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Abstract

This empirical study evaluates the predictive performance of tree-based machine learning

models for providing probabilistic forecasts of the equity premium. These models can capture

the complex non-linear relationships between the equity premium and their predictors, while

also accounting for the associated uncertainty. The monthly U.S equity premium is predicted

based on a set of macroeconomic and technical variables. To assess the predictive performance,

we compare them against two time-series benchmark models using probabilistic forecasting

measures. Our findings reveal that the machine learning models exhibit superior predictive

capabilities compared to the traditional time-series models, resulting in better risk

assessments. This advantage stems from their ability to effectively capture the time-varying

dynamic of the equity premium.
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1 Introduction

This empirical study aims to make probabilistic forecasts of the equity premium using proba-

bilistic machine learning (ML) models. The equity premium is defined as the difference between

the expected return on stocks and the risk-free rate of return. Traditionally, point predictions

have been the primary focus of research in forecasting the equity premium. However, point

predictions do not provide information about the level of uncertainty around those outcomes,

which can be crucial for investors (Diebold et al., 1998). We focus on the use of tree-based

ML models because they are able to capture complex and non-linear relationships between a

possibly large set of variables, and can handle interactions between variables. Additionally, they

can provide interpretable insights into which variables are most important for predicting the

equity premium.

The first model we consider is the Distributional Regression Forest (DRF) introduced by

Schlosser et al. (2019). The DRF algorithm combines the strengths of Random Forest (RF) and

Distributional Regression and can hence be seen as a probabilistic extension of the RF algo-

rithm. The second tree-based ML model we consider is the Natural Gradient Boosting (NGB)

algorithm introduced by Duan et al. (2020). The NGB algorithm modifies the Gradient Boosting

algorithm introduced by Friedman (2001) to estimate the parameters of a conditional probabil-

ity distribution P (y|x) as functions of x. Furthermore, we explore the use of the XGBoostLSS

model introduced by März (2019). The XGBoostLSS model is an extension of the widely used

Gradient Boosting algorithm XGBoost introduced by Chen and Guestrin (2016), designed to

handle probabilistic forecasting tasks. Furthermore, we include the Generalized AutoRegressive

Conditional Heteroskedastic (GARCH) model introduced by Bollerslev (1986) as a benchmark

model where we obtain density forecasts as in Hoogerheide et al. (2012). Finally, we add the

GJR-GARCH model introduced by Glosten et al. (1993). This asymmetric GARCH model uses

an indicator function to allow the model to react more to negative shocks in the returns which

can improve the predictive performance of the model with respect to the standard GARCH

model.

To evaluate the probabilistic forecasts of the models, we use proper scoring rules, such as

the Logarithmic Score (LS) and Continuous Ranked Probability Score (CRPS) (Gneiting et al.,

2007). Furthermore, we asses calibration plots and evaluate the forecast-implied Value at Risk

to show the economic relevance for investors. Moreover, we implement the Model Confidence

Set procedure introduced in Hansen et al. (2011) to test for significant differences in forecasting
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performance.

Traditional time series models such as Auto-regressive and Moving Average models are based

on the assumption of linearity and stationary dynamics, which may not always hold in financial

time series data. By using DRF, NGB and XGBoostLSS, we aim to overcome these limitations

and provide more accurate probabilistic predictions of the equity premium. Therefore, the main

question of this research is formulated as follows: “How do tree-based ML models perform in

providing density forecasts of the equity premium, and how do these compare to the density

forecasts obtained from traditional time-series models?”

We make contributions to the literature on ML and forecasting in financial economics in

several ways. Firstly, we aim to make probabilistic forecasts of the equity premium instead of

point predictions and provide a framework to evaluate the forecasts. Secondly, we explore the

applicability of probabilistic tree-based ML models on financial data. Furthermore, we apply

a Walk-Forward testing procedure to account for the temporal dependencies in the time-serie

data.

We obtain density forecasts of the U.S equity premium using the updated dataset of Neely

et al. (2014). The dataset consists of 15 monthly macroeconomic and 14 technical monthly

predictors of the U.S equity premium, spanning a period from January 1960 to December 2021.

Here, the equity premium is defined as the return on the S&P 500 index minus the 1-month

treasury bill rate. By utilizing an established set of predictive variables, we can focus the

evaluation on the out-of-sample (OOS) predictive performance of the models.

The OOS results indicate a consistent superiority of the DRF model over the NGB and

XGBLSS models. The main reason behind this performance difference lies in the inability of both

Gradient Boosting methods, NGB and XGBLSS, to consistently predict the scale parameter of

the distributions accurately. Additionally, the superiority of ML models over time-series models

is evident in our findings. The ML models demonstrate a better ability to capture the time-

varying aspect of the equity premium, making them more effective in this regard. Furthermore,

we demonstrate that the utilization of the DRF model yields improved forecast-implied VaR

measures. This is evident as the VaR-threshold is breached less frequently compared to other

models, which holds significant economic importance for investors. Lastly, our analysis highlights

that the superior model sets mostly consists of ML models, with the GARCH(T) model being

the only time-series model included in these sets.

The remainder of the paper proceeds as follows. In Section 2, we present a brief literature

review. A description of the data used is provided in Section 3. Next, our methods are introduced
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in Section 4. Afterwards, the results are presented in Section 5. Finally, we conclude and discuss

our results in Section 6.

2 Literature

This section provides an brief overview of the existing research on forecasting the equity premium

and probabilistic forecasting in finance.

Mehra and Prescott (1985) formalized the equity premium puzzle, which refers to the ex-

cessively high historical outperformance of stocks over treasury bills that is difficult to explain.

This puzzle has motivated extensive research aimed at understanding the determinants of the

equity premium and developing predictive models. One of the main challenges in predicting the

equity premium is the complexity of the market, which is influenced by a variety of factors such

as economic indicators, interest rates, geopolitical events and investor sentiment. Moreover, the

equity premium can be highly volatile, with fluctuations over short periods of time. Several

papers identify variables that provide predictive power in forecasting the U.S equity premium

(Fama and French, 1988), (Fama and French, 1989) and (Campbell and Thompson, 2007). In

contrast, Goyal and Welch (2008) conduct an examination of several predictor variables of the

equity premium and find low predictive power OOS. While the aforementioned papers use linear

regression models to forecast the equity premium, more sophisticated statistical models are also

studied in the academic literature (Kelly and Pruitt, 2015), Neely et al. (2014) and Rapach and

Zhou (2013).

Recent advancements in ML techniques led to the increase of using ML models for predicting

returns both in the cross-section and time-series context. Rapach and Zhou (2020) provides ML

methods for both applications. This study focuses on the time-series context. Furthermore, Gu

et al. (2020) provides a comparative analysis of ML methods for measuring equity risk premiums.

The paper states that Neural Networks and tree-based ML models have a superior predictive

performance compared to traditional statistical methods due to allowing non-linear predictor

interactions. Conversely, Wolff and Neugebauer (2019) states that compared to sophisticated

linear prediction models such as Penalized Least Squares or Principal Component Regressions,

ML models do not improve in forecast accuracy. However, an investment strategy that uses ML

predictions in a market timing strategy outperforms a passive buy-and-hold investment.

