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Abstract

Determining base stock levels can be a challenging task in spare parts management. This research

contains several approaches to determine base stock levels under a target service level. We distin-

guish between approaches with a system availability target and an item availability target, which

are called a system approach and an item approach, respectively. Two types of blends between

these approaches under fill rate targets are developed within this research, referred to as the Basic

Blend Approach (BBA) and the Advanced Blend Approach (ABA). In the BBA we apply a system

approach on only a subset of items in a system. This results in lower investment costs for mainly

expensive slow-moving items. The ABA applies a newly introduced algorithm to determine optimal

class availability targets, whilst satisfying a system availability target, for items divided into classes

based on their price and demand frequency per year. This approach is easy to interpret and apply

and obtains low stock levels for expensive slow-moving items.
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Nomenclature

Abbreviations & Acronyms

ABA Advanced Blend Approach

BBA Basic Blend Approach

CA Class Approach

IA Item Approach

FR Fill rate

Gordian Gordian Logistics Experts B.V.

METRIC Multi-Echelon Technique for Recoverable Item Control

MIA Multi-Item Approach

LS Local Search

SKU Stock Keeping Unit

Symbols

BC Euro

µi Average yearly demand of SKU i

BOi A random variable indicating the number of back orders of SKU i

C(S) The cost function denoted by ∑
i∈I Ci(Si)

ci Purchase price of SKU i

Ci(Si) Investment cost of SKU i under base stock Si, denoted by ciSi

EBOobj Target level for EBO(S)

EBOi(Si) Mean number of back orders of SKU i

EBO(S) Aggregate mean number of back orders

FRobj Target level for FR(S)
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FRi(Si) Item fill rate of SKU i

FR(S) Aggregate system fill rate

OHi Random variable indicating the stationary on hand stock for item i

I Set of SKUs

|I| Number of SKUs

Li Average lead time of SKU i

M Total demand of system, so M = ∑
i∈I µi

S Vector consisting of all base-stock levels denoted by (S1, S2, . . . , S|I|)

S Solution space denoted by {S | Si ∈ N0, ∀i ∈ I}

Si Base-stock level for SKU i, with i ∈ I and Si ∈ N0 := N ∪ {0}

S − 1, S One-for-one replenishment policy

Xi Random variable indicating the stationary number of copies ordered of item i
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1 Introduction

Service logistics can be defined as the controlling part of the service chain. The service chain is a

series of services offered for maintenance, repair and disposal of purchases from purchase to the end

of life. The logistics component ensures that people, resources and materials in the service chain

are available at the right place at the right time. However, resource and inventory management

can be a challenging task. The task becomes even more challenging when the components in the

inventory are not moved frequently, consume a large space and/or are very expensive per unit. Such

components are called ’slow-movers’. In spare parts management one deals quite often with these

slow-movers, being one of its most complex elements.

Inventory management of slow-movers can be challenging for a few reasons. To understand

these challenges, it is important to underline that slow-movers are usually very expensive. The

inventory ties up working capital, storage space, and other resources that can be used more effec-

tively elsewhere. The indicated increases the holding costs and reduces the overall profitability of

the business. The holding cost also called the inventory or storage costs, are the costs related to

storing inventory. Hence, a good base stock level can prevent any overstocking or understocking.

Another cause that makes the inventory management of slow-movers challenging, is that these items

often have a high degree of demand variability, which makes it difficult to accurately forecast future

demand. Aforementioned can also lead to the same understocking or overstocking behaviour, lead-

ing to inventory imbalances. Hence, much research has focused on the inventory management of

slow-moving items. Within this thesis, the goal is to minimise the total investment costs subject to

constraints of expected back orders or the fill rate levels. The total investment costs are determined

by the cost function consisting of the sum of the base stock level per item multiplied by the item’s

purchase price.

The current research is part of a thesis internship at Gordian Logistic Experts B.V. (Gordian).

Gordian is a logistics and supply chain consulting firm, specialising in spare parts management.

They provide a wide range of services to help companies optimise their logistics operations man-

agement and supply chain management. A lot of their clients are interested in minimising the

stock levels of their spare parts while maintaining high service levels. Gordian uses the single-item

single-echelon method as explained in Sherbrooke (2006) to achieve those objectives.
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In this research, this method is called the ’Class Approach’, and is explained in Section 4.3. The

main idea of the Class Approach is that all parts are classified according to their average demand

frequency and price. In consultation with their client, Gordian sets target service levels for each

class. After classifying Gordian uses an item approach as explained in Van Houtum and Kranenburg

(2015) to determine the minimum stock level of each item to achieve its class target service level.

In this research, this method is referred to as the ’Item Approach’ and is explained in Section 4.2.

One popular request of Gordian’s clients is minimising their stock levels while maintaining an

overall high service level for a system of items, for example, a landing system of an aeroplane. In

this research, this problem is referred to as the ’Multi-Item Problem’ and is explained in Section

4.1 following Van Houtum and Kranenburg (2015). In Section 4.4, this problem is solved using a

Greedy-based approximation algorithm and we call this approach the ’Multi-Item Approach’. In

literature, solving the Multi-Item Problem is also known as a ’System Approach’. An advantage of

the Multi-Item Approach is that it allows low stock levels for expensive slow-movers and high stock

levels for cheap fast-movers. Hence, it leads to lower total costs. However, this approach is much

more complex and harder to implement. Furthermore, when the price gap of the items in a system

is large, the Multi-Item Approach tends to keep no stock of the expensive items.

Contrary to the Multi-Item Approach, the Class Approach calculates the base stock for just

one item giving a target service measure for one item. Furthermore, the Class Approach is flexible,

faster and easy to implement as the items do not depend on the availability of other items. However,

for expensive slow-movers, this is a rather harsh approach. It may lead to high inventory costs, as

higher safety stock levels are maintained to ensure no stock-outs occur.

Hence, the goal of this thesis is to create a blend between these approaches to get the best of

both worlds. In Section 4.5, two different blends are introduced. The first one is referred to as the

’Basic Blend Approach’. The goal of the Basic Blend Approach is to lower the costs for the very

expensive and very slow-moving items compared to the Class Approach, while keeping their stock

levels (mostly) more than zero. The second blend is referred to as the ’Advanced Blend Approach’.

The goal of this blend is to determine optimal class target service levels while maintaining the

system target service level. This approach is a great way of combining the currently used Class

Approach at Gordian and the Multi-Item Approach.
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Chapters overview

In the remainder of this thesis, we start with a detailed problem description in Chapter 2. This

chapter includes the research questions and all assumptions necessary for the research. Thereafter,

a literature review is given in Chapter 3, containing related work. In Chapter 4 the relevant

econometric and mathematical methods are explained. Hereafter, in Chapter 5 an analysis of the

data used in this thesis is given. The numerical results are given in Chapter 6. And this thesis is

concluded with a conclusion and discussion in Chapters 7 and 8, respectively.
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2 Problem Description

One main problem in spare parts management is finding the best trade-off between holding inven-

tories of parts, which involves costs, and being able to repair failures quickly, hence avoiding high

downtime costs. As it is difficult to assess downtime costs for individual spare parts, companies

usually restrict themselves to availability targets for individual or groups of spare parts. The issue

is to determine which targets to use. This is difficult as there may be many distinct parts and both

the total investment costs as well as the system availability are nonlinear functions of the number

of parts in stock.

At this moment Gordian uses a method, which we refer to as the ’Class Approach’ to determine

the stock levels for parts. In this approach for every part, an availability target is set based on a

parts price and a demand frequency, after which the required stock level is determined. This is a

harsh approach for expensive slow-movers since the stock levels are likely to be high, which leads

to higher total costs. Considering the Multi-Item Problem could be a solution for the high stock

levels of the expensive slow-mover. We refer to the approach to solve the Multi-Item Problem as

the ’Multi-Item Approach’. A disadvantage of this approach is that the stock of items with a very

low demand frequency and a high cost is likely to be set to zero. And the stock of items with very

high demand and very low costs is likely to be set to a (too) high number.

Hence, that is why Gordian has not implemented a Multi-Item Approach yet and is interested

in a blend between the two approaches.

Research questions

The goal of this research is to develop a blend between an Item Approach and a Multi-Item Ap-

proach for spare parts inventory control. We aim to minimise the total investment costs subject to

expected back orders and fill rate levels, leading to the following research questions.

Main research question:

How can we develop a blend between the single-item approach and

a system approach in spare parts management?

4



To answer the main research question, we will answer the following sub-research questions first:

(i) What are item and system approaches for spare parts?

(ii) What are different methods to develop a blend between an item approach and a system

approach?

(iii) Which method is the most suitable and the most relevant for clients of Gordian Logistic

Experts B.V.?

Research strategy

To achieve the answers to the research questions, we first have to research the existing optimisation

models in the literature. Once we have enough background knowledge, we can select the methods,

which are most relevant for this research. In combination with the already existing models, we will

create new models to be able to answer the main research question. In our case, the new model will

be a blend between the Item Approach and the Multi-Item Approach.

To evaluate the performance of the models we need a data set on which we can apply these

models. Therefore, we first need to clean the data set provided by Gordian. Then, we will analyse

the data to get the right information necessary for the models.

Terminology

Throughout this paper, a few more terms are used for a spare part, specifically item, part and Stock

Keeping Unit (SKU). The latter is a term commonly used in inventory management, supply chain

management, and retail operations to track and manage products at various stages of the supply

chain. It refers to all items that are stocked in case of failure or replacement.

A system is considered to be an assembly of parts in for example a machine or aeroplane. So, the

components of a system are called the SKUs of a system.

Multiple service measures exist to measure the availability of a part. The most common and in-

terpretable service measure widely used in practice is the fill rate (FR). The FR is the fraction of

demand that can be satisfied immediately from stock on hand. Another common service measure

is the expected back orders, which is used in literature more often. Hence, these are the service

measures applied in this thesis.
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Assumptions

To answer the research questions, together with Gordian we summarise the assumptions of the

problem. These assumptions are common for these types of problems. In the literature review in

the next section, we will explain which assumptions are made in which articles.

Assumption 1. The problem is a single-echelon problem. A single-echelon problem refers to a

situation with only one level or layer of inventory in the supply chain. This means there is only one

inventory holding location, such as a warehouse or distribution centre, between the supplier and the

end customer.

Assumption 2. A continuous infinite time horizon [0, ∞) is considered.

Assumption 3. Demand for different items occurs according to independent Poisson processes as

explained in Feeney and Sherbrooke (1966). The demand rate is known and constant.

Assumption 4. The lead times for different items are independent.

Assumption 5. The cost function, which is to be minimised, is determined by the cost function

consisting of the sum of the base stock level per item multiplied by the item’s purchase price. Other

costs are ignored due to the base-stock model.

Assumption 6. A repair-by-replacement policy is applied for all items. This policy is a mainte-

nance strategy whereby a component or system is replaced entirely when it fails, rather than repair

or refurbishment attempts. This policy is often used for components or systems that are critical to

the operation of a larger system and that have a high likelihood of failure.

Assumption 7. The mean demand, the lead time and the price of all items are known.

Assumption 8. All items are considered equally critical. An item is critical when its failure causes

the entire system to fail.

Assumption 9. For individual spare parts, a one-for-one replenishment model also called the (S −

1, 1)-inventory control model, is applied. For this model, the goal is to maintain a constant inventory

level by restocking exactly what is sold. This means that for every unit of a product that is sold,

one unit is replenished, keeping the inventory at a consistent level. In this case, ordering costs are

determined by the demand and can therefore be left out of the optimisation.
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3 Literature Review

The literature on spare parts inventory policies is rich. Many papers have been published. The

interested reader is referred to the comprehensive general reviews on spare parts management in

Silver et al. (1998), Sherbrooke (2006), Axsäter (2015) and Bounou et al. (2017).

To select papers relevant to the research questions we first looked for review papers on the topic,

next we did a Google keyword search and finally, we did a cited reference search for papers quoting

the papers we found so far. As keywords, we used combinations of multi-item approach, system

approach for fast and slow-movers and system availability constraints together with spare parts.

An important reference turned out to be the book by Van Houtum and Kranenburg (2015). They

provide a detailed description of the multi-item problem with system availability targets. The main

service availability measures they use are the expected back orders. However, in ”Section 2.7.4”

they also consider the fill rate as an availability measure.

In the following sections, we provide the results of our literature research, starting with a general

overview of spare parts inventory control. Thereafter, we focus on the different methods used in

this research in the order they appear, namely: Multi-Item Approach, Item Approach and Class

Approach. As for the blends, no literature has been used.

General overview

A common assumption of inventory control models for spare parts, is that spare parts have small

demand rates and high item costs. This allows for the use of an (S − 1, S) inventory policy, also

called a one-for-one replenishment policy. A one-for-one replenishment policy means that every

item is replenished as soon as failure occurs, trying to keep an inventory position of S. The most

well-known study where the (S −1, S)-policy is described in the context of spare parts management

is the work by Feeney and Sherbrooke (1966). They assume a compound Poisson demand distribu-

tion with the expected back orders as a service measure. In their article, they minimise total costs

which are based on an estimation of the holding costs and stock performance costs. The authors

Smith and Dekker (1997) describe the (S − 1, S) where the demand does not occur according to a

Poisson process. Instead, they assume that the demand follows a renewal process with deterministic

lead times. They conclude that the frequency of orders depends on the variance of inter arrival times.

7



The book by Silver et al. (1998) introduces general inventory control models in production

planning and scheduling. This work contains all relevant formulas for different types of demand

distributions relevant to this research.

