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Abstract

This study proposes two novel models to capture typical energy commodity price characteristics.

Both models combine GJR-GARCH volatilities with regular vine copulas to jointly model the

corresponding standardized residuals. The MS-GJR-MS-vine model incorporates Markov switching

in both the GJR-GARCH volatilities and vine copula, while the GJR-MS-vine model only makes

the standardized residuals regime-switching. I employ these models in forecasting, modelling

extreme risks and incorporate them in a multiproduct hedging framework, using daily oil, gas,

coal and power prices from January 1, 2015, until June 30, 2023. The MS-GJR-MS-vine model

excels in forecasting, while the GJR-MS-vine model effectively captures extreme risks and provides

valuable multiproduct hedge strategies that allow an energy consumer to achieve up to 7% extreme

risk reduction.
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Chapter 1

Introduction

Since the start of the covid-19 pandemic in early 2020, energy commodity prices in Europe have

experienced large fluctuations. The implementation of lockdown measures by several European

governments brought the economy to a halt, resulting in a significant reduction in energy demand.

For example, oil and gas prices fell by, respectively, 75% and 44% in the period from February to

April 2020 (Kuik et al., 2022). At the end of 2020, most energy commodity prices had already

reached their pre-pandemic levels. Initially, this rise in energy commodity prices could be attributed

to the relaxation of the lockdown measures following the first wave of the covid-19 pandemic,

leading to the recovery of economic activity and a subsequent rise in energy demand. In this

period, the demand for energy commodities experienced a rebound, as countries tried to recover

from the first covid-19 wave. This increase in demand coupled with supply disruptions across

various energy sources, contributed to a rally in energy commodities, which in turn amplified the

rise in energy commodity prices. This rally in energy commodities was aggravated by the start of

the Russo-Ukrainian war on February 24, 2022. Since Russia invaded Ukraine, a lot of political

and economic sanctions have been imposed on Russia by, for example, the European Union (EU)

and the United States (US) (Ahmed & Hasan, 2022). Russia reacted by setting higher prices

and reducing the traded amount of its main export products like wheat, oil and gas (Sokhanvar

& Bouri, 2022). Since 27% of crude oil and 41% of natural gas imported by the EU came from

Russia, the restrictions caused more price shocks in these products (Eurostat, 2022; Sokhanvar &

Bouri, 2022). Due to spillover effects, the restrictions also led to global price shocks in a lot of other

commodities (Yagi & Managi, 2023). For example, coal prices experienced an increase of nearly

150% (Nerlinger & Utz, 2022). Such price shocks may have a substantial impact on the economy,

as Stern (2000) emphasizes the crucial role of energy as a Gross Domestic Product (GDP) growth

factor. He proves the cointegration relationship between energy and GDP and in later studies Stern

(2011) finds that, when capital and labor are included in his vector autoregressive model (VAR),

energy use also Granger causes GDP. Consequently, not only has the energy market become more

risky since the covid-19 pandemic and Russo-Ukrainian war, but as a result of the large fluctuations

in energy commodity prices the economies and financial performance of European countries, as

well as other continents, can be negatively influenced (Ghorbel & Trabelsi, 2014). Therefore,

modelling, forecasting and managing the upside risks that volatile energy commodity prices bring
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along, has become a critical issue for governments, regulators and companies in anticipating high

energy prices and economically bad times.

When modelling energy commodity prices, one has to take their typical characteristics into

account. Energy prices are characterized by a number of features that make them distinct from

other types of financial data. For example, energy prices are often highly correlated, exhibit high

volatility and are subject to seasonality (Suenaga & Smith, 2011). Basetti et al. (2018) tries to

capture these characteristics with a combination of an Autoregressive Generalized Autoregress-

ive Conditional Heteroskedasticity (AR-GARCH) type model and a regular vine (R-vine) copula.

GARCH is a commonly used starting point to describe the volatility, as it is able to capture most

of the nonlinear dynamics and volatility clustering often present in financial return data (Yang &

Brorsen, 1992; Jacobsen & Dannenburg, 2003; Tseng & Li, 2012). An R-vine copula is a tree-like

copula that captures the dependence structure between variables. Besides the peculiar advant-

ages copulas already possess, vine copulas allow for a multivariate and very flexible dependence

structure. However, in their analysis Basetti et al. (2018) observe that the dependence structure

between the different energy prices can differ significantly from year to year due to the nature of

the data. As their model does not incorporate regime changes, they limit their analysis to one

year at a time.

In this paper, I model energy commodity prices in a time-varying manner. Thereby, I extend

Basetti et al. (2018) by building a regime-switching combination of GARCH and R-vine copulas.

To that end, I analyze the performance along three dimensions. First, I assess the gain in perform-

ance in forecasting energy prices. Thereafter, I investigate the ability of the model in modelling

the extreme risks associated to energy prices. And, lastly, I study the improvements in hedging

the energy commodities mutually. For assesing the performance of the model in forecasting and

hedging energy commodities I employ crude oil, natural gas, coal and electricity from Europe. The

energy commodity prices are daily-sampled over the period January 1, 2015, until June 30, 2023.

To capture the typical characteristics energy commodity prices possess, I utilize two models.

Firstly, I employ a regime-switching combination of Glosten-Jagannathan-Runkle (GJR-)GARCH

(Glosten et al., 1993) and an R-vine copula, denoted as MS-GJR-MS-vine. Secondly, from the

MS-GJR-MS-vine model I derive a combination of GJR-GARCH and a regime-switching R-vine

copula, denoted as, GJR-MS-vine. Unlike GARCH, the GJR-GARCH model captures the asym-

metric leverage volatility effect often found in financial return data producing superior fits in

return volatilities (Nugroho et al., 2019). The leverage effect refers to the negative relationship

between returns and volatility. According to Charles & Darné (2019), the GJR-GARCH model

has similar out-of-sample forecasting accuracy as alternative, asymmetric GARCH models, such

as threshold GARCH, exponential GARCH and APARCH. Furthermore, I exploit R-vine copulas
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for modelling the dependence structures between the energy prices. R-vine copulas have several

attractive features. First of all, R-vine copulas are multivariate copulas, enabling the modelling

of multiple energy commodities. Besides, unlike the multivariate Gaussian and Student-t copu-

las, R-vine copulas can capture the asymmetric dependence structures present in energy markets

(Cholette et al., 2009; Lahiani, 2017). And, more importantly, R-vine copulas are not constrained

by the requirement that the dependence structures between each pair of variables must have the

same copula function, as it is a multivariate copula formed by combining standard bivarite copulas

and marginal distribution functions in a cascade manner with each bivariate copula representing

the dependence structure of a specific pair of variables. This specific construction scheme assures

a very flexible dependence structure providing an optimal basis for correctly modelling the differ-

ent dependence structures between energy prices. These combinations of GJR-GARCH and an

R-vine copula (GJR-vine) capture the high volatility and correlation between the energy prices.

I make the combinations regime dependent by means of Markov switching (MS) to include the

regime switches found by Basetti et al. (2018) in the model. Hamilton’s (1988, 1989) MS models

can capture regime shifts in economic time series by allowing the combinations to be influenced

by a finite number of discrete states. The resulting models are abbreviated as GJR-MS-vine and

MS-GJR-MS-vine.

With the GJR-MS-vine and MS-GJR-MS-vine models, I combine the papers of Basetti et al.

(2018) and Lee & Lee (2022). Basetti et al. (2018) who use a GARCH-vine model to describe the

volatility in one-year forward energy contracts, while Lee & Lee (2022) use a MS real-time GARCH

Clayton-Gumbel copula model (MS-RT-MS-CG) to hedge S&P500 indices with oil futures. Real-

time GARCH (RT-GARCH), introduced by Smetanina (2017), is a new kind of GARCH model that

incorporates a mixture of past and current information in estimating the volatility. Unfortunately,

as current information is not yet available in the previous period, RT-GARCH is infeasible in

forecasting. Besides, Lee & Lee (2022) model the dependence structure between the S&P500

indices and the oil futures by means of a combined Clayton-Gumbel copula. This Clayton-Gumbel

copula combination has the benefit of modelling both upper and lower tail dependence, but it

has the disadvantage that it is only suitable in the bivariate case. Summarizing, I improve the

GARCH-vine model of Basetti et al. (2018) by substituting the GARCH volatility model for a

GJR-GARCH model and making the model regime-switching as in Lee & Lee (2022). In estimating,

I extend the stepwise expectation-maximization (EM) algorithm introduced by Stöber & Czado

(2014) with the log-likelihood evaluation technique for vine copulas proposed by Aas et al. (2009)

and incorporate the optimization of the GJR-GARCH volatilities within the algorithm.

As a first application of the GJR-MS-vine and MS-GJR-MS-vine models, I make one-day-

ahead forecasts of the energy commodity prices and check the gain in performance compared to
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their benchmark models. I set a one-regime combination of GJR-GARCH and vine copula (GJR-

vine) proposed by Aloui & Aı̈ssa (2016), a Markov-switching GJR-GARCH (MS-GJR) introduced

by Cholette et al. (2019) and a regime-switching vine copula (MS-vine) implemented by Zheng

(2015) as benchmarks and utilize the forecast bias (FB), mean absolute error (MAE) and the

mean squared prediction error (MSPE) as performance indicators. Subsequently, employing the

GJR-MS-vine and MS-GJR-MS-vine models, I study how to hedge the price risks in energy prices.

Literature in the field of energy commodity hedging has primarly been concentrated on obtaining

minimum-variance or mean-variance hedge ratios (Hung et al., 2011; Ahmad et al., 2018; Wang et

al., 2019). Because I am solely concerned with the upside risks of the energy commodities and the

energy returns show asymmetric and non-normal behaviour, the variance is an improper measure

of risk (Harris & Shen, 2006). Instead, I follow Suckharoen & Leatham (2017) who propose a

multiproduct futures hedging model that minimizes the value-at-risk (VaR) and expected shortfall

(ES). I extend this multiproduct futures hedging model to hedge the energy commodities with

each other, instead of using futures, and it takes four energy variables as input. Before employing

the multiproduct hedging model, I perform an in-sample analysis on whether the GJR-MS-vine

and MS-GJR-MS-vine models correctly model the VaR and ES of the energy commodity pairs.

After, I obtain the minimum-VaR and ES hedge ratios using simulated return distributions from

the models and employ these out-of-sample.

This research further contributes to the existing literature by the novel GJR-MS-vine and

MS-GJR-MS-vine models and the corresponding estimation method: the stepwise EM-algorithm..

The models distinguish themself from previous research that only worked with a regime-switching

R-vine copula (Zheng, 2015; Fink et al, 2017) or a regime-switching GJR-GARCH model with

or without an uncoupled R-vine copula (Aloui & Aı̈ssa, 2016; Cholette et al., 2019; Mwamba

& Mwambi, 2021). Secondly, as an additional contribution to literature I enhance the stepwise

EM-algorithm proposed by Stöber & Czado (2014) by incorporating GJR-GARCH volatilities and

integrating the log-likelihood evaluation technique developed by Aas et al. (2009).

The novel MS-GJR-MS-vine model shows superior forecasting performance compared to the

GJR-MS-vine model and their benchmark models for most energy commodities. However, when

modelling the VaR and ES for pairs of energy commodities, the MS-GJR-MS-vine is inaccurate.

However, the GJR-MS-vine model and the GJR-vine benchmark model, which perform poorly

in forecasting, do effectively capture these risks, making them useful for multiproduct hedging of

energy commodity pairs. By employing these two models in combination with minimum-VaR and

ES hedging, hedge strategies are developed that lead to up to a 7% reduction in the VaR or ES.

The remainder of this paper is structured as follows. I briefly discuss the literature related

to the modelling and forecasting of energy prices in Section 2. Section 3 describes the data for
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the empirical research. Section 4 presents the theory behind the GJR-MS-vine and MS-GJR-

MS-vine models, their estimation processes and how they are integrated with the multiproduct

hedging model. The results are then presented in Section 5. Lastly, Section 6 concludes, discusses

limitations and suggests potential areas for further research.

Chapter 2

Literature

A lot of research has been done on modelling and forecasting energy commodity prices and over

the years various models have been proposed to capture their volatility dynamics. Since Bollerslev

(1986) introduced the GARCH model, this has been the basis of a lot of financial researches in

modelling volatility, because it is easily estimated and yields good results, while capturing nonlin-

ear dynamics and volatility clustering. Cheong (2009) takes advantage of these properties when

modelling crude oil markets using GARCH, Fractionally Integrated (FI) GARCH, Asymmetric

Power (AP) ARCH and FIAPGARCH (Ding et al., 1993; Baillie et al., 1996; Tse, 1998) and he

examines their out-of-sample forecasting performance. He finds that the long-persistence volatility

in crude oil is best captured by APARCH. On the other hand, Marimoutou et al. (2009) compare

the performance of GARCH to extreme value theory (EVT) models in measuring the Value-at-

Risk (VaR) in oil markets. VaR is a widely used risk measure that evaluates the risk exposure at

a specific probability level and brings it down to only one number (Linsmeier & Pearson, 2000),

and EVT explicitly models the tails of the return distribution. EVT and VaR may proof useful

in, respectively, modelling price spikes and quantifying the corresponding risks in the oil market.

Marimoutou et al. (2009) find that a GARCH model with Student-t distributed residuals measures

the VaR equally good. Chan & Gray (2006) combine Exponential GARCH (EGARCH) with EVT

in determining the VaR for daily electricity prices and they find that their proposed EGARCH-

EVT method provides the most precise VaR forecasts. Since EVT focuses on the tails of the

return distribution, it is useful in estimating extreme risk measures, but not in estimating a whole

distribution or in forecasting. Hence, Cifter (2013) takes on a different approach and combines MS

with GARCH to forecast price volatility in the Nordic electricity market. He distinguishes between
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a high and low volatility state and has two main conclusions. First, he observes that electricity

prices are strongly regime-dependent and, second, his MS-GARCH model outperforms the normal

GARCH and GJR-GARCH in terms of forecasting.

While these univariate GARCH models can effectively model the volatility dynamics of indi-

vidual energy prices, they do not provide insight into the relationship among energy commodities.

Wang & Wu (2012) fill this gap in the literature by exploring the effectiveness of univariate and

multivariate GARCH-class models in forecasting West Texas Intermediate (WTI) crude oil, con-

ventional gasoline, heating oil and jet fuel. They find that the multivariate GARCH models are

superior in forecasting energy price volatility, as they also capture the comovements in the energy

prices.

However, Grégoire et al. (2008) point out that multivariate GARCH models may not accur-

ately capture the nonlinear relationships that exist between energy prices. They propose a more

flexible, bivariate approach, which encompasses forecasting crude oil and natural gas prices using

a combination of GARCH models and copulas. Copulas are more flexible compared to multivari-

ate GARCH, as they allow for the modelling of any marginal distribution without imposing any

restrictions on the joint distribution.

Although there exists a wide range of bivariate copulas, such as the normal, Gumbel and

Clayton copulas (Gumbel, 1960; Clayton, 1978), not a lot of higher-dimensional copulas exist.

For higher-dimensional copulas one has to resort to elliptical copulas, such as the Gaussian and

Student-t copula, which both fail to capture the asymmetric dependence structures present in

energy markets (Lahiani, 2017), or to multivariate, non-elliptical construction schemes. Fisher et

al. (2009) assess in an empirical analysis the performances of four multivariate non-elliptical copula

classes (Koehler-Symanowski by Koehler & Symanowski (1995), Archimedean by Nelsen (2006),

multiplicative Liebscher by Liebscher (2006) and pair-copula decomposition) and they compare

these to the multivariate Student-t benchmark copula. They find that R-vine copulas (Bedford

& Cooke, 2001; Bedford & Cooke, 2002) from the pair-copula decomposition class have the best

fit in modelling German bonds, exchange rates and metal commodity futures. This finding is

explained by the typical feature that R-vine copulas are not constrained by the requirement that

the dependence structures between each pair of variables must have the same copula function, in

contrast to most multivariate, non-elliptical copulas. Aloui & Aı̈ssa (2016) apply a regular vine

copula in combination with GARCH to investigate the relationship between energy, stock and

currency markets and compute the joint VaR. Besides a significant, time-varying and symmetric

relationship between these three markets, they find evidence that suggests the application of a vine

copula model enhances the accuracy of the VaR estimates compared to conventional approaches.

However, not only in the energy market have regular vines, either made regime-dependent through
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Markov switching or not, been applied successfully, but also on other kinds of financial data, like

exchange rates, volatility indices and equity indices for continents (Cholette et al., 2009; Stöber &

Czado, 2014; Fink et al., 2017).

