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Abstract

Machine learning has become a pivotal factor that distinguishes companies and grants them
a competitive advantage. However, a prevailing issue in machine learning is that numerous
models make decisions based on historical data without providing explanations for their rea-
soning — commonly known as the “Black Box Problem”. The resulting inability to trust
machine learning algorithms’ decisions can have catastrophic consequences, especially in
high-stakes environments like healthcare and finance. To address this challenge, this study
proposes a novel method that facilitates the identification of a machine learning model’s
decision-making process by performing a quantile regression analysis on its predictions. Re-
markably, the quantile regression curves can reveal the variables that have the most sub-
stantial impact on the predictions made by the probabilistic neural network, which is the
chosen machine learning model for this research. Additionally, the method’s capability to
provide prediction interval sizes enables the visualization of the prediction certainty of the
probabilistic neural network for different values of the feature variables. This approach holds
promise in enhancing transparency and understanding in machine learning models, poten-
tially reducing the risks associated with black box algorithms.

keywords: Black Box Problem, machine learning, Parzen window, k-fold cross-validation,
probabilistic neural network, deep quantile regression neural network
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1 Introduction

Microsoft investing ten billion dollars in the firm behind ChatGPT, the artificial intelligence (AI)
chatbot created by OpenAI, was a major technology-related news event that made headlines in
January of this year (The Guardian, 2023b). When OpenAI launched version 3.5 of ChatGPT
for public use in November 2022 it took the world by storm. Users have been amazed by its
diverse capabilities, ranging from writing emails and translating text to debugging code. It is
seen as one of the most innovative AI technologies in the industry and therefore it is no surprise
that the website broke the record for the fastest-growing consumer internet app ever by reaching
100 million unique users just two months after launch (The Guardian, 2023a). In the meantime,
ChatGPT has been experiencing steady growth and in April it reached approximately 1.8 billion
website visits in a single month (Similarweb, 2023).

Alongside the rise of AI, machine learning algorithms have experienced a resurgence in
popularity. Simply using Google Trends and searching for machine learning related keywords
shows a clear uptrend over the last decade. Deep learning models, in particular, have become
instrumental in driving advanced AI applications such as ChatGPT. This large language model
(LLM) uses deep learning techniques to generate text that closely resembles human language.
The competition among major companies, such as Microsoft, Meta, and Alphabet in the realm
of machine learning platforms is fierce. These businesses strive to attract customers by offering
comprehensive platform services that encompass various machine learning activities, from data
collection to model building. As AI becomes more practical in enterprise environments and
machine learning becomes crucial to business operations, the battle for dominance in the machine
learning industry will only intensify. A notable instance of such a battle occurred when Alphabet
unveiled their chatbot named Bard shortly after Microsoft’s announcement of their investment
in OpenAI (CNBC, 2023).

Machine learning refers to a branch of AI where software applications can improve their
ability to make predictions without being explicitly programmed. By utilizing historical data,
machine learning algorithms generate predictions for new data inputs. Machine learning finds
widespread application in various domains. For instance, recommendation systems utilize ma-
chine learning techniques to provide personalized suggestions (Isinkaye et al., 2015). Addi-
tionally, it is employed for tasks like spam filtering, automating business processes, and fraud
detection. Machine learning holds immense significance as it enables organizations to gain in-
sights into customer behavior and analyze patterns in business operations. Prominent companies
rely heavily on machine learning as a fundamental component of their operations. Consequently,
machine learning has become a crucial factor that sets companies apart and gives them a com-
petitive edge.

One of the problems with machine learning nowadays is that many models make decisions
based on historical data without providing any explanations for their reasoning. While some
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models allow us to grasp their inner workings by understanding the underlying mathematics like
neural networks, they can still pose a challenge in comprehending how the individual neurons
cooperate to produce the final output. Certain models are even more perplexing since they
have internal workings that are entirely invisible to the user. This lack of explainability and
the hiding of internal computations within multiple layers of a model are commonly referred to
as the “Black Box Problem” (Castelvecchi, 2016). While being capable of applying a machine
learning model is valuable, understanding how these models arrive at their decisions, which
variables influenced those decisions, and the level of certainty associated with their predictions
is equally crucial. When a data scientist uses a model without understanding how it utilizes the
data or if it incorporates all available information, they may overlook the need to adjust model
parameters, perform data cleaning, or even remove certain variables (Ribeiro et al., 2016b).
Additionally, recognizing that a certain model might not be the best fit for the data set could
prove challenging in such situations. Apart from the data scientist who works on the model,
every machine learning platform also has different stakeholders who require varying degrees of
insight into the model’s functionality and reasoning (Zednik, 2021).

The significance of solving the “Black Box Problem” for the wider acceptance and integration
of AI and machine learning has been a prominent topic in the literature over the past few
years. Various researchers have emphasized that the lack of interpretability leads to a crucial
consequence: the inability to trust and act upon the decisions made by a model. Users are
less likely to trust and relinquish control to machines when they do not understand how the
models operate (Ribeiro et al., 2016b). While the appeal of AI lies in its potential to be more
reliable than humans in handling complex tasks, it is crucial to differentiate between trust
and reliability, especially when moral implications are involved (Von Eschenbach, 2021). In
critical domains where transparency is essential for accountability and regulatory compliance,
the limited interpretability of machine learning models significantly restricts their applicability.
For instance, in healthcare, finance, and autonomous vehicles, interpretability is crucial for
establishing trust and ensuring the model is making ethical and reliable decisions (Guidotti
et al., 2018). Take the finance industry, where critical decisions such as loan approvals are
involved. Compliance teams seek to understand which variables are influencing the model’s
predictions to ensure adherence to regulatory requirements. In addition to the lack of trust
arising from inadequate understanding, using uninterpretable machine learning applications has
another drawback. According to Guidotti et al. (2018), these models also raise ethical concerns
related to bias and robustness. If the training data contains human biases, there is a significant
risk that the machine learning model might unintentionally make incorrect and unfair decisions.
Especially, if we lack a comprehensive understanding of the model it becomes challenging to
discern whether the issue stems from biased or insufficiently representative training data, or if
the model itself is simply unreliable. As a result, this sequence of events could further erode
trust in such opaque decision systems.
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There are essentially two approaches to address the “Black Box Problem”. The first way
involves exercising caution by limiting the use of complex deep learning applications and imple-
menting regulations, particularly in critical industries where the potential harm of an unreliable
or untrustworthy application is high. For example, Price (2017) pleads for well-suited regulatory
oversight in the healthcare sector. However, he expresses the concern that certain government
agencies’ existing regulations may be too rigid, potentially impeding the innovation and ad-
vancement of more effective algorithms. Therefore, an alternative path should be considered,
emphasizing a more flexible regulatory strategy. This approach would seek a delicate balance
between public and private oversight, granting government agencies a mediating role instead
of a dominating one. Similarly, Bathaee (2017) states that we should avoid implementing an
excessively detailed and rigid regulatory framework outlining transparency standards for AI de-
sign and utilization. Instead, he opts for a sliding scale approach, where the regulatory system
adjusts existing causation and intent tests based on whether the algorithm is allowed to oper-
ate autonomously and the model’s level of transparency. Rudin (2019) takes a more assertive
stance and proposes that moving forward, critical decisions should solely rely on inherently in-
terpretable models. She states that black box algorithms could cause severe harm to society
and may preserve undesirable practices. Moreover, adopting solely interpretable models would
alleviate the need for extensive regulatory efforts.