Different types of service measures are defined in the book by Axsäter (2015). Amongst the

service measures defined and used in this research are: the expected back orders, the product fill rate

and the system fill rate. These service measures are defined for continuous demand distributions and

discrete distributions, hence in our case, we consider that our demand is Poisson distributed. We

use the same definitions and terminology for expected back orders and fill rate as Axsäter (2015).

Assuming that all parts in a system are equally critical, Sherbrooke (1992) showed that maximising

the system fill rate is approximately equivalent to minimising the sum of expected back orders.

Hence, in this research, we use both the expected back orders and the fill rate as service measures.

Multi-Item Approach

One of the first references of the Multi-Item approach, in literature, also referred to as the System

Approach, is by Karush (1957). The Multi-Item approach is the approach to solving a multi-item

problem with system availability targets. He presented a Greedy based method, to maximise the

fill rate of a system under budget constraints, whereby our constraint is to satisfy a target fill rate.

A similar approach is presented by Rustenburg et al. (1998) in his post-doctoral research.

The most well-known paper is presented by Sherbrooke (1968). He describes the multi-item two-

echelon problem, where he considers one central warehouse and multiple local warehouses. This

mathematical model is known as a METRIC model (Multi-Echelon Technique for Recoverable Item

Control) in literature. The Multi-Item Approach in our research is similar to the METRIC model of

Sherbrooke (1968) with single-echelon, where system investment costs are minimised under service

level targets. The Greedy algorithm to solve the multi-item problem used in this research is based

upon the Greedy-algorithm presented by Sherbrooke (2006), whereby our research is based upon

the book of Van Houtum and Kranenburg (2015). Sherbrooke (2006) refers to this algorithm as

the ’Mariginal Analysis’. The multi-item problem is a nonlinear integer programming problem. Be-

sides the Greedy algorithm, different techniques and approximation algorithms exist to get feasible

solutions to this complex problem. Specifically, the Lagrangian relaxation and the Dantzig-Wolfe

decomposition are next to the Greedy method the most popular methods for the multi-item problem.

8



One of the earliest papers about the Lagrangian Relaxation is by Everett III (1963). He con-

cludes that the Lagrange method is useful because it reduces the optimisation problem to uncon-

strained and independent maximisation problems, which are easier to solve. For more insights to this

method, the reader is referred to the paper by Fisher (1981). The main idea of the Dantzig-Wolfe

decomposition is that it decomposes large-scale optimisation problems into smaller subproblems,

yielding low computational effort. In his post-doctoral research, Basten and van Houtum (2014)

uses this method for the multi-item problem with system availability constraints. But we restrict

ourselves to the Greedy algorithm, since it is the easiest to apply and interpret.

Item Approaches

An item approach is an approach where we determine base stock levels for items with an individual

availability target. The base stock levels can easily be determined by stochastic formulas presented

by for example Axsäter (2015) and Silver et al. (1998). However, the item approach with expected

back orders as service level presented in this research follows the item approach in Van Houtum and

Kranenburg (2015). The individual item target service levels are defined such that a system target

level is reached. They present an algorithm to determine the base stock levels with a step-by-step

approach. The main idea is that the base stock levels are all set to zero and in each iteration, the

base stock levels are increased by one until the target service level is reached. A similar approach

is presented in the book of Axsäter (2015). In the item approach explained by Thonemann et al.

(2002) all items have the same individual fill rate and they refer to this approach as the item

approach with constant fill rate policy. The item approach with fill rate as service level presented

in this paper follows the same approach. In their article, Kiesmüller et al. (2011) also cover a single

item approach, however they determine minimum order quantities instead of minimum base stock

levels.

Class Approaches

We refer to the Class Approach as an item approach where items are classified according to their

demand and price. Afterwards, for each class, a service level target is set and the base stock levels

of the items are determined based on their corresponding class target. In the book of Silver et al.

(1998), they define an ”ABC-Classification matrix”, which is a 3 × 3- matrix according to price and

demand.

9



In an article by Porras and Dekker (2008) classification is applied by considering classes based

on price, demand and criticality. The Class Approach as used by Gordian and also in this research,

is based upon the ”ABC-Classification matrix” in the work of Silver et al. (1998). The authors

Cardós et al. (2015) compare different types of classification for the multi-item problem. Based on

numerical experiments they conclude that the ABC-classification with one or two criteria, being

the demand and/or price of items are the most suitable classification techniques for practitioners.
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4 Methodology

In this chapter, all the theoretical methods are explained to achieve the answers to the research

questions of this thesis. The chapter starts with Section 4.1 where all notation used in this thesis are

introduced and the problem is formulated mathematically. Next, the concept of an Item Approach is

explained in Section 4.2 and an extension of the Item Approach, which is called the Class Approach

is explained in Section 4.3. After that, in Section 4.4, the Multi-Item Approach is explained. This

is the approach for solving the Multi-Item Problem. And finally, two methods to create a blend

between the Item Approach and the Multi-Item Approach are introduced in Section 4.5.

4.1 Notation and Mathematical Formulation

In this section, the notation of the variables is introduced following Van Houtum and Kranenburg

(2015). Furthermore, this section contains a mathematical formulation of the problem. All vari-

ables are displayed in Table 1. The authors Van Houtum and Kranenburg (2015) refer to the critical

components of a system as Stock Keeping Units (SKUs). But in general, all items that are stocked,

are called SKUs in inventory management.

Assume that we have a set of SKUs I, with the number of SKUs denoted by |I|. To make it

convenient for notation, each SKU i ∈ I will be numbered as i = 1, 2, . . . , |I|.

The goal is to determine a minimum base-stock level for each SKU i ∈ I. The base-stock level for

a part is the minimum quantity of that part that a company needs in stock or on order to meet

its demand during lead time. It is the inventory level that is maintained when no new orders are

placed for that item. The base-stock level for an SKU i will be denoted by Si. We assume that

Si is an integral number greater than or equal to zero, so Si ∈ N0. The vector S = (S1, . . . , S|I|)

illustrates the base-stock level of all items in I. By Assumption 5 we define the total investment

costs C(S) under policy S by:

C(S) =
∑
i∈I

Ci(Si) =
∑
i∈I

ciSi, (1)

where ci is the purchase price of SKU i in AC’s. Since the total investment costs are to be minimised,

the cost function C(S) is the objective function of this problem. The constraint of the problem is to

achieve an availability target while minimising the costs. Gordian Logistic Experts B.V. (Gordian)

expresses the availability of a part by the fill rate (FR), which is equal to the fraction of demand

that is satisfied immediately from stock on hand.
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The fill rate is a more common service measure in practice. An alternative measure for availabil-

ity is the number of back orders BOi, which is equal to the number of missing parts. The latter also

takes the length of unavailability into account. The problem will be defined for both the expected

back orders and the fill rate as stated by Van Houtum and Kranenburg (2015).

4.1.1 Expected back orders as Service Level

The aggregate mean number of back orders EBO(S) in steady state, is denoted by:

EBO(S) =
∑
i∈I

EBOi(Si), (2)

with EBOi(Si) equal to the mean number of back orders for SKU i. Let EBOobj be the target

level of back orders. Then the mathematical formulation of the current optimisation problem is

defined as follows:

min C(S)

s.t. EBO(S) ≤ EBOobj ,

S ∈ S,

(3)

where S is the solution space defined by {S | Si ∈ N0, ∀i ∈ I}. Notice that this problem is a

nonlinear integer programming problem since the decision variables are integral, the constraints are

nonlinear and the objective is a linear function.

Let Xi be the pipeline stock, which is a random variable indicating the stationary number of

copies of item i on outstanding orders. Let µi and Li be the mean demand and the lead time of

item i, respectively. Then µiLi is the mean of the pipeline stock Xi.
From Assumption 3, it follows that demand for items occurs according to a Poisson process and

each item is an average time of Li in the pipeline. So the repair or delivery pipeline is an M |G|∞
queueing system. Hence, originated from the book of Van Houtum and Kranenburg (2015) Palm’s
theorem may be applied which is defined in Palm (1938) as follows:

Palm’s Theorem: If jobs arrive according to a Poisson process with rate λ at a service system

and if the times that the jobs remain in the service system are independent and identically

distributed according to a given general distribution with mean E(W ), then the steady-state

distribution for the total number of jobs in the service system is Poisson with mean λE(W ).
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So using Palm’s theorem, it follows that Xi is Poisson distributed. So, the probability distribu-

tion of Xi can be denoted as follows:

P[Xi = x] = (µiLi)x

x! e−µiLi , with x ∈ N0. (4)

Let OHi be the stock on hand, which is a random variable indicating the number of ready-for-use

parts. Following Feeney and Sherbrooke (1966), the stationary distribution of the stock on hand is

given by:

P[OHi = x] =


∑∞

y=Si
P[Xi = y], if x = 0;

P[Xi = Si − x], if x ∈ N, x ≤ Si.
(5)

Then the stationary distribution of the random variable BOi, indicating the number of back-

ordered demand, is defined by:

P[BOi = x] =


∑Si

y=0 P[Xi = y], if x = 0;

P[Xi = x + Si], if x ∈ N.
(6)

The mean back order EBOi(Si), can now be calculated by:

EBOi(Si) = E[BOi(Si)] =
∞∑

x=Si+1
(x − Si)P[Xi = x], Si ∈ N0.

For computational purposes, we rewrite this equation as:

EBOi(Si) = µiLi − Si +
Si∑

x=0
(Si − x)P[Xi = x], Si ∈ N0. (7)

An important lemma to be able to apply the algorithms in the following sections originates from

Van Houtum and Kranenburg (2015) and is stated as follows:

Lemma 4.1. For each SKU i ∈ I, the mean number of back orders EBOi(Si) is decreasing and

convex for Si ∈ N0.

Proof. See Appendix B.

4.1.2 Fill Rate as Service Level

As mentioned before, Gordian and many other companies use the product fill rate (FR) as a ser-

vice level. Hence, in this section, we define the problem with FR as service level, again following

Van Houtum and Kranenburg (2015). The aggregate FR of a system is the probability that de-

mand with an arbitrary size for the total system of items is satisfied immediately from stock on hand.
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Let FRi(Si) be the item FR for item i and let M := ∑
i∈I µi be the total demand of the system.

Then, the aggregate fill rate FR(S) is denoted by

FR(S) =
∑
i∈I

µi

M
· FRi(Si). (8)

From Assumption 3 it follows that the demands of all items arrive according to a Poisson process.

The PASTA property described by Wolff (1982) states that demand arriving arbitrarily, observes

the system in a steady state. Hence, the probability that you have positive stock on hand is equal

to the probability that the arriving demand is less than the stock level and thus can be satisfied

immediately from stock. So, the item fill rate is then defined by

FRi(Si) =
Si−1∑
x=0

P[Xi = x]. (9)

The new optimisation problem using the FR is now defined as

min C(S)

s.t. FR(S) ≥ FRobj ,

S ∈ S ′,

(10)

where S ′ is the solution space of the problem, which is slightly different than the solution space

of Problem 3. The function for the item fill rate FRi(Si) has domain N0 for an item i ∈ I. In the

following Lemma originated from Van Houtum and Kranenburg (2015) it is stated that FRi(Si) is

increasing on N0 and concave for Si ≥ max{⌈µiLi − 1⌉, 0}. Notice that, ⌈x⌉ denotes the rounded

up value for x ∈ R.

Lemma 4.2. For each SKU i ∈ I, the item fill rate FRi(Si) is increasing on N0 and concave for

Si ≥ max{⌈µiLi − 1⌉, 0}.

Proof. See Appendix B.

The average pipeline stock is represented by µiLi. If µiLi ≤ 1, then max{⌈µiLi − 1⌉, 0} = 0.

Hence, FRi(Si) will be concave on its domain. If we have µiLi > 1, then max{⌈µiLi − 1⌉, 0} > 0.

Then solutions S with Si ≤ max{⌈µiLi − 1⌉, 0} are removed from solution space S ′. In general, for

slow-moving items, the average pipeline stock will not be greater than one. And if they are, the

solutions that are excluded from the solution space have an item fill rate value FRi(Si) and are

irrelevant for problems with a high target service level.
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So it follows that S ′ is defined by {S = (S1, . . . , S|I|) | Si ≥ max{⌈µiLi − 1⌉, 0}, ∀i ∈ I}.

Table 1: Notation

Notation

I Set of SKUs

|I| Number of SKUs

Si Base-stock level for SKU i, with i ∈ I and Si ∈ N0 := N ∪ {0}

S Vector consisting of all base-stock levels denoted by (S1, S2, . . . , S|I|)

S Solution space denoted by {S | Si ∈ N0, ∀i ∈ I}

Xi Random variable indicating the stationary number of copies ordered of item i

OHi Random variable indicating the stationary on hand stock for item i

ci Purchase price of SKU i

Ci(Si) Investment cost of SKU i under base stock Si, denoted by ciSi

C(S) The cost function denoted by ∑
i∈I Ci(Si)

µi Average demand of SKU i

Li Average lead time of SKU i

M Total demand of system, so M = ∑
i∈I µi

BOi A random variable indicating the number of back orders of SKU i

EBOi(Si) Mean number of back orders of SKU i

EBO(S) Aggregate mean number of back orders

EBOobj Target level for EBO(S)

FRi(Si) Item fill rate of SKU i

FR(S) Aggregate system fill rate

FRobj Target level for FR(S)
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4.2 Item Approach

The first and most straightforward approach to determine the base-stock level for all items in the

system is to consider each item separately. Each item is assigned its own target service level. We

will call this type of approach an ’Item Approach’ following Van Houtum and Kranenburg (2015).

