median and average fitness values for

each network are shown. Furthermore, we determine the maximum deviation from the average

fitness across the 20 GA runs. The maximum deviations for five out of seven networks are below

1%. However, the maximum deviation is slightly higher for experimental network l–B and the large

network, at 1.55% and 1.40%, respectively.
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The relatively small deviations indicate that randomness does not play a substantial role in

the fitness obtained by the GA. Therefore, the algorithm demonstrates stability across the runs.

However, since the differences within the parameter tuning process were often below 1%, the results

and conclusions drawn from this analysis may be affected by the randomness to some degree.

Regarding hub selection, the GA consistently opens the same hub for all three small-sized

networks. This consistency suggests that the algorithm is robust for these networks. However,

when considering larger-sized networks, there was some variability in hub selection across the 20

runs. For instance, in the case of the medium network, hub 133 is selected 17 times, hub 137

is chosen twice, and hub 111 is established once. Given the minor maximum deviation of only

0.43% for this network, it suggests that these hubs likely exhibit similar performance. Further

investigation confirms that these hubs are closely located, and the corresponding hub parameter

values are comparable. Similar patterns are observed for the large network and experimental network

l–A, where the selected hubs are in close proximity. We conclude that the GA is less stable when

considering a large set of potential hubs, particularly when they are closely located.

5.4.2 Number of Potential Hubs

In this subsection, we investigate how the number of potential hubs (|Hp|) influences the performance

of GA and whether it affects the hub selection. To observe this, we run the GA on subsets of Hp

with proportions of 0.1, 0.25, and 0.5. These sets are designed to include the top-performing hubs.

We use the 20 independent GA runs described in Section 5.4.1 to create the subsets. For each

run, we rank the potential hubs based on the lowest obtained fitness associated with the hubs. The

ranks are assigned such that the best-performing hub receives rank 1, the second-best hub is given

rank 2, and so forth. Subsequently, the average rank is computed for each potential hub across the

runs. This average rank indicates which hubs exhibit superior performance. For the 0.1 subset, we

select the 10% of hubs with the lowest average ranks. The subsets with proportions 0.25 and 0.5

are constructed similarly.

We execute ten independent GA runs for each (sub)set, applying the same stopping criteria as in

the previous experiment. The results are presented in Table 11 for all real-world and experimental

instances. It is important to note that the population size is kept constant across the different

subsets, using the initial size of Hp.

For each instance, the changes in fitness are minimal when a smaller set of potential hubs is pro-

vided as input to the GA. Although the fitness tends to decrease for four instances, the differences

are deemed insignificant. This conclusion is drawn by comparing the average fitness values with

the range of observations for the baseline scenario in Section 5.4.1. Differences exceeding the cor-

responding maximum deviation outlined in Table 10 are considered significant since they do not

appear to result from randomness. Notably, for the large network and experimental network l–B,

the maximum deviation substantially decreases when considering fewer potential hubs. This obser-

vation indicates that while the size of Hp does not negatively affect the average GA outcome, it

may lower its stability.
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The size of Hp does not appear to affect the hub selection. For all instances, the most frequently

selected hub remains consistent across the subsets with similar frequencies. We conclude that the

outcome of the algorithm is not directly affected by the number of potential locations.

Table 11: Overview of ten GA runs for different subsets Hp.

Network
Proportion
of Hp

Average
fitness

Median
fitness

Max. deviation
from average (%)

Best hub

across runs1
Avg. comp.

time (sec.)2
Avg. comp. time

generation (sec.)2

small 0.1 96426.86 96414.14 0.23% 65 (100%) 35 0.60
0.25 96325.05 96323.41 0.35% 65 (100%) 30 0.54
0.5 96348.69 96325.59 0.32% 65 (100%) 30 0.54
1 96349.77 96417.65 0.27% 65 (100%) 43 0.78

m–A 0.1 102076.12 102039.18 0.14% 58 (100%) 23 0.40
0.25 102192.22 102190.78 0.19% 58 (100%) 34 0.56
0.5 102119.08 102141.13 0.16% 58 (100%) 36 0.62
1 102271.86 102229.00 0.85% 58 (100%) 52 0.88

