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Abstract

Recent developments in the field of sequential hypothesis testing have led to a novel method

involving Safe Anytime Valid Inference (SAVI) based confidence bounds, which allows for con-

tinuous data monitoring without increasing Type-I errors. The study focuses on the applicability

of this novel method in the context of A/B testing. The power and size of the novel method

are benchmarked against various time-valid and fixed-n methods, using both simulated and

real-world data. It is observed that the SAVI-based confidence bounds are particularly effective

in scenarios where the mean remains similar between both arms of the distribution, yet the

distributions differ in other quantiles. When there is a shift in mean between both arms, other

methodologies show higher power. Furthermore, we propose and assess two potential enhance-

ments to the methodology involving increased assumptions on the data in arm A. The results

indicate that these enhancements can increase the test’s power when the proposed assumptions

hold yet heavily increase Type-I errors if the assumptions do not hold. To conclude, this pa-

per presents practical guidelines for utilizing the SAVI-based confidence bounds in real-world

applications.
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Chapter 1

Introduction

A/B testing is a method of comparing two versions of a webpage, app, or other product to

determine which one performs better with users. A/B tests are becoming increasingly popular,

with large tech companies running thousands of experiments at the same time1. In the past,

A/B tests mostly relied on the principle of fixed-n significance tests. In this method, researchers

determine a sample size before exploring the results. Until this sample size is reached, research-

ers are not allowed to make a decision about the outcomes, which could be disadvantageous.

To illustrate such a disadvantageous situation, imagine an experiment where data is received

over time. If the experiment yields adverse effects, for instance, by heavily diminishing the user

experience, the logical action would be to terminate the experiment immediately upon identi-

fication. When noticing this, a researcher will be tempted to end the experiment prematurely.

However, traditional statistical methods for A/B testing don’t allow for early stopping, as they

are designed to make a final decision at the experiment’s end. While using fixed-n tests, “peek-

ing” at data before the endpoint could increase the chance of falsely rejecting the null hypothesis,

or Type I error. This is illustrated in Figure 1.1, where the curves represent the actual false

positive rate when the null hypothesis is rejected the first time the p-value drops below a specific

threshold. The figure shows a huge increase in the Type I error of the null hypothesis.

Figure 1.1: Proportion of false rejections during continuous monitoring using fixed-n tests.

This phenomenon underscores the importance of a statistical approach compensating for this

issue. It’s natural for users to want to be able to adjust their sample size during the experiments

due to the costs associated with prolonged experiments. However, it’s critical to control the

1Some examples of companies running these tests are described by Xu, Chen, Fernandez, Sinno and Bhasin
(2015) at LinkedIn, Kohavi et al. (2013) at Microsoft, and Hohnhold, O’Brien and Tang (2015) at Google.
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false positive probability at the prescribed level alpha, regardless of when a decision to stop is

made.

A potential solution to this dilemma is sequential analysis, which allows to analyze the

data whilst this is collected. One method that utilizes sequential analysis is Safe Anytime-

Valid Inference (SAVI), recently developed by different teams of researchers2. SAVI allows

for building test statistics that continuously monitor data without increasing the probability of

falsely rejecting the null hypothesis. This creates the freedom to stop or continue the experiment

at any time. Howard and Ramdas (2022) introduced confidence bounds built using the SAVI

methodology, allowing them to be continuously monitored. This means the test could be stopped

when a significant difference was found without harming the Type I error. The SAVI-based

confidence bounds could be used to test whether there is a significant difference between the

two arms of a distribution or, in our case, an A/B test. Whereas other methodologies are often

based on assumptions, their methodology is non-parametric, which means there’s no need to

make any assumptions about the data distribution. Finally, the methodology by Howard and

Ramdas (2022) identifies dissimilarities across all quantiles of the distribution, no matter whether

this is located near the tails or the median of the distribution, and allows for identification of

dissimilarities between the two arms without a difference in the means between the distributions.

The methodology shows potential in A/B testing, as has also been shown by Lindon, Sanden

and Shirikian (2022), who were the first and only ones to document the application of the method

proposed by Howard and Ramdas (2022) within A/B testing. Their study demonstrated the

functioning of SAVI-based confidence bounds across two different case studies, providing initial

evidence of its practical applicability. However, there is a lack of comparative, reproducible

outcomes on this topic.

These gaps in the existing research prompt us to pose the following question:

How does the methodology of Howard and Ramdas compare to established sequential and

non-sequential tests in performance, and when is its use advisable in A/B test scenarios?

The test results by Lindon et al. (2022) provide little information about the relative strength

of the methodology by Howard and Ramdas (2022), as no comparison with other methods

was provided. Moreover, the data utilized in their study were treated with a high degree of

confidentiality, which limited the insights that could be drawn about the method and made the

study not particularly insightful and non-reproducible.

This thesis compares the methodology by Howard and Ramdas (2022) to four different types

of tests. The first type of test is similar to the SAVI-based confidence bounds, which are valid

over time and examine all quantiles of a distribution. The second type is a test that is valid

over time but only focuses on a shift in the mean of the distribution, as proposed by (Johari

et al., 2022) and referred to as the mSPRT methodology. The third type is a test that creates

confidence bounds which are valid over all quantiles but only for a fixed-n, known as the DKW

bounds. The fourth type includes a test with a fixed-n and only focuses on a shift in the mean.

2The teams of researchers consist of Johari, Koomen, Pekelis and Walsh (2022), Howard, Ramdas, McAuliffe
and Sekhon (2021), Grünwald, de Heide and Koolen (2020), Ramdas, Grünwald, Vovk and Shafer (2022) and
Shafer et al. (2021) and more.
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Different simulations were performed with an intuitive relation to A/B testing. As found in

the literature, all methodologies except the fixed-n methodology control the Type I error whilst

continuously monitoring the data.

As for the power of the test, which is measured by the number of observations needed to

reject the null hypothesis in case the alternative is true, the SAVI-based confidence bounds

outperform the other methodologies that are valid over time and all quantiles. However, the

SAVI-based confidence bounds underperform as opposed to the mSPRT test type, which is valid

over time but not over all quantiles. The SAVI-based confidence bounds need 12 up to 50

times more observations to reject the null than the mSPRT methodology. Through analysis of

the different simulations, circumstances that favour or hinder the relative performance of the

SAVI-based methodology are identified.

A/B test scenarios are introduced where there is no difference in mean between both arms

of the distribution, yet there is a relevant difference in distribution. An example could be the

time spent on a certain website. Due to errors in the website of users in arm B, the lower tail of

arm B could be significantly lower than in arm A. However, the mean between arm A and arm

B could remain equal due to a slightly increased performance for the other users in arm B. In

this scenario, SAVI confidence bounds are preferred over the mSPRT, which solely focuses on a

difference in mean.

The SAVI confidence bounds are then enhanced by using increased information for the data

in arm A. Two different enhancements are proposed, namely SAVI-PA, assuming the data in arm

A to come from a parametric distribution, and SAVI-HD, including historical data for arm A, by

assuming the data in arm A to be constant over time. When simulating a shift in the mean of two

normal distributions, the enhancements show a high increase in power, needing approximately

8x and 5x fewer observations to reject the null for SAVI-PA and SAVI-HD, respectively. We find

that if the assumptions do not hold, for example, when assuming normality whilst simulating

with skewness in the distribution of arm A using SAVI-PA, the Type I error heavily increases.

The methodologies are then tested on two real-world datasets. These outcomes correspond

to the results found in the simulations, indicating an increase in the performance of SAVI-based

confidence bounds as opposed to other methodologies that are valid for all quantiles and over

time, yet a decreased performance compared to the valid over time mSPRT methodology.

In the concluding section of this thesis, guidance is provided on the applicability of the SAVI-

based confidence bounds in the context of A/B testing. From the findings of this research, it

is recommended to utilize the SAVI-based confidence bounds in situations where (i) a potential

discrepancy is expected between both arms, without a difference in the means of both arms,

(ii) there is an ample number of observations or (iii) the means of both arms remain stable and

don’t exhibit shifts over time. If any of the above conditions are not met, it is advisable to

explore alternative methodologies over the SAVI-based confidence bounds.

The paper is organized as follows: Chapter 2 offers a comprehensive review of the relevant

literature. Chapter 3 details the proposed methodology, and Chapter 4 describes the proposed

enhancements of the investigated methodology. Chapter 5 describes the simulations used in this

study and the most interesting results from these simulations. Chapter 6 presents the findings

obtained from applying the methods to real-world datasets. Finally, Chapter 7 encapsulates the
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conclusion and provides a discussion of the results and their implications.
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Chapter 2

Related work

The literature review is segmented into different parts. It begins with an introduction to A/B

testing in Section 2.1. Following this, sequential analysis, the Safe Anytime-valid Inference

(SAVI) methodology and the SAVI-based confidence bounds by Howard and Ramdas (2022)

are introduced in Section 2.2, 2.3 and 2.4. The concluding three sections discuss other test

methodologies which are valid over all quantiles, test methodologies valid over time yet not over

all quantiles, and the known differences between tests in Section 2.5, 2.6 and 2.7.

2.1 Introduction to A/B testing

A/B testing, also known as online controlled experiments (OCEs), has gained significant pop-

ularity in the digital technology industry. It has become a widely used approach for measuring

the impact of products and services, informing business decisions, and even playing a crucial

role in the development of machine learning algorithms. In essence, A/B testing involves ran-

domly dividing a group of entities, such as website users, into two groups: a control group and

a treatment group. The control group experiences the existing version of the system, while the

treatment group is exposed to a modified version, which could include changes like displaying

a “free delivery” banner on a website. By collecting responses and measuring decision metrics

from both groups, statistical tests are employed to compare the performance of the variants

and draw causal conclusions about the impact of the treatment. The variant demonstrating

a positive impact on the metrics of interest is retained, while the other variant is discarded.

A/B testing can either be used to trace a possible upgrade or check for downgrades in a newer

software version. A/B testing enables organizations to interact with many subjects within a

short period, resulting in a vast amount of data that can be collected and analyzed. Companies

like Google, Linkedin, and Microsoft run thousands of experiments daily, highlighting the wide-

spread adoption of A/B testing as a standard practice in the industry (Xu et al., 2015; Kohavi

et al., 2013; Hohnhold et al., 2015).

Historically, A/B testing has mostly relied on fixed-n statistical tests (Kohavi, Tang & Xu,

2020a). To adapt early to changes in the test, research could use a test statistic that allows for

sequential analysis.
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2.2 Introduction to Sequential Analysis

The concept of sequential analysis is first developed by Wald (1945). Wald’s key idea involves

examining the data after each observation, or group of observations, and then deciding whether

to stop or continue based on the statistical evidence at that point. This process could involve

accepting a hypothesis, rejecting a hypothesis, or continuing with data collection. Wald’s se-

quential probability ratio test (SPRT) is a key method in sequential analysis. The basis of the

SPRT is that after each observation, it calculates a likelihood ratio and compares it to two

predefined thresholds. If the ratio exceeds or falls below the thresholds, the test stops and

makes a decision to accept or reject the null hypothesis. If not, the process continues with the

next observation. In 1970, Robbins (1970) extended Wald’s theorem and introduced the idea of

mixture SPRT (mSPRT). In the method of mixtures, one replaces the likelihood ratio with a

mixture ∫ ∏
i

[fλ (Xi) /f0 (Xi)] dF (λ). (2.1)

The formula represents the evidence against H0 in favour of a mixture of alternative hypo-

theses. If the evidence achieves a sufficient magnitude, the test will reject H0. In the mSPRT,

data is assumed to be drawn from a parametric distribution.

