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Abstract

This research compares different filtering methods applied to an adjusted Heston model to

estimate commodity volatilities, for which the realized volatility (RV) is utilized as a proxy.

The study focuses on the Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF),

and Particle Filter (PF), making use of the CME Group Volatility Index (CVOL), as the

observed variable. Benchmark models include the HAR-RV and AR(1) models. Evaluation

involves comparing the in-sample forecasts in graphs and using robust loss metrics. Results

indicate that the EKF and UKF methods perform well, closely aligning with the RV. The PF

method outperforms EKF and UKF, capturing volatility dynamics more accurately. How-

ever, both UKF and PF occasionally underestimate the RV. The PF consistently performs

well, surpassing benchmark models, while the HAR-RV model shows good accuracy for

specific commodities. The research enhances volatility estimation techniques in commodity

markets.

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

“The missile knows where it is at all times. It knows this because it knows where it isn’t.”

This famous segment of an Air Force training video from 1997 summarizes the idea of

using filtering methods. It also shows the wide field of application in which the filtering

methods can be utilized. Especially, in the field of finance it is applicable, namely to

handle methods and models in which latent variables are an important factor. Examples

include, but are not limited to, probability of default in credit risk models, interest rate

models and stochastic volatility models (SVM). In this paper we will focus on the latter,

and implement filtering methods on an SVM.

SVM are utilized for various financial applications, for example in risk management,

portfolio optimization and derivative pricing. The main assumption made by SVM is that

the volatility of an asset follows a dynamic process, instead of being fixed, which was the

assumption made by early literature models like Black-Scholes (BS), in 1973. The need

for these models arose from the fact that the assumption of constant volatility violates

behavior of assets in reality. The Heston model (HM) is an example of an SVM with ap-

propriate features that captures characteristics of assets in practice. Furthermore, because

true underlying volatilities are unknown in SVMs, filtering methods can be implemented

to estimate these latent volatilities.

We attempt to utilize different filtering methods on an adjusted HM to estimate the

underlying volatilities. In all filtering methods we iteratively predict the state of the

dynamic volatility system based on the HM, and consequently filter this predicted state

based on noisy volatility observations from the available information set. Specifically,

three different filtering methods are researched. Because of the non-linearity of the HM,

filtering methods that can handle the non-linearity are required. First, we have the

extended Kalman filter (EKF). The EKF is a variant of the traditional Kalman filter

(KF) (Kalman, 1960). It extends the KF by applying a first-order Taylor series expansion

on the model to approximate the non-linearity of the system. Second, we examine the

unscented Kalman filter (UKF). The UKF is another variant of the KF to handle non-

linear models. Instead of linearization, which the EKF utilizes, the UKF approximates

the probability distribution of the system’s state with a Gaussian probability distribution

using a set of weighted sampling points. Third, we study the particle filter (PF). The

PF makes use of the same idea as the UKF, the difference is that the PF allows for
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non-Gaussian approximation. Because the true volatilities are unknown, exact maximum

likelihood estimation is computationally expensive to estimate the parameters of the HM.

To solve this problem we first employ the quasi-maximum likelihood estimation (QMLE)

to calibrate the parameters, proposed by Wedderburn (1974), and more recently utilized

in Alizadeh et al. (2002) and Xiu (2010) for this subject. Thereafter, the filtering methods

are used to update the volatilities.

The Realized Volatility (RV) of the commodities is utilized as a proxy to evaluate the

CME Group Volatility Index (CVOL) and its, by filtering methods, improved version.

The CVOL is a measure of the implied volatility (IV) of commodities to quantify the

market’s expectation of the 30-day forward risk. The performance of the CVOL and

the three different filtering methods are assessed by robust loss values between the RV

and the in-sample volatility estimates. Subsequently, they are compared to each other

to determine the best performing filtering method and utilized to robustify the CVOL.

Moreover, benchmark models, such as the HAR-RV model, proposed by Corsi (2009) and

AR(1) model, are used to evaluate the effectiveness of the filtering methods on the HM.

The aim of this research is to investigate which filtering method performs best. We

expect the CVOL to overestimate the RV, because of its inherent risk premium for the

seller. So, we make use of the filtering methods to find a more robust IV measure, which

has a better predictive accuracy of the RV than the CVOL, by using the CVOL as a noisy

IV measure. Therefore, the main question of this research is formulated as follows: “Which

filtering method in combination with quasi-maximum likelihood estimation performs best,

and can it improve the CVOL of different commodities in practice?”.

We are provided data by the company Transtrend. Transtrend is a commodity trading

advisor firm with expertise in trend following investments. The data contains the CVOL

observations of various commodities for the period October 2013 up until and including

December 2022. On top of that, futures price data of the corresponding commodities are

provided for the same time frame.

Our analysis indicates that the EKF, UKF, and PF filtered estimates outperform

the CVOL measure in estimating the RV for various commodities. The EKF and UKF

models demonstrate a closer alignment with the RV and provide more accurate estimates

compared to the CVOL measure. However, the UKF consistently outperforms the EKF,

capturing non-linearity better. The PF method exhibits the highest accuracy, closely
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aligning with the RV estimates for corn, crude oil, gold, natural gas, and soybean, and

achieves the lowest loss values for cases in which under- and over-prediction are penalized

more or equally. Nonetheless, both the UKF and PF methods occasionally underestimate

the RV. Overall, these findings highlight the superiority of the UKF and PF techniques in

capturing complex volatility dynamics. The PF filtered CVOL consistently outperformed

the benchmark models, displaying a close alignment with RV values and strong predictive

accuracy. The HAR-RV model also performed well, particularly excelling in in-sample

forecasting corn and soybean. Although the AR(1) benchmark model showed reasonable

performance and better in-sample accuracy than the CVOL, it fell slightly behind the

other models.

The empirical results from this research can be used in practice. For example, a

filtering method combined with an SVM can function as a method to improve IV mea-

sures. Moreover, the formulated methods and models can be used in academic research as

benchmark models in other empirical studies where filtering methods are used on SVMs

to develop volatility estimates.

The remainder of the paper proceeds as follows. In Section 2, we provide a brief

literature review. The relevant data is described in Section 3. Next, our methods are

introduced in Sections 4 and 5. Afterwards, the results are presented in Section 6. Finally,

we conclude and discuss our results in Section 7.

2 Literature

The research of modelling volatility has been a key subject in financial literature and

applications. There are different types of volatility that are researched in the literature.

The most common, and also the ones that will by analyzed in this paper, are historical

volatility and IV. The RV is widely used as a benchmark to assess how well volatility

estimates are doing when it comes to historical volatility. This is because it is an un-

biased proxy of the actual quadratic variation. The RV was initially explored and used

in works such as Andersen et al. (2005) and Andersen and Teräsvirta (2009) after being

first introduced in Andersen and Bollerslev (1998). The RV is a more accurate volatility

estimator than other historical volatility measures that are derived using daily returns

rather than intra-day returns (evidence in Appendix A). Furthermore, Liu et al. (2015)
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asserts that alternative volatility estimates do not, on average, significantly outperform

the 5-minute RV.

On the other hand we have IV, which is a measure that captures the market’s view

on the volatility of a certain financial instrument in the future. The literature workhorse

model to calculate the IV from market prices of options was first introduced in Black and

Scholes (1973), called the BS model. The BS model assumes that the price of an equity

follows a geometric Brownian motion with parameters that are constant. Although the BS

model has nice features, for example it gives a closed-form solution for pricing European

options, it does not capture characteristics of actual market data. In the literature we

can read about these characteristics, that are not described by the BS model. First of all,

Cont (2001) found that the returns on equity prices follow a distribution that has high

peaks and is fat-tailed. In addition, Engle and Ng (1993) conclude that equity prices and

volatilities are negatively correlated. Last of all, the volatilities of returns in equity prices

have mean-reverting and clustering features, stated in Engle and Patton (2001) and Fama

(1965), respectively.

As these properties are not captured by the BS model, the literature tried to improve

on it and come up with developments that do incorporate these features. For example,

Wiggins (1987) and Hull and White (1987) adjusted the BS model to allow for stochastic

volatility, which are build on two stochastic diffusion processes that are linked, namely

the equity and volatility processes. Despite the fact that these models are successful in

describing the equity price movements, they do not have closed-form solutions. Another

method was introduced in Heston (1993), which we refer to as the HM, that utilizes

a stochastic volatility model, which follows a square root mean-reverting process. In

this way the HM is able to capture the features of real market data, the volatilities

are non-negative, by construction, and on top of that the HM can accommodate for the

“smile” effect of IV, discussed in Weron and Wystup (2005) and Dupire (1997). The most

significant advantage, for practical use of the HM, is that it has a closed-form solution

for pricing. However, because the parameters of the model and the true underlying

volatilities are not observed, the estimation procedure is not straightforward and needs

special attention.

In the early literature the idea of moment matching was often used. For example, the

method of moments proposed by Taylor (2008), the generalized method of moments dis-
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cussed by Andersen and Sørensen (1996) and Melino and Turnbull (1990) and the efficient

method of moments stated in Andersen et al. (1999). The disadvantage of these meth-

ods is that they are computationally expensive, due to optimization in high-dimensional

parameter spaces, handling of non-analytical solutions, and accommodation for model

complexity.

More state-of-the-art research focuses on filtering methods. For instance, in Ruiz

(1994) the asymptotic and finite sample properties of a quasi-maximum likelihood es-

timator on linear SVMs based on the KF was analyzed. However, because the HM is

non-linear, Javaheri et al. (2003) looked into estimating the model using the EKF. Fur-

thermore, PF methods, that deal better with the non-linearity of the HM, are utilized on

SVMs in for example Aihara et al. (2009). But, because of the computational limitations

of the PF methods, an approach called the UKF could be utilized, which is considered

better in performance but has the same computational properties as the EKF. Corre-

sponding literature that makes use of and discusses the application of the UKF on SVMs

are for example Zoeter et al. (2004) and Li (2013).

We distinguish from literature by implementing the filtering methods on an adjusted

HM to analyze and robustify volatilities of commodities, while most papers only assess

the performance of the various methods by a simulation study, and sometimes include

applications on stock indices.