m–B 0.1 78393.47 78374.96 0.06% 81 (100%) 31 0.54
0.25 78391.76 78374.96 0.06% 81 (100%) 30 0.52
0.5 78409.11 78414.48 0.04% 81 (100%) 32 0.56
1 78419.78 78436.88 0.06% 81 (100%) 41 0.70

medium 0.1 256132.67 256143.42 0.20% 133 (100%) 405 6.80
0.25 255900.76 256247.77 0.99% 133 (90%) 368 6.26
0.5 256115.11 256082.30 0.24% 133 (100%) 423 7.18
1 256477.21 256467.99 0.17% 133 (90%) 709 12.18

l–A 0.1 222262.24 222234.64 0.10% 137 (100%) 248 4.10
0.25 222224.14 222221.20 0.11% 137 (100%) 288 4.80
0.5 222225.00 222215.03 0.09% 137 (100%) 356 6.00
1 222203.01 222220.94 0.07% 137 (100%) 601 10.16

l–B 0.1 222506.65 222539.37 0.19% 170 (100%) 339 5.54
0.25 222512.09 222515.63 0.06% 170 (100%) 401 6.62
0.5 222681.86 222653.16 0.15% 170 (100%) 477 7.94
1 225865.29 225929.88 1.53% 170 (100%) 872 14.74

large 0.1 526098.47 526329.04 0.27% 393 (100%) 4502 59.15
0.25 526677.59 526683.37 0.08% 393 (100%) 5446 72.56
0.5 527672.12 526920.90 1.22% 393 (100%) 6832 91.44
1 526048.87 524216.50 1.65% 393 (100%) 10809 149.48

1 Most frequent established hub across the runs, with the percentage of times it is chosen shown in parentheses.
2 Network indicator computed by taking the average of the median runs based on the obtained fitness.

Including additional potential hubs causes certain computational implications. Specifically, it sub-

stantially increases the average computation time per generation. The most significant increase

is observed for experimental network l–B, where this average increases by a factor of 2.66 when

including all potential hubs instead of the top 10%. Two main factors cause this increase. First, we

observe that having more potential hubs increases the number of active arcs per individual in the

early generations. As a result, the crossover operator slows down. Secondly, the graph representing

the network consists of more nodes and arcs when considering extra potential hubs. Even though

routes including closed potential hubs are considered infeasible, pruning these routes requires com-

putational effort. The underlying programming structure causes this computational inefficiency,

and it presents an opportunity for an acceleration of the algorithm. One approach involves the

creation of individual graphs for each potential hub, reducing the number of routes to consider

within the Exact Route Algorithm.

5.4.3 Maximum Number of Hub Touches

One notable advantage of the algorithm’s design is its flexibility in accommodating more than two

hub touches. As mentioned, the maximum number of hub touches (ζ) is considered an instance

parameter. In this section, we explore whether increasing ζ benefits the networks and how it

influences the algorithm. Specifically, we compare scenarios where this parameter is set to two,

three, and four, using two as the baseline scenario.
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To conduct this experiment, ten independent GA runs are performed on the small and medium

network, as well as the experimental instances. This layout limits the randomness while being

practical in terms of computational resources. Similar to the procedure outlined in Section 5.4.1,

identical stopping criteria are implemented.

Table 12: Overview of ten GA runs for different values of ζ.

Network ζ
Average
fitness

Median
fitness

Max. deviation
from average (%)

Best hub

across runs1
Nr. active

hub arcs2
Nr. active

depot-hub arcs2
Avg. nr.

hub touches2
Comp.

time (sec.)2
Avg. comp. time

generation (sec.)2

small 2 96349.77 96417.65 0.27% 65 (100%) 3 188 1.010 43 0.78
3 96373.51 96356.74 0.40% 65 (100%) 3 188 1.013 51 0.92
4 96273.43 96298.05 0.35% 65 (100%) 3 188 1.015 61 1.08

m–A 2 102271.86 102229.00 0.85% 58 (100%) 2 99 1.446 52 0.88
3 102156.01 102140.39 0.50% 58 (100%) 2 100 1.432 59 0.98
4 102073.56 102148.96 0.34% 58 (100%) 3 99 1.497 59 0.98

m–B 2 78419.78 78436.88 0.06% 81 (100%) 2 94 1.426 41 0.70
3 78407.40 78409.62 0.04% 81 (100%) 2 100 1.432 50 0.84
4 78542.17 78557.89 0.13% 81 (100%) 3 99 1.497 64 1.06

