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Abstract

Homoscedastic error terms are a central assumption for the Ordinary Least

Squares (OLS) estimator to be the best linear unbiased estimator. Diagnostic tests

are applied to verify this assumption. However, the classical heteroscedasticity tests

can be easily misled by outliers, and the available alternatives apply the outlier re-

moval strategy, which is not desirable. We, therefore, investigate the robustness

properties of the three classical heteroscedasticity tests and propose a robust al-

ternative with the score test framework of Heritier and Ronchetti (1994). The

robustness properties are supplemented with a simulation study and empirical ap-

plications to real datasets. We show that the robust alternative outperforms the

classical test, remains size-correct and retains its power in the presence of outliers.

Keywords: Heteroscedasticity; Robust test; Score test; Outlier
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1 Introduction

The Ordinary Least Squares (OLS) estimator of the linear regression model is the best lin-

ear unbiased estimator if the Gauss-Markov assumptions are met (Greene, 2003). Among

them, there are the expected value of error terms equal to zero and the spherical variance-

covariance matrix of the error terms. The latter assumption translates into homoscedastic,

that is, having constant variance across observations, and not serially correlated error

terms. For reliable inference and predictions based on the OLS estimates, it is necessary

to check whether the assumption of spherical errors is not violated.

Even if the OLS estimator remains unbiased when the assumption is not met, the

standard errors may be underestimated. Consequently, the statistical tests based on them,

such as t- and F -tests, may, for example, overestimate the significance of the regression

coefficients (Verbeek, 2004). The OLS estimator is no longer the best one. To control for

the presence of heteroscedastic error terms, a wide range of classical diagnostic tests has

been proposed.

The classical parametric diagnostic tests are devised to work well when underlying

assumptions are met, for example, distributional assumptions about error terms. If the

sample contains outlying observations, the outliers may inflate the variance of some re-

siduals to the extent that the classical heteroscedasticity test is no longer able to reject

the null hypothesis of homoscedastic error terms for heteroscedastic data. Outliers may

also mask the real homoscedastic error terms with falsely inflated variance and result in

over-rejecting the null hypothesis. The methods of robust hypothesis testing from the

field of robust statistics offer an appealing alternative to the classical heteroscedasticity

tests, ensuring correct inference about the underlying process in the regression residuals.

Therefore, in this paper, we investigate the behaviour of classical heteroscedasticity

tests in the presence of outliers of different types and verify whether the robust altern-

ative to the Breusch-Pagan test offers both the robustness of validity and robustness of

efficiency.

This research is both of scientific relevance and interest for practical applications. We

apply the theoretical framework developed by Heritier and Ronchetti (1994) to a new

group of tests, heteroscedasticity tests. The heteroscedastic error terms are present in

economic and social data, thus appropriate testing methods are of interest to practitioners

from different fields of applied science (Greene, 2003).
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To investigate the robustness of classical heteroscedasticity tests, we select three tests

easily available for practitioners in the statistical software, for example in the R package

lmtest (Zeileis & Hothorn, 2002), the Breusch-Pagan test (1979), the Goldfeld-Quandt

test (1965) and the Harrison-McCabe test (1979). We show their robustness properties

and verify them against vertical and bad leverage outliers in sensitivity analysis and a

simulation study of the power and the level of the test. As it turns out that none of the

tests considered preserve robustness against both types of outliers for both homoscedastic

and heteroscedastic data, we aim to find a robust counterpart.

Although there is some work on the robust alternatives to classical heteroscedasticity

tests (Alih & Ong, 2015; Berenguer-Rico & Wilms, 2021; Rana et al., 2008), all apply out-

lier removal strategy which does not preclude the swamping effect and may result in the

deletion of not outlying observations distorting the sample distribution. Consequently,

such a constructed heteroscedasticity test may wrongly detect heteroscedasticity when

data is homoscedastic. We address this gap with the development of the robust hetero-

scedasticity test based on the framework of a bounded-influence score test derived by

Heritier and Ronchetti (1994) and we modify it to the specificities of heteroscedasticity

testing.

We evaluate three classical heteroscedasticity tests, but the construction of the robust

alternative is focused solely and entirely on the alternative to the Breusch-Pagan test.

The robustness of the newly proposed test is evaluated first with the simulation study of

the level and the power of the test in the presence of outliers. We perform the simulation

in the setting of a large sample size and do not investigate the small-sample properties

of the robust test. Next, the test is applied to real datasets of credit card data (Greene,

1992), and teacher ratings data (Hamermesh & Parker, 2005), and we verify whether

the robustness of efficiency and the robustness of validity are preserved. Our results

show that the heteroscedasticity score test constructed with Mallows type M-estimator

(Huber, 1973; Mallows, 1975) remains size-correct and powerful in the simulated presence

of outliers. Its robustness is also confirmed in real dataset applications.

In Section 2 we discuss relevant literature in the field of classical and robust hetero-

scedasticity tests. Section 3 presents the methodology of the classical heteroscedasticity

tests and their robustness properties, which are verified with a simulation study. In Sec-

tion 4 we propose the robust heteroscedasticity test and describe the design and results
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of a simulation study that validate the robustness of the proposed test. In Section 5 we

conduct an empirical application of selected classical and robust tests in real datasets.

Section 6 concludes with the main findings, the limitations of our research and further

research possibilities.

2 Literature

In this section, we provide an overview of the literature on heteroscedasticity testing. We

start with a general motivation for why the heteroscedasticity tests are of great importance

for reliable inference in regression models. Next, we concentrate on both classical and

robust approaches to the heteroscedasticity tests, with an emphasis on identifying gaps

in the development of robust alternatives.

The classical heteroscedasticity tests applied in the regression diagnostic in the estim-

ation with OLS include, among others, the Breusch-Pagan test (1979), the Glejser test

(1969), the Goldfeld-Quandt test (1965), the Harrison-McCabe test (1979), the Harvey

test (1974), the jackknife tests (Sharma & Giaccotto, 1991), and the White test (1980).

Despite the wide range of available homoscedasticity tests, Dufour et al. (2004) note that

the practitioners tend to prefer the Breusch-Pagan test, the White test and the Goldfeld-

Quandt test, with the clear dominance of the first one. All mentioned tests are devised

to work well when the assumptions of the test are met, for example, distributional as-

sumptions about error terms. However, the presence of outlying observations in the data

may contribute to the failure to meet the basic assumptions underlying the tests and

consequently lead to erroneous conclusions. For example, the data is heteroscedastic, but

in the presence of outliers, the heteroscedasticity tests fail to detect the true nature of

error terms, and they wrongly indicate homoscedasticity with no power to reject the null

hypothesis.

Lyon and Tsai (1996) analyse the behaviour of different classical heteroscedasticity

tests when there are either outlying errors or outlying explanatory variables. They find

that the heteroscedasticity tests based on the likelihood ratio tests perform poorly, in

contrast to the modified version of the Breusch-Pagan test (also known as the Koenker

score test (1981), see Section 3.1.1) which remains robust in those settings. However,

Lyon and Tsai (1996) do not verify the level and the power of those tests in the presence

of bad leverage or vertical outliers. The earlier work by Ali and Giaccotto (1984) evaluates
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the performance of both parametric and nonparametric heteroscedasticity tests when the

distributional and independence assumptions about the errors are not met. They find

that generally the power is substantially reduced if the errors do not follow the normal

distribution, but in the presence of either long-tailed or skewed distributions, the Glejser

test and the White test remain robust. The Breusch-Pagan test and the Goldfeld-Quandt

test fail in such scenarios.

To address the lack of robustness of the classical heteroscedasticity test, Alih and Ong

(2015) and Rana et al. (2008) develop robust versions of the Goldfeld-Quandt test. In

both papers, the authors apply the outlier-removal strategy, Alih and Ong (2015) use the

Mahalanobis distance to identify and exclude outliers from the next steps, while Rana et

al. (2008) employ the Least Trimmed Squares (LTS) estimator for the same purposes. In

the following steps, in both works, ‘clean’ samples are used to construct the test statistic

in the form of a ratio of certain measures of squared residuals. However, neither Alih and

Ong (2015) nor Rana et al. (2008) substantiate their work with theoretical derivations.

Moreover, in both procedures, the final result of the test is based on the dataset in which

the outliers are deleted, but with this approach, we cannot be sure whether the swamping

effect does not contribute to deleting good points (see Appendix A.1 for an example of

a simulation study of the modified Goldfeld-Quandt test (Rana et al., 2008) showing

that the test is not size-correct). Berenguer-Rico and Wilms (2021) find that the outlier

removal results in a low power or oversized (or undersized depending on the outlier type)

White test, which we suspect may also be the case with the Goldfeld-Quandt test modified

with the outlier-removal approach.

We extend the research on robust heteroscedasticity tests by applying methods from

the field of robust statistics to the classical Breusch-Pagan test. Heritier and Ronchetti

(1994) develop the robust score test based on M-estimator (Huber, 1973) which ensures

a stable test level under small departures from the null hypothesis and a stable test

power under small departures from alternative hypotheses. So far, this framework has

not been adapted to the specificities of heteroscedasticity testing but has proven effective

in the application to testing general restrictions in nonlinear and logistic regression in the

presence of different types of outliers.
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3 Classical heteroscedasticity tests

In this section, we focus on the classical heteroscedasticity tests. We start with a general

overview of the available methods for testing heteroscedastic error terms, followed by

a detailed explanation of the methodology of the three selected tests, together with a

discussion of their robustness. We finalize with a simulation study investigating the

robustness of the power and the level of selected tests.

3.1 General overview

The visual inspection of regression residuals is often the first step to control for heterosce-

dasticity. However, the conclusions drawn from such plots, see Figure 3.1, are subjective

and prone to human error, thus they should be followed by the application of diagnostic

tests. Greene (2003, Chapter 11) notes that most of the tests are applied to the OLS

residuals since the OLS estimator remains consistent also in the presence of heterosce-

dastic error terms. Therefore, the assumption is made that these residuals mimic the

heteroscedasticity of the true disturbances well enough.

(a) ei ∼ N (0, σ2) (b) ei ∼ N (0, σ2
i )

Figure 3.1. Example of visual inspection of regression residuals with the plot of explanatory
variable x against residuals. Residuals from the linear model, yi = xi + ei (i = 1, . . . , 500), with
(a) homoscedastic error terms and (b) heteroscedastic error terms.

Among the classical heteroscedasticity tests, two main approaches to studying the

variance of the error terms can be distinguished. These approaches vary in terms of how

specific the researcher needs to be when stating the type of suspected heteroscedasticity

in the data and thus formulating the alternative hypothesis. Tests, postulating that in the
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data one can identify certain groups of observations between which the variance differs, but

within those groups it remains constant, do not require specifying the function that drives

the variance in each of those groups. The alternative hypothesis states that the variances

are not equal between groups. The Goldfeld-Quandt test (1965) and the Harrison-McCabe

test (1979) check whether variance differs between two groups, while with the likelihood

ratio test (Fomby et al., 1984) or the jackknife test (Sharma & Giaccotto, 1991) the equal

variance in more than two groups of observations can be tested. The likelihood ratio

test may also constitute the second approach, namely the group of tests that postulate

the variance of a certain form, for example, the Harvey test (1976) for multiplicative

heteroscedasticity. Other tests assuming a certain form of variance function include, i.a.

the Breusch-Pagan test (1979), the White test (1980) or the Glejser test (1969). All

three require the estimation of the auxiliary regression, which estimates the parameters

of the variance function. The null hypothesis of these tests postulates that the parameters

associated with the variables driving the variance are equal to zero and the variance is

constant.

In this study, we focus on three classical heteroscedasticity tests that are available

in the R package lmtest (Zeileis & Hothorn, 2002), which is widely used for diagnostic

checking in linear regression models. The tests include the Breusch-Pagan test (1979), the

Goldfeld-Quandt test (1965), and the Harrison-McCabe test (1979). The methodology

behind each of these tests is described in the subsequent sections.

3.1.1 Breusch-Pagan test

Breusch and Pagan (1979) propose a score test, which implies the OLS estimation of two

regressions. We consider the linear regression model

yi = β0 + β1xi1 + . . .+ βkxik + ei, for i = 1, ..., N, (1)

where ei ∼ N (0, σ2
i ). The variance of ei is expressed with a continuous function h

σ2
i = h(z⊤i α), (2)

where z⊤ij = (zi1, . . . , zim), zi1 = 1 for all i, and zij’s (j = 2, . . . ,m) are known constants.

z⊤i should be the suspected drivers of the errors’ variance. They may be the regressors
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from the model (1) or some known functions of them, for example, squares or interactions.

The α⊤ = (α1, . . . , αm) are unknown parameters. Assuming that ei follows the normal

distribution, the null hypothesis readsH0 : α2 = . . . = αm = 0, implying homoscedasticity.

The test statistic is

1

2

(
N∑
i=1

ziui

)⊤( N∑
i=1

ziz
⊤
i

)−1( N∑
i=1

ziui

)
, (3)

where ui =
ê2i
σ̂2 − 1, σ̂2 =

∑N
i=1 ê

2
i

N
and êi are the residuals from the regression model (1)

estimated with OLS (Breusch & Pagan, 1979). The auxiliary regression in Equation (2)

is also estimated with OLS. Under the null, the test statistic asymptotically follows the

χ2
m−1 distribution. For the full derivation of the test statistic, see Breusch and Pagan

(1979).

Koenker (1981) showed that the Breusch-Pagan test is sensitive to the assumption of

normality. If the error terms do not follow a Gaussian distribution, the asymptotic size of

the test is incorrect and, similarly, the asymptotic power is sensitive to the distributional

assumptions. Therefore, he constructed a modified test statistic, which also follows χ2

distribution, but it is based on a more robust estimator of the variance of squared residuals.

When ei does not follow the normal distribution, the modified statistic provides a more

powerful test. It can also be noted that in the modified test, we can compute the test

statistic as NR2, where R2 is a coefficient of determination from auxiliary regression in

Equation (2) estimated with OLS.