While point predictions have traditionally been used in the literature, we explore the use

of probabilistic forecasts for predicting the equity premium. Probabilistic forecasts have gained
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significant attention in the academic literature due to their ability to provide valuable insights

into uncertainty quantification. Probabilistic forecasting approaches offer insights into various

domains, including weather forecasting, election outcome prediction and financial risk manage-

ment (Gneiting and Katzfuss, 2014). Several studies have presented density forecasts for finan-

cial returns. For example, Meligkotsidou et al. (2012) propose a quantile regression approach

to predict the equity premium distribution and Beckmann and Schüssler (2014) introduces a

Bayesian version of Dynamic Model Averaging for predicting the equity premium. Alternatively,

Hoogerheide et al. (2012) uses GARCH models for obtaining density predictions of stock market

returns. Density forecasts of financial returns allows for uncertainty quantification and enables

investors to assess risk-return trade-offs (Diebold et al., 1998). We contribute to the existing

body of literature by examining the potential of probabilistic ML models in forecasting the eq-

uity premium distribution. Moreover, we conduct a performance comparison of these models

using time-series models instead of predictive regression models. This approach has the benefit

of incorporating density forecasts. It is important to note that while there are quantile regres-

sion methods available for obtaining density forecasts, these approaches predict specific quantiles

of the distribution rather than providing a direct prediction of the conditional distribution, as

achieved with Distributional Regression approaches (Koenker et al., 2013).

3 Data

In this study we aim to predict the equity premium using both macroeconomic and technical

variables. Specifically, the data consists of 29 monthly variables for the period January 1960 up

to and including December 2021. Neely et al. (2014) states that incorporating macroeconomic

variables and technical indicators improves equity risk premium forecasts as technical indicators

are better at detecting declines near business-cycle peaks, while macroeconomic variables are

more effective at capturing rises near cyclical troughs. Section 3.1 provides a more detailed

description of the variables used, while Section 3.2 explains how the data is preprocessed.

3.1 Data description

To obtain probabilistic forecasts, we have to make assumptions about the probability distribution

used for the equity premium. Therefore, Section 3.1.1 investigates the properties of the variable.

Then, in Section 3.1.2 and 3.1.3 we introduce the macroeconomic and technical variables used

to predict the equity premium.
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3.1.1 U.S Equity premium

The equity premium EPt is defined as the return on a broad stock market index in excess of the

risk-free rate from period t − 1 to t. In this study we choose the S&P 500 including dividends

as the broad stock market index. Furthermore, the risk-free rate is approximated by the return

on a 1-month treasury bill.

The left panel of Figure 1 indicates that the U.S equity premium is negatively skewed and

thus has a heavier left tail compared to a normal distribution. To formally test for normality

we implement the Jarque-Bera test. The null hypothesis (H0) of this test assumes normality.

We obtain a test statistic value of 113.29 and a p-value of 0.00. Thus we reject normality at

a significance level of 5% and we expect that a assuming a more heavy tailed distribution for

the equity premium will improve the predictive performance of the models. Furthermore, the

right panel of Figure 1 suggests that the time-series is stationary. To test this, we implement

the Augmented Dickey-Fuller test. We obtain a test statistic of -26.41 with a corresponding

p-value of 0.00 so we reject the H0 of non-stationarity. We thus expect that the time-series

exhibits predictable patterns and statistical properties that can be used to make accurate density

forecasts.

Figure 1: Histogram and plot over time for the monthly U.S equity premium.

Notes: The left figure shows the histogram of the monthly U.S equity premium for the sample period
January 1960 to December 2021. The right figure shows how the equity premium evolves over time.

3.1.2 Macroeconomic variables

We utilize 13 macroeconomic variables which are originally examined in Goyal and Welch (2008).

The paper aims to contribute to the understanding of equity premium predictability by provid-

ing a comprehensive evaluation of various financial and macroeconomic variables, such as the

dividend price ratio, dividend yield and the inflation rate. Furthermore, we added a volatility

measure for the equity premium as in Neely et al. (2014). This volatility measure RV OLt is
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defined as

RV OLt =

√
π

2

√
12σ̂t, (1)

where σ̂t is equal to

σ̂t =
1

12

12∑
i=1

|rt+1−i| . (2)

Moreover, the one-month lagged equity premium (EPLt) is employed to improve the predictive

performance of the models. Table 1 gives a brief description of the macroeconomic variables

included in this study. Furthermore, Table 6 in Appendix A shows the descriptive statistics of

the variables.

Table 1: Description of the macroeconomic variables

Variable Description

Dividend-price ratio (log), DP log of a twelve-month moving sum of dividends

paid on the S&P 500 index minus the log of stock prices

Dividend yield (log), DY log of a twelve-month moving sum of dividends

minus the log of lagged stock prices.

Earnings-price ratio (log), EPR log of a twelve-month moving sum of earnings on

the S&P 500 index minus the log of stock prices.

Dividend-payout ratio (log), DE log of a twelve-month moving sum of dividends

minus the log of a twelve-month moving sum of earnings.

Book-to-market ratio, BM book-to-market value ratio

for the Dow Jones Industrial Average.

Net equity expansion, NTIS ratio of a twelve-month moving sum of net equity issues

by NYSE-listed stocks to the total end-of-year market

capitalization of NYSE stocks.

Treasury bill rate, TBL interest rate on a three-month Treasury bill.

Long-term yield, LTY long-term government bond yield.

Long-term return, LTR return on long-term government bonds.

Term spread, TMS long-term yield minus the Treasury bill rate.

Default yield spread, DFY difference between Moody’s BAA- and

AAA-rated corporate bond yields.

Default return spread, DFR long-term corporate bond return

minus the long-term government bond return.

Inflation, INFL inflation rate calculated from the Consumer Price Index.

Equity risk premium volatility, RV OL an volatility estimator of the equity risk premium

Lagged equity premium, EPL the equity premium variable lagged for 1 month

Notes: The macroeconomic variables are calculated as in Goyal and Welch (2008). The price of the S&P

500 index is being referred to as stock prices. The original dataset can be found on the website of Amit

Goyal
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3.1.3 Technical indicators

We use 14 technical variables described in Neely et al. (2014). The variables are formulated by

employing three technical strategies. The first strategy involves a moving-average (MA) rule,

which generates buy or sell signals (St = 1 or St = 0) at the end of period t by comparing two

MAs:

St =


1 if MAs,t ≥ MAl,t

0 if MAs,t < MAl,t

(3)

where MAj,t is defined as

MAj,t =
1

j

j−1∑
i=0

Pt−i for j = s, l. (4)

Here, Pt denotes the level of the S&P 500 index and s (l) is the length of the short (long) MA.

The MA rule detects changes in stock price trends because the short MA will be more sensitive

to recent price movements than the long MA. For example, when prices start to rise, the short

MA increases faster than the long MA, eventually surpassing it and generating a buy signal. We

analyze MA rules for s = 1, 2, 3 and l = 9, 12.

The second technical strategy is based on momentum. The binary variables are constructed

as follows:

St =

 1 if Pt ≥ Pt−m

0 if Pt < Pt−m

. (5)

In essence, when the current stock price surpasses its level from m periods ago, it indicates

positive momentum and relatively high expected excess returns, thereby generating a buy signal.

We compute monthly signals for m = 9, 12.

Finally, we consider a technical strategy that incorporates on-balance volume (OBV ). Ini-

tially, we compute the OBVt as

OBVt =

t∑
k=1

1{Pk − Pk−1 ≥ 0}V OLk, (6)

where V OLk is a measure of the trading volume during period k. Subsequently, we derive a

trading signal based on the value of OBVt as follows:

St =

 1 if MAOBV
s,t ≥ MAOBV

l,t

0 if MAOBV
s,t < MAOBV

l,t

, (7)

where MAOBV
j,t is defined as

MAOBV
j,t =

1

j

j−1∑
i=0

OBVt−i for j = s, l. (8)
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Intuitively, relatively high recent volume together with recent increases in the price suggest

a strong positive market trend and generate a buy signal. We compute monthly signals for

s = 1, 2, 3 and l = 9, 12. Table 7 in Appendix A shows an overview of the technical indicators

used.

3.2 Data preprocessing

Firstly, we assess the presence of missing values for the variables described in Section 3.1.2.