medium 2 256477.21 256467.99 0.17% 133 (90%) 9 415.5 1.383 709 12.18
3 255478.48 255600.42 0.82% 133 (60%) 10 428.5 1.411 1109 19.01
4 255487.17 255580.54 0.36% 137 (60%) 11.5 431.5 1.422 1545 26.33

l–A 2 222203.01 222220.94 0.07% 137 (100%) 6 192 1.434 601 10.16
3 218266.31 218312.72 0.08% 137 (100%) 8 191.5 1.709 922 15.60
4 217407.07 217458.33 0.27% 137 (100%) 9 193 1.859 1241 20.87

l–B 2 225865.29 225929.88 1.53% 170 (100%) 9 221 1.473 872 14.74
3 222358.17 222425.71 0.18% 170 (100%) 7 220.5 1.622 1246 20.09
4 222358.07 222405.97 0.12% 170 (100%) 7 221.5 1.621 1854 30.41

1 Most frequent established hub across the runs, with the percentage of times it is chosen shown in parentheses.
2 Network indicator computed by taking the average of the median runs based on the obtained fitness.

We observe no significant improvement or deterioration in fitness value for small-sized networks

as ζ increases. Again, differences in average fitness exceeding the maximum deviations in Section

5.4.1 are considered significant. This result also holds for the medium network. However, the most

frequently established hub changes for this instance. Specifically, we observed hub 137 being selected

more often than hub 133 when ζ = 4. For test instance l–A, the average fitness improves by 1.80%

and 2.21% for ζ set to three and four, respectively. The improvement for network l–B is 1.58% for

both values. This suggests that these networks benefit significantly from allowing more than two

hub touches. Interestingly, in both cases, the same hub is selected most often for all values of ζ.

The average number of hub touches tends to rise as ζ increases. The maximum number of hub

touches does not exhibit a correlation with the number of active arcs. The effect of increasing ζ on

the number of active arcs between hubs and between hubs and depots relies on the specific network

characteristic.

Table 13: GA results for the large network for different values of ζ.

Network ζ
Minimum

fitness value
Best
hub

Nr. active
hub arcs

Nr. active
depot-hub arcs

Avg. nr.
hub touches

Comp.
time (sec.)

Avg. comp. time
generation (sec.)

large 2 526054.60 393 17 558 1.491 10820 149.48
3 509990.84 393 22 539 1.784 21921 287.43
4 507588.06 393 31 553 1.941 36357 486.62

Finally, we analyze the large network to evaluate the impact of varying the maximum number of

hub touches. A single GA run is executed for this network using Gmax = 65, and the results are

presented in Table 15. We observe a significant improvement when allowing more than two hub

touches. This improvement is 3.15% and 3.64% for ζ equal to three and four, respectively. The

same hub is consistently open regardless of the value of ζ. For this network, a greater number of

arcs between hubs become activated, suggesting consolidation of commodities at these hubs. Again,

the number of active arcs between depots and hubs does not exhibit a clear pattern.
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To conclude, the GA can achieve lower fitness values by allowing more than two hub touches

per commodity when it benefits the network. Additionally, there is no evidence that increasing this

instance parameter may otherwise deteriorate the fitness value significantly. While the improvement

is desirable, it results in a notable increase in computation time. This occurs due to fewer routes

being pruned by the feasibility pruning process in the Exact Route Algorithm. Specifically, for these

instances, the average computation time per generation increases by a factor of at most 3.26 when

ζ is set to four.

5.4.4 Fixed Arc Costs

This section investigates the influence of varying the fixed arc costs relative to the variable arc

costs. This is achieved by adjusting the parameter m, which determines the fraction of the truck

cost designated as fixed cost. Initially, m is set to 0.75, and we extend our analysis by including two

additional values: 0.5 and 1. By doing so, we aim to observe how changes in m affect the outcomes

of the GA. As in the previous experiments, we conduct ten independent runs of the GA for each

value of m, maintaining consistency in the stopping criteria to the previous experiments.

Table 14 summarizes the results for the small and medium-sized instances. The fixed arc costs

are doubled when m is set to 1 compared to m being 0.5. As a result, the average fitness increases

by 14.6−25.9% since these costs significantly impact the fitness function. It is necessary to highlight

that for experimental network l–B, when m is set to 1, the maximum deviation from the average is

notably high at 2.44%.