Given the better properties of the modified test statistic at small deviations from the

normal distribution, also confirmed with the simulation study carried out by Lyon and

Tsai (1996), throughout this paper we consider the version of the test statistic with the

correction proposed by Koenker (1981) when referring to the Breusch-Pagan test.

3.1.2 Goldfeld-Quandt test

Goldfeld and Quandt (1965) offer a different approach to testing for the presence of

heteroscedastic error terms. They propose a variance ratio test, in which a test statistic

is constructed as a ratio of the sum of squared residuals from two separate regressions.

We consider the linear regression model as defined in Equation (1). The researcher

should be able to order the observations in the sample according to either the value of one
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of the regressors xk, suspected to drive the variance of error terms, or time if the variance

is suspected to change over time. After ordering, the sample is split into two subsets, n1

and n2 where n1 + n2 = N , with one of the subsets containing observations associated

with a smaller variance of error terms than in the other. Then for each of the subsets, n1

and n2, the regression is estimated with OLS and the sum of squared residuals from both

regressions is computed. The test statistic is

R =
S2/n2

S1/n1

, (4)

where S2 an S1 are the sums of squared residuals from the subsamples containing the

observations with the larger and the smaller variances of error terms, respectively. It is

assumed that error terms are independently and normally distributed. Under the null

hypothesis of equal variances in both subsets, the test statistic follows the F distribution

with n1 and n2 degrees of freedom.

The originally proposed test postulates to omit a certain number of central observa-

tions, cN , and then estimate the regressions in both subsamples of smaller and larger

variances. Goldfeld and Quandt (1965) underline that the power of the test depends on

the choice of cN , potentially leading to high power when cN is small or close to zero.

However, for such cN the difference between variances in two groups might be also neg-

ligible, and as a result, it may decrease the power of the test. The authors do not draw

a clear conclusion about which effect predominates and what is the optimal value of cN .

There exist several rules of thumb on how to determine cN , for example, Goldfeld and

Quandt (1965) suggest cN ≈ 0.27N , while Harvey and Phillips (1974) propose cN = N
3
,

but no common approach is established. In general, if we expect that there exists a single

breakpoint at which the variances change, all observations can be used and cN = 0. In

other cases, it depends on the researcher’s decision.

3.1.3 Harrison-McCabe test

Harrison and McCabe (1979) propose an approach similar to the Goldfeld-Quandt het-

eroscedasticity test. The test statistic is also constructed as a ratio, but it requires the

OLS estimation of only one regression.

We consider the linear regression model as defined in Equation (1). We estimate this

model with OLS using the whole sample of N observations and we compute the sum of
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squared residuals. The test statistic is constructed as

b =
S1

S
, (5)

where S1 and S are the sums of squared residuals from a certain subset of observations,

n1, and the whole sample, N , respectively. Assuming that the error terms are independent

and follow a normal distribution, the null hypothesis postulates homoscedastic error terms.

Under the null hypothesis, the test statistic b should be close to the ratio of n1 and N

(Krämer & Sonnberger, 1986). Harrison and McCabe (1979) show that a test criterion to

reject the null hypothesis is constructed from the bounding distributions of two random

variables that bound the test statistic b. The proposed bounds test has an inconclusive

region if b is between the lower and upper bound. Therefore, the bound test might be

supplemented with the exact test obtained with the Imhof method (Imhof, 1961) for the

computation of the distribution of a ratio of quadratic forms in normal random vectors.

The size of n1 depends on the suspected form of heteroscedasticity postulated in the

alternative hypothesis. Similarly to the Goldfeld-Quandt test, either the variance of error

terms varies across time or it is an increasing function of one of the regressors xk. In the

first case, S1 should contain residuals associated with chronologically first n1 observations,

while in the second case, S1 should correspond to the n1 smallest values of the suspected

regressor xk. The choice of the exact size of n1 is arbitrary, however, Harrison and McCabe

(1979) suggest that if there is no a priori knowledge about the type of heteroscedasticity

of the error terms in the model, the correct choice is n1 equal to half of the sample.

3.2 Robustness properties

The Breusch-Pagan test, the Goldfeld-Quandt test and the Harrison-McCabe test require

estimation of the linear regression with the Ordinary Least Squares estimator to construct

a test statistic which is based on certain values obtained from the estimated regression

model, for example, the sum of squared residuals. Heritier and Ronchetti (1994) note

that the robustness of the test statistic is inherited from the robust estimator used. One

of the tools suitable to assess the robustness of the estimator underlying each test is the

influence function of an estimator (Hampel, 1974), which measures the effect of infinites-

imal point mass contamination on the estimate. The influence function (Hampel, 1974)
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at the distribution F is defined as

IF (w;T, F ) = lim
ϵ→0+

T {(1− ϵ)F + ϵ∆w} − T (F )

ϵ
, (6)

where T is a statistical functional, ϵ is a contamination level, and ∆w is a point mass at

w, where w is a vector of observations. In other words, the influence function provides

information about the relative influence of a small proportion of outliers on the value of an

estimate (Huber & Ronchetti, 2009). The robustness of the regression estimators requires

the bounded influence function so that the estimates are stable under local perturbations

(Hampel et al., 1986).

To evaluate the robustness of the classical heteroscedasticity tests, we consider the

influence function of the OLS estimator entrenched in these procedures. For this purpose,

we consider the regression model from Equation (1), which can be also written as

yi = x⊤
i β + ei, for i = 1, . . . , N, (7)

where xi and β denote k+1 dimensional vectors (1, xi1, . . . , xik) and (β0, . . . , βk), respect-

ively. Following Hampel et al. (1986), the influence function of the OLS estimator can be

written as

IF
({

x⊤,y
}
;T, F

)
= Q−1

(
y − x⊤β

)
x, (8)

where T is the functional defining the corresponding OLS estimator and Q =
∫
xx⊤dF .

From (8) we conclude that the OLS estimator is not robust to the contamination in both

explanatory space and the dependent variable, since the influence function is unbounded

in x and y−x⊤β. The considered heteroscedasticity test statistics inherit the robustness

properties of the OLS estimator they are constructed upon. One single vertical outlier

or a bad leverage point leads to a bias in the OLS estimates, resulting in the incorrect

value of the test statistic in the classical heteroscedasticity test. The outliers can mask

heteroscedasticity of error terms and, consequently, the test has no power to reject the

null hypothesis. This issue is further investigated with the simulation study, in which we

check the robustness of validity (i.e., the level of a test is stable under small, arbitrary

departures from the null hypothesis) and the robustness of efficiency (i.e., the test has

good power under small, arbitrary departures from the specified alternative hypotheses)

of three classical heteroscedasticity tests.
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3.3 Simulation design

In this section, we devise a simulation framework to investigate the robustness proper-

ties of three classical heteroscedasticity tests: the Breusch-Pagan test (1979) with the

Koenker’s correction (1981), the Goldfeld-Quandt test (1965) and the Harrison-McCabe

test (1979). In the simulation study, the following linear model with two regressors and

intercept is considered:

yi = β0 + β1xi1 + β2xi2 + ei, for i = 1, . . . , N, (9)

where xi1 ∼ U[1,10], xi2 ∼ U[−5,5], β0 = β1 = β2 = 1 and ei ∼ N (0, σ2
i ). The variance of ei

depends on the analysed scenario. For homoscedastic data σ2
i = σ2 = 1. For heterosce-

dastic data, we investigate two types of heteroscedasticity: (I) σ2
i = λσ2x2i1, (II) σ

2
i = σ2

for i ≤ N/2 and σ2
i = λσ2 for i > N/2, where σ2 = 1 and, λ is in both cases a para-

meter governing the degree of heteroscedasticity. The first type characterises the variance

increasing with one of the regressors, while the second represents groupwise heterosce-

dasticity, namely the variance that differs between the first and second half of the sample.

The analysed types of heteroscedasticity are inspired by the study of Ali and Giaccotto

(1984). The choice of these two particular types of heteroscedasticity follows from the

purpose for which each of the three heteroscedasticity tests considered was constructed.

While the Breusch-Pagan test is more suitable for testing heteroscedasticity increasing

with one of the regressors, the Goldfeld-Quandt test and the Harrison-McCabe test are

mainly used when groupwise heteroscedasticity is suspected in the data. Therefore, we

can expect tests to perform particularly well for the type of heteroscedasticity for which

they were constructed and to perform poorly for other types of heteroscedasticity.

We assess the impact of outliers on the level and power of the test. The level α denotes

the probability of incorrectly rejecting the null hypothesis, while the power of a test is

the probability of correctly rejecting the null hypothesis. In the simulation, we consider

a one-sample test of the nominal level of α = 0.05, for a sample of N = {500, 1000}

observations. Since the asymptotic distribution is used to obtain the critical values for

the Breusch-Pagan test (see Section 3.1.1) and the small-sample size properties of the

classical and robust heteroscedasticity tests are not investigated in this paper, we do not

consider the sample size smaller than 500 observations in the study.
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Let H0 : θ = θ0 be the null hypothesis, and θN = θ0 +
∆√
N

a sequence of contiguous

alternatives, where ∆ > 0 (Noether, 1955). Then, Fθ0 is a parametric model under the

null hypothesis, and FθN under the alternative hypothesis, respectively. G is an arbitrary

contamination generating distribution and ϵ is a contamination level. Following Hampel

et al. (1986) the contaminated distribution for the level is defined as

FL
ϵ,N =

(
1− ϵ√

N

)
Fθ0 +

ϵ√
N
G, (10)

and

F P
ϵ,N =

(
1− ϵ√

N

)
FθN +

ϵ√
N
G (11)

for the power. We apply these particular types of contamination distribution to enable

the shrinking neighbourhoods of the null hypothesis and the alternatives, and as a result,

avoid overlapping between them (Huber & Ronchetti, 2009). In the simulation study, the

general results from Equation (10) and Equation (11) are applied to the heteroscedasticity

tests with the Tukey-Huber contamination model (Tukey, 1960, Huber, 1964) with a point

mass contamination G = ∆(y∗,x∗
1,x

∗
2)

at y∗, x∗1, x
∗
2. That is,

FL
ϵ,N =

(
1− ϵ√

N

)
Fθ0 +

ϵ√
N
∆(y∗,x∗

1,x
∗
2)
, (12)

and

F P
ϵ,N =

(
1− ϵ√

N

)
FθN +

ϵ√
N
∆(y∗,x∗

1,x
∗
2).

(13)

Thus, every observation in the initial clean dataset has a given probability of being an

outlier, and no additional points are added to the dataset. The considered probability

of being an outlier, i.e., contamination level, is ϵ = 0.01. We generate the point mass

contamination with two different settings, to evaluate the effect of a bad leverage point

(i.e., a point characterised by a large distance in the explanatory space and a large stand-

ardised regression residual) and a vertical outlier (i.e, a point characterised by a large

standardised regression residual).

For the evaluation of the level of the test, homoscedastic data is considered, produced

with the data generating process based on Equation (9) and ei ∼ N (0, 1). Next to

the non-contaminated dataset, the datasets including outliers are generated with the

addition of vertical outliers (placed at y∗ = −100) or bad leverage points (placed at
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y∗ = x∗1 = x∗2 = −50). The point mass contamination is added according to Equation

(12), with a degree of contamination ϵ = 0.01. In the simulation process, there are 100

runs, each of which generates 1000 test statistics and p-values. For each of the 100 runs,

we calculate the percentage of tests in which the null hypothesis is rejected. This allows us

to assess the level of the test and how much it differs from the prespecified level α = 0.05.

To thoroughly assess the spread of the test level, the boxplots are constructed. The

specification of the heteroscedasticity tests considered is as follows. In the Breusch-Pagan

test, both explanatory variables are used as potential drivers of the errors’ variance in the

function (2). In the Goldfeld-Quandt test, cN = 0, n1 = n2 = N
2
and observations are

assumed to be ordered according to the index i. In the Harrison-McCabe test, n1 = N
2

and observations are also assumed to be ordered according to the index i.

For the evaluation of the power of the test, the heteroscedastic error terms are con-

sidered. The power is evaluated over the range of degrees of heteroscedasticity λ.

Thus, for a variance increasing with one of the regressors the evaluated range of vari-

ance starts with σ2
i = 1, homoscedastic variance, and then gradually the degree of het-

eroscedasticity increases as σ2
i ∈ {0.1x2i1, 0.2x2i1, . . . , 4.9x2i1, 5x2i1} for i = 1, . . . , N , where

N is a sample size. For groupwise heteroscedastic error terms, for half of the sample,

the variance is equal to one, while for the other half, it ranges in {1, 1.1, . . . , 4.9, 5}, once

again starting from homoscedastic error terms when σ2
i = 1 in both groups.

Overall, for both types of heteroscedastic error terms, a wide range of the degree

of heteroscedasticity is assessed. We analyse samples contaminated to the same extent,

ϵ = 0.01. The point mass contamination is added according to Equation (13), with the

same vertical outliers and bad leverage outliers as in the evaluation of the level of the

test. In the simulation, for each value of λ, 1000 replications providing test statistic

and p-value are performed. Next, we calculate the percentage of tests in which the null

hypothesis is rejected, which allows us to assess the power of the test. Calculated powers

are plotted against the degree of heteroscedasticity λ providing the power curves for

each combination of the heteroscedasticity test, the sample size, and the contamination

scenario. The heteroscedasticity tests when applied to groupwise heteroscedasticity are

specified in the same way as for the evaluation of the level of the test. While for the

variance increasing with the regressor x1 each test is specified in two ways. The first

specification is the same as for groupwise heteroscedasticity, while the second differs as
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follows. In the Breusch-Pagan test, the second specification postulates a more specific

formula of the variance function (2), where zi2 = xi1 and zi3 = x2i1. In the Goldfeld-

Quandt test and the Harrison-McCabe test, the second specification differs in the assumed

ordering of the observations, that is, the observations are ordered according to the values

of x1. The values of cN , n1, and n2 remain the same. The comparison of the power

curves for varying specifications of the same heteroscedasticity test verifies whether a

more explicit researcher’s assumption about the expected form of heteroscedasticity leads

to a more powerful test, specifically in the presence of outliers. For the Breusch-Pagan

test, we do not expect to observe a big difference in the test power between specifications

with unspecified and specified variance functions (2), since this test should also be good

enough when the form of heteroscedasticity in uncertain (Lyon & Tsai, 1996). However,

the Goldfeld-Quandt test and the Harrison-McCabe test are expected to gain higher power

when the observations are ordered according to x1 as the variance increases proportionally

to it.