The sample period, spanning from January 1960 to December 2021, is determined based on the

availability of data for these variables. To facilitate the evaluation of our models, we divide the

data into an initial training set and a test set. The split is made at January 2002, ensuring

that the test set encompasses the last 20 years of data. Subsequently, the training set is further

divided into a training set and a validation set, using January 1990 as the dividing point. This

partition allows us to perform hyperparameter tuning effectively. After hyperparameter tuning,

the validation set is merged back with the training set, enabling the ML models to be trained

with the best hyperparameters.

The variables are then standardized to avoid estimation problems within our ML models

(Kwak and Kim, 2017). Given the presence of a few severe outliers in the data, as depicted in

Figure 1, we employ a robust scaler for standardization. We retain the outliers in the dataset

as they hold economic significance. Variable xi is scaled as follows:

xi,scaled =
xi − xi,median

xi,95th − xi,5th
∀i = 1, . . . , n, (9)

where xi,95th and xi,5th respectively are the 95th percentile and the 5th percentile of xi. Note

that for the standardization, we use the median and percentiles of the training data as the test

set is regarded as unknown.

4 Methodology

This section describes the models used to obtain probabilistic forecasts of the equity premium.

We also explain the model validation and model testing procedures. Furthermore, we introduce

the performance measures used to assess the predictive performance of the models. Lastly, we

describe the statistical test used to asses if the difference in the numerical scores across models

lead to significant difference in forecasting performance.
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4.1 Tree-based machine learning models

Sections 4.1.1, 4.1.2 and 4.1.3 introduce the tree-based ML models and explain how the proba-

bilistic forecasts are obtained from the models.

4.1.1 Distributional Regression Forest

The first ML model we consider is the Distributional Regression Forests (DRF) introduced by

Schlosser et al. (2019). The DRF algorithm combines the strengths of Random Forest (RF) and

Distributional Regression and can hence be seen as a probabilistic extension of the RF algorithm.

The idea of RF is to learn an ensemble of Regression Trees, each on different training data

obtained through resampling. Furthermore, in each node only a random subset of the variables

x is considered for splitting to reduce the correlation among the different trees and to reduce

the variance of the model. This way, the RF algorithm often has a higher predictive accuracy

and is less prone to overfitting.

The key difference with the RF algorithm is that the DRF model is an ensemble of Dis-

tributional Regression Trees (DRTs) instead of Regression Trees. DRTs model the conditional

distribution of the dependent variable at each leaf node of each tree, rather than predicting a

single value by e.g taking the mean of the dependent variable. This allows the model to capture

the uncertainty in the output. Unlike the Distributional Regression models such as the Gen-

eralized Additive Models for Location, Scale, and Shape (GAMLSS) introduced by Rigby and

Stasinopoulos (2005), DRF doesn’t require any assumptions about the functional form of the

parameters. This allows for a more flexible modelling approach.

Consider the distributional model D(Y,θ) for the dependent variable Y ∈ Y using the

distributional family D with k-dimensional parameter vector θ ∈ Θ and corresponding log-

likelihood function ℓ(θ;Y ). The goal is to recursively partition the covariate space X into B

disjoint segments

X =
⋃

b=1,...,B

Bb, (10)

so that a homogeneous distributional model D(Y,θ(b)) can be fitted to the dependent Y in each

segment with segment-specific parameters θ(b). To find the segments Bb, an DRT is fitted as

follows:

1. Start with the training sample (y1, . . . , yT ) and define the current subsample as the entire

sample.
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2. For the current subsample estimate the parameter values θ̂ using maximum likelihood and

calculate the scores s(θ̂, yt) for each observation yt in the current subsample.

3. Test for significant associations/instabilities of s(θ̂, yt) and Xj,t for each partitioning vari-

able xj (j = 1, . . . , p).

4. Select the partitioning variable x∗j with the strongest association/instability and select

the breakpoint b∗ that results in the highest improvement in the log-likelihood/highest

discrepancy. Split the subsample into two subsamples with the chosen x∗j and b∗.

5. Repeat steps 2-4 recursively, until the subsamples become too small or there is no statistical

significant association/instability.

In step 2, the score function is defined as

s(θ̂, yt) =
∂ℓ

∂θ
(θ, yt) (11)

and we test for associations/instabilities with the general class of permutation tests introduced

by (Hothorn et al., 2006).

To obtain probabilistic forecasts of a DRT the test observation “falls down” the tree and

ends up in a particular segment. In this way, the corresponding segment-specific θ̂MLE can be

extracted. Thus, instead of computing the parameter estimates for a new set of variables x, the

DRTs can utilize the estimates that were obtained during the training process.

As mentioned earlier, DRF is an ensemble of M DRTs which aims to prevent overfitting and

provides more accurate predictions. Each DRT in a DRF predicts the conditional distribution

of the dependent variable for a subset of the variables. Subsequently, DRF takes a weighted

average of the predicted distributions from each DRT.

To obtain probabilistic forecasts of the DRF algorithm, we compute the weights wforest
t (x)

as

wforest
t (x) =

1

M

M∑
m=1

Bm∑
b=1

1((xt ∈ Bm
b ) ∧ (xt ∈ Bm

b ))

|Bm
b |

, (12)

where |Bm
b | denotes the number of observations in the b-th segment of the m-th tree. A larger

weight is given for those observations t from the training sample that occur in the same segment

Bm
b as the new observations x for a large number of trees m = 1, . . . ,M . Suppose we forecast

H periods OOS. We can compute the parameter estimates θ̂k(x) for a new set of variables x by

θ̂k(x) = argmax
θ∈Θ

T∑
t=1

wforest
t (x) · ℓ(θt;yt) k = T + 1, . . . , T +H. (13)
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4.1.2 Natural Gradient Boosting

The second tree-based ML model we examine is the Natural Gradient Boosting (NGB) algorithm

introduced by Duan et al. (2020). The NGB model modifies the Gradient Boosting algorithm

introduced by Friedman (2001) to estimate the parameters of a conditional probability distri-

bution P (y|x) as functions of x. Gradient Boosting works by building a sequence of shallow

decision trees that are combined to make a prediction. In boosting stage m (m = 1, . . . ,M), a

decision tree is trained on the residuals of the previous trees, with the goal of minimizing a loss

function.

A few differences between the Gradient Boosting algorithm and NGB are that a series of deci-

sion trees must be fit for each parameter instead of one. Furthermore, a parametric probability

distribution Pθ and a proper scoring rule S (see Section 4.4) must be specified to incorpo-

rate a probabilistic learning objective for the algorithm. Moreover, the Natural Gradient is

used instead of the standard gradient because this makes the optimization problem invariant to

reparametrization of the distribution parameters. Specifically, for iteration m and observation

t (t = 1, . . . , T ), the algorithm calculates the Natural Gradient g
(m)
t of S with respect to the

predicted k-dimensional parameter θ
(m−1)
t as

g
(m)
t = IS

(
θ
(m−1)
t

)−1
∇θS

(
θ
(m−1)
t , yt

)
, (14)

where IS (θ) is the Fisher Information. Subsequently, a k-dimensional set of regression trees

for iteration m denoted as f (m), are fit to predict the corresponding components of g
(m)
t and

observation xt. Then the predicted parameters are updated as follows:

θ
(m)
t = θ

(m−1)
t − η

(
ρ(m) · f (m)(xt)

)
, (15)

where ρ(m) is a stage-specific scaling factor chosen to minimize the scoring rule loss along the

direction of the projected gradient and η is a common learning rate.

The probabilistic forecasts of the NGB model are obtained by the parameters θ̂t via an

additive combination of the M tree outputs as

θ̂t = θ̂(0) − η

M∑
m=1

ρ(m) · f (m)(xt), t = T + 1, . . . , T +H. (16)

where θ̂(0) is estimated using Maximum Likelihood over the entire training sample.