The advantage of such an approach is that it easily scales up with the number of items, yet on the

other hand, it is not clear which targets should be set for the items. In this section, we discuss an

Item Approach with both the expected backorders and the fill rate as service level. In the latter all

items are set the same item fill rate target equal to the system fill rate target. To meet a target

service level one only needs a demand rate and lead time. Hence the price of items is not taken into

account, which is a disadvantage. So using the same target service level for all components is likely

to be sub-optimal. An example to showcase the methods is given for both service levels.

4.2.1 Expected Back orders as Service Level

In the Item Approach each item is considered separately. One can decompose the constraint of

Problem 3, such that each item has its own constraint and the solution is still feasible. Let EBOobj

be the system target service level. Recall the constraint of Problem 3:

∑
i∈I

EBOi(Si) = EBO(S) ≤ EBOobj .

If all items i have EBOi(Si) less than or equal to µi
M EBOobj , then EBO(S) = ∑

i∈I EBOi(Si) ≤

EBOobj . So, for each item an item target equal to EBOobj
i := µi

M EBOobj is set.

The optimisation problem then becomes:

min C(S)

s.t. EBOi(Si) ≤ EBOobj
i ∀i,

S ∈ S,

(11)

This problem can be solved very easily, since it is a straightforward decision problem. The idea

is basically to search for each item i the smallest Si that satisfies the target and that can be done

independently from all other items. In Appendix A.1 a pseudo code and an explanation of all the

steps is given.

To demonstrate the Item Approach, we give an example in the next section.
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Example 1

Consider a system containing 4 items, with its properties displayed in Table 2. Items 1 and 2 have

high demand with low and high costs, respectively. And, items 3 and 4 have low demand with low

and high costs, respectively. Let EBOobj be the system target level of expected backorders. Set for

each SKU i = 1, . . . , 4 item targets EBOobj
i := µi

M · EBOobj , with M = ∑4
i=1 µi = 55.

Table 2: (Example 1) Properties of a system with 4 items

SKU id µi (per year) ci (e) Li (years)

1 24 0.10 0.08

2 28 20.40 0.08

3 1 0.12 0.08

4 2 18.11 0.08

We apply the Item Approach for target expected backorders levels 0.1 and 0.05. In Ta-

ble 3 the solutions are shown for the two target levels. For target expected backorders level

EBOobj
i = 0.1 the solution is: S = (5, 5, 2, 2) with realised expected backorders EBOi(Si) =

(0.019, 0.038, 0.000082, 0.00063). And for target level 0.05, the solution is S = (5, 6, 2, 2) with

realised expected backorders EBOi(Si) = (0.019, 0.011, 0.000082, 0.00063). These solutions are

achieved by applying Algorithm 3 using the Java Programming Language.

Using Equations 1 and 2 the total number of expected backorders for the system is

EBO(S) =
4∑

i=1
EBOi(Si) =

 0.057, if EBOobj = 0.1 ;

0.03, if EBOobj = 0.05 ,

with the total investment costs equal to

C(S) =
∑
i∈I

ciSi =

 BC138, 96, if EBOobj = 0.1 ;

BC159, 36, if EBOobj = 0.05 .

It is trivial that the target level EBOobj is an upper bound to EBO(S). We denote the gap to

the upper bound by GTTEBOobj and we define GTTEBOobj by:

GTTEBOobj (S) := |EBOobj − EBO(S)|
EBOobj

· 100%. (12)
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Table 3: (Example 1 - Cont’d) Solutions Item Approach

EBOobj = 0.1 EBOobj = 0.05

SKU id Si EBOobj
i EBOi(Si) Si EBOobj

i EBOi(Si)

1 5 0.0436 0.0185 5 0.022 0.019

2 5 0.0509 0.038 6 0.025 0.011

3 2 0.0018 0.000082 2 0.00091 0.000082

4 2 0.0036 0.00063 2 0.0018 0.00063

Let SEBOobj be the solution obtained by applying the Item Approach with target service level

EBOobj . In this example we have

GTT0.1(S0.1) = |0.1−0.057|
0.1 · 100% = 43% and GTT0.05(S0.05) = |0.05−0.03|

0.1 · 100% = 40%.

Notice that the gaps are rather high, while we want this gap to be as small as possible. Hence,

this is another reason why a system approach could be more suitable for a system of items since we

expect the gap to the targets to be a lot lower.

4.2.2 Fill Rate as Service Level

In this section we set the same target fill rate for each item i equal to the system target fill rate, so

FRobj
i := FRobj for all i ∈ I. Then, from the definition of the aggregate fill rate the system target

fill rate is satisfied as well. The optimisation problem for the Item Approach with the fill rate as

service level is:

min C(S)

s.t. FRi(Si) ≥ FRobj
i ,

S ∈ S ′.

(13)

This is again an easy decision problem, which can be solved for each item separately. In Appendix

A.1 a pseudocode with explanation is given to solve Problem 13. To demonstrate this approach we

continue with the Example of previous section.
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Example 1 (Continued)

Let FRobj be the system target fill rate for the items in Table 2. Using the Java Programming

Language and the algorithm explained in Appendix A.1, we achieve the following solutions for the

Item Approach with fill rate as service level.

We apply the Item Approach for target levels 75%, 90% and 90%. In Table 4 the solutions

are shown for the different target levels. For target level 75%, the solution is: S = (4, 4, 1, 1)

with realised fill rates FRi(Si) = (0.871, 0.811, 0.923, 0.852). For target level 90%, the solution is:

S = (5, 5, 1, 2) with realised fill rates FRi(Si) = (0.954, 0.923, 0.923, 0.988). And for target level

90%, the solution is S = (7, 7, 2, 3) with realised fill rates FRi(Si) = (0.996, 0.992, 0.997, 0.999).

Table 4: (Example 1 - Cont’d) solutions Item Approach with FR as service level

FRobj = 75% FRobj = 90% FRobj = 90%

SKU id Si FRi(Si) Si FRi(Si) Si FRi(Si)

1 4 0.871 5 0.954 7 0.996

2 4 0.811 5 0.923 7 0.992

3 1 0.923 1 0.923 2 0.997

4 1 0.852 2 0.988 3 0.999

Using Equations 1 and 8 the aggregate fill rate for the system is

FR(S) =
∑
i∈I

µi

M
· FRi(Si) =


0.841, if FRobj

i = 0.75 ∀i;

0.939, if FRobj
i = 0.90 ∀i,

0.994, if FRobj
i = 0.99 ∀i,

with the total costs equal to

C(S) =
∑
i∈I

ciSi =


BC100, 23, if FRobj

i = 0.75] ∀i;

BC138, 84, if FRobj
i = 0.90 ∀i,

BC198, 07, if FRobj
i = 0.99 ∀i.

It is trivial that the target level FRobj is a lower bound to FR(S). We denote the gap to the

lower bound by GTTF Robj and we define GTTF Robj by:

GTTF Robj := |FR(S) − FRobj |
FRobj

· 100%. (14)
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In this example we have

GTT75% = |0.841−0.75|
0.75 · 100% = 12.1%,

GTT90% = |0.939−0.90|
0.90 · 100% = 4.3% and

GTT90% = |0.994−0.99|
0.99 · 100% = 0.4%.

4.3 Class Approach

This section is dedicated to the approach that Gordian Logistic Experts B.V. (Gordian) uses to

determine base stock levels. In this approach, items are classified, based on similar characteristics,

like demand, price, lead time and priority. Classes can be based on one characteristic or multiple.

After classification for each class, a target is set and the Item Approach is applied for all items with

their corresponding class targets. We will refer to this approach as the ’Class Approach’.

From personal communication with Jan Willem Rustenburg from Gordian Logistic Experts

B.V. (Gordian) follows that the Class Approach is used in practice because it is more interpretable,

flexible and easy to implement. However, the choices of thresholds separating the classes and the

target fill rates are not theoretically substantiated. Gordian sets the boundaries of the classes in

cooperation with their clients. However, the targets per class are determined more intuitively. They

always try to satisfy a high total service level and adjust their targets per class manually, until they

achieve that level. So the choice of target levels can be optimised. In Section 4.5.2 we introduce an

algorithm to determine optimal targets per class.

Classification

Presently Gordian uses classes based on price and demand. Per characteristic three classes are

distinguished, using threshold values, based on a set of rules to logically determine the class bound-

aries. Gordian uses the fill rate (FR) as a service level, thus we will also use the FR as a service

level for the Class Approach. Let Kj be class j, with j = 1, . . . , 9. Per class, a fixed FR target

FRobj
Kj

is set, which is applied to each item i ∈ Kj . This manner of classification is also called the

ABC-Classification as described in the book of Silver et al. (1998). It is a 3 × 3-matrix, with the

demand frequency classification as its columns and price classification as its rows.
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In Figure 1 an example of a classification matrix is displayed. The demand frequency is the

average demand requests per year based on the total historical demand. However, the demand can

also be classified according to the yearly demand instead of the demand frequency. This is up to

the preference of the stakeholders. The price refers to the purchase price per item. The columns

are denoted by A, B and C and the rows are denoted by 1, 2 and 3. The classes are defined as

follows:

A: items with average number of demand requests between 13 and ∞ times per year

B: items with average number of demand requests between 4 and 12 times per year

C: items with average number of demand requests between 1 and 3 per year

1: items with price between 0 and 30 euros

2: items with price between 31 and 500 euros

3: items with price between 500 and ∞ euros

P
ri

ce

€500

€30

∞

∞
Demand Frequency

12 3

Target Stock Availability (%)

99%

A1

Target Stock Availability (%)

98%

B1

Target Stock Availability (%)

95%

C1

Target Stock Availability (%)

97%

A2

Target Stock Availability (%)

80%

C2

Target Stock Availability (%)

95%

A3

Target Stock Availability (%)

75%

C3

Target Stock Availability (%)

95%

B2

Target Stock Availability (%)

91%

B3

Target Stock Availability (%)

90%

D3

Target Stock Availability (%)

90%

D2

Target Stock Availability (%)

90%

D1

0

Figure 1: Classification Matrix of Gordian

Gordian also considers an extra column D with items with an average number of demand

requests per year equal to zero. But this is out of the scope of this research. So only the 3 × 3-

matrix will be considered from now on. The boundaries and targets of this classification matrix

are the classification corresponding to the data set we will use in this research analysed in Section 5.
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The optimisation problem corresponding to the Class Approach can be defined as follows:

min C(S)

s.t. FRi(Si) ≥ FRobj
Kj

, ∀i ∈ Kj , ∀j = 1, . . . , 9,

S ∈ S ′.

(15)

Throughout this thesis, classes {K1, . . . , K9} correspond to classes {A1, A2, A3, B1, B2, B3, C1, C2, C3}.

We use Kj with j = 1, . . . , 9 for mathematical formulation.

See Appendix A.2 for a pseudocode of the algorithm to solve Problem 15. To demonstrate the Class

Approach we give an example in the following section.

Example 2

Consider a system containing 20 items, with its properties displayed in Table 21 in Appendix

D.1. We start with classifying the items based on their demand frequency and price accord-

ing to the classification matrix of Gordian, as seen in Figure 1. The class fill rate targets are

{FRobj
A1 , . . . , FRobj

C3
} = {99%, 97%, 95%, 98%, 95%, 91%, 95%, 80%, 75%}. Notice that we use the de-

mand frequency fi only for classification. To determine the fill rate FRi(Si) we still use the yearly

demand µi.

Using Equations 1 and 8 and Algorithm 5, the Class Approach gives aggregate fill rate

FR(S) =
∑
i∈I

µi

M
· FRi(Si) = 96.5%

with the total investment costs equal to

C(S) =
∑
i∈I

ciSi = BC9, 187.99.

To make a good comparison with the Item Approach we compute the total stock per class

denoted by SClass. In Table 5 the stock levels per class, the total cost and the aggregate fill rate

obtained by the Class Approach (CA) and the Item Approach (IA) are compared.

We see that the Class Approach has the lowest total cost concerning the aggregate fill rate

compared to the Item Approach with target fill rates 75%, 90% and 99%.
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Table 5: (Example 2) Total stock per class SClass, the total cost C(S) and the aggregate fill rate

FR(S) obtained by Class Approach (CA) compared to the Item Approach (IAF Robj ) with different

fill rate targets FRobj .

SA1 SA2 SA3 SB1 SB2 SB3 SC1 SC2 SC3 C(S) (BC) FR(S) (%)

CA 3 6 0 6 6 3 49 4 6 9,187.99 96.5

IA75% 2 4 0 3 4 2 41 4 6 8,394.38 80.5

IA90% 2 5 0 4 5 3 47 6 7 9,409.94 92.8

IA99% 3 7 0 6 7 4 55 8 11 13,863.78 99.2

4.4 Multi-Item Approach

Besides the fill rate for just one item, clients of Gordian are interested in keeping up the fill rate

of a whole system. This problem is formulated in Section 4.1 for both the fill rate as well as the

expected back orders as a service measure. In this thesis, the approach to solving Problems 3 and

10 is referred to as the ’Multi-Item Approach’. In literature, this approach is also referred to as the

’System Approach’. The essence of a Multi-Item Approach is that a target for a whole system is

defined, which can be either a total fill rate target, a constraint of total back orders or a constraint

of total inventory value. In this research, the aggregate mean back orders and the aggregate fill rate

are both used as target service levels.