Both parts of the simulation study, the evaluation of the level of the test under con-

tamination and the power of the test under contamination, contribute to answering the

main research question of this paper and demonstrating how robust the classical hetero-

scedasticity tests are. To acknowledge the robustness of the classical heteroscedasticity

test, the performance of both size (i.e., the robustness of validity) and power (i.e., the

robustness of efficiency) should be satisfactory (Heritier & Ronchetti, 1994). In this re-

search, for a well-behaved test, the size should be close to 0.05 (the nominal level of

significance α), while the power should tend to 1. Following Pearson and Please (1975),

the test obtaining the actual level between 0.03 and 0.07 can be considered acceptable

and robust. This range is less stringent than the approach allowing for sampling errors

and considering the test to be robust if the actual level does not exceed the nominal level

by two standard errors (for example, applied in the study of the heteroscedasticity tests

by Ali and Giaccotto (1984)), which in this simulation design, α = 0.05 and the number

of replications 1000, means that the actual level should be no higher than 0.064 and no

lower than 0.036.
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3.3.1 Sensitivity analysis

The sensitivity analysis of the p-value obtained with the classical heteroscedasticity tests

provides an illustrative but more superficial overview of the test stability than the detailed

evaluation of the level and the power of these tests with simulation study as described

in Section 3.3. The data is generated according to the data-generating process based on

Equation (9) and the sample contains 500 observations. Three scenarios of error terms

variance are investigated: homoscedastic, that is σ2
i = σ2 = 1, groupwise heteroscedastic,

that is σ2
i = σ2 = 1 for i ≤ 250 and σ2

i = σ2 = 4 for i > 250, and heteroscedastic with

variance increasing proportionally to x1, that is σ
2
i = x2i1, for i = 1, . . . , N , where N is a

sample size. The same classical heteroscedasticity tests are evaluated for each scenario -

the Breusch-Pagan test (1979), the Goldfeld-Quandt test (1965) and the Harrison-McCabe

test (1979). For homoscedastic and groupwise heteroscedastic error terms, the variance

function of the Breusch-Pagan test contains both regressors. In the Goldfeld-Quandt test

and the Harrison-McCabe test variances are ordered according to the observation index

i, and while in the former cN = 0, n1 = n2 =
N
2
, in the latter n1 =

N
2
. For heteroscedastic

error terms when variance increases proportionally to x2i1 two specifications of each test

are considered (as in the power evaluation, see Section 3.3). For the Breusch-Pagan test,

next to the default specification of the variance function, the function where zi2 = xi1 and

zi3 = x2i1 is analysed. For the Goldfeld-Quandt test and the Harrison-McCabe test, the

alternative ordering of the observations is considered, according to the values of x1. The

influence of vertical outliers and bad leverage outliers is analysed by moving one single

observation. For the contamination from vertical outliers, only the value of y is switched

in the range {−100,−99, . . . , 99, 100}, while x1 and x2 are held constant. For the case

of bad leverage outliers, y, x1, x2 are moved in the range {−100,−99, . . . , 99, 100}. The

p-value of the robust test should be stable over the whole assessed range.

3.4 Simulation results

In this section, we present the results of the simulation study evaluating the sensitivity,

level and power of three classical heteroscedasticity tests: the Breusch-Pagan test, the

Goldfeld-Quandt test and the Harrison-McCabe test.
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3.4.1 Sensitivity analysis

Figure 3.2 presents the results of the sensitivity analysis of p-values of the Breusch-

Pagan test, the Goldfeld-Quandt test and the Harrison-McCabe test in the presence of

contamination. Figure 3.2a and Figure 3.2d show that the level of all three classical

heteroscedasticity tests is not stable for both vertical and bad leverage contamination

when the homoscedastic error terms are present. Only for the Breusch-Pagan test in the

case of vertical contamination, the p-values do not drop below the nominal level of the

test, thus correctly indicating that there is no reason to reject the null hypothesis. The

Goldfeld-Quandt and the Harrison-McCabe tests for the majority of the values of outlying

observation considered achieve a p-value below the nominal level, providing false evidence

to reject the null.

However, those two tests behave well when groupwise heteroscedasticity is analysed.

Figure 3.2b and Figure 3.2e, demonstrate that over the whole assessed range of outlying

observation, both tests achieve p-value close to zero and correctly detect heteroscedasti-

city of error terms. For groupwise heteroscedasticity with vertical contamination, the

level of the Breusch-Pagan test remains considerably above the nominal level of the test

irrespective of the placement of outlying observation, while for the contamination with

bad leverage, the level is unstable and switches from p-values indicating homoscedastic

error terms to p-values suggesting the presence of heteroscedasticity.

For variance of error terms increasing with x2i1, the p-values of the Breusch-Pagan test

with both specifications of the variance function behave similarly, see Figure 3.2c and

Figure 3.2f. In the case of bad leverage contamination, the p-values are not influenced

by the outlying observation and lay below 0.05, while for vertical outliers the p-values

drop from high values above 0.6 to values below 0.05 when y500 is between −63 and 76.

The Goldfeld-Quandt test and the Harrison-McCabe test with the same ordering of the

observations achieve similar p-values. For bad leverage contamination, the specifications

with ordering by x1 are stable and have p-value close to zero. While the same tests, but

with observations ordered according to the index i, characterise higher p-values. When

y500 lays between −24 and 37, p-value ranges from 0.05 to 0.19. For more extreme values of

a vertical outlier, the level stays approximately constant between 0.05− 0.06. Thus, both

specifications with the index ordering incorrectly suggest no evidence to reject the null

hypothesis about homoscedastic error terms. In the case of vertical outlier contamination,
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Vertical contamination at y500

(a) σ2
i = σ2 = 1 (b) σ2

i = 1 for i ≤ 250,
σ2
i = 4 for i > 250

(c) σ2
i = x2i1

Bad leverage contamination at y500, x1,500, x2,500

(d) σ2
i = σ2 = 1 (e) σ2

i = 1 for i ≤ 250,
σ2
i = 4 for i > 250

(f) σ2
i = x2i1

Figure 3.2. Sensitivity analysis of the p-value of the Breusch-Pagan test, the Goldfeld-Quandt
test and the Harrison-McCabe test performed on the residuals from the linear regression with
homoscedastic error terms, (a) and (d), and heteroscedastic error terms, (b), (c), (e), and (f),
for sample size N = 500 in the presence of either vertical or bad leverage outlier. The value
of y500 (vertical outlier) or the whole observation i = 500 (bad leverage outlier) is moved in
range {−100,−99, . . . , 99, 100}. BP denotes the Breusch-Pagan test with unspecified variance
function (2), BP s.v.f. denotes the Breusch-Pagan test with specified variance function (2),
where zi2 = xi1 and zi3 = x2i1. GQ denotes the Goldfeld-Quandt test with index ordering, GQ
r.o. denotes the Goldfeld-Quandt test with ordering by regressor x1, HM denotes the Harrison-
McCabe test with index ordering and HM r.o. denotes the Harrison-McCabe test with ordering
by regressor x1. The level of the test α = 0.05 is shown with the black dotted line.

the Goldfeld-Quandt test and the Harrison-McCabe test with the index ordering are

characterised by p-value curve shapes similar to those obtained by the same tests in a

scenario with bad leverage contamination. However, for the most extreme placements of

outlying vertical outliers, both tests achieve a p-value equal to zero, considerably lower

than the p-values in the scenario with bad leverage outliers for the corresponding cases.

This illustrative example of sensitivity analysis of p-value shows that none of the

classical heteroscedasticity tests investigated is stable and not influenced by the outlying

observation in all scenarios considered, thus pointing out the need to develop the robust
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heteroscedasticity test.

3.4.2 Evaluation of the level of the test

The level of the classical heteroscedasticity tests is evaluated for homoscedastic error

terms, for sample sizes of 500 and 1000 observations under three contamination scenarios.

Figure 3.3 shows the boxplots for a sample size of 500 observations. In the case of a

non-contaminated sample, all three tests remain size-correct.

Figure 3.3. The level of the Breusch-Pagan test (BP), the Goldfeld-Quandt test (GQ) and the
Harrison-McCabe test (HMC) for sample size N = 500 under three contamination scenarios.
NC denotes the scenario without contamination, B denotes the model contaminated with bad
leverage points, and V with vertical outliers. ϵ = 0.01 is denoted with 1. The level of the test
α = 0.05 is shown with the black dotted line.

When bad leverage points are present, the Breusch-Pagan test is the worst-performing

out of the three tests considered. The median of its actual level is 0.24, and therefore in

24 out of 100 cases it incorrectly rejects the null hypothesis that error terms are homos-

cedastic. Although the Breusch-Pagan test is the least robust to bad leverage points, it

performs well for vertical outliers. The actual level of the test stays below the nominal

level of 0.05 with the median value of the actual level of 0.04. The Goldfeld-Quandt test

and the Harrison-McCabe test are not robust to any type of investigated contamination
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(median level is approximately 0.13) and their boxplots achieve similar spread. None of

the tests considered is robust to bad leverage points.

Figure 3.4 demonstrates the boxplots for a sample size of 1000 observations. In the

scenario without any contamination, all three tests remain size-correct. Similarly, as in

the case of N = 500, the Breusch-Pagan test is the worst-performing test for bad leverage

points, with a considerably inflated median level of 0.306. While for vertical outliers, the

actual test level lies below the nominal test level, with a median value of 0.039, thus the

test remains robust to this type of contamination. The Harrison-McCabe test and the

Goldfeld-Quandt test are not robust to any sample contamination, their median level is

approximately 0.16. None of the tests considered is robust to bad leverage points.

Figure 3.4. The level of the Breusch-Pagan test (BP), the Goldfeld-Quandt test (GQ) and the
Harrison-McCabe test (HMC) for sample size N = 1000 under three contamination scenarios.
NC denotes the scenario without contamination, B denotes the model contaminated with bad
leverage points, and V with vertical outliers. ϵ = 0.01 is denoted with 1. The level of the test
α = 0.05 is shown with the black dotted line.

Overall, when the robustness of the classical heteroscedasticity tests is evaluated in

terms of the level of the test, there is no single test out of the three considered that pre-

serves the nominal level of the test and performs well in all contamination scenarios. The

Breusch-Pagan test appears to be robust against vertical outliers in both sample sizes

considered. The Harrison-McCabe test and the Goldfeld-Quandt test are oversized and
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nonrobust regardless of the considered sample size and contamination scenario. These res-

ults point to the need to develop a heteroscedasticity test that is robust to contamination

regardless of the type of outliers present in the data.

3.4.3 Evaluation of the power of the test

Evaluation of the power of the tests is done using the power curves. Two types of

heteroscedastic error terms, groupwise heteroscedasticity and the heteroscedastic error

terms increasing with the value of one of the regressors, are considered for sample sizes

N = {500, 1000}.

Groupwise heteroscedestacity

First, we analyse the groupwise heteroscedasticity, that is the variance of error terms

varying between two groups of observations. The evaluation starts with equal variances

in both groups (homoscedastic error terms, λ = 1), thus the curve should start at ap-

proximately 0.05. The higher λ, the more pronounced the difference between variances in

both groups is. Figure 3.5 presents the power curves obtained for three heteroscedasticity

tests when groupwise heteroscedasticity is considered.

For the sample size N = 500, the Breusch-Pagan test, see Figure 3.5a, is not able to

detect heteroscedastic error terms for both vertical and bad leverage outliers, but also

in the non-contaminated dataset. The power of the test in any scenario does not exceed

0.3. For the Goldfeld-Quandt test, see Figure 3.5b, when vertical outliers are present the

power stabilises around a variance of 1.5 times greater in the second half of the sample (the

mean power is approximately 0.9). For bad leverage points, the power curve increases

over the whole assessed range of λ and tends to 1. The power curve of the Harrison-

McCabe test for vertical outliers, see Figure 3.5c, characterises an almost identical shape

to the corresponding power curve of the Goldfeld-Quandt test. Both tests have close mean

power after flattening out around λ = 1.5. For bad leverage points, the power curve of

the Harrison-McCabe test tends to 1 and stays at 1 for λ > 4. The power of 1 is achieved

for a smaller value of λ than in the case of the Goldfeld-Quandt test.

For a larger sample size N = 1000, the power curves of individual tests do not differ

considerably from those for N = 500. The Breusch-Pagan test does not achieve power

higher than 0.35 in any of the contamination scenarios analysed, see Figure 3.5d. In the

20



scenario with vertical outliers, the power curves of the Harrison-McCabe test and the

Goldfeld-Quandt test flatten out around a variance of 1.5 times greater in the second half

of the sample and stay at the mean power of 0.86, which is a slightly lower value than in

the case of N = 500, see Figures 3.5f and 3.5e. For bad leverage points, the power curves

of the Harrison-McCabe test and the Goldfeld-Quandt test tend to 1, the former achieves

maximum power when λ > 3.7, while the latter when λ > 4.1. For both cases, the power

of 1 is achieved for a smaller value of λ than in the respective scenario when N = 500.

N = 500

(a) The Breusch-Pagan test (b) The Goldfeld-Quandt test (c) The Harrison-McCabe test

N = 1000

(d) The Breusch-Pagan test (e) The Goldfeld-Quandt test (f) The Harrison-McCabe test

Figure 3.5. Power curves for the Breusch-Pagan, the Goldfeld-Quandt and the Harrison-McCabe
tests, performed on the residuals from the linear regression (see Equation (9)) with heterosce-
dastic error terms, σ2i = σ2 for i ≤ N/2 and σ2i = λσ2 for i > N/2, where σ2 = 1 and
λ ∈ {1, 1.1, . . . , 4.9, 5}, for the sample sizes of N ∈ {500, 1000} under three contamination scen-
arios. NC denotes the scenario without contamination, B denotes the model contaminated with
bad leverage points, and V with vertical outliers. ϵ = 0.01 is denoted with 1. The level of the
test α = 0.05 is shown with the black dotted line.