4.1.3 Extreme Gradient Boosting for Location Scale and Shape

The third ML model we examine is the Extreme Gradient Boosting algorithm for Location, Scale

and Shape (XGBoostLSS) introduced by März (2019) which is an extension of the XGBoost
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algorithm. XGBoostLSS builds upon XGBoost and incorporates principles of the GAMLSS

framework to obtain density predictions. In GAMLSS, density estimation involves modeling

the distributional parameters of a predictor variable. To understand how the XGBoostLSS

algorithm estimates the distributional parameters, we provide a brief overview of how XGBoost

works.

XGBoost is a gradient boosting algorithm introduced in Chen and Guestrin (2016). At each

iteration m, the algorithm estimates the predictor variable by minimizing a regularized objective

function:

L̃(m) =
T∑
t=1

ℓ
[
yt, ŷ

(m−1)
t + fm (xt)

]
+Ω(fm) . (17)

The objective function consists of two components: a differentiable convex loss function ℓ that

measures the discrepancy between the predicted values and the true values, and a regularization

term Ω(·) that penalizes the complexity of the model to prevent overfitting. To approximate ℓ[·]

and simplify Equation (17), a second-order Taylor expansion is employed. This approximation

results in the following objective function:

L̃(m) =

T∑
t=1

[
gtfm (xt) +

1

2
htf

2
m (xt)

]
+ γK +

1

2
λ

K∑
j=1

w2
j , (18)

where gt = ∂ŷ(m−1)ℓ
[
yt, ŷ

(m−1)
t

]
and ht = ∂2

ŷ(m−1)ℓ
[
yt, ŷ

(m−1)
t

]
are respectively first and second

order derivatives, wj are leaf weights, γ is a parameter that controls the penalization for the

number of terminal nodes K of the trees and λ is an L2 regularization term on the leaf weights.

For the XGBoostLSS algorithm the distributional parameters θk (k = 1, . . . ,K) are similarly

to GAMLSS estimated using the first and second order partial derivatives of the log-likelihood

function with respect to that specific parameter. If we specify the loss function in Equation (17)

as an appropriate log-likelihood function, Maximum Likelihood can be formulated as empirical

risk minimization so that the resulting XGBoostLSS model can be interpreted as a statistical

model. XGBoostLSS updates the boosting ensemble by fitting regression trees to the negative

gradients and Hessians of the log-likelihood function. These trees are added to the ensemble to

improve the predictions iteratively. With each iteration, XGBoostLSS updates the estimations

of the distributional parameters based on the learned ensemble. Finally, the density predictions

are obtained with the predicted parameters as in Equation (16).

The key characteristic that sets XGBoostLSS apart from other boosting approaches is its use

of Newton Boosting, also known as second-order gradient boosting. In Newton Boosting, the

loss function ℓ[·] is approximated as in Equation (18) which generally results in outperformance

of Gradient Boosting because of the variability in the second-order terms (Sigrist, 2021).

12



4.2 Time-series models

To compare the density predictions of the ML models, we examine an extension of the Gener-

alized AutoRegressive Conditional Heteroskedastic (GARCH) model introduced by Bollerslev

(1986). Specifically, we add the AR(1)-GARCH(1,1) as a benchmark model which extends the

GARCH(1,1) model by incorporating an autoregressive term. Adding an autoregressive term

allows the model to capture the dependence between the equity premium at time t and its lagged

value. The mean equation is as follows:

yt = µ+ ϕyt−1 + ϵt. (19)

Moreover, the equation for the conditional variance is given by

σ2
t = ω + αϵ2t−1 + βσ2

t−1, (20)

where µ, ϕ, ω, α, and β are the parameters of the model that are estimated using Maximum

Likelihood. Furthermore, yt (yt−1) represents the (lagged) equity premium. Moreover, ϵt (ϵt−1)

is the (lagged) stochastic innovation term and σ2
t−1 is the lagged value of the conditional variance.

Finally, we consider the AR(1)-GJR-GARCH(1,1) model which is an extension of the GJR-

GARCH model introduced in Glosten et al. (1993). This model has a mean equation as defined

in Equation (19) and has a similar conditional variance equation except for the indicator variable

added to allow for asymmetric effects depending on the sign of ϵt−1:

σ2
t = ω + (α11ϵt−1≥0 + α21ϵt−1≤0)ϵ

2
t−1 + βσ2

t−1. (21)

To obtain density predictions for the equity premium, we assume a probability distribution for

the equity premium. For instance, by assuming a Normal distribution, the probability density

function (PDF) for each yt is given by:

f(yt|It−1) =
1√

2πσ̂2
t|t−1

exp

(
−
(yt − µ̂t|t−1)

2

2σ̂2
t|t−1

)
(22)

where It−1 represents the information set up to time t− 1 and contains the parameter forecasts

θ̂t|t−1. We iteratively calculate the conditional mean and variance for each time period, using

the estimated parameters. We then substitute these values into the PDF to obtain the density

forecasts. Section B in the appendix shows how we obtain density predictions from the models

assuming a Student’s t-distribution. Furthermore, Table 2 provides an overview of all models

utilized in this study.
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Table 2: Overview of all models and distributions

Model Normal distribution Student’s t-distribution

ML models

Distributional Regression Forest DRF(N) DRF(T)

Natural Gradient Boosting NGB(N) NGB(T)

XGBoost for location, scale and shape XGBLSS(N) XGBLSS(T)

time-series models

AR(1)-GARCH(1,1) GARCH(N) GARCH(T)

AR(1)-GJR-GARCH(1,1) GJR-GARCH(N) GJR-GARCH(T)

Notes: “Model(D)” represents the model and distribution employed. Here, N (T ) denotes the Normal

distribution (Student’s t-distribution).

4.3 Walk-Forward testing and hyperparameter tuning

When dealing with time-series data, the presence of temporal dependencies can render traditional

Cross-Validation methods inadequate. Such methods may produce unrealistic performance esti-

mates as they overlook the temporal aspect. By training the model on past data and evaluating

its performance on future data, the assumption of independence between the past and future

data is violated, leading to data leakage.

To address these limitations, we employ a Walk-Forward testing procedure as an alternative

evaluation technique for our ML models. Walk-Forward testing is a sequential evaluation method

that involves iteratively training the model on historical data up to a specific point, making

predictions for a future time period and then retraining the model with the newly observed

data. This process is repeated, progressively moving the training and testing windows forward

in time. This allows the model to adapt and learn from changing patterns in the time-series

data and provides a more accurate estimation of how the model would perform in practice.

Figure 2 shows a visualization of the Walk-Forward testing procedure. Note that we imple-

ment a fixed sliding window approach where the in-sample data at the start of each window

shifts by the same size as the length of the in-sample period at the end.

Learning the optimal hyperparameters is performed through a grid search on the different

hyperparameter combinations. However, we only use one fold for hyperparameter tuning because

updating the hyperparameters in the walk-forward testing approach proves computationally

expensive for certain models. We employ the period 1990:01-2001:12 for the hyperparameter
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tuning process and the best hyperparameters selected for the models are provided in Tables 8

and 9 in Appendix C. Additionally, most parameters are set to default values as we have no

theory about the optimal values for financial time-series data.

Figure 2: The Walk-Forward testing procedure for ML models.

Notes: The sliding window is of fixed size. The OOS period is from January 2002 to December 2021.
Each fold consists of 42 years in-sample (IS) and two years OOS.