The main problem in solving the Multi-Item Problem exactly, is that the constraints are non-

linear functions in base-stock levels. Therefore, we need to come up with different mathematical

algorithms to solve this problem close to optimal. The authors Van Houtum and Kranenburg

(2015) present several approaches in their article, viz. a Greedy algorithm, Lagrangian relaxation

and Dantzig-Wolfe decomposition. From Sherbrooke (2006), it follows that in general a Greedy

algorithm gives almost the same solutions as the other two methods due to strong similarities.

Moreover, the Greedy Algorithm is the easiest to apply and interpret. It is important to notice

that the Greedy Algorithm is an approximation algorithm and does not guarantee optimality, but

it provides a solution ’close-to-optimal’. Hence, in this research, the Greedy Algorithm presented in

Van Houtum and Kranenburg (2015) will be applied.
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4.4.1 Greedy algorithm

A Greedy algorithm or a Greedy heuristic is a simple optimisation strategy that makes locally

optimal choices at each step with the hope of finding a global optimum. It iteratively selects the

best available option at each decision point without reconsidering previous choices. In Appendix,

A.3 pseudocodes of the Greedy Algorithm from Van Houtum and Kranenburg (2015) with a detailed

description are given for Problems 3 and 10. The main idea of the algorithm is that it searches

for the item that has the highest contribution to the service level when the item is increased by

one. Recall that an (S-1,S)-policy is applied for all items in a system. The algorithm searches for

solutions S = (S1, . . . , S|I|) which keep the total costs low, but satisfy the target service level. One

can also look for the item with the largest contribution per BC investment. We demonstrate the

Greedy algorithm with both service levels in the following two Examples.

Example 1 (continued)

In this example, we consider the system of items displayed in Table 2 again. Applying Algorithm 6

using the Java Programming Language we find the solutions displayed in Table 6.

Table 6: (Example 1 - Cont’d) Solutions Multi-Item Approach

EBOobj = 0.1 EBOobj = 0.05

SKU id Si EBOi(Si) Si EBOi(Si)

1 8 2.00e-4 9 4.02e-5

2 5 3.79e-2 6 1.13e-2

3 2 8.20e-5 2 8.26e-5

4 1 1.21e-2 1 1.21e-2

Using Equations 1 and 2 the total number of expected back orders for the system is

EBO(S) =
4∑

i=1
EBOi(Si) =

 0.05, if EBOobj = 0.1

0.02, if EBOobj = 0.05 ,
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with the total investment costs equal to

C(S) =
∑
i∈I

ciSi =

 BC121, 15, if EBOobj = 0.1

BC141, 65, if EBOobj = 0.05 .

Example 2 (Continued)

We consider the system of 20 items displayed in Table 21 in Appendix D. Using Algorithm 7 we

generate solutions for the Multi-Item Problem. The results of the Multi-Item Approach for different

system target fill rates MIAF Robj are displayed in Table 7. One can immediately notice that the

total costs are really low for the Multi-Item Approach compared to the Class and Item Approaches.

This follows from zero to low stock levels for the classes with high prices A3, B3 and C3. So, the

Multi-Item Approach does provide really low total costs while maintaining a high overall target.

But, it is not realistic to set the base stock level of (almost) all expensive items to zero. A blend

between the Approaches could be a solution to both overstocking and understocking of expensive

items in a system.

Table 7: (Example 2 - Cont’d) Total stock per class SClass, the total cost C(S) and the aggregate

fill rate FR(S) obtained by Class Approach (CA) compared to the Item Approach (IAF Robj ) with

different fill rate targets FRobj .

SA1 SA2 SA3 SB1 SB2 SB3 SC1 SC2 SC3 C(S) (BC) FR(S) (%)

MIA75% 1 2 0 1 1 0 44 0 0 113.92 75.6

MIA90% 4 2 0 4 1 0 62 0 0 126.25 90.2

MIA99% 6 8 0 8 8 1 79 7 3 1,912.08 99.0

CA 3 6 0 6 6 3 49 4 6 9,187.99 96.5

IA75% 2 4 0 3 4 2 41 4 6 8,394.38 80.5

IA90% 2 5 0 4 5 3 47 6 7 9,409.94 92.8

IA99% 3 7 0 6 7 4 55 8 11 13,863.78 99.2

25



4.4.2 Local Search

As mentioned before, the Greedy Algorithm does not guarantee optimality. Hence, we present a

Local Search (LS) Algorithm to try to improve the solution of the Multi-Item Approach presented

by Van Houtum and Kranenburg (2015).

This algorithm still does not guarantee optimality. Note that we only present a LS algorithm for

the Multi-Item Approach with the expected back orders as a service level.

Contrary to Global Optimisation Algorithms, the Local Search Algorithm focuses on an initial

value and then searches for improvements in the neighbourhood of this particular value. This

process is repeated iteratively until no further improvement can be obtained. The LS Algorithm is

much faster than a Global Optimisation Algorithm. However, it could yield a sub-optimal solution.

The algorithm for the Local Search applied in our case is described in the following steps:

STEP 1 An initial solution S = (S1, . . . , S|I|) with corresponding aggregate back orders EBO(S) and

total cost C(S) is chosen. In our case, this solution follows from Greedy Algorithm 6, with

EBO(S) ≤ EBOobj . This follows from the definition of the Algorithm.

STEP 2 To minimise the costs the target has to be approached as near as possible, whilst the system

target should not be exceeded. So, the neighbourhood of the solution is scanned for global

optima, by making small local changes to the initial solution. We search for the smallest

contribution to the aggregate back orders when the stock level of an item is decreased by one

and compute the corresponding EBO(S) and C(S).

STEP 3 This process is repeated until the termination criterium is met. The termination criterium

is that each item has no further improvement that can be found within the LS Algorithm,

whilst the system target should not be exceeded.

STEP 4 The output for the best-improved solution is given by the algorithm.

In Step 2 we assign all items i a value Φi, which is equal to the increase in back orders concerning

its cost. This value is similar to the value of Γi in Greedy algorithm 6. But now we search for the

smallest contribution, by decreasing the stock level of one item by one. Using Equation 7, the

increase in back orders ∆EBOi(Si) can be defined as

∆EBOi(Si) = EBOi(Si) − EBOi(Si − 1) = −
∞∑

x=Si+1
P[Xi = x] = −

1 −
Si∑

x=0
P[Xi = x]

 .
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So, we define Φi by

Φi :=
−

(
1 −

∑Si
x=0 P[Xi = x]

)
ci

. (16)

In Algorithm 1 we present a pseudocode for the LS algorithm. We continue with Example 1 to

show the effect of the LS algorithm.

Algorithm 1 (Local Search Algorithm)
Input Initial solution S = (S1, . . . , S|I|), Target level EBOobj

Step 1: Compute C(S) and EBO(S).

Step 2: For all i ∈ I define Φi with new Si;

k :=argmini∈IΦi ; S := S − ek.

Step 3: Determine C(S) and EBO(S);

If ’system target is exceeded’, then STOP, else go to Step 2.

Output S = (S1, . . . , S|I|), EBO(S) and C(S)

Example 1 (Continued)

The solutions of the Local Search algorithm compared to the Greedy algorithm for the Multi-Item

Problem are compared in Table 8.

Table 8: (Example 1 - Cont’d) Solutions Multi-Item and LS Algorithm

EBOobj = 0.1 EBOobj = 0.05

SKU id Si Si with LS Si Si with LS

1 8 8 9 8

2 5 5 6 6

3 2 2 2 2

4 1 1 1 1

We see that we did not find a better solution for the Multi-Item Approach with a system target

level of 0.1. However, we did find a better solution for target level 0.05. The total expected back

orders for the improved solution are:

EBO(S) = ∑4
i=1 EBOi(Si) = 0.024, with C(S) = ∑

i∈I ciSi = BC141, 55.
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4.5 Blends Between Approaches

As seen in the previous sections the Item, Class- and Multi-Item Approach are good methods to

determine stock levels. But for example, the Multi-Item Approach does provide really low total

costs while maintaining a high overall target. However, it is not realistic to set the base stock level

of (almost) all expensive items to zero. The Class-Approach on the other hand does prevent setting

the stock levels of expensive items to zero, however might be too optimistic. A blend between the

Approaches could be a solution to both overstocking and understocking of expensive items in a

system. The goal is to create a blend between these approaches to be able to lower the costs. In

this section, we propose two methods to create a blend between the approaches. The first one is

straightforward where we leave out items from several classes from the Multi-Item Approach. This

method will be called the ’Basic Blend Approach’. The second method is more advanced, where we

optimise the class targets under the system target. We will refer to this method as the ’Advanced

Blend Approach’. So far we have not seen any results of such approaches in literature.

4.5.1 Basic Blend Approach

The Basic Blend Approach (BBA) is a combination of the Class Approach and the Multi-Item

Approach, whereby some of the classes are left out of the Multi-Item Approach. We apply the Class

Approach to the classes that are being left out. The reason for leaving out classes or items from

the Multi-Item Approach is that this approach tends to overcompensate by increasing the number

of cheap and fast-moving items. The BBA is a request of Gordian Logistic Experts B.V. (Gordian)

to compare the stock levels of especially classes with expensive slow-movers from the classification

matrix in Figure 1. They presume that with the Class Approach, the base stock levels are too high

and can be improved with such an approach. With the BBA we want to analyse how the stock

levels of especially class B3, C2 and C3 differ when the Multi-Item Approach is only applied on a

subset of the classes.
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For the Basic Blend Approach, we apply the following steps:

STEP 1 A system target service level is set and the items are divided into classes defined by the

classification system of Gordian in Figure 1. For the sake of applicability and interpretability,

we use the fill rate (FR) as a service level for this approach.

STEP 2 The system of items is divided into 2 sets of items. In Figure 2 we see three different cases of

leaving out items from the Multi-Item Approach (MIA). These choices are made in cooperation

with Gordian based on the criticality of the classes.

STEP 3 We apply the Multi-Item Approach with fill rate service level for the items in the classes with

a dark purple colour. And the Class Approach (CA) for the items with a light purple colour.

CA
A1

CA
B1

MIA
C1

CA
A2

MIA
C2

MIA
A3

MIA
C3

MIA
B2

MIA
B3

(a) BBA - I

CA

A1

CA

B1

CA

C1

CA

A2

MIA

C2

CA

A3

MIA

C3

CA

B2

MIA
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(b) BBA - II

CA

A1

CA

B1
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C1

CA

A2
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C2
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A3

MIA

C3

CA

B2

CA

B3

(c) BBA - III

Figure 2: Three cases of the Basic Blend Approach, where MIA stands for the Multi-Item Approach

and CA stands for the Class Approach.

We demonstrate the results of the Basic Blend Approach in the following Example.

Example 2 (Continued)

We consider the system of 20 items displayed in Table 21 in Appendix D.1. For the Multi-Item

Approach, we set the target fill rate FRobj = 0.9.

Applying the Class Approach and the Multi-Item Approach according to the three cases in

Figure 2 we obtain the results displayed in Table 9. We compare the total costs C(S), the total

realised FR(S) and the total stock levels per class SClass of the Basic Blend Approaches (BBA-I,

BBA-II and BBA-III) with the Multi-Item Approach (MIA), the Class Approach (CA) and the

Item Approach (IA).
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Table 9: (Example 2 - Cont’d) Total stock per class SClass, the total cost C(S) and the aggregate

fill rate FR(S) obtained by BBA-I,II and III compared to the Class Approach (CA)

SA1 SA2 SA3 SB1 SB2 SB3 SC1 SC2 SC3 C(S) (BC) FR(S) (%)

BBA-I75% 3 6 0 6 1 0 41 0 0 321.72 80.8

BBA-II75% 3 6 0 6 6 2 49 7 4 2,691.91 96.2

BBA-III75% 3 6 0 6 6 3 49 4 6 6.437.83 96.5

BBA-I90% 3 6 0 6 1 0 55 0 0 324.76 93.0

BBA-II90% 3 6 0 6 6 3 49 7 6 6,492.98 96.6

BBA-III90% 3 6 0 6 6 3 49 4 8 9,682.00 96.6

CA 3 6 0 6 6 3 49 4 6 9,187.99 96.5

Notice that, BBA − III75% and the Class Approach have exactly the stock levels per class, but

the total costs of the Class Approach are a lot higher. This is because items with SKU ids 9 and 10

have base stock levels 1 and 2 for the Class Approach and base stock levels 2 and 1 for the Basic

Blend Approach, respectively. Both items 9 and 10 are classified in class C3, so the total stock

level of class C3 remains the same. However, the purchase price of item 10 is a lot higher than the

purchase price of item 9. And thus, the total cost of the BBA − III75% is a lot lower than the total

cost of the Class Approach. Furthermore, both methods achieve the same aggregate fill rate for the

total system. The difference of especially these two methods is that in the Class Approach, each

item in class C3 has an item target fill rate of 75% and in the BBA − III75% all items in class C3

have a total target of 75%.

4.5.2 Advanced Blend Approach

In this section, we propose an approach to find optimal class fill rate (FR) targets FRobj
Kj

, such that

when the Class Approach is applied using the optimised targets, the system target FR is achieved.

We refer to this approach as the Advanced Blend Approach (ABA). Notice that we use the fill rate

as a service level for the ABA, but the same can be applied when using the mean aggregate back

orders as a service level. For this approach we use classes A1, A2, A3, . . . , C1, C2, C3 as defined by

Gordian Logistic Experts B.V. (Gordian) explained in Section 4.3. For mathematical formulation

we define classes Kj with j ∈ J = {1, . . . , 9}.
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Notice that the ABA is another optimisation problem, which can be defined as follows. The

objective of this new optimisation problem is to minimise the target service levels of classes Kj .