3 Data

3.1 Description

The data for this research is provided by Transtrend. The data consists of tick and daily

prices of various commodity futures. The data also includes daily observations of the

CVOL. Furthermore, the time period that is used to perform research is October 2013 up

until and including December 2022. This sample period is chosen because of availability

of CVOL data.

The proxy that is utilized to evaluate the CVOL is the RV. The methodology on how

the RV is calculated in this research is described below. For the details of the calculation

of the CVOL and its methodology we refer to the CME Group Volatility Index Benchmark
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Methodology.1

3.2 Realized Volatility

For the calculation of the RV we exploit the 5-minute intra-day natural logarithm returns

during market hours such that the return is

ri,j,t = log(pi,j,t/pi,j−1,t). (1)

In this equation pi,j,t is the jth price observation of commodity i on day t. Using this

definition, the RV is defined as follows

RVi,t =
∑
j

r2i,j,t. (2)

However, this measure for volatility neglects information contained in overnight re-

turns. To incorporate this information to get a more robust RV, Hansen and Lunde

(2005) introduced a scaled version of the RV, which is of the form

RV
′

i,t = ĉRVi,t, (3)

where

ĉ =

∑T
t=1(ri,t − µ̂i)

2∑T
t=1RVi,t

. (4)

Here we have that ri,t is the daily settle-to-settle natural logarithm return of commodity

i, and µ̂i is the mean of ri,t over the sample period.

3.3 Future Selection

In this section we discuss the future selection procedure (FSP) to determine which future

contracts to use to calculate the realized volatility and daily settle-to-settle returns. As

the various commodities have characteristics that differ, the FSP for each of them will

also be different.

First, we discuss the FSP of gold, the precious metal commodity we investigate in our

research. In case of gold futures, most of the time, there is only one contract of main

1https://www.cmegroup.com/market-data/cme-group-benchmark-administration/files/cvol-

methodology.pdf
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interest and traded the most. So, the FSP of gold for a certain day is to sort out the

contract that has the most trading volume on daily basis and utilize that one.

Second, we have the agricultural commodities. These are corn and soybean. The FSP

for these products is the same as for gold, however there is a small difference. This follows

from the fact that there are harvest seasons for the grain products. Throughout the year,

contracts with different expiration dates also have different crops as an underlying. For

corn futures the underlying changes to the new crop in the December contract and for

soybean in the November contracts. So basically, these contracts have different underly-

ing assets, as the products are the same but the crops are different, so these contracts

could have different characteristics. To take this into account, the FSP for agricultural

commodities does not switch to the December contract, with underlying the new crops,

until at least 30 days before days to expire (DTE) of the current contract, with underlying

the current crops, even though if the December contract has the most trading volume.

Last of all, the FSP of energies is examined. In case of energy commodities, which

are crude oil and natural gas in our analysis, we often observe that two contracts have a

high volume of trades at the same time. To incorporate information from both contracts

in the daily returns and realized volatility, a future continuation scheme is proposed and

weighted accordingly. To conclude, the FSP for these energy commodities is to consider

the two most active future contracts, consequently weigh them on their importance based

on their DTE. The further the expiration date of the contract is from 30 days in the future,

the less important the contract becomes. The weights for the daily returns and realized

volatilities are calculated the same way as is done in the CME CVOL methodology for

IV, which is

w1 =
|DTE2 − (t+ 30)|

|DTE2 − (t+ 30)|+ |(t+ 30)−DTE1|
, (5)

w2 =
|(t+ 30)−DTE1|

|DTE2 − (t+ 30)|+ |(t+ 30)−DTE1|
, (6)

where t is the current date on which the calculation is being performed. DTE1 and

DTE2 are the DTE for the most and second most active future contract, respectively.

And finally, w1 and w2 are the weights for the most and second most active future contract,

respectively.
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3.4 Summary Statistics

In Table 1 and Table 2 the CVOL and RV summary statistics of different commodities are

outlined. We observe that for all commodities the RV is on average lower than the CVOL.

From this we can conclude that the markets view on the volatility of these commodities,

in the upcoming 30 days, is on average higher than what is realized. This fact is in line

with what generally is observed in practice and research, that IV is higher than RV. The

reason behind these observed results are thought to be to compensate for the risk the

seller is taking and hedging costs. We also notice that the standard deviation of the RV

is higher than their IV counterparts, except for corn and natural gas. This means that

the RV does differ more from period to period than the CVOL for crude oil, gold, and

soybean and less for corn and natural gas. Another noticeable aspect is that the CVOL

has both a higher skewness and a larger kurtosis than the RV for the energy commodities.

This infers the fact that the RV is more positively skewed and more leptokurtic than the

CVOL, which corresponds to the tails of the distribution of the RV being larger than

that of the CVOL, for crude oil and natural gas. This could be due to the fact that

the markets view on volatility for the upcoming 30 days, in peak volatility periods is

exaggerated and highly overestimated. For corn, gold and soybean the opposite holds.

This probably follows from the fact that the precious metal and agricultural commodities

have less peaking volatility periods. For energy commodities the level of volatility peaked

much more from time to time. Examples include but are not limited to the energy crisis

and the price of a certain, close to expiration, oil future going negative. These occurrences

caused the volatility to peak a lot for energy commodities. Last of all, we note that for

all commodities the maximum and minimum values are lower for the RV.

Table 1: Summary statistics CVOL of the various commodities

Commodity Mean St. Dev. Skew Kurt Max Min

Corn 24.77 7.82 1.05 1.70 66.99 10.37

Crude Oil 39.47 23.63 6.40 72.32 435.29 13.80

Gold 15.51 4.32 1.40 5.65 51.03 8.18

Natural Gas 51.74 24.25 1.31 1.48 152.23 19.90

Soybean 20.33 5.00 0.71 0.70 43.19 10.55
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Table 2: Summary statistics realized volatilities of the various commodities

Commodity Mean St. Dev. Skew Kurt Max Min

Corn 21.56 6.85 1.31 2.35 49.82 9.52

Crude Oil 36.35 28.99 6.00 45.98 292.36 9.51

Gold 14.02 4.42 2.48 11.81 43.20 7.78

Natural Gas 45.19 20.54 1.03 0.28 117.00 17.25

Soybean 18.63 5.18 0.83 0.87 39.79 9.20

3.5 CVOL/RV Comparison

(a) Corn (b) Soybean

Figure 1: CVOL and RV of agriculture products

In Figure 1 we observe the CVOL and RV of agricultural commodities. The first thing

that we notice is that the RV for both corn and soybean are in general lower than the

CVOL. This corresponds with their means. It seems though that in normal volatility

periods the CVOL approaches the RV, however in peak volatility periods it overshoots

the RV a lot, like in early 2022 at the start of the Russo-Ukrainian War, and in low

volatility periods it overestimates the volatility. Both volatility measures also seem to be

mean-reverting.
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(a) Crude Oil (b) Natural Gas

Figure 2: CVOL and RV of energy products

From Figure 2 we can conclude that for energy commodities the same results hold as for

the agricultural commodities. For crude oil we observe a very high peak early 2020, and as

a consequence the very large kurtosis of crude oil compared with the other commodities.

This is probably because of the corona-crisis and the fact that oil prices went negative.

Although crude oil seems mean-reverting, the mean of natural gas seems to have changed

at the end of the time period, after 2020, as it seems to revert back to another level then

before. The Russo-Ukrainian War is likely to be the cause of this.

Figure 3: CVOL and RV of Gold

Lastly, Figure 3 shows the RV and CVOL of gold. Also gold incorporates characteristics

like the other commodities, namely, mean-reverting, IV is generally higher than RV and

peaks early 2020 due to the corona crisis. However, the gold RV and CVOL do seem less

volatile than the other commodities, next to having its peaks from time to time.

All in all, reviewing the graphs we again observe that the CVOL is on average higher

than the RV for the various commodities. As we know, the CVOL is in itself the market’s
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prediction of the volatility for the upcoming 30 days. We notice that the CVOL does move

according to the RV and captures its various dynamics, although making some errors from

time to time. By utilizing the RV as a proxy for the volatility that is predicted by the

CVOL, we can assess its performance. In further results we will utilize the CVOL as a

noisy prediction variable of the volatility to estimate the latent volatility, namely the RV,

by making use of the various filtering methods in combination with the HM.

4 Filtering Methods

Relations between the observed and latent variables can be represented in a state-space

form, which is a system of equations describing how the observed variables are related to

the latent variables and potentially to exogenous variables. Filtering methods are proce-

dures that utilize various techniques to extract information from these observed variables

to estimate the latent variables. The methods focus on two central steps. Namely, the

prediction and update step. In the prediction step, the filter predicts the latent variable

for the current period based on the previous estimate. In the update step, the filter com-

bines the predicted estimate with the current observed variable to get an estimate for the

current latent variable. This procedure is done iteratively for each period.

In this section we present the filtering methods that we make use of. We first discuss

the KF, since some of the methods we utilize are based on this method. We cannot use

the KF in our analysis, as it is not applicable to non-linear systems. The extensions that

we research are the EKF and UKF, which are appropriate filtering methods that can

handle non-linear systems with Gaussian noise. On top of the the Kalman-like filters, we

also review the PF, another filtering method that is applicable to non-linear systems but

considers non-Gaussian noise. Furthermore, the system of equations of the latent and

observed variables consist of unknown parameters. To estimate these parameters we will

explain and apply the quasi-maximum likelihood estimation (QMLE) method.

4.1 Kalman Filter

The state-space representation consists of two sort of equations. Specifically, these are

the observations equation(s) and the state equation(s). In case of the KF, these equations

are linear of form and their corresponding noises are Gaussian. This system of equations
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can be presented as follows

yt = Hξt +BoXo
t + wt, (7)

ξt = Fξt−1 +BsXs
t + vt. (8)

Here, equation 7 is the observation equation, with yt the observed variable, ξt the latent

variable, also called state variable, Xo
t the optional exogenous variables, and wt ∼ N(0, R)

the Gaussian observation noise. Equation 8 is the state equation, with its corresponding

optional exogenous variables Xs
t , and vt ∼ N(0, Q) the state Gaussian noise. H describes

the link between the state and observed variable. F describes how the state variable

evolves over time. Bo and Bs are the parameters of their corresponding exogenous vari-

ables. The subscripts on each variable correspond to their time periods.