4.4 Probabilistic forecasts and performance measures

A probabilistic forecast takes the form of a predictive probability distribution over future quan-

tities or events of interest. Gneiting et al. (2007) states that probabilistic forecasting aims to

maximize the sharpness of the predictive distributions, subject to calibration, on the basis of

the available information set. The calibration of a probabilistic forecast refers to the statis-

tical compatibility of probabilistic forecasts and observations. Essentially, realizations should

be indistinguishable from random draws from predictive distributions. On the other hand, the

sharpness of a probabilistic forecast relates to how concentrated the predictive distribution is,

and this aspect is specific to the forecasts themselves.

4.4.1 Calibration measures

To asses the calibration of the probabilistic forecasts we plot the Probability Integral Transfor-

mation (PIT) histograms as in Diebold et al. (1998). The PIT relates to the result that data
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values that are modeled as being random variables from any given continuous distribution, can

be converted to random variables having a standard Uniform distribution. This transforma-

tion is accurate when the distribution utilized in the model matches the true distribution of

the random variables. Interpreting the shape of the PIT histogram provides insights into the

dispersion characteristics of the predictive distributions. A U-shaped histogram indicates an

underdispersed predictive distribution, implying that the the predicted distribution is narrower

than the actual distribution of the data. Conversely, an inverse U-shaped histogram implies an

overdispersed predictive distribution, implying that the predicted distribution is wider than the

actual distribution of the data which can lead to overestimated standard errors. In order to

formally assess whether the PIT values conform to a Uniform distribution, we utilize the one-

sample Kolmogorov-Smirnov (KS) test as described in Massey (1951). Here, the null hypothesis

is that the PIT values exhibit a Uniform distribution.

Furthermore we analyze the Quantile-Quantile plots (QQ-plots) to assess the goodness-of-fit

by comparing the quantiles of the observed data against the quantiles of a theoretical dis-

tribution. Departures from the expected straight line indicate deviations from the assumed

distribution, revealing potential model misspecification.

4.4.2 Proper scoring rules

Scoring rules assess the calibration and sharpness of probabilistic forecasts jointly, by assigning

a numerical score S(F, y) to each pair (F, y), where F ∈ F is a probabilistic forecast and y ∈ R is

the realized value. A scoring rule is considered proper if the forecaster maximizes the expected

score for an observation drawn from the distribution F when they issue the probabilistic forecast

F, rather than a different distribution G ̸= F (Gneiting and Katzfuss, 2014). The use of proper

scoring rules is crucial and we refer the interested readers to Gneiting et al. (2007) for a case

study that provides an example of the potential issues that result from the use of improper

scoring rules. Generally, we take the scoring rules to be negatively oriented penalties that

forecasters wish to minimize.

To compare the probabilistic forecasts of the various models we present two specific proper

scoring rules in this study. The first proper scoring rule is the logarithmic score (LS) introduced

by Good (1952). The LS is defined as follows:

LS(f, y) = − log f(y), (23)

where f(·) is the probability density function (PDF) and y is the actual outcome. The LS
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evaluates how well a density forecast matches the actual outcome. Another proper scoring rule

we use as a performance measure is the Continuous Ranked Probability Score (CRPS) described

in Gneiting et al. (2007). The CRPS measures the integrated squared difference between the

forecasted CDF and a unit step function centered on the observed value. It is defined by the

following equations:

CRPS(F, y) =

∫ ∞

−∞
(F (x)− 1{y ≤ x})2 dx

= EF |Y − y| − 1

2
EF

∣∣Y − Y ′∣∣ , (24)

where Y and Y ′ are independent random variables with cumulative distribution function (CDF)

F and finite first moment. A lower CRPS value indicate a better agreement between the fore-

casted CDF and the actual outcome. Note that the CRPS generalizes the Absolute Error for

point forecasts, as indicated by the second line in Equation (24).

4.4.3 Forecast-implied Value at Risk

In order to demonstrate the economic significance of accurately predicting the equity premium

distribution in comparison to relying on the conditional mean, we assess the forecast-implied

Value at Risk measure. For a Normal distribution, the monthly VaR at a confidence level of

(1− α) ∗ 100% is given by

V aRα
t|t−1 = µ̂t|t−1 + σ̂t|t−1Φ

−1(α), (25)

where µ̂t|t−1 is the predicted location parameter, σ̂t|t−1 is the predicted scale parameter and

Φ−1(α) is the inverse CDF of the standard Normal distribution at confidence level α. Since we

study returns we are interested in the left tail of the distribution.

Similarly, for a Student’s t-distribution, the monthly VaR at a confidence level α with ν̂

degrees of freedom is given by:

V aRα
t|t−1 = µ̂t|t−1 + σ̂t|t−1t

−1(α, ν̂), (26)

where t−1(α, ν̂) is the inverse CDF of the Student’s t-distribution at confidence level of 1− α ∗

100% with ν̂ degrees of freedom. We evaluate their accuracy by comparing them to the realized

equity premium. The VaR violation ratio measures how often the realized equity premium

exceeds the forecasted VaR and is calculated as:

Violation Ratio =
1

H − 1

T+H∑
t=T+1

1{EPt < V aRα
t|t−1}, (27)
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where H is the number of observations in the OOS period. A lower VaR violation ratio indicates

that the model’s forecasts align well with the observed data, suggesting reliable predictions.

Conversely, a higher violation ratio suggests that the VaR estimates are to conservative, leading

to more frequent breaches of the VaR threshold.

4.5 Model Confidence Set

To assess if the probabilistic forecasts from the various models exhibit statistically significant

differences in forecast performance, we employ the Model Confidence Set (MCS) procedure

described in Hansen et al. (2011). The MCS is a statistical test procedure used to sequentially

determine the most accurate forecasting models among a group of competing models. We utilize

the MCS procedure because it acknowledges the limitations of the data by selecting the best

model when the data is highly informative, but includes multiple models when the data is

less informative. It also enables valid statements about significance, unlike the commonly used

approach of reporting p-values from multiple pairwise comparisons.

To illustrate the functioning of the MCS procedure, let M0 be the set that consists of all

models where the forecasts of the models are evaluated using a performance measure S as in

Equations (23) and (24). Furthermore, define the relative forecasting performance of the models

on time t as

dij,t = Si,t − Sj,t ∀i, j ∈ M0, t = T + 1, . . . , T +H (28)

where Si,t and Sj,t represent the performance of models i and j at time t, respectively. In

addition, we denote d̄ij as the average relative forecasting performance of the models. The

objective of the MCS procedure is to determine the set M0 = {i ∈ M0 : d̄ij ≤ 0, ∀j ∈ M}

through a sequence of statistical tests. The null hypothesis is that the predictive performance

of all models in M is equal:

H0,M : d̄ij = 0 ∀j ∈ M, M ⊂ M0. (29)

Moreover, the test statistic is calculated as

tij = d̄ij/

√
V̂ar (dij) ∀i, j ∈ M0 (30)

and the MCS test statistic is given by TM = maxi,j∈M |tij |. The MCS procedure iteratively tests

the null hypothesis and eliminates the worst performing model from consideration each time the

null hypothesis is rejected. This process continues until no further model can be excluded,

resulting in a final set of models with superior forecasting ability for a confidence level of 1−α.
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Following Hansen et al. (2011), we approximate the non-standard asymptotic distribution

of the test statistic TM using block bootstrapping with a block length of 20. Furthermore, we

conduct 10000 bootstrap replications at each stage to ensure robustness and reliable outcomes.

5 Results

Section 5.1 shows the results regarding the calibration of the models. Moreover, Section 5.2

displays the results for the relative predictive accuracy of the models. Furthermore, we show

the final model sets obtained from the MCS procedure in Section 5.3. Finally, we illustrate the

economic relevance of density forecasts using the forecast-implied VaR in Section 5.4.