Generally, in terms of the test power when groupwise heteroscedasticity of error terms

is present, the Harrison-McCabe test appears to be the most robust to bad leverage points.

When it comes to the robustness against the vertical outliers, both the Goldfeld-Quandt

test and the Harrison-McCabe test perform similarly. The achieved powers stay constant
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once λ exceeds a certain value, but the power curves do not tend to 1 as λ increases. The

Breusch-Pagan test performs poorly for all considered contamination scenarios. It has

no power to reject the null when vertical outliers are present, even for larger deviations

from the null hypothesis. Both tests developed specifically for testing groupwise heteros-

cedasticity confirmed their better performance in this simulation exercise, however, none

of them performs well enough in all cases to be considered robust.

Heteroscedestacity increasing with one of the regressors

The evaluation of the power curves for error terms characterised by heteroscedasticity

increasing with one of the regressors is performed with two different specifications of each

test, see details in Section 3.3. The evaluation starts with σ2
i = 1 and then heteroscedastic

variance, λx2i1, starts to increase with the degree of heteroscedasticity λ.

Comparison of the power curves for both sample sizes for the Goldfeld-Quandt test

and the Harrison-McCabe test with different observation orderings shows that in all cases

considered, the proper choice of observations ordering is crucial to obtain the high power

of the test, that is the ordering according to x1 - the regressor with which the variance of

error terms increases. For the non-contaminated datasets with index ordering, both tests

have an average power of approximately 0.12, with a maximum of approximately 0.14, see

Figures 3.6b, 3.6c, 3.6e and 3.6f. Therefore, in the following section, the interpretation of

the power curves obtained with the Goldfeld-Quandt test and the Harrison-McCabe test

focuses only on the specifications with the ordering by x1.

For the sample size N = 500, the power curves of the Breusch-Pagan test, for both

unspecified, see Figure 3.6a, and specified function, see Figure 3.7a, stay constant at 1 for

all values of λ > 0 both in the absence of contamination and in the case of bad leverage

contamination. For vertical outliers, the power curves tend to 1 and stabilize around

1 for λ > 3. The differences in the individual power values between test specifications

with the specified and unspecified version of the variance function are minor, but in the

majority of cases, the specified version achieves slightly higher power. For the Goldfeld-

Quandt test and scenario with vertical outliers, the power curve tends to 1, see Figure

3.7e. However, the value of λ at which it stabilizes at 1 is lower than for the analogous

scenario with the Breusch-Pagan test. It achieves the power of one when λ > 1.5. The

behaviour of the power curves of the Harrison-McCabe test for the scenario with vertical
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outliers is almost identical, see Figure 3.7f. For contamination with bad leverage points

and no contamination scenario, the power curves of both the Goldfeld-Quandt test and

the Harrison-McCabe test are constant at 1 once error terms become heteroscedastic.

N = 500

(a) The Breusch-Pagan test (b) The Goldfeld-Quandt test (c) The Harrison-McCabe test

N = 1000

(d) The Breusch-Pagan test (e) The Goldfeld-Quandt test (f) The Harrison-McCabe test

Figure 3.6. Power curves for the Breusch-Pagan test with unspecified variance function, the
Goldfeld-Quandt test with index ordering and the Harrison-McCabe test with index ordering,
performed on the residuals from the linear regression (see Equation (9)) with heteroscedastic
error terms, σ2i = λσ2x2i1, where σ2 = 1 and λ ∈ {0.1, 0.2, . . . , 4.9, 5}, for the sample sizes
of N ∈ {500, 1000} under three contamination scenarios. NC denotes the scenario without
contamination, B denotes the model contaminated with bad leverage points, and V with vertical
outliers. ϵ = 0.01 is denoted with 1. The level of the test α = 0.05 is shown with the black
dotted line.

For the larger sample size, N = 1000, the power curves of individual tests do not

differ considerably from those obtained when N = 500. For scenarios without any con-

tamination and with bad leverage outliers, both specifications of the Breusch-Pagan test,

see Figure 3.6d and 3.7d, the Harrison-McCabe test, see Figure 3.7f, and the Goldfeld-

Quandt test, see Figure 3.7e, achieve a maximum power of 1 once error terms become

heteroscedastic. In the case of contamination with vertical outliers, all three tests tend
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N = 500

(a) The Breusch-Pagan test (b) The Goldfeld-Quandt test (c) The Harrison-McCabe test

N = 1000

(d) The Breusch-Pagan test (e) The Goldfeld-Quandt test (f) The Harrison-McCabe test

Figure 3.7. Power curves for the Breusch-Pagan test with specified variance function, the
Goldfeld-Quandt test with ordering by x1 and the Harrison-McCabe test with ordering by x1,
performed on the residuals from the linear regression (see Equation (9)) with heteroscedastic
error terms, σ2i = λσ2x2i1, where σ

2 = 1 and λ ∈ {0.1, 0.2, . . . , 4.9, 5}, for the sample sizes of
N ∈ {500, 1000} under three contamination scenarios. NC denotes the scenario without con-
tamination, B denotes the model contaminated with bad leverage points, and V with vertical
outliers. ϵ = 0.01 is denoted with 1. The level of the test α = 0.05 is shown with the black
dotted line.

to the power of 1 and eventually achieve it, however, it happens for different values of λ.

For both the Harrison-McCabe and the Goldfeld-Quandt test, it is λ = 0.7, while for the

Breusch-Pagan test the maximum power is achieved when λ > 1.8.

The analysis of the power curves, when the variance of error terms increasing with

one of the regressors is present, shows a lack of notable differences between the Goldfeld-

Quandt test and the Harrison-McCabe test when observations are ordered by x1 (the

specifications of the same tests but with index ordering result in unsatisfactorily low

power below 0.15). Likewise, the differences between the power curves of the Breusch-

Pagan test with specified and unspecified variance functions are rather minor in all cases.

For both sample sizes N = 500 and N = 1000, all three tests are robust against bad
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leverage points and as could be expected all tests become more powerful when the sample

size increases. When vertical outliers are present, all three tests are robust if the deviation

from the null hypothesis is large enough (λ exceeds a certain value), but no test is robust

for all values of λ.

The overall results of the simulation study for the evaluation of the level and the power

of the classical heteroscedasticity tests indicate that none of the three tests considered,

i.e., the Breusch-Pagan test, the Goldfeld-Quandt test and the Harrison-McCabe test,

preserves both the robustness of validity and the robustness of efficiency when small

contamination is present in the data.

4 Robust heteroscedasticity score test

In this section, we propose a robust alternative to the classical Breusch-Pagan test, which

we expect to be more robust compared to the classical heteroscedasticity tests. We require

a proposed test statistic to have a bounded influence function, and we show why this

boundedness holds. Next, we investigate the robustness of the proposed test with the

simulation study of the level and the power of the test.

4.1 Theoretical framework

The construction of the robust heteroscedasticity test starts from a classical heterosce-

dasticity Breusch-Pagan test (see Section 3.1.1), which belongs to the class of score tests.

We consider the same linear regression model as in the Breusch-Pagan test, see Equation

(1), with the continuous function of the error terms variance, see Equation (2). The null

hypothesis of the classical test, H0 : α2 = . . . = αm = 0, implies homoscedasticity, that is

σ2
i = h(α1) = σ2.

The robust heteroscedasticity score test is derived following the approach of Herit-

ier and Ronchetti (1994), that is, constructing the robust test statistic based on the

M-estimator (Huber, 1973). To construct a robust test statistic, we need to define a

parametric model of interest. We consider the function of the error terms variance from

Equation (2) as a parametric model Fθ, where θ, defined as {α⊤
1 , α

⊤
j }⊤ and j = 2, . . . ,m,

lies in Ω an open convex subset of Rp, and a sample z1, z2, . . . , zn of n iid random vectors.

Following the notation from Heritier and Ronchetti (1994), a = {a⊤(1), a⊤(2)}⊤ denotes the

partition of a vector a into p − q and q components and A(ij), i, j = 1, 2, denotes the
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corresponding partition of p×p matrices. Using this notation the null hypothesis states

H0 : θ = θ0, where θ0(2) = 0, θ0(1) unspecified, implying homoscedasticity. In this case,

θ0(2) corresponds to α
⊤
j and θ0(1) to α

⊤
1 . The alternative hypothesis reads H1 : θ0(2) ̸= 0,

θ0(1) unspecified and implies heteroscedasticity.

In the robust heteroscedasticity score test, M-estimator θ̂ := {α̂⊤
1 , α̂

⊤
j }⊤ is defined by

1
n

∑n
i=1 Ψ(zi, θ̂n) = 0, where Ψ denotes the score function. The test statistic is built

upon the restricted version of the M-estimator under the null hypothesis, that is the

M-estimator, θ̂res, which solves the equation

1

n

n∑
i=1

Ψ
(
zi, θ̂res

)
(1)

= 0 with
(
θ̂res

)
(2)

= 0. (14)

For the conditions for the existence of M-estimators, see Heritier and Ronchetti (1994,

p. 902). The test statistic itself is computed as follows:

Rhet := Z⊤
nC

−1Zn, (15)

where Zn = 1
n

∑n
i=1 Ψ

(
zi, θ̂res

)
(2)
, and the matrix C = C(Ψ, Fθ) is the asymptotic

covariance matrix of Zn. Matrix C is constructed as

C(Ψ, Fθ) = M(Ψ, Fθ)(22.1)V(Ψ, Fθ)(22)M(Ψ, Fθ)
⊤
(22.1), (16)

whereM(Ψ, Fθ) = −
∫
(∂Ψ/∂θ)(z, θ)dFθ(z) andV(Ψ, Fθ) = M(Ψ, Fθ)

−1Q(Ψ, Fθ)M(Ψ, Fθ)
−1,

where Q(Ψ, Fθ) =
∫
Ψ(z, θ)Ψ(z, θ)⊤dFθ(z). The null asymptotic distribution of the stat-

istic nRhet is the χ
2
m−1 distribution (Heritier & Ronchetti, 1994).

4.2 Influence function

We evaluate the robustness of the test statistic (15) using the influence function intro-

duced by Hampel (1974), see Equation (6). In general, robust methods necessitate the

bounded influence of outliers. The robustness of any estimator requires the bounded in-

fluence function so that the estimate is stable under local perturbations. Otherwise, if the

influence function is unbounded, the possible bias in the neighbourhood of the considered

parametric model Fθ can be infinite (Hampel et al., 1986). Using the influence function,

one can also derive the first order approximations of the impact of contamination on the
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size and power of the test. Heritier and Ronchetti (1994) show that bounding the self-

standardised influence function of the test statistic ensures the stability of and the limit

in the bias in the level and the power of the test with respect to small deviation from the

assumed model. The robustness of validity and the robustness of efficiency are preserved.

Heritier and Ronchetti (1994) also note that the robustness of the test statistic is inherited

from the robust estimator used. Therefore, the heteroscedasticity score test constructed

upon the M-estimator is (locally) robust if the influence function of the M-estimator is

bounded. The influence function of the M-estimator is computed as

IF (z,Ψ, Fθ) = M (Ψ, Fθ)
−1Ψ (z, θ) , (17)

and we see that the influence function is bounded if the function Ψ is bounded. The

boundedness is achieved with, for example, the Mallows type score function (Mallows,

1975).

4.3 Construction

The Mallows type score function (Mallows, 1975) ensures that the test statistic (15) is

robust to both bad leverage and vertical outliers. The function is defined as

n∑
i=1

ψ

(
ri(θ̂)

σ̂

)
ω(xi)xi = 0, (18)

where ri(θ̂) are the residuals from the restricted model (14), ψ is a downweighting function,

ω is a weight function, and σ̂ is the estimated residual variance.

A downweighting function, ψ, applied to the standardised residuals, for simplicity

denoted as ri, is chosen from Tukey’s biweight function or the Huber function. Tukey’s

biweight function is defined as

ψ(ri; c) =

 ri

(
1−

(
ri
c

)2)2
, if |ri| ≤ c,

0, if |ri| > c.
(19)

The Huber function is defined as

ψ(ri; c) =

{
ri, if |ri| ≤ c,

c sign(ri), if |ri| > c.
(20)
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Variable c is a tuning constant determining the asymptotic efficiency. For the Huber

function c = 1.345 and for Tukey’s biweight function c = 4.685 ensure 95% asymptotic

efficiency compared to the Least Squares estimator at a normal distribution of the error

terms (Maronna et al., 2019).

A weight function, ω, to downweight outliers in the covariate space is based either

on the hat matrix, where ω(xi) =
√
1−Hii and Hii is the i’th diagonal element of the

hat matrix H = X(X⊤X)−1X⊤, or the robust Mahalanobis distance with the Min-

imum Covariance Determinant (MCD) (Rousseeuw, 1985). A weight function using the

robust Mahalanobis distance, d(xi,µ,Σ) =
√

(xi − µ)⊤Σ−1(xi − µ), where µ and Σ are

estimated robustly using the MCD, is defined as

ω(xi) =

{
1, if d(xi,µ,Σ) ≤ c̃,

c̃/d(xi,µ,Σ), if d(xi,µ,Σ) > c̃,
(21)

where c̃ is the 0.95-quantile of the χ2 distribution with the number of degrees of free-

dom equal to the dimension of xi. Both weight functions guarantee bounded influence

function, however, weights defined through the robust Mahalanobis distance have higher

breakdown properties than weights based on the hat matrix (Cantoni & Ronchetti, 2001).

In real data applications, the implementation with the covariates weights based on the

robust Mahalanobis distance may encounter computational issues. The issue may occur

especially with datasets including several binary predictors in which appear the rows of

0’s and 1’s, thus causing the singular covariance matrix and precluding the execution of

the MCD algorithm. In such cases, we recommend using the weights based on the hat

matrix.