The other approach aims to provide explanations for the inner workings and decisions of
black box models. Methods attempting to achieve this goal can be categorized into two groups.
The first category primarily focuses on describing the black box algorithm itself, while the second
category is more concerned with explaining the model’s decisions even without comprehending
its internal operations (Guidotti et al., 2018). Recent advancements in explainable AI that focus
on identifying influential features and improving model interpretability have shown promise in
addressing the black box problem. Researchers have explored various techniques such as neu-
ral network visualization, attribution methods, local interpretable model-agnostic explanations
(LIME), and Shapley additive explanations (SHAP) to gain insights into the decision-making
process of machine learning models. Going through this list, Yosinski et al. (2015) stated that
our comprehension of the inner workings of convolutional neural networks (CNNs) and deep
neural networks (DNNs) lags behind the significant advancements these models have achieved
in recent years. Therefore, they provide two tools to enable the visualization of these types of
neural networks. The first tool allows visualization of the activations generated at each layer of
a CNN, while the second tool can visualize the features for each layer of a DNN. Attribution
methods form another popular research domain aimed at improving users’ understanding of cer-
tain machine learning models. For instance, Sundararajan et al. (2017) developed an axiomatic
attribution method, enabling the attribution of a DNN’s prediction to its inputs. Interestingly,
this method does not focus on interpreting the computations or representations of individual
neurons. Instead, it examines the overall behavior of the network based on a specific input.
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Another fascinating method is LIME, introduced by Ribeiro et al. (2016a). They argue that
this versatile technique can provide interpretable explanations for the predictions made by any
classifier. It achieves this by utilizing an interpretable model to locally approximate the classifier
around a given prediction. LIME proves to be valuable for different users, whether they aim to
gain insights into a model’s predictions, improve unreliable models, make model comparisons,
or evaluate trustworthiness. Lastly, Lundberg and Lee (2017) propose the SHAP framework for
interpreting model predictions. This comprehensive framework combines six existing methods,
including LIME. According to the researchers, it addresses the common challenge of understand-
ing the relationships between individual methods and determining when one method is more
advantageous than another. Furthermore, the SHAP framework provides insights that lead to
new and enhanced methods. Despite the progress in addressing the “Black Box Problem”, chal-
lenges and limitations persist. The complexity of modern machine learning models, trade-offs
between accuracy and interpretability, and the need for domain-specific explanations present
ongoing research challenges (Lipton, 2018).

The primary objective of this thesis is to introduce a new method that facilitates the identi-
fication of a machine learning model’s decision-making process while providing insights into the
certainty of its decisions. To achieve this, a probabilistic neural network (PNN) is selected as
the machine learning model for demonstration purposes (Specht, 1990). The PNN is chosen due
to its simplicity, intuitiveness, and ability to produce probabilities as output, making it an ideal
candidate for showcasing the method while ensuring comprehension. Furthermore, this model is
widely used for classification problems and to ensure clarity and interpretability of the results,
a binary classification data set is selected. It is crucial to note that the model’s accuracy is not
a primary concern in this study. Instead, the objective is to gain insights into the underlying
factors that drive the model’s classifications rather than prioritizing its overall accuracy. After
the PNN is applied to the data set, a quantile regression (Koenker & Bassett Jr, 1978) is fitted
on the model predictions for all feature variables, using a deep quantile regression neural net-
work (DQRNN). The main question that this research tries to answer revolves around whether
the resulting quantile curves can provide a deeper understanding of the model’s decision-making
process and help identify the variables that play the most critical role in making these deci-
sions. Moreover, examining the distance between the curves, which represents the size of the
prediction intervals for the probabilities outputted by the PNN, for various values of a feature
variable indicates the model’s level of certainty when making predictions. Undoubtedly, quantile
regression has been utilized multiple times in the literature to establish the relationship between
two variables or generate prediction intervals for a specific dependent variable. However, it has
not yet been applied to the output of a machine learning model as a method to gain deeper
insights into the model’s decisions.

This paper will with the methodology section, where the proposed method will be explained
and clearly outlined. Afterward, the binary classification data set employed for this thesis and
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the necessary data cleaning and transformations are thoroughly discussed. Following that, the
results obtained from the conducted quantile regression analysis will be shown. Remarkably,
the quantile regression curves appear capable of revealing the variables that had the most sub-
stantial impact on the predictions made by the PNN. Finally, a comprehensive summary of the
observations made in this study is provided. Based on these findings, appropriate conclusions
will be drawn and future research proposals will be discussed.

2 Methodology

This section will delve into the various methods employed in this study. Firstly, the functioning
of an ANN and a PNN will be explained. To gain a deeper understanding of the PNN’s workings,
we will briefly describe the Parzen window method utilized within the PNN, along with the cross-
validation technique used to determine the optimal bandwidth for this Parzen window estimator.
Afterward, the key differences between an ANN and PNN will be highlighted. Lastly, we will
define the quantile regression loss function and the DQRNN. The purpose of this DQRNN is to
fit a quantile regression on the posterior probabilities predicted by the PNN.

2.1 Artificial Neural Network

An ANN is a feedforward neural network widely used in machine learning applications. The
basic structure of an ANN consists of multiple layers of interconnected nodes, or neurons, which
process and transmit information (see Figure 1). Each neuron receives information from the
neurons in the previous layer, applies an activation function to this input, and produces an
output transmitted to the neurons in the next layer. The first layer of neurons is the input
layer, the layers in the middle are called hidden layers, and the last layer is the output layer
(Goodfellow et al., 2016). Usually, the input data is represented as a vector or an array, and
each neuron in the input layer receives a single element of the input vector. The neurons in the
last layer contain the neural network’s output, which can be used to make predictions or classify
data.

The neurons in an ANN are associated with a set of parameters or weights learned during
the training process. The weights determine how strongly the input from each node in the
previous layer affects the output of the current neuron. The training process involves adjusting
the weights to minimize a loss function, which measures the difference between the predicted
and true output of the neural network (Haykin, 2009).

These weights are updated using a technique called backpropagation, which involves com-
puting the gradient of the loss function with respect to the weights and using this gradient to
adjust the weights in the direction of the steepest descent. This process is repeated for several
iterations until the loss function is minimized, and as a result, the neural network’s performance
should have improved (Rumelhart et al., 1986).
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Input Layer
Hidden Layer

Output Layer

Figure 1: The structure of a three-layer ANN with four input features and three output classes.

To determine whether the input of a neuron is important to the neural network, or in
other words, whether a neuron should be activated, the neural network makes use of activation
functions. These activation functions are used to introduce nonlinearity into the network so it
can better fit the results and improve its accuracy. One commonly used activation function in
an ANN is the sigmoid function (see Section 2.4, Equation 10), which maps any input value to
a value between zero and one. Another widely used activation function is the rectified linear
unit (ReLU) function. It maps any input value less than zero to zero and any value greater than
zero to the input value itself (LeCun et al., 2015). The ReLU function offers several advantages
over the sigmoid function. Firstly, it reduces the likelihood of a vanishing gradient problem and
it is more computationally efficient. Additionally, networks using ReLU activation functions
generally exhibit better convergence performance (Krizhevsky et al., 2012). Therefore, in this
study, ReLU activation functions will be employed for the DQRNN (see Section 2.7).

Many variations exist of an ANN, including DNNs, CNNs, and recurrent neural networks
(RNNs). They are designed to fit specific data types, such as images or sequential data. This
shows that the ANN forms the basis for many solutions to various machine learning problems.

2.2 Parzen Window

The Parzen window or Parzen-Rosenblatt window method, invented independently by Rosen-
blatt (1956) and Parzen (1962), is a non-parametric kernel density estimation technique. It is
used to estimate the probability density function of a random variable using a set of samples.
The basic idea is to estimate the density at a point by averaging the contributions of kernel
functions centered at each sample point. The kernel function is a probability density function
that determines the shape of the window around each sample. The window’s width is also
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determined by a bandwidth parameter, which controls the trade-off between bias and variance
of the density estimate. Later, Cacoullos (1964) extended Parzen’s results to cover the case of
estimating a multivariate density function.

Mathematically, the Parzen window estimator for a d-dimensional random variable X with
probability density function fX can be expressed as:

f̂X(x) = 1
nhd

n∑
i=1

K

(
x − xi

h

)
, (1)

where x is the input vector, n is the number of samples, h is the bandwidth, K is the kernel
function, and xi is the i-th sample from X. The kernel function K is often chosen to be
a symmetric probability density function centered at zero, such as the standard multivariate
Gaussian kernel:

K(u) = 1
(2π)

d
2

exp
(

−1
2u⊺u

)
, (2)

where u is the argument of the kernel and d is the dimension of u. After plugging in the chosen
kernel function in Equation 1, the Parzen window estimator f̂X(x) gives an estimate of the
probability density function of X evaluated at x.