Table 14: Overview of ten GA runs for different values of m.

Network m
Average
fitness

Median
fitness

Max. deviation
from average (%)

Best hub

across runs1
Nr. active

hub arcs2
Nr. active

depot-hub arcs2
Avg. nr.

hub touches2
Comp.

time (sec.)2
Avg. comp. time

generation (sec.)2

small 0.5 82105.35 82117.00 0.29% 65 (100%) 2.5 188 1.008 48 0.88
0.75 96349.77 96417.65 0.27% 65 (100%) 3 188 1.010 43 0.78
1 110651.59 110560.38 0.48% 65 (100%) 3 188 1.013 45 0.82

m–A 0.5 95274.93 95283.73 0.08% 58 (100%) 2 100 1.422 47 0.80
0.75 102271.86 102229.00 0.85% 58 (100%) 2 99 1.446 52 0.88
1 109218.77 109149.51 0.77% 58 (100%) 2 99 1.453 73 1.26

m–B 0.5 72157.30 72166.06 0.12% 81 (100%) 2 95 1.401 49 0.84
0.75 78419.78 78436.88 0.06% 81 (100%) 2 94 1.426 41 0.70
1 84547.35 84505.96 0.17% 81 (100%) 2 94 1.426 50 0.86

medium 0.5 226655.94 226236.27 0.33% 137 (70%) 11 438 1.370 836 14.58
0.75 256518.85 256536.96 0.16% 133 (90%) 9 415.5 1.383 709 12.18
1 285298.84 285370.20 0.44% 133 (90%) 10.5 416 1.393 821 14.21

l–A 0.5 202923.06 202938.46 0.10% 137 (90%) 6 195 1.430 690 11.72
0.75 222203.01 222220.94 0.07% 137 (100%) 6 192 1.434 601 10.16
1 241178.21 241205.90 0.09% 137 (100%) 6 190 1.450 684 11.61

l–B 0.5 204665.47 204124.42 1.20% 170 (100%) 6 224 1.444 890 14.90
0.75 225865.29 225929.88 1.53% 170 (100%) 9 221 1.473 872 14.74
1 246337.39 248401.72 2.44% 170 (100%) 9 216.5 1.486 749 13.00

1 Most frequent established hub across the runs, with the percentage of times it is chosen shown in parentheses.
2 Network indicator computed by taking the average of the median runs based on the obtained fitness.

Across the various instances, the hub selection remains relatively consistent, except for the

medium-sized network. In the latter, hub 137 becomes the most frequently selected hub when m

is set to 0.5. Interestingly, while the number of active hub arcs does not exhibit a clear correlation

with m, we observe a slight decrease in the number of active arcs between depots and hubs as m

increases. This relation is more pronounced in medium-sized instances. The reduction in active

arcs can be attributed to the fact that, with higher m values, the threshold for activating an arc

increases during initialization, crossover, and mutation. Specifically, the temporary cost of an arc

becomes higher, leading to fewer activations, especially between depots and hubs where there is less

consolidation of commodities.
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Moreover, the average number of hub touches increases slightly as the fixed costs become rel-

atively higher compared to the variable costs. This indicates increased consolidation at hubs. Re-

garding computational efficiency, the average computation time per generation remains relatively

stable across different m values.

Table 15: GA results for the large network for different values of m.

Network m
Minimum

fitness value
Best
hub

Nr. active
hub arcs

Nr. active
depot-hub arcs

Avg. nr.
hub touches

Comp.
time (sec.)

Avg. comp. time
generation (sec.)

large 0.5 477714.20 393 16 567 1.475 11151 150.97
0.75 526054.60 393 17 558 1.491 10820 149.48
1 570501.26 393 19 544 1.513 9464 126.26

We extend our experiment to the large network by executing a single GA run for each m value with

Gmax set to 65. The results, showcased in Table 15, are in agreement with the observed patterns

in smaller instances. Increasing the value of m reduces the number of active arcs between depots

and hubs, accompanied by an increase in the average number of hub touches. Notably, the selected

hub remains consistent across the different m values.