In the robust test, we can use two specifications of the error terms variance function,

see Equation (2). In the first specification, the independent variables in the function (2)

include all explanatory variables from Equation (1), xi1, . . . , xik, while in the second case,

they include also the function of the explanatory variables, x2i1, . . . , x
2
ik. The choice of

function specification impacts the number of covariates that are downweighted with a

weight function ω. When the hat matrix is applied, all explanatory variables from the

variance function are included, while with the robust Mahalanobis distance with the MCD

only xi1, . . . , xik. The variables x
2
i1, . . . , x

2
ik are not considered when computing the MCD,

we include only unique variables.
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The application of such defined test statistic requires the computation of the regression

residuals to be supplied in the equation of the error terms variance. For this purpose, the

Mallows type M-estimator is first applied to the linear regression model, Equation (1),

and then the estimated residuals from the robust regression are supplied as a dependent

variable to the error terms variance function. The estimated residual variance which is

used to standardise the squared residuals in Equation (2) is also estimated with a robust

scale estimator - the median absolute deviation (MAD). The median absolute deviation,

defined as the median of the absolute deviations from the median, has a breakdown point

of 50% and its influence function is bounded (Huber & Ronchetti, 2009), which makes it

a good estimator to replace the nonrobust sample variance.

In practice, the algorithm of the robust heteroscedasticity test contains the following

steps:

1. Estimate Equation (1) with Mallows type M-estimator and save the residuals.

2. Estimate Equation (2) with Mallows type M-estimator, where the dependent vari-

able is constructed as in the classical Breusch-Pagan test, that is
ê2i
σ̂2 − 1, where ê2i

are squared estimated residuals from Equation (1), but instead of the estimated

residual variance computed as σ̂2 = 1
N

∑
ê2i , we use the robust estimate, that is the

median absolute deviation of residuals from Equation (1).

3. Compute Rhet and compare obtained test statistic with the critical value from χ2
m−1

distribution.

The first step of the proposed robust test, that is the additional estimation with

Mallows type M-estimator, is not included in the framework of the robust score test of

Heritier and Ronchetti (1994), thus we perform the numerical assessment to check whether

the asymptotic distribution χ2
m−1 is preserved. The details of this assessment follow in

Section 4.4.

4.4 Simulation design

In this section, we propose a simulation design to verify the robustness properties of the

proposed heteroscedasticity score test. The considered data-generating process follows

the linear model with two regressors and intercept, as in the simulation study for the

classical heteroscedasticity tests, see Equation (9). The evaluation of the level and the
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power of the test is performed with different specifications of downweighting function ψ -

Tukey’s biweight or the Huber function, weight function ω - the hat matrix or the robust

Mahalanobis distance with the MCD, and explanatory variables in the variance function

- either xi1, xi2 or xi1, xi2, x
2
i1, x

2
i2. Consequently, we assess eight different specifications of

the robust test. Next to the robust test, the classical Breusch-Pagan is also included in the

evaluation (xi1, xi2 in the variance function and the test statistic with applied Koenker’s

correction (1981)).

The evaluation of the test level is performed with the homoscedastic data, σ2
i =

σ2 = 1, for sample sizes N ∈ {500, 1000}. Since we do not focus on the small-sample

properties of the test, we do not consider a sample size smaller than N = 500. Three

contamination scenarios are considered: a sample without any contamination and two

datasets including outliers, either vertical outliers (placed at y∗ = −100) or bad leverage

points (placed at y∗ = x∗1 = x∗2 = −50). The point mass contamination is added according

to Equation (12) with a degree of contamination ϵ = 0.01. We consider only a small level

of contamination following the argument of Heritier and Ronchetti (1994) who underline

that such constructed test statistic (15) ensures the stable level and power of the test in

the presence of small deviations from the assumed model, but does not guarantee it in

the presence of large deviations.

In the simulation, two nominal levels are considered α = 0.05 and α = 0.01. In the

first case, the simulation generates 1000 test statistics and p-values, next, we calculate

the percentage of tests in which the null hypothesis about homoscedastic error terms is

rejected and thus the actual test level is obtained. In the case of α = 0.01 the number

of generated test statistics is 10000, the remaining steps are performed in the same way.

Following the approach allowing for the sampling errors, the test is considered robust if

the actual level does not exceed the nominal one by more than two standard deviations,

for α = 0.05 with 1000 replications, it would mean the actual test level in the range of

0.036− 0.064, while for α = 0.01 with 10000 replications, the range 0.008− 0.012.

To numerically assess whether the test statistic of the robust test constructed with the

Heritier and Ronchetti (1994) framework preceded with the additional step of Mallows

type M-estimation of Equation (1) preserves the χ2 distribution, the two series of boxplots

are produced within the simulation study. In the first case, to verify the actual test level

when the nominal test level is α = 0.05, the simulation generates 25 runs with 5000
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replications each. In each replication, the classical Breusch-Pagan test and the robust test

are conducted, of which eight specifications are considered. In the second case, we consider

the nominal level of α = 0.01. The number of replications in each run increases to 10000.

The evaluated sample size in both cases is N = 1000 and the considered data-generating

process follows Equation (9) with homoscedastic error terms and no contamination in the

sample.

For the evaluation of the power of the test, the error terms characterised by the

variance increasing with xi1 are considered in the sample sizes N ∈ {500, 1000}. Since

the classical Breusch-Pagan test is constructed specifically for heteroscedasticity increas-

ing with one of the regressors, and not for groupwise heteroscedasticity, we evaluate

only one type of heteroscedasticity. The power evaluation starts with homoscedastic

variance, that is σ2
i = 1 for i = 1, . . . , N , where N is a sample size. Then, we intro-

duce heteroscedastic error terms of different magnitude, that is error terms with variance

σ2
i = λσ2x2i1, where σ

2 = 1. The evaluated range of degrees of heteroscedasticity con-

tains λ ∈ {0.01, 0.02, . . . , 0.09, 0.1} ∪ {0.2, 0.3, . . . , 1.9, 2}, where λ is a heteroscedasticity

degree. This results in the evaluation of the following range of heteroscedastic variances

σ2
i ∈ {0.01x2i1, 0.02x2i1, . . . , 0.1x2i1, 0.2x2i1, . . . , 1.9x2i1, 2x2i1}. The point mass contamination

is added according to Equation (13) with a contamination level ϵ = 0.01. The contam-

ination scenarios include the same vertical outliers and bad leverage outliers as in the

evaluation of the test level. In the simulation, for each degree of heteroscedasticity, 1000

replications providing test statistic and p-value are performed. Next, we calculate the

percentage of the tests in which the null hypothesis is rejected, which allows for the as-

sessment of the power of the test. The calculated powers are plotted against the degree

of heteroscedasticity, λ, providing the power curves for each combination of the heteros-

cedasticity test specification, the sample size and the contamination scenario.

Next to the general assessment of the level and the power of the test, the particular

type of vertical contamination for heteroscedastic error terms is evaluated. The considered

data-generating process is a linear model with only one regressor and intercept, that is:

yi = β0 + β1xi1 + ei, for i = 1, . . . , N, (22)

where xi1 ∼ U[1,10], β0 = β1 = 1, ei ∼ N (0, σ2
i ), where σ

2
i = λσ2x2i1 and σ2 = 1. The

evaluated sample size is N = 500 and the considered range of degree of heteroscedasticity
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is λ ∈ {0.01, 0.02, . . . , 0.09, 0.1}∪{0.2, 0.3, . . . , 1.9, 2}. In the simulation, four observations

are switched to be vertical outliers. These outliers are placed in a way that a value of

variable y corresponds to either maximum (two outliers) or minimum (two outliers) values

of the dependent variable in the sample, while x1 = 1 for all four outliers. The forced

placement of exactly four outliers renders this simulation not following the contaminated

distribution for the power as defined in Equation (13). However, with this example,

we check whether the test preserves the robustness of efficiency when the high residuals

occur also for small values of x1 under the variance of error terms increasing with this

regressor (see Appendix A.2 Figure A.3 for illustrative example how the residuals from

such specified contaminated model may look like). The power curves are constructed

in the same way as for the general assessment of the test power described before (1000

replications for each value of λ).

4.5 Simulation results

In this section, we present the results of the simulation study evaluating the level and the

power of the proposed heteroscedasticity score test. For comparison purposes, the classical

Breusch-Pagan test (1979) with the Koenker’s correction (1981) is also evaluated.

4.5.1 Evaluation of the level of the test

The level of the proposed heteroscedasticity score test is evaluated for homoscedastic error

terms, for sample sizes of 500 and 1000 observations under three contamination scenarios.

We consider no contamination scenario, vertical contamination ϵ = 0.01 and bad leverage

contamination ϵ = 0.01. Table 4.1 presents the actual test level for both sample sizes when

eight different specifications of the test are considered. Specifications differ in the choice of

the explanatory variables in the error terms variance function (xi1, xi2 or xi1, xi2, x
2
i1, x

2
i2),

the downweighting function ψ (the Huber function or Tukey’s biweight function) and the

weight function ω for covariates (using the hat matrix or the robust Mahalanobis distance

with the MCD). Additionally, we include the actual level of the classical Breusch-Pagan

test.
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Table 4.1. The level of the Breusch-Pagan test and eight specifications of the robust test for
sample sizes N ∈ {500, 1000}. In the robust test, the explanatory variables in the variance function
include either x1, x2, or x1, x2, x

2
1, x

2
2 as defined in Section 4.4. H stands for the hat matrix, and

MCD stands for the robust Mahalanobis distance with the MCD. The nominal level of the test
α = 0.05. 1000 replications. In every row, the level values of a robust test with a level closest to
the nominal level of 0.05 are underlined.

Explanatory variables in the variance function xi1, xi2

N Contamination Classical BP Huber, H Tukey, H Huber, MCD Tukey, MCD

500

None 0.047 0.046 0.055 0.045 0.053

Vertical, 1% 0.039 0.031 0.037 0.034 0.039

Bad leverage, 1% 0.241 0.044 0.034 0.037 0.039

1000

None 0.055 0.051 0.04 0.051 0.041

Vertical, 1% 0.033 0.044 0.051 0.046 0.05

Bad leverage, 1% 0.298 0.056 0.039 0.041 0.044

Explanatory variables in the variance function xi1, xi2, x
2
i1, x

2
i2

N Contamination Classical BP Huber, H Tukey, H Huber, MCD Tukey, MCD

500

None 0.047 0.039 0.045 0.04 0.044

Vertical, 1% 0.039 0.042 0.054 0.042 0.051

Bad leverage, 1% 0.241 0.048 0.039 0.041 0.043

1000

None 0.055 0.053 0.062 0.053 0.056

Vertical, 1% 0.033 0.044 0.066 0.042 0.059

Bad leverage, 1% 0.298 0.059 0.03 0.043 0.036

In the scenario without contamination, for a sample size N = 500, the level of the

robust tests with xi1, xi2, x
2
i1, x

2
i2 as explanatory variables in the variance function is in all

four cases systematically lower than the test level observed when the variance function

has simpler specification of explanatory variables, that is xi1, xi2. For a larger sample

size, N = 1000, we observe the opposite pattern. However, in all the cases considered, the

actual test level remains in the range of 0.036 − 0.064. For a smaller sample size under

no contamination scenario, the selection of ψ - Tukey’s biweight function with simple

variance function results in the actual test level above the nominal level, 0.055 and 0.053,

while the choice of the same ψ function but with alternative specification of the variance

function yields the actual test level below the nominal one, 0.045 and 0.044. We observe

larger differences in the actual test level between the tests with different variance function

specifications if ψ is Tukey’s biweight function. Comparing the specifications with the

same ω, the actual test level is always higher when ψ is Tukey’s biweight function. While
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controlling for the same ψ, the choice of the ω does not contribute to high differences in

the actual test level between different specifications, differences are of 0.01 or 0.02. For

a larger sample size, specifications with the same variance function and ψ - the Huber

function result in the same actual test level irrespective of the choice of ω. In both cases,

those specifications achieve also an actual level closest to the nominal level, 0.051 and

0.053. The selection of ψ - Tukey’s biweight function results in an undersized test level

when the simple variance function is considered, and an oversized test level when the

complex variance function is used.

The contamination scenario with vertical outliers characterises the varying actual test

levels depending on the test specification and sample size. For the majority of cases, the

actual test level is below the nominal one. The exception is a few cases with ψ - Tukey’s

biweight function for which the test level is inflated above 0.05. Controlling for the

sample size, the variance function and ω function, robust tests with ψ - Tukey’s biweight

function have higher actual levels. For a smaller sample size, two out of eight robust test

specifications achieve considerably low test levels below 0.036 (two specifications with ψ

- the Huber function and the simple variance function). For N = 500, the level of the

classical Breusch-Pagan test stays in an accepted range of 0.036−0.064, while for a larger

sample size, it drops to 0.033. For both sample sizes, the specification with ψ - Tukey’s

biweight function and ω - the robust Mahalanobis distance with the MCD achieves an

actual level closest to the nominal, 0.05 for N = 1000 with the simple variance function

and 0.051 for N = 500 with the complex variance function.

For the contamination scenario with bad leverage ϵ = 0.01, the classical Breusch-Pagan

test is no longer robust, regardless of the sample size. For a smaller sample size, all eight

specifications of the proposed score test yield the actual test level below the nominal one.

For a larger sample size, only the specification with ψ - the Huber function and ω - the

hat matrix achieves the actual level higher than 0.05, 0.056 for a specification with the

simple variance function and 0.059 for a specification with the complex variance function.

Except for the specification of ψ - Tukey’s biweight function, ω - the hat matrix and the

complex variance function when N = 1000, the actual test level is in the accepted range

0.036 − 0.064. The specifications with ω - the hat matrix achieve considerably higher

actual level when ψ is the Huber function, regardless of the sample size and the variance

function. For both sample sizes, the actual level closest to the nominal level of the test
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is achieved with ψ - the Huber function and ω - the hat matrix, 0.048 for N = 500

and 0.056 for N = 1000, however for N = 1000 also the specification with ψ - Tukey’s

biweight function and ω - the robust Mahalanobis distance with the MCD achieves the

actual level of 0.046 that is as far away from the nominal level as for the previously

mentioned specification.