The choice of bandwidth h is critical for the performance of the Parzen window method. If
the bandwidth is too small, the estimate will have a high variance and be sensitive to noise in
the data. If the bandwidth is too large, the estimate will have a high bias and miss important
features of the data. Various techniques, such as cross-validation and plug-in methods, have been
proposed to select the optimal bandwidth (Silverman, 1986). This thesis will use cross-validation
to determine the optimal bandwidth h (see Section 2.3).

The Parzen window method is especially useful for non-parametric density estimation, where
the underlying probability distribution is unknown or difficult to model using parametric distri-
butions. Although the choice of the kernel function is required, this kernel density estimation
method is still considered non-parametric as it does not assume any specific shape for the dis-
tribution being estimated (Silverman, 1986). Additionally, Epanechnikov (1969) found that
any reasonable kernel yields nearly optimal results. The Parzen window method has found
widespread application in various fields, especially in scenarios where non-parametric classifiers
are commonly used, such as pattern recognition (Babich & Camps, 1996) and image processing
(Gao, 2010). In particular, it serves as a fundamental component for the PNN (see Section
2.4) introduced by Specht (1990). This model uses the Parzen window method to estimate the
class-conditional probability densities of input features.
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2.3 Cross-validation

Cross-validation is a widely used technique for assessing and selecting optimal parameters in
machine learning and statistical modeling (Hastie et al., 2009). Furthermore, it provides a
reliable estimate of a model’s performance by partitioning the available data set into training
and validation subsets. This method allows for an objective evaluation of different parameter
settings and helps to prevent overfitting. In the context of the Parzen window estimator, cross-
validation can be employed to determine the optimal bandwidth parameter h, which controls
the width of the window function and affects the bias-variance trade-off in density estimation
(see Section 2.2). Various cross-validation strategies exist, such as leave-one-out cross-validation,
k-fold cross-validation, or stratified cross-validation. The choice of which version to use depends
on the specific requirements of the problem at hand (Kohavi et al., 1995).

With cross-validation, the data set is divided into a training and validation set. The model
is trained on the training set using a specific value for the bandwidth parameter. Then its
performance is evaluated on the validation set using an appropriate performance metric. This
process is repeated multiple times, with different data set partitions used as the training and
validation set each time. Finally, the performance metrics obtained from each iteration are
averaged to estimate the model’s performance with the current bandwidth parameter.

One popular cross-validation technique is leave-one-out cross-validation, where each data
point is sequentially used as the validation set, and the model is trained on the remaining data.
This approach provides a reasonably unbiased estimate of the model’s performance. However,
it can be computationally expensive for large data sets and suffer from high variance in some
problems (Efron & Tibshirani, 1997).

Another commonly used technique, also used for this thesis, is k-fold cross-validation. In
k-fold cross-validation, the data set is divided into k equally-sized subsets or folds (Kohavi et al.,
1995). The model is trained k times, where each time k − 1 folds are utilized as the training set
while the remaining fold is used as the validation set. The performance metrics obtained from
each validation set are averaged to obtain the overall performance estimate for that specific
parameter setting. This process is repeated for different bandwidth values, and afterward,
the bandwidth with the highest performance metric across all folds is selected. The choice of
the number of folds and this performance metric should be carefully considered based on the
characteristics of the data and the goal of the density estimation task (Forman & Scholz, 2010).
Commonly used metrics include accuracy, precision, mean squared error, or log-likelihood. In
this thesis, 10-fold cross-validation will be employed and the accuracy of the PNN (see Section
2.4) will be used as the performance metric.

In summary, the cross-validation method is a robust and objective way to estimate the
performance of the PNN and select the optimal bandwidth parameter value. It also helps to
assess the generalization performance of the Parzen window estimator and provides insights into
its bias-variance trade-off. This allows us to avoid overfitting or underfitting.
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2.4 Probabilistic Neural Network

PNNs have been applied successfully in numerous domains, including speech recognition (Morin
& Bengio, 2005), medical diagnosis (Hirschauer et al., 2015), image classification (Varuna Shree
& Kumar, 2018), and bioinformatics (Georgiou et al., 2004). It is a feedforward neural network
often used for classification tasks. It utilizes a non-parametric approach to classification based
on the Bayes decision rule and consists of four layers (see Figure 2). The basic idea of a PNN
is to represent each input pattern as a probability density function (PDF) evaluated at that
point. Hence, for a certain input pattern, multiple PDFs are estimated by deriving the Parzen
window estimator (see Section 2.2) for each class separately using only the training data of the
corresponding class (Specht, 1990). The input pattern will ultimately be assigned to the class
with the highest class-conditional density estimate.

x1

x2

x3

xd

xC1
1

xC1
n1

xC2
1

xC2
n2

xCk
1

xCk
nk

C1

C2

Ck

Max

...

...

...

...

...

...

Input Layer

Pattern Layer

Summation Layer

Output Layer

Figure 2: The structure of a PNN for a multi-class classification problem with d input features,∑k
j=1 nj training samples, and k classes. Furthermore, x

Cj

i is the i-th training sample belonging
to class Cj .

The first layer of the PNN is the input layer, where similar to the ANN (see Section 2.1),
the input features of an input pattern are distributed to all of the neurons in the next layer.
Next, in the pattern layer, each pattern neuron uses the input pattern and a single training
sample to calculate the value of the kernel function that is part of the Parzen window estimator
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(see Equation 1). This implies that the number of neurons in the pattern layer equals the
number of training samples (see Figure 2). Furthermore, the activation function of a PNN is
different from the commonly used sigmoid or ReLU activation functions in neural networks that
use backpropagation (Rumelhart et al., 1986). For example, if the Gaussian kernel is chosen
(see Equation 2), the i-th pattern neuron of the PNN uses the following exponential activation
function:

g(x) = exp
(

− (x − xi)⊺(x − xi)
2h2

)
, (3)

where x is the input vector, xi is the i-th training sample and h is again the bandwidth parameter.
Multiplying Equation 3 with the Gaussian kernel constant (2π)− d

2 is not necessary since it will
cancel out in the last layer of the PNN. This will be discussed in more detail below. Other
variations of exponential or even non-exponential functions can also be used. It all depends on
the chosen kernel function for the Parzen window estimator, and no single function is proven to
be always better than the others (Specht, 1990).

After, the calculated values from the pattern layer are summed up in the summation layer.
In this layer, each summation neuron sums the outputs of all the pattern neurons that used a
training sample belonging to the same class. Therefore, in the resulting PNN, every output class
will have exactly one corresponding summation neuron. Finally, the input pattern is assigned
to a class in the output layer. This decision is based on the posterior probability of class Cj for
an input vector x, which can be calculated using Bayes’ rule:

P (Cj |x) = P (x|Cj)P (Cj)
P (x) for j = 1, . . . , k , (4)

where P (x|Cj) is the likelihood function of x, P (Cj) is the prior probability of class Cj and
P (x) is the marginal probability of x. Theoretically, the PNN classifies the input feature vector
as the class with the highest posterior probability. Therefore, assuming a binary classification
problem with classes C1 and C2, this results in the following Bayes’ decision rule:

d(x) = C1 if P (C1|x) > P (C2|x) ⇒
P (x|C1)P (C1)

P (x) >
P (x|C2)P (C2)

P (x) ⇒

P (x|C1)P (C1) > P (x|C2)P (C2) ⇒

P (x|C1) >
P (C2)
P (C1)P (x|C2) (5)

d(x) = C2 if P (C1|x) < P (C2|x) ⇒

P (x|C1) <
P (C2)
P (C1)P (x|C2), (6)

13



where d(x) is the function representing the class assigned to the input pattern x. The decision
rule above can easily be extended to a multi-class problem, where x will be classified as the class
with the highest corresponding posterior probability of all classes. However, this section will
discuss mainly binary classification for simplicity purposes. The likelihood functions P (x|C1)
and P (x|C2) are the class-conditional densities of class C1 and C2 evaluated at x. They can
be estimated using the Parzen window method (see Section 2.2). According to Equations 5
and 6, multiplying the class-conditional density of class C2 with the ratio of prior probabilities(

P (C2)
P (C1)

)
and checking if the result is smaller or larger than the class-conditional density of class