Making an informed decision regarding the relation between fixed and variable arc costs is

important. As demonstrated by this experiment, it impacts which arcs are activated. While hub

selection remains stable across varying m values, this cannot be guaranteed for all linehaul networks

as the robustness relies on network characteristics.

41



6 Conclusion

In this research, we evaluate a limited number of possible hub locations by minimizing the linehaul

costs for FedEx Express. To capture the complexity of the network, it is necessary to use an

alternative approach to model the economies of scale related to the benefits of routing packages

through hubs. We include fixed arc costs to determine whether transportation between two locations

is allowed. We introduce our problem as the Multiple-Product Uncapacitated p-Hub Location and

Arc Problem.

We propose a genetic algorithm to solve the MP-UpHLAP. The genetic information determines

the location of the new hub and between which locations transportation is allowed. Generating an

individual requires solving a routing problem for each commodity. We incorporate both an exact

method and a heuristic approach to speed up the route construction. We fine-tune the GA pa-

rameters on two real-world instances and observe that including this heuristic improves the average

computation time per generation by a factor of 3.22− 3.75.

Given the absence of prior research on this problem, alternative algorithms have yet to be estab-

lished. Consequently, we cannot determine whether the GA can identify the optimal hub location.

To demonstrate the performance of the GA, we conduct two experiments on three real-world in-

stances and four experimental networks. For the largest instance, the GA takes just over three hours

to terminate. We design these experiments to observe whether the algorithm consistently converges

towards one hub location. In cases where the GA cannot accomplish this, it is an indication that

the algorithm fails in finding the optimal location.

The first experiment focuses on the influence of randomness on the outcome of the GA. Across

20 GA runs, the fitness remains relatively constant, displaying a maximum deviation from the

average of 1.59%. Furthermore, the GA consistently selects one location for smaller instances. The

algorithm encounters challenges in converging towards a single location when dealing with a large

network, including closely located hubs. The GA selects neighboring locations, resulting in similar

fitness values. For these instances, the GA fails to find the exact optimal hub location, even though

it identifies an area with high potential.

In the second experiment, we eliminate the worst-performing locations. Considering more loca-

tions can lower the stability of the GA, as randomness tends to have a larger effect on the obtained

fitness. However, it does not affect the fitness on average or the hub selection. There is no evidence

that the GA fails to find the optimal hub as a direct result of including too many locations. Instead,

the challenge arises from the proximity of promising locations, as observed in the first experiment.

Two additional experiments investigate the instance parameters related to the alternative mod-

eling approach of the economies of scale. The third experiment shows that allowing more than

two hub touches can reduce linehaul costs, especially for larger instances. This is achieved by cost-

effective routing to consolidate commodities further. Notably, there is a trade-off since increasing

this maximum comes with a substantial increase in the computation time of the algorithm.
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Finally, the last experiment shows that the relative magnitude of the fixed arc costs compared

to the variable arc costs impacts the GA outcomes. Higher fixed costs lead to fewer arcs where

transportation is permitted, especially between depots and hubs. There is an increase in the con-

solidation of commodities, and the increase in the number of hub touches aligns with this trend.

We conclude that the fixed arc costs shape the design of the network. Therefore, it is crucial to

establish a representative relation between these two cost components, which requires an analysis

of the existing network.

In the context of these two experiments, it is notable that neither the maximum number of

hub touches nor the magnitude of the fixed arc costs influence the established hub for most test

instances. However, since this result relies on network characteristics, it cannot be generalized to all

possible instances. These parameters may affect the chosen location by the algorithm, and FedEx

Express should make an informed decision regarding their values.

6.1 Limitations and Future Research

There are several limitations to consider and recommendations to make for future research. To

begin, one aspect that is not considered is the processing capacities of hubs. Each location may

be subject to a limit on the volume of packages stored and handled per hour. Since we focus

on strategic hub placement, the precise consolidation of packages is undetermined. As a result,

the exact volume at a hub at any moment in time is unknown. However, these capacities likely

influence the optimal location of a new hub. In future research, limiting the total volume processed

through each hub would be possible. To include this constraint, one could focus on incorporating

a penalty term into the fitness function or adjusting the routing algorithms to prevent violations

from occurring.

Furthermore, the test instances contain commodities that must be routed through the network.

FedEx Express estimates the volumes of these commodities, which are subject to stochastic factors.