The goal is to calculate the estimate of the latent variable ξt, the RV in our case, given

the observations yt, the CVOL in our case. We move forward using the two crucial steps

in Kalman filtering: prediction and update. Prediction of the state variable is estimated

from the previously determined states ξ̂t−1 in the prediction stage. We get

ξ̂t|t−1 = Et−1[Fξt−1 + vt] = F ξ̂t−1|t−1 +BsXs
t , (9)

where t|t − 1 implies that the previous state estimate is utilized to calculate the current

state estimate. So, in our case ξ̂t−1|t−1 is the filtered CVOL, with which we try to predict

and estimate the RV.

Moreover, we compute the estimation error by

et|t−1 = ξt − ξ̂t|t−1, (10)

with its corresponding covariance being equal to

Pt|t−1 = Et−1[et|t−1e
′
t|t−1] = FPt−1|t−1F

′ +Q. (11)

Furthermore, we calculate the observation prediction, for our research the prediction of

the CVOL, which is provided by

ŷt|t−1 = Et−1[Hξt + wt] = Hξ̂t|t−1 +BoXo
t . (12)

Next we follow the KF in the update step. In this step information from the actual

observation yt, predicted observation ŷt|t−1, and predicted current state estimate ξ̂t|t−1 are
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utilized to update the current state estimate and get ξ̂t|t, the filtered CVOL of the new

time period. This is depicted in the following equation

ξ̂t|t = ξ̂t|t−1 +Kt(yt − ŷt|t−1), (13)

where Kt is the so-called Kalman gain, a key component in the Kalman-like filters. The

estimation error of the updated current state estimate is

et|t = ξt − ξ̂t|t. (14)

The covariance of et|t is noted as

Pt|t = Et[et|te
′
t|t] = Pt|t−1 −KtH

′Pt|t−1. (15)

All the variables are known, except for Kt. Kt can be seen as a weighting factor. The

optimal Kalman gain equals

Kt = Pt|t−1H(H ′Pt|t−1H +R)−1. (16)

For the exact derivations of the equations and further explanation on the KF, refer to

Durbin and Koopman (2012). As this is an iterative procedure, the values of the latent

variable ξ0 and its corresponding error covariance matrix P0 need to be initialized.

4.2 Extended Kalman Filter

The EKF is a filtering technique that is based on the KF, which is applicable to non-

linear state-space models. We utilize the methodology of Wan and van der Merwe (2001)

to discuss the EKF. Instead of having a linear system of equations, like in 7 and 8, we

assume a general function form for the state and observation equations:

yt = h(ξt, wt), (17)

ξt = f(ξt−1, vt), (18)

where ht and ft are non-linear functions of the latent variable ξt and Gaussian noise vari-

ables wt and vt, respectively. We again assume that wt ∼ N(0, R) and that vt ∼ N(0, Q).

The EKF is also split into the prediction and update step. The prediction step is the

same as in KF. Namely, the latent variable is predicted as

ξ̂t|t−1 = Et−1[f(ξt−1, wt)] ≈ f(ξ̂t−1|t−1, 0). (19)
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And again let the estimation error be

et|t−1 = ξt − ξ̂t|t−1. (20)

However, the calculation of the covariance is slightly different. The EKF makes use of

linearization of the non-linear observation and state transition equations. The Jacobian

matrices are utilized to perform this linearization. The Jacobians are:

Ht =
∂h

∂ξt
, Ft =

∂f

∂ξt
, Wt =

∂h

∂wt

, Vt =
∂f

∂vt
. (21)

In this way we get for the covariance of the predicted state the following

Pt|t−1 = Et−1[et|t−1e
′
t|t−1] = FtPt−1|t−1F

′
t +WtQW ′

t . (22)

The observation prediction is provided by

ŷt|t−1 = Et−1[h(ξt, wt)] ≈ h(ξ̂t|t−1, 0), (23)

with its covariance being equal to

P ŷ
t|t−1 = H ′

tPt|t−1Ht + VtRV ′
t . (24)

The update step of the EKF looks like the update step of the KF, however the calcu-

lations of the covariance and Kalman gain matrices are different due to the linearization

of the non-linear state-space model. The updated current state estimate is again noted

as

ξ̂t|t = ξ̂t|t−1 +Kt(yt − ŷt|t−1), (25)

but the optimal Kalman gain is now computed as

Kt = Pt|t−1Ht(H
′
tPt|t−1Ht + VtRV ′

t )
−1. (26)

Estimation error of the updated current state estimate is again

et|t = ξt − ξ̂t|t, (27)

with its covariance equal to

Pt|t = Et[et|te
′
t|t] = Pt|t−1 −KtH

′
tPt|t−1. (28)

And again, just like in the KF, initialization of ξ0 and P0 is required, as it is a recursive

process.
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4.3 Unscented Kalman Filter

A filtering technique called the UKF was proposed by Julier and Uhlmann (1997). They

claimed that the UKF outperforms the extended Kalman filter for estimating highly

non-linear systems with Gaussian distributions. This is due to the EKFs inferior state

covariance approximation compared to the UKFs.

In contrast to the EKF, the UKF employs actual non-linear models and approximates

the distribution of the latent variable rather than approximating the non-linear process

and observation models. A collection of well selected deterministic sample points, called

sigma points, can be used to estimate the distribution of the states. There are two

weights assigned to each sigma point. The real mean and covariance of the states are

entirely represented by the sigma points. We demonstrate how to create the sigma points

and their related weights below. We make use of the methodology of Wan and van der

Merwe (2001) to explain the steps taken in the UKF.

First we introduce the unscented transformation (UT). A technique for figuring out

the statistics of a random variable x (with dimension L) that has undergone a non-linear

transformation is known as the UT. Assume a random variable x is propagated through

a non-linear function y = g(x). Suppose x has a mean of x̄ and a covariance of Px.

We create a matrix χ from 2L + 1 sigma vectors χi (with corresponding weights Wi) to

determine the statistics of y as follows:

χ0 = x̄, (29)

χi = x̄+ (
√
(L+ λ)Px)i i = 1, ..., L, (30)

χi = x̄− (
√

(L+ λ)Px)i i = L+ 1, ..., 2L, (31)

W
(m)
0 = λ/(L+ λ), (32)

W
(c)
0 = λ/(L+ λ) + (1− α2 + β), (33)

W
(m)
i = W

(c)
i = 1/(2L+ 2λ) i = 1, ..., 2L. (34)

Here we have that λ = α2(L + κ) − L is a scaling parameter. The value of α, which is

often set to a small positive number, defines the dispersion of the sigma points around x̄.

(e.g., 1e-3). β is used to take into account past knowledge of the distribution of x (for

Gaussian distributions β = 2 is optimal), while κ is a supplementary scaling parameter
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that is often set to 0. (
√

(L+ λ)Px)i is the i
th row of the matrix square root. These sigma

vectors are propagated through the non-linear function,

Υi = g(χi) i = 0, ..., 2L. (35)

Furthermore, utilizing a weighted sample mean and covariance of the posterior sigma

points, the mean and covariance approximations for y are

ȳ ≈
2L∑
i=0

W
(m)
i Υi, (36)

Py ≈
2L∑
i=0

W
(c)
i (Υi − ȳ)(Υi − ȳ)′. (37)

The UKF is an iterative process of the UT following equation 13. Instead of ξ the

concatenation of the state and noise variables, ξat = [ξt vt wt]
′, are examined. The sigma

point selection process and computation of the corresponding sigma matrix, χa
t , along

with the prediction and update step of the UKF are depicted below.

First we calculate the sigma points, and construct the sigma matrix

χa
0,t−1|t−1 = ξ̂at−1|t−1. (38)

χa
i,t−1|t−1 = ξ̂at−1|t−1 +

(√
(L+ λ)P a

t−1|t−1

)
i

i = 1, ..., L. (39)

χa
i,t−1|t−1 = ξ̂at−1|t−1 −

(√
(L+ λ)P a

t−1|t−1

)
i−L

i = L+ 1, ..., 2L. (40)

where

P a
t−1|t−1 =


P χ
t−1|t−1 0 0

0 P v
t−1|t−1 0

0 0 Pw
t−1|t−1

 , (41)

with P χ
t−1|t−1, P

v
t−1|t−1 and Pw

t−1|t−1 covariance matrices of the corresponding state and

noise variable.

Again, assume a general function form for the state and observation equations, like

in equations 17 and 18. Following the construction of the sigma matrix, we have that

χa
t−1|t−1 = [χξ

t−1|t−1 χv
t−1|t−1 χw

t−1|t−1]
′. Then the equations for the prediction step of the

latent variable χξ
t|t−1, in our case the filtered CVOL, and the prediction of the observation

ŷt|t−1, in our case the CVOL, are

χξ
t|t−1 = f(χξ

t−1|t−1, χ
v
t−1|t−1), (42)
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ξ̂t|t−1 =
2L∑
i=0

W
(m)
i χξ

i,t|t−1, (43)

P ξ
t|t−1 =

2L∑
i=0

W
(c)
i [χξ

i,t|t−1 − ξ̂t|t−1][χ
ξ
i,t|t−1 − ξ̂t|t−1]

′, (44)

Υt|t−1 = h(χξ
t|t−1, χ

w
t−1|t−1), (45)

ŷt|t−1 =
2L∑
i=0

W
(m)
i Υi,t|t−1, (46)

P ŷ
t|t−1 =

2L∑
i=0

W
(c)
i [Υi,t|t−1 − ŷt|t−1][Υi,t|t−1 − ŷt|t−1]

′, (47)

P ξŷ
t|t−1 =

2L∑
i=0

W
(c)
i [χξ

i,t|t−1 − ξ̂t|t−1][Υi,t|t−1 − ŷt|t−1]
′. (48)

And additionally, the update step equations for the filtered CVOL of the new time period

ξ̂t|t, which is the prediction of the RV in our case, and its corresponding covariance Pt|t

are

K = P ξŷ
t|t−1(P

ŷ
t|t−1)

−1, (49)

ξ̂t|t = ξ̂t|t−1 +K(yt − ŷt|t−1), (50)

Pt|t = Pt|t−1 −KP ŷ
t|t−1K

′. (51)

Again, because it is an iterative procedure, initialization of ξ0 and P0 is necessary, just

like before. In addition for the UKF, initialization of ξa0 and P a
0 is required.