C1 determines whether x will be assigned to class C1 or C2.
So far, each neuron in the summation layer calculated the summation in Equation 1 (without

the chosen Kernel’s constant term) for its corresponding class. These values are all transferred
to the output layer, where they are plugged into Equation 5 and 6 to make a decision. If the
Gaussian kernel from Equation 2 is chosen, this results in the following expressions:

d(x) = C1 if P (x|C1) >
P (C2)
P (C1)P (x|C2) ⇒

1
(2π)

d
2 n1hd

∑
C1

g(x) >
P (C2)
P (C1) · 1

(2π)
d
2 n2hd

∑
C2

g(x) ⇒

∑
C1

g(x) >
P (C2)
P (C1) · n1

n2

∑
C2

g(x) ⇒∑
C1

g(x) > Z ·
∑

C2
g(x) (7)

d(x) = C2 if P (x|C1) <
P (C2)
P (C1)P (x|C2) ⇒∑

C1
g(x) < Z ·

∑
C2

g(x), (8)

where
∑

Cj
g(x) (see Equation 3) is the output of the summation neuron belonging to class Cj

and nj is the number of training samples from class Cj . As mentioned earlier, the Gaussian
kernel constant and the scalar hd, which do not depend on one of the classes, cancel out in
Equation 7 and 8. What is left are the outputs of the summation layer and the constant Z.
Note that Z is the ratio of prior probabilities

(
P (C2)
P (C1)

)
divided by the ratio of training samples(

n2
n1

)
. If it is the case that the number of training samples from class C1 and C2 are obtained in

the same proportion as their prior probabilities, the constant Z simplifies to one. This implies
that, for binary and multi-class classification problems, the output layer of the PNN will assign x

to the class with the largest corresponding summation neuron output. In other words, it simply
takes the maximum of all the individual summations calculated for each class in the summation
layer and classifies x accordingly.

However, this thesis is not only interested in correctly classifying as many input patterns as
possible. Instead, the main focus is to retrieve the PDF estimates for each class evaluated at an
individual input pattern. After, these estimates can be used to calculate the posterior probability
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that an input pattern x belongs to a certain class, P (Cj |x). To compute these probabilities,
Bayes’ rule from Equation 4 is again used as the starting point. According to Gelman et al.
(2013), we can substitute the marginal probability of x by the likelihood functions times their
corresponding prior, summed over all k classes. This results in the following expression for the
posterior probability of class Cj :

P (Cj |x) = P (x|Cj)P (Cj)
P (x) = P (x|Cj)P (Cj)∑k

i=1 P (x|Ci)P (Ci)
for j = 1, . . . , k , (9)

where it must hold that
∑k

i=1 P (Ci) = 1. Calculating these posterior probabilities for a binary
classification problem can be done using a specific version of a sigmoid function (Bishop &
Nasrabadi, 2006), also mentioned earlier as a common activation function for an ANN (see
Section 2.1). The following derivations of the posterior probabilities for C1 and C2 show this:

P (C1|x) = P (x|C1)P (C1)
P (x|C1)P (C1) + P (x|C2)P (C2) = 1

1 + P (x|C2)P (C2)
P (x|C1)P (C1)

= 1
1 + exp

(
log

(
P (x|C2)P (C2)
P (x|C1)P (C1)

)) = 1
1 + exp

(
− log

(
P (x|C1)P (C1)
P (x|C2)P (C2)

))
= 1

1 + exp (−y(x)) (10)

P (C2|x) = 1
exp

(
log

(
P (x|C1)P (C1)
P (x|C2)P (C2)

))
+ 1

= 1
exp (y(x)) + 1 (11)

= exp (−y(x))
1 + exp (−y(x)) = 1 + exp (−y(x))

1 + exp (−y(x)) − 1
1 + exp (−y(x))

= 1 − P (C1|x).

Here y(x) is introduced as a substitute for log
(

P (x|C1)P (C1)
P (x|C2)P (C2)

)
to simplify both expressions. As

can be seen, Equation 10 is an example of a logistic sigmoid function (Han & Moraga, 1995).
Equation 11 is slightly different and is simply an inverted logistic S-curve, where the logistic
sigmoid function is reflected in the y-axis. Furthermore, the last part of the derivation above
shows that the following symmetric property holds: γ(−y) = 1 − γ(y), where γ(y) is the logistic
sigmoid function. If again a Gaussian kernel is chosen and the number of training samples from
class C1 and C2 are obtained in the same proportion as their prior probabilities, y(x) simplifies
to the following expression:

y(x) = log
(

P (x|C1)P (C1)
P (x|C2)P (C2)

)
= log

(
(2π)

d
2 n2hd

(2π)
d
2 n1hd

·
∑

C1 g(x)∑
C2 g(x) · P (C1)

P (C2)

)

= log
(

P (C1)
P (C2) · n2

n1
·
∑

C1 g(x)∑
C2 g(x)

)
= log

(
Z−1 ·

∑
C1 g(x)∑
C2 g(x)

)
, (12)
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where Z−1, similar to Equations 7 and 8, equals one again. Hence, to calculate the posterior
probabilities for a binary classification problem, functions 10 and 11 can be used where y(x) is

the logarithm of the ratio of the two summation neuron outputs
(∑

C1
g(x)∑

C2
g(x)

)
.

For a multi-class classification problem with k classes, the posterior probabilities are cal-
culated using the softmax function (Bishop & Nasrabadi, 2006). This can be derived in the
following way:

P (Cj |x) = P (x|Cj)P (Cj)∑k
i=1 P (x|Ci)P (Ci)

= exp (log (P (x|Cj)P (Cj)))∑k
i=1 exp (log (P (x|Ci)P (Ci)))

= exp (yj(x))∑k
i=1 exp (yi(x))

for j = 1, . . . , k , (13)

which is also known as the normalized exponential. This time yj(x) is used as a substitute
for log (P (x|Cj)P (Cj)) to simplify the notation. If the Gaussian kernel is chosen and training
samples for each class Cj are again obtained in the same proportion as their corresponding prior
probabilities, yj(x) can be simplified as follows:

yj(x) = log (P (x|Cj)P (Cj)) = log
(

P (Cj)
(2π)

d
2 njhd

·
∑

Cj
g(x)

)

= log
(

L ·
∑

Cj
g(x)

)
for j = 1, . . . , k , (14)

where L is a constant that is equal for all j = 1, . . . , k. This holds since the ratio of prior
probabilities and training samples, P (Cj)

nj
, is equal for all classes Cj if it is true that training

samples and prior probabilities are obtained in the same proportions. Plugging Equation 14 into
Equation 13 gives the final softmax function:

P (Cj |x) =
exp

(
log

(
L ·
∑

Cj
g(x)

))
∑k

i=1 exp
(
log

(
L ·
∑

Ci
g(x)

)) =
exp (log (L)) exp

(
log

(∑
Cj

g(x)
))

∑k
i=1 exp (log (L)) exp

(
log

(∑
Ci

g(x)
))

=
exp

(
log

(∑
Cj

g(x)
))

∑k
i=1 exp

(
log

(∑
Ci

g(x)
)) for j = 1, . . . , k. (15)

Hence, to compute the posterior probabilities, the softmax function of Equation 15 is used
where the summation neuron output corresponding to a certain class Cj is basically divided by
the sum over all summation neuron outputs from the PNN. After calculating these posterior
probabilities for a binary or multi-class classification problem, they will serve as input for the
quantile regression illustrated in a separate section below (see Section 2.6). However, the key
differences between an ANN and PNN will be outlined first.
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2.5 Differences ANN and PNN

ANNs and PNNs are two types of neural networks that mainly differ in how they are trained
and how they model uncertainty. The training phase of an ANN is a crucial component that
involves the iterative optimization of the weights to minimize a loss function, such as the mean
squared error (MSE), that measures the differences between the predicted and actual output
values. This iterative optimization process continues until the network converges to a set of
weights that produce accurate predictions on the training data. The resulting network can then
classify new input data based on the learned mapping between the training input and output
values (Haykin, 2009). In contrast, the training phase of a PNN involves the estimation of
class-conditional density functions using the Parzen window estimator (see Section 2.2). Once
all the class-conditional densities for a specific input pattern are estimated, the PNN can be
used to classify this input pattern based on these densities and Bayes’ theorem (Specht, 1990).
Therefore, unlike ANNs, PNNs do not require iterative adjustment of weights during the training
phase.