Future research should focus on incorporating this stochastic component into the GA to obtain a

more robust solution. For instance, we could minimize the expected fitness value by considering

various scenarios.

Shifting our focus to the solution approach, the GA contains two mutation components to pre-

serve genetic diversity. The first component prevents situations where the ability to transport

between two specific locations is lost entirely and cannot be reinstated in future generations. The

second component goes further as it also avoids permanently eliminating potential hub locations.

We observe that the two mutation components have a minimal effect on the outcome of the GA, and

the second component is even deactivated after tuning the parameters. Future research should focus

on alternative mutation methods to enlarge the search space. This could increase the stability of

the GA regarding the hub selection as it may prevent premature convergence towards one location.
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One approach, in particular, may increase the searched solution space. One or multiple restarts

can be incorporated into the algorithm, where the worst-performing locations are deliberately re-

moved from the network, and a new initial population is generated. By eliminating these locations,

the GA can focus on the best-performing hub locations while reconsidering all remaining routes for

each commodity.

Furthermore, we have three remarks regarding the performed analysis. First, we only consider

five test instances, of which two are used in the parameter tuning process. To gain more conclusive

insights, it is necessary to analyze the performance of the GA on more instances. Also, it would be

interesting to compare the GA outcome on networks with strict and relaxed service time conditions.

The following remark is on the design of the parameter selection. When comparing the impact

of randomness on the outcome of the GA with the observed differences in fitness in the parameter

tuning process, we recognize that the selection of parameters is influenced by randomness. This is

a limitation, and we recommend performing multiple GA runs for all parameter settings in future

research for more reliable results. These runs allow us to compare the average fitness and the

maximum deviation from the average. Consequently, the best and most stable parameter values

can be selected. Additionally, we suggest adjusting the stopping criteria for this process by lowering

the time limit or fixing the number of generations for a more objective comparison.

Lastly, as mentioned, the absence of alternative algorithms complicates the evaluation of the

GA. To better understand the algorithm’s performance, it is beneficial to develop an alternative

method. Comparing the GA with an exact method on minor instances would provide information

on whether the GA succeeds in selecting the optimal hub location. For larger instances, an exact

method would allow us to compare the computation times and observe the expected time advantage

of the GA.
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solving the uncapacitated single allocation p-hub median problem. European journal of operational

research, 182(1):15–28.

Kulturel-Konak, S. and Konak, A. (2008). A local search hybrid genetic algorithm approach to the

network design problem with relay stations. Telecommunications modeling, policy, and technology,

pages 311–324.
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Appendix A Complexity MP-UpHLAP

In this appendix, we present formal proof of the complexity of the MP-UpHLAP. To accomplish

this, we start by outlining the problem description of the Uncapaciated r-Allocation Hub Location

Problem (UrAHLP) with fixed hub locations. The formulation we employ is adapted from Campbell

(1994) and Mokhtar et al. (2019), though we have made alterations to ensure consistency in notation.

Appendix A.1 UrAHLP with Fixed Hubs

The problem involves two disjoint sets, D̄ and H̄, representing the depots and hubs, respectively.

Let V̄ = D̄ ∪ H̄ denote the complete set of nodes. The nodes i ∈ V̄ and j ∈ H̄ are connected

bidirectionally such that (i, j), (j, i) ∈ Ā when i ̸= j. Furthermore, we define K̄ as the set of

commodities, with v̄k denoting the volume of commodity k ∈ K̄. Each commodity k ∈ K̄ has

an origin depot ō(k) and a destination depot d̄(k). It is important to note that there are no two

commodities k1, k2 ∈ K̄ such that ō(k1) = ō(k2) and d̄(k1) = d̄(k2).

The transportation of each commodity involves moving it from its origin to its destination via

one or two hubs. Furthermore, each depot must be allocated to r̄ hubs, and a total of |H̄| hubs are
established. Consequently, all hubs h ∈ H̄ are open and subject to a fixed cost f̄h. Additionally, a

variable cost of τ̄i,j is imposed for each unit volume transported via arc (i, j) ∈ Ā. For every h ∈ H̄,

the variable cost τ̄h,h is set to zero. To describe the problem formally, we introduce the following

variables and parameters:

Xk,h1,h2 = Fraction of commodity k transported via hubs h1 and h2, successively.