4.4 Particle Filter

Two non-linear filtering methods that depend on Gaussian approximation have been

demonstrated so far. The PF, also referred to as the Sequential Monte Carlo approach, is

another broadly used filtering method, which in particular is useful for models that have

non-Gaussian characteristics. The objective of the PF is to recursively approximate the

posterior state distribution in order to implement Bayesian estimation. To review the PF,

we make use of the methodology of Wan and van der Merwe (2001). The main idea behind

the PF is to use Monte Carlo simulation to calculate the posterior probability distribution

(PPD). The PPD is approximated using a collection of weighted samples, called particles,

taken from a proposed distribution q(x0:t|y1:t). Suppose for each time period t we have N
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particles x
(1)
t , ..., x

(N)
t and they are independent and identically distributed (i.i.d). By the

law of large numbers it holds that

1/N
N∑
i=1

ft(x
(i)
0:t) →

∫
ft(x0:t)P (dx0:t|y1:t) as N → ∞. (52)

This shows that there is convergence approximating the PPD, utilizing the PF, as long as

N is large enough. So, the PF consists of generating particles from a proposed distribution,

with corresponding weights, recursively, and approximates the PPD to eventually have an

estimate for the updated state variable. This procedure can be split up into three steps,

namely, sampling, weight computation, and resampling. The latter is a step to tackle the

problem of particle degeneration, which we will discuss in the upcoming paragraphs.

One of the most important considerations for the sampling algorithms is the selection of

the proposal function. The proposal function is the probability distribution that generates

new particles based on the predicted states and observed variable information. Doucet

(1997) recommends choosing proposal functions that reduce the variance of the weights. In

Doucet et al. (2001) it has been proved that “The proposal distribution q(xt|x0:t−1, y1:t) =

p(xt|x0:t−1, y1:t) minimizes the variance of the importance weights conditional on x0:t−1 and

y1:t.” Other academics have also backed this idea, for example in Liu and Chen (1995),

Zaritskii et al. (1976), and Kong et al. (1994). However, the most common option for

a proposal function is q(xt|x0:t−1, y1:t) ≈ p(xt|xt−1), called the transition prior, which we

will utilize. Because it does not take into account the most recent data, it results in

greater variation than the optimal distribution p(xt|x0:t−1, y1:t), but is typically simpler

to execute. The model describes the development of the states, and the characteristics of

the noise are used to determine the transition prior. After generating the particles with

the transition prior, each particle is assigned a weight accordingly.

In the academic field it is found that the variance of the weights increases over time,

which causes the simulations to become inaccurate. This is called particle degeneration,

and proof for this can be found in Doucet et al. (2001) and Kong et al. (1994). In practice,

this degeneration is demonstrated through the weights of some particles becoming close

to zero, whilst others becoming really high (close to 1). This causes a set of particles to

be irrelevant. To address this issue, resampling methods are used. Resampling involves

removing all the particles with insignificant weights and selecting a new group ofN equally

weighted particles from the particles that are still present. A typical method for assessing
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degeneracy is to use the following expression

λdeg
t =

1∑N
i=1(w

(i)
t )2

, (53)

where w
(i)
t is the weight of particle i at time step t. If λdeg

t < N/2 the particles get

resampled and the new set of particles all get the same weight, namely 1/N .

We will now discuss the equations of the particle filter algorithm, as defined in Wan

and van der Merwe (2001). For initialization, so t = 0, draw N particles x
(i)
0 from the

prior p(x0). Because there is limited prior information about the initial state, in our

research we initialize the latent variable x0, namely the filtered CVOL, and utilize a

uniform distribution to select the particles x
(i)
0 around this initialization, to represent

the uncertainty across the state space. Furthermore, set the weights equal to 1/N . Af-

terwards, in the sampling step, sample N particles x
(i)
t from the proposal distribution

q(xt|x0:t−1, y1:t) ≈ p(xt|xt−1). As the HM assumes Gaussian process noise, the transi-

tion prior for our case is p(xt|xt−1) = N(f(ξ̂t−1|t−1, 0), R). Following the sampling step,

compute the weights corresponding to the particles as

w
(i)
t = w

(i)
t−1

p(yt|x(i)
t )p(x

(i)
t |x(i)

t−1)

q(x
(i)
t |x(i)

0:t−1, y1:t)
≈ w

(i)
t−1p(yt|x

(i)
t ), (54)

and normalize them according to

w̃
(i)
t =

w
(i)
t∑N

j=1w
(j)
t

. (55)

Furthermore, in the resampling step, if λdeg
t < N/2, we sample N particles from the exist-

ing particles according to their normalized weights, which can be utilized as probabilities

for choosing a particle. The N particles are equally weighted. And last of all, estimate

the state variable, namely the updated filtered CVOL, which is the prediction of the RV,

using

ξ̂t|t =
N∑
i=1

w̃
(i)
t x

(i)
t . (56)

5 Heston Model

In this section we discuss the HM, with its implications. Furthermore, the state-space

representation, with according discretization, is presented, to make the filtering methods

applicable. Finally, we show how to adjust the resulting model to make it suitable to our

research.
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5.1 Original Heston Model

We examine the HM in a risk-neutral probability world with measure Q, which corre-

sponds to the real world probability martingale measure P. The original HM is given by

the following dynamic system

dS(t) = rS(t)dt+
√

V (t)S(t)dW1(t), (57)

dV (t) = κ(θ − V (t))dt+ σ
√

V (t)dW2(t), (58)

where we have that S(t) is the equity price, and V (t) is the variance of the equity at

time t. The average yield of the equity is denoted by r, which in the risk-neutral space

is the risk-free rate. The κ(θ − V (t)) term is called the mean-reverting force, in which

θ > 0 is the long-run mean of V (t), and κ > 0 is the long-run mean reversion rate of the

variance. Also, we have σ ≥ 0, which is the volatility of the variance. These parameters

are assumed to be positive and constant. If it holds that 2κθ > σ2, the variance is always

positive. Last of all, we have the two Brownian motions W1(t) and W2(t), the increments

of which are correlated by a constant correlation coefficient ρ ∈ [−1, 1].

In practice the equity returns are more of interest than the equity prices. So, instead

of using dS(t), d log(S(t)) is regarded. By Itô equation it is stated that

d log(S(t)) =
1

S(t)
dS(t)− 1

2

1

S(t)2
dS(t)dS(t). (59)

By filling in 57 into 59, d log(S(t)) is given by

d log(S(t)) =

(
r − 1

2
V (t)

)
dt+

√
V (t)dW1(t). (60)

5.2 State-Space Representation and Discretization

Before we present the state-space representation of the HM model, we first transform the

noise variables, which are the Brownian motions. This is necessary since the Brownian

motions need to be independent. According to Javaheri (2011), the optimal method to

do this is to subtract from the variance process (58) a multiple of the equity process

(59) minus the log-equity d log(S(t)), that equals zero. This is done by setting W1(t) =√
1− ρ2Ws(t) + ρWv(t) and W2(t) = Wv(t), where Ws(t) and Wv(t) are independent.

Consequently, we can write the HM as a state-space representation in the following way

dV (t) = κ(θ − V (t))dt+ σ
√

V (t)dWv(t), (61)
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d log(S(t)) =

(
r − 1

2
V (t)

)
dt+

√
(1− ρ2)V (t)dWs(t) + ρ

√
V (t)dWv(t). (62)

As a result, the state-space representation of the HM can be discretized as follows

Vt = Vt−1 + κ(θ − Vt−1)dt+ σ
√
Vt−1∆WVt , (63)

log(St) = log(St−1) +

(
r − 1

2
Vt

)
∆t+

√
(1− ρ2)Vt∆Wst + ρ

√
Vt∆WVt . (64)

5.3 Adjusted Heston Model

To apply the HM for our research, we need to adjust it. As a result of utilizing the

CVOL, as the observation variable with noise, to estimate the RV variable, the system

of equations changes. As we are now only interested in the volatility equation of the HM

model, namely 63, and its characteristics to describe the volatility dynamics. The system

of equations we utilize becomes

ξt = ξt−1 + κ(θ − ξt−1)dt+ δRVt−1 + γ
√
ξt−1ηt, (65)

yt = α + βξt + ϕ
√

ξt−1εt, (66)

where we have that yt is the observed CVOL estimate, containing noise, and ξt is the

state variable, namely the latent “true” volatility measure, which we also refer to as the

filtered CVOL, so a forecast of the RV. On top of that, RVt−1 is the observed RV from

the previous time period, which might contain information to better estimate the filtered

CVOL. Again, we assume that ηt ∼ N(0, R) and that εt ∼ N(0, Q). We have that

κ, θ, δ, γ, α, β, ϕ > 0 are the parameters of the model, and that κ ≤ 1. We included α

and β in equation 66, because when regressing the CVOL on the RV we observe values

that are significantly different from zero and one, on a 5% level (see Appendix B), for

these parameters. From this we can conclude that we cannot simple set α equal to zero,

and β equal to one, as in that way the model loses the flexibility it requires, and as a

consequence a loss of information.

5.4 Parameter Estimation

In this section we review the estimation procedure we utilize for the parameters of our

adjusted HM. For our research we make use of the so-called QMLE procedure. The

QMLE technique provides a robust and efficient framework for parameter estimation by
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maximizing a pseudo-likelihood function that closely approximates the true likelihood.

The pseudo-likelihood function is derived from the observed variables, which in our case

is the CVOL, and the system of equation we use to describe its characteristics.