5.1 Calibration assessment

Figure 3 shows the PIT histograms and QQ plots for the DRF models. We see that for both

the Normal and the Student’s t-distribution the PIT histograms are distributed Uniform. The

KS-test results support this with KS test statistics of 0.06 and 0.05, along with corresponding

p-values of 0.32 and 0.70. Therefore, we do not reject the H0 of Uniformity. Additionally,

the QQ plots demonstrate minimal deviations from the theoretical line of quantiles, indicating a

strong alignment between the theoretical and empirical quantiles. These observations collectively

suggest that there is no evidence of model misspecification.
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Figure 3: PIT histograms and QQ plots for the DRF models.

Notes: On the left side, the figure displays PIT histograms and on the right side it shows the QQ plots.

These visualizations represent the PIT values derived from the DRF model predictions for the OOS

period 2002:01-2021:12.

Secondly, Figure 4 shows the PIT histograms and QQ plots for the NGB models. We see for the

Normal distribution an U-shaped PIT histogram which indicates an underdispersed predictive

distribution. This suggests that the predicted distribution is narrower than the distribution of

the realized equity premium. Moreover, the KS test statistic is equal to 0.20 with a p-value of

0.00, leading to the rejection of the H0 of Uniformity. The large deviations from the QQ-line also

indicate that the model is misspecfied. On the other hand, the PIT histogram for the Student’s

t-distribution appears to be distributed Uniform. This observation is supported by the KS-test,

which reports a KS test statistic of 0.05 with a p-value of 0.58. In addition, the QQ plot for the

NGB(T) model shows minimal deviations from the theoretical quantiles. This indicates that the

more heavy-tailed Student’s t-distribution is a more appropriate choice for modeling the equity

premium compared to the Normal distribution.
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Figure 4: PIT histograms and QQ plots for the NGB models.

Notes: On the left side, the figure displays PIT histograms and on the right side it shows the QQ plots.

These visualizations represent the PIT values derived from the NGB model predictions for the OOS

period 2002:01-2021:12.

Figure 5 displays the PIT histograms and QQ plots for the XGBLSS models. The PIT histogram

for the XGBLSS(N) model shows small peaks in the middle, such that it is unclear if the

PIT values are Uniformly distributed. The KS-test gives KS test statistics of 0.07 with a

corresponding p-value of 0.17. Therefore, we do not reject the H0 of Uniformity. On the other

hand, the PIT histogram for the Student’s t-distribution exhibits peaks at its ends, implying

potential overdispersion in the data. However, the KS test yields a test statistic of 0.08 with a

corresponding p-value of 0.08, such that we don’t reject the H0 of Uniformity at a significance

level of 5%.

Given these mixed results for the two distributional assumptions, we analyze the forecasting

performance for the models incorporating both the Normal and Student’s t-distribution in the

remainder of this study. The PIT histograms and QQ plots for the two time-series models can

be found in Appendix D.
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Figure 5: PIT histograms and QQ plots for the XGBLSS models.

Notes: On the left side, the figure displays PIT histograms and on the right side it shows the QQ plots.

These visualizations represent the PIT values derived from the XGBLSS model predictions for the OOS

period 2002:01-2021:12.

5.2 Comparison probabilistic forecasts

First, in Sections 5.2.1 we compare the forecasts over time Then, in Section 5.2.2 we asses the

average forecasting performance of the models.

5.2.1 Distribution parameter forecasts over time

In Figure 6, we present a visualization of the forecasted distributional parameters of the models

over time. The plot shows the predicted conditional mean of the Student’s t-distribution, ac-

companied by confidence intervals (CIs). For a confidence level α, a CI is obtained utilizing the

conditional scale parameter of the Student’s t-distribution. Note that a good density prediction

does not necessarily require its conditional mean to exactly match the realized equity premium,

as it focuses on capturing uncertainty and providing a well-calibrated probability distribution.

For the DRF(T) model, we see that predicted conditional mean often deviates from the

realized equity premium. This deviation is even larger for financial crisis periods (marked grey)

when the realized equity premium is more volatile. Moreover, we observe that the realized equity

premium falls within the 30% and 50% CIs most of the time. In addition, during volatile periods,

it often lies outside the 90% CI. The scale parameter remains relatively stable during non-crisis
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periods, as suggested by the narrow CIs. Furthermore, in crisis periods the scale parameter

increases, leading to wider CIs.

Similar to the DRF(T) model, the NGB(T) model predictions for the conditional mean of

the equity premium show small deviations in non-crisis periods and larger deviations in crisis

periods. Moreover, the scale parameter tends to be too small during non-crisis periods which

is observed by the conservative CIs. Conversely, the model produces very large scale parameter

predictions during financial crisis periods, resulting in wider CIs.

The XGBLSS(T) model also shows similar results for the conditional mean. Furthermore, we

see that both Gradient boosting methods, XGBLSS(T) and NGB(T), show difficulties predicting

the scale parameter. However, the CIs in crisis periods are smaller compared to the NGB(T)

model.

Comparing the distributional parameters for the ML models, we observe that the scale

parameter of the distribution for the DRF(T) model exhibits higher consistency in its predictions

compared to Gradient Boosting methods. This is probably because the DRF model is less

susceptible to overfitting, as it uses random data sampling and variable selection. Moreover, the

Gradient Boosting methods fit the trees to the errors of the previous trees, potentially capturing

noise in the equity premium data.

The time-series models GARCH(T) and GJR-GARCH(T) yield similar plots. In both cases,

it is apparent that the models struggle to capture the time-varying component of the equity

premium, as the predicted mean remains almost constant over time. This could be attributed to

the AR(1) coefficient being close to zero. Moreover, larger scale parameters are observed during

periods of higher volatility in the equity premium, resulting in wider confidence intervals.

Comparing the ML models with the time-series models, we see that the ML models give

better predictions for the conditional mean. The predictions reflect better that the equity

premium is varying over time and the CIs are smaller. Furthermore, it is evident that the

scale parameter of the ML models shows greater variation over time, thereby providing a more

accurate representation of the volatility of the equity premium. However, it should be noted

that the GJR-GARCH(T) model predicts the volatility of the equity premium more accurately,

as evidenced by the realized equity premium falling within the 90% CI for most observations.

Figure 9 in Appendix E shows the conditional mean with CIs over time for all models

assuming a Normal distribution. We observe similar results as for the models included in Figure

6. The Figure also shows that predictions of the conditional means are generally inaccurate

in crisis periods. Furthermore, we observe wider CIs in more volatile periods of the realized
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equity premium. On the other hand, the NGB(N) model predictions show large deviations of

the conditional mean and the realized equity premium both in crisis and non-crisis periods. We

also observe smaller CIs compared to all ML models. This outcome is attributed to the model’s

tendency to predict small values for the scale parameter.
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Figure 6: Predicted conditional mean of the equity premium over time

Notes: Each panel in the figure shows the predicted µ̂t|t−1 (red line) for a model assuming a Stu-

dent’s t-distribution. The bands correspond to 90%, 70%, 50% and 30% CIs and obtained by

µ̂t|t−1 ± t−1(α/2, ν̂) σ̂t|t−1 where σ̂t|t−1 is the scale parameter. Furthermore, crisis periods are marked

grey.
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5.2.2 Average forecasting performance

Table 3 shows the average LS and CRPS over time for the model forecasts. Note that a lower

score corresponds to a better forecasting performance of the model on average. We observe for

the DRF(N) and DRF(T) model a LS of 2.54 and 2.55 respectively. These scores are lower

compared to the other ML and time-series models. This is in line with the results observed

in Section 5.1 where we see that the models are well calibrated. Furthermore, we see for the

NGB(N) model a LS of 4.10 which is higher then the LS for all other models including the

benchmark GARCH(N). This is mainly due to the fact that the NGB(N) model provides incor-

rect density estimates in the crisis periods 2008-2010 as can be observed in Figure 9. Therefore,

the actual outcome has a low probability and hence a high LS.