The difference in the training phase between ANNs and PNNs reflects their different ap-
proaches to classification. ANNs learn a mapping from input variables to output variables,
while PNNs use a non-parametric approach to estimate PDFs representing the distribution of
the data within each class. Hence, PNNs have multiple advantages over other neural networks
for some classification tasks. They require relatively small training data and can have a fast clas-
sification speed with high accuracy. On the other hand, PNNs can be computationally expensive
for large data sets, and the choice of kernel function and bandwidth can affect the network’s
performance.

Another key distinction between ANNs and PNNs is how they model the uncertainty associ-
ated with classification. ANNs provide point estimates of class probabilities, while PNNs provide
PDFs representing the uncertainty associated with the estimates. Consequently, PNNs can be
more effective than ANNs when dealing with noisy or incomplete data, as they can account for
uncertainty in the classification process (Bishop et al., 1995). This makes PNNs more suitable
for applications where uncertainty is an important factor, such as any kind of risk assessment.

2.6 Quantile Regression

Quantile regression is a robust statistical method that extends traditional regression analysis by
estimating the conditional quantiles of a response variable given one or more predictor variables.
Unlike ordinary least squares, which estimates the conditional mean of the dependent variable,
quantile regression focuses on estimating the response variable’s conditional median (or any other
quantile) across different values of the features (Koenker & Hallock, 2001). This methodology is
particularly useful when investigating asymmetric relationships, prediction intervals, or specific
quantiles of interest. Hence, it has been successfully used in various fields, such as economics
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(Fitzenberger et al., 2001), finance (Baur et al., 2012), and environmental science (Cade & Noon,
2003), to analyze the relationships between variables and predict future outcomes.

Normally, when using a certain model to make a prediction, it is hard to see which predictor
variables mainly drove the model to eventually make this prediction. Moreover, the model will
always provide a prediction even though it might be uncertain about what to predict. Therefore,
this thesis aims to show how quantile regression can be applied to provide more insight into
a model’s (in this case, a PNN’s) decision-making process and how confident it is about its
predictions. Performing a standard regression analysis on the posterior probabilities outputted
by the PNN is insufficient since it will only result in a single-point estimate across the different
values of the predictor variables. Instead, to be able to get more insight, quantile regression
is performed on the probabilities of the PNN. This will result in predicting a range of values
with a certain amount of confidence. Moreover, quantile regression offers another advantage
as it provides a more comprehensive picture of the relationship between variables compared to
traditional regression analysis (Koenker & Hallock, 2001).

To derive the quantile regression model, it is best to start with the traditional linear regression
model, which is based on the following equation:

ŷi = β0 + β1xi1 + . . . + βpxip for i = 1, . . . , n. (16)

Here n is the number of samples, p is the number of feature variables, ŷi is the predicted value
of the i-th response variable, xip is the value of the p-th feature of sample i and βp is the
corresponding coefficient we wish to estimate. To find the optimal β-coefficients, the sum of
squared errors is minimized with respect to β:

β̂ = argmin
β

n∑
i=1

(yi − ŷi)2 = argmin
β

n∑
i=1

(
yi − (β0 + β1xi1 + . . . + βpxip)

)2
, (17)

where β̂ is the p-dimensional vector containing all coefficient estimates and yi is the actual value
of the i-th response variable (Montgomery et al., 2021).

The basic idea in quantile regression is to estimate the conditional quantile function by
minimizing a loss function using a structure similar to linear regression. The formula for this
conditional quantile is slightly different from Equation 16:

Q̂yi(τ) = β0(τ) + β1(τ)xi1 + . . . + βp(τ)xip for i = 1, . . . , n. (18)

Here τ is the quantile level and Q̂Y (τ) is the τ -th conditional quantile. Furthermore, all β

coefficients depend on τ now. Estimating these coefficients is done by replacing the square in
Equation 17 by the asymmetric absolute loss function ρτ (u) and implementing the expression
for the conditional quantile (see Equation 18). This gives the following minimization problem
(Koenker & Bassett Jr, 1978):
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β̂(τ) = argmin
β

n∑
i=1

ρτ

(
yi − Q̂yi

)
= argmin

β

n∑
i=1

ρτ

(
yi − (β0 + β1xi1 + . . . + βpxip)

)
, (19)

where β̂(τ) is the p-dimensional vector containing all coefficient estimates for quantile level τ .
Moreover, the asymmetric absolute loss function ρτ (u), also called the check function, is defined
as:

ρτ (u) = (τ − I(u < 0))u (20)

where I(·) is the indicator function and τ is again the quantile level (Koenker & Hallock, 2001).
The check function is robust to outliers and allows for different slopes for different quantile levels
(see Figure 3). Hence, depending on the overall sign of the error u and the quantile level, this
loss function gives asymmetric weights to the individual errors. For example, if we are interested
in the 10th quantile, negative errors will get a weight of 0.9, while positive errors will receive
a weight of 0.1. This implies that positive errors are preferred over negative ones resulting
in the 10th quantile being lower than the median quantile. Note that if τ = 0.5, the weights
given to the errors are symmetric. Now, ρτ (u) in Equation 19 can be replaced by the absolute
value function since, in this case, they are proportional. Therefore, solving this median quantile
regression minimization problem is the same as linear regression by least absolute deviations
(Pollard, 1991).

τ − 1

τ

u

ρτ (u)

Figure 3: Quantile regression asymmetric absolute loss function, ρτ (u).

2.7 Deep Quantile Regression Neural Network

A DQRNN is a variant of an ANN (see Section 2.1) specifically designed for estimating the
quantiles of a target variable. It extends the traditional neural network architecture by incor-
porating quantile-specific loss functions and enables direct modeling of the conditional quantile
function (Cannon, 2011). For this thesis, a DQRNN is used to estimate different quantiles of
the posterior probabilities estimated by the PNN.
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The architecture of a DQRNN typically consists of multiple hidden layers with nonlinear
activation functions, similar to a standard feedforward neural network (see Section 2.1). Fur-
thermore, if a standard neural network is used to fit a linear regression on a target variable, the
output layer generally consists of one node corresponding to a single point estimate. However,
the output layer of a DQRNN is different, as it outputs multiple nodes representing the different
quantiles of the target variable. Hence, the number of nodes in the output layer of the DQRNN
will equal the number of quantiles we wish to estimate.

A specific loss function, known as the quantile loss or asymmetric absolute loss function
(Koenker & Hallock, 2001), is used to train a DQRNN. This function was already defined above
in Equation 20. It measures the discrepancy between the predicted and actual values of the
target variable. Depending on the desired quantile level, the asymmetric absolute loss function
penalizes underestimation and overestimation differently (see Section 2.6). During training, the
parameters of the DQRNN are updated by minimizing the overall quantile loss across the training
data set (see Equation 19). Where, for this study, the gradient-based optimization algorithm
Adam (Kingma & Ba, 2014) is used to solve this minimization problem. This process adjusts
the weights and biases of the DQRNN to improve the accuracy of the estimated quantiles.

DQRNNs have been effectively utilized in various domains, including finance (Taylor, 2000),
environmental sciences (Cannon, 2018), and the energy industry (Zhang et al., 2018), where
estimating quantiles is crucial for risk assessment and decision-making.

3 Data

This research uses the Titanic data set, downloaded from Kaggle. It contains the passengers’
characteristics and which passengers survived the Titanic shipwreck. On Kaggle it is used
for a machine learning competition called, Machine Learning from Disaster, with over 16,000
participants. This makes it a well-known data set in the machine learning industry. Furthermore,
the data set is easy to understand which helps to interpret the results of this thesis. Once
downloaded it has 12 variables, but not all of them are useful. Hence, data cleaning is performed,
only keeping the variables that seem to contain important information about the passengers. As
a result, the variables passengerID, name, ticket number, and cabin number are removed. Of
course, the ticket or cabin number could have indicated on which part of the Titanic a passenger
was staying. For example, some passengers might have had a cabin closer to the lifeboats
increasing their survival chances. However, the aim of this paper is to demonstrate how fitting
a quantile regression on the output of a machine learning model shows how certain this model
is about its predictions. Therefore, keeping these variables might increase the accuracy of the
model, but since they would compromise the interpretability of the results from the proposed
method, they are removed from the data set.