Let Ω be the set of all unknown parameters, which in case of the adjusted HM are

κ, θ, δ, γ, α, β, ϕ,Q,R. Moreover, let yt be the observed CVOL estimate. Then, the likeli-

hood function in case of the EKF and UKF is

p(y1, ..., yT ; Ω) =
T∏
t=1

1(
2πP ŷ

t|t−1

)1/2 exp
(
−1

2

yt − ŷt|t−1

P ŷ
t|t−1

)
, (67)

where, for the EKF, ŷt|t−1 and P ŷ
t|t−1 are calculated by equations 23 and 24, respectively,

and for the UKF by equations 46 and 47, respectively. T is equal to the amount of

observations of the CVOL. For numerical reasons, instead of maximizing the likelihood

we minimize the negative log likelihood, which equals

−LogL =
T∑
t=1

1

2
log (2π) +

1

2
log
(
P ŷ
t|t−1

)
+

(
1

2

yt − ŷt|t−1

P ŷ
t|t−1

)
. (68)

As for the EKF and UKF, we can use QMLE in order to estimate the parameter-set Ω.

Due to the fact that the PF does not make any assumptions about the noise distribution,

the likelihood function that needs to be maximized takes on a more general form compared

to the ones used in the UKF and EKF. The likelihood at a time point t equals

Lt = p(yt|y1:t−1; Ω) =

∫
p(zt|xt)p(xt|z1:t−1)dxt, (69)

then the negative log likelihood to be minimized becomes

−LogL = −
T∑
t=1

log(Lt). (70)

The likelihood can be written as

Lt =

∫
p(zt|xt)

p(xt|z1:t−1)

q(xt|xt−1, z1:t)
q(xt|xt−1, z1:t)dxt, (71)

and using that by construction the distribution of the x
(i)
t ’s are conform to q(), the like-

lihood can be estimated by

L̂t =
N∑
i=1

w
(i)
t , (72)
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where N is the number of particles. For further explanation on the parameter estimation

in case of the PF, we refer to Javaheri et al. (2003).

6 Results

6.1 Filtering Models

In this section, we present the results of our analysis on the performance of the EKF, UKF

and the PF filtered CVOL measures to the CVOL measure of the various commodities.

Our evaluation includes the examination of graphs, formal checks to examine significance

in difference between model forecasts, and the calculation of robust loss metrics, providing

a comprehensive understanding of the accuracy of these volatility estimation techniques.

We make use of the Diebold-Mariano (DM) test, from Diebold and Mariano (2002), to

check whether the forecasts of the various models significantly differ. To correct for pos-

sible heteroskedasticity and autocorrelation, we incorporate heteroskedasticity-consistent

(HAC) standard errors, also called Newey-West, in our analysis. We utilize the robust

loss functions of Patton (2011) as evaluation metrics, as these take on functional forms

in which requirements that must be met, for the loss function, are included. For further

details we refer to Patton (2011). The optimized parameters can be found in Appendix

C.

(a) EKF Filtered CVOL Corn (b) UKF Filtered CVOL Corn

Figure 4: Kalman Filtered CVOL Corn
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Figure 5: PF Filtered CVOL Corn

(a) b-Value ranging from -2.0 to -0.5 (b) b-Value ranging from -0.5 to 0.5

Figure 6: Robust Loss of Filtering Methods Corn

Table 3: Robust loss of (filtered) CVOL for Corn

CVOL EKF UKF PF

MSE 34.18* 8.82* 6.18* 4.60

QLike 0.013* 0.006* 0.004* 0.002

b-Value(0.5) 45.89* 10.39* 7.83* 5.87

* means that the forecasts are significantly different from the PF forecasts on a 5% level, according to

the DM-test, utilizing HAC (Newey-West) standard errors.

For the KF methods we observe in Figure 4 a consistent pattern where both the

EKF and UKF measures exhibit a significantly closer alignment with the RV compared

to the CVOL measures for corn. This finding indicates that the EKF and UKF models

are capable of capturing the underlying volatility dynamics more accurately, leading to

improved estimation results.
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Moreover, the robust loss calculations, in Figure 6, further confirm the superior per-

formance of the EKF and UKF measures compared to the CVOL measures. The loss for

both EKF and UKF measures are consistently lower, indicating a smaller deviation from

the RV. In Figure 6 the loss for various b-Values ranging from -2.0 to 0.5 are depicted.

Lower b-Values are corresponding to the loss function penalizing under-prediction more,

and higher b-Values to penalizing over-prediction more. In Table 3 special cases are high-

lighted, namely the MSE (b = 0), Qlike (b = −2.0), and a case in which b = 0.5. So, in this

way we cover three cases, when the penalization is equal for over- and under-prediction,

the MSE, when under-prediction is penalized, the QLike, and when over-prediction is pe-

nalized, b-Value(0.5). This signifies that the EKF and UKF models provide more precise

estimates of corn volatility, enhancing their reliability as volatility estimation tools. On

top of that, we observe that both the EKF and UKF still overestimate the RV from time

to time. This can be due to the fact that the filtered CVOL utilizes the CVOL, which

overestimates the RV, to gain information about the RV. As a consequence, the optimized

α, the level parameter between the CVOL and filtered CVOL, is not high enough, and

the optimized κ, the mean-reverting parameter of the filtered CVOL, is not high enough

to revert as fast as the RV. These values are stated in Appendix C.

When comparing the performance of the EKF and UKF measures, we observe that

the UKF consistently outperforms the EKF. The UKF demonstrates a more accurate

estimation of corn volatility, evident from both the figures and the lower MSE, Qlike and

b-Value(0.5) values. This is probably due to the fact that the UKF captures the non-

linearity better than the EKF. This suggests that the UKF is better equipped to capture

the complex volatility dynamics inherent in the corn market, surpassing the performance

of the EKF.

When inspecting Figure 5, it is evident that the PF measures exhibit an exceptionally

close alignment with the RV, surpassing both the EKF and UKF measures. This indicates

that the PF model effectively captures the intricate volatility dynamics of the underlying

asset, resulting in highly accurate volatility estimation for the given dataset of corn.

As in the case of the EKF and the UKF, we note that the PF also overestimates the

RV occasionally. Furthermore, in case of the PF the consequence of the initialisation is

apparent, which was less observable for the UKF and EKF. This sometimes leads to the

first filtered CVOL value to deviate a great amount from either the RV or CVOL.
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Additionally, the calculation of MSE, Qlike and b-Value(0.5) values further confirm

the stronger performance of the PF compared to the EKF and UKF measures. The PF

consistently displays lower loss values, signifying a smaller deviation from the RV. This

probably follows from the fact that the PF also allows for non-Gaussianity, and because

the volatility process follows a noncentral chi-square distribution (Cox et al., 1985), the

PF better represents the distribution of the underlying volatility compared to the EKF

and UKF. For the corn market, all forecasts of the filtering methods and the CVOL,

based on the three special cases of robust losses, differ significantly from each other. The

t-statistics can be found in Appendix D.

(a) EKF Filtered CVOL Crude Oil (b) UKF Filtered CVOL Crude Oil

Figure 7: Kalman Filtered CVOL Crude Oil

Figure 8: PF Filtered CVOL Crude Oil
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(a) b-Value ranging from -2.0 to -0.5 (b) b-Value ranging from -0.5 to 0.5

Figure 9: Robust Loss of Filtering Methods Crude Oil

Table 4: Robust loss of (filtered) CVOL for Crude Oil

CVOL EKF UKF PF

MSE 442.16* 194.62* 124.52* 46.52

QLike 0.037* 0.027* 0.018* 0.008

b-Value(0.5) 2713.14* 1250.12 786.44* 262.35

* means that the forecasts are significantly different from the PF forecasts on a 5% level, according to

the DM-test, utilizing HAC (Newey-West) standard errors.

In analyzing crude oil volatility, both the EKF and the UKF measures consistently out-

perform the CVOL measures, for both under- and over-prediction, similar to our findings

for corn, looking at the graphs in Figure 7 and 9, and the MSE, QLike and b-Value(0.5)

in Table 4. Although, when under-prediction is penalized (QLike case), the loss between

the EKF and CVOL, following the forecasts, seem to not significantly differ. However,

when under- and over-prediction are equally penalized (MSE case), and over-prediction

is penalized (b-Value(0.5) case), the EKF forecasts significantly outperform the CVOL.

The UKF outperforms the CVOL significantly in all three cases, following the values in

Appendix D. So, the EKF and UKF models demonstrate closer alignment with the RV,

indicating improved estimation accuracy. We do observe in case of the EKF that in the

early measures the filtered CVOL is volatile. This is probably due to the fact that the

variance of the CVOL and RV (Table 1 and 2) are much higher than the other commodi-

ties, which leads to the estimation error covariance of the updated current state estimate

to be high in early observations, and decreasing as more observations come in. Moreover,
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in contrast to the UKF filtered CVOL of corn, the UKF filtered CVOL of crude oil under-

estimates the RV most of the time. We can trace this back to a combination of the lagged

RV parameter and long-run mean parameter, δ and θ respectively, being low, compared

to those of other commodities. Thus, the level of the filtered CVOL is lower than when

the δ and θ are higher. The values are depicted in Appendix C.

Similar to our observations for corn, in the analysis of crude oil volatility estimation,

the PF filtering method appears to be the top performer. The PF consistently exhibits

the closest alignment with the RV, surpassing the performance of both the EKF and the

UKF measures, which is apparent when comparing the robust loss values in Table 4, and

when comparing the graphs in Figures 7 and 8. A noticeable fact is that the loss of

EKF forecasts does not differ significantly from the loss of the PF and UKF forecasts,

when there is a penalization on over-prediction. This can be due to the fact that the

EKF under-estimates the RV heavily in the beginning, and after that period starts to

moderately over-estimate the RV. Furthermore, similar to the case of the UKF, the PF

measures also seem to underestimate the RV. The PF does seem more volatile over the

given time frame compared to previous measures, for example the PF estimates of corn

and UKF estimates of crude oil. This can be accounted to the γ parameter being relatively

high for a PF method, because we observe lower γs for the other PF filtered commodities,

except for soybean.