Overall, ignoring the specification of the variance function and considering only the

combination of sample size and contamination scenario, that is six cases, the two spe-

cifications of the robust test are equally often closest to the nominal test level. That

is, especially in a contamination scenario with vertical outliers ψ - the Tukey’s biweight

function, ω - the robust Mahalanobis distance with the MCD, and in a contamination

scenario with bad leverage ψ - the Huber function with ω - the hat matrix. Taking back

into consideration the specification of the variance function, for a larger sample size, the

test with a simple variance function is preferred, while for smaller sample size, it is a

complex specification.

We obtain the additional results for the test level 0.01, see Appendix A.3 Table A.1.

For a larger sample size, there is a clear preference for the specification with ψ - the Huber

function and ω - the robust Mahalanobis distance, which ensures the correct test level

under all contamination scenarios. For a smaller sample size, there is a preference for

ω - the hat matrix, while ψ - the Tukey’s biweight function performs better in vertical

contamination scenario and ψ - the Huber function when the contamination comes from

the bad leverage.

Next to the evaluation of the test level under different contamination scenarios, we

analyse the boxplots of the level of the test in the clean sample setting to check whether

systematic oversizing or undersizing is present. Figure 4.1 demonstrates the boxplots for

a sample size of 1000 observations with homoscedastic error terms in a scenario without

contamination when the nominal level considered is 0.05. The classical Breusch-Pagan

test is compared with eight specifications of the proposed heteroscedasticity score test.

Specifications differ in the choice of the explanatory variables in the error terms variance

function (xi1, xi2 or xi1, xi2, x
2
i1, x

2
i2), the downweighting function ψ (the Huber function

or Tukey’s biweight function) and the weight function ω for covariates (using the hat

matrix or the robust Mahalanobis distance with the MCD). The median level of all eight

specifications lies below the nominal test level of 0.05. The specifications with ψ - the

35



Huber function are slightly closer (values between 0.049− 0.0496) than the specifications

with ψ - Tukey’s biweight function (values between 0.048−0.0488). In all compared pairs

with the same variance function and the same weight function ω, the test level of the test

version with the Huber function is higher than that with Tukey’s biweight function. The

smallest difference of 0.006 between specifications with the Huber function and Tukey’s

biweight function occurs for the case with simple variance function and ω - the hat matrix.

When comparing pairs of different variance specifications (the downweighting function ψ

and the weight function ω are the same), specifications with a simple variance function

characterise the median test level systematically closer to 0.05 than the specifications with

a complex variance function.

Figure 4.1. The level of the Breusch-Pagan test (BP) and the robust heteroscedasticity tests (R)
with a different selection of a downweighting function, ψ, weight function, ω, and explanatory
variables in the variance function for a sample size N = 1000 without contamination. Homos-
cedastic error terms. SVF denotes a simple specification of a variance function with xi1, xi2 as
explanatory variables, while CVF denotes a complex variance function with xi1, xi2, x

2
i1, x

2
i2 as

explanatory variables. HH denotes ψ - the Huber function and ω - the hat matrix, TH denotes
ψ - Tukey’s biweight function and ω - the hat matrix, HM denotes ψ - the Huber function and
ω - the robust Mahalanobis distance with the MCD, TM denotes ψ - Tukey’s biweight function
and ω - the robust Mahalanobis distance with the MCD. The level of the test α = 0.05 is shown
with the black dotted line.

There is no clear pattern observed when we consider the weight function ω. The

specification with the simple variance function, ψ - the Huber function and ω - the hat

matrix achieves the actual level, 0.0496, closest to the nominal level of 0.05. The actual
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test level differs from the prespecified level by 0.0004 and the difference is the same as in

the case of the test level of the classical Breusch-Pagan test but in the opposite direction.

The dispersion of the actual test levels varies between test specifications with differ-

ent downweighting functions ψ. The specifications with Tukey’s biweight function have

smaller dispersion than the classical Breusch-Pagan test, while for ones with the Huber

function the dispersion is equal or larger. However, in all cases, the minimum and the

maximum values do not exceed the range of 0.036−0.064. We do not observe a clear pat-

tern of dispersion linked with either a variance function specification or weight function

ω. The only case when the dispersion of the robust test is less than that of a classical

one, and both a minimum and a maximum level of the robust test are closer to 0.05 is

the specification with a complex variance function, ψ - Tukey’s biweight function and ω

- the hat matrix.

Overall, the evaluation of the boxplots points out the specification with a simple

variance function and the Huber function as the one achieving the actual test level closest

to the nominal test level. The choice of ω function does not result in high differences,

thus both options are possible. Other specifications result in a slightly undersized test

level.

Figure 4.2 also demonstrates the boxplots for a sample size of 1000 observations with

homoscedastic error terms in a scenario without contamination, but the nominal level con-

sidered is 0.01. As in the case of Figure 4.1, the classical Breusch-Pagan test is compared

with eight specifications of the proposed heteroscedasticity score test. Specifications differ

in the choice of the explanatory variables in the error terms variance function (xi1, xi2 or

xi1, xi2, x
2
i1, x

2
i2), the downweighting function ψ (the Huber function or Tukey’s biweight

function) and the weight function ω for covariates (using the hat matrix or the robust

Mahalanobis distance with the MCD).

The median level of only one out of four robust test specifications with a complex

variance function lies exactly at the nominal test level of 0.01, that is specification with

ψ - the Tukey’s biweight function and ω - the robust Mahalanobis distance, other spe-

cifications achieve a lower median test level. For the specifications with a simple variance

function three out of four specifications achieve the actual median test level equal to the

nominal one. The fourth specification, that is with ψ - the Huber function and ω - the hat

matrix, has a slightly higher level of 0.0101. These results point out that specifications
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with the simple variance function yield more size-correct results.

Figure 4.2. The level of the Breusch-Pagan test (BP) and the robust heteroscedasticity tests (R)
with a different selection of a downweighting function, ψ, weight function, ω, and explanatory
variables in the variance function for a sample size N = 1000 without contamination. Homos-
cedastic error terms. SVF denotes a simple specification of a variance function with xi1, xi2 as
explanatory variables, while CVF denotes a complex variance function with xi1, xi2, x

2
i1, x

2
i2 as

explanatory variables. HH denotes ψ - the Huber function and ω - the hat matrix, TH denotes
ψ - Tukey’s biweight function and ω - the hat matrix, HM denotes ψ - the Huber function and
ω - the robust Mahalanobis distance with the MCD, TM denotes ψ - Tukey’s biweight function
and ω - the robust Mahalanobis distance with the MCD. The level of the test α = 0.01 is shown
with the black dotted line.

The dispersion of the actual test levels varies between test specifications with differ-

ent downweighting functions ψ and the variance function specification. For the complex

variance function, the specifications with ψ - the Huber function are more dispersed than

the specifications with ψ - the Tukey’s biweight function, while for the simple variance

function, we observe the opposite pattern. For only two out of eight test specifications,

the minimum values observed are below the accepted value of 0.008, those are the spe-

cifications with complex variance function and ψ - the Huber function. For the remaining

six specifications, the minimum and maximum values of the test level lie in the range of

0.08− 0.012.

The evaluation of the boxplots, when we consider the nominal level of 0.01, indicates

that the specifications with the simple variance function achieve the actual median test

level closest to the nominal one. The choice of ω and ψ does not result in high differ-
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ences, thus all options are possible. The complex variance specifications yield a slightly

undersized test level.

4.5.2 Evaluation of the power of the test

Evaluation of the power of the test is done using the power curves. Error terms with het-

eroscedasticity increasing with one of the regressors under three contamination scenarios

are considered for sample sizes N = {500, 1000}, see Figure 4.3.

N = 500

(a) Without contamination (b) 1% vertical contamination (c) 1% bad leverage contamination

N = 1000

(d) Without contamination (e) 1% vertical contamination (f) 1% bad leverage contamination

Figure 4.3. Power curves for the classical Breusch-Pagan (BP) test and the robust heterosce-
dasticity tests (R) with a different selection of a downweighting function, ψ, weight function,
ω, and explanatory variables in the variance function. Performed for the model with heterosce-
dastic error terms, σ2i = λσ2x2i1, where σ

2 = 1 and λ ∈ {0.1, 0.2 . . . , 1.2}, for the sample sizes
of N ∈ {500, 1000} under different contamination scenario with either vertical outliers or bad
leverage when ϵ = 0.01. SVF denotes a simple specification of a variance function with xi1, xi2
as explanatory variables, while CVF denotes a complex variance function with xi1, xi2, x

2
i1, x

2
i2 as

explanatory variables. HH denotes ψ - the Huber function and ω - the hat matrix, TH denotes
ψ - Tukey’s biweight function and ω - the hat matrix, HM denotes ψ - the Huber function and
ω - the robust Mahalanobis distance with the MCD, TM denotes ψ - Tukey’s biweight function
and ω - the robust Mahalanobis distance with the MCD. The level of the test α = 0.05 is shown
with the black dotted line.
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Although the originally assessed degree of heteroscedasticity covered λ up to 2, the

power curves shown in Figure 4.3 end at λ = 1.2 as from this degree of heteroscedasticity,

the test power remains constant in all cases.

For both sample sizes, there is no difference between robust test specifications under

different contamination scenarios. Once error terms are heteroscedastic, the power is equal

to 1. All specifications are equally powerful and always correctly reject the null hypothesis

of homoscedastic error terms. The performance of the robust test is particularly superior

to the performance of the classical Breusch-Pagan test when the vertical contamination

scenario is considered, see Figures 4.3b and 4.3e.

To confirm that the high power of the robust tests is preserved when λ < 0.01, we

perform an additional check for the scenario without contamination for values of λ ranging

between 0.01 and 0.1 (with a step of 0.01, smaller than in Figure 4.3 where the step is 0.1).

The results once again confirm the equally powerful behaviour of all the specifications of

the robust test. All of them achieve the power of 1, once error terms are heteroscedastic,

see Figure 4.4. Overall, all specifications of the robust test are equally powerful and there

is no preference for any specification.

(a) N = 500 (b) N = 1000

Figure 4.4. Power curves for the classical Breusch-Pagan (BP) test and the robust heterosce-
dasticity tests (R) with a different selection of a downweighting function, ψ, weight function,
ω, and explanatory variables in the variance function. Performed for the model with hetero-
scedastic error terms, σ2i = λσ2x2i1, where σ2 = 1 and λ ∈ {0.01, 0.02, . . . , 0.1}, for sample
sizes N ∈ {500, 1000} without contamination. SVF denotes a simple specification of a variance
function with xi1, xi2 as explanatory variables, while CVF denotes a complex variance function
with xi1, xi2, x

2
i1, x

2
i2 as explanatory variables. HH denotes ψ - the Huber function and ω - the

hat matrix, TH denotes ψ - Tukey’s biweight function and ω - the hat matrix, HM denotes ψ
- the Huber function and ω - the robust Mahalanobis distance with the MCD, TM denotes ψ -
Tukey’s biweight function and ω - the robust Mahalanobis distance with the MCD. The level of
the test α = 0.05 is shown with the black dotted line.
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The additional results obtained for a particular case of vertical contamination with

quasi-symmetrical vertical outliers also confirm the preference for the robust test, see

Figure 4.5.

(a) λ ∈ {0.01, 0.02, . . . , 0.1} (b) λ ∈ {0.1, 0.2 . . . , 2}

Figure 4.5. Power curves for the classical Breusch-Pagan (BP) test and the robust heterosce-
dasticity tests (R) with a different selection of a downweighting function, ψ, weight function,
ω, and explanatory variables in the variance function. Performed for the model with heteros-
cedastic error terms, σ2i = λσ2x2i1, where σ

2 = 1 and λ ∈ {0.01, 0.02, . . . , 0.09, 0.1, 0.2. . . . , 2},
for a sample size of N = 500 under contamination scenario with four quasi-symmetrical vertical
outliers. SVF denotes a simple specification of a variance function with xi1, xi2 as explanatory
variables, while CVF denotes a complex variance function with xi1, xi2, x

2
i1, x

2
i2 as explanatory

variables. HH denotes ψ - the Huber function and ω - the hat matrix, TH denotes ψ - Tukey’s
biweight function and ω - the hat matrix, HM denotes ψ - the Huber function and ω - the robust
Mahalanobis distance with the MCD, TM denotes ψ - Tukey’s biweight function and ω - the
robust Mahalanobis distance with the MCD. The level of the test α = 0.05 is shown with the
black dotted line.

In that particular case, the classical Breusch-Pagan test turns out to be not robust,

while the proposed heteroscedasticity score test achieves high power once the error terms

are heteroscedastic. Figure 4.5a demonstrates the power curves for a smaller step of

0.01, we observe the lack of power of the classical Breusch-Pagan test to reject the null

hypothesis when heteroscedasticity of a small degree, 0.01 ≤ λ < 0.07, is present in the

data. Only when λ reaches the value of 0.5 the classical test achieves a power similar to

the power of the robust test, see Figure 4.5b. For homoscedastic error terms, see points

in Figures 4.5a and 4.5b when λ = 0 and σ2 = 1 for all observations, the robust tests have

an actual level close to the nominal level of 0.05, while the classical heteroscedasticity test

provides a wrong indication of the heteroscedastic error terms with the p-value of 1.
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5 Empirical Application

In this section, we compare the performance of the classical Breusch-Pagan test with the

robust alternatives in two real-data applications. The datasets include both heterosce-

dastic and homoscedastic data. Next to analysis in economic papers, both datasets are

also used as datasets accompanying econometric handbooks, publicly available through

the R package AER (Kleiber & Zeileis, 2008). In original applications, the datasets are

treated as if no contamination was present. We verify this and if no outliers are detected,

we apply the artificial contamination that should mimic a real case scenario.