The realised FR of the system after applying the Class Approach with targets FRKj is defined as

FR(S) = ∑
j∈J

∑
i∈Kj

FRi(Si). So the constraint of the problem is that the aggregate system fill

rate FR(S) should be at least as great as the system target fill rate FRobj . See Problem 17 for a

mathematical formulation of the optimisation problem corresponding to the ABA.

min C(S)

s.t. Si = min{k ∈ N : FRi(k) ≥ FRobj
Kj

}, ∀i ∈ Kj ,

FR(S) ≥ FRobj ,

0 ≤ FRobj
Kj

≤ 1,

S ∈ S ′,

(17)

with S ′ defined as {S = (S1, . . . , S|I|) | Si ≥ max{⌈µiLi − 1⌉, 0}, ∀i ∈ I}. This is again a

nonlinear integer programming problem. To be able to solve this problem we introduce a new

Greedy based approximation algorithm, explained in the next section.

Greedy Algorithm for ABA

Recall the definition of the aggregate system fill rate and the item fill rates:

FR(S) = ∑
i∈I

µi
M · FRi(Si) with FRi(Si) = ∑Si−1

x=0 P[Xi = x].

From Lemma 4.2 it follows that FRi(Si) is a concave and increasing function. Hence, a greedy

algorithm can be applied to generate efficient solutions to Problem 17.

As an input, we need the average demand µi per year, the frequency of the demand fi, the

purchase prices ci in BC, the lead time Li per year and the system fill rate target FRobj . We start with

an initial solution S = (S1, . . . , S|I|) with Si = max{⌈µiLi−1⌉, 0, ∀i ∈ I}. This solution generates the

lowest possible investment. As initial FR targets for the classes, we set FRobj
Kj

:= ∑Si−1
x=0 P[Xi = x]

generated with our initial solution S. These class FR targets are a lower bound for the problem.

Then in each iteration, we choose one class to increase its target by 1%. The choice of this class is

based on the highest added value per class. This principle is also known as the ”Biggest Bang For

The Buck” and is also used in the Multi-Item Approach in Section 4.4. We denote this added value

by Θj and we define Θj as follows. The subscript j stands for the jth class Kj .
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Define ∆Si as the increase in the stock level of SKU i ∈ Kj when the class target fill rate FRobj
Kj

is increased by 1%. Then we define Θj as

Θj =
∑

i∈Kj
∆Si · µi

M ·
∑

i∈Kj
·ci

, (18)

with M = ∑
i∈I µi.

Class Kj with the highest corresponding value for Θj is selected and its fill rate target FRobj
Kj

is

increased by 1%. With our new class FR target we generate a new solution S and its corresponding

realised fill rate FR(S). We continue this process until the total FR for the system FR(S) is greater

than or equal to the system FR target FRobj . One issue is that because of the integrality of Si,

a small increase in the target FR can result in high stock levels and thus high costs. Therefore,

after each iteration, the class FR target is set to the lowest realised item fill rate in that class. In

Algorithm 2 a pseudo code for the ABA is given.

Algorithm 2 (Algorithm for Advanced Blend Approach)
Input Average demand µi, Cost ci, Lead time Li, System target service level FRobj

Step 1: Classification Classify all i ∈ I in classes Kj , with j = 1, . . . , 9 and I = ⋃9
j=1 Kj

Step 2: Initialisation For all j = 1, . . . , 9 and for all i ∈ Kj set Si := max{⌈µiLi − 1⌉, 0};

Compute C(S), FR(S) and set for all Kj : FRobj
Kj

:= ∑Si−1
x=0 P[Xi = x] for all i ∈ Kj .

Step 3: For all Kj define Θj with new Si;

k :=argmaxjΘj ; l := argmaxiFRi(Si) with i ∈ Kk; FRobj
Kk

:= FRl(Sl).

Step 3: Determine C(S) and FR(S) by applying Class Approach with new targets;

If ’system target is reached’, then STOP, else go to Step 3.

Output {FRobj
K1

, . . . , FRobj
K9

}, S = (S1, . . . , S|I|), FR(S) and C(S)

We demonstrate the Advanced Blend Approach in the following Example.

Example 2 (continued)

We consider the system of 20 items displayed in Table 21 in Appendix D.1. In Table 22 in Appendix

D.1 we present the optimised class target fill rates for different system target fill rates. One can

immediately notice that the targets for classes A3, B3, C2 and C3 are all 0% for system fill rate

targets 80% until 96%. Notice that in our example no items are classified to class A3, hence the

target fill rates of class A3 are all 0.
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However, the other classes are nonempty but still have an optimal class target of 0%. Finally,

in Table 23 in Appendix D.1 we compare the results of the ABAF Robj to the Multi-Item Approach

(MIAF Robj ) and Class Approach for three different target fill rates FRobj .

In the next chapter we continue with a data analysis of the data set on which we will apply all

approaches described in this chapter.

33



5 Data Analysis

All data sets used for this research are provided by clients of Gordian Logistic Experts B.V.

(Gordian). Due to confidentiality agreements, the company names are non-disclosed. Furthermore,

the prices are scaled such that the privacy is not intruded.

In this section, one large data set is analysed. The data set is provided by a low-cost airline and

contains a lot of data that is not needed for this research.

The general information that is relevant and needed is:

- the number of parts,

- the total period of the collected data,

- the number of orders during the total period, so the order frequency,

- the order and supply moments, to determine the lead time,

- the order quantities,

- the price of a part, and

- the location of a part (in a system)

To ensure completeness, we make the following assumptions considering the data:

Assumption 10. Only unplanned demand is considered.

Assumption 11. Only items with a yearly demand greater than 0 are considered.

Assumption 12. Only items located at the main location are considered.

Assumption 13. When the supply time of an item is not reliable, the predicted lead time will be

used for calculations.

Assumption 14. An item is considered to be part of just one system.

Assumption 15. One month has 30 days and one year has 365 days.

Assumption 16. All demand is considered to be of equal importance, whether it is from a different

location or from the main location itself.

The data set includes (statistical) information about the spare parts of aeroplanes. The parts

range from a little lamp used above a seat to a large engine for example. For an overview of the

numbers of this data set, see Table 10. There is a total of 60 months of historical data available.
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The first month of available data is September 2017 and the last month of data is August 2022.

The average demand lead time is calculated over this time period. For programming purposes, the

items are sorted in alphabetical order and they are assigned a number i.

Table 10: Statistics

Airline Data

Nr. of spare parts 39,003

Nr. of parts at main location 33,047

Nr. of systems/aeroplanes 39

Nr. of aeroplane types 2

Price cheapest part AC0.0002

Price most expensive part AC1,121,210

The company owns 39 aeroplanes and has a total of 39, 003 different spare parts. However, there

are just two types of aeroplanes. Furthermore, the airline has 4 different locations to stock their

spare parts. We only consider the main location since the remaining 3 locations have the main

location as their preferred supplier. Moreover, the main location has the largest number of parts.

Specifically, 33, 047 parts are located at the main location.

The company did not provide any information about what kind of systems there are in an aero-

plane. Moreover, no information about which part belongs to which system is present. So for this

research, every aeroplane will be considered one system. More specifically, we select the data of one

aeroplane to use for the numerical results. We consider a subset of the large data set where the

average demand is nonzero and unplanned at the main location. After applying Assumptions 10,

11 and 12 to the selected aeroplane, there are 4701 items in our data set.

In Figure 7 in Appendix C a scatter plot of relevant items of our aeroplane is given. The items

are classified according to the classification matrix of Gordian in Figure 1. The different classes are

represented by different colours. Notice that, this scatter plot is resized to display the items more

clearly.
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The cheapest and most expensive items in the aeroplane are AC0,0002 and AC695,844, respectively.

Furthermore, the items with the lowest and highest yearly demand have an average demand of 0.2

and 23, 339.62 per year, respectively. Notice that the prices and the average demand have a large

gap between the highest and lowest values, so the Multi-Item Approach is likely to be unbalanced

as well. In Table 11 the number of parts and the prices of the cheapest and most expensive parts

of each class are displayed. Notice that we have a very unbalanced data set in terms of the number

of items in each class.

Table 11: Data aeroplane

A1 A2 A3 B1 B2 B3 C1 C2 C3

Nr. of parts 130 54 31 275 114 92 2084 1062 859

Price cheapest part (AC) 0.01 34.08 550.29 0.01 33.09 504.33 2e-04 33.06 501.52

Price most expensive part (AC) 31.95 406.25 50,775.92 30 480.66 121,612 32.83 500.97 695,844
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6 Numerical Results

This section contains all numerical results and analyses of the different approaches explained in

Chapter 4 using the data set which is analysed in Chapter 5. The results are all generated using

the Java programming Language and the figures are all created in RStudio. First, we present the

results for each method separately and we finish with a comparison of all the methods.

6.1 Item Approach

In this section, we present the numerical results of the Item Approach explained in Section 4.2.

6.1.1 Expected backorders as Service Level

Following Algorithm 3 we generate solutions for the Item Approach with expected backorders as

service level. Let EBOobj be the system target expected backorders. In Table 12 the total costs

and the realised aggregate mean backorders are given for EBOobj ∈ [0, . . . , 2.5]. We see that the

realised aggregate backorders have a large gap to their corresponding target.

Table 12: The total costs C(S) and aggregate mean backorders EBO(S) for different target levels

EBOobj generated following the Item Approach.

EBOobj 0.0 0.25 0.5 0.75 1.0 1.5 1.75 2.0 2.25 2.5

C(S) (€ x Millions) 22.00 10.07 9.83 9.66 9.40 9.32 9.06 9.03 8.97 8.92

EBO(S) 0.0 0.192 0.381 0.587 0.778 1.168 1.361 1.574 1.782 1.972

In Figure 9 in D.2 the total costs C(S) are depicted for different values of EBOobj . We see that

the total costs are lower for higher targets, which is an obvious result.

6.1.2 Fill Rate as Service Level

Following Algorithm 4 we generate solutions for the Item Approach with the fill rate as service

level. Let FRobj be the system target fill rate. In Table 13 the total cost and the aggregate fill rate

are presented for different levels of FRobj . See Figure 8 in the Appendix D.2 for a plot of the total

costs plotted against fill rate targets. In Figure 3 we displayed the total stock and total costs per

class for three different target levels to showcase how the costs are divided over the classes.
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Table 13: The total costs C(S) and total realised fill rate FR(S) for different target levels FRobj

generated following the Item Approach.

FRobj 60% 65% 70% 75% 80% 85% 90% 95% 98% 99%

C(S) (€ x Millions) 4.37 4.44 4.53 4.72 4.90 5.10 5.36 5.93 6.86 7.18

FR(S) (%) 65.0 69.4 73.8 78.4 82.8 87.3 91.5 95.9 98.4 99.2
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Figure 3: The total costs C(S) (in BC (×1000)) and stock per class for target fill rates of 75%, 90%

and 99%, respectively.

The computation time for the Item Approach is 0 seconds for our data set with |I| = 4701.

6.2 Class Approach

For the Class Approach, we use the classification matrix of Gordian as explained in Section 4.3. As

a service level, we use the fill rate. In Figure 4 the results of the Class Approach using Algorithm

5 in Appendix A.2 are displayed. Notice that in the Class Approach, we use the fixed class targets

from Figure 1.

The aggregate fill rate for the system with corresponding total costs is equal to

FR(S) = 97.8% with C(S) = ∑4701
i=1 ciSi = BC5, 095, 928.98.
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Figure 4: The total costs C(S in (x1000) and stock per class generated using the Class Approach

From Table 13 it follows that for an aggregate fill rate of 98 % the total costs are approximately

BC6.86 Million, which is considerably higher than the total cost following the Class Approach.

Lastly, the computation time for the Class Approach is 0 seconds for our data set with |I| = 4701.

6.3 Multi-Item Approach

In this section, we present the numerical results of the Multi-Item Approach explained in Section

4.4.

6.3.1 Expected Backorders as Service Level with Local Search

Following Algorithm 6 we applied the Multi-Item Approach (MIA) with target expected backorders

EBOobj = 2.0. In Figure 5 we depicted a subset of the solutions generated by the Greedy Algorithm

which did not satisfy the target.

In Section 4.4.2 we introduced a Local Search (LS) Algorithm to attempt to improve the solutions

generated by Algorithm 6. We apply this algorithm with a target expected back orders EBOobj =

2.0.
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Figure 5: Total costs (C(S) (BC x1000)) for different expected back orders (EBO(S)) obtained by

the Multi-Item Approach

In Table 15 we show the total stock levels per class, the total costs, the aggregate expected

backorders and the computation time of both approaches. The total cost generated following from

the MIA is approximately BC4.81 Million. The LS algorithm lowers the total costs to approximately

BC4.79 Million, which is a decrease of approximately BC200, 000.00. Notice that the LS algorithm

found a feasible solution with corresponding aggregate expected backorders very close to the target.

Namely, EBO(S) = 1.999, whilst the aggregate expected backorders following from the Multi-Item

Approach is EBO(S) = 1.868. We see that only the stock levels of classes C1, C2 and C3 have a

noticeable decrease after applying the LS algorithm.

Table 14: Total stock per class SClass, the total cost C(S) and the expected back orders EBO(S)

obtained by Multi-Item Approach compared to the Multi-Item Approach with LS for a target service

level EBOobj = 2.0.