(a) EKF Filtered CVOL Gold (b) UKF Filtered CVOL Gold

Figure 10: Kalman Filtered CVOL Gold
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Figure 11: PF Filtered CVOL Gold

(a) b-Value ranging from -2.0 to -0.5 (b) b-Value ranging from -0.5 to 0.5

Figure 12: Robust Loss of Filtering Methods Gold

Table 5: Robust loss of (filtered) CVOL for Gold

CVOL EKF UKF PF

MSE 13.44* 6.60* 1.64* 0.93

QLike 0.022* 0.011* 0.005* 0.003

b-Value(0.5) 29.97* 15.05* 3.13* 1.87

We again observe that the PF filtered CVOL of gold performs best compared to the

CVOL, EKF filtered, and UKF filtered CVOL according to the graphs from Figures 10,

11 and 12, and the loss values from Table 5. In case of gold, the filtered measures seem to

again all overestimate the RV, just like for corn. However, in peak volatility time periods,

like in early 2020 and 2022, the UKF and PF filtered CVOL of gold underestimates the

RV, contrary to the UKF and PF filtered corn estimates.
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(a) EKF Filtered CVOL Natural Gas (b) UKF Filtered CVOL Natural Gas

Figure 13: Kalman Filtered CVOL Natural Gas

Figure 14: PF Filtered CVOL Natural Gas

(a) b-Value ranging from -2.0 to -0.5 (b) b-Value ranging from -0.5 to 0.5

Figure 15: Robust Loss of Filtering Methods Natural Gas
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Table 6: Robust loss of (filtered) CVOL for Natural Gas

CVOL EKF UKF PF

MSE 233.33* 118.73* 11.15* 7.87

QLike 0.031* 0.015* 0.003* 0.002

b-Value(0.5) 1012.68* 518.36* 40.71* 30.21

* means that the forecasts are significantly different from the PF forecasts on a 5% level, according to

the DM-test, utilizing HAC (Newey-West) standard errors.

Analysis reaffirms that also for natural gas the EKF, UKF, and PF measures outper-

form the CVOL estimate. Through both graphical analysis from Figures 13 and 14, and

loss calculations in Figure 15 Table 6, these filtering methods exhibit a better alignment

with the RV. Among them, the PF performs the best, followed by the UKF, while the

EKF demonstrates relatively lower accuracy in RV estimation. All losses following the

forecasts of the RV from the CVOL, EKF, UKF and PF, are significantly different from

each other, according to the DM-test.

We observe that, although the EKF filtered CVOL of natural gas comes closer to the

RV, it more closely follows the CVOL rather than the RV. This stems from the charac-

teristic of the EKF, that becomes evident here, which is unable to accurately represent

the non-linear behavior of the underlying latent variable, the RV in this context. This

limitation becomes particularly pronounced when the RV of natural gas exhibits highly

non-linear dynamics. Consequently, the EKF tends to align more closely with the ob-

served variable, the CVOL in this case. This also is apparent from the MSE, QLike and

b-Value(0.5) values of the EKF filtered CVOL, which are relatively higher than their UKF

and PF counterparts and closer to the loss values of the CVOL. Thus, most of the time the

EKF overestimates the RV, however in very low volatility periods it underestimates the

RV. In contrast, the UKF filtered CVOL more closely follows the RV. The UKF also still

has positive deviations from the RV. The PF filtered CVOL comes really close to the RV

compared to the UKF and EKF, and captures its various characteristics, like the peaks

and low volatility periods. This can be attributed to the PF’s ability to closely approxi-

mate the distribution of the volatility process. On top of that, it also moves according to

the RV and captures the dynamics.
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(a) EKF Filtered CVOL Soybean (b) UKF Filtered CVOL Soybean

Figure 16: Kalman Filtered CVOL Soybean

Figure 17: PF Filtered CVOL Soybean

(a) b-Value ranging from -2.0 to -0.5 (b) b-Value ranging from -0.5 to 0.5

Figure 18: Robust Loss of Filtering Methods Soybean
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Table 7: Robust loss of (filtered) CVOL for Soybean

CVOL EKF UKF PF

MSE 15.95* 12.54* 5.33* 3.24

QLike 0.020* 0.015* 0.010* 0.005

b-Value(0.5) 37.01* 29.86* 11.24* 7.21

* means that the forecasts are significantly different from the PF forecasts on a 5% level, according to

the DM-test, utilizing HAC (Newey-West) standard errors.

For soybean volatility estimation, similar to all the other commodities examined be-

fore, the EKF, UKF, and PF methods once again surpass the IV estimate. Careful

examination of the graphs in Figures 16 and 17, and the assessment of the loss values in

Table 7 and Figure 18 reinforce their better performance. Notably, the PF is the fore-

most performer among the three methods, followed by the UKF, while the EKF displays

comparatively inferior accuracy. And again, the DM-test shows that all the forecasts

significantly differ from each other (t-statistics in Appendix D ).

In case of the EKF filtered CVOL of soybean we observe that it, just like for natural

gas, closely follows the CVOL, such that it overestimates the RV most of the time, and in

low volatility periods it underestimates the RV, which is apparent from its graph in Figure

16. As a consequence, the MSE, QLike and b-Value(0.5) are also not greatly improved

compared to that of the CVOL. For the UKF filtered CVOL of soybean, we do observe a

more noteworthy improvement of the loss values. Although it still overestimates the RV

most of the time, the UKF estimates align more with the RV and follows its dynamics

better. The same holds for the PF estimates, and shows better alignment with the RV

than the UKF estimates. Although again, the PF estimates seem to be more volatile, like

the PF estimates of crude oil, than the other filtered CVOL estimates of soybean and the

other commodities. This probably again follows from the fact that the PF method has a

relatively high γ, for a PF method.

6.2 Benchmark Models

In this section, we present the results of our analysis on the performance between the (PF

filtered) CVOL and the benchmark models, by reviewing its in-sample forecasts.
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Figure 19: (PF Filtered) CVOL and Benchmark Models Corn

(a) b-Value ranging from -2.0 to -0.5 (b) b-Value ranging from -0.5 to 0.5

Figure 20: Robust Loss of Filtering Methods Corn

Table 8: Robust loss of (filtered) CVOL and Benchmark Models for Corn

CVOL PF HAR-RV AR(1)

MSE 34.30* 4.61 3.40* 12.40*

QLike 0.026* 0.005 0.003* 0.011*

b-Value(0.5) 92.26* 11.81 8.78* 32.27*

* means that the forecasts are significantly different from the PF forecasts on a 5% level, according to

the DM-test, utilizing HAC (Newey-West) standard errors.

Based on the analysis of Figure 19 and Table 8, it is evident that the RV of corn is

accurately predicted by both the AR(1) and HAR-RV benchmark models. Among these
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models, the HAR-RV benchmark model stands out as the most effective in forecasting

the RV for corn. The HAR-RV model demonstrates the closest alignment with the RV

values. The model successfully captures the fluctuations and patterns exhibited by corn.

From Figure 20 and Table 8 we can conclude that the HAR-RV has lower loss values than

the PF Filtered CVOL. Although the loss seem close to each other for b-Values ranging

from -2.0 to 0.5, the HAR-RV forecasts significantly outperform the PF Filtered CVOL

for all the three cases of penalizing the over- and under-prediction.

Although the AR(1) benchmark model falls behind the HAR-RV and PF Filtered

CVOL models, it still exhibits a reasonable degree of accuracy in predicting the RV for

corn. The AR(1) model outperforms the CVOL when comparing the loss values for under-

and over-prediction, and matches the RV more, which can be seen from Figure 19.

Figure 21: (PF Filtered) CVOL and Benchmark Models Crude Oil
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(a) b-Value ranging from -2.0 to -0.5 (b) b-Value ranging from -0.5 to 0.5

Figure 22: Robust Loss of Filtering Methods Crude Oil

Table 9: Robust loss of (filtered) CVOL and Benchmark Models for Crude Oil

CVOL PF HAR-RV AR(1)

MSE 449.98* 47.12 96.53 267.94*

QLike 0.036* 0.007 0.022 0.032*

b-Value(0.5) 2763.06* 266.29 539.26 1587.76*

* means that the forecasts are significantly different from the PF forecasts on a 5% level, according to

the DM-test, utilizing HAC (Newey-West) standard errors.

Upon analyzing Figure 21, it is evident that the PF Filtered CVOL performs best

in predicting the RV of crude oil. It showcases the best alignment with the RV values,

emphasizing its effectiveness in forecasting.

Looking at the loss values in Figure 22 and Table 9 the HAR-RV and AR(1) benchmark

models fall behind the PF Filtered CVOL. We observe that both benchmark models

overestimate the RV almost at all times. However, it is important to note that while the

PF Filtered CVOL model shows the best alignment and accuracy in forecasting the RV

of crude oil, the difference in performance between the PF Filtered CVOL and HAR-RV

model is not significant, for the three special cases of robust losses on penalization of

under- and over-prediction, depicted in Table 9.

A noteworthy phenomenon is the HAR-RV model’s RV forecast begin 2020, in which

the average of the weekly lagged RV variable was so high, it forced the RV forecast to be

negative, as its parameter is estimated to be negative in the HAR-RV model for crude

oil for the data utilized. As volatility cannot be negative, we took the absolute value
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truncation method to correct it, utilized by Higham and Mao (2005). This caused the

sudden jump in forecasted HAR-RV volatility early 2020.