Chapter 3

Data

To examine the influence of R-vine copulas in modelling, forecasting and hedging European energy

commodities, I obtain the daily spot prices for oil, gas, coal and power from the Eikon databases

provided by the Erasmus University Rotterdam. The sample period ranges from January 1, 2015,

until June 30, 2023 (2217 observations). As a proxy for the European oil prices, Brent Crude

oil is employed. Brent Crude oil is considered an European oil benchmark as it is gained from

the North Sea and distributed not only across Europe, but also across the rest of the world. US

dollars (USD) are involved in purchasing Brent Crude oil on the Intercontinental Exchange (ICE).

The gas prices are obtained from the Dutch Title Transfer Facility (TTF) market. Here only

futures prices are traded, so as a proxy for the spot price I use the one day ahead futures prices in

Great Britain Pounds (GBP) for the purchase of 1 megawatt hour (MWh) gas. Furthermore, spot

prices on coal are also obtained from the ICE, where coal with destination Rotterdam, Amsterdam

and Antwerpen is traded as well. Here prices are in USD per metric tonne. Lastly, for power I

utilize the Physical Electricity Index (Phelix) baseload spot prices in euro (EUR) per Megawatt

hour obtained from the European Power Exchange (EPX) where power is traded for the Great

Britain market area. Baseload power refers to the minimum amount of electric power needed to

be supplied to the electrical grid at any given time. The four aforementioned energy commodities

are displayed in Figure 3.1 and the corresponding descriptive statistics are listed in Tables A.1 and

A.2 and Figure A.1 in Appendix A. Appendix A further emphasizes the typical characteristics

of energy commodity prices. Here it is demonstrated that the four energy commodities are very

volatile, highly correlated and they are prone to seasonality in the period from January 1, 2015,

until June 30, 2023.
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Figure 3.1: Daily energy commodity spot prices of Brent crude oil, gas, coal and baseload power over the
period 1 January 2015 until 30 June 2023.

In Figure 3.1 a couple of observations stand out. First of all, around March 1 2018 a high

peak in electricity and gas prices is observed. This peak is explained by the freezing cold in West-

Europe, falling out of Norwegian production and because only 20% of the gas storages was filled

(Kotek et al., 2018). So a shortage of gas occured, while more gas was demanded. This drove

gas prices up. The increasing gas prices caused the electricity prices to rise as well (Kotek et

al., 2018). Furthermore, Figure 3.1 shows that all energy commodity prices dropped substantially

since the start of the pandemic in February 2020. After relaxing the lockdown measures of the

first covid-19 wave most energy commodity prices already reached their pre-pandemic levels at

the end of 2020. This rise in energy commodity prices carried on in 2021, due to the start of

the Russo-Ukrainian war, the import and export restrictions imposed on Russia and other supply

disruptions. Moreover, the first half of 2023 is a more stable period, compared to the two years

before. However, the price level still remains relatively high when comparing it to the period 2015

until 2021.

To be consistent across the energy commodities and to assign a clear economic interpretation

to the purpose of the models and the forthcoming results, I convert the energy commodities to the

same currency and unit of measurement. Therefore, gas and coal prices are converted from USD

and GBP to EUR using the US/EUR and GBP/EUR exchange rates in the period from January

1, 2015, until June 30, 2023. Additionally, I adjust all energy commodity prices to represent 1

MWh of energy. For instance, I convert Brent Crude oil, traded in barrels, to represent 1.6282

MWh of energy, while I adjust a metric tonne of coal to reflect 8.141 MWh of energy (Dahiya,

2020). After this conversion, I set the energy prices such that they represent 1 MWh of energy.

Table 3.1 presents the descriptive statistics of the absolute returns in EUR for holding 1 MWh of
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energy, which are calculated as

ri,t = Pi,t − Pi,t−1, (3.1)

where ri,t is the absolute return of energy commodity i at time t and Pi,t is the spot price of energy

commodity i at time t. Table 3.1 shows the descriptive statistics of the returns for the four energy

commodities.

Table 3.1: Descriptive statistics of the simple returns in percentages of energy commodity spot prices over the
period January 1, 2015, until June 30, 2023.

Sample size Mean St. Dev. Min. Max. Skewness Kurtosis
Oil 2216 0.004 0.832 -8.094 4.342 -0.753 9.277
Gas 2216 0.007 5.253 -60.250 52.050 -0.377 44.372
Coal 2216 0.005 0.289 -3.671 5.536 2.899 97.197
Power 2216 0.020 35.297 -761.482 624.657 -1.186 164.710

A few things should be noted from Table 3.1. Firstly, the energy returns exhibit small means

and relatively high standard deviations. Particularly, the gas and power returns are extremely

volatile. These two energy commodities exhibit exceptionally low minima and high maxima, ex-

plained by the fact that of the energy prices, especially the gas and power prices skyrocketed since

the start of the energy crisis. Consequently, this is a first indication of non-normal data, which

is further substantiated by the non-normal skewnesses and kurtoses. Performing a Jarque-Bera

test proves that the hypothesis of normality is rejected with a probability of 1 for all variables.

Moreover, there are low, yet positive correlations among the energy returns, displayed in Table

3.2, paving the way for the MS-GJR-MS-vine model.

Table 3.2: Correlations between the energy commodity price returns over the period January 1, 2015, until
June 30, 2023.

Oil Gas Coal Power
Oil 1.000 0.129 0.222 0.028
Gas 0.129 1.000 0.391 0.129
Coal 0.222 0.391 1.000 0.061
Power 0.028 0.129 0.061 1.000

Chapter 4

Methodology

The methodology consists of four subsections. First of all, Section 4.1 provides an explanation of

the MS-GJR-MS-vine model in its entirety, including its estimation process and the derivation of
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the GJR-MS-vine. Next, Section 4.2 describes how to employ the GJR-MS-vine and MS-GJR-

MS-vine models in forecasting. Section 4.3 combines the models with a multiproduct hedging

model and, lastly, Section 4.4 clarifies the benchmark models against which the performances of

the GJR-MS-vine and MS-GJR-MS-vine model are evaluated.

4.1 Markov switching GJR-GARCH R-vine copula model

This section explains the setup and estimation of the novel Markov-switching GJR-GARCH & R-

vine copula (MS-GJR-MS-vine) model. The model employs state-dependent GJR-GARCH volat-

ility dynamics to model the univariate margins of the energy spot returns and state-dependent

R-vine copula functions are used to capture the dependence structures between the corresponding

standardized residuals.

Starting with the univariate margins of the energy spot returns, I follow the energy return

forumulation by Laporta et al. (2018). Let ri,t be the energy price return for energy commodity i

at time t and be defined as

ri,t = µi,St + ϵi,t

= µi,St + σi,St,tzi,t

(4.1)

with state-dependent mean µi,St and time-dependent residuals ϵi,t. The residuals can be decom-

posed in the volatility σi,St,t and standardized residuals zi,t ∼ i.i.d.(0, 1), since they are defined as

ϵi,t ∼ N(0, σ2
i,St,t). The volatilities σi,St,t follow a state-dependent GJR-GARCH volatility process

(Glosten et al., 1993)

σ2
i,St,t = α0,i,St +

p∑
j=1

(αj,i,St + γj,i,St1[ri,t−j < 0])r2
i,t−j +

q∑
k=1

βk,i,Stσ
2
i,t−1. (4.2)

By combining Equations 4.1 and 4.2, the marginal pdf of return ri,t, conditional on the state St

and information set It−1, becomes

f(ri,t|St, Ψi
GJR,St

) = µi,St + σi,St,tf(zi,t), (4.3)

where Ψi
GJR represents the parameter set for return i calculated through GJR-GARCH volatilities

Following Lee & Lee (2022) and Fink et al. (2017), I assume the energy prices to be in either a

high or a low volatility regime. In other words, I assume the latent state variable St to follow a
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first-order, two-state Markov chain with transition probability matrix

P =

 P [St = 1|St = 1] P [St = 2|St = 1]

P [St = 1|St = 2] P [St = 2|St = 2]

 =

 p11 1− p11

1− p22 p22

 , (4.4)

with unconditional state probability, P [St = k|ΨΨΨMS ], and conditional state probability, P [St =

k|It−1,ΨΨΨ], for k ∈ {1, 2}. Moreover, ΨΨΨ = {ΨΨΨGV ,ΨΨΨMS} represents the complete parameter set of

the MS-GJR-MS-vine model, with ΨΨΨMS specifically denoting the subset of parameters required

for the Markov chain. For both the unconditional and conditional state probabilities the sum over

the two regimes at time t adds up to 1. With the conditional state probabilities and the law of

conditional probability, I define the unconditional marginal pdf of the return ri,t as

f(ri,t|ΨΨΨi) =
2∑

k=1
f(ri,t, St = k|ΨΨΨi)

=
2∑

k=1
f(ri,t|St = k, Ψi

GJR,k)× P [St = k|ΨΨΨMS ]

=
2∑

k=1
(µi,k + σi,k,tf(zi,t))× P [St = k|ΨΨΨMS ],

(4.5)

with ΨΨΨi = {Ψi
GJR,ΨΨΨMS}

In addition to the regime-weighted univariate margins of the energy commodity prices, the

MS-GJR-MS-vine model further consists of a state-dependent R-vine copula in order to capture

the dependence structure between the energy returns through the standardized residuals. This

innovative combination distinguishes the MS-GJR-MS-vine model from the existing literature.

The standardized residuals zi,t are transformed to uniform variables using the corresponding CDF

to make them suitable as input for the R-vine copula: ui,t = F (zi,t), ui,t ∈ [0, 1]. Besides,

consider a state-dependent R-vine copula (V, C,ΨΨΨvine)St , where V is the respective tree structure

and C is the set of corresponding bivariate copulas with the parameters stored in the vector

ΨΨΨvine = {Ψ1
vine, . . . , Ψn

vine}. Hence, the 4-dimensional pdf of the standardized residuals of the

energy returns can be represented as a state-dependent R-vine copula c(.|(V, C,ΨΨΨvine)St) (Stöber

& Czado, 2014)

f(z1,t, . . . , zn,t|ΨΨΨvine,St) = c(u1,t, . . . , un,t|(V, C,ΨΨΨvine)St). (4.6)

Combining the unconditional marginal pdf’s of the returns ri,t, i ∈ {1, ..., n}, from Equation 4.5

with the 4-dimensional pdf of the standardized residuals of the energy returns from Equation 4.6

and assuming that the returns are only correlated through the standardized residuals, such that

the covariances between the returns are all equal to zero, I propose the n-dimensional pdf of the

13



returns in the MS-GJR-MS-vine model

f (rt|ΨΨΨ) =
2∑

k=1
f(rt, St = k|ΨΨΨ)

=
2∑

k=1
f(rt|St = k,ΨΨΨGV,k)× P [St = k|ΨΨΨMS ]

=
2∑

k=1

[
µµµk + Diag (σσσk,t)× c

(
uuut|St = k, (V, C,ΨΨΨvine)k

)]
×P [St = k|ΨΨΨMS ],

(4.7)

with ΨΨΨ = (ΨΨΨGV ,ΨΨΨMS) the complete parameter set, which is composed of two subsets: ΨΨΨGV =

(ΨΨΨGV,1,ΨΨΨGV,2) represents the parameters from the GJR-GARCH volatilities combined with the

vine copula (GJR-vine) for each state St ∈ {1, 2}, and ΨΨΨMS represents the parameters specific to

the Markov chain. The complete pdf of the MS-GJR-MS-vine model is thus specified in terms

of regime-dependent means µµµk, GJR-GARCH volatilities σσσk, standardized residuals interconnec-

ted through a regime-dependent R-vine copula denoted as c(.|(V, C,ΨΨΨvine)St), and unconditional

probabilities of being in state k at time t.

4.1.1 Determination of best-fitting R-vine copula

Since multiple vine copulas exists, I make a distinction between two populair R-vine copulas,

namely the canonical and the drawable vine copulas (respectively, C- and D-vine). The difference

between the C- and D-vine is in the construction of their respective tree structure V. In a C-

vine, the pair-copulas are arranged in a specific canonical order, often based on Kendall’s tau

rank correlation matrix, such that in each tree of the C-vine structure there exists one node that

is connected to all other nodes. On the other hand, in each tree of a D-vine, every node has a

maximum of two edges. For illustration purposes, the derivations of 4-dimensional, conditional

probability density functions for both the C- and the D-vine structures are provided in Appendix

B. Additionally, in Appendix C the corresponding 4-dimensional structures are depicted and the

distinction between the C- and D-vine becomes even more clear.

I follow the procedure of Sukcharoen & Leatham (2017) in identifying a suitable joint distri-

bution function for the data using the C- and D-vine copula. This process can be summarized in

two steps.

1. First, I select an order for the variables in the C- and D-vine copula structures. In the

C-vine copula structure, the variable with the highest degree of association (DoA) with all

other variables is selected as the first variable. Subsequently, the variable with the highest

DoA with the remaining variables is selected, and so on. The DoA for each variable i is

measured by summing the absolute values of the pairwise Kendall’s tau coefficients: DoAi
τ =
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∑n
j=1,i ̸=j |τi,j |. For the D-vine copula structure, the variables are ordered such that the sum

of the absolute values of the pairwise Kendall’s tau coefficients is maximized: DoAτ =∑n−1
i=1 |τi,i+1|.

2. To determine the bivariate copula for each pair-copula, I employ criteria such as the log-

likelihood, Akaike Information Criteration (AIC) and Bayesian Information Criterion (BIC).

These criteria assist in selecting the most appropriate bivariate copula based on the goodness-

of-fit measures and the complexity of the model.

In determining the vine structures, I make a distinction between the high and low volatility state.

Consequently, I expect the vine copulas to be different between the two states St ∈ {1, 2} in terms

of the structure VSt , the set of bivariate copulas CSt and the corresponding parameters ΨΨΨvine,St .

4.1.2 Estimation

In estimating the MS-GJR-MS-vine model, I follow Stöber & Czado (2014) and first derive the

full likelihood of a time series of energy return observations r̃T = (r1, . . . , rT )

f(r̃T |ΨΨΨ) = f(r1|ΨΨΨ) ·
T∏

t=2
f(rt |̃rt−1,ΨΨΨ)

=
[ 2∑

k=1
f(r1|S1 = k,ΨΨΨGV,k)P [S1 = k|ΨΨΨMS ]

]
·

T∏
t=2

[ 2∑
k=1

f(rt|St = k,ΨΨΨGV,k) · P [St = k|̃rt−1,ΨΨΨ]
]

,

(4.8)

and the full likelihood of the joint distribution of energy returns r̃T and states S̃T = (S1, . . . , ST )

f(r̃T , S̃T |ΨΨΨ) =
T∏

t=1

[ 2∑
k=1

(f(rt|St = k,ΨΨΨGV,k) · P [St = k|ΨΨΨMS ])I[St=k]

]
. (4.9)

The number of parameters in ΨΨΨ can get increasingly large. The total number of parameters in the

complete parameter set ΨΨΨ can be determined with the function

Q(n, m) = 10n + n(n− 1)m + 4, (4.10)

where n is the number of variables and m the number of parameters per bivariate copula inside

the vine copula. For example, in case the MS-GJR-MS-vine model consists of four variables and

one parameter per bivariate copula the total number of parameters is 56. Because of the size

of the parameter set, maximum likelihood estimation (MLE) may pose problems. For example,

the likelihood function may have multiple maxima or be very flat in some regions of the para-

meter space. In addition to this, there is a higher risk at overfitting, identifiability issues or the
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possibility of optimization algorithms failing to converge (Boomsma, 1985). Therefore, I employ

the expectation-maximization (EM) algorithm as in Cholette et al. (2009) and Stöber & Czado

(2014). The EM-algorithm calculates the parameter estimates ΨΨΨc, c = 1, 2, . . . , in an iterative

manner, such that the parameter estimates converge to the ML estimate for c→∞, under several

regularity conditions. The EM-algorithm iterates through the two-step estimation procedure in

Table 4.1.

Table 4.1: Expectation-Maximization algorithm for the MS-GJR-MS-vine model.

Step Explanation

Expectation Take the expectation of the pseudo log-likelihood function with respect to ST |̃rT

given ΨΨΨc: EST |̃rT ,ΨΨΨc

[
ln
(
f(r̃T , S̃T |ΨΨΨc)

)]
= A + B, where

A = ∑T
t=1

[∑2
k=1 P [St = k|̃rT ,ΨΨΨc]

(
ln
(
f(rt|St = k,ΨΨΨc

GV,k)
) )]

B = ∑T
t=1

[
P [St = 1|̃rT ,ΨΨΨc]ln

(
P [St = 1|ΨΨΨc

MS ]
)

+
(
1− P [St = 1|̃rT ,ΨΨΨc]

)
ln
(
1− P [St = 1|ΨΨΨc

MS ]
)]

.

Afterwards, obtain the conditional probabilities of the unobserved states S̃T =
(S1, . . . , ST ) given the current parameter set ΨΨΨc, i.e. P [St = k|̃rT ,ΨΨΨc], by em-
ploying the Hamilton filter (Table E.1, Appendix E).