After dropping those four variables, one more data cleaning step is performed before the
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data set is split up into a train and test set. Since the variable age contains a significant amount
of unknown values, all data for passengers with an unknown age are removed. Again, this
will probably hurt the accuracy of the PNN, but that is not the main interest of this research.
Various descriptive statistics of the data set before and after data cleaning are displayed in Table
1. When comparing the descriptive statistics of the data set before and after cleaning they do
not seem to change much. However, the percentage of passengers that embarked at Queenstown
after data cleaning seems to have dropped significantly from 0.09 to 0.04. This implies that a
relatively large number of passengers that boarded the Titanic at Queenstown have an unknown
age. Furthermore, we can see from the table that the age is missing for 177 passengers, resulting
in a final data set of 714 passengers with one dependent and seven feature variables.

Table 1: Descriptive statistics of the full data set, the data set after cleaning, the train data,
and the test data.

Total data set After cleaning Train set Test set

Number of observations 891 714 571 143

Survival rate 0.38 0.41 0.41 0.40

Average age 29.70 29.70 29.93 28.78

Average passenger fare 32.20 34.69 34.73 34.56

Average ticket class 2.31 2.24 2.23 2.27

Average number of parents or children aboard 0.38 0.43 0.43 0.45

Average number of siblings or spouses aboard 0.52 0.51 0.49 0.60

Percentage female 0.35 0.37 0.37 0.34

Percentage male 0.65 0.63 0.63 0.66

Percentage embarked at Cherbourg 0.19 0.18 0.19 0.15

Percentage embarked at Southampton 0.72 0.78 0.77 0.82

Percentage embarked at Queenstown 0.09 0.04 0.04 0.03

The dependent variable is survived and it indicates whether a passenger survived the Titanic
shipwreck or not. The first two feature variables, age and passenger fare, are both continuous
and they range between 0.42-80.00 and 0.00-512.33, respectively. To reduce the scale of these
variables they are both standardized before the PNN is applied. Then, we have the variable
ticket class showing if a passenger had an upper (1), middle (2), or lower (3) class ticket. The
next two independent variables are the number of parents or children and the number of siblings
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or spouses on board the ship. These are both categorical variables that can attain values from
0-5 and 0-6, respectively. The low averages of these two variables (see Table 1) imply that
the majority of the passengers fall into the lower categories. This is confirmed by Figure 13 in
Appendix A which clearly shows that passengers with a value of 3 or higher for one of these
variables are not common. Feature variable number six is gender, indicating whether a passenger
is male or female. To make this input variable usable for the PNN it is made binary where male
equals 0 and female equals 1. The last feature variable is the port of embarkation showing if
a passenger boarded the Titanic at Cherbourg (C), Southampton (S), or Queenstown (Q). To
make this variable numerical one-hot encoding is used (Hancock & Khoshgoftaar, 2020). This is
where a new binary variable is added for each unique value of the initial variable and afterward,
the initial variable is removed. An overview of the eight variables used for this research can be
found in Table 2 in Appendix A.

After all variables are prepared the data set is separated into a train and test set following
an 80/20 split. The differences between the train and test set can be viewed in Table 1. From
this table, we can see that the average number of siblings or spouses aboard is significantly
higher for the test set and the average age in the test set is over a year lower. Furthermore, a
larger fraction of passengers from the test set seem to have boarded at Southampton instead of
Cherbourg. However, overall the descriptive statistics of both sets look comparable. Hence, in
the next section, these two data sets will be used to gather the results.

4 Results

After the Titanic data set is cleaned (see Section 3) the PNN is implemented. To determine the
optimal bandwidth parameter h for the PNN, 10-fold cross-validation is used on the train set.
This results in a bandwidth parameter of 0.55. Subsequently, using this bandwidth parameter
for the PNN results in an accuracy of 0.71 on the test set. Note that the aim of this thesis is
not to display a machine-learning model that can compete with the best-performing models in
terms of accuracy. Instead, it will show how fitting a quantile regression on the probabilities
outputted by a machine learning model can provide insights into its decision-making process.
Moreover, it can be retrieved with what certainty the model made its predictions. This also
explains why a PNN was chosen as the model for this research since it is designed to provide
probabilities as its output. The predicted probabilities for the test set obtained by the PNN
and the quantile regression curves fitted for all feature variables are shown in the figures below.
This section will discuss and interpret these figures in depth.

Before analyzing and discussing the results it is important to explain what the figures display
exactly. Each of the seven feature variables of the Titanic data set will have two corresponding
figures. The left figure shows the different quantile regression curves where the 90th, 80th,
50th, 20th, and 10th quantile are presented. These quantile regression curves are fitted on the
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probabilities of surviving computed by the PNN which are also shown as a scatter plot in the
same figure. The right figure shows the size of the different prediction intervals for different
values of the feature variable. The size of these intervals is derived from the distance between
the corresponding quantile regression lines in the left figure. For example, a line or bar with
“Q90-Q10” in the legend shows the prediction interval size between the 90th and 10th quantile
regression curves.

Figure 4 shows the two plots for the first feature variable age. First, focusing on the left
figure, the scatter plot shows that the probabilities of surviving seem to be pretty spread out for
all values of age. Something similar is observed when looking at the quantile regression lines.
However, the lines seem to be closer together for ages around 0-13 and 55-71. This implies that
the PNN is more certain about its estimated probability of surviving for passengers aged below
13 or between 55 and 71. Especially for passengers younger than 13, there seems to be a very
high chance of the model estimating a probability of surviving below 0.5. This suggests that
the model believes children below 13 years old have a low chance of surviving the sinking of the
Titanic.

(a) Quantile regression curves (b) Line graph of the prediction interval size

Figure 4: The quantile regression curves and their corresponding prediction interval size for
different values of age.

This is further confirmed by studying the right figure (see Figure 4b). The blue and orange
lines in this figure show small prediction intervals for these ranges of age. Of course, it needs
to be noted that the number of observations for passengers with an age inside these two ranges
seems to be relatively low, which could explain this behavior of the quantile curves. Looking
further it can also be observed that the quantile curves get closer to each other around the
age ranges 25-30 and 33-40 (see blue and orange lines in Figure 4b), although the size of the
prediction intervals for these ranges is still larger compared to the 0-13 and 55-71 age ranges
mentioned previously. However, it does again imply that for a passenger with an age between
25-30 or 33-40, the model seems to be more certain about its estimated probability of surviving.
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Furthermore, when looking at the right figure the blue, orange, and green lines seem to follow
each other closely while the red line moves differently. This shows that the scatter plot is on
average denser at the bottom for lower probabilities of surviving since most of the time the red
line is below the green line. Although, for some ages the red line seems to increase and cross
the green line, indicating that for those ages the probabilities estimated by the PNN are denser
at the top.

The figures of the next feature variable, the passenger fare, show different results (see Figure
5). Looking at the quantile regressions curves in the left figure we can observe three interesting
ranges for the fare where the quantile lines seem to be closer to one another. First, for passengers
that paid a fare between 0 and 10, the model seems to be very certain that the probability of
surviving lies somewhere between 0.2 and 0.3. This is also displayed by the small prediction
interval sizes in the figure on the right side. Once the fare becomes larger than 10 we can see an
immediate increase of the upper two quantile curves, but the size of the 80% prediction interval
(blue line in Figure 5b) stays smaller than 0.3 until a fare of around 25 is reached. This implies
that the model is confident that passengers that paid a low fare have a lower chance of surviving.

(a) Quantile regression curves (b) Line graph of the prediction interval size

Figure 5: The quantile regression curves and their corresponding prediction interval size for
different values of the passenger fare.

Moving further to the right, the 90th and 80th quantile curves go down somewhat for pas-
senger fares of approximately 30 to 40 and start to go back up from 40 to 50. Both figures
show a downward spike in this fare range (see the blue and orange lines in Figures 5a and 5b),
indicating the PNN is more certain about its estimated probabilities for passengers that paid
a fare between 30 and 50. The last interesting observation is regarding fares of around 90 and
above. Here the quantile curves get really close to each other again, which is also confirmed by
the blue and orange lines in the right figure being very low. This shows that the model is very
confident that passengers who paid a high fare have a high probability of surviving the accident.
Again, similar to age, note that this behavior of the quantiles might be caused by the lack of
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passengers that paid a fare of 90 or more. The green and red lines in the right figure seem to
move pretty similarly, apart from fares between approximately 40 and 90. For fares within this
range, the red line is clearly above the green line which implies that the data is denser at the
top.