Figure 23: (PF Filtered) CVOL and Benchmark Models Gold

(a) b-Value ranging from -2.0 to -0.5 (b) b-Value ranging from -0.5 to 0.5

Figure 24: Robust Loss of Filtering Methods Gold

Table 10: Robust loss of (filtered) CVOL and Benchmark Models for Gold

CVOL PF HAR-RV AR(1)

MSE 13.45* 0.89 1.30* 5.45*

QLike 0.022* 0.0026 0.0024 0.009*

b-Value(0.5) 29.98* 1.79 2.80* 12.47*

* means that the forecasts are significantly different from the PF forecasts on a 5% level, according to

the DM-test, utilizing HAC (Newey-West) standard errors.
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The examination of the loss values in Table 10 and Figure 24, and RV forecasts in

Figure 23 clearly indicate that the PF Filtered CVOL model and HAR-RV benchmark

model offer the most accurate predictions of RV for the precious metal commodity, namely

gold. Although, the loss values are really close, PF Filtered CVOL does perform slightly

better than the HAR-RV model. For the case when under- and over-predictions are

equally penalized, namely MSE, and when over-predictions are more penalized, namely

b-Value(0.5), the PF Filtered CVOL has a significantly lower loss. For the case when

under-prediction is more penalized, namely the QLike, the forecasts of both models do

not differ significantly.

The AR(1) benchmark model also performs well, outperforming the CVOL model and

demonstrating a reasonable level of alignment with the RV values. However, it falls slightly

behind the PF Filtered CVOL and HAR-RV models in terms of predictive accuracy for

gold.

Figure 25: (PF Filtered) CVOL and Benchmark Models Natural Gas
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(a) b-Value ranging from -2.0 to -0.5 (b) b-Value ranging from -0.5 to 0.5

Figure 26: Robust Loss of Filtering Methods Natural Gas

Table 11: Robust loss of (filtered) CVOL and Benchmark Models for Natural Gas

CVOL PF HAR-RV AR(1)

MSE 236.79* 8.01 11.56* 47.86*

QLike 0.031* 0.0018 0.0024* 0.010*

b-Value(0.5) 1029.15* 31.09 44.71* 183.05*

* means that the forecasts are significantly different from the PF forecasts on a 5% level, according to

the DM-test, utilizing HAC (Newey-West) standard errors.

The graphs in Figures 25 and 26 and Table 11 clearly demonstrate that the PF Fil-

tered CVOL model outperforms other models in predicting the RV for natural gas. Its

forecasts follow the RV closely, indicating its efficient accuracy. While the HAR-RV bench-

mark model comes close in terms of robust loss values, the PF Filtered CVOL forecasts

significantly outperform the HAR-RV forecasts. The AR(1) benchmark model also per-

forms well but falls short to the PF Filtered CVOL and HAR-RV models, in terms of

predictive accuracy for natural gas, however performs better than the CVOL.
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Figure 27: (PF Filtered) CVOL and Benchmark Models Soybean

(a) b-Value ranging from -2.0 to -0.5 (b) b-Value ranging from -0.5 to 0.5

Figure 28: Robust Loss of Filtering Methods Soybean

Table 12: Robust loss of (filtered) CVOL and Benchmark Models for Soybean

CVOL PF HAR-RV AR(1)

MSE 15.74* 3.34 1.81* 6.69*

QLike 0.020* 0.005 0.002* 0.008*

b-Value(0.5) 36.59* 7.43 4.22* 15.71*

* means that the forecasts are significantly different from the PF forecasts on a 5% level, according to

the DM-test, utilizing HAC (Newey-West) standard errors.

Similar to the case of corn, the HAR-RV benchmark model provides the best predic-

tions and forecasts for the RV of soybean. The predictive accuracy of the forecasts are
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significantly higher than that of the PF Filtered CVOL for soybean. The AR(1) bench-

mark model again performs well, but does not reach the same level of accuracy as the PF

Filtered CVOL and HAR-RV models in predicting soybean’s RV.

7 Conclusion & Discussion

Often, the CVOL, which quantifies the market’s expectation of the 30-day forward risk, is

utilized to approximate the volatility of various commodities. Recent work in the literature

tried to estimate the latent volatility by using the Heston model (HM) in combination

with filtering methods.

In this paper, we try to estimate the underlying realized volatilities (RV) using vari-

ous filtering methods on an adjusted HM, while making use of the CVOL as the observed

variable in the filtering procedure. Specifically, the EKF, UKF and PF are considered

as filtering methods, and the QMLE to estimate the parameters of the corresponding

model. On top of that, the HAR-RV and AR(1) models are used as benchmark mod-

els to assess the performance of the filtering methods on the HM. The central research

question in this paper is: “Which filtering method in combination with quasi-maximum

likelihood estimation performs best, and can it improve the CVOL of different commodities

in practice?”.

Our evaluation includes the analysis of graphs, in which the volatility forecasts of

various commodities are illustrated, as well as the calculation of robust loss metrics, to

assess the accuracy of these techniques. Based on the results presented for corn, crude

oil, gold, natural gas and soybean volatility estimation, both the EKF and UKF mea-

sures demonstrated a significantly closer alignment with the RV compared to the CVOL

measure. This finding indicates that the EKF and UKF models accurately capture the

underlying volatility dynamics, leading to improved estimation results. The robust loss

calculations further confirmed the superior performance of the EKF and UKF measures,

consistently giving lower values and indicating smaller deviations from the RV, for var-

ious cases of penalizing under- and over-prediction. Although, both the EKF and UKF

occasionally overestimated the RV. This can be attributed to the utilization of the CVOL

as the observed variable in the filtering methods, which tends to overestimate the RV.

Comparing the EKF and UKF measures, the UKF consistently outperformed the EKF
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in terms of estimation accuracy. The UKF demonstrated a more precise estimation of the

volatilities, likely due to its better ability to capture non-linearity in volatility dynamics.

In the case of the PF measures, they exhibited an exceptionally close alignment with

the RV for the various commodities, surpassing both the EKF and UKF measures. This

indicates that the PF model effectively captures the intricate volatility dynamics, resulting

in highly accurate volatility estimation. The calculation of robust loss values further

confirmed the superior performance of the PF compared to the EKF and UKF measures.

The PF consistently displayed significantly lower loss values for instances when under- and

over-predictions are penalized, indicating smaller deviations from the RV. The PF’s ability

to handle non-Gaussianity and better represent the distribution of underlying volatility

contributed to its strong performance.

However, it should be noted that in some instances, both the UKF and PF measures

tended to underestimate the RV. Additionally, the PF estimates appeared more volatile

compared to other methods for certain commodities, potentially influenced by the chosen

parameters.

From comparison between the best performing filtering method, the PF filtered CVOL,

to the benchmark models, we found that the the PF filtered CVOL still consistently per-

formed well, closely aligning with RV values and outperforming the benchmark models

in most cases, in terms of loss values for over- and under-prediction penalization. The

HAR-RV model also showed good accuracy, particularly having the best in-sample pre-

diction power for corn and soybean. The AR(1) benchmark model performed reasonably

well, and had a better predictive accuracy then the CVOL, but fell slightly behind the

other models.

Nevertheless, this research has several limitations and interesting areas to consider

in future research. Firstly, incorporating jump models could be useful. Jump models

take into account sudden and significant movements in prices or volatility. Incorporating

this aspect of jump models, extreme events can be captured better and the estimation

of volatility measures can be improved. Furthermore, exploring other future continua-

tion methods can lead to the utilization of different RV measures. Moreover, alternative

proposal functions for the PF can be considered. By utilizing proposal functions that in-

corporate the recent observations, the filtering process can be improved and more reliable

estimates of volatility can be obtained. This would lead to filter out noise more effec-
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tively, and increase the accuracy of RV measures. On top of that, the dynamics between

IV and RV may not be linear, and making use of this non-linear relationship is important.

Machine learning methods offer opportunities to explore the functional relationships be-

tween different variables. By applying these techniques, the use of IV information can

be optimized. As a consequence, more accurate estimates of the RV can be obtained.

Lastly, considering non-constant parameters in the HM could be beneficial. Our current

practice of using constant parameters may result in the filtered CVOL being lower than

zero, particularly in cases where the predicted value is initially higher than the observed

value. By allowing for varying parameters, different market conditions can be accounted

for, and the issue of the filtered CVOL being less than zero can be mitigated.
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Appendix A Proof RV is more precise

This proof is the solution of an assignment of the course Quantitative Methods for Finance

directed by Prof. Dr. Dick J.C. van Dijk at the Erasmus School of Economics. Also used

in Mercan (2021).

Assume that the returns have zero mean and satisfy

rt = σt ∗ zt, t = 1, 2, ..., (73)

where we have that σt is a sequence of volatilities, such that σ2
t has finite mean σ̄2

t = E[σ2
t ]

and finite variance V [σ2
t ];

Suppose that the daily return rt is decomposed into n intra-day returns as

rt =
n∑

i=1

rt,i, (74)

where rt,i is the ith intra-day return on day t, and n is the number of intra-day periods,

of length δ = 1/n, within a day. Assume that the rt,i are independent N(0, σ2
t,iδ) random

variables, where σ2
t,i is the variance of the i

th intra-day return, and define RVt =
∑n

i=1 rt,i.

We can show that both RVt and r2t are unbiased estimators of the daily variance σ2
t =

1/n ∗
∑n

i=1 σ
2
t,i:

E[RVt] = E[
n∑

i=1

r2t,i] =
n∑

i=1

E[r2t,i] =
n∑

i=1

σ2
t,i ∗ δ = 1/n ∗

n∑
i=1

σ2
t,i = σ2

t (75)

and

E[r2t ] = E[(
n∑

i=1

rt,i)(
n∑

i=1

rt,i)] =
n∑

i=1

E[r2t,i] + 2 ∗
n∑

i=2

i−1∑
j=1

E[rt,irt,j] = E[RVt] + 0 = σ2
t , (76)

where we used that E[rt,irt,j] = 0 because rt,i and rt,j are independent with mean zero.

Next we can show that RVt (with n > 1) is a more precise estimator of σ2
t than r2t . Writing

rt,i = σt,i

√
δzt,i, where zt,i is an i.i.d N(0, 1) sequence, we have:

V [RVt] = E[(RVt − E[RVt])
2] = E[(

n∑
i=1

σ2
t,iδz

2
t,i −

n∑
i=1

3σ2
t,iδ)

2] =

E[
n∑

i=1

(σ2
t,iδ)

2(z4t,i − 2z2t,i + 1)] =
n∑

i=1

(σ2
t,iδ)

2E[z4t,i − 2z2t,i + 1] = 2
n∑

i=1

(σ2
t,iδ)

2.