Darling and Robbins (1967) first introduced the concept of confidence sequences. They

described a confidence sequence as a series of confidence intervals calculated after each data

point is observed, each of which covers the true parameter value with a certain confidence level

at every point in time. The research focused on the confidence intervals of the mean, median

and variance. An example of the confidence sequence of the mean of a normal distribution

with mean 0 and standard deviation 1 is shown in Figure 2.1. We note the confidence sequence

shrinking as the number of observations increases.

Figure 2.1: Example of confidence sequence of the mean.
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2.3 Safe Anytime Valid Inference (SAVI)

Safe Anytime Valid Inference (SAVI) is a novel method to build sequential tests that has been

getting a lot of attention recently from different groups of researchers (Ramdas, Grünwald et

al., 2022; Grünwald et al., 2020; Howard et al., 2021; Shafer et al., 2021). The methodology

involves using mathematical tricks to build confidence intervals that are valid over time.

The concept builds upon Markov’s inequality and Ville’s inequality.

2.3.1 Markov’s Inequality

Markov’s Inequality is a principle in probability theory that provides an upper limit on the

probability that a non-negative random variable exceeds a certain value. The inequality is

formulated as follows.

Let X be a non-negative random variable and a be a positive real number. Then, the

probability that X is at least a is less than or equal to the expected value of X divided by a.

This can be expressed mathematically as

P

[
X ≥ E[X]

a

]
≤ a. (2.2)

Here’s a simple example: If you know that the average (expected value) of a non-negative

random variable, say the amount of rain per day in cm, is 3, Markov’s Inequality allows you to

make statements like: “The probability that it will rain more than 6 cm is less than or equal to

1/2.”

We could also build this into a test statistic. Say we have a distribution where the expected

value is again 3. We want to test whether a new observation is drawn from the distribution.

If we test confidence level alpha 0.1, our 90% confidence interval for a new observation, our

non-negative X would be between 0 and 30. If we find that our new observation is above 30, we

reject that this observation belongs to the distribution with level alpha.

It’s important to note that while Markov’s Inequality can provide upper bounds, these are

not always tight bounds. They may sometimes be rather loose, especially when the variable’s

distribution is known. However, if only the expectation of the distribution is known, it still

provides potentially useful information.

2.3.2 Ville’s Inequality

Ville’s inequality is a time-uniform generalization of Markov’s inequality. It establishes an upper

bound on the probability that a supermartingale exceeds a certain value.

A supermartingale is a sequence of random variables X0, X1, X2, . . . such that for all t ≥ 0,

the following inequality holds:

E[Xt+1 | X0, X1, . . . , Xt] ≤ Xt.

Now, let Xt be a non-negative super martingale with an initial expected value of one and a
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be a value between 0 and 1. Ville’s inequality states that

P

[
sup
t∈T

Xt ≥
E[X0]

a

]
≤ a. (2.3)

In words, the statement says that if Xt is a sequence of random variables X0, X1, X2, . . . and

Xt is a supermartingale, the chance that the highest value of Xt passes E[X0]/a is less than or

equal to a.

If we went back to our example, this would suggest that if the sequence of the amount of

rain would be a supermartingale, i.e. the expected rain the day after is always equal to or less

than the expected rain today, and the rain on day 0 was 3cm, the chance that we get any day

with more than 6cm of rain is less than or equal to 1/2.

For the test statistic, we now assume the expected value at time 0 to be equal to 3, and we

test with alpha 0.1. We reject the null hypothesis if we find that any value of X0, X1, X2, . . .

and Xt is higher than 30.

2.3.3 Extension to SAVI

SAVI builds further upon Markov’s and Ville’s inequality. However, SAVI uses some terminology

which is essential to tackle.

The SAVI methodology is described with e-values and e-processes. An e-value is a test

statistic with an expected value that is less than or equal to one under the null hypothesis. In

other words,

EH0 [X] ≤ 1. (2.4)

When we observe a large e-value, it suggests that the null hypothesis may not be true, and E

can be interpreted as the amount of evidence found against it. If this is extended to sequential

theorem, it is called an e-process. An e-process for H0 is a nonnegative sequence Xt that satisfies

for any arbitrary stopping time τ ,

EH0 [Xτ ] ≤ 1. (2.5)

An e-process has high similarity with a supermartingale where the expected value of X0 is 1.

However, there are e-processes that are no non-negative supermartingales, as shown by Ramdas,

Ruf, Larsson and Koolen (2022) and Ramdas, Ruf, Larsson and Koolen (2020).

Finding a high value for the e-process suggests evidence against the null hypothesis. As for

how substantial the evidence against the null hypothesis is, we refer back to Ville’s inequality.

This states that

P (Eτ ≥ 1/α) ≤ α. (2.6)

This can be used to build confidence bounds, as we did earlier. The expected value of the

e-process under the null is equal to or less than 1. If we test with alpha equal to 0.1, this would

mean that if we find a value for Xτ at any arbitrary stopping time τ to be larger than 10, we

reject the null hypothesis with confidence level alpha. Controversially, if we do not find a value

larger than 10, we can continue testing without violating the Type I error. This makes the SAVI
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methodology well-suited for building sequential tests. Ramdas, Grünwald et al. (2022) provides

more background information on the development of SAVI and on how an e-value or e-process

is built.

2.4 Introduction to SAVI-based Confidence bounds

There are several different test methodologies built from SAVI. The main methodology discussed

in this paper is by Howard and Ramdas (2022), which uses the SAVI framework to create

a confidence sequence for a whole distribution. Confidence sequences are confidence bounds

that are valid over time without violating the Type I error. Just like confidence bounds, the

confidence sequences are uniformly valid over all quantiles, i.e. not solely the median or another

specific quantile. Confidence sequences will often be referred to as confidence bounds that are

valid over time. The following section provides insight into how these bounds are built.

2.4.1 Introduction to Methodology by Howard & Ramdas

The confidence sequence by Howard and Ramdas (2022) can be interpreted as a natural nonpara-

metric generalization of the mixture SPRT, introduced in Section 2.2. Whilst the theory involves

some mathematical tricks, as explained in the paper, this section focuses on implementing these

confidence bounds practically.

The methodology by Howard and Ramdas (2022) builds the confidence sequences around

the empirical cumulative distribution function (eCDF). The eCDF is a step function that jumps

up by 1/t at each of the t data points. If we have a sample of t observations X1, X2, ..., Xt, the

eCDF Ft at a point x is defined as:

Ft(x) =
1

t

t∑
i=1

I(Xi ≤ x), (2.7)

where I is an indicator function.

The eCDF provides an empirical estimate of the true underlying distribution function.

Howard and Ramdas (2022) build confidence sequences around this eCDF. A confidence

sequence can be described by the following equation

P
[
F l
t (α, x) ≤ F (x) ≤ F u

t (α, x), ∀x ∈ X,∀t ∈ T
]
≥ 1− α, (2.8)

where F l
t (α, x) is the lower bound of the confidence interval, F u

t (α, x) is the higher bound, and a

is a value between 0 and 1. This confidence sequence states that the probability that all values

of F (x) under the null hypothesis lies within F l
t (α, x) and F u

t (α, x) for every moment in time is

at least 1− α. The lower and upper bounds of the confidence sequence are calculated by

F u
t (α, x) = min (1, Ft(x) + ϵt(α))

F l
t (α, x) = max (0, Ft(x)− ϵt(α)) ,

(2.9)

where different “drop-in” replacements can be used for ϵt.
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This is where the methodologies by Howard and Ramdas (2022) comes into place. Using the

SAVI methodology, they propose to use the following value for ϵt,

ϵt(α) = 0.85

√
log log(et) + 0.8 log(1612/α)

t
. (2.10)

By providing the drop-in for ϵt, the empirical CDF, including confidence sequence is built.

These results can be used to test Fa(x) ≤ Fb(x) or Fa(x) = Fb(x)[4, 9].

An example of a confidence sequence over all quantiles, such as the one built by Howard and

Ramdas (2022), can be found in Figure 2.2. The dark red line shows the eCDF for a specific

point in time, whilst the pink region marks everything that is inside the confidence sequence.

The more observations, the smaller the pink region will become.

Figure 2.2: Example of empirical CDF with confidence sequence by Howard and Ramdas.

2.4.2 Building the Test Statistic

This section provides the information needed to build the test statistic based on the methodology

by Howard and Ramdas (2022). Most of the steps are provided by Lindon et al. (2022), who

were the first to document the implementation of this methodology within A/B testing.

When implementing this methodology in A/B testing, we test whether the distribution in

arm A significantly differs from the distribution in arm B in any of the quantiles. This would

mean that for a certain quantile, the corresponding value in one arm is either significantly lower

or higher than in the other arm.

We start by building the upper and lower sequences using 2.20. We get the following two

formulas:

P
[
F l
ta(α, x) ≤ Fa(x) ≤ F u

ta(α, x) ,∀x ∈ X,∀t ∈ T ] ≥ 1− α (2.11)

and

P
[
F l
tb
(α, x) ≤ Fb(x) ≤ F u

tb
(α, x) ,∀x ∈ X,∀t ∈ T ] ≥ 1− α. (2.12)

where F l
ta(α, x) and F l

tb
(α, x) are the lower bounds of the confidence intervals in arm A and

arm B, F u
ta(α, x) and F u

tb
(α, x) are the higher bounds in arm A and arm B, and a is a value

between 0 and 1

We can create a union bound from the two formulas provided in Equation 2.11 and 2.12 by

using
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P
[
F l
ta

(α
2
, x
)
≤ Fa(x) ≤ F u

ta

(α
2
, x
)
∩

F l
tb

(α
2
, x
)
≤ Fb(x) ≤ F u

tb

(α
2
, x
)

∀x ∈ X,∀t ∈ T
]
≥ 1− α.

(2.13)

The union bound can be interpreted as: with a confidence of at least 1− α, both Fa(x) and

Fb(x) fall simultaneously within their respective confidence bounds, for every x in X and every

t in T . This facilitates the joint consideration of both distributions, offering a method to detect

significant differences between them at any point in their domain. By adjusting the significance

level to α/2 for each of these inequalities, we ensure the overall confidence level remains 1 − α

when the two events occur simultaneously.

Figure 2.3 shows an example of the union bound described above. The dark red line shows

the eCDF for arm A, whilst the pink region marks everything that is inside the confidence

sequence of arm A. The dark blue line and light blue region do the same, but then for arm B.

Figure 2.3: Example of two empirical CDFs with confidence sequences by Howard and Ramdas.

2.4.3 Testing for Significant Difference in Distributions

To check whether the value corresponding to a quantile significantly differs, we check whether

the confidence bounds of the eCDF for A are entirely below or above the confidence bounds for

B at any particular point in the distribution.

This can be described as

F u
ta(α/2, x) < F l

tb
(α/2, x), ∀x ∈ X,∀t ∈ T (2.14)

or

F l
ta(α/2, x) > F u

tb
(α/2, x), ∀x ∈ X,∀t ∈ T. (2.15)

As the two equations are highly similar, we will focus on Equation 2.14, which involves a

search for those values of x for any time t where the confidence bound of F u
ta is significantly

inferior to that of F l
tb
. We can build a test, with the null hypothesis of Fb(x) ≥ Fa(x) for all

x, uniformly valid over time t. If we find that F u
ta(α/2, x) < F l

tb
(α/2, x), for any point in x, we

can reject the null hypothesis with confidence level alpha. This equation can be simplified even
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more, by proposing the equation

dlta,tb(α, x) = F l
tb
(α/2, x)− F u

ta(α/2, x), (2.16)

where dlta,tb presents the lower bound of the difference between arm A and arm B. We can

reject the null hypothesis with confidence level alpha if for any t in T

sup
x∈X

dlta,tb(α, x) > 0, (2.17)

which corresponds to the lower bound of the difference being larger than zero for any x.