Maximization Maximize the expected pseudo log-likelihood function with respect to ΨΨΨc+1, where
the probability of being in an unobserved state St is replaced by the conditional
probability from the expectation step, P [St = k|̃rT ,ΨΨΨc],

max
ΨΨΨc+1

{
EST |̃rT ,ΨΨΨc

[
ln
(
f(r̃T , S̃T |ΨΨΨc+1)

)]}
= C + D, where

C = max
ΨΨΨc+1

GV

{∑T
t=1

[∑2
k=1 P [St = 1|̃rT ,ΨΨΨc]

(
ln
(
f(rt|St = k,ΨΨΨc+1

GV,k)
) )]}

D = max
ΨΨΨc+1

MS

{∑T
t=1

[
P [St = 1|̃rT ,ΨΨΨc]ln

(
P [St = 1|ΨΨΨc+1

MS ]
)

+
(
1− P [St = 1|̃rT ,ΨΨΨc]

)
ln
(
1− P [St = 1|ΨΨΨc

MS ]
)]}

To give a better understanding of the EM-algorithm specifically applied to the MS-GJR-MS-

vine model, I elaborate on the two steps for an arbitrary iteration c. The first step in the EM-

algorithm is the expectation step. Here the expectation of the pseudo log-likelihood is computed

for the joint pdf of the energy returns r̃t and states S̃t. This expectation is taken with respect to

ST |̃rT and given the parameter set in the current iteration ΨΨΨc. This expectation can be divided into

the expectation of the regime-switching vine copula A and the expectation of the unconditional

state probabilities B. See Appendix D for the full derivation of the expected pseudo log-likelihood

of the joint energy return and latent state function. After taking the expectation of the pseudo

log-likelihood, I obtain the conditional probabilities of the latent states given the current parameter

set P [St = k|̃rT ,ΨΨΨc] by running through the Hamilton filter outlined in Table E.1, Appendix E.
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The second step in the EM-algorithm entails the maximization step, wherein the expected

pseudo log-likelihood of the joint energy return and state function parameter set ΨΨΨc+1 is maximized

with respect to the parameter set ΨΨΨc. Similarly, this optimization process can be divided into the

maximization of the regime-switching vine copula C and the maximization of the unconditional

state probabilities D. The latter can be derived analytically (see Appendix F.1).

In Hamilton’s original model all maximization steps were analytically solvable. However, in

the MS-GJR-MS-vine model, it is not possible to derive the vine copula parameters analytic-

ally when maximizing C. This is because vine copulas are not only highly nonlinear, but they

consist of multiple connected bivariate copulas which makes analytical solutions unachievable.

Consequently, while the transition and unconditional state probabilities can be directly obtained,

numerical optimization methods are required to maximize C. Since maximizing C entails maximiz-

ing a GJR-vine for both states St ∈ {1, 2}, a total of Q(n, m) parameters (see Equation 4.10) need

to be optimized. Even with the aid of numerical optimization methods, this task remains com-

putationally very challenging. To circumvent this problem, I integrate the stepwise EM-algorithm

from Stöber & Czado (2014) with the log-likelihood evaluation technique introduced by Aas et

al. (2009) and include the optimization of the GJR-GARCH volatilities within the algorithm.

As a result, C is maximized in a stepwise manner. This stepwise maximization is presented in

Algorithms 1 and 2. Algorithm 1 outlines the procedure for a regime-switching combination of

GJR-GARCH volatilities along with a C-vine to connect the standardized residuals. On the other

hand, Algorithm 2 shows the steps for a regime-switching combination of GJR-GARCH volatilit-

ies with a D-vine to connect the standardized residuals. See Appendix F.2 for the corresponding

log-likelihood functions.

In both Algorithms 1 and 2, I assume a normal distribution, ϕ(·), for the GJR-GARCH volatility

model. The standardized residuals zk
i are transformed into uniform observations uk

0 through their

corresponding empirical distribution functions (EDF) to accomodate the bivariate copula functions.

Furthermore, to calculate new observations for the next layer j in the vine structure, the so-called

h-function is applied. The h-function is defined as the conditional distribution function of a

bivariate copula

h(x, v|Θ) = ∂Cx,v(x, v|Θ)
δv

. (4.11)

Moreover, the parameter set for the GJR-vine at iteration c + 1, ΨΨΨc+1
GV , is decomposed in Appendix

F.3.

Stöber & Czado (2014) point out that the convergence properties of the EM-algorithm are

lost when approximating the maximization step in the EM-algorithm by stepwise maximization.

Limit theorems, such as the Generalized Expectation Maximization theorem introduced by Wu
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Algorithm 1 Stepwise maximization of a regime-switching GJR & C-vine
Require: Conditional state probabilities wc

1,t = P [St = 1|̃rT ,ΨΨΨc] and wc
2 = P [St = 2|̃rT ,ΨΨΨc]

log-likelihood = 0
for i← 1, . . . , n do

Maximize the log-likelihood of the GJR-GARCH model

LL = max
ΨΨΨc+1

GJR,i

{∑T
t=1

[
wc

1,tln
(
ϕ
(
ri,t|µc+1

i,1 , (σc+1
i,1,t)2))+ wc

2,tln
(
ϕ
(
ri,t|µc+1

i,2 , (σc+1
i,2,t)2)) ]}

and obtain the corresponding standardized residuals per state k: zk
i,t = ri,t−µi,k

σi,k,t
, ∀t.

log-likelihood = log-likelihood + LL
uk

0,i = F (zk
i ), ∀k, where zk

i =
(
zk

i,1, . . . , zk
i,T

)
.

end for
for j ← 1, . . . , n− 1 do

for i← 1, . . . , n− j do

LL = max
ΨΨΨc+1

vine,{j,i}

{∑T
t=1

[
wc

1,tln
(
c1

j,i

(
u1

j−1,1, u1
j−1,i+1|Θ

1,c+1
j,i

))
+

wc
2,tln

(
c2

j,i

(
u2

j−1,1, u2
j−1,i+1|Θ

2,c+1
j,i

)) ]}
log-likelihood = log-likelihood + LL

end for
if j == n− 1 then

Stop
end if
for i← 1, . . . , n− j do

uk
j,i = h

(
uk

j−1,i+1, uk
j−1,1|Θ

k,c+1
j,i

)
, ∀k

end for
end for

(1983), rely on proper maximization at each step of the EM algorithm, which is nearly impossible

to guarantee in the case of the MS-GJR-MS-vine model due to its high-dimensionality. Therefore,

employing numerical techniques is necessary, making all numerically obtained maximizations ap-

proximations. Especially, the stepwise maximization step is a good approximation as it ensures

asymptotic consistency. Furthermore, the stepwise maximization procedure helps mitigate the

computational burden associated with estimation in existing models for time-varying dependence

structures in higher dimensions, as it focuses solely on maximizing the likelihoods of bivariate

copulas within a tree-wise procedure. As a result, computation time is reduced, and the curse of

dimensionality alleviated.

4.1.3 GJR-MS-vine model

Introducing a second model, I propose a derivative of the MS-GJR-MS-vine model, referred to

as the GJR-MS-vine model. While the MS-GJR-MS-vine is a regime-switching combination of

GJR-GARCH volatilities and R-vine copula functions, the GJR-MS-vine combines GJR-GARCH

volatilities to model the univariate margins of the energy spot returns with Markov-switching
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Algorithm 2 Stepwise maximization of a regime-switching GJR & D-vine
Require: Conditional state probabilities wc

1,t = P [St = 1|̃rT ,ΨΨΨc] and wc
2 = P [St = 2|̃rT ,ΨΨΨc]

log-likelihood = 0
for i← 1, . . . , n do

Maximize the log-likelihood of the GJR-GARCH model

LL = max
ΨΨΨc+1

GJR,i

{∑T
t=1

[
wc

1,tln
(
ϕ
(
ri,t|µc+1

i,1 , (σc+1
i,1,t)2))+ wc

2,tln
(
ϕ
(
ri,t|µc+1

i,2 , (σc+1
i,2,t)2)) ]}

and obtain the corresponding standardized residuals per state k: zk
i,t = ri,t−µi,k

σi,k,t
, ∀t.

log-likelihood = log-likelihood + LL
uk

0,i = F (zk
i ), ∀k, where zk

i =
(
zk

i,1, . . . , zk
i,T

)
.

end for
for i← 1, . . . , n− 1 do

LL = max
ΨΨΨc+1

vine,{1,i}

{∑T
t=1

[
wc

1,tln
(
c1

1,i

(
u1

0,i, u1
0,i+1|Θ

1,c+1
1,i

))
+ wc

2,tln
(
c2

1,i

(
u2

0,i, u2
0,i+1|Θ

2,c+1
1,i

)) ]}
log-likelihood = log-likelihood + LL

end for
uk

1,1 = h
(
uk

0,1, uk
0,2|Θ

k,c+1
1,1

)
, ∀k

for l← 1, . . . , n− 3 do
uk

1,2l = h
(
uk

0,l+2, uk
0,l+1|Θ

k,c+1
1,l+1

)
, ∀k

uk
1,2l+1 = h

(
uk

0,l+1, uk
0,l+2|Θ

k,c+1
1,l+1

)
, ∀k

end for
uk

1,2n−4 = h
(
uk

0,n, uk
0,n−1|Θ

k,c+1
1,n−1

)
, ∀k

for j ← 2, . . . , n− 1 do
for i← 1, . . . , n− j do

LL = max
ΨΨΨc+1

vine,{j,i}

{∑T
t=1

[
wc

1,tln
(
c1

j,i

(
u1

j−1,2i−1, u1
j−1,2i|Θ

1,c+1
j,i

))
+

wc
2,tln

(
c2

j,i

(
u2

j−1,2i−1, u2
j−1,2i|Θ

2,c+1
j,i

)) ]}
log-likelihood = log-likelihood + LL

end for
if j == n− 1 then

Stop
end if
uk

j,1 = h
(
uk

j−1,1, uk
j−1,2|Θ

k,c+1
j,1

)
, ∀k

end for

standardized residuals, interconnected through a vine copula. The key distinction between the two

models is the fact that the GJR-GARCH volatilities are not regime-switching. The corresponding

pdf of the energy returns is as follows.

f (rt|ΨΨΨ) = µµµ + Diag (σσσt)×
[ 2∑

k=1
P [St = k|ΨΨΨMS ]× c

(
uuut|St = k, (V, C,ΨΨΨvine)k

)]
(4.12)

The estimation procedure of the GJR-MS-vine model is closely related to the estimation of the

MS-GJR-MS-vine model. Both are estimated by means of the stepwise EM-algorithm. While the

expectation step remains consistent across both models, the maximization step differs. Appendix
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G presents the modified Algorithms 3 and 4 for stepwise maximizing the GJR-MS-vine model.

4.2 Forecasting

The first application of the GJR-MS-vine and MS-GJR-MS-vine models is in forecasting. Since

MS models rely on the assumption that future behaviour of the return series is influenced by its

current state, forecasting multiple steps ahead can be very difficult, especially for highly nonlinear

MS models, as not only the return series should be predicted, but the sequence of future regime

changes as well. Therefore, I focus on the calculation of one-day-ahead forecasts of the energy

returns, E[rT +1 |̃rT , Ψ̂ΨΨ]. To assess the forecasting ability of the models, I employ the models in

forecasting two distinct periods. The first period exhibits very high volatile energy prices and

it ranges from Janary 3, 2022, until June 30, 2022, comprising 129 observations. By contrast,

the second period is a relatively stable period and it ranges from January 1, 2023, until June 30,

2023, with a length of 130 days. The forecast results are obtained using all available, previous

observations, meaning a rolling window with a length of 7 years for the volatile period and 8

years for the stable period (respectively, 1827 and 2086 observations). So for the second, stable

period the observations from January 1, 2015, until December 30, 2022, are employed to train the

GJR-MS-vine and MS-GJR-MS-vine models to obtain a reliable prediction of the energy returns

on January 1, 2023. Afterwards the estimation window is rolled over 1 observation to forecast

the energy returns on January 2, 2023. For each step the best structures for the regime-switching

vine copulas in the GJR-MS-vine and MS-GJR-MS-vine models are determined, as explained in

Section 4.1.1. Subsequently, the model is estimated via the stepwise EM-algorithm (Section 4.1.2)

and all the associated parameters are obtained. Thereafter, I generate M = 1, 000, 000 samples,

{uk
1, . . . , uk

n}, from both regimes in the GJR-MS-vine and MS-GJR-MS-vine models. Applying

the inverse EDF, these samples are transformed back into standardized residuals samples for each

energy return i

zk
i,m = F −1

i (uk
i,m), k ∈ {1, 2}, m ∈ {1, . . . , M}. (4.13)

Besides, the estimated GJR-GARCH model is employed to make regime-dependent one-day-ahead

volatility forecasts

σ̂2
i,ST +1,T +1 = α̂0,i,ST +1 +

p∑
j=1

(α̂j,i,ST +1 + γ̂j,i,ST +11[ri,T < 0])r2
i,T +

q∑
k=1

β̂k,i,ST +1σ2
i,T . (4.14)

Subsequently, I acquire the regime-weighted energy returns by combining the sampled standardized

residuals zzzk
m =

(
zk

1,m, . . . , zk
n,m

)
, the one-day-ahead GJR-GARCH volatility forecasts σ̂σσ2

ST +1,T +1 =(
σ̂2

1,ST +1,T +1, . . . , σ̂2
n,ST +1,T +1

)
and the conditional state probabilities obtained in the prediction
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step of the Hamilton filter in Table E.1, Appendix E. Summing up the regime-weighted energy

returns over the two states gives a one-day-ahead energy return forecast

E[rT +1 |̃rT , Ψ̂ΨΨ] =
2∑

k=1

[
P [ST +1 = k|̃rT , Ψ̂ΨΨ] · 1

M

M∑
m=1

(
µ̂µµk + σ̂σσ2

k,T +1zzz
k
m

)]
. (4.15)

After obtaining the one-day-ahead forecasts, I evaluate the forecasting performance of the models

for energy price i over the forecast period [T, T + f]. The forecasting performance is measured

through a number of performance measures.

1. The forecast bias (FB) measures the systematic overestimation or underestimation of the

forecasted energy returns compared to the actual energy returns. A positive bias indicates

that the forecasts are consistently higher than the actual values, while a negative bias indic-

ates consistently lower forecasts.

FBi = 1
f

T +f∑
l=T

(
Pi,l+1 −

(
Pi,l + E[ri,l+1 |̃rl, Ψ̂ΨΨ]

))
(4.16)

2. The mean absolute error (MAE) calculates the average absolute difference between the fore-

casted values and the actual values. It provides a measure of the average magnitude of

forecast errors, regardless of their direction.

MAEi = 1
f

T +f∑
l=T

∣∣∣∣Pi,l+1 −
(
Pi,l + E[ri,l+1 |̃rl, Ψ̂ΨΨ]

) ∣∣∣∣ (4.17)

3. The mean squared prediction error (MSPE) calculates the average squared difference between

the forecasted energy returns and the actual energy returns. It gives more weight to the large

errors compared to the MAE.

MSPEi = 1
f

T +f∑
l=T

(
Pi,l+1 −

(
Pi,l + E[ri,l+1 |̃rl, Ψ̂ΨΨ]

))2
(4.18)

4. The paired t-test is employed to compare the means of two related samples. The test assesses

whether the difference between the forecasts of the MS-GJR-MS-vine model X and forecasts

generated by any of the benchmark models Y is statistically significant. The null hypothesis

of zero mean difference between the forecasts is rejected when the following test statistic

becomes too large.

t = D

SED

, (4.19)

with sample mean D =
∑

(X−Y )
n and sample standard error SED.
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4.3 Multiproduct hedging

In this section I explain the application of the multiproduct futures hedging model of Sukcharoen

& Leatham (2017) to the GJR-MS-vine and MS-GJR-MS-vine models and how to modify it to a

multiproduct hedging model.

Again, I simulate 10,000 samples of the standard uniform energy price variables, {u1, . . . , un},

from both regimes in the model. By applying the inverse EDF to these samples and combining

them with simulated volatilities, they are transformed into samples from the joint distribution of

energy prices. Subsequently, the sampled energy price volatilities from both regimes are aggregated

into regime-weighted energy returns. Next, I utilize the simulated energy spot and futures returns

to calculate the energy consumer’s hedged profits and losses (P&Ls). Before defining the hedge

P&Ls, I make a few assumptions. First, I assume that energy consumers have taken energy futures

positions in the previous period t−1 and they liquidate all futures positions in the current period t

together with buying the energy commodities. Additionally, for simplicity, I assume that any other

costs involved are deterministic and thus do not influence hedging decisions. Lastly, the prices at

time t− 1 are known at time t, while the prices at time t are stochastic variables. Since I have not

yet specified which energy commodities to hedge or use as hedging instruments, I continue to use

numbers for the energy commodities i ∈ {1, 2, 3, 4}. According to Sukcharoen & Leatham (2017)

with these assumptions and notations, the hedge P&Ls of an energy consumer, who consumes one

euro of two energy commodities (either oil, gas, coal and/or electricity) and hedges them with the

corresponding energy commodity futures is

πt(b1, b2) = −r1,t − r2,t + b1F1,t + b2F2,t, (4.20)

where ri,t and Fi,t denote, respectively, the spot and futures returns of energy commodity i.