Comparing the models based on the CRPS we observe that the DRF(N) and DRF(T) models

have a lower score. For example, The DRF(N) model has a CRPS of 1.86 which is smaller then

the CRPS of the GARCH(N) model (2.26). Furthermore, we see that the NGB(N) model has

a higher CRPS compared to other ML models. However, it outperforms the GARCH(N) model

based on the CRPS (1.96¡2.26). Generally, we observe that the CRPS scores for the models

assuming a Student’s t-distribution have on average a lower CRPS score compared to the same

models assuming a Normal distribution of the equity premium. This suggests that the model’s

predictions are more accurate when assuming a Student’s t-distribution.

When comparing the time-series models we see for the GJR-GARCH models a slightly lower

LS (2.77 < 2.79). On the other hand, we observe a lower CRPS score for the GARCH(T) model

compared the GJR-GARCH(T) model (1.94 < 2.24).

Comparing the ML models with the time-series models we observe that on average both

the LS and CRPS have lower values. For example, the LS and the CRPS of the XGBLSS(N)

models are equal to 2.61 and 1.92 which are lower then 2.79 and 2.26 respectively for the

GARCH(N) model. This indicates that the ML models outperform the time-series models in

terms of forecasting performance.
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Table 3: Average forecasting performance based on Scoring rules

Model LS CRPS

ML models

DRF(N) 2.55 1.86

DRF(T) 2.54 1.87

NGB(N) 4.10 1.96

NGB(T) 2.68 1.94

XGBLSS(N) 2.61 1.92

XGBLSS(T) 2.62 1.87

time-series models

GARCH(N) 2.79 2.26

GARCH(T) 2.79 1.94

GJR-GARCH(N) 2.77 2.25

GJR-GARCH(T) 2.77 2.24

Notes: The table shows the average Logarithmic Score (LS) and Continuous Ranked Probability Score

(CRPS) over the OOS period (2002:01-2021:12). Lower scores are better and best scores are marked

bold.

5.3 Final model sets

To asses if the probabilistic forecasts of the different models lead to statistically significant

difference in forecasting performance, we implemented the MCS procedure. An overview of the

final set of models obtained through different performance measures and confidence levels of

(1 − α) ∗ 100% are presented in Table 4. For instance, when employing a 95% confidence level

and using the LS as evaluation metric, the MCS procedure yields the following ranking for the

final set of models: DRF(T), DRF(N) and XGBLSS(T). It is worth noting that there is no single

superior model demonstrating better predictive ability. This outcome suggests that the data

exhibits a low signal-to-noise ratio and provides limited information. Additionally, we observed

that the CRPS measure resulted in a larger set of models, compared to the LS measure with

the same α value. This finding suggests that CRPS is a more stringent metric, making it more

challenging to reject the null hypothesis of equal predictive ability. Furthermore, our analysis

revealed that the superior model sets primarily comprise ML models, with the GARCH(T)

model being the only time-series model present in the sets.
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Table 4: Sets of models obtained from the MCS procedure

Final set models

Scores α = 0.1 α = 0.05

LS {DRF(T), DRF(N), XGBLSS(T)} {DRF(T), DRF(N),XGBLSS(T)}

CRPS {DRF(N),DRF(T), XGBLSS(T) , {DRF(N), DRF(T), XGBLSS(T) ,

NGB(N), XGBLSS(N)} NGB(N), XGBLSS(N), NGB(T),

GARCH(T)}

Note. The superior model sets are given for a confidence level of (1−α) ∗ 100%. The test is implemented

using the rugarch package in R.

5.4 Evaluation forecast-implied VaR

Table 5 shows the forecast-implied VaR violation ratios for various risk levels. A smaller value of

α indicates a lower level of risk. The results show that for the DRF(N) model, the VaR violation

ratio for α = 0.1 is 7.9%. This indicates that OOS, the realized equity premium is smaller than

the 90%-VaR estimate of the model 7.9% of the time. Generally, as we decrease α, we observe

lower violation ratios due to more conservative VaR estimates and hence fewer breaches of the

VaR threshold.

The DRF(N), DRF(T), and XGBLSS(N) models exhibit low violation ratios compared to

the other models. For example, at a 95% confidence level, the violation ratios are 3.8%, 4.2%,

and 3.8%, respectively. Conversely, the NGB(N) model displays a violation ratio of 23.8% for

a confidence levels of 95%. From an investor’s point of view, utilizing the DRF models holds

greater appeal due to their ability to offer a more accurate estimate of potential losses and

reduce the likelihood of unexpected substantial losses, as opposed to the NGB(N) model.
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Table 5: VaR violation ratios for different levels of risk

Model α = 0.1 α = 0.05 α = 0.01

ML models

DRF(N) 7.9 3.8 0.0

DRF(T) 9.2 4.2 0.0

NGB(N) 28.7 23.8 15.8

NGB(T) 14.6 7.9 1.7

XGBLSS(N) 6.7 3.8 1.3

XGBLSS(T) 17.5 10.0 2.9

time-series models

GARCH(N) 10.4 5.4 2.5

GARCH(T) 9.2 4.6 0.4

GJR-GARCH(N) 9.6 5.8 2.5

GJR-GARCH(T) 9.2 4.2 0.4

Note. The ratios are multiplied with a factor 100 such that the ratios are expressed in %. The violation

ratio for a model is obtained by summing the number of VaR breaches and dividing by the total number

of observations OOS (240). Furthermore, The VaR estimates are calculated for a confidence level of

(1− α) ∗ 100%.

6 Conclusion & Discussion

This empirical study aims to make probabilistic forecasts of the equity premium using tree-based

ML models and traditional time-series models. Specifically, we focus on the DRF, NGB, and

XGBoostLSS models, which can provide probabilistic forecasts and capture complex relation-

ships in the data. Furthermore, we assume a Normal distribution and Student’s t-distribution

for the equity premium.

Our central research question is: “How do tree-based ML models perform in providing density

forecasts of the equity premium, and how do these compare to the density forecasts obtained

from traditional time-series models?”

The main findings of this study reveal valuable insights into the performance of different

forecasting models for the equity premium. We analyzed the average forecasting performance

of the models using the LS and CRPS evaluation metrics. The study evaluates the performance
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of various models and ranks them based on these scoring rules. The results show that the DRF

model with Student’s t-distribution (DRF(T)) achieves the best overall forecasting performance,

with the lowest LS score among all models. Additionally, the DRF(N) model also performs well,

obtaining the second-best LS score. Similarly, when considering CRPS, the DRF(N) model

outperforms other ML models, including the benchmark GARCH(N) model. The Gradient

Boosting models (XGBLSS(T) and NGB(T)) also show competitive performance in both LS and

CRPS metrics. Overall, the ML models demonstrate superior forecasting capabilities compared

to the time-series models.

Furthermore, the study analyzes the final model sets obtained through the MCS procedure.

The MCS procedure aims to assess if the probabilistic forecasts of the different models lead

to statistically significant differences in forecasting performance. Based on both proper scoring

rules and confidence levels, the results reveal that the DRF(T) and DRF(N) models consistently

appear in the final set of models, indicating their robust predictive ability. The XGBLSS(T)

model also frequently appears in the final set, further emphasizing its competitive performance.

However, it is noteworthy that there is no single superior model with significantly better predic-

tive ability. This indicates that the data exhibits a low signal-to-noise ratio, leading to limited

information for more precise model selection. These findings align with the conclusions drawn

in earlier literature as presented by Goyal and Welch (2008). Despite this, the ML models,

particularly the DRF(T) model, stand out as promising choices for forecasting equity premium

distributions.