An example of the empirical difference can be found in Figure 2.3. We notice that the highest

point of the red line, representing the lower bound of the difference described in Equation 2.16,

almost goes above zero. The moment this line does go above zero for any of the quantiles, the

null hypothesis of Fb(x) ≥ Fa(x) for all x in X gets rejected.

Figure 2.4: Example of empirical difference between two distributions, calculated with confidence se-
quence of Howard and Ramdas.

This can be easily extended to the other possible null hypothesis. For H0 = Fa(x) ≥ Fb(x),

for all x, we want to look for

inf
x∈X

duta,tb(α, x) < 0. (2.18)

where

duta,tb(α, x) = F u
tb
(α/2, x)− F l

ta(α/2, x). (2.19)

Here, duta,tb presents the upper bound of the difference between the distribution of arm A

and arm B.

When testing for A
d
= B, if either sup dlna,nb

(α/2, x) > 0 or inf duna,nb
(α/2, x) < 0 for any

value of x, the null hypothesis can be rejected at level α .
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2.5 Other Test Methodologies Valid over Quantiles

Section 2.4 detailed the methodology proposed by Howard and Ramdas (2022) to compute

confidence bounds that are valid over time and over all quantiles. In this section, we will

introduce two other, older methodologies that are also valid over time and over all quantiles,

namely an older methodology by Darling and Robbins (1968), a recent methodology by Szorenyi,

Busa-Fekete, Weng and Hüllermeier (2015), and the DKW bounds, as introduced by Dvoretzky,

Kiefer and Wolfowitz (1956), which are solely valid over all quantiles, yet not over time.

The computation of the bounds are highly similar to what we’ve seen so far. However, in

the calculation of the upper and lower confidence sequences,

F u
t (α, x) = min (1, Ft(x) + ϵt(α))

F l
t (α, x) = max (0, Ft(x)− ϵt(α)) ,

(2.20)

we use other values for the ”drop-in” replacement ϵt(α).

The first method for consideration is a long-established one by Darling and Robbins (1968)

that recommends employing

ϵt(α) =

√
(t+ 1) (2 log t− log (α (t− 1)))

t2
. (2.21)

This test attains uniformity over time by applying a union bound for all t greater than or equal

to 32.

Szorenyi et al. (2015) employ a comparable union-bounding approach where

ϵt(α) =

√
1

2t
log

π2t2

3α
. (2.22)

Lastly, we introduce the DKW bounds. These bounds are valid over all quantiles, yet not

over time. The DKW bounds are calculated by

ϵt(α) =

√
log 2

α

2n
(2.23)

2.6 Other Test Methodologies Valid over Time

In this section, we introduce a test which is valid over time, yet not over all quantiles, introduced

by Johari, Koomen, Pekelis and Walsh (2017) and further implemented by Johari et al. (2022).

Based on the earlier named mSPRT, Johari et al. (2017) developed confidence intervals for

the mean of a distribution which are uniformly valid over time.

The null hypothesis in this test is that the means in arm A and B are equal. Assuming

normality on the means of the distribution, we derive always-valid p-values. In Appendix C a

concise overview of the calculation of the p-values of provided. In a later paper, Johari et al.

(2022) implemented the methodology in a commercial A/B test platform, where it is still used

on a daily basis.
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2.7 Differences Between Test Methodologies

Sequential testing can be highly relevant when analyzing A/B tests, especially since A/B tests

are known to be sensitive to data peeking or ’p− hacking’ (Berman, Pekelis, Scott & Van den

Bulte, 2018; Johari et al., 2017). In this section, we focus on the differences between the earlier

discussed test methodologies.

The main difference between the mSPRT by Johari et al. (2017) and the SAVI-based meth-

odology by Howard and Ramdas (2022), is that the article by Johari et al. (2017) focused on

differences in means, whereas Howard and Ramdas (2022) is extended to a difference in all the

quantiles of distributions. This could become interesting if a distribution has a relatively similar

mean but performs significantly worse in some quantiles. An example could be a change in

JavaScript, which, whilst it might be compatible with most modern browsers, could stumble on

an outdated version of Internet Explorer, causing errors that could leave the website inoperable.

This could lead to a minimal change in mean, but a high change in extreme quantiles. Kohavi,

Tang and Xu (2020b) Furthermore, the research of Johari et al. (2017) relayed on parametric

assumptions of the distribution, whereas the proposed methodology by Howard and Ramdas

(2022) is distribution free. Lastly, the convergence of the methodology by Johari et al. (2017)

was asymptotic, whilst the convergence by Howard and Ramdas (2022) is non-asymptotic. How-

ever, there is no clear overview of the relative performance of the different methodologies. The

proposed methodology by Howard and Ramdas (2022), and implemented by Lindon et al. (2022),

shows potential, and this study aims to fill the lack of reproducible outcomes and comparison

with established methodologies.
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Chapter 3

Methodology

In this section, an overview of the implemented methodology is given. This study aims to

assess the methodology’s usability and performance by Howard and Ramdas (2022) compared

to established methodologies. In Subsection 3.1, the different implemented methodologies are

discussed. In Subsection 3.2, the setup of the research is provided.

3.1 Overview of Included Methodologies

In this section, the included methodologies are discussed, each with distinct characteristics and

underlying assumptions. A broad summary of these methodologies is provided below:

• DKW Confidence Bounds: This methodology provides non-asymptotic bounds for

the difference between two empirical distributions. It’s free from assumptions on the

distribution but is only valid when the number of observations is fixed beforehand. Results

should be interpreted as if an oracle would tell the exact time to first reject the null.

• Darling & Robbins (DR), Szorenyi and SAVI Confidence Bounds: Different

methodologies that have similarities with the DKW methodology but are valid for all

observations over time. Continuously monitoring the data over time is allowed. No as-

sumptions are made about the underlying distributions.

• mSPRT by Johari et al. (2017): A recent methodology, based on the mSPRT, that is

valid over time and focuses on the difference in mean between both arms. Continuously

monitoring the data over time is allowed. The test assumes that the data included in the

test follow a normal distribution. Appendix C provides more information on this test.

• Welch’s T-Test: This is a fixed-n test for comparing the means of two independent

samples. This test assumes the measurements follow a normal distribution. The test

does not assume equal variances between the two groups, as opposed to for example the

Student’s t-test, which assumes equal variances.

• SAVI-PA - SAVI Bounds with Parametric Assumption: This methodology, SAVI-

PA, enhances the SAVI confidence bounds by making the assumption that the data from

Arm A follows a parametric distribution, leading to a more efficient comparison process
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against Arm B’s empirical distribution. A further explanation of this is given in Chapter

4.

• SAVI-HD - SAVI Bounds with Inclusion Historical Data: The second variant of the

enhanced SAVI confidence bounds, SAVI-HD, makes the looser assumption that the data

in Arm A doesn’t significantly change before and after the start of the experiment. This

allows the inclusion of prior observations from Arm A in the bounds calculation, leading

to more efficient use of available data. Again, this implementation is further discussed in

Chapter 4.

Further details on the computation of the various tests can be found in Chapter 2. It’s

crucial to note that although certain methodologies enable continuous data monitoring, the

actual monitoring would be conducted in 500 equal steps throughout the experiment. Monitoring

after each observation would necessitate excessive computing power, making it an impractical

approach.

This study aims to provide a comprehensive comparison between these methodologies, lead-

ing to insights that can inform the choice of methodology in real-world A/B testing scenarios.

3.2 Test Setup

This section discusses the test setup used in the study. The study is subdivided into two main

parts: a simulation study, as described in Chapter 5, and experiments using real datasets,

described in Chapter 6.

Simulation is used to test the characteristics of the different tests. The simulations are based

on possible A/B test scenarios, partly inspired by Kohavi et al. (2020a). The simulations are

analysed as an A/A test or as an A/B test. In the A/A test setting, both arms are simulated

from the same function. This is done to check for each test whether the null hypothesis does

not get falsely rejected too often or equivalently, making sure that the Type I error stays below

alpha. It is crucial to do so because if this is violated, it could lead to false conclusions and

misguided decisions about the later implemented A/B test. If a test methodology violates the

Type I error in the A/A test of a certain distribution, it is excluded from the successive A/B

test.

Next, the performance of the different methodologies in an A/B test setting will be re-

searched. This will be done by simulating a small difference in arm B as opposed to arm A.

We will investigate how many observations are needed for a test methodology to reject the null

hypothesis. In general, a test that needs fewer observations to reject the null hypothesis truly is

preferred over a test that needs more observations. These two metrics, the test size and power

of the test, are key to comparing the usability of the SAVI-based confidence based to other test

methodologies. All details on the simulations are provided in Chapter 5.

After the simulation study, the insights are validated on two real-world datasets. The data

is preprocessed to optimize the fit of our research. The preprocessing and prescriptive analysis

of the datasets and the results using different test methodologies on the datasets are presented

in Section 6.
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Chapter 4

Enhancing Current Models

This section dives into the exploration of potential enhancements to the existing SAVI-based

confidence bounds, primarily focusing on leveraging prior knowledge about the data in arm A.

The intuition for this is that the data in arm A can be investigated before the start of the

experiment. As arm A remains the same after the start, this could enhance information on

the data in the experiment. Assumptions on the distribution in arm A are made, which could

increase the power of the test methodology.

In Section 4.1, we propose to use the SAVI-PA, which makes the assumption that the data

in arm A comes from a known parametric distribution. By doing this, the power of the test is

expected to increase. However, if the assumed parametric distribution is false, the number of

false rejections might increase and the Type I error could be violated, or the power of the test

could decrease and the Type II error will increase.

In Section 4.2, we introduce SAVI-HD, which enhances the SAVI-based confidence bounds

by using historical data for arm A of the A/B test. This is done by the assumption that the

data distribution in arm A does not change over time. Increasing observations could lead to

higher test power. However, if the assumption of stability of the data in arm A is false, this

could again lead to an increase in the Type I or Type II error.

4.1 SAVI-PA: Parametric Assumption of Data in Arm A

This section focuses on assuming a parametric distribution for the data in arm A. In this paper,

the data is assumed to follow a normal distribution; however, this could be any parametric dis-

tribution. With the parametric assumption for arm A, the empirical bounds are only calculated

for arm B. Therefore, we now compare the SAVI bounds of arm B’s empirical distribution with

the normal Cumulative Distribution Function (CDF) of arm A. Our test statistic remains the

same: we reject the null hypothesis (that arm B comes from the same distribution as arm A) if

the supremum of the lower bound of the difference surpasses 0.

This can be expressed mathematically as:

sup
x

|Ft,B(x)− FA(x)| > 0. (4.1)

Here, Ft,B(x) represents the eCDF of arm B, and FA(x) stands for the CDF of arm A. The

20



mean and variance for the CDF of arm A are calculated using the empirical data in arm A. This

means we assume the parametric function but estimate the parameters during the experiment.

It’s important to note, however, that this method hinges on a correct parametric assumption

for arm A. In Section 5, we will explore what happens if the parametric assumption is false.

4.2 SAVI-HD: Incorporating Historical Data

In cases where we can’t make a parametric assumption for arm A, a different extension to our

A/B testing methodology can be introduced. This includes using historical data in arm A from

before the start of the experiment. This approach assumes that the distribution of arm A does

not differ before and after the initiation of the experiment. It is important to note that if it does

differ, this method loses its validity. This could lead to an increase in false rejections if the null

hypothesis is true or a decrease in true rejections if the null hypothesis is false. Therefore, it’s

essential to verify the consistency of arm A’s data over time before applying this adjustment.