The third independent variable from the Titanic data set is the ticket class and the corre-
sponding results are perhaps the most interesting out of all seven features. If we look at the
scatter plot combined with quantile regression lines it is interesting to see that the dots, and
therefore also the quantile lines, are very close together for each individual ticket class (see
Figure 6a). By closer inspection, for class 1 it seems very likely that the model predicts a
probability of surviving above 0.5. On the contrary, for class 3 it looks as if the PNN always
predicts a probability below 0.5, where most of the estimated probabilities are between 0.2 and
0.3. This is similar, but the other way around, to what we saw earlier for the passenger fare.
Low estimated probabilities of surviving for low fares and high probabilities for high fares. This
would suggest that the passenger fare and ticket class are negatively correlated which is indeed
confirmed by Figure 14 in Appendix B and the corresponding Pearson correlation coefficient of
−0.58. Intuitively, this also makes sense since a high passenger fare is likely to correspond to an
upper-class or class 1 ticket and vice versa. Lastly, for class 2 we see some probabilities higher
and some lower than 0.5. However, in general, it seems as if the model will output a probability
below 0.5 for passengers with middle-class tickets.

(a) Quantile regression curves (b) Bar chart of the prediction interval size

Figure 6: The quantile regression curves and their corresponding prediction interval size for
different values of the ticket class.

The fact that the quantile regression lines are close together for all three classes shows that
the PNN is very confident about the probabilities that it computed, especially for the lower-class
or class 3 tickets. This is confirmed by the right-side figure which indeed shows small prediction
interval sizes for all three ticket classes where the size of the prediction intervals for class 3 are
the smallest (see the blue and orange bars in Figure 6b). Furthermore, when comparing the
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y-axis of this figure to the corresponding figures of the other features, it looks like the PNN
largely based its estimated probabilities of surviving on the ticket class variable. At some point,
all other figures seem to have an 80% prediction interval size of around 0.4, but the maximum
distance between the 90th and 10th quantile for the ticket class variable is only around 0.14.
Lastly, for class 1 the red bar is higher than the green bar which indicates that for passengers
with an upper-class ticket, the probabilities estimated by the PNN are denser at the top whereas
the opposite is true for ticket classes 2 and 3.

The next variable that will be analyzed is the number of parents or children aboard the
Titanic. Looking at the values 0, 1, and 2 first, we can see that the quantile regression curves
in Figure 7a are far apart. The sizes of the 80% and 60% prediction intervals lie around 0.4 and
0.3, respectively, for these three values of this variable (see the blue and orange bars in Figure
7b). This implies that, based on this variable, the model is not confident about what probability
of surviving it should assign to a passenger with 0, 1, or 2 parents or children on board. In other
words, we can see that the PNN did not base its estimated probabilities for these passengers on
this variable. Furthermore, when examining the green and red bars for the values 0, 1, and 2 in
Figure 7b they imply that for 0 the data is denser at the bottom (green bigger than red), for 1
the data is pretty evenly distributed and for 2 the data seems to be denser at the top.

(a) Quantile regression curves (b) Bar chart of the prediction interval size

Figure 7: The quantile regression curves and their corresponding prediction interval size for
different values of the number of parents or children aboard.

For the remaining three values 3, 4, and 5 we observe the opposite. Here the quantile
regression curves are close together and the sizes of the corresponding prediction intervals are
small if we look at their blue and orange bars in the right-side figure. This again indicates that
for passengers with 3, 4, or 5 parents or children on board, the PNN seems certain about the
probabilities that it calculated. Moreover, the model seems to believe that these passengers have
a low chance of surviving. Note however that the amount of data points with a value of 3, 4, or
5 seems to be limited (see Figure 13 in Appendix A) which could explain why the quantile lines
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are close to each other. This is something that was also observed earlier for other variables.
If we look at the figures of the next variable, which is the number of siblings or spouses

aboard, they look similar to the figures of the previous variable we discussed. Again, for certain
values of the variable, the quantile regression lines seem to be far apart. Although, this time this
is the case for the first four values: 0, 1, 2, and 3. Of course, we also observe large corresponding
prediction interval sizes for these values (see blue and orange bars in Figure 8b). Looking at
the distribution of the data, for the values 0, 2, and 3 the probabilities seem to be denser at the
bottom (green bigger than red) while for value 1 the data seems to be pretty evenly spread. For
values 4 and 5 the quantile lines get closer together, suggesting that for passengers with 4 or 5
siblings or spouses, the PNN seems confident that they will have a low probability of surviving.
However, again it has to be noted that the data is very sparse for these values (see Figure 13 in
Appendix A) which means we have to be careful when drawing any conclusions.

(a) Quantile regression curves (b) Bar chart of the prediction interval size

Figure 8: The quantile regression curves and their corresponding prediction interval size for
different values of the number of siblings or spouses aboard.

The sixth variable of the data set that will be discussed is gender. For this variable, there
are not that many interesting observations to be mentioned. This is due to the fact that for
both males and females, the quantile lines are far apart (see Figure 9a). They both have blue
bars close to 0.4 (see Figure 9b) which implies that the probabilities estimated by the PNN
were not really influenced by the gender of a passenger. However, what this quantile regression
analysis does show is that the sizes of the 80% and 60% prediction intervals are slightly smaller
for males if we compare the blue and orange bars. This suggests that the probabilities predicted
by the model are most of the time a little closer together for males implying that the model is
more certain about these predictions. This would be hard to spot if we only had the scatter plot
without the quantile lines since the total spread of the probabilities for males is actually larger
compared to females. However, because the estimated probabilities for males are very dense at
the bottom (green is larger than red in Figure 9b) while the probabilities for females are more
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evenly distributed the prediction interval sizes turn out to be smaller for males. Moreover, it
seems to be more likely for the PNN to predict a probability of surviving below 0.5 for males
than it is for females.

(a) Quantile regression curves (b) Bar chart of the prediction interval size

Figure 9: The quantile regression curves and their corresponding prediction interval size for
different values of gender.

The last variable that will be examined is the port of embarkation (see Figure 10). The
quantile curves for this variable are far apart for Cherbourg and Southampton, but close to each
other for Queenstown. This is also confirmed by the size of the blue and orange bars in Figure
10b. Again, it seems as if the PNN did not really let the port of embarkation play a role when
estimating the probability of surviving for passengers that got on board the Titanic in Cherbourg
or Southampton. However, it does look as if there is a higher chance of the model predicting
a higher probability of survival for a passenger that got on board in Cherbourg compared to
a passenger that boarded the ship in Southampton. This can be seen from the green and red
bars in Figure 10b, where for Cherbourgh the data seems to be denser at the top (red larger
than green) while for Southampton the opposite is observed. For Queenstown the sizes of the
prediction intervals are small, indicating that the model is certain that passengers who boarded
in Queenstown have a low probability of surviving. However, it should be noted that for this
port of embarkation, the data is again sparse.
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(a) Quantile regression curves (b) Bar chart of the prediction interval size

Figure 10: The quantile regression curves and their corresponding prediction interval size for
different values of the port of embarkation.

To summarise the above observations a bar chart is made that shows the average prediction
interval sizes for each individual feature variable (see Figure 11). To get this graph, for each
variable, the means of the 80% and 60% prediction interval sizes (Q90-Q10 and Q80-Q20) are
calculated by taking the average of the blue and orange lines or bars from the b figures shown
above. This results in the figure below where in this case a large blue or orange bar indicates a
large average 80% or 60% prediction interval size for that specific feature variable.