Lastly, the study examines the evaluation of forecast-implied VaR violation ratios for various

risk levels. This analysis is economically relevant as it assesses how well the models estimate

potential losses and manage risks. The results demonstrate that the DRF(N), DRF(T), and

XGBLSS(N) models perform well, displaying lower VaR violation ratios compared to other

models. This suggests that these models offer more accurate VaR estimates and reduce the

likelihood of unexpected substantial losses. On the other hand, the NGB(N) model exhibits

higher VaR violation ratios due to overly optimistic VaR predictions caused by small predicted

scale parameters. These findings highlight the importance of precise scale parameter predictions

for effective risk assessment.

The findings of this study have several practical implications for investors and financial

practitioners. By using probabilistic tree-based ML models like DRF and XGBoostLSS, investors

can obtain more accurate probabilistic forecasts of the equity premium, allowing them to make

better-informed investment decisions.
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While this study makes valuable contributions to the field of ML and forecasting in financial

economics, there are several limitations and and interesting areas to consider in future research.

Firstly, a random period of two years was chosen for the walk-forward OOS period at each fold.

This period could be optimally selected to allow for hyperparameter tuning at each fold of the

walk-forward procedure. Currently, when tuning the hyperparameters for the machine learning

models, only one period is used. The values of the hyperparameters have a significant influence

on determining the distributional scale parameter for the Gradient Boosting methods.

In future research, it would also be interesting to explore the application of skewed dis-

tributions. In this study, the use of the skewed Student’s t-distribution for the DRF model

was investigated, and yielded similar results to the DRF(T) model. It would be worthwhile to

combine the skewed Student’s t-distribution with the NGB and XGBLSS models. However, it

should be noted that the current software package for the XGBLSS model does not support to

add new distributions.

An additional potential direction for future research lies in exploring the variable impor-

tance. For tree-based ML models, variable importance plots can be generated to identify which

variables play a crucial role in predicting the equity premium distribution. In this study, variable

importance was not explored since utilizing variables with high importance can still lead to bad

model forecasting performance.
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Appendix A Descriptive statistics data

Table 6: Descriptive statistics for the macroeconomic variables.

Variable Mean Std Min 25% 75% Max

DP ∗ -3.62 0.40 -4.52 -3.95 -3.35 -2.75

DY ∗ -3.62 0.40 -4.53 -3.94 -3.35 -2.75

EP ∗ -2.87 0.43 -4.84 -3.11 -2.68 -1.90

DE∗ -0.75 0.30 -1.24 -0.92 -0.60 1.38

BM∗ 0.48 0.26 0.12 0.28 0.64 1.21

NTIS 0.01 0.02 -0.06 0.00 0.02 0.05

TBL∗∗ 4.40 3.20 0.01 1.89 6.08 16.30

LTY ∗∗ 6.15 2.85 0.62 4.15 7.95 14.82

LTR∗ 0.61 2.91 -11.24 -1.05 2.28 15.23

TMS∗∗ 1.75 1.43 -3.65 0.69 2.90 4.55

DFY ∗∗ 1.01 0.44 0.32 0.72 1.19 3.38

DFR∗ 0.02 1.50 -9.76 -0.56 0.60 7.37

INFL∗ 0.30 0.36 -1.92 0.07 0.51 1.81

RV OL 0.14 0.05 0.05 0.10 0.18 0.32

EPL∗ 0.58 4.27 -22.03 -1.88 3.20 16.00

Note. ∗ (∗∗) indicates that the variable is measured in % (annual %). These are the descriptive statistics

before the standardization of the variables is applied.
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Table 7: Frequencies for the technical indicators (in %).

Variable Value 1 Value 0

MA1,9 70.03 29.97

MA1,12 72.18 27.82

MA2,9 70.03 29.97

MA2,12 70.03 29.97

MA3,9 70.03 29.97

MA3,12 70.03 29.97

MOM1,9 72.04 27.96

MOM1,12 73.92 26.08

V OL1,9 70.43 29.57

V OL1,12 72.72 27.28

V OL2,9 69.09 30.91

V OL2,12 72.31 27.69

V OL3,9 71.24 28.76

V OL3,12 72.04 27.96

Notes: The table shows the frequencies of the Moving Average (MA), Momentum (MOM) and Volume

(VOL) based variables. These frequencies are based on the sample 1960:01-2021:12. The variables are

constructed as in Neely et al. (2014).

Appendix B Density forecasts Student’s t-distribution

Density forecasts for the location-scale t-distribution are given by:

f(yt|It−1) =
Γ
(
ν̂+1
2

)
Γ
(
vt|t−1

2

)√
πν̂σ̂2

t|t−1

(
1 +

(yt − µ̂t|t−1)
2

ν̂σ̂2
t|t−1

)− ν̂+1
2

(31)

where µ̂t|t−1, σ̂
2
t|t−1 and ν̂ are the location, scale and shape parameters. A small value of ν̂ gives

a distribution with heavy tails. The conditional mean and variance are respectively denoted as

µ̂t|t−1 and ν̂
ν̂−2 σ̂

2
t|t−1 for ν̂ > 2.
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Appendix C Hyperparameter tuning tables

Table 8: Hyperparameter grids for DRF model

number of estimators column sample fraction minimal split

DRF(N) [100, 150, 250, 500] [0.10, 0.33, 0.5] [10, 20, 50, 100]

DRF(T) [100, 150, 250, 500] [0.10, 0.33, 0.5] [10, 20, 50, 100]

Notes: This table shows the parameter grids for the DRF models in the OOS period 1990:01-2001:12.

The optimal values for the hyperparameters are marked bold.

Table 9: Hyperparameter grids for Gradient Boosting models

learning rate mini batch fraction max depth

NGB(N) Unif(0.05,1) : 0.14 [0.5, 0.75, 1] [2, 3, 4]

NGB(T) Unif(0.05,1) : 0.13 [0.5, 0.75, 1] [2, 3, 4]

XGBLSS(N) Unif(0.05,1) : 0.95 Unif(0.5,1) : 0.83 [1, . . . ,10]

XGBLSS(T) Unif(0.05,1) : 0.21 Unif(0.5,1) : 0.78 [1, . . . , 9, 10]

Notes: This table shows the parameter grids for the NGB and XGBLSS models in the OOS period

1990:01-2001:12. The optimal values for the hyperparameters are marked bold.
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Appendix D PIT histograms and QQ plots time-series models

Figure 7: PIT histograms and QQ plots for the AR(1)-GARCH(1,1) model.

Notes: GARCH(N): KS test-statistic is equal to 0.097 with p-value 0.02 such that the H0 of uniformity is

rejected. GARCH(T): KS test-statistic is equal to 0.090 with p-value 0.04 such that the H0 of uniformity

is rejected at a significance level of 5%.

Figure 8: PIT histograms and QQ plots for the AR(1)-GJR-GARCH(1,1) model.

Notes: GARCH(N): KS test-statistic is equal to 0.11 with p-value 0.00 such that the H0 of uniformity is

rejected. GARCH(T): KS test-statistic is equal to 0.10 with p-value 0.02 such that the H0 of uniformity

is rejected at a significance level of 5%.
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Appendix E Conditional mean over time for Normal distribu-

tion

Figure 9: Predicted conditional mean of the equity premium assuming a Normal distribution

with corresponding confidence intervals

Notes: Each panel in the figure shows the predicted µ̂t|t−1 (red line) for a model assuming a Normal

distribution. The dashed line corresponds to the realized equity premium. The bands correspond to 90%,

70%, 50% and 30% CIs and are obtained by µ̂t|t−1 ± Φ−1(α/2) σ̂t|t−1. Furthermore, crisis periods are

marked grey.
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