For the methodology, the observations are still divided into groups A and B on a 50/50

basis. However, we now augment the data in arm A with historical observations. To implement

this adjustment, we define a variable called warmup. This variable determines the number of

observations to include before the experiment starts. The time indexing starts at t = 0 and

moves backwards, progressively incorporating more data points. The variable warmup can be

determined either by including a particular number of observations or by running for a specific

duration.

Mathematically, if Nt,A denotes the number of observations at time t in arm A, and Ft,A rep-

resents the empirical distribution at time t in arm A, we adjust our procedure to use Nwarmup+t,A

and Fwarmup+t,A, where warmup represents the amount of prior data included.

Expanding the dataset of arm A logically results in a more accurate approximation of its

underlying distribution. From a theoretical standpoint, this can be justified by considering the

construction of our SAVI bounds. As the sample size N increases, the upper and lower bounds,

calculated using the formula:

ϵn(α) = 0.85

√
log log(en) + 0.8 log(1612/α)

n
, (4.2)

converge towards the empirical cumulative distribution functions, given that n increases

more rapidly than log log(en), it leads to a reduction in ϵn.
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Chapter 5

Simulation Study

This chapter comprises five sections, each exploring different statistical properties or implement-

ations of the methodologies through simulations. In each section, the different simulations are

described, and the results of the simulations are interpreted.

Section 5.1, we compute test sizes and power of various methodologies. Our findings reveal

that the fixed-n Welch test violates the Type I error during continuous monitoring, while most

other tests appear to be highly conservative, exhibiting a Type I error significantly below alpha.

As for power, we discover that the enhancements of the SAVI methodology lead to an increase

in power, yet the mSPRT has the highest power when simulating with a difference in mean

between two arms.

In Section 5.2, we investigate the performance of different methodologies to detect dissimil-

arities in different quantiles of the distribution. We find that for all methodologies, there is no

difference in whether the dissimilarity is located near the median or the tails.

In Section 5.3, we simulate a normal distribution with errors in one of the arms, where the

mean between both arms changes. Unlike some robust regression techniques that ignore outliers,

we aim for a test that recognizes these errors. In scenarios where an error in the distribution

is prevalent and there is a difference between the mean of both arms, the mSPRT significantly

outperforms the other methodologies.

In Section 5.4, we again simulate a normal distribution with errors, but now the mean

between both arms remains equal. We find that in this scenario, a test method that examines

all quantiles is preferable.

In Section 5.5, we simulate a normal distribution with a fluctuating mean over time. We

find that when the mean changes over time, the tests with lower power tend to perform even

worse. Moreover, both proposed extensions of the SAVI confidence bounds are found to often

incorrectly reject the null hypothesis.

5.1 Test size and power

In this section, we simulate from a normal distribution and Poisson distributions with varying

values for λ. This enables us to compute the test size and power of the included methodologies.
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5.1.1 Data Simulation to Determine Test Size and Power

We begin by simulating data from normal and Poisson distributions with various parameter

settings. Each distribution represents a distinct real-world scenario. For the normal distribution,

consider an online platform aiming to optimize user engagement by introducing a new feature

(Arm B). The primary concern is to ensure that this feature does not decrease the average time

spent by users compared to the original version (Arm A). Time spent by users on the platform

is assumed to follow a normal distribution.

For the Poisson distribution, the distribution is commonly employed for count-based metrics.

Consider another scenario where an online platform seeks to ensure that the number of videos

watched per visit, a measure of user engagement, does not decrease. The number of videos

watched follows a Poisson distribution.

The exact parameters of the simulated data are described below:

• Normal distribution: The data in Arm A is generated from a normal distribution with

a mean of 10 (representing an average of 10 seconds spent on the platform) and a standard

deviation of 1. For Arm B, simulating a possible decrease in user engagement, the data is

drawn from a normal distribution with a mean of 9.9 and a standard deviation of 1. An

A/A test is also conducted to evaluate the test size of the methodologies, where both arms

simulate a normal distribution with a mean of 10 and a standard deviation of 1.

• Poisson distribution: Arm A data is drawn from a Poisson distribution with a mean and

variance of 5, indicating an average of 5 videos watched per visit. Arm B simulates a slight

decline in user engagement, with data generated from a Poisson distribution with a mean

of 4.8. For the A/A tests, Poisson distributions with different λ values (0.5, 5, and 1000)

are used to investigate the impact of skewness on the test size of various methodologies.

A low λ value results in a highly skewed Poisson distribution, diverging substantially from

a normal distribution. Conversely, a high λ value results in less skewness and greater

similarity to a normal distribution.

To maintain a balanced design, we simulate a total of 100,000 observations, equally split

between each arm. All tests are conducted with a statistical significance level (α) of 0.10. The

simulation process is repeated 100 times to yield robust estimates of the performance of our

A/B testing methodologies.

Figure 5.1 offers a dual visualization of the simulated normal distribution: the left plot

presents the Empirical Cumulative Distribution Functions (eCDFs) of Arm A and Arm B, while

the right plot illustrates a histogram of the normal distributions, emphasizing the slight shift

between both arms.

Additionally, we assign timestamps to the data, uniformly increasing from t = 0 to t = 100.

These timestamps could signify, for instance, the minutes since the test’s initiation. Figure 5.2

presents the temporal distribution of data for a typical simulation run.

Corresponding plots for the various Poisson distributions are provided in Appendix A.
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Figure 5.1: Left: eCDFs of Arm A and Arm B. Right: Histogram of simulated data from Arm A and
Arm B.

Figure 5.2: Temporal distribution of observations simulated by the normal distribution.

5.1.2 Results of Simulation Presenting Test Size and Power

This section discusses the test size and power when simulated from a normal or Poisson distri-

bution. The test size is calculated using A/A tests for normal distribution and three different

Poisson distributions. The power of the test is calculated using an A/B test where arm B has

a small shift in the mean between both arms of the distribution. The primary goal of the sim-

ulation study was to test the null hypothesis, denoted as H0 : A ≤ B, against the alternative

hypothesis, H1 : B < A. To evaluate the efficiency of our methodologies, the number of rejec-

tions obtained from each method over time is inspected. All outcomes are normalized between

t = 0 and t = 1. Consequently, a rejection at t = 0.3 implies that approximately 30% of the

100000 samples have been reviewed, offering a more intuitive understanding of the progression

of our analysis.

Test Size

Initially, we analyzed a straightforward A/A test, where both arms were simulated from a normal

distribution with a mean of 10 and a standard deviation of 1. Figure 5.3 presents the results of

this simulation.

We observed that the Welch test incorrectly rejects the null hypothesis considerably above

the alpha level within a relatively short passage of time. This is consistent with the literature
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Figure 5.3: Proportion of rejections over time under null hypothesis using normal distribution

as indicated in the introduction and illustrated in Figure 1.1. The DKW test, another fixed-n

test, never gets rejected despite continuous monitoring, indicating its high conservatism.

The mSPRT, a test that emphasizes shifts in mean, is occasionally falsely rejected, primarily

just after the experiment begins. However, the quantity of rejections falls below alpha, indicating

no significant concerns. For methodologies that are valid over time and across all quantiles, the

null hypothesis is never erroneously rejected, suggesting that these methodologies also maintain

conservatism over time. This holds true for the extensions of the SAVI confidence bounds as

well - when assumptions are met, the number of false rejections is zero, hence well below the

alpha level.

Next, we examined the test size using various simulations from a Poisson distribution with

λ = 0.5, 10, and 1000. Lower λ values correspond to a highly skewed distribution that deviates

significantly from a normal distribution, while higher values present a distribution that closely

resembles a normal one. Figure 5.4 presents the results of the different simulations.

Figure 5.4: Proportion of rejections over time under null hypothesis using three Poisson distributions.
Left: λ = 0.5. Middle: λ = 10. Right: λ = 1000.

Interestingly, SAVI-PA, wrongly rejects the null well above the alpha level. If the distribution
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is highly skewed, such as when λ= 0.5, the methodology rejects the null quickly, with only a small

proportion of observations passed. When the distribution has less skewness but still deviates

from normality, SAVI-PA rejects the null slower, yet it still breaches the predetermined alpha

level of 0.10. This suggests that slight departures from the assumed parametric distribution in

Arm A can cause the methodology to fail due to elevated Type I errors.

For the other methodologies, the results largely mirror the previous findings. Deviating

from the normal distribution doesn’t increase the Type I error of the mSPRT. Even though

the mSPRT is built assuming normality, the test statistic uses the mean of the distribution.

In accordance with the Central Limit Theorem (CLT), the sample mean begins to resemble a

normal distribution as the sample size increases, regardless of the original distribution. We note

that the assumption of normality on the entire distribution is more rigorous than that on the

mean of the distribution, explaining the difference in Type I error between the SAVI-PA and

the mSPRT.

As before, the Welch test incorrectly rejects the null too often, regardless of the skewness of

the distribution. All other methodologies again prove to be highly conservative.

Power

The main goal of this section is to make a comparison of the power between the methodology

by Howard and Ramdas (2022) with other available methodologies. Instead of comparing the

methodologies altogether, the SAVI methodology will be compared to other methodologies by

group. The different comparisons include the methodologies that are always valid over all

quantiles, namely the methodologies as proposed by Darling and Robbins (1968) and by Szorenyi

et al. (2015). Then the possible improvements of the SAVI-based confidence bounds, as described

in Chapter 4, are evaluated. Finally, a comparison between the SAVI confidence bounds and

the mSPRT is made. The Welch test is omitted due to the high Type I error.

We start with analysing the always-valid methodologies that are valid over all quantiles,

specifically focusing on SAVI, DR, and Szorenyi methodologies. Illustrated in Figure 5.5 are the

proportion of times it takes the different methodologies to recognize a shift in the mean of the

normal distribution in arm B, presenting a mean of 9.9, as opposed to the normal distribution

in arm A, presenting mean 10. The SAVI-based confidence bounds evidently improve over the

other methodologies, correctly achieving rejection of the null hypothesis approximately three

times quicker than the confidence bounds by Darling and Robbins and 1.5 times quicker than

the confidence bounds by Szorenyi.
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Figure 5.5: Power of different confidence bounds with normal distribution in both arms.

We then explore the extensions to the SAVI confidence bounds: SAVI-PA, making a para-

metric assumption for the distribution in arm A, and SAVI-HD, incorporating historical data

on A. The results are shown in Figure 5.6 The highest gain in efficiency is observed when as-

suming normality, with SAVI-PA reducing the time to reject the null hypothesis by a factor of

5 compared to the original SAVI confidence bounds. For SAVI-HD, the average rejection time

decreases to roughly a third of that recorded with the original SAVI confidence bounds.

Figure 5.6: Power of SAVI confidence bounds and enhancements with normal distribution in both
arms.

Finally, the performance of SAVI confidence bounds is compared with the mSPRT and the

DKW confidence bounds. It is important to notice that the DKW bounds are valid over all

quantiles but not uniformly valid over time. Continuously monitoring the DKW could lead to

increased Type I error. The interpretation of the results rests on the assumption of a miracu-

lously perfect stopping point for the experiment for the DKW methodology. The mSPRT is

valid over all time, yet only focuses on a shift in the mean between arm A and arm B. The

results are depicted in Figure 5.7
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When the SAVI confidence bounds are contrasted with the mSPRT, we find that using the

SAVI confidence bounds, a lot more observations are needed to reject the null hypothesis than

when using mSPRT. The number of needed observations is around 12 times higher to reject 50%

of the simulations and five times higher to reject 100% of the simulations.

As for the comparison of SAVI with the DKW bounds, SAVI consistently leads to a 3-4 times

slower rejection of the null hypothesis.