5.1 Credit card data

The first real-world data is the dataset used in a paper by Greene (1992) to model credit

card expenditure provided by an anonymous credit card company, covering credit card

applications in one month in 1988. A sample of 1319 observations from this dataset

was later used for illustrative purposes of heteroscedastic error terms in an econometric

manual by Greene (2003). Greene (2003) takes the first 100 observations out of 1319

and estimates a linear regression with OLS to model credit card expenditures. Only the

subset of applicants with non-zero expenditure is analysed, resulting in a sample of 72

observations. The dataset includes several explanatory variables, from which the author

selects the age of an applicant, the yearly income of the applicant and the yearly income

squared, and one dummy variable indicating whether the individual owns a home. The

dependent variable is the average monthly credit card expenditure. Heteroscedasticity in

the error terms is driven by income.

Because of the sample size and lack of random selection of a sample in an illustrative

application (Greene, 2003), we prefer to use the whole subset of applicants with non-

zero expenditure, thus resulting in a sample size of 1002 observations. The variables age

and income characterise right-skewed distributions. In the AER package notes, we can

find information that the value of age in certain observations was manually corrected.

In fact, in a sample of 1002 observations, there are six individuals whose age is below

one year. Those are probably examples of incorrect data coding, and depending on the

standardised residual, they could appear in regression as bad or good leverage points

with large distances in the explanatory space. We verify this with a diagnostic plot.

Rousseeuw and van Zomeren (1990) proposed a robust alternative to a classical regression
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diagnostic plot (the Mahalanobis distance versus standardised least squares residuals)

where standardised residuals from high-breakdown regression estimator, originally the

least median squares, are plotted against robust Mahalanobis distance, based on the

Minimum Volume Ellipsoid. In the classical case, the Mahalanobis distance should tell us

how far away from the cloud of points the single observation is. However, Rousseeuw and

van Zomeren (1990) point out that the classical Mahalanobis distance may suffer from the

masking effect and the multivariate outliers do not necessarily have large Mahalanobis

distance. Thus, the application of robust methods in the diagnostic plot should help us

to correctly identify outlying observations.

We need to define cutoff values for a diagnostic plot. In the classical regression dia-

gnostic plot, the cutoff value for the Mahalanobis distance is obtained from the χ2 distri-

bution, namely
√
χ2
p,0.975, where p is the dimension of data. For the standardised residuals

ri/σ̂, where ri is the OLS regression residual and σ̂ is the scale estimate obtained with

the standard deviation, the cutoff values are −2.5 and 2.5. All boundaries are inspired

from Rousseeuw and van Zomeren (1990). With these cutoff values, the points with the

Mahalanobis distance higher than
√
χ2
p,0.975 are leverage points. The points with stand-

ardised residuals outside [−2.5, 2.5] are regression outliers, labelled vertical outliers if the

Mahalanobis distance is smaller than the respective cutoff value, otherwise labelled as

bad leverages.

In the robust regression diagnostic plot, we use the robust Mahalanobis distance with

mean and covariance robustly estimated based on the Minimum Covariance Determin-

ant, and the residuals from the robust regression estimator, the MM-estimator (Yohai,

1987), standardised with the robust scale estimate, that is the median absolute deviation.

Rousseeuw and van Zomeren (1990) determine the cutoff values in the same way as in

the classical case. However, Hardin and Rocke (2005) note that the robust Mahalanobis

distances have an exact χ2 distribution when data follows the normal distribution. If

data deviates from the Gaussian distribution, finding distributional cutoff values using χ2

distribution may fail and too many points are declared outliers. Therefore, they propose

asymptotic formulas based on F distribution to calculate cutoff values for outlying dis-

tances computed with the MCD. Hardin and Rocke (2005) argue that the F distribution

provides better distributional information about outliers than the χ2 distribution. Thus,

in one of the diagnostic plots, we use F distribution with degrees of freedom calculated
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from the adjusted asymptotic formulas and scaling constant from the asymptotic formula

to determine the cutoff values, for the details see Hardin and Rocke (2005, p. 940).

Overall, to identify outliers, we construct several diagnostic plots to cross-check what

type and how many outliers they detect. The plots include the classical diagnostic plot

with all three explanatory variables, the classical diagnostic plot with only age and income

in the Mahalanobis distance, the robust diagnostic plot with only age and income in

the Mahalanobis distance and cutoff values according to the χ2 distribution, the robust

diagnostic plot with only age and income in the Mahalanobis distance and cutoff values

according to the F distribution. It is not feasible to construct a robust diagnostic plot with

all three explanatory variables, because of the dummy variable that renders computation

of the MCD numerically impossible.

Figure 5.1a demonstrates the robust regression diagnostic plot with the cutoff values

from the χ2 distribution when the original data is considered. Although in the original

application, the dataset is not treated as a contaminated sample, the diagnostic plot finds

outliers in a sample.

(a) Original sample (b) Added bad leverages (c) Added vertical outliers

Figure 5.1. Robust regression diagnostic plots for three contamination scenarios of the credit
card dataset (Greene, 1992). In the plots, the robust Mahalanobis distance is plotted against
standardised residuals of the MM regression estimator. The cutoff values for the robust Ma-

halanobis distance are found according to
√
χ2
2,0.975. Sample size N = 1002.

Both classical diagnostic plots identify 25 outliers (bad leverages or vertical outliers)

constituting approximately 2.5% of the sample, while both robust label 9% of the ob-

servations (91 observations) as outlying, see Table 5.1 and Appendix A.4 Table A.3. As

expected, the robust diagnostic plots detect more outliers than the classical ones. Both

robust diagnostic plots identify the same number of outliers, but the number of bad

leverages and vertical outliers differs between different specifications of cutoff values. We
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expected the specification with χ2 distribution to label too many points as outliers, how-

ever, it does not happen. Thus, we can infer that the data distribution does not deviate

considerably from the Gaussian distribution and the χ2 distribution-based cutoff values

can be trusted. The classical diagnostic plots and another robust diagnostic plot can be

found in Appendix A.4 Figure A.4.

Table 5.1. Count and types of points in the regression for three contamination scen-
arios of the credit card dataset (Greene, 1992). Points identified with the robust regression
diagnostic plot (standardised residuals of the MM regression estimator vs the robust Ma-

halanobis distance with the cutoff values
√
χ2
2,0.975). Sample size N = 1002.

Contamination scenario Good point Good leverage Bad leverage Vertical outlier

Original data 752 159 28 63

Added vertical outliers 755 152 28 67

Added bad leverages 754 153 34 61

To introduce more extreme outliers, we modify the values of the dependent variable

and age variable of six wrongly coded observations. As a result, we obtain datasets with

a higher number of either vertical outliers or bad leverage points, see Table 5.1. In the

case of additional bad leverage points, we modify the value of credit card expenditure of

those six observations (for the descriptive statistics of the original variables, see Appendix

A.4 Table A.2). We take the maximum value from the sample and multiply it by 1.5, and

successively increase by 0.1 the number by which we multiply the maximum value, in the

next step, six inflated values of the dependent variable are assigned to six observations

with wrongly coded data. In the sample with artificially added vertical outliers, we use

the same modification of credit card expenditure value as in the case of bad leverage, but

we correct the age of each applicant and assign them the value of median age, successively

increasing the value of the assigned age by 1 for each successive observation. The original

sample and modified datasets are subject to the heteroscedasticity tests with the classical

Breusch-Pagan and the robust heteroscedasticity score test. The original application of

data provides information about the variance function (income + income2), thus we use

this function specification in all tests. We evaluate four specifications of the robust test

with a different selection of the downweighting function ψ - Tukey’s biweight or the Huber

function, and the weight function ω - the hat matrix or the robust Mahalanobis distance

with the MCD.
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Table 5.2. The level of the Breusch-Pagan test (Classical BP) and four specifications of the robust
heteroscedasticity test: Huber, H (ψ - the Huber function, and ω - the hat matrix), Tukey, H (ψ -
Tukey’s biweight function, and ω - the hat matrix), Huber, MCD (ψ - the Huber function, and ω -
the robust Mahalanobis distance with the MCD), and Tukey, MCD (ψ - Tukey’s biweight function,
and ω - the robust Mahalanobis distance with the MCD) for three contamination scenarios of the
credit card dataset (Greene, 1992). The variance function with income and income2 as explanatory
variables. Sample size N = 1002.

Contamination scenario Classical BP Huber, H Tukey, H Huber, MCD Tukey, MCD

Original data 0.00 0.00 0.00 0.00 0.00

Added bad leverage 0.67 0.00 0.00 0.00 0.00

Added vertical outliers 0.85 0.00 0.00 0.00 0.00

Table 5.2 demonstrates the results of the heteroscedasticity tests. The robust tests

reject the null hypothesis of homoscedastic error terms in all the cases considered. Even

though the overall number of outliers in the artificial scenarios does not differ considerably

from the original scenario, the Breusch-Pagan test fails to detect heteroscedastic error

terms in the scenarios with the increased number of both vertical outliers and bad leverage

points. The imputed outliers are more extreme than the original data points, thus their

impact on the classical Breusch-Pagan test is visible in the inflated level of the test.

Overall, we can see that using the classical heteroscedasticity test for the illustrative

purposes of heteroscedasticity in Greene (2003) does not result in the wrong inference

about the variance of error terms despite the outliers in the sample, however, the small

increase in the number of outlying observations leads to incorrect results.

5.2 Teacher ratings data

In the second empirical application we use the dataset analysed in a paper by Hamermesh

and Parker (2005), with data on course evaluations, professor and course characteristics

collected for 463 courses over three academic years at the University of Texas in Austin.

The dataset is also used for general illustrative purposes in an econometric handbook by

Stock and Watson (2007). We choose this dataset for two reasons. First, in the original

application, the error terms are assumed to be homoscedastic, unlike in Section 5.1.

Secondly, this dataset allows us to demonstrate what problems can arise when we apply

outliers diagnostic and robust tests to the datasets including mainly dummy variables.

In the originally analysed regression, the dependent variable is teaching evaluation

score, while the set of explanatory variables includes one continuous variable the in-
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structor’s physical appearance rating and six dummy variables (some information about

the teacher: the instructor’s gender, whether the instructor belongs to a non-Caucasian

minority, whether the instructor is a native English speaker, whether the instructor is on

tenure track, and two characteristics of the course: upper/lower course division, single-

credit elective). The presence of several binary predictors precludes computing the MCD

since the algorithm encounters numerical problems. As a result, we cannot use the robust

Mahalanobis distance and therefore also the robust diagnostic plot. An alternative to the

robust Mahalanobis distance would be to use the diagonal elements of the hat matrix

to identify leverage points, however, Rousseeuw and van Zomeren (1990) point out that

the hat matrix suffers from the masking effect and does not detect leverage points cor-

rectly. Therefore, we construct only the classical version of the regression diagnostic plot

following the same steps as in Section 5.1.

(a) Original sample (b) Added bad leverages (c) Added vertical outliers

Figure 5.2. Classical regression diagnostic plots for three contamination scenarios of the teacher
ratings dataset (Hamermesh & Parker, 2005). In the plots, the Mahalanobis distance is plotted
against standardised residuals of the OLS regression estimator. The cutoff values for the Ma-

halanobis distance are found according to
√
χ2
7,0.975. Sample size N = 463

The diagnostic plot finds one bad leverage and five vertical outliers in the original

sample, see Figure 5.2a and Table 5.3. From the simulation study, see Section 3.4, we

can suspect that the small number of vertical outliers should not deflate the level of the

classical Breusch-Pagan test and the hypothesis about homoscedastic error terms should

not be rejected. However, the presence of a bad leverage outlier may incorrectly suggest

heteroscedasticity in the data.
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Table 5.3. Count and types of points in the regression for three contamination scenarios
of the teacher ratings dataset (Hamermesh & Parker, 2005). Points identified with the
classical regression diagnostic plot (standardised residuals of the OLS regression estimator

vs the Mahalanobis distance with the cutoff values
√
χ2
7,0.975). Sample size N = 463.

Contamination scenario Good point Good leverage Bad leverage Vertical outlier

Original data 404 53 1 5

Added vertical outliers 404 53 1 5

Added bad leverages 404 53 2 4

We introduce two additional scenarios to check how the classical and the robust tests

behave in the original sample and when the number of outliers is increased. In the first

scenario, the number of vertical outliers is held constant, but for two of them, the value

of teaching evaluation score is changed to 0, making these outliers more extreme. In

the second scenario, one vertical outlier is replaced by the additional bad leverage (for

one observation teaching evaluation score is changed to 0, and the value of instructor’s

physical appearance rating increases to 5), see Figure 5.2 and Table 5.3. For the descriptive

statistics of the original variables, see Appendix A.4 Table A.4.

We test the heteroscedasticity of error terms in all three contamination scenarios with

the classical Breusch-Pagan test and two specifications of the robust test. The presence

of several dummy variables in the explanatory space precludes the application of the

robust test with ω - the robust Mahalanobis distance with the MCD, thus, we evaluate

only the specifications with ω - the hat matrix with the downweighting functions ψ -

Tukey’s biweight or the Huber function. The variable suspected to drive the variance is

the instructor’s physical appearance rating.

Table 5.4. The level of the Breusch-Pagan test (Classical BP)
and two specifications of the robust heteroscedasticity tests: Huber,
H (ψ - the Huber function, and ω - the hat matrix), and Tukey, H
(ψ - Tukey’s biweight function, and ω - the hat matrix), for three
contamination scenarios of the teacher ratings dataset (Hamer-
mesh & Parker, 2005). The variance function with the instructor’s
physical appearance rating as an explanatory variable. Sample size
N = 463.