Furthermore, bi is the hedge ratio for energy commodity future i. Extending the multiproduct

futures hedging model to a multiproduct hedging model can be easily done by replacing the energy

futures for the spot prices of other energy commodities, such that the hedge is done through any

of the other energy commodities. And, instead of assuming that the energy consumers consume

one euro of two energy commodities, I assume the energy consumers to consume one MWh of

two energy commodities to better compare the different energy commodities and what a energy

consumer really consumes in terms of energy. The hedge equation than follows

πt(b1, b2) = −r1,t − r2,t + b1r3,t + b2r4,t. (4.21)

Different hedge equation combinations are possible, as I did not yet specify Equations 4.20 and
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4.21. When taking the positions of the energy commodities in Equation 4.21 into consideration,

a total of 4! = 24 different hedge equations can be derived. However, the positions of the returns

do not matter, as it is only of interest whether the energy commodities are hedged or are used

to hedge. Therefore, to avoid ’duplicate’ hedge equation combinations with the same economic

interpretation of the hedge ratios, except they are reversed over b1 and b2, I only consider the

’distinct’ P&L’s, leaving me with 6 different hedge combinations.

1. πt(b1, b2) = −rO
1,t − rG

2,t + b1rC
3,t + b2rP

4,t

2. πt(b1, b2) = −rP
1,t − rO

2,t + b1rC
3,t + b2rG

4,t

3. πt(b1, b2) = −rP
1,t − rG

2,t + b1rC
3,t + b2rO

4,t

4. πt(b1, b2) = −rP
1,t − rC

2,t + b1rO
3,t + b2rG

4,t

5. πt(b1, b2) = −rO
1,t − rC

2,t + b1rP
3,t + b2rG

4,t

6. πt(b1, b2) = −rG
1,t − rC

2,t + b1rO
3,t + b2rP

4,t

The energy consumer’s objective is to minimize the upside risk of the hedged P&Ls by selecting

the optimal hedge ratios (b∗
1, b∗

2). The upside risk is quantified through the popular VaR and ES.

The definitions of VaR and ES can be found in Appendix H. These measures traditionally focus on

losses, or in other words, the downside risk. However, I am interested in measuring the upside risk

of energy commodities. To align with the definitions of VaR and ES and still capture the upside

risk, the energy prices are negated by multiplying them with -1. The Nelder-Mead direct search

method (Nelder & Mead, 1965) is utilized to determine the optimal hedge ratios by numerically

solving the following minimization problems for the VaR of πt(b1, b2)

(b∗
1,V aR, b∗

2,V aR) = arg min
b1,b2
{V aRx(πt(b1, b2))}, (4.22)

and the ES of πt(b1, b2),

(b∗
1,ES , b∗

2,ES) = arg min
b1,b2
{ESx(πt(b1, b2))}. (4.23)

To determine whether the minimum-VaR or ES hedge has been useful and significant, I calculate

the hedge effectiveness as a last step. It is measured as the percentage reduction in the upside

risk of the portfolio of hedged P&Ls compared to a portfolio of unhedged P&Ls. The hedge

effectiveness for the VaR of the hedged P&Ls is calculated as

HEV aR =
(

1−
V aRx(πt(b∗

1,V aR, b∗
2,V aR)

V aRx(πt(0, 0)

)
× 100%, (4.24)
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and for the ES of the hedged P&Ls is

HEES =
(

1−
ESx(πt(b∗

1,ES , b∗
2,ES)

ESx(πt(0, 0)

)
× 100%. (4.25)

I make a distinction between an in-sample and out-of-sample analysis in assessing the hedging

performance of the GJR-MS-vine and MS-GJR-MS-vine models. In the in-sample analysis, I

assess the ability of the models to correctly model the VaR and ES in two steps. First, I generate

1,000,000 simulated energy commodity prices from the models, which are estimated on the full

dataset. Second, I set in hedge combinations 1 to 6 both b1 and b2 equal to zero and calculate the

VaR and ES of the energy consumer’s unhedged P&Ls. The unhedged VaR and ES are compared

to the actual VaR and ES of the corresponding energy commodity pairs. After completing the

in-sample analysis, I proceed to evaluate the two hedging methods on their out-of-sample HE. To

achieve this, I employ a rolling window approach as follows. First, I estimate the models on the first

2086 daily observations, covering a period of 8 years, and generate simulated energy commodity

prices from the estimated models. Next, I determine the minimum-VaR and ES optimal hedge

ratios (HR) on the simulations. Subsequently, these optimal HR are utilized to construct the

hedged P&Ls for the following 20 days, corresponding to a period of 1 month. Lastly, I calculate

the out-of-sample HE for the models. By repeating these four steps in a rolling window, I obtain

a set of 110 HE observations. From this set, I compute the mean and median out-of-sample HE.

4.4 Benchmark models

In this section I elaborate on the probability density functions of the benchmark models against

which the proposed GJR-MS-vine and MS-GJR-MS-vine models from Equations 4.12 and 4.7 are

compared. These benchmark models serve as a baseline for evaluating the performance of the

GJR-MS-vine and MS-GJR-MS-vine models in terms of forecasting and hedging. By comparing

the results with the benchmark models, insights into the potential applicability and performance

in practical scenarios are provided. The following models serve as benchmark models:

1. Starting with the GJR-vine model (Aloui & Aı̈ssa, 2016), it considers a single regime with

GJR-GARCH volatilities and connects the standardized residuals through a vine copula.

f (rt|ΨΨΨGV ) = µµµ + Diag (σσσt)× c
(
uuut| (V, C,ΨΨΨvine)

)
(4.26)

2. The MS-vine model, proposed by Cholette et al. (2019), is a four-dimensional regime-
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switching vine copula directly modelling the energy commodity returns.

f (rt|ΨΨΨvine,ΨΨΨMS) =
2∑

k=1
P [St = k|ΨΨΨMS ]× c

(
uuut|St = k, (V, C,ΨΨΨvine)k

)
(4.27)

3. The MS-GJR model (Zheng, 2015) is a one-dimensional regime-switching GJR-GARCH

volatility model. Consequently, the MS-GJR model should be applied separately to each

of the n energy commodity returns.

f
(
ri,t|Ψi

GJR, Ψi
MS

)
=

2∑
k=1

P [St = k|ΨΨΨMS ]×
[
µi,k + Diag (σi,k,t)× f(zi,t)

]
(4.28)

Chapter 5

Results

In this section I elaborate on the results obtained by implementing the methodology from Section

4 into Python 3.9. I start by examining the optimal settings for the MS-GJR-MS-vine model

in terms of computation time and forecast reliability in Section 5.1. Subsequently, I evaluate

the forecast performances of the GJR-MS-vine and MS-GJR-MS-vine models by comparing them

with the benchmark models in Section 5.2. Next, I perform an in-sample analysis of the models in

Section 5.3. Thereafter, the results of employing the models in out-of-sample hedging are presented

in Section 5.4, where I also draw conclusions whether the GJR-MS-vine and/or MS-GJR-MS-vine

model outperform the benchmark models and give recommendations what energy commodities are

useful in mutual hedging.

5.1 Check for best settings in model

As described in Section 4.2, I employ the GJR-MS-vine and MS-GJR-MS-vine models in a rolling

window to generate forecasts. In each iteration of the rolling window, the stepwise-EM algorithm

ideally converges to its optimal parameters. However, parameter convergence is not guaranteed

(see Section 4.1), so I aim for log-likelihood convergence. Since convergence may take a while,
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its best practice to implement stopping conditions. I implement two stopping conditions for the

stepwise-EM algorithm. The algorithm stops either when the change in the log-likelihood between

consecutive iterations falls below a prespecified threshold of 0.01 or when the maximum number of

iterations (MNoI) has been reached. The MNoI is a choice between computation time and conver-

gence of the stepwise EM-algorithm. To determine the optimal MNoI, I investigate the forecasting

performance of the MS-GJR-MS-vine model over the stable period January 1, 2023, until June

30, 2023, (130 forecasts) in terms of MSPE for various MNoIs, and to be consistent I employ the

optimal MNoI in the other models as well. The choice for determining the optimal MNoI on the

MS-GJR-MS-vine model is motivated by the fact that this model requires the longest computa-

tion time, which should therefore be truncated. Table 5.1 presents these results. As expected, the

MSPEs for the MS-GJR-MS-vine model with MNoI equal to 200 are smaller compared to lower

MNoI values. A higher MNoI allows the algorithm to converge better in terms of the log-likelihood,

resulting in parameter estimates closer to the actual parameters. To assess the differences in fore-

casts, I perform paired t-tests with the null hypothesis of no difference in forecast means for the

algorithm with MNoI set to 200. When the MNoI is set to 50, the forecast are significantly differ-

ent from those with MNoI equal to 200, indicating that log-likelihood convergence is not always

achieved. For MNoI equal to 100, only the forecast mean for power differs signficantly under the

10% confidence level from the forecast mean with MNoI equal to 200. This finding suggets that

the algorithm mostly converges to the optimal log-likelihood before reaching the MNoI equal to

100. Consequently, I decide to set the MNoI equal to 100 in the rest of the results.

Table 5.1: Breakdown of the mean squared prediction errors of forecasted energy commodities generated by
the MS-GJR-MS-vine model per maximum number of iterations in the EM-algorithm.

MNoI Oil Gas Coal Power
200 1.677 17.350 0.209 1440.972
100 1.680 17.407 0.216 1442.869∗

50 1.725∗∗∗ 18.648∗∗∗ 0.381∗∗∗ 1461.342∗∗∗

Note. The asterisks denote the significance of the paired
t-test between the model with 1 update step and one of
the other models; * p < 0.10, ** p < 0.05, *** p < 0.01.

After setting the MNoI, one iteration of the rolling window for the MS-GJR-MS-vine model

still takes up to 20 hours to either converge or to reach the MNoI. Since the forecasting period

is 130 days in length, I aim to further reduce the computation time by updating the MS-GJR-

MS-vine model parameters every 5 or 10 iterations of the rolling window, corresponding to one

or two weeks, respectively. To assess the effect of this decision, I generate forecasts for the same

period (January 1, 2023, until June 30, 2023) for all four energy commodities with different update

steps, compute the corresponding MSPEs and perform paired t-tests. The results are shown in

Table 5.2. When the parameters are updated every two weeks, the forecasts for oil, gas and power
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differ significantly compared to when the parameters are updated every day. In case of updating

the parameters every week, only the gas and power forecasts differ signifcantly under the 10%

confidence level. This is explained by the fact that gas and power prices are more volatile, making

them harder to forecast based on non-recently estimated parameters. However, for each model I

choose to update the parameters every 5 iterations of the rolling window to reduce computation

time by 5 times and take the loss in accuracy for given. This is justified, as I run the benchmark

models with the same configurations.

Table 5.2: Breakdown of the mean squared prediction errors of forecasted energy commodities generated by
the MS-GJR-MS-vine model for different update steps.

Update step Oil Gas Coal Power
1 1.680 17.307 0.216 1442.869
5 1.688 17.459∗ 0.234 1444.084∗

10 1.690∗ 17.607∗∗ 0.234 1450.047∗∗∗

Note. The asterisks denote the significance of the paired t-
test between the model with 1 update step and one of the other
models; * p < 0.10, ** p < 0.05, *** p < 0.01.

5.2 Forecasts

As explained in Section 4.2, I generate forecasts over a relatively volatile period spanning from

January 3, 2022, until June 30, 2022, and a relatively stable period covering January 1, 2023 until,

June 30, 2023, for the GJR-MS-vine, MS-GJR-MS-vine and their benchmark models, and evaluate

their performance in terms of the FB, MAE and MSPE. To compare the generated forecasts across

the models I again employ the paired t-test. The results are displayed in Tables 5.3 and 5.4 and

they provide valuable insights about the forecasting performance of the models.

Table 5.3: The forecast biases, mean absolute errors and mean squared prediction errors of a volatile and a
stable period for the models per energy commodity.

FB MAE MSPE
Model Oil Gas Coal Power Oil Gas Coal Power Oil Gas Coal Power
Volatile period
MS-GJR-MS-vine 0.1892 0.2812 0.1392 −0.5742 1.2111 6.6741 0.4532 36.8362 2.9161155.0012 0.8041 4466.6802

GJR-MS-vine 0.225 −0.2621 0.142 −1.697 1.2192 6.693 0.459 37.050 2.9312155.380 0.818 4486.240
GJR-vine 0.1431 −0.328 −0.152 −1.170 1.263 6.702 0.463 37.498 2.951 156.003 0.927 4483.390
MS-GJR −0.301 −0.701 0.365 −1.785 1.534 7.232 0.950 39.348 3.327 158.826 1.078 5036.768
MS-vine 0.192 0.409 0.0991 0.3481 1.237 6.6772 0.4481 36.6911 2.975 154.7161 0.8062 4451.7431

Stable period
MS-GJR-MS-vine −0.015 −0.0411 0.0012 −0.9472 1.0591 2.7951 0.3372 26.3421 1.6881 17.4591 0.2342 1444.0841

GJR-MS-vine 0.0091 −0.132 0.0001 −1.305 1.0602 2.8812 0.337 26.408 1.6932 17.5032 0.2331 1446.723
GJR-vine −0.0122 −0.118 −0.001 −1.319 1.061 2.888 0.3351 26.472 1.695 17.649 0.235 1447.709
MS-GJR −0.017 0.0482 −0.005 −1.286 1.071 2.943 0.351 26.389 1.803 17.735 0.246 1446.027
MS-vine −0.020 0.051 −0.021 −0.6541 1.078 2.894 0.364 26.3642 1.850 17.524 0.254 1445.4682

Note 1. The (second) best performing value for a specific forecast measure and energy commodity is in bolt and is indexed with (2) 1.
Note 2. The volatile and stable periods correspond to, respectively, January 3, 2022, until June 30, 2022, (129 observations) and January 1,
2023, until June 30, 2023 (130 observations).
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First of all, during the stable period, most models show negative FB for the energy com-

modities. This suggests that the models consistently overforecast the energy commodity prices.

This overforecasting tendency can be attributed to the fact that the models are estimated on a

period that encompasses periods of high volatility (January 1, 2015, to December 31, 2022), while

the forecasting period (January 1, 2023, to June 30, 2023) experienced relatively lower volatility.

Consequently, the estimated parameters do not totally reflect to the forecasts and differentiating

between a high and low volatility regime becomes evident. For instance, in the case of the one-

regime combination of GJR-GARCH and a vine copula (GJR-vine), all energy commodities are

overforecasted. However, by introducing a high and low volatility state in the GJR-vine model,

adding up to the MS-GJR-MS-vine model, the overforecasting is reduced. The opposite finding

can be inferred in the volatile period where the FB is mostly positive, indicating underforecasting.

This shows that the models are unable to fully incorporate the large price fluctuations observed

during the first half of 2022.

Secondly, in both the volatile and stable periods the largest MAE and MSPE are observed for

power. This aligns with Section 3 as the largest price differences are observed for power. Yet, the

MS-GJR-MS-vine outperforms the benchmark models in terms of MAE and MSPE for oil, gas and

power. This indicates that the model’s forecasted energy commodity prices are generally closest

to the actual energy prices, even when penalizing the large prediciton errors by squaring them in

the MSPE.

Furthermore, during the volatile period, the MS-GJR-MS-vine performs (second) best for all

energy prices in terms of both MAE and MSPE, sometimes being outperformed by the MS-vine

model. Referring to Table 5.4, it is evident that the forecasted energy prices from both the MS-

GJR-MS-vine and MS-vine models do not significantly differ, except for the forecasted oil prices,

where the MS-GJR-MS-vine outperforms the MS-vine. Additionally, in the stable period, the

MS-GJR-MS-vine model ranks second best in forecasting coal prices and it is outperformed by

the GJR-MS-vine model in terms of the FB and MSPE and by the GJR-vine model in terms of

MAE. However, these differences are marginal at, respectively, 0.001 and 0.002. Combining this

insight with the conclusion that the GJR-vine and GJR-MS-vine coal price forecasts do not devaite

significantly from the coal price forecasts generated by the MS-GJR-MS-vine model (Table 5.4),

and I conclude that the MS-GJR-MS-vine model overall performs best in both the volatile and

stable period.