SA1 SA2 SA3 SB1 SB2 SB3 SC1 SC2 SC3 C(S) (BC) EBO(S)
Computation

Time (s)

MIA 5,797 2,558 1,265 4,296 1,171 429 10,307 2,862 1,428 4,809,499.30 1.868 4,663

MIA - LS 5,797 2,558 1,265 4,296 1,171 429 10,227 2,827 1,373 4,785,516.55 1.999 27

Lastly, the computation time of the MIA with |I| = 4701 is 78 minutes, which is noticeably

high compared to the Item Approach and Class Approach. The LS algorithm takes only 27 seconds

since it starts with an initial solution close to the target.
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6.3.2 Fill Rate as Service Level

Let FRobj be the system target fill rate. We denote the Multi-Item Approach with system target

FRobj as MIAF Robj . Following Algorithm 4 we generated solutions for three different targets,

namely 75%, 90% and 99%. These solutions are displayed in Table 15. To showcase how the total

stock is divided over the classes, we also displayed the total stock per class denoted by SClass.

We see that the total costs vary approximately BC3,300.00 between targets 75% and 90%, whilst

the costs vary approximately BC360,000.00 between targets 90% and 99%. In Figure 6 we plotted

different target fill rates between 40% and 100 % against the total costs. Hence, to achieve higher

service levels the algorithm has a considerably high computation time. To achieve a system target

of 99%, the algorithm runs for 41 minutes. Furthermore, the total costs in case BBA-III are higher

compared to the other cases. To demonstrate these differences in stock levels and costs, see Figures

10 - 12.

Table 15: Total stock per class SClass, the total cost C(S) and the realised fill rate FR(S) obtained

with the Multi-Item Approach at different target fill rates FRobj .

SA1 SA2 SA3 SB1 SB2 SB3 SC1 SC2 SC3 C(S) (BC) FR(S)
Computation

Time (s)

MIA75% 3,979 1,734 879 2,175 317 52 2,175 142 10 2,326,490.76 75.0 454

MIA90% 4,693 1,851 879 2,873 353 52 4,204 153 10 2,329,785.36 90.0 999

MIA99% 5,616 2,437 1,087 3,955 969 172 8,504 1,785 218 2,690,354.52 99.0 2,477

€ 2,700.00

€ 2,650.00

€ 2,600.00
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Figure 6: Total costs C(S) (BC x1000) for different Fill Rate targets FRobj (%)
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6.4 Basic Blend Approach

In this section, we present the results of the Basic Blend Approach (BBA) as explained in Section

4.5.1. In the BBA we consider three cases BBA-I, BBA-II and BBA-III. For all three cases, we

generate solutions for three different target fill rates for the MIA, namely 75%, 90% and 99%. These

solutions are presented in Table 16. Notice that for the target fill rate 99%, the total realised fill

rates of all three cases are lower than 99%. This is because the system target is only set for a

subset of the classes. The remaining classes have different class targets corresponding to the Class

Approach. Only class A1 has a class target of 99%, the other classes have lower targets. Hence,

the overall fill rate can be lower than 99%. The computation time of the BBA is not as low as that

of the Class Approach, which has a computation time of 0 seconds. Especially for BBA-I, we have

high computation times, since we apply the Multi-Item Approach on a large subset of all the items.

The Multi-Item Approach has computation times as seen in the previous section.

Table 16: An overall comparison for the Basic Blend Approaches for different target fill rates

(FRobj), the realised target fill rates (FR(S), realised total costs (C(S)) and computation time.

Methods FRobj (%) FR(S) (%) C(S) (€) Computation Time (s)

BBA-I 75 86.57 € 2,341,777.74 693

BBA-II 75 97.28 € 2,839,748.99 101

BBA-III 75 97.68 € 3,475,047.20 19

Methods FRobj (%) FR(S) (%) C(S) (€) Computation Time (s)

BBA-I 90 93.52 € 2,457,500.37 1,220

BBA-II 90 97.77 € 3,042,881.86 179

BBA-III 90 97.78 € 3,810,178.95 30

Methods FRobj (%) FR(S) (%) C(S) (€) Computation Time (s)

BBA-I 99 98.56 € 3,355,322.10 1,849

BBA-II 99 98.07 € 4,223,135.21 320

BBA-III 99 97.84 € 5,027,538.01 53
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Notice that the light-coloured classes in Figures 10 - 12 all have the same stock levels and

costs as the Class Approach as shown in Appendix D.3. The Basic Blend Approach focuses on the

differences in the total costs of the dark-coloured classes compared to the Class Approach. The

stock levels of class C3 are considerably higher for BBA-III compared to BBA-I and BBA-II. The

most expensive items are in class C3, so for higher stock levels it has the highest costs. Compared

to the Class Approach classes B3 and C3 have lower total costs for all BBA cases. In the Class

Approach class C3 has a target of 75%. In BBA-III the overall system target for the whole class

is 75%. The total costs of the class decrease with BC68,000.00 whilst the total stock level increases

with 1691. This is because the items in class C3 still have large price gaps. Table 11 follows that

the gap between the price of the most expensive and the cheapest part in C3 is BC695.342,48.

6.5 Advanced Blend Approach

In this section, we present the results of the Advanced Blend Approach introduced in Section 4.5.2.

Using Algorithm 2, we generate the optimised class target fill rates for three different system tar-

gets, namely 75%, 90% and 99%. See Table 17 for these optimised class targets. In Table 24 in

Appendix D.4, we present the optimised class targets for all integer system targets between 75% and

99%. Notice that the ABA generates near zero optimised class targets, except for system target 99%.

From the Class Approach applied to this particular data set, it follows that the aggregate fill

rate is 97.8%. If we look at Table 24, the optimised class targets corresponding to system target

97% are slightly different from the class targets in the Class Approach. Specifically, the optimised

targets for classes A3, B3, and C3 are a lot lower, whilst the remaining classes have a slightly higher

optimised class target.

Table 17: Optimal Class Targets for the different Target Fill Rates (FRobj) obtained by the Ad-

vanced Blend Approach

FRobj (%) A1 (%) A2 (%) A3 (%) B1 (%) B2 (%) B3 (%) C1 (%) C2 (%) C3 (%)

75 99.5 49.0 45.0 99.7 32.9 12.1 56.8 16.8 0.9

90 99.5 90.5 45.0 99.7 32.9 12.1 99.3 16.8 0.9

99 99.5 99.7 99.1 99.7 99.2 50.6 99.3 99.7 70.3
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When we look at Figures 13 and 14 in Appendix D.4 we see that the costs of classes A3, B3,

C3 are higher than the costs of the other classes, while their stock levels are really low. The reason

for that is our data set is very unbalanced. For example, class C3 has many items with very low

demand concerning their costs. So the algorithm is not likely to select class C3 to increase the class

target fill rate.

In Table 18 the aggregate fill rate with corresponding total cost obtained by the ABA is presented

for target fill rates 75%, 90% and 99%. The table also contains the corresponding computation

times. Notice that the ABA is a noticeably fast approach since the computation times are all under

1 minute for our data set with |I| = 4701.

Table 18: Different Target Fill Rates (FRobj) with the realised target fill rates, realised total costs

and computation time obtained by the Advanced Blend Approach

FRobj (%) FR(S) (%) C(S) (€)
Computation

Time (s)

75 75.02 € 2,332,341.65 12

90 90.02 € 2,339,564.55 16

99 99.00 € 4,938,916.84 24

6.6 Comparison

In this section, we compare the results presented in sections 6.1-6.5. In Table 19 the total costs,

the aggregate fill rates and the corresponding computation times of all methods are displayed and

compared to the results of the Class Approach. The table follows that the Item Approach performs

the worst. It obtains the highest total investment costs concerning the aggregate fill rates. How-

ever, the computation time of the Item Approach is together with the Class Approach, the lowest

compared to the other approaches.

The Multi-Item Approach results in the lowest total investment costs concerning the aggregate

fill rates. However, the computation time of this approach together with the Basic Blend Approach

- Case I are the highest compared to the other approaches.
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Table 19: The total cost C(S) and the aggregate fill rate FR(S) obtained by comparison in between

all approaches.

Approach C(S) (BC) FR(S) (%)
Computation

Time (s)

CA 5,095,928.98 97.8 0

IA75% 4,720,733.82 78.4 0

MIA75% 2,326,490.76 75.0 454

BBA-I75% 2,341,777,74 86.6 693

BBA-II75% 2,839,748.99 97.3 101

BBA-III75% 3,475,047.20 97.7 19

ABA75% 2,332,341.65 75.0 12

IA90% 5,357,231.65 91.5 0

MIA90% 2,329,785.36 90.0 999

BBA-I90% 2,457,500.37 93.5 1,220

BBA-II90% 3,042,881.86 97.8 179

BBA-III90% 3,810,178.95 97.8 30

ABA90% 2,339,564.55 90.0 16

IA99% 7,178,931.49 99.2 0

MIA99% 2,690,354.52 99.0 2,477

BBA-I99% 3,335,322.10 98.6 1,849

BBA-II99% 4,223,135.21 98.1 320

BBA-III99% 5,027,538.01 97.8 53

ABA99% 4,938,916.84 99.0 24
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In Table 20 the stock levels per class are compared for all approaches. The Multi-Item Approach

has the lowest total investment costs, as the determined stock levels of the classes with expensive

items are the lowest for the Multi-Item Approach. On the other hand, the Multi-Item Approach

has the highest stock levels for class A1 with system target fill rates of 90%.

Comparing the Basic Blend Approach and the Advanced Blend Approach to the Class Approach,

it follows that both blends obtain lower total investment costs for the three specific target fill rates.

A trade-off between the total investment costs and the total stock levels per class can be of help

by selecting an approach to determine minimum base stock levels while satisfying high service

measures.

Table 20: Total stock per class SClass by comparison in between all approaches.

Approach SA1 SA2 SA3 SB1 SB2 SB3 SC1 SC2 SC3

CA 4,459 2,144 1,125 2,685 749 302 4,683 1,423 968

IA75% 3,656 1,908 1,001 2,001 566 230 3,379 1,373 968

MIA75% 3,979 1,734 879 2,175 317 52 2,175 142 10

BBA-I75% 4,459 2,144 879 2,685 520 52 5,580 251 10

BBA-II75% 4,459 2,144 999 2,685 869 118 7,781 1,335 63

BBA-III75% 4,459 2,144 1,233 2,685 1,119 330 9,813 2,438 818

ABA75% 4,586 1,776 879 3,083 317 52 3,026 142 10

IA90% 3,939 2,023 1,080 2,286 682 300 4,090 1,601 1,158

MIA90% 4,693 1,851 879 2,873 353 52 4,204 153 10

BBA-I90% 4,459 2,144 1,125 2,685 749 134 4,683 1,495 106

BBA-II90% 4,459 2,144 1,125 2,685 749 265 4,683 2,131 514

BBA-III90% 4,459 2,144 1,125 2,685 749 437 4,683 3,041 1,358

ABA90% 4,586 2,028 879 3,083 317 52 6,292 142 10

IA99% 4,459 2,242 1,219 2,830 898 432 6,028 2,495 1,813

MIA99% 5,616 2,437 1,087 3,955 969 172 8,504 1,785 218

BBA-I99% 4,459 2,144 1,125 2,685 749 302 4,683 1,423 689

BBA-II99% 4,459 2,144 1,125 2,685 749 302 4,683 1,423 1,078

BBA-III99% 4,459 2,144 1,125 2,685 749 302 4,683 1,423 1,789

ABA99% 4,586 2,319 1,223 3,083 911 178 6,292 2,901 944
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7 Conclusion

This section is dedicated to the conclusion of this research and the answers to our research questions.

Recall the main research question:

How can we develop a blend between the single-item approach and

a system approach in spare parts management?

To answer this main question, the definition of item and system approaches in spare parts

management have been assessed. The summary of the methods that are assessed with the main

findings is as follows:

• Item Approach - In an item approach the target service levels are set individually. In this

research, we refer to the Item Approach as the approach which sets the same target level for

each item. As a result, the stock levels obtained are too high, which results in high costs. The

Item Approach is a fast approach, easy to implement and flexible.

• Class Approach - The approach we refer to as the Class Approach is also an item approach

where equal item target levels are set for all items in a class. However, within this approach,

individual targets are set based on the classification of items. It is a solid method often used

in practice because it makes sense to give items different target service levels based on their

price and demand. Moreover, it is flexible and fast. An important part of this approach is

the choice of class target service levels, which is done manually and arbitrary.

• Multi-Item Approach - A system approach is an approach where base stock levels for items are

set based on a system target service level and no individual item targets are used. We refer to

the system approach where we use a Greedy algorithm to solve the multi-item problem as the

Multi-Item Approach. In this research, it was found that the Multi-Item Approach results in

low total costs and high computation times. The main disadvantage of this approach is that

it is not easy to interpret and it results in unbalanced stock levels, especially for expensive

slow-movers the stock levels are low, whilst the opposite holds for cheap fast-movers.