(77)
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On the other hand, the assumptions imply zt = rt/σ̄t ∼ N(0, 1), so that

V [r2t ] = E[(r2t − E[r2t ])
2] = E[(σ2

t z
2
t − σ2

t )
2] =

σ4
tE[(z2t − 1)2] = σ4

tE[z4t,i − 2z2t,i + 1] = 2σ4
t = 2(

n∑
i=1

σ2
t,iδ)

2.
(78)

Using:

(
n∑

i=1

σ2
t,iδ)

2 =
n∑

i=1

(σ2
t,iδ)

2 +
n∑

i=2

i−1∑
j=1

σ2
t,iσ

2
t,jδ

2 >

n∑
i=1

(σ2
t,iδ)

2 (79)

we find that V [r2t ] > V [RVt], so RVt is more efficient.

Appendix B Regression CVOL on RV

Table 13: Regression of RV on IV

Variables Corn Crude Oil Gold Natural Gas Soybean

α 5.44* 18.58* 5.82* 7.87* 6.89*

(16.41) (33.38) (27.60) (11.39) (26.88)

β 0.90*’ 0.57*’ 0.69*’ 0.97*’ 0.72*’

(61.23), (-7.07) (48.00), (-35.51) (48.12), (-21.54) (69.76), (-2.11) (54.41), (-21.02)

In parentheses the t-statistics are stated. * means significant on a 5% level different from zero. ’ means

significant on a 5% level different from 1.

Appendix C Parameter Optimization

Table 14: Initial and optimized parameters of the Heston Model, utilizing the filtering

methods, for Corn

κ θ δ γ α β ϕ Q R

Initial 0.5 500 1 1 200 1 1
√
350

√
450

EKF 0.69 96.45 0.72 0.03 77.13 0.87 1.14 17.32 20.23

UKF 0.07 436.31 0.89 1.0 174.93 0.97 1.0 10860.19 42056.57

PF 0.88 14.15 1.0 0.19 9.10 0.91 1.0 14.14 18.17
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Table 15: Initial and optimized parameters of the Heston Model, utilizing the filtering

methods, for Crude Oil

κ θ δ γ α β ϕ Q R

Initial 0.5 2100 1 1 1100 1 1
√
7500

√
6000

EKF 0.47 2100 0.61Tree (1967) 1.0 1100 0.94 1.0 82.61 75.46

UKF 0.01 518.12 0.60 1.0 268.63 0.7 1.0 2470144.55 17614569.80

PF 0.84 47.64 0.64 0.41 25.30 0.54 1.0 44.72 31.62

Table 16: Initial and optimized parameters of the Heston Model, utilizing the filtering

methods, for Gold

κ θ δ γ α β ϕ Q R

Initial 0.5 200 1 1 150 1 1
√
200

√
150

EKF 0.57 289.29 0.45 1.0 149.02 0.91 1.0 14.30 10.78

UKF 0.46 87.10 0.94 1.0 57.77 0.90 1.0 2113.90 8196.62

PF 0.79 36.23 0.67 0.13 17.74 0.82 1.0 13.11 11.35

Table 17: Initial and optimized parameters of the Heston Model, utilizing the filtering

methods, for Natural Gas

κ θ δ γ α β ϕ Q R

Initial 0.5 2500 1 1 650 1 1
√
6500

√
8000

EKF 0.64 1618.64 0.91 1.22 933.79 1.04 1.11 85.63 73.53

UKF 0.43 517.50 0.98 1.0 603.09 1.10 1.0 441389.11 1700635.64

PF 0.62 122.18 0.56 0.34 56.10 0.65 1.29 50.92 64.90

49



Table 18: Initial and optimized parameters of the Heston Model, utilizing the filtering

methods, for Soybean

κ θ δ γ α β ϕ Q R

Initial 0.5 400 1 1 150 1 1
√
200

√
200

EKF 0.54 215.24 0.61 1.34 140.09 0.79 1.11 11.60 8.41

UKF 0.50 207.40 0.94 1.0 101.51 1.0 1.0 3200.65 11903.49

PF 0.83 36.24 0.88 0.37 13.84 0.72 0.89 7.34 11.12

Appendix D t-stats of DM-tests between various ro-

bust loss functions

Table 19: MSE t-statistics of DM-test between RV and (filtered) CVOL of Corn

CVOL EKF UKF PF

CVOL - 8.05* 10.49* 9.63*

EKF - - 3.88* 17.91*

UKF - - - 2.68*

PF - - - -

* means that the forecasts are significantly different from the PF on a 5% level, according to the DM-test,

utilizing HAC (Newey-West) standard errors.

Table 20: QLike t-statistics of DM-test between RV and (filtered) CVOL of Corn

CVOL EKF UKF PF

CVOL - 8.48* 12.01* 12.66*

EKF - - 6.01* 12.77*

UKF - - - 4.41*

PF - - - -

* means that the forecasts are significantly different on a 5% level, according to the DM-test, utilizing

HAC (Newey-West) standard errors.
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Table 21: b-Value(0.5) t-statistics of DM-test between RV and (filtered) CVOL of Corn

CVOL EKF UKF PF

CVOL - 7.47* 9.40* 8.59*

EKF - - 2.71* 17.08*

UKF - - - 2.31*

PF - - - -

* means that the forecasts are significantly different on a 5% level, according to the DM-test, utilizing

HAC (Newey-West) standard errors.

Table 22: MSE t-statistics of DM-test between RV and (filtered) CVOL of Crude Oil

CVOL EKF UKF PF

CVOL - 2.32* 2.52* 2.46*

EKF - - 1.57 2.09*

UKF - - - 2.24*

PF - - - -

* means that the forecasts are significantly different on a 5% level, according to the DM-test, utilizing

HAC (Newey-West) standard errors.

Table 23: QLike t-statistics of DM-test between RV and (filtered) CVOL of Crude Oil

CVOL EKF UKF PF

CVOL - 1.61 3.98* 5.76*

EKF - - 3.23* 4.95*

UKF - - - 6.30*

PF - - - -

* means that the forecasts are significantly different on a 5% level, according to the DM-test, utilizing

HAC (Newey-West) standard errors.
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Table 24: b-Value(0.5) t-statistics of DM-test between RV and (filtered) CVOL of Crude

Oil

CVOL EKF UKF PF

CVOL - 2.10* 2.19* 2.16*

EKF - - 1.35 1.84

UKF - - - 2.03*

PF - - - -

* means that the forecasts are significantly different on a 5% level, according to the DM-test, utilizing

HAC (Newey-West) standard errors.

Table 25: MSE t-statistics of DM-test between RV and (filtered) CVOL of Gold

CVOL EKF UKF PF

CVOL - 4.83* 4.34* 4.65*

EKF - - 3.77* 4.41*

UKF - - - 10.50*

PF - - - -

* means that the forecasts are significantly different on a 5% level, according to the DM-test, utilizing

HAC (Newey-West) standard errors.

Table 26: QLike t-statistics of DM-test between RV and (filtered) CVOL of Gold

CVOL EKF UKF PF

CVOL - 5.51* 5.45* 6.19*

EKF - - 4.70* 6.68*

UKF - - - 14.27*

PF - - - -

* means that the forecasts are significantly different on a 5% level, according to the DM-test, utilizing

HAC (Newey-West) standard errors.
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Table 27: b-Value(0.5) t-statistics of DM-test between RV and (filtered) CVOL of Gold

CVOL EKF UKF PF

CVOL - 4.61* 4.00* 4.24*

EKF - - 3.41* 3.87*

UKF - - - 8.33*

PF - - - -

* means that the forecasts are significantly different on a 5% level, according to the DM-test, utilizing

HAC (Newey-West) standard errors.

Table 28: MSE t-statistics of DM-test between RV and (filtered) CVOL of Natural Gas

CVOL EKF UKF PF

CVOL - 8.40* 8.40* 8.41*

EKF - - 7.64* 7.64*

UKF - - - 4.58*

PF - - - -

* means that the forecasts are significantly different on a 5% level, according to the DM-test, utilizing

HAC (Newey-West) standard errors.

Table 29: QLike t-statistics of DM-test between RV and (filtered) CVOL of Natural Gas

CVOL EKF UKF PF

CVOL - 8.41* 11.05* 11.33*

EKF - - 11.50* 12.03*

UKF - - - 5.49*

PF - - - -

* means that the forecasts are significantly different on a 5% level, according to the DM-test, utilizing

HAC (Newey-West) standard errors.
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Table 30: b-Value(0.5) t-statistics of DM-test between RV and (filtered) CVOL of Nat-

ural Gas

CVOL EKF UKF PF

CVOL - 7.89* 7.58* 7.56*

EKF - - 6.91* 6.88*

UKF - - - 3.79*

PF - - - -

* means that the forecasts are significantly different on a 5% level, according to the DM-test, utilizing

HAC (Newey-West) standard errors.

Table 31: MSE t-statistics of DM-test between RV and (filtered) CVOL of Soybean

CVOL EKF UKF PF

CVOL - 5.47* 8.45* 10.18*

EKF - - 7.12* 9.39*

UKF - - - 11.61*

PF - - - -

* means that the forecasts are significantly different on a 5% level, according to the DM-test, utilizing

HAC (Newey-West) standard errors.

Table 32: QLike t-statistics of DM-test between RV and (filtered) CVOL of Soybean

CVOL EKF UKF PF

CVOL - 6.62* 7.05* 10.01*

EKF - - 4.82* 9.74*

UKF - - - 11.21*

PF - - - -

* means that the forecasts are significantly different on a 5% level, according to the DM-test, utilizing

HAC (Newey-West) standard errors.
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Table 33: b-Value(0.5) t-statistics of DM-test between RV and (filtered) CVOL of Soy-

bean

CVOL EKF UKF PF

CVOL - 4.68* 8.30* 9.67*

EKF - - 7.16* 8.88*

UKF - - - 10.85*

PF - - - -

* means that the forecasts are significantly different on a 5% level, according to the DM-test, utilizing

HAC (Newey-West) standard errors.
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