The fact that the MS-GJR-MS-vine model overall has better forecasting performance than

the GJR-MS-vine and the benchmark models highlights the importance of not only modelling

regime-switching returns or volatility, but that the residual part of the returns (Equation 4.1)

should be considered to be in a high and low volatility state as well. The MS-GJR-MS-vine model
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Table 5.4: The significance levels for the paired t-test between the forecasts of the benchmark models and the
MS-GJR-MS-vine model over a volatile (January 3, 2022, until June 30, 2022) and stable period (January 1,
2023, until June 30, 2023) with null hypothesis of no differene in forecast means.

Volatile period Stable period
Model Oil Gas Coal Power Oil Gas Coal Power
MS-GJR-MS-vine 2.916 155.001 0.804 4466.680 1.688 17.459 0.234 1444.084
GJR-MS-vine *** *** - *** *** *** - ***
GJR-vine - *** - *** - *** - ***
MS-GJR - - - - *** * *** *
MS-vine - *** *** *** - *** * ***
Note: - p < 1.0, * p < 0.10, ** p < 0.05, *** p < 0.01

captures the volatility through a GJR-GARCH volatility model and it models and combines the

corresponding standardized residuals by utilizing a vine copula. Introducing regime-switching in

modelling the GJR-GARCH volatilities modelling enhances the forecasting ability, aligning with

Xiao (2021), who proved that MS GARCH models improves forecasting the extreme risks in energy

prices, and Cifter (2013), who showed that MS GARCH enhanced the forecasting ability in the

Nordic electric power market. Subsequently, extending Markov-switching to the standardized

residuals of the regime-switching GJR-GARCH results in a superior forecasting model.

Figures 5.1a and 5.1b present the probabilities of being in a high volatility state during both

a volatile and stable period, as generated by the MS-GJR-MS-vine model. At first sight, power

prices seems to be very volatile in both figures. However, Figure 5.1a depicts the power prices

ranging from 50 to 700 euros, while Figure 5.1b confines them within the range of 20 to 200 euros.

A similar observation can be found for the other energy prices, as they maintain almost constant

prices during the stable period in Figure 5.1b, while the volatile period in Figure 5.1a indicates

an upward trend. This volatility is marked by frequent high spikes in the probability, indicating

more certainty of being in the high volatility state. In contrast, the stable period exhibits less

upward spikes and more downward spikes, indicating the energy prices are in the low volatility

state. Additionally, the up- or downward spikes in the probability of being in the high volatility

state appear to closely follow the fluctuations in the power and gas prices. This relationship may

be attributed to the fact that these two energy prices are more volatile and exhibit higher prices

compared to coal and oil prices. As a consequence, these energy prices carry greater weights within

the EM-algorithm, resulting in state probabilities which are more sensitive to variations in power

and gas prices.

5.3 In-sample analysis

For the in-sample analysis of the (benchmark) models, I generate 1,000,000 simulated energy

commodity prices from the (benchmark) models. Subsequently, I construct the unhedged P&Ls
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(a)

(b)

Figure 5.1: Figures 5.1a and 5.1b illustrate the MS-GJR-MS-vine probabilities whether the four energy prices (oil,
gas, coal and power) are in the high volatility state during, respectively, a volatile period spanning from January
3, 2022, until June 30, 2022, and a stable period covering January 1, 2023, until June 30, 2023.

from the simulations based on the underlying assumptions explained in Section 4.3. Each unhedged

P&L combination corresponds to the consumption of one MWh of r1,t and one MWh of r2,t. These

P&Ls remain unhedged, meaning that b1 = 0 and b2 = 0. This in-sample simulation allows for a

risk level comparison between the (benchmark) models, which can then be verified with the actual

risks at different confidence levels over the period January 1, 2015, to June 30, 2023. If the VaR and

ES simulated by a (benchmark) model align with the actual VaR and ES for different confidence

levels, it is an indication that the model correctly models the tail of the distribution. The results

of the in-sample simulation are displayed in Table 5.5. Here, the VaR or ES that best aligns with

the actual VaR and ES of the unhedged P&Ls across the models is highlighted in bolt. As an

example, I interpret the VaR and ES at a 90% confidence level for unhedged P&L-1 simulated

by the MS-GJR model with, respectively, values 2.316 and 4.845. If an energy consumer holds

1 MWh of oil and gas, than in 10% of the situations, the combined price is at least 2.316 euros

higher the following day. On average the price will be 4.845 euros higher the next day. Besides
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this interpretation, a few other conclusions can be drawn from Table 5.5.

Table 5.5: The Value-at-Risk and expected shortfall at various confidence levels for P&L-1 to 6 per (benchmark)
model.

Value-at-Risk Expected shortfall Value-at-Risk Expected shortfall
90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%

Actual P&L-1 1.755 4.227 15.620 7.625 12.717 30.619 P&L-2 15.789 31.411 88.467 49.219 76.714 160.204
MS-GJR-MS-vine 2.069 3.566 11.328 5.989 9.312 23.075 14.746 25.479 74.305 42.441 65.859 164.122
GJR-MS-vine 2.430 4.800 15.075 7.525 11.674 25.937 16.865 30.347 84.398 46.614 70.882 164.778
GJR-vine 2.038 4.528 18.337 8.317 13.678 32.908 17.589 34.258 104.435 55.494 86.726 207.135
MS-GJR 2.316 4.729 15.430 4.845 10.019 24.948 17.032 33.031 101.247 57.091 69.053 186.702
MS-vine 1.758 4.028 13.718 6.675 10.750 25.499 15.098 28.278 76.870 42.408 64.820 131.527

Actual P&L-3 15.961 33.543 94.573 51.098 79.627 164.868 P&L-4 15.652 31.399 88.597 49.186 76.691 160.109
MS-GJR-MS-vine 15.455 26.317 75.588 43.342 66.890 165.460 16.687 28.588 80.635 46.043 70.601 171.637
GJR-MS-vine 18.819 32.972 88.101 49.425 74.172 169.250 16.297 29.737 83.639 45.944 70.127 163.796
GJR-vine 19.413 36.390 106.049 57.386 88.481 208.282 17.555 34.207 104.463 55.459 86.698 88.597
MS-GJR 17.485 34.692 102.896 61.201 74.096 188.364 16.960 32.934 100.818 56.684 68.992 184.003
MS-vine 15.894 29.913 80.859 44.202 67.230 137.832 15.392 28.965 61.894 37.801 54.519 107.999

Actual P&L-5 0.886 1.320 2.502 1.615 2.145 3.824 P&L-6 1.316 4.272 15.454 7.482 12.692 30.451
MS-GJR-MS-vine 0.763 1.054 1.782 1.212 1.530 2.417 1.310 2.708 10.377 5.110 8.359 21.956
GJR-MS-vine 0.731 1.019 1.827 1.201 1.545 2.511 1.843 4.271 14.397 6.941 11.061 25.110
GJR-vine 0.883 1.270 2.383 1.521 1.991 3.329 1.488 4.262 18.169 8.000 13.494 32.728
MS-GJR 0.733 1.109 1.630 1.172 1.502 2.332 1.688 3.290 13.170 6.138 8.093 23.530
MS-vine 0.675 0.950 1.717 1.119 1.443 2.346 1.794 4.083 13.869 6.187 9.616 20.363
Note. The simulated risk for each measure, unhedged P&L combination and confidence interval that is closest to the actual risk across the models is
highlighted in bolt.

First of all, the unhedged P&L-2 to 4 show relativley large VaR and ES compared to the other

unhedged P&Ls. This finding is primarily due to the fact that these three unhedged P&Ls are

build from power, a commodity that experienced significant price fluctuations since the start of the

Russo-Ukrainian war. Consequently, power prices were highly volatile during this period, resulting

in relatively high positive and low negative returns and explaining the higher VaR and ES. Due

to the size of the power return compared to the other energy commodity returns, the unhedged

P&L-2 to 4 are dominated by the power returns and, therefore, mostly reflects the risks of buying

1 MWh hour of power.

Furthermore, the GJR-MS-vine model exhibits the best VaR and ES performance for most

confidence levels in the case of the unhedged P&L-2 to 4, meaning that the simulated risk measures

best align with the actual risks. In the cases where it does not rank first, it still notes the second-

best performance. Unhedged P&L-2 to 4 have in common that they are build from power. So, the

GJR-MS-vine model best captures the upper-tail risks in buying 1 MWh of power. Moreover, for

the unhedged P&L-5 and 6, the GJR-vine model yields the most accurate VaR and ES simulations.

Here, the common feature is coal. While coal is also included in unhedged P&L-4, its impact is

relatively small due to the dominating power price returns. As a result, the GJR-vine best simulates

the risks associated with 1 MWh of coal, unless its combined with 1 MWh of power. In the case

of unhedged P&Ls build from at least 1 MWh power, the GJR-MS-vine is recommended.

Lastly, the MS-vine model occassionally outperforms other models in modelling the VaR and
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ES, particularly for the 90% confidence level, for unhedged P&L-1 to 4. Additionally, the VaR

and ES for other confidence levels are often quite close to the actual values. However, both the

MS-GJR-MS-vine and MS-GJR models do not play a significant role in modelling the VaR and ES

as their simulated VaR and ES do not align with the actual VaR and ES. This observation suggests

that the Markov-switching GJR-GARCH part of these models may not effectively capture the risks

in energy price returns and could potentially lead to overfitting. Despite the MS-GJR-MS-vine

model performing well in forecasting, it struggles to accurately model the extreme risks associated

with holding multiple energy commodities. This may be attributed to the fact that the MS-GJR-

MS-vine model sufficiently models the expected behaviour of the energy price distribution, but it

falls short in capturing the upper tail distribution.

Nevertheless, the combination of GJR-GARCH and (regime-switching) vine copulas proves to

be most effective in modelling VaR and ES, in contrast to the MS-GJR-MS-vine model.

5.4 Out-of-sample hedging

The out-of-sample minimum-VaR and ES HE at various confidence levels for different models are

displayed in Table 5.6 with the median in between parentheses and the highest mean per hedging

method and confidence interval is highlighted bolt. Besides, the corresponding HR can be found in

Tables J.1 and J.2 in Appendix J. Ideally, for a risk-averse energy consumer seeking for hedges that

reduce his energy risks accordingly, the mean and median HE should be close to each other. This

suggests that the set of HEs is approximately symmetrically distributed and not a lot of extreme

positive or negative HE outliers occur. On the other hand, when the mean and median HE are far

apart, it indicates that the HE set is skewed. In case the mean is larger (smaller) than the median,

more positive (negative) HE outliers are expected. In Table 5.6 both cases are observed. For a

visual representation, graphs of the minimum-VaR and ES HE for P&L-1 over the period January

1, 2023, until June 30, 2023, for different confidence levels are shown in, respectively, Figures I.1

and I.2 in Appendix I. Here the aforementioned becomes clear as MS-GJR-MS-vine and MS-vine

show large negative peaks in the HE, resulting in a mean way smaller than the median. In the

end, this may hinder effective minimum-VaR or ES hedging strategies.

The MS-GJR-MS-vine model is consistently outperformed by the benchmark models in both

minimum-VaR and ES out-of-sample hedging. Comparing the means and medians of the out-of-

sample HE for P&L-1, 5 and 6 reveals a lot of negative outliers in the HE performance of the

MS-GJR-MS-vine model. This indicates that the simulations generated by the MS-GJR-MS-vine

model fail to accurately capture the risks in the upcoming month, leading to unrealible hedge

ratios. This finding aligns with the conclusion drawn in Section 5.3, where the in-sample analysis
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Table 5.6: Average out-of-sample hedge effectiveness corresponding to hedged P&L-1 to 6 with the median in
parentheses for various models and confidence intervals.

Value-at-Risk Expected Shortfall
90% 95% 99% 90% 95% 99%

P&L - 1
MS-GJR-MS-vine -69.481(-47.319) -26.213(- 0.149) - 6.070(- 0.301) -14.319(- 3.032) - 6.839( 3.113) - 7.890(- 1.672)
GJR-MS-vine - 5.678(- 0.054) - 0.579( 0.054) -10.094(- 1.325) 2.069( 6.270) 0.783( 7.421) -11.301(- 4.701)
GJR-vine 0.372( 0.032) 1.592( 0.045) - 3.062( 0.284) 6.485( 7.764) 7.012( 8.610) 4.568(- 0.376)
MS-GJR - 1.207(- 2.004) 0.516(- 1.869) - 0.209(- 1.301) -21.510(-10.973) -21.526(-23.330) -21.510(-10.973)
MS-vine -27.329(- 0.005) -24.756( 0.929) -67.101(- 0.004) -62.439( 0.761) -66.679( 1.250) -83.515( 0.532)

P&L - 2
MS-GJR-MS-vine - 3.889(- 3.084) - 1.040( 0.040) - 1.653(- 2.786) - 1.988(- 1.656) - 1.372(- 0.820) - 1.661(- 2.984)
GJR-MS-vine - 0.923(- 0.015) 1.534( 0.116) 1.694( 1.087) 0.747( 0.122) 1.983( 0.698) 1.989( 2.196)
GJR-vine - 0.067(- 0.006) 0.120( 0.006) - 0.335(- 0.218) - 0.159(- 0.149) - 0.118(- 0.150) - 0.382(- 0.692)
MS-GJR - 2.397(- 5.817) - 1.251(- 0.990) - 3.877(- 3.530) 0.128(- 0.092) - 2.084(- 0.825) - 3.961(- 2.574)
MS-vine - 6.199(- 0.557) - 0.149( 0.194) - 8.911(- 1.595) 3.238( 7.090) 3.875( 8.389) - 4.972(- 3.148)

P&L - 3
MS-GJR-MS-vine 0.984( 0.120) 0.238( 0.364) 0.204(- 0.981) 0.562( 0.310) 0.194(- 0.511) - 0.225(- 0.467)
GJR-MS-vine - 1.118( 0.004) 1.275(- 0.003) 1.760(- 0.007) 2.997( 0.120) 4.173( 1.783) 4.097( 0.066)
GJR-vine 0.143( 0.028) 0.031( 0.023) - 0.181(- 0.113) 0.335( 0.163) 0.111(- 0.029) - 0.449(- 1.024)
MS-GJR - 0.801(- 1.271) 0.624( 0.071) 0.031(- 0.109) 0.006(- 1.239) - 0.295(- 1.093) - 0.519(- 2.308)
MS-vine 0.443( 0.427) 0.512( 0.336) 0.037( 0.174) 0.530( 0.664) 0.327( 0.098) - 0.137(- 1.024)

P&L - 4
MS-GJR-MS-vine 0.103(- 0.057) - 0.561(- 0.827) 0.417(- 1.423) 0.936(- 0.104) 0.693( 0.207) 0.261(- 0.779)
GJR-MS-vine 0.950( 0.014) 0.601( 0.065) 0.366(- 0.065) 1.228(- 0.567) 1.177(- 0.502) 1.613(- 0.856)
GJR-vine 0.020(- 0.031) - 0.015( 0.022) - 0.135( 0.022) - 0.144(- 0.009) - 0.192(- 0.010) - 1.136(- 0.743)
MS-GJR - 4.391(- 0.748) - 3.071(- 1.944) - 1.270(- 0.616) - 2.508(- 2.401) - 1.745(- 3.209) - 1.772(- 1.299)
MS-vine - 2.796(- 0.080) - 0.637(- 0.191) - 1.826(- 0.333) - 1.875(- 1.219) - 1.342(- 0.342) - 1.711(- 0.191)

P&L - 5
MS-GJR-MS-vine -29.617(- 7.243) -18.284(- 1.202) - 1.955(- 0.290) 1.003(- 0.476) 1.504(3.073) 1.993( 3.601)
GJR-MS-vine - 1.499(- 0.759) - 1.834(- 0.450) 0.164( 0.142) 2.515( 1.579) 1.921( 2.584) 2.268( 6.156)
GJR-vine 0.096(- 0.010) 0.014(- 0.009) 0.754( 0.406) 1.306( 1.243) 1.213( 1.271) 1.828( 2.836)
MS-GJR -15.662(- 7.108) -16.925(-10.635) - 8.951(- 4.427) -20.081(- 0.875) -43.503(- 4.103) -14.203(- 4.807)
MS-vine - 6.383( 0.033) -24.555( 1.192) -79.586( 0.075) -73.165( 2.274) -82.072(- 0.003) -105.557(- 0.123)

P&L - 6
MS-GJR-MS-vine -43.871(- 1.863) -22.070(- 0.392) - 5.996(- 0.120) -23.405(-10.006) - 3.947(- 2.314) - 9.092(- 2.350)
GJR-MS-vine -25.852(- 2.994) -85.513(- 0.138) -86.909(- 0.407) -42.220(-11.293) -30.816(- 3.042) -30.148(- 4.548)
GJR-vine - 6.161( 0.000) -10.735( 0.027) - 0.937( 0.437) - 1.639( 0.890) - 4.706( 1.697) -16.397( 1.082)
MS-GJR -25.403(- 4.575) -42.034(-10.857) -47.707( 0.302) -17.843(- 2.502) -10.572(- 9.803) -55.290(-15.372)
MS-vine - 5.377(- 0.316) - 3.595(- 0.187) - 8.674(- 1.476) - 8.245(- 2.524) - 6.625(- 0.403) -10.663(- 2.327)
Note. The average out-of-sample hedge effectiveness for each risk measure, unhedged P&L combination and confidence interval that is highest across the
models is highlighted in bolt.

also revealed that the MS-GJR-MS-vine inadequately models the risks in energy commodity price

returns. Overall, the MS-GJR-MS-vine model is incapable of providing accurate simulations in the

context of energy commodity prices. As a result, energy portfolio risks are incorrectly modelled

and leading to the conclusion that the MS-GJR-MS-vine model is not suitable for multiproduct

hedging of energy commodities.