Zi,h = 1 if depot i is allocated to hub h, and 0 otherwise.

Ck,h1,h2 = τ̄ō(k),h1
+ τ̄h1,h2 + τ̄h2,d̄(k)

The problem is formulated as follows:

Min:
∑
k∈K̄

∑
h1∈H̄

∑
h2∈H̄

v̄k Xk,h1,h2 Ck,h1,h2 +
∑
h∈H̄

f̄h (1)

St:
∑
h1∈H̄

∑
h2∈H̄

Xk,h1,h2 = 1 ∀ k ∈ K̄ (2)

∑
h∈H̄

Zi,h = r̄ ∀ i ∈ D̄ (3)

Xk,h1,h2 ≤ Zd̄(k),h2
∀ k ∈ K̄, ∀h1, h2 ∈ H̄ (4)

Xk,h1,h2 ≤ Zō(k),h1
∀ k ∈ K̄, ∀h1, h2 ∈ H̄ (5)
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Zi,h ∈ {0, 1} ∀ i ∈ D̄, ∀h ∈ H̄ (6)

0 ≤ Xk,h1,h2 ≤ 1 ∀ k ∈ K̄, ∀h1, h2 ∈ H̄ (7)

The objective function 1 aims to minimize the total transportation cost, considering both the

variable costs associated with arcs and the fixed costs of hubs. Constraints 2 assure that every

commodity is transported via one or two hubs. To guarantee that each depot is allocated to exactly

r̄ hubs, Constraints 3, 4, and 5 are imposed. Constraints 6 restrict the variables Zi,h to either zero

or one. While the variables Xk,h1,h2 should be binaries, we allow them to take any value between

zero and one through Constraints 7, as there always exists an optimal solution where the variables

become binaries (Campbell, 1994).

Appendix A.2 Prove NP-hardness

The UrApHLP with fixed hubs has been proven to be NP-hard by Mokhtar et al. (2019) for

2 ≤ r̄ ≤ |H̄| and |H̄| ≥ 3. We aim to demonstrate that when r̄ = |H̄|, the UrApHLP becomes

a specific case of the MP-UpHLAP. We can construct an instance of the MP-UpHLAP from an

instance of the original problem in polynomial time using the following steps:

1. Create a new graph G = (V,A) by setting V = V̄ , D = D̄, H = H̄, A = Ā, and K = K̄.

2. Fix all hub locations by selecting a hub h ∈ H such that Hp = {h} and He = H \Hp.

3. Each commodity k ∈ K has the same origin and destination as the corresponding commodity

k ∈ K̄, i.e., o(k) = ō(k) and d(k) = d̄(k).

4. Consider a single product type, i.e., |P | = 1 and p(k) ∈ P for all k ∈ K.

5. Set the volume of each commodity k ∈ K equal to the volume of the corresponding commodity

k ∈ K̄, i.e., vk = v̄k.

6. Eliminate the time restrictions by setting ti,j = 0 for all (i, j) ∈ A, pv = 0 for all v ∈ V ,

and sk = ∞ for all k ∈ K.

7. Allow up to two hub touches by setting ζ = 2.

8. Enable all commodities to be routed through all hubs, i.e., bph = 1 for all h ∈ H and p ∈ P .

9. Set the fixed hub cost of each h ∈ H equal to the fixed hub cost of the corresponding hub

h ∈ H̄, i.e., fh = f̄h.

10. Eliminate the variable node costs by setting κpv = 0 for all v ∈ V and p ∈ P .

11. Consider no fixed arc costs by setting δi,j = 0 for all (i, j) ∈ A.
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12. Set the variable arc cost of each arc (i, j) ∈ A equal to the variable cost of the corresponding

arc (i, j) ∈ Ā, i.e., τi,j = τ̄i,j .

By transforming the original problem into the MP-UpHLAP using these steps, we can establish

an equivalence between the problems. Every solution to the original problem with r̄ = |H̄| can be

used to construct a solution to the MP-UpHLAP, and vice versa. Specifically, due to the ability

to connect each depot to every hub, the commodities can be routed identically in both problems,

resulting in the same objective. Therefore, since the UrAHLP with r̄ = |H̄| and |H̄| ≥ 3 is known

to be NP-hard, it follows that the MP-UpHLAP with |H| ≥ 3 is also NP-hard.
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