Figure 5.7: Power of SAVI and DKW confidence bounds and mSPRT test with normal distribution in
both arms.

The results for the power using the A/B test of the Poisson distribution are highly similar

and can be found in Appendix B. Note that SAVI-PA has an increased rejection rate when arm

A is simulated from a Poisson distribution, as the parametric assumption does not hold in this

case leading to an increased Type I error, as presented in 5.1.2. Therefore, the SAVI-PA test

results are invalid and should be neglected.
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5.2 Assessing Detection of Dissimilarities Between Arms Based

on Quantile

This section explores the effectiveness of various methodologies in identifying discrepancies

between the two arms at different quantiles of the distribution. To facilitate this, we ana-

lyze different simulations where the disparities between distributions are either situated near

the central quantile or towards the tail of the distribution.

The data simulation is described in Subsection 5.2.1, while the results are discussed in

Subsection 5.2.2.

5.2.1 Assessing Performance Across Quantiles: Data Simulation

The subsequent simulations scrutinize the efficacy of the included methodologies in identifying

discrepancies between both arms at various quantiles of the distribution. For this purpose, we

simulate different binomial distributions where a dissimilarity between both arms is present.

Binary outcomes are frequently used in A/B testing. An example could be the number of

users clicking on the subscription button in two distinct versions of a website. In arm A, the

subscription button retains its original colour, while arm B introduces a new colour. The test

is designed to ensure performance does not decrease after the change.

We simulate from the following three distributions:

• Simulation with dissimilarity between arms in lower tail: Data in Arm A is

generated from a binomial distribution with a probability of 0.055, whilst data in arm

B is generated from a binomial distribution with a probability of 0.005. This causes a

dissimilarity between both arms near the lower tail of the eCDF. Furthermore, the mean

in arm A will be 0.055, whilst the mean in arm B will be 0.005.

• Simulation with dissimilarity between arms near middle: Data in Arm A is gen-

erated from a binomial distribution with a probability of 0.5, whilst data in arm B is

generated from a binomial distribution with a probability of 0.45. This causes a dissimil-

arity between both arms near the middle of the eCDF. Now, the mean in arm A will be

0.5, whilst the mean in arm B will be 0.45.

• Simulation with dissimilarity between arms in higher tail: Data in Arm A is

generated from a binomial distribution with a probability of 0.995, whilst data in arm B

is generated from a binomial distribution with a probability of 0.945. The dissimilarity

between both arms is now near the higher tail of the eCDF. The mean in arm A will be

0.995, whilst the mean in arm B will be 0.945.

We once again generate a total of 100,000 observations evenly divided between the two arms,

establish a statistical significance level (α) of 0.10, and repeat the simulation process 100 times.

Representative plots for the eCDF, histogram, and distribution over time for the three dis-

tinct distributions are supplied in Appendix A.
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5.2.2 Assessing Performance Across Quantiles: Results

This subsection evaluates the ability of various tests to detect disparities between both arms

within different quantiles of the distribution. Three specific binomial distributions are simulated

for this purpose, as outlined in Subsection 5.2.1. We commence by investigating the results in

different confidence bounds, as illustrated in Figure 5.8.

Figure 5.8: Power of confidence bounds to find dissimilarities in different quantiles. Left: Dissimilarity
in lower tail. Middle: Dissimilarity around median. Right: Dissimilarity in higher tail.

The results show a similar performance of the different confidence bounds, no matter whether

the dissimilarity is located around the median or around the tails of the distribution. The only

notable difference is a small increase in the variation of time until rejection among simulations

for all different confidence bounds. However, this does not have a high impact when using the

test.

Next, we examine the performance of the mSPRT for the different binomial distributions,

illustrated in Figure 5.9.

Figure 5.9: Power of mSPRT and SAVI to find dissimilarities in different quantiles. Left: Dissimilarity
located in lower tail. Middle: Dissimilarity located around median. Right: Dissimilarity located in higher
tail.

Interestingly, while the confidence bounds needed approximately the same number of obser-

vations to reject the null hypothesis when the discrepancy is situated in the distribution’s tails,

30



the mSPRT required fewer observations. As the mSPRT solely compares the means between

distributions, the difference is not directly caused by the quantile where the discrepancy is po-

sitioned. An explanation could be that while the change in mean between different simulations

remained consistent, the variance is reduced when simulating a binomial distribution with either

a high or low probability. As seen in the left and right sections of Figure 5.9, the number of

necessary observations to reject the null using mSPRT becomes roughly 10x less. Consequently,

the mSPRT requires up to 50x fewer observations to reject the null compared to the SAVI meth-

odology. This highlights that the probability of the distribution influences the choice of test for

an A/B analysis of binary variables.
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5.3 Simulation with Errors and Changing Mean Between Arms

In this section, we focus on identifying potential performance errors in websites when there’s a

change in the mean value between Arm A and Arm B. Our findings reveal that when the mean

values between the two arms change, the methodology based on the mSPRT heavily outperforms

other methods.

5.3.1 Detecting Errors with Changing Mean between Arms: Data Simulation

The simulation investigates scenarios where errors exist within the data distribution and the

mean values between the two arms change. Consider the scenario where we analyze the per-

formance of a new website version by examining the time users spend on it. While the updated

website provides improved or similar performance for most users, certain users encounter errors.

These could arise due to a range of reasons. For instance, specific geographic locations might

block certain content on the new site, preventing successful loading. Alternatively, the new site

may include a plugin such as JavaScript, which may fail on certain web browsers (e.g., older

versions of Internet Explorer), rendering the website unusable. Such instances reflect real-world

scenarios as highlighted by Kohavi et al. (2020b). We examine the following simulation:

• Simulation with errors and changing mean between arms: Data in Arm A is

generated from a normal distribution with a mean of 10 and a standard deviation of 1,

denoting an average user visit duration of 10 seconds. For Arm B, the data, apart from

3% errors, is generated from a normal distribution with a mean and standard deviation

identical to Arm A. These errors in Arm B are drawn from a gamma distribution with

shape and rate parameters set to 1. This error incorporation causes a slight downward

shift in the overall mean of Arm B.

The simulation maintains the same parameters as previous scenarios: we generate a total of

100,000 observations evenly split between the two arms, set a statistical significance level (α) of

0.10, and repeat the simulation process 100 times.

Illustrative plots for the eCDF, histogram, and distribution over time for the two distributions

are provided in Appendix A.

5.3.2 Detecting Errors with Changing Mean between Arms: Results

In this subsection, we examine the capacity of various tests to detect errors, causing a shift in

mean between two arms of a distribution. The results are illustrated in Figure 5.10.
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Figure 5.10: Power of confidence bounds and mSPRT whilst simulating with errors in arm B

Figure 5.10 reveals a difference in mean between the distributions of Arm A and Arm B.

The mSPRT rejects the null hypothesis significantly quicker than the SAVI confidence bounds,

requiring 30-60x fewer observations. Enhancements SAVI-PA and SAVI-HD perform similarly

to previously analyzed simulations, but the mSPRT still needs about 10-25x fewer observations

to reject the null hypothesis.

Compared to Section 5.1, the difference in required observations between SAVI-based con-

fidence bounds and the mSPRT is much larger. We saw a similar trend in Section 5.2, where

the power of the mSPRT increased due to a decrease in variance. Yet, we now find an increased

power using mSPRT as opposed to using the SAVI-based confidence bounds, without a signific-

ant change in variance. This increase in power from the mSPRT is due to the mean difference

between Arm A and Arm B, which was only 0.1 in Section 5.1 and is now around 0.27. To further

investigate the decreased power of SAVI-based confidence bounds, we compare two illustrative

distributions: a normal distribution with a shifted mean between arms (as in Section 5.1) and

a normal distribution with similar means but errors in 3% of the distribution in Arm B (as in

this section). The eCDFs and corresponding SAVI-based confidence bounds are shown in 5.11.

Figure 5.11: eCDF with SAVI-based confidence bounds. Left: eCDF of normal distribution with shift
in mean between arms. Right: eCDF of normal distribution with errors in arm B

In the situation with a mean shift between the two arms (shown in the left part of Figure
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5.11), the confidence bounds show a greater difference. This larger gap comes from the shift in

Arm B’s eCDF, which moves the eCDF of Arm B horizontally towards the left. This shift affects

the entire distribution, creating a sizable gap between the confidence bounds, which results in a

quicker rejection of the null hypothesis.

In contrast, when we look at the scenario where there are errors in Arm B (shown in the

right part of Figure 5.11), the gap between the confidence bounds is smaller. In this case, the

errors in Arm B only affect a small portion of the distribution. This situation raises the eCDF

vertically in the lower quantiles, but it doesn’t have a major impact on the gap between the

confidence bounds. So, even though the difference in mean between the distributions is the same

in both scenarios, the scenario shown on the right side of the figure requires more observations

to reject the null hypothesis. This leads to the confidence bounds methodologies performing less

well than the mSPRT.
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5.4 Simulation with Errors and Similar Mean Between Arms

In this section, we focus on the identification of potential performance errors in websites when

the mean value between Arm A and Arm B remains constant. Our findings reveal that when

the mean values between the two arms remain constant, tests that examine all quantiles perform

better than tests focusing solely on the mean.

5.4.1 Detecting Errors with Similar Mean between Arms: Data Simulation

The simulation investigates scenarios where errors exist within the data distribution, and the

mean values between the two arms remain similar. The intuition behind the simulation could

again present the time spent on a website by users, as explained in Section 5.3. We examine the

following simulation:

• Simulation with errors and similar mean between arms: Data in Arm A is again

generated from a normal distribution with a mean of 10 and a standard deviation of 1,

but this time for Arm B the mean of the normal distribution is marginally increased to

10.28, indicating a slight boost in user engagement from the website update. However,

due to the introduction of errors (representing 3% of the data) in Arm B, the overall mean

remains similar to that of Arm A. The adjusted mean of 10.28 for Arm B is calculated

using the formula (10− 0.03 ∗ 1)/0.97 ≈ 10.28, where 10 is the mean in arm A, 0.03 is the

proportion of the errors in arm B, 1 is the mean of the errors in arm B, and 0.97 is the

proportion of the data following the normal distribution.

5.4.2 Detecting Errors with Similar Mean between Arms: Results

In this subsection, we examine the capacity of various tests to detect errors in a distribution

without a shift in mean between the arms of the distribution. The results are illustrated in

Figure 5.12.

Figure 5.12: Power of confidence bounds and mSPRT whilst simulating with errors in arm B, with a
similar mean in arm A and arm B
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Figure 5.12 presents two distributions with no mean change between the two arms, maintain-

ing a mean of 10. In this situation, it’s logical to expect the mSPRT to perform worse, given its

basis on mean differences. The figure confirms this expectation. The other methodologies yield

results that are highly comparable to those seen in the scenario with errors where there was a

change in the mean, presented in Figure 5.10, indicating that similarities in the means between

the two arms do not affect the confidence bounds, as long as there are clear dissimilarities in

other quantiles.

Since we’re testing for H0 : A ≤ B, we won’t just see this result when both arms have

exactly equal means, but also when the mean of B exceeds that of A. We conduct an additional

simulation to gain further insight into the range within which the SAVI confidence bounds

outperform the mSPRT methodology. The distribution of arm A, the number of errors in B

and the distribution of errors in arm B will remain the same. However, we now begin with

arms A and B exactly equal by simulating the normal distribution in arm B with a mean of

10.28, then gradually decrease it in 0.1% steps. Each step involves repeating the simulation ten

times. The number of observations required to reject the null hypothesis in all simulations is

then plotted against the percentage difference in mean between arms A and B. The total number

of observations is increased to 1.000.000 to illustrate how many more observations would need

to be included if the null hypothesis isn’t rejected in time. The results are presented in Figure

5.13.