However, some of the benchmark models do show promising results in terms of out-of-sample

HE. Consequently, based on P&L-1 to 6 and the information provided in Tables 5.5, 5.6, J.1

and J.2, I offer recommendations on whether and how an energy consumer should utilize mutual,

multiproduct hedging to reduce his risks in certain energy portfolios by considering all sixs P&Ls.

P&L-1 comprises the hedging of 1 MWh of oil and gas with 1 MWh of coal and power. Ac-

cording to Table 5.5, the GJR-vine model accurately models the ES. Furthermore, implementing
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minimum-ES hedging with simulations from the GJR-vine model results in a positive HE, mean-

ing a decrease in ES of at least 4% for all three confidence levels (see Table 5.6). For successfull

minimum-ES hedging of 1 MWh oil and gas, Table J.2 suggests hedging these energy commodities

by 0.611 to 0.862 MWh of coal and and 0.03 to 0.021 MWh power. In that case an energy consumer

decreases his ES with at least 4%. Likewise, minimum-VaR hedging renders a positive HE for the

90% and 95% confidence levels, but Table 5.5 shows that the in-sample VaR does not match the

actual VaR. Therefore, I advise against minimum-VaR hedging for P&L-1.

P&L-2, 3 and 4 represent the different hedging combinations of power together with one of

the other three energy commodities, namely, oil, gas and coal, hedged with the remaining energy

commodities. Table 5.6 shows that the GJR-MS-vine model renders positive HE for minimum-

VaR, except at the 90% confidence level, and for minimum-ES hedging. These results are consistent

with the findings in Table 5.5, which stated that the GJR-MS-vine model accurately models

the in-sample VaR and ES for the hedging combinations involving power. For all three P&L

combinations, the percentage risk reduction is largest with minimum-ES hedging. In the case of

P&L-4, I observe a positive HE mean and a close to zero or even negative HE median in both

minimum-VaR and minimum-ES hedging. This indicates there are some positive outliers in the

dataset. Nonetheless, to offer specific multiproduct hedging combinations, the following HR should

be considered depending on the energy consumer’s objective and energy portfolio. For reducing

the VaR:

• P&L-2: Hedge 1 MWh of power and oil with 0.272 to 0.548 MWh of coal and 0.290 to 0.618

MWh of gas to reduce the VaR with -0.923% to 1.694%.

• P&L-3: Hedge 1 MWh of power and gas with 0.320 to 0.451 MWh of coal and 0.310 to 0.377

MWh of oil to reduce the VaR with -1.118% to 1.760%.

• P&L-4: Hedge 1 MWh of power and coal with 0.181 to 0.355 MWh of oil and 0.079 to 0.456

MWh of gas to reduce the VaR with 0.366% to 0.950%.

If the energy consumer rather reduces his ES, he should keep these HR:

• P&L-2: Hedge 1 MWh of power and oil with 0.997 to 1 MWh of coal and 0.953 to 1 MWh

of gas to reduce the ES with 0.747% to 1.989%.

• P&L-3: Hedge 1 MWh of power and gas with 0.660 to 0.695 MWh of coal and 0.630 to 0.686

MWh of oil the ES with 2.997% to 4.997%.

• P&L-4: Hedge 1 MWh of power and coal with 0.572 to 0.652 MWh of oil and 0.829 to 0.903

MWh of gas the ES with 1.177% to 1.613%.
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When hedging 1 MWh of oil and coal with power and gas (P&L-5), Table 5.6 shows that

for minimum-VaR hedging the GJR-vine model is the only model that yields a positive HE. For

minimum-ES hedging the MS-GJR-MS-vine and GJR-MS-vine models could also be considered,

as they result in higher reductions of the ES. However, based on Table 5.5 the GJR-vine model

renders the most accurate VaR and ES across all considered confidence levels. Consequently, I

recommend basing the hedge ratios on the simulations generated by the GJR-vine model. For

minimum-VaR hedging, the most effective reduction in VaR is achieved when hedging with 0.001

MWh of power and 0.001 to 0.006 MWh of gas (Table J.1). In case of minimum-ES hedging, I

recommend to hedge 1 MWh of oil and coal with 0.001 MWh of power and 0.018 to 0.031 MWh

of gas (Table J.2).

If the energy consumer intends to hedge 1 MWh of gas and coal with power and oil, I recommend

against it, as none of the models can generate accurate hedge ratios that effectively reduce the

VaR or ES when holding 1 MWh of gas and coal (see Table 5.6).

Summarizing, the MS-GJR-MS-vine model inadequately models energy prices. As a result,

it can not be employed in multiproduct hedging. In contrast, the GJR-MS-vine and benchmark

GJR-vine model do effectively model the four energy commodity prices, making them suitable

for multiproduct hedging of different hedge combinations. For every pair of energy commodities,

except for gas and coal, a multiproduct hedge that reduces the VaR and / or ES can be found.

Depending on the hedge and energy commodity pair, the VaR or ES can be reduced up to 7%.

Chapter 6

Conclusion & Discussion

In this paper, I build upon the work of Basetti et al. (2018), who modelled energy prices with

an AR-GARCH model and the corresponding dependence structure through a vine copula. I

introduce two enhancements to this model. Firstly, I replace the AR-GARCH volatilities with

a more suitable GJR-GARCH volatility model to capture the typical characteristics and leverage

effect possessed by energy commodities. Additionally, I incorporate regime-dependent dynamics by

implementing Markov-switching in the combined GJR-GARCH and vine copula model to include
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the regime switches often observed in energy commodity prices, resulting in the novel MS-GJR-MS-

vine model. Moreover, I propose a derivative of the MS-GJR-MS-vine model, which again employs

the combination of GJR-GARCH volatilities and standardized residuals connected through a vine

copula. However, Markov-switching is only incorporated for the standardized residuals, resulting in

the GJR-MS-vine model. Due to the large number of parameters, maximum likelihood estimation is

not feasible. To overcome this, I improve the stepwise EM-algorithm proposed by Stöber & Czado

(2014) by incorporating GJR-GARCH volatilities and integrating the log-likelihood evaluation

technique developed by Aas et al. (2009). After estimating the GJR-MS-vine and MS-GJR-MS-

vine models, I evaluate their performance in three ways on a dataset consisting of oil, gas, coal and

power prices for the period of January 1, 2015, to June 30, 2023. Firstly, I assess their forecasting

performance and compare it to other existing models. Secondly, I check the ability of the models

in correctly modelling the risks in terms of VaR and ES in an in-sample analysis. And, lastly, I

extend the multiproduct futures hedging model proposed by Sukcharoen & Leatham (2017) to four

variables and modify it such that it allows for mutual hedging, after which I employ the resulting

multiproduct hedging model.

The forecasting analysis shows that the MS-GJR-MS-vine model outperforms its benchmark

models and the GJR-MS-vine model in terms of forecast bias, mean absolute error and mean

squared prediction error for most energy commodities, highlighting the importance of jointly mod-

elling regime-switching volatility and standardized residuals of the energy returns. Although the

GJR-MS-vine model also outperforms its benchmark models in a period with stable energy prices,

it does not outperform the MS-GJR-MS-vine model. Further, for the in-sample risk analysis the

benchmark model with a one-regime combination of volatility and standardized residuals (GJR-

vine) and the GJR-MS-vine model best model the risks in terms of value-at-risk and expected

shortfall for, respectively, the coal and power unhedged profit and loss equations. The models

with regime-switching volatilities, like the MS-GJR-MS-vine model, do not perform well, suggest-

ing that the Markov-switching GJR-GARCH part of these models may not effectively capture the

extreme risks in energy price returns. Out-of-sample, multiproduct hedging shows the practical

usefulness of the models for energy consumers. The MS-GJR-MS-vine model inaccurately models

energy portfolio risks and it is consistently outperformed by benchmark models in reducing the

risks through hedging. Therefore, the MS-GJR-MS-vine model is not practically applicable for

energy consumers. However, the GJR-MS-vine and GJR-vine model do effectively model the four

energy commodity prices and cover most of the various hedge combinations to reduce the risks in

terms of value-at-risk and expected shortfall. By utilizing these methods, an energy consumer can

achieve up to a 7% reduction in value-at-risk or expected shortfall.
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During my research, I encountered limitations in time and computational power, especially

while estimating the Markov-switching GJR-GARCH, which is very time-consuming. Therefore, I

am not able to let the stepwise EM-algorithm fully converges to its optimal log-likelihood, update

the model every day in making one-step-ahead forecasts and to evaluate the forecast performance

with a smaller rolling window, a larger sample size or complementary samples. Further research

could try to resolve these problems when more computational power is available. Moreover, fur-

ther research should consider the costs of developing the program, investing in better computers

and the time involved in running the program before implementation. This cost-benefit analysis

will help determine whether the benefits from calculating and implementing hedges outweigh the

costs. Besides, from a more practical standpoint, transaction costs of buying and selling energy

commodities should be taken into account to provide a more realistic representation of the actual

trading scenario, as transaction costs directly impact the profitability of the hedging strategies.

Moreover, in forecasting the volatile and stable periods I have used different lengths for the estima-

tion windows, making the performance measures uncomparable between the two periods. Further

research should investigate whether the MS-GJR-MS-vine model performs better in a period with

volatile or stable energy prices. Furthermore, I investigate whether energy commodities can be

hedged mutually in the multiproduct hedging model. However, instead of hedging mutually the

energy commodities could be hedged with their futures as Sukcharoen & Leatham (2017) intended

the multiproduct futures hedging model. A last recommendation for further research involves the

energy transition. Given the ongoing global energy transition towards sustainable and renewable

energy sources, future research could, for example, employ the successful (benchmark) models

in quantifying the risks incurred from the energy transition from electricity obtained from fossil

fuels to more sustainable energy sources, like electricity generated from nuclear, hydro and solar

generating plants.
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Appendix A

Descriptive statistics daily energy com-

modity spot prices

As advocated in Section 1, energy commodity prices exhibit some typical characteristics. Energy

commodity prices are characterized by high volatility, high correlations and seasonality which

differentiate them from other types of financial data. Consequently, energy commodity prices

require special attention in modelling. In this section I demonstrate that the employed dataset

also exhibits the three aforementioned characteristics. First of all, energy commodities are very

volatile. This is supported by Table A.1, which shows high standard deviations, low minima and

high maxima for the energy commodities. The price of power even reached an ultime high at 9

September 2021 when one MWh was sold for 911.35 EUR.

Table A.1: Descriptive statistics of the energy commodity spot prices (in EUR) over the period January 1, 2015,
until June 30, 2023.

Sample size Mean St. Dev. Min. Max. Skewness Kurtosis
Oil 2217 31.087 10.744 9.180 63.034 0.921 0.512
Gas 2217 34.023 41.229 3.100 330.000 2.933 9.950
Coal 2217 6.652 5.580 2.870 28.753 2.222 4.188
Power 2217 87.644 81.212 6.135 911.347 3.050 12.968

Secondly, energy commodities are highly correlated. As depicted in Table A.2, the correlations

between the energy commodity prices are at least 0.631. This gives a good reason to model the

energy commodity prices jointly.

Table A.2: Correlations between the energy commodity spot prices over the period January 1, 2015, until June
30, 2023.

Oil Gas Coal Power
Oil 1.000 0.725 0.862 0.631
Gas 0.725 1.000 0.865 0.900
Coal 0.862 0.865 1.000 0.746
Power 0.631 0.900 0.746 1.000

And, lastly, energy commodity prices are prone to seasonality. Figures A.1a - A.1d substantiate

this statement, as it is clear that significant negative autocorrelations return at around 500 lags

and 1600 lags. In the case of oil spot prices there are also significant positive autocorrelations

observed at 1000 lags.
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(a) (b)

(c) (d)

Figure A.1: Graphs with the autocorrelations of the four energy commodities oil A.1a, gas A.1b, coal A.1c and
power A.1d and the corresponding 95% confidence intervals over the sample period January 1, 2015, until June
30, 2023.
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Appendix B

Derivation conditional pdf’s vine cop-

ulas

B.1 C-vine copula

f(r1, r2, r3, r4|Ft) = f3,4|1,2(r3, r4|r1, r2,Ft) · f1,2(r1, r2|Ft)

= c3,4|1,2(u3|1,2, u4|1,2|Ft) · f3|1,2(r3|r1, r2,Ft) · f4|1,2(r4|r1, r2,Ft) · f1,2(r1, r2|Ft)

= c3,4|1,2(u3|1,2, u4|1,2|Ft) ·
f2,3|1(r2, r3|r1,Ft)

f2|1(r2|r1,Ft)
·

f2,4|1(r2, r4|r1,Ft)
f2|1(r2|r1,Ft)

· f1,2(r1, r2|Ft)

= c3,4|1,2(u3|1,2, u4|1,2|Ft) · c2,3|1(u2|1, u3|1|Ft) · f3|1(r3|r1,Ft) · c2,4|1(u2|1, u4|1|Ft)

× f4|1(r4|r1,Ft) · f1,2(r1, r2|Ft)

= c3,4|1,2(u3|1,2, u4|1,2|Ft) · c2,3|1(u2|1, u3|1|Ft) ·
f1,3(r1, r3|Ft)

f1(r1|Ft)
· c2,4|1(u2|1, u4|1|Ft)

× f1,4(r1, r4|Ft)
f1(r1|Ft)

· f1,2(r1, r2|Ft)

= c3,4|1,2(u3|1,2, u4|1,2|Ft) · c2,3|1(u2|1, u3|1|Ft) · c1,3(u1, u3|Ft) · f3(r3|Ft)

× c2,4|1(u2|1, u4|1|Ft) · c1,4(u1, u4|Ft) · f4(r4|Ft) · f1,2(r1, r2|Ft)

= c3,4|1,2(u3|1,2, u4|1,2|Ft) · c2,3|1(u2|1, u3|1|Ft) · c1,3(u1, u3|Ft) · f3(r3|Ft)

× c2,4|1(u2|1, u4|1|Ft) · c1,4(u1, u4|Ft) · f4(r4|Ft) · c1,2(u1, u2|Ft) · f1(r1|Ft) · f2(r2|Ft),

= c1,2,3,4(u1, u2, u3, u4|Ft),

where ui = Fi(ri|Ft) and ui|j = Fi|j(ri|rj ,Ft) with i = 1, . . . , 4; i ̸= j. Reordering the terms such

that the most basic functions are in the front, gives

f(r1, r2, r3, r4|Ft) = f1(r1|Ft) · f2(r2|Ft) · f3(r3|Ft) · f4(r4|Ft) · c1,2(u1, u2|Ft) · c1,3(u1, u3|Ft)

× c1,4(u1, u4|Ft) · c2,3|1(u2|1, u3|1|Ft) · c2,4|1(u2|1, u4|1|Ft) · c3,4|1,2(u3|1,2, u4|1,2|Ft)

=
4∏

k=1
f (rk)

3∏
j=1

3∏
i=1

cj,j+i|1,...,j−1
(
F (rj |r1, . . . , rj−1), F (rj+i|r1, . . . , rj−1)

)
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Drop the terms between brackets and a simplified function is obtained:

f1234 = f1 · f2 · f3 · f4 · c1,2 · c1,3 · c1,4 · c2,3|1 · c2,4|1 · c3,4|1,2

=
4∏

k=1
f (rk)

3∏
j=1

3∏
i=1

cj,j+i|1,...,j−1

= c1,2,3,4,

matching the C-vine structure shown in Appendix C.1.