We find that the fill rate as a target service level in these approaches is more practical since

it is also used by Gordian and a lot of other companies. However, the number of expected back

orders can be more useful in a theoretical framework. Hence, we describe the Item and Multi-

Item Approach for both service levels. Nevertheless, for comparison reasons, we implemented the

following two blends only with the fill rate as a service level.
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Within this research, two blend approaches are proposed and compared. The first one is referred

to as the Basic Blend Approach and the second one is the Advanced Blend Approach. The two

methods are summarised with their respective findings as follows:

• Basic Blend Approach - This approach selects a subset of classes defined by Gordian and

sets the system fill rate target only for these classes. The remaining classes in the system

use the Class Approach to determine base stock levels. With the Basic Blend Approach the

problem of unbalanced results as obtained with the Multi-Item Approach for the total system,

is solved. However, the method is not easy to interpret, because part of the approach still

uses a Multi-Item Approach. Furthermore, it has relatively high computation times. Another

relevant point to consider is the choice of the subset of classes or items. All three considered

cases result in lower costs. Only the third case has a relevant decrease in stock levels in the

classes with expensive slow-movers.

• Advanced Blend Approach - In the Advanced Blend Approach we developed an algorithm

to determine optimal class fill rate targets, whilst satisfying a system fill rate target. This

approach is easier to interpret, is more flexible and yields lower total costs than the Class

Approach. In addition to this, the ABA has lower computation times than the Multi-Item

Approach and the Basic Blend Approach. However, the method can still yield unbalanced

results with low stock levels for expensive slow-movers, because the generated optimal class

target fill rate for expensive items is low. Therefore, this approach can serve as a starting

point for the usage of one of the other approaches, whereby initial values for the class target

fill rates are obtained.

Currently, Gordian finds that the Class Approach is the most practical approach to determining

minimum base stock levels for spare parts. They are of the opinion that the Class Approach results

in stock levels which are too high for expensive slow-movers. Furthermore, this method is highly

dependent on the choice of the class target fill rates. Depending on a trade-off between the total

costs and minimum base stock levels, the Basic Blend Approach and the Advanced Blend Approach

could both be suitable and relevant for clients of Gordian as blends between an item approach and

a system approach. Both approaches result in lower total investment costs compared to the Class

Approach of Gordian. We find that the Advanced Blend Approach is the most applicable blend

since it has the most similarities with the Class Approach and is the most interpretable one.
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8 Discussion and Further Research

In this section, we discuss the limitations of the proposed methods in this research and we give some

recommendations for further research. The first discussion point of this research is that we tested

the performance of the described methods on just one data set and assumed that the demand rate of

all items is constant. However, in practice, the demand rate is usually not constant. Furthermore,

the lead times are determined as the average lead time over four years. In further research, one

could apply the same methods with variable lead times and demand. For example, for the demand

distribution, the Compound Poisson could be applied instead of the Poisson distribution.

The next discussion point is that we apply an (S −1, S)-policy for all individual items. However,

this choice of policy is only realistic, because we do not consider fixed order costs. Especially for

cheap fast-movers, it could be better to follow an (R, Q)-policy. In addition to this, the Greedy

algorithm for the Multi-Item problem increases the stock level of one item by one per iteration.

Adding a batching size of Q for items with high demand and low cost instead of one will decrease

the computation time of the algorithm.

One of our assumptions is that all items are considered to be equally critical. In practice, not all

items cause the entire system to fail when a failure occurs. An extension to the proposed methods

could be to add weights to the items, based on their criticality.

In the Basic Blend Approach, we assume three cases to make a blend between the Class Ap-

proach and the Multi-Item Approach. The choices of these cases are made in cooperation with

Gordian Logistic Experts B.V. (Gordian). The idea behind these cases is to lower the stock levels

of the classes with expensive slow-movers compared to the Class Approach. An extension of this

approach could be to not limit ourselves to the existing classes. For example, one could apply the

same approach within the class containing expensive slow-movers.

In the Advanced Blend Approach, we optimise the class target fill rates. However, the thresholds

separating the classes could also be optimised, as well as the number of classes. One option is to

use the classes in the system approach while requiring that they have the same target. The more

classes you define the closer you are compared to the system approach.
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Another recommendation for the Advanced Blend Approach is about the presented Greedy al-

gorithm for this approach. In this algorithm class fill rate targets are increased by 1% until the

system target fill rate is achieved. In the results we see that the Advanced Blend Approach sets

the target fill rate of class C3, containing expensive slow-movers, to 0.9% for system target fill rates

lower than 99%. However, for 99% the class target fill rate of C3 jumps to 70.3%. An alternative

can be to increase the class target fill rates by 0.1% instead of 1%, yielding in more precise optimised

class target fill rates.

Finally, for the Multi-Item Approach with expected back orders as a target service level, we

propose a Local Search algorithm to improve the solution obtained by the Greedy algorithm in the

Multi-Item Approach. However, the Greedy algorithm already generates efficient solutions to the

Multi-Item Problem. In our results, we see that the Local Search Algorithm decreases the stock

levels of especially the classes with expensive slow-movers. The disadvantage of the Multi-Item

Approach is that it tends to set really low stock levels for these items. So lowering their stock levels

is not really an ’improvement’.
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A Pseudocodes

In this section, we give pseudo codes for the methods used in this thesis.

A.1 Pseudocode Item Approach

In this thesis, the Item Approach is used with both the expected back orders and the fill rate as a

service level. Hence, in this section, pseudo codes for both service levels are given. The algorithms

for the Item Approach are based on Van Houtum and Kranenburg (2015).

A.1.1 Expected back orders as service level

The algorithm for the Item Approach searches for the smallest Si such that EBOi(Si) is as small

as possible. The input for the algorithm is the average demand µi, the purchase price ci and the

lead time Li of all items i ∈ I. Furthermore, the target service level EBOobj is given as an input.

The algorithm starts with the initialisation where all base-stock levels are set to zero, i.e. Si = 0

for all items i. So S = (0, . . . , 0), with corresponding total investment cost C(S) = 0, which is the

lowest possible total cost. The expected back orders for each item with Si = 0 is EBOi(Si) = µi  Li,

which is the highest possible total back orders. Furthermore, the item targets are set to EBOobj
i :=

µi
M EBOobj with M = ∑

i∈I µi. In the next step of the algorithm, 1 is added to Si for each item

individually, until the item target is reached. From Lemma 4.1 originated from Van Houtum and

Kranenburg (2015) we know that EBOi(Si) is decreasing and convex in Si, so we know that in

each iteration, the expected back orders are one step closer to the target. The algorithm ends

by computing the total investment cost C(S) and the aggregate means back orders EBO(S). A

pseudocode for the algorithm for the item approach can be found in Algorithm 3.

A.1.2 Fill rate as service level

The algorithm for the Item Approach where the fill rate (FR) is used as a service level is similar to

the algorithm above. The main idea is to increase the stock level Si by 1 until the FR target FRobj

is achieved. From Lemma 4.2 originated from Van Houtum and Kranenburg (2015) follows that

FRi(Si) is increasing and concave on max{⌈µiLi − 1⌉, 0}. So, in the initialisation of the algorithm,

set Si := max{⌈µiLi − 1⌉, 0} and compute the corresponding C(S) and FR(S). And for each item

the item FR target FRobj
i = FRobj is set.
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Algorithm 3 (Algorithm for Item Approach)
Input Average demand µi, Cost ci, Lead time Li, Target service level EBOobj

Step 1: Initialisation For all i ∈ I set Si := 0, so S= (0, . . . , 0) and set EBOobj
i := µi

M EBOobj ;

EBOi(Si) := µiLi; EBO(S) := ∑
i∈I µiLi and C(S) := 0 .

Step 2: For all i ∈ I;

while (EBOi(Si) > EBOobj
i )

do Si := Si + 1 and compute EBOi(Si) with new Si

Step 3: Determine C(S) and EBO(S);

Output S = (S1, . . . , S|I|) and C(S).

In the next step, the smallest Si such that FRi(Si) is greater than or equal to FRobj
i is determined.

The algorithm ends with computing the total investment cost C(S) and the aggregate FR FR(S).

The pseudocode for the Item Approach with the FR as a service level is shown in Algorithm 4.

Algorithm 4 (Algorithm for Item Approach with FR as service level)
Input Average demand µi, Cost ci, Lead time Li, Target service level FRobj

Step 1: Initialisation For all i ∈ I set Si = max{⌈µiLi − 1⌉, 0} and set FRobj
i = FRobj ;

Determine FRi(Si) := ∑Si−1
x=0 P[Xi = x]; FR(S) := ∑

i∈I
µi
M FRi(Si) and C(S) .

Step 2: For all i ∈ I;

while (FRi(Si) < FRobj
i )

do Si = Si + 1 and compute FRi(Si) with new Si

Step 3: Determine C(S) and FR(S);

Output S = (S1, . . . , S|I|), FR(S) and C(S).

A.2 Pseudocode Class Approach with fill rate as service level

In the Class Approach items from different classes get different targets. First, all items i ∈ I are

classified in classes Kj , with j = 1, . . . , 9, according to the classification matrix of Gordian Logistic

Experts B.V. in Figure 1. Each class has its fill rate (FR) target FRobj
Kj

, which is defined by Gordian.

After classification, we set Si = max{⌈µiLi − 1⌉, 0} and compute the corresponding aggregate FR

and the total cost, FR(S) and C(S) respectively. For all items i ∈ Kj , we set individual item

targets equal to the class target, so FRobj
i := FRobj

Kj
. Then we increase the stock levels Si by one

until the target FR is reached, as in the Item Approach explained above. The algorithm ends by

computing the total cost C(S) and the aggregate FR, FR(S). In Algorithm 5 the pseudocode is

given for the algorithm to apply the Class Approach.
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Algorithm 5 (Algorithm for Class Approach with FR as service level)
Input Average demand µi, Cost ci, Lead time Li, Class target service levels FRobj

Kj

Step 1: Classification Classify all i ∈ I in classes Kj , with j = 1, . . . , 9 and I = ⋃9
j=1 Kj

Step 2: Initialisation For all i ∈ I;

Set Si := max{⌈µiLi − 1⌉, 0} and

Set for all j = 1, . . . , 9 and i ∈ Kj FRobj
i := FRobj

Kj
; Compute C(S) and FR(S).

Step 2: For all i ∈ I;

while (FRi(Si) < FRobj
i )

do Si = Si + 1 and determine FRi(Si)

Step 3: Determine C(S) and EBO(S);

Output S = (S1, . . . , S|I|), EBO(S) and C(S).

A.3 Pseudocode of Greedy Algorithm for Multi-Item Problem

In this thesis, the Multi-Item Problem is defined with both the expected back orders and the fill

rate as service levels. Hence, this section contains pseudocodes of Greedy algorithms with both

service levels which originate from Van Houtum and Kranenburg (2015).

A.3.1 Expected back orders as service level

The algorithm that we use to solve the Multi-Item problem is a Greedy-based approximation algo-

rithm which originates from Van Houtum and Kranenburg (2015), which searches through a solution

space which contains efficient solutions to the Multi-Item Problem. This follows from Theorem 2

in the article of Fox (1966).

The input of the algorithm is the average demand µi, the purchase price ci, the lead time Li for

item i ∈ I and the system target level EBOobj . First, the algorithm starts with setting Si := 0 for

all i ∈ I. So S = (0, . . . , 0), with corresponding total cost C(S) = 0 and EBO(S) = ∑
i∈I µiLi. In

the next step of the algorithm, the idea is to increase the stock level of just one item by one, one

at a time. This item is chosen based on a greedy search. Each item gets a ’value’ Γi which is equal

to the difference in back orders concerning its cost. Using Equation 7, the increase in back orders

∆EBOi(Si) can be defined as

∆EBOi(Si) = EBOi(Si + 1) − EBOi(Si) = −
∞∑

x=Si+1
P[Xi = x] = −

1 −
Si∑

x=0
P[Xi = x]

 .
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So the decrease in back orders is equal to −∆EBOi(Si). The value Γi is equal to the largest

contribution to the back orders concerning the increase of the total cost. So Γi can be defined by

Γi := (1 −
∑Si

x=0 P[Xi = x])
ci

.

The item with the biggest value for Γi is increased by one and EBO(S) and C(S) are computed

again. From Lemma 4.1 originated from Van Houtum and Kranenburg (2015) follows that EBOi(Si)

is decreasing and convex, so this implies that increasing the stock level by one decreases EBOi(Si)

and thus decreases EBO(S). The algorithm stops when EBO(S) is less than or equal to EBOobj .

The pseudocode of the Greedy Algorithm for the Multi-Item Problem with the expected back

orders as a service level as described by Van Houtum and Kranenburg (2015) can be found in

Algorithm 6.

Algorithm 6 (Greedy Algorithm for Multi-Item Problem with EBO)
Input Average demand µi, Cost ci, Lead time Li, Target level EBOobj

Step 1: For all i ∈ I set Si = 0, so S= (0, . . . , 0);

C(S) := 0 and EBO(S) := ∑
i∈I µiLi.

Step 2: For all i ∈ I define Γi with new Si;

k :=argmaxi∈IΓi ; S := S + ek.

Step 3: Determine C(S) and EBO(S);

If ’system target is reached’, then STOP, else go to Step 2.

Output S = (S1, . . . , S|I|), EBO(S) and C(S)

A.3.2 Fill rate as service level

The algorithm to solve the Multi-Item Problem where the fill rate (FR) is used as a service level is

similar to the algorithm above. It is again a Greedy based approximation algorithm originated from

Van Houtum and Kranenburg (2015). The input of the algorithm is the average demand µi, the

purchase price ci, the lead time Li for item i ∈ I and the system target level FRobj . From Lemma

4.2 originated from Van Houtum and Kranenburg (2015), it follows that FRi(Si) is increasing and

concave on max{⌈µiLi − 1⌉, 0}. So, in the initialisation the algorithm sets Si := max{⌈µiLi − 1⌉, 0}

and the corresponding C(S) and FR(S) is computed.
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In the next step of the algorithm, Γi which is equal to the increase in the aggregate fill rate

divided by the increase in total cost is determined. Using Equation 9, the increase in item fill rate

∆FRi(Si) can be defined as

∆FRi(Si) = FRi(Si + 1) − FRi(Si) = P[Xi = Si].