Figure 5.13: Power of SAVI confidence bounds and mSPRT for an increasing difference in mean
between arm A and arm B, with errors present in arm B, rejecting 100% of the tests.

The findings indicate that when simulations of arm B contain 3% errors, the SAVI method-

ology outperforms the mSPRT methodology if the change in mean is 0.5% or less. When the

mean change exceeds 0.5%, the mSPRT noticeably outperforms the SAVI confidence bounds.

This suggests a small yet meaningful range in which the SAVI confidence bounds, valid over all

quantiles, may be preferred over the mSPRT methodology.

The figure plots the number of observations needed to reject all simulations. Figure 5.14

presents the number of observations required to reject 50% of the simulations. It’s observed

here that the SAVI confidence bounds perform almost the same, while the mSPRT methodo-
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logy demonstrates some improvement. In this case, the SAVI confidence bounds would be the

preferred choice until the difference in means reaches approximately 0.35%.

Figure 5.14: Power of SAVI confidence bounds and mSPRT for an increasing difference in mean
between arm A and arm B, with errors present in arm B, rejecting 50% of the tests.
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5.5 Simulation of Performance of Tests under Changing Mean

over Time

In the final part of the simulation study, we investigate the effect of changes in the mean of the

distribution over time.

5.5.1 Performance under Changing Mean: Data Simulation

For this simulation, we assume that the means for both arms increase or decrease as opposed to

maintaining a consistent mean value throughout, which was the case in previous simulations. As

an example, two landing pages (Arm A and Arm B) are simulated, each representing a different

approach to ticket sales, with the objective of comparing their respective conversion rates, which

is the ratio of website visitors who end up buying tickets. As the event date approaches, the

mean conversion rate in both arms will increase.

The data generation processes for the two scenarios considered are as follows:

• Simulating with Increasing Mean over Time: For each arm, data is randomly ordered

between t=0 and t=100. Then, values are generated from normal distributions with time-

dependent means and a fixed standard deviation of 1. Specifically, for arm A, the data is

simulated from a normal distribution where mean = 10 + 0.05 · t. The data is simulated

from a normal distribution with mean = 9.9 + 0.05 · t for arm B. For the A/A test, both

arms are simulated from a normal distribution with mean = 10 + 0.05 · t.

• Simulating with Decreasing Mean over Time: Similarly, the data for each arm is

ordered between t=0 and t=100. However, in this case, the mean decreases over time. For

arm A, data is simulated from a normal distribution where mean = 10− 0.05 · t. For arm
B, the data is simulated from a normal distribution with mean = 9.9 − 0.05 · t. For the

A/A test, both arms are simulated from a normal distribution where mean = 10− 0.05 · t.
The standard deviation for all these distributions is 1.

Figure 5.15 shows the temporal distribution of the data described above, showing the increase

in the mean value of the distribution over time.

Figure 5.15: Temporal distribution of observations, simulated by normal distribution with increasing
mean.
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The corresponding eCDF, histogram, and distribution over time for these two scenarios are

displayed in Appendix A.

5.5.2 Performance under Changing Mean: Results

In this subsection, the performance of the different test methodologies to recognize a difference in

the distribution of two arms whilst the mean of both arms is changing over time is investigated.

As a start, the test size of the different methodologies under a changing mean is presented in

Figure 5.16.

Figure 5.16: Proportion of rejections over time under null hypothesis using normal distribution with
changing mean. Left: Upward trend in mean over time. Right: Downward trend in mean over time.

In Figure 5.16, we find that for most test statistics, the results are similar to what was found

in Subsection 5.1.2. New, interesting results are discovered for both enhancements, SAVI-PA

and SAVI-HD. For SAVI-PA, we find that as time continues far past the start of the test, the

distribution in arm A starts to differ more and more from a normal distribution. Then a point

is reached where the distribution starts to differ so much that the null gets falsely rejected. In

the simulation, this is around the moment 70% of the time has passed. This can be explained

when looking at the different Q-Q plots over time, presented in Figure 5.17.

Figure 5.17: Four QQ plots for the specified proportions (0.25, 0.5, 0.75, and 1.0)

It can be noted that as time passes, the deviation from normality increases, as described

above.

As for the inclusion of historical data, SAVI-HD, it is found that if the distribution has

a downward trend in the mean over time, the null hypothesis H0 : A ≤ B gets immediately
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rejected. This makes sense, as the included historical data is simulated from a distribution with

a higher mean at that point in time. The moment the test starts, the first values of arm B are

immediately significantly lower than the included historical data of arm A. Even with a small

downward trend, with a mean in arm A and arm B which start at 10 and ends at 9.9, the null

gets rejected in all of the simulations, as can be seen in Appendix B. This confirms the intuition

that SAVI-HD should only be considered if the distribution in arm A remains equal over time.

As for the power of the different test methodologies with changing mean, the relevant results

are presented in 5.18. We find that the SAVI methodology needs approximately 16 times as

many observations as the mSPRT and 8 times as many as the DKW bounds to reject 50% of

the simulations.

Figure 5.18: Proportion of rejections over time under alternative hypothesis using normal distribution
with changing mean. Left: Upward trend in mean over time. Right: Downward trend in mean over time.

When compared to the results presented in 5.1, which included the results of a similar

difference between the mean in both arms of the distribution, but then without a changing

mean over time, we find that the results until rejection of 50% of the data are similar, but

the performance of SAVI severely decreases hereafter. It seems that the power of the SAVI-

based confidence bounds decreases as time increases. This is most likely to the wider spread

of the data, presented in Figure 5.19. The data becoming more widespread leads to relatively

smaller encountered dissimilarities between arms, and therefore over time, the performance of

the methodology becomes worse.

Figure 5.19: Histogram of normal distribution with changing mean over time. Left: Histogram after
10% of the observations. Right: Histogram after 100% of the observations.
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Chapter 6

Testing on datasets

In this chapter, we will explore the application of our methodologies on two real-world datasets.

In Section 6.1 the requirements of a proper dataset for the study are discussed. It is found

that proper publicly available datasets for A/B testing are scarce.

In the next Section 6.2, the ASOS digital experiments dataset, which contains 99 different

online experiments from a clothing website, will be described and the main findings will be

presented. These confirm outcomes from the simulations that the use of the SAVI-based confid-

ence bounds needs more observations to reject a null hypothesis. This results in a high amount

of experiments not getting rejected when using the SAVI-based confidence bounds.

In Section 6.3, the Cookie Cats dataset, which represents a dataset with empirical data from

a mobile game, will be analysed and the key findings will be discussed. The main outcome here

is similar, showing a need for more observations when using the SAVI-based confidence bounds.

6.1 Introduction to Available Datasets

The development and evaluation of A/B tests or Online Controlled Experiments (OCE) heavily

rely on the availability of relevant datasets. As noted by Liu (2021), there is a relative scarcity

of publicly accessible datasets that represent real-world experimentation results, and even fewer

that include timestamped data. For this research, we would ideally use a dataset with empir-

ical data, including timestamps. Such a data set is not publicly available, unfortunately. This

challenge is addressed by modifying existing datasets to better reflect our testing environment.

However, it is important to keep in mind that the datasets under review are not directly rep-

licated from the original source. In the following sections, we detail the specific datasets and

modifications used to support our investigation, with a focus on providing a robust framework

for method comparison and performance assessment.

Similar to the simulation study, our primary interest lies in the performance and robustness

of different testing methodologies over time, now focusing on the null hypothesis H0 : A = B

against the alternative hypothesisH1 : A ̸= B. The timestamps for both datasets are normalized

between 0 and 1 to facilitate comparable interpretation.
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6.2 Experiment 1: ASOS Digital Experiments Dataset

The dataset used in this study was developed by the AI & Data Science Platform at ASOS.com,

a clothing website. The dataset is accessible through OSF (2021). It was created with the

intention of addressing a gap in publicly available A/B test datasets, specifically to support

research related to adaptive stopping, adding timestamps to the data. However, the data is

aggregated over time, and multiple of the included test methodologies hinge on empirical data.

Thus, alterations have been made to the dataset to ensure it suits our study. Furthermore, no

explanation about the background of the tests or the distribution of the data is provided, leaving

us to make rough assumptions. In the following sections, we will present a descriptive analysis of

the ASOS dataset, detailing its key characteristics and the specific modifications implemented

for this study.

6.2.1 Data Preprocessing & Descriptive Analysis

The ASOS dataset represents the results of a total of 99 online experiments. The data is recorded

at a daily or bi-daily frequency and are aggregated over all users.

Each row in the dataset includes six attributes:

1. countc: Number of users in the control group

2. meanc: Sample mean of the responses from users in the control group

3. variancec: Sample variance of the responses from users in the control group

4. countt: Number of users in the treatment group

5. meant: Sample mean of the responses from users in the treatment group

6. variancet: Sample variance of the responses from users in the treatment group

In order to extract insights from the dataset, we need to simulate data using the attributes

described above. The simulation involves a number of key steps.

The original dataset provides cumulative count, mean, and variance for each timestamp.

The first step involves breaking down these cumulative values to individual timestamps. The

calculation of this is shown in Appendix D. Next, we interpolate the calculated means at

each timestamp in five increments. This step also allows us to estimate values at timestamps

where data is missing. In cases where multiple timestamps are missing in succession, leading

to abnormally high mean values for the succeeding timestamp, we distribute the impact of

this increase over the following timestamps, allowing for a maximum value of two times the

highest value found so far in the data. The empirical dataset is then simulated from a normal

distribution, with the individual count, mean and variance for corresponding timestamps.

The resulting data for all experiments are then summarized in Table 6.1. We find that the

average counts for both groups (A and B) are high while the average mean and average variance

are relatively low. The average mean over all experiments is slightly higher in group B, but the

difference is very subtle, namely approximately 0.2%.

Total experiments countc countt meanc meant variancec variancet

99 8996581 9077519 0.19 0.19 0.13 0.13

Table 6.1: Mean values of ASOS Digital Experiments Dataset
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Further, we see in Figure 6.1 that the means are not always consistent over time. For

instance, in the right part of the figure we examine the experiment labelled ’2c8a04’, where the

mean in both arms remains relatively stable. However, in the left part of the figure we find

experiment ’a4386f’, where the mean significantly increases in both arms over time for both the

control and treatment groups, starting around 0.11 and ending around 0.28. This represents a

growth in the mean of almost 200%.

Figure 6.1: Change in means over time for two example experiments. Left: Changing mean over time.
Right: Stable mean over time.

In examining these changes in mean over time, we classified experiments into clusters based

on the relative change in mean over the course of the experiment. This represents the average

change in mean of both arm A and B over time, and not the change in mean between both

arms. Clusters were defined as 0-50%, 50-100%, 100-150%, 150-200%, and 200% or more. The

results show that whilst 34 of the 99 experiments have a subtle increase, ranging from 0 to 50%,

most experiments have a more severe increase in mean over the course of the experiment. No

experiments showed a decrease in mean over time.

Figure 6.2: Clusters based on relative change in means over the duration of experiments.

The high changes in mean indicate that the experiments are not stable over time, which

leads us to not include the enhancements SAVI-PA and SAVI-HD. In the simulation study in

Section 5.5, we found that the extensions violate the Type I error under these conditions.
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6.2.2 Analysis of ASOS Digital Experiments Dataset

This section presents the results of the analysis of the ASOS Digital Experiments Dataset. Note

that the interpretations from this data should be regarded as indicative rather than definitive,

since a lot of assumptions were made when simulating. We start with a comparison of the SAVI

methodology to other methodologies that are valid over time and over all quantiles, namely the

methodology by Szorenyi et al. (2015) and by Darling and Robbins (1967). The results are

presented in Figure 6.3.