B.2 D-vine copula

f(r1, r2, r3, r4|Ft) = f1,4|2,3(r1, r4|r2, r3,Ft) · f2,3(r2, r3|Ft)

= c1,4|2,3(u1|2,3, u4|2,3|Ft) · f1,|2,3(r1|r2, r3,Ft) · f4|2,3(r4|r2, r3,Ft) · f2,3(r2, r3|Ft)

= c1,4|2,3(u1|2,3, u4|2,3|Ft) ·
f1,3|2(r1, r3|r2,Ft)

f3|2(r3|r2,Ft)
·

f2,4|3(r2, r4|r3,Ft)
f2|3(r2|r3,Ft)

· f2,3(r2, r3|Ft)

= c1,4|2,3(u1|2,3, u4|2,3|Ft) · c1,3|2(u1|2, u3|2|Ft) · f1|2(r1|r2,Ft) · c2,4|3(u2|3, u4|3|Ft)

× f4|3(r4|r3,Ft) f2,3(r2, r3|Ft)

= c1,4|2,3(u1|2,3, u4|2,3|Ft) · c1,3|2(u1|2, u3|2|Ft) ·
f1,2(r1, r2|Ft)

f2(r2|Ft)
· c2,4|3(u2|3, u4|3|Ft)

× f3,4(r3, r4|Ft)
f3(r3|Ft)

· f2,3(r2, r3|Ft)

= c1,4|2,3(u1|2,3, u4|2,3|Ft) · c1,3|2(u1|2, u3|2|Ft) · c1,2(u1, u2|Ft) · f1(r1|Ft)

× c2,4|3(u2|3, u4|3|Ft) · c3,4(u3, u4|Ft) · f4(r4|Ft) · f2,3(r2, r3|Ft)

= c1,4|2,3(u1|2,3, u4|2,3|Ft) · c1,3|2(u1|2, u3|2|Ft) · c1,2(u1, u2|Ft) · f1(r1|Ft)

× c2,4|3(u2|3, u4|3|Ft) · c3,4(u3, u4|Ft) · f4(r4|Ft) · c2,3(u2, u3|Ft) · f2(r2|Ft) · f3(r3|Ft),

= c1,2,3,4(u1, u2, u3, u4|Ft),

where ui = Fi(ri|Ft) and ui|j = Fi|j(ri|rj ,Ft) with i = 1, . . . , 4; i ̸= j. Rearranging the terms such

that the most basic functions are in the front, gives

f(r1, r2, r3, r4|Ft) = f1(r1|Ft) · f2(r2|Ft) · f3(r3|Ft) · f4(r4|Ft) · c1,2(u1, u2|Ft) · c2,3(u2, u3|Ft)

× c3,4(u3, u4|Ft) · c1,3|2(u1|2, u3|2|Ft) · c2,4|3(u2|3, u4|3|Ft) · c1,4|2,3(u1|2,3, u4|2,3|Ft)

=
4∏

k=1
f (rk)

3∏
j=1

3∏
i=1

ci,i+j|i+1,...,i+j−1
(
F (ri|ri+1, . . . , ri+j−1), F (ri+j |ri+1, . . . , ri+j−1)

)

Drop the terms between brackets and a simplified function is obtained, which matches the D-vine
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structure given in Appendix C.2.

f1234 = f1 · f2 · f3 · f4 · c1,2 · c2,3 · c3,4 · c1,3|2 · c2,4|3 · c1,4|2,3

=
4∏

k=1
f (rk)

3∏
j=1

3∏
i=1

ci,i+j|i+1,...,i+j−1

= c1,2,3,4,

Appendix C

Structures vine copulas

C.1 C-vine copula

Figure C.1: Four-dimensional C-vine copula structure
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C.2 D-vine copula

Figure C.2: Four-dimensional D-vine copula structure
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Appendix D

Derivation expectation of the pseudo

log-likelihood function of the energy

returns and states

f(r̃T , ST |ΨΨΨ) =
T∏

t=1

[ 2∑
k=1

(f(rt|St = k,ΨΨΨGV,k) · P [St = k|ΨΨΨMS ])I[St=k]

]

ln (f(r̃T , ST |ΨΨΨ)) =
T∑

t=1

[ 2∑
k=1

I[St=k]
(
ln (f(rt|St = k,ΨΨΨGV,k)) + ln (P [St = k|ΨΨΨMS ])

)]

EST |̃rT ,ΨΨΨ
[
ln (f( r̃T , ST |ΨΨΨ)

]
=

T∑
t=1

[ 2∑
k=1

EST |̃rT ,ΨΨΨ
[
I[St=k]

](
ln (f(rt|St = k,ΨΨΨGV,k)) + ln (P [St = k|ΨΨΨMS ])

)]

=
T∑

t=1

[ 2∑
k=1

P [St = k|̃rT ,ΨΨΨ]
(
ln (f(rt|St = k,ΨΨΨGV,k)) + ln (P [St = k|ΨΨΨMS ])

)]

=
T∑

t=1

[ 2∑
k=1

P [St = k|̃rT ,ΨΨΨ]
(
ln (f(rt|St = k,ΨΨΨGV,k))

)]

+
T∑

t=1

[ 2∑
k=1

P [St = k|̃rT ,ΨΨΨ]
(
ln (P [St = k|ΨΨΨMS ])

)]

=
T∑

t=1

[ 2∑
k=1

(
ξξξt|T (ΨΨΨ)

)
k

(
ln (f(rt|St = k,ΨΨΨGV,k))

)]

+
T∑

t=1

[
P [St = 1|̃rT ,ΨΨΨ]ln

(
P [St = 1|ΨΨΨMS ]

)
+
(
1− P [St = 1|̃rT ,ΨΨΨ]

)
ln
(
1− P [St = 1|ΨΨΨMS ]

)]
EST |̃rT ,ΨΨΨc

[
ln (f(r̃T , S̃T |ΨΨΨc+1)

]
=

T∑
t=1

[ 2∑
k=1

P [St = k|̃rT ,ΨΨΨc]
(
ln
(
f(rt|St = k,ΨΨΨc+1

GV,k)
)

+ ln
(
P [St = k|ΨΨΨc+1

MS ]
) )]

=
T∑

t=1

[ 2∑
k=1

(
ξξξt|T (ΨΨΨc)

)
k

(
ln
(
f(rt|St = k,ΨΨΨc+1

GV,k)
) )]

+
T∑

t=1

[
P [St = 1|̃rT ,ΨΨΨc]ln

(
P [St = 1|ΨΨΨc+1

MS ]
)
+
(
1− P [St = 1|̃rT ,ΨΨΨc]

)
ln
(
1− P [St = 1|ΨΨΨc+1

MS ]
)]

= A + B

(D.1)
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Appendix E

Hamilton filter

I obtain the conditional probabilities of the latent states given the current parameter set P [St =

k|̃rT ,ΨΨΨc] by running through the three steps of the Hamilton filter shown in Table E.1. Here

ξξξt|t−1 represents the vector of conditional state probabilities at time t conditioned on the available

information at time t − 1. The first step of the Hamilton filter involves making predicitons by

multiplying the state probabilities from the known previous time step t − 1 with the transition

probability matrix. Subsequently, the update step incorporates current information at time t to

enhance the state probabiltites. And, lastly, the state probabilities are revised by taking all the

information up until time T into consideration, resulting in smoothed state probabilities.

Table E.1: Hamilton filter procedure for a 2-state Markov switching model.

Step Computation

Initialize ξξξ1|0 =

 1−p22
2−p11−p22

1−p11
2−p11−p22

.

Prediction While t ≤ T ,
ξξξt|t−1 = P′ξξξt−1|t−1

with P defined as in Equation (4.4).

Update ξξξt|t =
(

P [St = 1|̃rt,ΨΨΨ]
P [St = 2|̃rt,ΨΨΨ]

)
=

(
f(rt|St = 1, r̃t−1,ΨΨΨGV,1)
f(rt|St = 2, r̃t−1,ΨΨΨGV,2)

)
⊙ ξξξt|t−1

(1 1)

[(
f(rt|St = 1, r̃t−1,ΨΨΨGV,1)
f(rt|St = 2, r̃t−1,ΨΨΨGV,2)

)
⊙ ξξξt|t−1

]
with f(rt|St = k, r̃t−1,ΨΨΨGV,k) the assumed return distribution given state k ∈
{1, 2} and ⊙ the element wise multiplication of vectors.

Smooth ξξξt|T = ξξξt|t ⊘P′
(
ξξξt+1|T ⊘ ξξξt+1|t

)
where ⊘ denotes the element wise division of vectors.
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Appendix F

Maximization step in the stepwise EM-

algorithm

F.1 Unconditional probabilities

The unconditional probabilities in part C of Table 4.1 can be derived analytically by taking the

derivative with respect to P [St = 1|ΨΨΨc+1
MS ] and using the property that the total probability should

sum up to 1, P [St = 1|ΨΨΨc+1
MS ] = 1− P [St = 2|ΨΨΨc+1

MS ],

P [St = 1|ΨΨΨc+1
MS ] = 1

T

T∑
t=1

P [St = 1|̃rT ,ΨΨΨc],

P [St = 2|ΨΨΨc+1
MS ] = 1

T

T∑
t=1

(
1− P [St = 1|̃rT ,ΨΨΨc]

)
.

(F.1)

Furthermore, the transition probabilities from Equation 4.4 can also be derived analytically. In

that case the joint energy return and state function from Equation 4.9 is split in the conditional

pdf of the energy returns and transition probabilities, such that P [St = k|ΨΨΨc+1
MS ] = P [St = k|St−1 =

1,ΨΨΨc+1
MS ]+P [St = k|St−1 = 2,ΨΨΨc+1

MS ]. For the complete derivation I refer to Stöber & Czado (2014).

P [St = 1|St−1 = 1,ΨΨΨc+1
MS ] =

∑T
t=1 P [St = 1, St−1 = 1|̃rT ,ΨΨΨc]∑T

t=1 P [St−1 = 1|̃rT ,ΨΨΨc]

P [St = 2|St−1 = 2,ΨΨΨc+1
MS ] =

∑T
t=1 P [St = 2, St−1 = 2|̃rT ,ΨΨΨc]∑T

t=1 P [St−1 = 2|̃rT ,ΨΨΨc]

(F.2)
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F.2 Log-likelihood functions of MS-GJR-MS-vine model for C-

and D-vine copulas

The stepwise maximization presented in Algorithms 1 and 2 employ, respectively, a regime-

switching GJR & C-vine with log-likelihood function

ln (f(rt|St = k,ΨΨΨc+1
GV,k)

)
=

n∑
i=1

ln
(

ϕ
(
ri,t|µc+1

i,k , (σc+1
i,k,t)

2
))

+
3∑

j=1

n−j∑
i=1

ln
(

cj,j+i|1,...,j−1
(
F (zj,t|z1,t, . . . , zj−1,t) , F (zj+i,t|z1,t, . . . , zj−1,t) |(V, C,ΨΨΨc+1

vine)k)
))

,

(F.3)

and a regime-switching GJR & D-vine with log-likelihood function

ln (f(rt|St = k,ΨΨΨc+1
GV,k)

)
=

n∑
i=1

ln
(

ϕ
(
ri,t|µc+1

i,k , (σc+1
i,k,t)

2
))

+
3∑

j=1

n−j∑
i=1

ln
(

ci,i+j|i+1,...,i+j−1
(
F (zi,t|zi+1,t, . . . , zi+j−1,t) , F (zi+j,t|zi+1,t, . . . , zi+j−1,t) |(V, C,ΨΨΨc+1

vine)k)
))

.

(F.4)

F.3 Parameters maximization step

The parameters obtained from the maximizations of the log-likelihood functions for the GJR-

GARCH volatilities and the bivariate copulas collectively constitute the parameter set for the

GJR-vine at iteration c + 1: ΨΨΨc+1
GV = {ΨΨΨc+1

GJR,i,ΨΨΨ
c+1
vine,{j,i} : ∀j, i} where

ΨΨΨc+1
GJR,i = {µc+1

i,1 , αc+1
0,i,1, αc+1

1,i,1, γc+1
i,1 , βc+1

i,1 , µc+1
i,2 , αc+1

0,i,2, αc+1
1,i,2, γc+1

i,2 , βc+1
i,2 } (F.5)

and

ΨΨΨc+1
vine,{j,i} = {Θ1,c+1

j,i , Θ2,c+1
j,i } (F.6)
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with Θk,c+1
j,i denoting the parameters of the bivariate copula i in layer j of the state k vine copula

during iteration c + 1.

Appendix G

Algorithms stepwise maximization of

GJR-MS-vine model

Algorithm 3 outlines the procedure for a GJR-GARCH volatilities along with a regime-switching

C-vine to connect the standardized residuals. On the other hand, Algorithm ?? shows the steps for

GJR-GARCH volatilities with a regime-switching D-vine to connect the standardized residuals.

Algorithm 3 Stepwise maximization of GJR-GARCH volatilities & a regime-switching C-vine
Require: Conditional state probabilities wc

1,t = P [St = 1|̃rT ,ΨΨΨc] and wc
2 = P [St = 2|̃rT ,ΨΨΨc]

for i← 1, . . . , n do
Maximize the log-likelihood of the GJR-GARCH model

LL = max
ΨΨΨc+1

GJR,i

{∑T
t=1 ln

(
ϕ
(
ri,t|µc+1

i , (σc+1
i,t )2))}

and obtain the corresponding standardized residuals: zi,t = ri,t−µi

σi,t
, ∀t.

uk
0,i = F (zi), where zi = (zi,1, . . . , zi,T ) , ∀k.

end for
log-likelihood = 0
for j ← 1, . . . , n− 1 do

for i← 1, . . . , n− j do

LL = max
ΨΨΨc+1

vine,{j,i}

{∑T
t=1

[
wc

1,tln
(
c1

j,i

(
u1

j−1,1, u1
j−1,i+1|Θ

1,c+1
j,i

))
+

wc
2,tln

(
c2

j,i

(
u2

j−1,1, u2
j−1,i+1|Θ

2,c+1
j,i

)) ]}
log-likelihood = log-likelihood + LL

end for
if j == n− 1 then

Stop
end if
for i← 1, . . . , n− j do

uk
j,i = h

(
uk

j−1,i+1, uk
j−1,1|Θ

k,c+1
j,i

)
end for

end for
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Algorithm 4 Stepwise maximization of GJR-GARCH volatilities & a regime-switching D-vine
Require: Conditional state probabilities wc

1,t = P [St = 1|̃rT ,ΨΨΨc] and wc
2 = P [St = 2|̃rT ,ΨΨΨc]

for i← 1, . . . , n do
Maximize the log-likelihood of the GJR-GARCH model

LL = max
ΨΨΨc+1

GJR,i

{∑T
t=1 ln

(
ϕ
(
ri,t|µc+1

i , (σc+1
i,t )2))}

and obtain the corresponding standardized residuals per state k: zi,t = ri,t−µi

σi,t
, ∀t.

uk
0,i = F (zi), ∀k, where zi = (zi,1, . . . , zi,T ).

end for
log-likelihood = 0
for i← 1, . . . , n− 1 do

LL = max
ΨΨΨc+1

vine,{1,i}

{∑T
t=1

[
wc

1,tln
(
c1

1,i

(
u1

0,i, u1
0,i+1|Θ

1,c+1
1,i

))
+ wc

2,tln
(
c2

1,i

(
u2

0,i, u2
0,i+1|Θ

2,c+1
1,i

)) ]}
log-likelihood = log-likelihood + LL

end for
uk

1,1 = h
(
uk

0,1, uk
0,2|Θ

k,c+1
1,1

)
, ∀k

for l← 1, . . . , n− 3 do
uk

1,2l = h
(
uk

0,l+2, uk
0,l+1|Θ

k,c+1
1,l+1

)
, ∀k

uk
1,2l+1 = h

(
uk

0,l+1, uk
0,l+2|Θ

k,c+1
1,l+1

)
, ∀k

end for
uk

1,2n−4 = h
(
uk

0,n, uk
0,n−1|Θ

k,c+1
1,n−1

)
, ∀k

for j ← 2, . . . , n− 1 do
for i← 1, . . . , n− j do

LL = max
ΨΨΨc+1

vine,{j,i}

{∑T
t=1

[
wc

1,tln
(
c1

j,i

(
u1

j−1,2i−1, u1
j−1,2i|Θ

1,c+1
j,i

))
+

wc
2,tln

(
c2

j,i

(
u2

j−1,2i−1, u2
j−1,2i|Θ

2,c+1
j,i

)) ]}
log-likelihood = log-likelihood + LL

end for
if j == n− 1 then

Stop
end if
uk

j,1 = h
(
uk

j−1,1, uk
j−1,2|Θ

k,c+1
j,1

)
, ∀k

end for
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Appendix H

Definitions Value-at-Risk and expec-

ted shortfall

The first upside risk measure is the widely used VaR. Linsmeier & Pearson (2000) provide us with

a definition.

Definition H.0.1 (Value-at-Risk). With a probability of x percent and a holding period of t days,

an entity’s VaR is the loss that is expected to be exceeded with a probability of only x percent during

the next t-day holding period. Alternatively, VaR is the loss that is expected to be exceeded during

x percent of t-day holding periods.