Using Equation 8, the increase in the aggregate fill rate ∆iFR(S) is equal to

∆iFR(S) = µi

M
∆FRi(Si) = µi

M
· P[Xi = Si],

with M = ∑
i∈I µi. Then Γi can be defined as

Γi := µiP[Xi = Si]
Mci

.

The item with the biggest value for Γi is increased by one and FR(S) and C(S) are computed

again. From Lemma 4.2 which originates from Van Houtum and Kranenburg (2015), it follows that

FRi(Si) is increasing and concave, so this implies that increasing the stock level by one increases

FRi(Si) and thus increases FR(S). This step is repeated until FR(S) is greater than or equal to

FRobj . The algorithm ends with computing the total cost C(S) and the aggregate FR FR(S). The

pseudocode of the Greedy algorithm for the Multi-Item Problem with the FR as a service level

originated from Van Houtum and Kranenburg (2015) is shown in Algorithm 7.

Algorithm 7 (Greedy Algorithm for Multi-Item Problem with FR)
Input Average demand µi, Cost ci, Lead time Li, Target level FRobj

Step 1: For all i ∈ I set Si := max{⌈µiLi − 1⌉, 0};

Compute C(S) and FR(S).

Step 2: For all i ∈ I define Γi with new Si;

k :=argmaxi∈IΓi ; S := S + ek.

Step 3: Determine C(S) and FR(S);

If ’system target is reached’, then STOP, else go to Step 2.

Output S = (S1, . . . , S|I|), FR(S) and C(S)
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B Mathematical proofs

This section in the appendix includes two mathematical proofs of Lemma 4.1 and Lemma 4.2,

respectively. Both the Lemmas and the proofs originate from Van Houtum and Kranenburg (2015).

Proof Lemma 4.1

Proof. Let i ∈ I be arbitrary. Then from section 4.1 we know that

EBOi(Si) = miti − Si +
Si∑

x=0
(Si − x)P[Xi = x].

To show EBOi(Si) is decreasing on its whole domain, it is sufficient to show that its derivative

∆EBOi(Si) is less than or equal to zero for some i ∈ I. This follows from the definition of a

decreasing function. So:

∆EBOi(Si) = EBOi(Si + 1) − EBOi(Si)

= −
∑∞

x=Si+1 P[Xi = x]

≤ 0,

(19)

with Si ∈ N0. Next, we will show the convexity of EBOi(Si) and this will be done by showing that

the second derivative of EBOi(Si) is greater than or equal to zero for some i ∈ I. This follows from

the definition of convexity. So:

∆2EBOi(Si) = ∆EBOi(Si + 1) − ∆EBOi(Si)

= P[Xi = Si + 1]

≥ 0,

(20)

with Si ∈ N0. From (19) and (20) it follows that EBOi(Si) is a decreasing and convex function.

Proof Lemma 4.2

Proof. Let i ∈ I be arbitrary. We know that the item fill rate FRi is defined by

FRi(Si) =
Si−1∑
x=0

P [Xi = x].

Thus the difference in FR when adding one to stock level Si can be denoted by

∆FRi(Si) = FRi(Si + 1) − FRi(Si) =
Si∑

x=0
P [Xi = x] −

Si−1∑
x=0

P [Xi = x] = P [Xi = Si], Si ∈ N0.
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And by definition of the probability, it follows that

P [Xi = Si] ≥ 0, forSi ∈ N0,

which implies that FRi(Si) is an increasing function. To prove that FRi(Si) is concave for Si ≥ µiLi

it suffices to show that ∆FR2
i (Si) ≤ 0. This follows from the definition of a concave function. We

have

∆FR2
i (Si) = P [Xi = Si + 1] − P [Xi = Si] Si ∈ N0. (21)

We can rewrite P [Xi = Si] in a recursive way as:

P [Xi = 0] = eµiLi ,

P [Xi = Si + 1] = µiLi

Si + 1P [Xi = Si] for Si ∈ N0.

Substituting this into Equation 21 gives

∆2FR(Si) =
(

µiLi

Si + 1 − 1
)

P [Xi = Si], Si ∈ N0.

This implies that

∆2FRi(Si) ≤ 0 ⇔ µiLi

Si + i
− 1 ≤ 0 ⇔ Si ≥ µiLi − 1 (22)

In other words, the item fill rate FRi(Si) is concave for Si ≥ µiLi − 1. We know that Si is

integral and nonnegative, so this implies that Si ≥ µiLi − 1 is equal to Si ≥ max{⌈µiLi − 1⌉, 0}.

So, FRi(Si) is concave for Si ≥ max{⌈µiLi − 1⌉, 0}.
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C Data Analysis

In Figure 7 a scatter plot of relevant items in our data set, classified according to their demand

frequency and price, following the Classification matrix of Gordian is given.

Figure 7: Scatter plot of items in our data set, classified according to their demand frequency and

price. The colours represent different classes.
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D Numerical Results

This section in the appendix includes several of the numerical results, deemed relevant for the

reader. These results include both examples as results obtained from the case used to obtain the

numerical results in Section 6.

D.1 Example of 20 items

We consider the system of 20 items displayed in Table 21, as described in Example 2 in Section 4.3.

Table 21: Example of 20 items

SKU id µi (per year) fi (per year) ci (e) Li (years)

1 0.8 0.8 0.002 0.16

2 0.2 0.2 0.002 0.16

3 52.82 28.6 0.408 0.0082

4 9.4 4.2 52.44 0.0082

5 0.4 0.4 106.69 0.0082

6 15.6 1.2 1.93 0.0082

7 14.54 9.2 8.34 0.082

8 0.8 0.8 281.22 0.21

9 1.6 1.6 212.84 0.047

10 2.16 2.4 2963 0.16

11 0.6 0.4 0.002 0.082

12 0.4 0.4 65.91 0.019

13 0.2 0.2 56.62 0.0082

14 0.4 0.4 160.00 0.082

15 4.14 4.2 625.23 0.16

16 26.82 24.4 49.34 0.082

17 19.7 12.6 1.97 0.082

18 2.4 2.2 8.07 0.082

19 380 2.6 0.11 0.085

20 1 1 39.00 0.16
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In Table 22 in Appendix D.1 we present the optimised class target fill rates for different system

target fill rates.

Table 22: (Example 2 - Cont’d) System Targets versus Optimal Class Targets for the ABA

System Target A1 A2 A3 B1 B2 B3 C1 C2 C3

80% 99.0% 35.4% 0.0% 77.8% 18.4% 0.0% 87.7% 0.0% 0.0%

82% 99.0% 35.4% 0.0% 99.4% 18.4% 0.0% 89.6% 0.0% 0.0%

84% 99.0% 35.4% 0.0% 99.4% 18.4% 0.0% 92.2% 0.0% 0.0%

86% 99.0% 35.4% 0.0% 99.4% 18.4% 0.0% 94.3% 0.0% 0.0%

88% 99.0% 35.4% 0.0% 99.4% 18.4% 0.0% 97.2% 0.0% 0.0%

90% 99.0% 35.4% 0.0% 99.4% 18.4% 0.0% 99.8% 0.0% 0.0%

92% 99.0% 81.8% 0.0% 99.4% 18.4% 0.0% 99.8% 0.0% 0.0%

94% 99.0% 99.2% 0.0% 99.4% 66.4% 0.0% 99.8% 0.0% 0.0%

96% 99.0% 99.2% 0.0% 99.4% 88.1% 0.0% 99.8% 0.0% 0.0%

98% 99.0% 99.2% 0.0% 99.4% 99.2% 50.6% 99.8% 99.8% 0.0%

In Table 23 we compare the results of the ABAF Robj to the Multi-Item Approach (MIAF Robj )

and Class Approach for three different target fill rates FRobj .

Table 23: (Example 2 - Cont’d) Total stock per class SClass, the total cost C(S) and the aggregate

fill rate FR(S) obtained by Class Approach (CA) compared to the Item Approach (IAF Robj ) with

different fill rate targets FRobj .

SA1 SA2 SA3 SB1 SB2 SB3 SC1 SC2 SC3 C(S) (BC) FR(S) (%)

MIA75% 1 2 0 1 1 0 44 0 0 113.92 75.6

MIA90% 4 2 0 4 1 0 62 0 0 126.25 90.2

MIA99% 6 8 0 8 8 1 79 7 3 1,912.08 99.0

CA 3 6 0 6 6 3 49 4 6 9,187.99 96.5

ABA75% 2 2 0 1 1 0 44 0 0 116.15 77.7

ABA90% 3 2 0 6 1 0 60 0 0 131.38 90.3

ABA99% 3 7 0 6 7 4 60 9 5 7,070.67 99.3
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D.2 Numerical Results obtained for the Item Approach

In Figure 8 the total costs for different fill rate targets are shown.
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Figure 8: Total costs C(S) plotted against different fill rate targets FRobj following the Item

Approach
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In Figure 9 the total costs are shown for different expected back order targets.
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Figure 9: Total costs C(S) plotted against different expected back-order targets EBOobj following

the Item Approach
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D.3 Numerical Results obtained for the Class Approach
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Figure 10: The total costs and total stock per class obtained by the Basic Blend Approach-I (BBA-

I) with target levels of 75%, 90% and 99%, respectively.
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Figure 11: The total costs and total stock per class obtained by the Basic Blend Approach-II (BBA-

II) with target levels of 75%, 90% and 99%, respectively.
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Figure 12: The total costs and total stock per class obtained by the Basic Blend Approach-III

(BBA-III) with target levels of 75%, 90% and 99%, respectively.
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D.4 Numerical results obtained for the Advanced Blend Approach

In Table 24 the optimal class targets for the Advanced Blend Approach at different FRobj are shown.

Table 24: System Targets versus Optimal Class Targets for the Advanced Blend Approach

System Target A1 A2 A3 B1 B2 B3 C1 C2 C3

75% 99.5% 49.0% 45.0% 99.7% 32.9% 12.1% 56.8% 16.8% 0.9%

76% 99.5% 49.0% 45.0% 99.7% 32.9% 12.1% 66.2% 16.8% 0.9%

77% 99.5% 49.0% 45.0% 99.7% 32.9% 12.1% 74.6% 16.8% 0.9%

78% 99.5% 49.0% 45.0% 99.7% 32.9% 12.1% 83.0% 16.8% 0.9%

79% 99.5% 49.0% 45.0% 99.7% 32.9% 12.1% 92.2% 16.8% 0.9%

80% 99.5% 50.1% 45.0% 99.7% 32.9% 12.1% 99.3% 16.8% 0.9%

81% 99.5% 54.1% 45.0% 99.7% 32.9% 12.1% 99.3% 16.8% 0.9%

82% 99.5% 57.8% 45.0% 99.7% 32.9% 12.1% 99.3% 16.8% 0.9%

83% 99.5% 62.4% 45.0% 99.7% 32.9% 12.1% 99.3% 16.8% 0.9%

84% 99.5% 66.0% 45.0% 99.7% 32.9% 12.1% 99.3% 16.8% 0.9%

85% 99.5% 70.3% 45.0% 99.7% 32.9% 12.1% 99.3% 16.8% 0.9%

86% 99.5% 74.4% 45.0% 99.7% 32.9% 12.1% 99.3% 16.8% 0.9%

87% 99.5% 78.9% 45.0% 99.7% 32.9% 12.1% 99.3% 16.8% 0.9%

88% 99.5% 82.8% 45.0% 99.7% 32.9% 12.1% 99.3% 16.8% 0.9%

89% 99.5% 87.1% 45.0% 99.7% 32.9% 12.1% 99.3% 16.8% 0.9%

90% 99.5% 90.5% 45.0% 99.7% 32.9% 12.1% 99.3% 16.8% 0.9%

91% 99.5% 94.6% 45.0% 99.7% 32.9% 12.1% 99.3% 16.8% 0.9%

92% 99.5% 99.7% 45.0% 99.7% 32.9% 12.1% 99.3% 16.8% 0.9%

93% 99.5% 99.7% 45.0% 99.7% 59.3% 12.1% 99.3% 16.8% 0.9%

94% 99.5% 99.7% 45.0% 99.7% 94.2% 12.1% 99.3% 16.8% 0.9%

95% 99.5% 99.7% 47.2% 99.7% 99.2% 12.1% 99.3% 55.0% 0.9%

96% 99.5% 99.7% 49.8% 99.7% 99.2% 12.1% 99.3% 99.7% 0.9%

97% 99.5% 99.7% 71.9% 99.7% 99.2% 12.1% 99.3% 99.7% 0.9%

98% 99.5% 99.7% 92.9% 99.7% 99.2% 12.1% 99.3% 99.7% 0.9%

99% 99.5% 99.7% 99.1% 99.7% 99.2% 50.6% 99.3% 99.7% 70.3%
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When we look at Figures 13 and 14, we see that the costs of classes A3, B3, C3 are higher than

the costs of the other classes, while their stock levels are really low. The reason for that is our data

set is very unbalanced. For example, class C3 has many items with very low demand concerning

their costs. So the algorithm is not likely to select class C3 to increase the class target fill rate.
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