Figure 6.3: Proportion of rejected experiments over time using ASOS dataset, comparing confidence
bounds valid over time.

The results correspond to the results found in the simulation study in Chapter 5. We find

that SAVI rejects the null in approximately 20% of the experiments, whilst the methodologies

proposed by Szorenyi and by Darling and Robbins only reject the null in 12% and 8% of the

experiments. SAVI shows an interesting increase in power and therefore in usability.

Figure 6.4 present the comparison of the SAVI methodology with the mSPRT methodology

and DKW bounds.

44



Figure 6.4: Proportion of rejected experiments over time using ASOS dataset, comparing SAVI and
DKW confidence bounds and the mSPRT.

We find that the mSPRT methodology and the DKW bounds reject the null hypothesis in

almost twice as many of the experiments as the SAVI methodology. When comparing the SAVI

methodology with the DKW bounds, there is a trade-off between being able to continuously

monitor the data, whilst testing with far less power. As for the comparison with the mSPRT,

this is a trade-off between being able to find deviations in all quantiles of the distribution instead

of only comparing the means, again whilst testing with far less power.

Lastly, we find that most rejections are done within the first moments of the experiments.

This may have several reasons, yet one important reason could be the data becoming more

widespread due to the increasing mean over time, as we similarly found in the simulation study,

presented at the end of Section 5.3.
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6.3 Experiment 2: Cookie Cats

The second included dataset is from Cookie Cats, a mobile game. The dataset we introduce

here, obtained from Kaggle and curated by B̊åath and Romero (2018), captures the outcome of

an A/B test that was performed in the context of this game.

For every analysis, the null hypothesis (H0) posits that the distributions are identical, while

the alternative hypothesis (H1) suggests that there’s a significant difference between the two

distributions.

6.3.1 Data Preprocessing & Descriptive Analysis

The dataset under investigation comprises data collected from 90,189 players who installed the

game while the A/B test was operational. The data consists of several variables, including:

• userid: A unique identifier for each player.

• version: An indicator of whether the player was in the control group (gate30, representing

a gate at level 30) or the test group (gate40, indicating a gate at level 40).

• sumgamerounds: The total number of game rounds played by the player within the first

week after installation.

• retention1: A binary variable showing whether the player returned to play 1 day after

installing the game.

• retention7: A binary variable indicating whether the player returned to play 7 days after

installing the game.

The data is preprocessed by assigning a time value uniformly distributed between t = 0 and

t = 100 for arms A and B. Subsequently, we perform bootstrap sampling 100 times for both

arms. The output of these bootstrap samples serves as the input for our tests.

A preliminary analysis shows that the distribution of game rounds played and the player

retention after 1 day does not differ between the control and test groups. Therefore, this feature

will not be further investigated in our study.

The critical comparison between the control and test groups involves the rate of player

retention after 7 days. To investigate potential differences in the groups’ retention rates, we

conducted a bootstrap analysis with 100 repetitions. Our findings show a statistically significant

difference in the retention rate on the 7th day (p = 0.002). Figure 6.5 depicts the distribution

of mean retention rates on the 7th day, as obtained from the bootstrap analysis. We use this as

the ground truth for the analysis.
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Figure 6.5: Bootstrap Distribution of Mean Retention 7 Rates

6.3.2 Analysis of Cookie Cats Dataset

In this section, the outcomes of the analysis of the Cookie Cats dataset are discussed. The main

results are presented in Figure 6.6

The outcomes underline that when sample sizes are small and we focus on a difference in

mean, SAVI heavily underperforms relative to fixed-n tests for means. Whilst the mSPRT

methodology rejects the experiment in almost 50% of the observations, the SAVI methodology

never rejects the null hypothesis. The inclusion of historical data does not make a difference

here. We find that the DKW bounds only perform marginally better than the SAVI methodology,

rejecting the experiments in 2.5% of the bootstraps.

Figure 6.6: Proportion of rejected experiments over time using Cookie Cats dataset, comparing SAVI
confidence bounds with enhancements, DKW bounds and mSPRT.

To find out more about how many observations we would have needed to make the SAVI

methodology work, we increase the number of observations times twenty using bootstraps. The

results of this are presented in Figure 6.7.
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Figure 6.7: Extending observations: Proportion of rejected experiments over time using Cookie Cats
extended dataset, comparing SAVI confidence bounds with enhancements, DKW bounds and mSPRT.

We find that we need a huge increase in the number of observations to correctly reject the

null hypothesis using the SAVI methodology. The first rejections start when the sample size is

7x larger, 50% of the rejections done by SAVI need a sample size that is 12x larger and we need

16x the sample size to reject the null hypothesis in all tests. This is a large difference with the

mSPRT, which rejects all experiments using only 4x the number of observations. The DKW

bounds outperform SAVI, yet still have a lower performance than the mSPRT, needing almost

2x as many observations. The number of extra observations needed to reject the null using SAVI

confidence bounds as opposed to the mSPRT is in line with the results found in Section 5.2.

This makes sense, as the retention after 7 days can be interpreted as a binomial distribution

with probability around 0.180 for arm B and 0.190 for arm A, as shown in Figure 6.5.
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Chapter 7

Conclusion and Discussion

This paper investigates the performance and applicability of the confidence bounds constructed

through the SAVI methodology, as proposed by Howard and Ramdas (2022).

In Section 7.1, an overview of the key findings is provided. The findings highlight multiple

situations where the use of the methodology by Howard and Ramdas (2022) may not be advant-

ageous. The main problem here would be the reduced power of the methodology, especially in

small-size samples. In such scenarios, where the data set is limited, it could be more beneficial

to use a test that centres on the mean rather than the distribution across all quantiles. However,

the research also illuminated implementations where the methodology could be helpful in A/B

testing. This is particularly in scenarios requiring quantile-based analyses, when we need to

detect variations across an entire distribution. The SAVI-based confidence bounds can reject

the null hypothesis even in situations where the mean does not change significantly, unlike the

methodology proposed by Johari et al. (2017).

In Section 7.2, limitations of the study are addressed and possible directions for continuing

research in this area are suggested.

7.1 Conclusion

A/B tests are becoming increasingly popular. One potential problem with A/B tests is data

peeking, which refers to monitoring the data before the end of the experiment. Traditional

statistical tests do not allow for this, as continuous monitoring would violate the Type I error

of the test. Recently, developments have been made in the construction of tests that allow for

continuous monitoring. This thesis compares a novel addition to these tests, namely SAVI-

based confidence bounds, as developed by Howard and Ramdas (2022), with other established

methodologies.

A comparative study was designed to evaluate the performance of the SAVI confidence

bounds against three tests valid over all quantiles, from which two tests are valid over time

and one is only valid for a predetermined sample size n. Furthermore, the methodology was

compared to the mSPRT-derived always valid p-values by Johari et al. (2017). Additionally,

two enhancements to the current SAVI confidence bounds were proposed. Multiple simulation

studies were conducted and two real-world datasets were analysed, both focusing on different

potential scenarios.
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As with any statistical testing methodology, the decision to use the SAVI confidence bounds

should be informed by the specific context and objectives of the experiment, taking into account

both its advantages and limitations. Building on this notion, the present study has shed light

on some of the strengths and weaknesses of SAVI.

We conclude this study by showing a flowchart in Figure 7.1, in which a test methodology

is advised based on the qualifications of the data and the setup of the test. The flowchart

starts by dividing the tests into tests that allow for continuous monitoring or not. The next

question, stated by: “Chance of dissimilarity between both arms without difference in means?”

refers to Section 5.4, where we found that the use of confidence bounds might be preferred when

there is a chance of dissimilarities between both arms of the distribution, without a changing

mean between both arms. If this is the case, then the next question, “Number of observations

limited?”, helps to make a decision for the right methodology. If the number of observations

is limited, the Welch test or mSPRT will still be preferred due to the high difference in power

of the tests. When there is no limitation on the number of observations, the question “Are the

means of both arms shifting over time?” should decide whether the Welch test or mSPRT should

be used, or the DKW or SAVI-based confidence bounds should be used. This is based on the

results in Section 5.3, where we find that the Type II error could still increase if the test has

a lower power and the means of the distributions change over time. When deciding to use the

SAVI confidence bounds, extra steps in the flowchart are added, showing whether to use the

enhancements of SAVI-based confidence bounds or the original SAVI-based confidence bounds.
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Figure 7.1: Flowchart showing advised methodologies based on results study.
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7.2 Limitations & Further Research

The main limitation of this study was the scarcity of appropriate empirical datasets for A/B

testing. As Liu (2021) pointed out, there is a general lack of adequate datasets for A/B testing.

An ideal dataset for this study would comprise a substantial number of observations per exper-

iment (preferably over 100,000), empirical data, multiple distinct experiments, and non-binary

data that utilizes different quantiles. Moreover, timestamps or information about time homo-

geneity would be advantageous. As such a dataset is not yet publically available, the datasets

used in this study were adapted to align with these criteria. Several assumptions were made in

this process, which inherently diminishes the robustness of the outcomes.

Specifically, in the case of the ASOS Digital Experiments Dataset (as discussed in Section

6.2), various assumptions were made that significantly compromised the reliability of the res-

ults. For instance, the lack of detailed information about each experiment prohibited further

verification of the validity of the data. Moreover, there was no availability on whether the null

hypothesis in the test was truly rejected or not. Also, due to the aggregated nature of the data,

the SAVI confidence bounds require simulation for its implementation. As a result, it’s vital to

approach the conclusions of this experiment with caution. If the dataset was fully empirical, the

conclusions drawn would provide a stronger testament to the methodology’s efficacy.

The Cookie Cats dataset (discussed in Section 6.3) also posed limitations. The assumption

of time homogeneity was made and the binary nature of the dataset constrained the evaluative

capacity of the utility of the SAVI confidence bounds in this context.

Future research should prioritize testing the SAVI-based confidence bounds on a large, em-

pirical dataset to better ascertain its practical utility. To achieve this, a tech company releasing

a dataset that meets the aforementioned criteria would be a crucial step forward.

Another limitation of the study is the simplicity of the data used in the simulation. This

may have overlooked many potential complications that can disrupt the A/B distribution. Some

described by Kohavi, Henne and Sommerfield (2007) and Kohavi et al. (2020a) include improper

management of cookies or caching. This may result in erroneous observations or users migrating

between groups. Again, the methodologies should be tested in a real setting or using proper

datasets.

One other limitation of this study is the comparability between tests. The methodologies

in this study were included as they present a wide, interesting range of tests. However, the

comparability between tests is sometimes arguable. For example, the DKW confidence bounds

are only valid for fixed-n. These are interpreted as if an oracle would have predicted the exact

minimum amount of included observations to reject the null, which is logically not possible in

real life. To get a better comparison, the DKW bounds should be set up as if it would be a real

test. The tests should then be run, possibly not rejecting the null due to stopping too early, or

including too many observations after the null already could have been rejected. Using these

outcomes would give a better comparison between SAVI and the DKW confidence bounds.

Also, the comparison between the mSPRT and the SAVI-based confidence bounds could

have been more fair. As stated often, the mSPRT only investigates shifts in mean, whilst the

confidence bounds by Howard and Ramdas (2022) examine the whole distribution. A more

fair comparison could have been comparing the mSPRT with an always valid methodology that
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focuses on the median of the distribution instead of all quantiles. Howard and Ramdas (2022)

propose methodologies that can be used for this in their paper. This would be interesting for

further research.

Besides this, there are some other methodologies that are worth exploring in future studies.