Figure 11: Bar chart of the average prediction interval size for each feature variable

This plot shows that we get the lowest average prediction interval sizes for ticket class and
passenger fare. This supports the conclusions drawn earlier where it was already observed that
the PNN seemed to be basing its estimated probabilities of surviving mainly on the ticket class
and to a lesser extent on passenger fare. Other variables, such as the number of parents or
children aboard and the port of embarkation also seem to play a slight role in the probabilities
computed by the PNN since they have the third and fourth lowest average prediction interval
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sizes. For age, we also observed some interesting ranges where the quantile lines were closer
together, but from this chart, it does not seem as if age played a significant role in the compu-
tation of the probabilities by the PNN. Although, especially its average 60% prediction interval
size is relatively low.

The issue with the bar chart in Figure 11 is that it does not take the distribution of the
estimated probabilities into account. If at some point the quantile regression curves were close
together for a feature variable, but this was only based on a few probabilities in that range, the
size of the prediction intervals at that point would have the same weight in the average as the
prediction interval sizes which are based on a large number of probabilities. Therefore, it seems
more reasonable to calculate a weighted mean of the prediction interval sizes for each feature.
This means that now the size of a prediction interval which is based on a lower number of data
points also has a lower weight in the calculated average. Figure 12 shows the bar chart with the
weighted average prediction interval size.

Figure 12: Bar chart of the weighted average prediction interval size for each feature variable

Looking at this figure a few interesting changes are noticed. Again, the weighted average
prediction interval sizes for ticket class and passenger fare are still the smallest. However, both
interval sizes went slightly down for ticket class while they got somewhat larger for the passenger
fare. Especially, for passenger fare this was to be expected since the area of a fare of 90 or higher,
where the quantile lines are close to each other, seemed to contain a relatively low number of
probabilities (see Figure 5b). Therefore, this range for the passenger fare with its corresponding
small prediction interval sizes has a lower weight in the average this time. Furthermore, the
remaining variables all look very similar now. They all have a weighted average 80% and 60%
prediction interval of around 0.4 and 0.3, respectively. Although, in this figure, age is now
the variable with the third lowest weighted average prediction interval sizes. This seems to
resemble the observations made above more closely since we did notice some interesting ranges
for age (especially the age ranges 0-13 and 55-71) where the model seemed more certain about
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what probabilities it should give to passengers with an age inside these ranges. The weighted
average prediction interval sizes for the number of parents or children aboard and the port of
embarkation are significantly larger than their unweighted averages. Similar to the passenger
fare, this can be explained by the sparsity of the data for values that had a small prediction
interval size. All in all, it seems as if the PNN mainly looks at the ticket class and the passenger
fare of the passengers to compute the corresponding probabilities of surviving where, on top
of that, these two variables are also negatively correlated. The remaining five variables on the
other hand seem to be somewhat disregarded. This suggests that the current model might not
be fully exploiting the data and improving this model or using a more sophisticated model would
probably result in a higher accuracy.

5 Conclusion and Discussion

In this thesis, we focused on the issue posed by the rising complexity of machine learning models,
which pursue higher accuracy at the expense of interpretability. To address this problem and
gain deeper insights into black box models, we proposed a new method. The objective was to
investigate whether quantile regression analysis could assist in identifying the decision-making
process of a machine learning model. Additionally, the distance between the quantile regression
curves at specific values of a feature variable could provide useful insights into the model’s level
of certainty when making its predictions. For illustrative purposes and the capability to produce
probabilities, we selected a PNN as the machine learning model for evaluating the performance
of this quantile regression analysis. Furthermore, while the PNN is intuitive, interpreting the
calculations conducted by the individual neurons and explaining why it made certain predictions
can still be challenging.

The performed quantile regression analysis yielded some intriguing conclusions. First of all,
the quantile curves effectively demonstrated which specific feature variables were utilized by the
model and which ones were disregarded. The analysis revealed that the PNN mainly relied on
the variables ticket class and passenger fare for its predictions, providing deeper insights into
the PNN’s decision-making process. Furthermore, a smaller prediction interval size associated
with certain feature variable values indicated a more stable output by the PNN, suggesting
a stronger influence of those feature variable values on the model’s predictions. Therefore,
the method’s ability to provide prediction interval sizes allowed for visualizing the prediction
certainty of the PNN for different values of the feature variables. The advantage of using
a relatively small and comprehensible data set for demonstrating the method was clear when
examining the ticket class variable, where the stable pattern of the predictions was already easily
observable from the scatter plot (see Figure 6a). The confirmation of this observation by the
proposed analysis, showing the smallest average distance between the quantile curves for ticket
class, further supports the validity of the method. Moreover, the analysis revealed interesting
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ranges for the variables age and passenger fare which are harder to spot purely based on the
scatter plots (see Figures 4a and 5a). Currently, the method used to measure the overall impact
of a variable is the unweighted and weighted average prediction interval size of the different
feature variables. From our observations, the weighted average prediction interval size appears
to be a fairer measuring method when compared to the unweighted distance. For the relatively
simple PNN utilized in this research, the (weighted) average distance seems sufficient. However,
as the machine learning model becomes more sophisticated and incorporates additional variables
for predictions, it may exhibit stable outputs for certain feature variable values while showing
instability for other values of the same variable, as we already observed for age and passenger fare
in this study. This variability could even out the (weighted) average distance, highlighting the
importance of also examining individual feature variable figures. In the case of more complex
models, exploring alternative measuring methods to quantify the impact of variables on the
model’s predictions is another viable option.

Regarding future research, several intriguing proposals arise. Firstly, keeping it closely re-
lated to this study, investigating the outcomes of the quantile regression analysis after removing
the current most influential feature variable, ticket class, would be insightful. Will the passenger
fare take on the role of the ticket class, or will an unused variable suddenly have the most signif-
icant impact? Additionally, incorporating the variables that were excluded from this research,
such as ticket and cabin numbers, and re-running the analysis could offer valuable insights. As
mentioned earlier, the performed quantile regression analysis reveals that the current form of
the PNN merely utilizes the variables ticket class and passenger fare, which are also negatively
correlated. This could explain the relatively low accuracy of the PNN. Therefore, it would be
interesting to try to improve the model and perform the same analysis again to observe whether
more variables are incorporated by the model this time.

Another interesting area for further research could be exploring different data sets. Analyz-
ing how the quantile regression analysis performs on a larger data set or a high-stake finance
classification data set could be insightful. Additionally, investigating the analysis for a multiple-
output classification problem would be enlightening. In this case, identifying the variables that
have the most significant impact on the PNN’s predictions might not be straightforward by
just examining the scatter plot. Hence, it would be intriguing to observe whether the distance
between the quantile curves could still provide us with valuable insights regarding the influential
feature variables. Furthermore, it would be valuable to examine how the method performs when
replacing the PNN with a less interpretable and more sophisticated model, such as a DNN. Can
the proposed approach still identify the most influential feature variables and determine the
DNN’s prediction certainty? Lastly, a comparison of the performance of the quantile regression
analysis with existing methods, such as neural network visualizations and LIME (see Section 1),
would be beneficial in understanding the strengths and limitations of each technique.
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Appendix

Appendix A

Figure 13: The distribution of the data after cleaning for the variables number of parents or
children aboard and number of siblings or spouses aboard.
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Table 2: Overview of all variables and their corresponding variable type, used for this research.

Variable Description Variable type

Survived Whether or not the passenger survived the sink-
ing of the Titanic, where 0 = no and 1 = yes

Categorical
(Binary)

Age The age of the passenger Continuous

Passenger fare The price the passenger paid for the ticket Continuous

Ticket class The class of the passenger’s ticket, where 1 =
upper class, 2 = middle class, and 3 = lower
class

Categorical
(Ordinal)

Number of parents
or children aboard

The number of parents or children the passen-
ger had aboard the Titanic, where a parent is
either a mother or father and a child is either a
daughter, son, stepdaughter or stepson

Categorical
(Ordinal)

Number of siblings
or spouses aboard

The number of siblings or spouses the passenger
had aboard the Titanic, where a sibling is either
a brother, sister, stepbrother or stepsister and a
spouse is either a husband or wife

Categorical
(Ordinal)

Gender The gender of the passenger, where 0 = male
and 1 = female

Categorical
(Binary)

Port of
embarkation

The port at which the passenger boarded the
Titanic, where C = Cherbourg, S = Southamp-
ton, and Q = Queenstown

Categorical
(Nominal)
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Appendix B

Figure 14: Scatter plot and the Pearson correlation coefficient of ticket class and passenger fare.
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