V aRx(πt) = −F −1
πt

(1− x), (H.1)

where F is the CDF corresponding to πt.

Note that the CDF F in our case is a multivariate copula. However, VaR is criticized because it

lacks subadditivity (Artzner et al., 1999; Tasche, 2002). Therefore, in addition to using the VaR I

make use of the ES or, equivalently, the conditional VaR as an alternative risk measure.

Definition H.0.2 (Expected shortfall). The ES is the expected loss given that losses exceed the

VaR. The ES at the confidence level x is given as:

ESx(πt) = −E[πt|πt ≤ −V aRx]. (H.2)
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Appendix I

Graphs hedge effectiveness VaR and

ES

(a)

(b)

(c)

Figure I.1: Minimum-VaR hedge effectiveness (in %) for P&L-1 at confidence level 90% (I.1a), 95% (I.1b) and
99% (I.1c) over the period January 1, 2015, until June 30, 2023.
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(a)

(b)

(c)

Figure I.2: Minimum-ES hedge effectiveness (in %) for P&L-1 at confidence level 90% (I.1a), 95% (I.1b) and 99%
(I.1c) over the period January 1, 2015, until June 30, 2023.
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Appendix J

Optimal minimum-VaR and minimum-

ES hedge ratios

Table J.1: Average out-of-sample hedge ratios with the standard deviation in parentheses corresponding to min-
imum Value-at-Risk hedged P&L-1 to 6 for various models and confidence intervals.

90% 95% 99%

b̂1 b̂2 b̂1 b̂2 b̂1 b̂2

P&L - 1
MS-GJR-MS-vine −0.019(0.096)∗∗ 0.071(0.039)∗∗∗ −0.027(0.174) 0.053(0.030)∗∗∗ −0.002(0.260) 0.038(0.026)∗∗∗

GJR-vine 0.027(0.121)∗∗ 0.001(0.001)∗∗∗ 0.120(0.296)∗∗∗ 0.001(0.003)∗∗∗ 0.155(0.398)∗∗∗ 0.005(0.015)∗∗∗

MS-GJR 0.148(0.109)∗∗∗ −0.007(0.002)∗∗ 0.267(0.048)∗∗∗ 0.008(0.001)∗∗∗ 0.137(0.045)∗∗∗ 0.010(0.004)∗

MS-vine 0.064(0.368)∗∗∗ 0.085(0.243)∗∗∗ 0.051(0.293)∗ 0.101(0.261)∗∗∗ 0.151(0.355)∗∗∗ 0.112(0.311)∗∗∗

GJR-MS-vine −0.002(0.034) 0.021(0.013)∗∗∗ 0.024(0.266) 0.017(0.016)∗∗∗ 0.035(0.269) 0.034(0.030)∗∗∗

P&L - 2
MS-GJR-MS-vine −0.287(0.694)∗∗∗ 0.865(0.340)∗∗∗ −0.302(0.779)∗∗∗ 0.857(0.358)∗∗∗ −0.232(0.897)∗∗∗ 0.883(0.334)∗∗∗

GJR-vine 0.024(0.255) 0.007(0.026)∗∗∗ 0.061(0.399) −0.004(0.074) 0.115(0.670)∗ 0.085(0.377)∗∗

MS-GJR −0.301(0.190)∗∗∗ 0.051(0.007)∗∗∗ −0.251(0.203)∗∗ 0.005(0.082) −0.341(0.090)∗∗∗ −0.001(0.001)∗∗

MS-vine 0.005(0.060) 0.022(0.010)∗∗∗ 0.033(0.221) 0.020(0.014)∗∗∗ 0.060(0.378) 0.033(0.023)∗∗∗

GJR-MS-vine 0.272(0.466)∗∗∗ 0.290(0.445)∗∗∗ 0.440(0.543)∗∗∗ 0.474(0.504)∗∗∗ 0.548(0.698)∗∗∗ 0.618(0.600)∗∗∗

P&L - 3
MS-GJR-MS-vine 0.634(0.211)∗∗∗ 0.106(0.093)∗∗ −0.450(0.541)∗ 0.263(0.175)∗∗∗ −0.183(0.150)∗ 0.491(0.302)∗

GJR-vine 0.073(0.242)∗∗∗ 0.014(0.081)∗ 0.116(0.520)∗∗ 0.044(0.224)∗∗ 0.161(0.804)∗∗ −0.115(0.698)∗

MS-GJR 0.101(0.765) 0.130(0.156)∗∗ 0.703(0.286)∗∗∗ 0.078(0.123)∗∗ 0.459(0.039)∗∗∗ 0.253(0.054)∗∗∗

MS-vine −0.131(0.712)∗ 0.745(0.436)∗∗∗ −0.287(0.791)∗∗∗ 0.800(0.384)∗∗∗ −0.275(0.923)∗∗∗ 0.870(0.416)∗∗∗

GJR-MS-vine 0.320(0.466)∗∗∗ 0.310(0.444)∗∗∗ 0.331(0.541)∗∗∗ 0.330(0.459)∗∗∗ 0.451(0.576)∗∗∗ 0.377(0.570)∗∗∗

P&L - 4
MS-GJR-MS-vine 0.821(0.350)∗∗∗ 0.125(0.712)∗ 0.085(0.032)∗∗∗ 0.051(0.092)∗ 0.350(0.132)∗∗∗ 0.349(0.087)∗∗∗

GJR-vine 0.026(0.139)∗∗ 0.011(0.062)∗ 0.050(0.309) 0.026(0.130) 0.076(0.726) 0.122(0.590)∗∗

MS-GJR 0.751(0.282)∗∗∗ 0.579(0.183)∗∗∗ 0.659(0.191)∗∗∗ 0.437(0.598)∗∗ 0.532(0.056)∗∗∗ 0.704(0.098)∗∗∗

MS-vine 0.534(0.504)∗∗∗ 0.527(0.416)∗∗∗ 0.596(0.504)∗∗∗ 0.530(0.458)∗∗∗ 0.698(0.568)∗∗∗ 0.715(0.429)∗∗∗

GJR-MS-vine 0.181(0.339)∗∗∗ 0.136(0.426)∗∗∗ 0.301(0.428)∗∗∗ 0.079(0.537) 0.355(0.438)∗∗∗ 0.456(0.580)∗∗∗

P&L - 5
MS-GJR-MS-vine 0.054(0.082)∗ 0.004(0.002)∗∗∗ 0.034(0.564) 0.039(0.012)∗∗∗ 0.013(0.021)∗∗ 0.059(0.019)
GJR-vine 0.001(0.000)∗∗∗ 0.001(0.003)∗∗ 0.001(0.001)∗∗∗ 0.001(0.003)∗∗∗ 0.001(0.002)∗ 0.006(0.013)∗∗∗

MS-GJR 0.081(0.057)∗∗∗ 0.083(0.091)∗∗∗ 0.057(0.398)∗∗ 0.156(0.171)∗∗∗ 0.237(0.651)∗∗ 0.189(0.242)∗∗

MS-vine 0.025(0.136)∗ 0.063(0.249)∗∗∗ 0.074(0.247)∗∗∗ 0.112(0.305)∗∗∗ 0.118(0.351)∗∗∗ 0.103(0.343)∗∗∗

GJR-MS-vine 0.014(0.006)∗∗∗ 0.009(0.014)∗∗∗ 0.012(0.005)∗∗∗ 0.006(0.010)∗∗∗ 0.009(0.005)∗∗∗ 0.012(0.018)∗∗∗

P&L - 6
MS-GJR-MS-vine 0.062(0.035)∗∗ 0.008(0.023)∗ 0.179(0.275)∗∗∗ 0.062(0.031)∗∗∗ 0.258(0.148)∗∗∗ 0.059(0.007)∗∗∗

GJR-vine 0.005(0.019)∗∗∗ 0.000(0.001)∗∗∗ 0.012(0.047)∗∗∗ 0.000(0.001)∗∗∗ 0.062(0.284)∗∗ 0.003(0.009)∗∗∗

MS-GJR 0.042(0.167)∗ 0.495(0.157)∗∗∗ 0.061(0.072)∗∗∗ 0.183(0.475)∗ 0.068(0.043)∗∗∗ 0.062(0.036)∗∗∗

MS-vine 0.004(0.009)∗∗∗ 0.015(0.014)∗∗∗ 0.006(0.012)∗∗∗ 0.016(0.014)∗∗∗ 0.014(0.020)∗∗∗ 0.018(0.016)∗∗∗

GJR-MS-vine 0.044(0.140)∗∗∗ 0.009(0.007)∗∗∗ 0.224(0.396)∗∗∗ 0.012(0.012)∗∗∗ 0.319(0.462)∗∗∗ 0.035(0.026)∗∗∗

Note: for every hedge ratio a t-test is performed with null hypothesis that it is equal to zero. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table J.2: Average out-of-sample hedge ratios with the standard deviation in parentheses corresponding to min-
imum Expected Shortfall hedged P&L-1 to 6 for various models and confidence intervals.

90% 95% 99%

b̂1 b̂2 b̂1 b̂2 b̂1 b̂2

P&L - 1
MS-GJR-MS-vine 0.233(0.456) 0.049(0.025)∗∗ 0.294(0.549)∗∗∗ 0.044(0.022)∗∗∗ 0.175(0.684)∗∗∗ 0.042(0.024)∗∗∗

GJR-vine 0.543(0.321)∗∗∗ 0.011(0.009)∗∗ 0.827(0.267)∗∗∗ 0.007(0.005)∗∗∗ 0.611(0.485)∗∗∗ 0.021(0.015)∗∗∗

MS-GJR 0.109(0.582)∗∗∗ 0.061(0.123)∗∗ 0.562(0.319)∗∗∗ 0.040(0.162)∗∗∗ 0.395(0.674)∗∗ 0.013(0.008)∗∗∗

MS-vine 0.220(0.368)∗∗∗ 0.191(0.381)∗∗∗ 0.219(0.368)∗∗∗ 0.191(0.382)∗∗∗ 0.221(0.368)∗∗∗ 0.189(0.382)∗∗∗

GJR-MS-vine 0.906(0.286)∗∗∗ 0.033(0.01)∗∗∗ 0.860(0.337)∗∗∗ 0.041(0.012)∗∗∗ 0.585(0.479)∗∗∗ 0.056(0.016)∗∗∗

P&L - 2
MS-GJR-MS-vine 0.967(0.212)∗∗∗ 0.938(0.200)∗∗∗ 0.827(0.541)∗∗∗ 0.950(0.174)∗∗∗ 0.405(0.903)∗∗∗ 0.954(0.239)∗∗∗

GJR-vine 0.855(0.444)∗∗∗ 0.077(0.051)∗∗∗ 0.690(0.556)∗∗∗ 0.124(0.118)∗∗∗ 0.347(0.798)∗∗∗ 0.233(0.524)∗∗∗

MS-GJR 0.812(0.385)∗∗∗ 0.071(0.298)∗∗∗ 0.363(0.210)∗∗∗ 0.895(0.637)∗∗∗ 0.561(0.238)∗∗∗ 0.157(0.129)∗∗∗

MS-vine 0.890(0.309)∗∗∗ 0.031(0.008)∗∗∗ 0.899(0.298)∗∗∗ 0.036(0.010)∗∗∗ 0.629(0.481)∗∗∗ 0.044(0.016)∗∗∗

GJR-MS-vine 0.899(0.420)∗∗∗ 0.048(0.015)∗∗∗ 0.726(0.383)∗∗∗ 0.060(0.019)∗∗∗ 0.656(0.455)∗∗∗ 0.079(0.022)∗∗∗

P&L - 3
MS-GJR-MS-vine 0.849(0.310)∗∗∗ 0.883(0.356)∗∗∗ 0.810(0.417)∗∗∗ 0.940(0.135)∗∗∗ 0.475(0.811)∗∗∗ 0.854(0.239)∗∗∗

GJR-vine 0.998(0.018)∗∗∗ 0.615(0.458)∗∗∗ 0.984(0.170)∗∗∗ 0.523(0.733)∗∗∗ 0.719(0.689)∗∗∗ 0.168(0.949)∗

MS-GJR 0.622(0.326)∗∗∗ 0.723(0.419)∗∗∗ 0.723(0.301)∗∗∗ 0.905(0.167)∗∗∗ 0.612(0.468)∗∗∗ 0.657(0.269)∗∗∗

MS-vine 0.834(0.469)∗∗∗ 1.000(0.000)∗∗∗ 0.766(0.612)∗∗∗ 1.000(0.000)∗∗∗ 0.538(0.838)∗∗∗ 1.000(0.000)∗∗∗

GJR-MS-vine 0.723(0.417)∗∗∗ 0.822(0.317)∗∗∗ 0.627(0.379)∗∗∗ 0.865(0.285)∗∗∗ 0.670(0.449)∗∗∗ 0.765(0.356)∗∗∗

P&L - 4
MS-GJR-MS-vine 0.768(0.229)∗∗∗ 0.848(0.280)∗∗∗ 0.731(0.318)∗∗∗ 0.823(0.321)∗∗∗ 0.556(0.538)∗∗∗ 0.623(0.434)∗∗∗

GJR-vine 0.879(0.270)∗∗∗ 0.148(0.103)∗∗∗ 0.809(0.447)∗∗∗ 0.259(0.206)∗∗∗ 0.491(0.816)∗∗∗ 0.505(0.555)∗∗∗

MS-GJR 0.549(0.412)∗∗∗ 0.721(0.215)∗∗∗ 0.410(0.347)∗∗∗ 0.810(0.199)∗∗∗ 0.425(0.671)∗∗∗ 0.748(0.119)∗∗∗

MS-vine 1.000(0.000)∗∗∗ 0.969(0.137)∗∗∗ 1.000(0.000)∗∗∗ 0.981(0.087)∗∗∗ 0.992(0.080)∗∗∗ 0.999(0.016)∗∗∗

GJR-MS-vine 0.824(0.302)∗∗∗ 0.919(0.240)∗∗∗ 0.712(0.347)∗∗∗ 0.888(0.184)∗∗∗ 0.622(0.508)∗∗∗ 0.770(0.163)∗∗∗

P&L - 5
MS-GJR-MS-vine 0.763(0.281)∗∗∗ 0.132(0.320)∗∗ 0.025(0.018)∗∗ 0.019(0.014)∗∗∗ 0.046(0.041)∗∗∗ 0.061(0.024)∗∗∗

GJR-vine 0.001(0.001)∗∗∗ 0.018(0.005)∗∗∗ 0.001(0.001)∗∗∗ 0.021(0.006)∗∗∗ 0.001(0.003)∗∗∗ 0.031(0.014)∗∗∗

MS-GJR 0.196(0.402)∗ 0.185(0.236)∗∗ 0.078(0.027)∗∗∗ 0.068(0.014)∗ 0.072(0.029)∗∗∗ 0.081(0.027)∗∗∗

MS-vine 0.223(0.367)∗∗∗ 0.193(0.380)∗∗∗ 0.223(0.367)∗∗∗ 0.193(0.381)∗∗∗ 0.224(0.366)∗∗∗ 0.191(0.381)∗∗∗

GJR-MS-vine 0.009(0.003)∗∗∗ 0.038(0.014)∗∗∗ 0.008(0.003)∗∗∗ 0.038(0.014)∗∗∗ 0.007(0.003)∗∗∗ 0.042(0.015)∗∗∗

P&L - 6
MS-GJR-MS-vine 0.756(0.271)∗∗∗ 0.039(0.017)∗∗∗ 0.717(0.315)∗∗∗ 0.084(0.039)∗∗∗ 0.537(0.548)∗∗∗ 0.091(0.047)∗∗∗

GJR-vine 0.231(0.070)∗∗∗ 0.002(0.001)∗∗∗ 0.432(0.160)∗∗∗ 0.004(0.002)∗∗∗ 0.728(0.420)∗∗∗ 0.011(0.010)∗∗∗

MS-GJR 0.434(0.392)∗∗∗ 0.048(0.025)∗∗∗ 0.347(0.352)∗∗∗ 0.024(0.019)∗∗∗ 0.339(0.643)∗∗∗ 0.079(0.017)∗∗∗

MS-vine 0.037(0.021)∗∗∗ 0.022(0.019)∗∗∗ 0.037(0.021)∗∗∗ 0.021(0.019)∗∗∗ 0.037(0.024)∗∗∗ 0.020(0.021)∗∗∗

GJR-MS-vine 0.926(0.215)∗∗∗ 0.015(0.005)∗∗∗ 0.960(0.158)∗∗∗ 0.028(0.008)∗∗∗ 0.946(0.263)∗∗∗ 0.051(0.016)∗∗∗

Note: for every hedge ratio a t-test is performed with the null hypothesis that it is equal to zero. * p < 0.10, ** p < 0.05, *** p < 0.01
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