For example, Bayesian statistics, often employed in A/B testing, offer a unique approach to

quantifying uncertainty and making inferences. Leveraging prior knowledge, Bayesian statistics

update probabilities to assess the effectiveness of different treatments, balancing observed data

with prior beliefs. This method also facilitates continuous monitoring of data as outlined by

Deng, Lu and Chen (2016). Comparing the power and usability of Bayesian Statistics with the

SAVI-based confidence bounds could be highly interesting in future research.

Although multiple methodologies in this study allow for continuous monitoring of the data,

the decision was made to monitor the data in 500 equal steps throughout the experiment. It

was checked using simulation for the normal and Poisson distribution whether including more

steps led to different results, but this was not the case, except for the Welch test violating the

Type I error even faster. As this research was mostly explorative, future research could dive into

the step size when monitoring the data. For example, research could be conducted to determine

the optimum trade-off between computational capacity and accuracy of results. This could be

highly interesting to companies willing to work with continuous monitoring.

Lastly, the proposed enhancements SAVI-PA and SAVI-HD might give a crooked interpret-

ation when compared to other methodologies. The use of historical data, for example, could

also increase the power of other methodologies. As this paper focused on the usability of the

SAVI-based confidence bounds, this was only done for this methodology, comparing the original

performance to the performance of the enhancements. Further research could include also ex-

tending the other methodologies by using historical information on arm A and comparing the

power of these enhancements as opposed to each other.
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Appendix A

Illustrative Plots of Different

Simulations

In this appendix, the ECDF, histogram and distribution over time of the different simulations

are shown. All relevant details are provided in the caption, and further information on the

simulation can be found in 5.

A.1 Poisson distribution

The ECDF, histogram and distribution over time of the included Poisson distribution are shown

below:

Figure A.1: Left: Empirical Cumulative Distribution Functions (ECDFs) of Arm A and Arm B for
the Poisson distribution with lambda = 0.5. Right: Histogram of simulated data from Arm A and Arm
B for the Poisson distribution with lambda = 0.5.
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Figure A.2: Left: Empirical Cumulative Distribution Functions (ECDFs) of Arm A and Arm B for
the Poisson distribution with lambda = 5. Right: Histogram of simulated data from Arm A and Arm B
for the Poisson distribution with lambda = 5.

Figure A.3: Left: Empirical Cumulative Distribution Functions (ECDFs) of Arm A and Arm B for
the Poisson distribution with lambda = 1000. Right: Histogram of simulated data from Arm A and Arm
B for the Poisson distribution with lambda = 1000.

Figure A.4: Temporal distribution of observations, simulated by Poisson distribution with lambda =
0.5.
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Figure A.5: Temporal distribution of observations, simulated by Poisson distribution with lambda =
5.

Figure A.6: Temporal distribution of observations, simulated by Poisson distribution with lambda =
1000.
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A.2 Binary distributions

The ECDF, histogram and distribution over time of the different binary distributions are shown

below:

Figure A.7: Left: Empirical Cumulative Distribution Functions (ECDFs) of Arm A and Arm B for
the binomial distribution with probability = 0.055 in arm A and 0.005 in arm B. Right: Histogram of
simulated data from Arm A and Arm B for the binomial distribution with probability = 0.055 in arm A
and 0.005 in arm B.

Figure A.8: Left: Empirical Cumulative Distribution Functions (ECDFs) of Arm A and Arm B for the
binomial distribution with probability = 0.5 in arm A and 0.45 in arm B. Right: Histogram of simulated
data from Arm A and Arm B for the binomial distribution with probability = 0.5 in arm A and 0.45 in
arm B.

Figure A.9: Left: Empirical Cumulative Distribution Functions (ECDFs) of Arm A and Arm B for
the binomial distribution with probability = 0.995 in arm A and 0.945 in arm B. Right: Histogram of
simulated data from Arm A and Arm B for the binomial distribution with probability = 0.995 in arm A
and 0.945 in arm B.

59



Figure A.10: Temporal distribution of observations, simulated by binomial distribution with probability
= 0.055 in arm A and 0.005 in arm B

Figure A.11: Temporal distribution of observations, simulated by binomial distribution with probability
= 0.5 in arm A and 0.45 in arm B

Figure A.12: Temporal distribution of observations, simulated by binomial distribution with probability
= 0.995 in arm A and 0.945 in arm B

60



A.3 Normal Distribution with Errors

The ECDF, histogram and distribution over time of a normal distribution with errors are shown

below:

Figure A.13: Left: Empirical Cumulative Distribution Functions (ECDFs) of Arm A and Arm B for
the normal distribution with errors (same mean between arms). Right: Histogram of simulated data from
Arm A and Arm B for the normal distribution with errors (same mean between arms).

Figure A.14: Left: Empirical Cumulative Distribution Functions (ECDFs) of Arm A and Arm B for
the normal distribution with errors (changing mean between arms). Right: Histogram of simulated data
from Arm A and Arm B for the normal distribution with errors (changing mean between arms).

Figure A.15: Temporal distribution of observations, simulated by normal distribution with errors
(same mean between arms).
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Figure A.16: Temporal distribution of observations, simulated by normal distribution with errors
(changing mean between arms).
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A.4 Normal Distribution with Changing Mean

The ECDF, histogram and distribution over time of a normal distribution with changing mean

are shown below:

Figure A.17: Left: Empirical Cumulative Distribution Functions (ECDFs) of Arm A and Arm B for
the normal distribution with increasing mean. Right: Histogram of simulated data from Arm A and Arm
B for the normal distribution with increasing mean.

Figure A.18: Left: Empirical Cumulative Distribution Functions (ECDFs) of Arm A and Arm B for
the normal distribution with decreasing mean. Right: Histogram of simulated data from Arm A and Arm
B for the normal distribution with decreasing mean.

Figure A.19: Temporal distribution of observations, simulated by normal distribution with decreasing
mean.
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Appendix B

Addition to Presented Results

In this appendix, the proportion of rejection over time of all methodologies is showed. Whereas

the simulations in 5 focused on highlighting several methodologies per plot, this appendix allows

to compare all methodologies altogether. An important note is that often, the Type I error for

certain methodologies is violated, leaving the test results presented here inaccurate. All figures

in this appendix should therefore be interpreted with caution.

B.1 Poisson Distribution

Figure B.1: Comparison between Arm A and Arm B using Poisson distributions with parameters λ = 5
and λ = 4.8 respectively.

64



B.2 Binomial Distribution

Figure B.2: Comparison between Arm A and Arm B using Binomial distributions with probabilities
0.055 and 0.005 respectively.

Figure B.3: Comparison between Arm A and Arm B using Binomial distributions with probabilities
0.5 and 0.45 respectively.
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Figure B.4: Comparison between Arm A and Arm B using Binomial distributions with probabilities
0.995 and 0.945 respectively.

B.3 Errors in distribution

Figure B.5: Comparison between Arm A and Arm B using errors in Arm B, leading to a downward
shift in its overall mean compared to Arm A.
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Figure B.6: Comparison between Arm A and Arm B using similar means for both arms, despite the
introduction of errors in Arm B.

B.4 Changing Mean over Time

Figure B.7: Simulation with time-dependent means, showing an increasing trend in both Arm A and
Arm B over time.
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Figure B.8: Simulation with time-dependent means, showing a decreasing trend in both Arm A and
Arm B over time.

68



Appendix C

Constructing Always Valid P-values

Based on mSPRT

In this section, we outline the methodology involved in the application of the Mixture Sequential

Probability Ratio Test (mSPRT), as proposed by Johari et al. (2017).

In our application of the mSPRT, we assume a normal mixing distribution. This is denoted

asH0 = N
(
θ0, τ

2
)
where θ0 is the population mean and τ2 represents the variance. θ0 represents

the assumed difference in means between both arms. In our case, this is equal to 0.

C.1 Test Statistic Calculation

A significant component of the mSPRT involves the calculation of the test statistic, denoted as

Λ̃H,θ0
n . This statistic is computed after the observation of the first n instances of variables Xi

and Yj . The mathematical representation of this statistic is as follows:

Λ̃H,θ0
n =

√
σ2
X + σ2

Y

σ2
X + σ2

Y + nτ2
exp

(
n2τ2

(
Ȳn − X̄n − θ0

)2
2
(
σ2
X + σ2

Y

) (
σ2
X + σ2

Y + nτ2
)) , (C.1)

In the above equation, the terms X̄n = n−1
∑n

i=1Xi and Ȳn = n−1
∑n

j=1 Yj refer to the

sample means of the variables X and Y up to the nth sample, respectively. The variable τ2 is a

hyperparameter, and it can either be specified manually or learned from the data. The average

count data between arm A and arm B is used as n.

While in theory, the variances of the two samples σ2
X and σ2

Y are presumed to be known, in

practice, we often make use of empirical estimates. Given the large sample size, we substitute

the true variances with the plug-in empirical estimates
(
s2X
)
n
and

(
s2Y
)
m
, which are the sample

variances for the first n instances of Xi and the first m instances of Yj , respectively.

C.1.1 Hyperparameter Estimation

The hyperparameter τ2 is expressed as a multiple of the sample variance
(
s2X
)
n
, where d is a

constant. This means τ2 = d ·
(
s2X
)
n
. The constant d is calculated using the following formula:
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d = | (Ȳ − X̄)√
(N−1)s2X+(M−1)s2Y

N+M−2

|. (C.2)

C.2 P-value Calculation in mSPRT

Finally, the p-value in the mSPRT is determined using a sequential calculation. It starts with

p0 = 1 and the subsequent p-values are calculated using the following formula:

pn = min
{
pn−1, 1/Λ

H,θ0
n

}
(C.3)
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Appendix D

Preprocessing ASOS

This appendix provides a detailed description of the preprocessing steps performed on the ori-

ginal dataset. This dataset contains cumulative counts, means, and variances associated with

each timestamp.

D.1 Compute Individual Counts and Means

In the initial preprocessing phase, the cumulative values are transformed to represent individual

timestamps. The process is fairly straightforward for both count and mean.

The count Ct at a particular timestamp t can be calculated by taking the cumulative count

CCt at timestamp t and subtracting the cumulative count CCt−1 at the preceding timestamp

t− 1. Mathematically, this can be expressed as:

Ct = CCt − CCt−1 (D.1)

A similar process is employed for the mean. Let Mt represent the mean at timestamp t,

CMt the cumulative mean at timestamp t, Ct the count at timestamp t, and the variables with

subscript t− 1 represent the corresponding values at timestamp t− 1. The mean at timestamp

t can be computed as:

Mt =
CMt · Ct − CMt−1 · Ct−1

Ct
(D.2)

D.2 Handling of Variance

The process of computing the individual variance is less straightforward, hence, we employ a

different approach. The cumulative sample variance is used as the individual variance for each

timestamp.

D.2.1 Interpolation and Data Imputation

The individual means at each timestamp are interpolated in five increments, which aids in

estimating values at timestamps where data is absent.
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In cases where multiple consecutive timestamps are missing, causing unusually high mean

values for the subsequent timestamp, we distribute the effect of this increase over the following

timestamps. The maximum allowable value in this scenario is set to be twice the highest value

found thus far in the dataset.

D.2.2 Simulation of Empirical Dataset

The final empirical dataset is then simulated from a normal distribution, based on the individual

counts, means, and variances corresponding to each timestamp.
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Appendix E

ASOS Digital Experiments Dataset

This appendix contains figures showing the count and mean of different experiments in the

ASOS digital experiments dataset. Each figure has 9 subplots, with the name of each experiment

written above the subplot. The legend contains information about the lines.

Figure E.1
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Figure E.2

Figure E.3
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Figure E.4

Figure E.5
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Figure E.6

Figure E.7
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Figure E.8

Figure E.9
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Figure E.10

Figure E.11
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