Contamination scenario Classical BP Huber, H Tukey, H

Original data 0.45 0.80 0.41

Added bad leverages 0.00 0.49 0.46

Added vertical outliers 0.46 0.93 0.43
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Table 5.4 shows the results of the heteroscedasticity tests under three contamination

scenarios. The results of both robust tests in all three cases of data contamination do not

suggest rejecting the null hypothesis of homoscedasticity. The classical Breusch-Pagan

remains robust in the scenario with more extreme vertical outliers, but with the increased

number of bad leverage (2 observations) it incorrectly indicates heteroscedasticity in the

data. Thus, we can infer that in this data configuration, the classical test breaks with

only two bad leverage outliers, while the robust counterparts preserve robustness. Based

on the simulation study evaluating the Breusch-Pagan test robustness, see Section 3.4.2,

we expected that under the scenario with the limited number of vertical outliers (only

1 % of the sample), the test would remain robust and indeed, this empirical application

confirms our expectations.

However, the classical Breusch-Pagan test and its robust alternatives are not able to

detect groupwise heteroscedasticity, which is possible to occur in a dataset with several

dummy variables that can easily divide the sample into two subsets, for example, based

on the instructor’s gender. Therefore, with the available robust score test, we cannot be

completely sure that the data is homoscedastic in this aspect as well.

6 Conclusion

In this paper, we investigated the robustness properties of the heteroscedasticity tests. In

particular, we examined three classical tests: the Breusch-Pagan test (1979), the Goldfeld-

Quandt test (1965) and the Harrison-McCabe test (1979), and we proposed a robust

alternative to the Breusch-Pagan test based on the robust score test framework of Heritier

and Ronchetti (1994). We showed that the influence function of the OLS estimator is

unbounded, and consequently, the classical heteroscedasticity tests which are constructed

upon this estimator inherit its robustness properties and are nonrobust to outliers. The

results of the simulation study confirmed that none of the classical heteroscedasticity tests

preserves robustness against outliers for both homoscedastic and heteroscedastic data.

With these findings, we proposed a robust alternative constructed with the framework of

the robust bounded-influence score test (Heritier & Ronchetti, 1994). The application of

the Mallows type score function ensures the bounded influence function of the M-estimator

based on which the test statistic is constructed. In the simulation study, the proposed test

remains size-correct and powerful in the presence of outliers. The empirical application
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also showed that the proposed test is more robust than the classical Breusch-Pagan test.

The main limitation of our paper considers the type of heteroscedasticity the robust

test can detect and the simulation study. The application of the robust heteroscedasti-

city score test is limited only to the data-generating processes where heteroscedasticity

increasing with one of the regressors is present. There is still a gap in the research

considering the robust tests suitable for groupwise heteroscedasticity. In the simulation

study, we investigate the behaviour of the tests only for the nominal levels of α = 0.05

and α = 0.01. The more extensive study can also cover smaller levels α = 0.001 and

α = 0.0001 with the increased number of simulation runs to obtain more accurate results.

The simulation can also be supplemented with the empirical breakdown analysis to verify

how many outliers the robust test can withstand before the test statistic is distorted and

does not provide reliable results anymore. Besides, we did not examine moderate vertical

and bad leverage outliers and focused solely on extreme outliers. Additionally, further

research can consider small-sample properties of the constructed robust test and different

choices in its construction, such as a selection of other estimators of scale instead of MAD

to ensure higher efficiency, for example, M-estimator of dispersion (Maronna et al., 2019).
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A Appendix

A.1 Evaluation of the level and the power of the modified Goldfeld-Quandt

test with outlier-removal strategy (Rana et al., 2008)

We construct the modified Goldfeld-Quandt test with an outlier-removal strategy fol-

lowing the procedure of Rana et al. (2008). The test is expected to detect groupwise

heteroscedastic error terms, thus we start with ordering observations according to the

regressor or index which is suspected to drive the variance of error terms and divide the

whole sample into two subsets like in the classical Goldfeld-Quandt test. In the next

steps, we first detect outliers with the Least Trimmed Squares estimator (Rousseeuw,

1984), and next we compute the deletion residuals for the entire sample based on regres-

sion coefficients estimated with a clear set. Finally, the median of the squared deletion

residuals is computed for two groups of observations. The test statistic is a ratio of those

medians. Rana et al. (2008) state that under normality, the test statistic follows the F

distribution with the degrees of freedom, each of (N − cN − 2k)/2, where N is a sample

size, k is the number of all regressors in the estimation, and cN is the number of central

observations omitted before the outliers detection starts. However, Rana et al. (2008) do

not specify the value of cN .

To evaluate the level and power of the modified Goldfeld-Quandt test, we conduct a

simulation study similar to the evaluation performed for the classical tests (see Section 3.3)

and the robust score test (see Section 4.4). We consider the data-generating process that

follows the linear model with two regressors and intercept, see Equation (9), for a sample

size N = 500. In the evaluation of the level of the test, we analyse the homoscedastic error

terms σ2
i = σ2 = 1, and we consider two different observation ordering, that is according

to either regressor x1 or observation index. While in the analysis of the power of the

test, we consider two types of heteroscedastic error terms: groupwise heteroscedasticity

and the variance increasing with one of the regressors (see Section 3.3 for more details

about types of heteroscedasticity). We start with homoscedastic error terms, and then the

evaluated range of degrees of heteroscedasticity λ covers λ ∈ {1.01, 1.02, . . . , 1.09, 1.1} ∪

{1.2, 1.3, . . . , 2.9, 3} for groupwise heteroscedasticity and λ ∈ {0.01, 0.02, . . . , 0.09, 0.1} ∪

{0.2, 0.3, . . . , 1.9, 2} for the variance increasing with a regressor. In the first case, we

consider index ordering, while in the second case, ordering according to the regressor x1.
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In the level analysis, we construct the box plots with 100 simulation runs and 1000

replications in each run. In the power analysis, we construct the power curves with 1000

replications for each value of λ. Three contamination scenarios are considered: a sample

without any contamination and two datasets including outliers, either vertical outliers

(placed at y∗ = −100) or bad leverage points (placed at y∗ = x∗1 = x∗2 = −50). The

point mass contamination is added according to Equation (12), in level evaluation, and

Equation (13), in power evaluation, with a degree of contamination ϵ = 0.01. We consider

the nominal level of the test α = 0.05.

Figure A.1 shows the boxplots under three contamination scenarios. Irrespective of the

scenario considered, the modified Goldfeld-Quandt test is oversized, with a median level

of approximately 0.16 considerably above the nominal level of α = 0.05. The proposed

modification to the classical test does not result in a size-correct robust test.

Figure A.1. The level of the modified Goldfeld-Quandt test for sample size N = 500 under three
contamination scenarios. NC denotes the scenario without contamination, B denotes the model
contaminated with bad leverage points, and V with vertical outliers. Ordering according to a
regressor x1 is denoted with x and index ordering with i. The level of the test α = 0.05 is shown
with the black dotted line.

Figure A.2 demonstrates the power curves for the case of groupwise heteroscedasticity,

see Figure A.2a, and the case of heteroscedasticity increasing with one of the regressors,

see Figure A.2b. We observe that in the second case, the test achieves a power of 1, once

error terms are heteroscedastic and λ > 0, irrespective of the contamination scenario.

However, in the case of groupwise heteroscedasticity, the power curves achieve a value of 1

for λ > 2. It points out that the modified Goldfeld-Quandt test can detect heteroscedastic
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error terms only when the variance in one half is twice as big as in the other half of the

sample.

(a) σ2
i = σ2 for i ≤ N/2 and σ2

i = λσ2 for i > N/2 (b) σ2
i = λσ2x2i1

Figure A.2. Power curves for the modified Goldfeld-Quandt test performed on the residuals
from linear regression (see Equation (9)) with (a) groupwise heteroscedastic error terms, and (b)
error terms characterised with heteroscedasticity increasing with one of the regressors, for the
sample size N = 500 under three contamination scenarios (ϵ = 0.01). NC denotes the scenario
without contamination, B denotes the model contaminated with bad leverage points, and V
with vertical outliers. Ordering according to a regressor x1 is denoted with x and index ordering
with i. The level of the test α = 0.05 is shown with the black dotted line.

The evaluation of the level of the modified Goldfeld-Quandt test indicates that the

modification proposed by Rana et al. (2008) to robustify a non-robust component of the

test does not result in a size-correct test. Even though the test achieves high power for

heteroscedastic error terms when contamination is present, the lack of robustness in terms

of the test level precludes us from acknowledging that the test is a robust alternative to

the classical tests.
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A.2 Auxiliary Figures Section 4.4

(a) Without contamination (b) Vertical contamination

Figure A.3. Illustrative example of how the regression residuals change when the quasi-
symmetrical vertical contamination is present. Residuals from the linear model, yi = xi1 + ei
(i = 1, . . . , 500), with heteroscedastic error terms, where ei ∼ N (0, σ2i ) and σ2i = x2i1. Red
points denote the points changed to vertical outliers in the contaminated sample.
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A.3 Additional Results Section 4.5.1

Table A.1. The level of the Breusch-Pagan test and eight specifications of the robust test for
sample sizes N ∈ {500, 1000}. In the robust test, the explanatory variables in the variance function
include either x1, x2, or x1, x2, x

2
1, x

2
2 as defined in Section 4.4. Weight function ω - H stands for

the hat matrix, and MCD stands for the robust Mahalanobis distance with the MCD. The nominal
level of the test α = 0.01. 10000 replications. In every row, the level values of a robust test with
a level closest to the nominal level of 0.01 and in the range of 0.008-0.012 are underlined.

Explanatory variables in the variance function xi1, xi2

N Contamination Classical BP Huber, H Tukey, H Huber, MCD Tukey, MCD

500
None 0.0104 0.0084 0.0094 0.0087 0.0092
Vertical, 1% 0.0072 0.0079 0.0094 0.0077 0.009
Bad leverage, 1% 0.2066 0.0112 0.0071 0.0073 0.0078

1000
None 0.0108 0.0101 0.0109 0.0102 0.011
Vertical, 1% 0.0081 0.0095 0.0118 0.0097 0.0115
Bad leverage, 1% 0.283 0.0137 0.0085 0.0098 0.009

Explanatory variables in the variance function xi1, xi2, x
2
i1, x

2
i2

N Contamination Classical BP Huber, H Tukey, H Huber, MCD Tukey, MCD

500
None 0.0104 0.008 0.0096 0.0078 0.0096
Vertical, 1% 0.0072 0.0087 0.0137 0.0085 0.0122
Bad leverage, 1% 0.2066 0.0098 0.0076 0.0079 0.0074

1000
None 0.0108 0.0099 0.0092 0.0101 0.0094
Vertical, 1% 0.0081 0.011 0.0205 0.0112 0.0189
Bad leverage, 1% 0.283 0.013 0.0084 0.0108 0.0089

A.4 Additional Results Section 5

Table A.2. Descriptive statistics of the continuous variables from the credit card dataset
(Greene, 1992) used in the regression in Section 5.1. All variables refer to values observed for a
single applicant. Average monthly credit card expenditure in USD, age in years plus twelfths of
a year, yearly income in USD 10,000.

Variable Count Min 0.25 Quantile Median 0.75 Quantile Max

credit card expenditure 1002 0.312 70.596 156.578 319.200 3099.505

age 1002 0.167 25.354 31.167 39.646 83.500

yearly income 1002 0.210 2.350 3.000 4.000 13.500
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Table A.3. Count and types of points in the regression for three contamina-
tion scenarios of the credit card dataset (Greene, 1992). Points identified with
three different regression diagnostic plots: the robust regression diagnostic plot with
standardised residuals of the MM regression estimator vs the robust Mahalanobis
distance with the cutoff values from F distribution (Robust), the classical regres-
sion diagnostic plot with standardised residuals of the OLS regression estimator

vs the Mahalanobis distance with the cutoff values
√
χ2
3,0.975 (Classical, p = 3),

and the classical regression diagnostic plot with standardised residuals of the OLS

regression estimator vs the Mahalanobis distance with the cutoff values
√
χ2
2,0.975

(Classical, p = 2). Sample size N = 1002.

Contamination scenario: original sample

Diagnostic plot Good point Good leverage Bad leverage Vertical outlier

Robust 590 321 45 46

Classical, p = 3 936 41 4 21

Classical, p = 2 925 52 4 21

Contamination scenario: added bad leverages

Diagnostic Good point Good leverage Bad leverage Vertical outlier

Robust 592 315 51 44

Classical, p = 3 948 36 9 9

Classical, p = 2 937 47 9 9

Contamination scenario: added vertical outliers

Diagnostic Good point Good leverage Bad leverage Vertical outlier

Robust 590 317 45 50

Classical, p = 3 948 37 3 14

Classical, p = 2 937 48 3 14

Table A.4. Descriptive statistics of the continuous variables from the teacher ratings dataset
(Hamermesh & Parker, 2005) used in the regression in Section 5.2. All variables refer to
values obtained for a single course evaluation. The teaching evaluation score on a scale of 1
(very unsatisfactory) to 5 (excellent), the instructor’s physical appearance rating on a scale of
1 (lowest) to 10 (highest), shifted to have a mean of zero.

Variable Count Min 0.25 Quantile Median 0.75 Quantile Max

teaching evaluation score 463 2.1 3.6 4.0 4.4 5

physical appearance rating 463 -1.45 -0.66 -0.06 0.55 1.97
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Contamination scenario: original sample

(a) Classical, p = 3 (b) Classical, p = 2 (c) Robust

Contamination scenario: added bad leverages

(d) Classical, p = 3 (e) Classical, p = 2 (f) Robust

Contamination scenario: added vertical outliers

(g) Classical, p = 3 (h) Classical, p = 2 (i) Robust

Figure A.4. Regression diagnostic plots for three contamination scenarios of the credit card
dataset (Greene, 1992). Points identified with three different regression diagnostic plots: the
robust regression diagnostic plot with standardised residuals of the MM regression estimator
vs the robust Mahalanobis distance with the cutoff values from F distribution (Robust), the
classical regression diagnostic plot with standardised residuals of the OLS regression estimator

vs the Mahalanobis distance with the cutoff values
√
χ2
3,0.975 (Classical, p = 3), and the classical

regression diagnostic plot with standardised residuals of the OLS regression estimator vs the

Mahalanobis distance with the cutoff values
√
χ2
2,0.975 (Classical, p = 2). Sample size N = 1002.
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