
The stochastic weekly vehicle routing
truck driver scheduling problem with

time windows
Erasmus University Rotterdam

Erasmus School of Economics

Master’s thesis

Econometrics and Management Science

Analytics and Operations Research In Logistics

Author

Frijlink, Tenzin 611871

Supervisors

Spliet, Remy (1st) Erasmus University

Wagenvoort, Mette (2nd) Erasmus University

Bliki, Arne Conundra

Heene, Tom Conundra

Abstract

Carriers face a twofold optimization problem: planning vehicle routes and workforce scheduling.

In practice, this problem is often solved sequentially, first the routes are computed and then

drivers are scheduled manually, based on a single forecast scenario. When the actual demand

becomes known, this procedure is repeated. This leads to undesirable situations, as drivers

could have to work on different days or at different hours than originally planned. Therefore,

the stochastic weekly vehicle routing truck driver scheduling problem (SWVRTDSP) with time

windows is introduced. The objective is to create a weekly driver schedule, based on a set of

forecast scenarios, that minimizes the expected routing and scheduling costs via an integrated

approach. The driver schedule conforms to (EC) No. 561/2006 and takes into account drivers’

working preferences. To solve the SWVRTDSP, an adaptive large neighbourhood search algo-

rithm is used. The performance of the algorithm is tested on instances from literature and a

real-life instance from the Netherlands, containing 671 daily customers. Additionally, a problem-

specific neighbourhood is developed that effectively generates a robust driver schedule based on

forecast scenario(s). Results show that fewer drivers are required if the driver pool consists of

either highly available or highly skilled drivers, compared to a balanced driver pool. Moreover,

it is shown that a multi-scenario integrated solving approach results in the best driver schedule,

which is both robust and reduces the objective value by 22.94% for the real-life instance.

July 14, 2023

The content of this thesis is the sole responsibility of the author and does not reflect the view of the

supervisors, second assessor, Erasmus School of Economics, Conundra or Erasmus University

Contents

1 Introduction 2

2 Related Work 3

2.1 Vehicle Routing Problem with Time Windows . 3

2.2 Truck Driver Scheduling Problem . 3

2.3 Vehicle Routing and Truck Driver Scheduling Problem . 4

3 Problem Definition 5

4 Adaptive Large Neighbourhood Search 7

4.1 Scenarios and hours of service regulations . 7

4.2 Initial solution . 8

4.3 Neighbourhoods . 8

4.3.1 Random Removal (RR) . 9

4.3.2 Similarity Removal (SR) . 9

4.3.3 Worst Removal (WR) . 9

4.3.4 Adjusted Worst Removal (AWR) . 10

4.3.5 Greedy Insertion (GI) . 10

4.3.6 Demand and Failure Sorting Insertion (DFSI) . 10

4.3.7 Regret Insertion (RI) . 11

4.3.8 Memory Regret Insertion (MRI) . 11

4.3.9 Similar Route Splitting (SRS) . 12

4.3.10 Global Driver Rescheduling (GDR) . 12

4.3.11 Route Moving (RM) . 16

4.3.12 Route Swapping (RS) . 16

4.3.13 Day Swapping (DS) . 16

4.4 Sequential Approach . 17

4.5 Adaptive search . 17

4.6 Acceptance and stopping criteria . 18

5 Computational Results 19

5.1 Test instances . 19

5.2 Impact of number of forecast scenarios . 20

5.3 Effects of different solving approaches . 21

5.4 Performance of neighbourhoods . 23

5.5 Impact of cost prioritization . 25

5.6 Impact of driver pool characteristics . 25

5.7 Comparison with current practice . 27

6 Conclusion 29

References 30

A Appendix A 34

B Appendix B 35

Erasmus University Rotterdam 1

1 Introduction

Currently, 15% of truck driver positions are unfilled and expected to triple in the coming years (IRU,

2022). Therefore, it is becoming more important for companies to use drivers more efficiently and

adhere to their working preferences. For carriers, which supply stores for multiple retailers, there is

a twofold optimization problem: planning vehicle routes and workforce scheduling. Currently, this is

performed sequentially, each retailer, based on a single forecast, solves the Vehicle Routing Problem

with Time Windows (VRPTW) and supplies these routes to the carrier. Drivers are then scheduled

manually based on the planned routes from the retailers. When the actual demand for retailers

becomes available, the VRPTW is solved again and drivers are rescheduled by hand. This leads

to undesirable situations, as drivers could have to work on different days or at different hours than

originally scheduled or preferred. Moreover, it could lead to drivers working a significant amount

of overtime each week.

Therefore, this report explores the Stochastic Weekly Vehicle Routing and Truck Driver Schedul-

ing Problem (SWVRTDSP) with time windows, denoted as SWVRTDSP. The aim is to create a

robust schedule for drivers, such that drivers can rely on the schedule provided in advance, whilst

keeping routing and scheduling costs to a minimum. Moreover, the schedule considers the drivers’

working preferences, to both use drivers more efficiently and increase driver satisfaction.

The main contributions of this report are fivefold. First, the VRTDSP is extended to include

stochastic demand, in this case by adding multiple forecast scenarios. Second, the VRTDSP is

extended to include weekly planning, which considers driver preferences, and skills and conforms

to (EC) No. 561/2006. Third, a state-of-the-art Adaptive Large Neighbourhood Search (ALNS)

algorithm with problem-specific neighbourhoods is developed to construct routes and create driver

schedules for the SWVRTDSP. Multiple experiments are performed regarding forecast scenarios,

different solving approaches, varying cost prioritization, different driver pools, and neighbourhood

performance. Fourth, the adaptive element of ALNS is further adjusted, such that not only the

neighbourhood performance is taken into account, but also the applicability for the current solu-

tion and time complexity of the neighbourhood. Fifth and last, it is shown that a multi-scenario

integrated approach results in a robust driver schedule.

The next section, Section 2, reviews the state-of-the-art literature. In Section 3, the SWVRTDSP

is formally defined. In Section 4, the ALNS method is introduced, neighbourhoods are elaborated

on and a sequential method is presented. Section 5 introduces the problem instances and shows

the findings of the computational study. Lastly, Section 6 provides conclusions of this report and

recommends future research directions.

Erasmus University Rotterdam 2

2 Related Work

In this section related works are discussed. First, works on vehicle routing with time windows are

discussed in Section 2.1. Second, the truck driver scheduling problem is discussed in Section 2.2.

Third and last, the vehicle routing truck driver scheduling problem is discussed in Section 2.3.

2.1 Vehicle Routing Problem with Time Windows

The VRPTW is known to be an NP-hard problem since it contains the VRP as a special case, which

is NP-hard (Laporte & Nobert, 1987). The VRPTW, if solved exactly, is often modelled as a multi-

commodity network flow problem (Salani & Vacca, 2011) or a set covering formulation (Bredstrom

& Ronnqvist, 2007) in combination with branch and price (Feillet, 2010). However, Özarık et al.

(2021) state that exact algorithms have a well-documented highly-variable performance on most

vehicle routing variants, supported by independent research from Uchoa et al. (2017). Therefore,

many authors use heuristics which yield near-optimal solutions within relatively short computing

times (Özarık et al., 2021) and perform well for larger instances (Uchoa et al., 2017). Castillo-Salazar

et al. (2016) come to a similar conclusion after reviewing VRPTW state-of-the-art.

Ropke & Pisinger (2006) first introduced the Adaptive Large Neighbourhood Search (ALNS)

which iteratively, via partly destroying and repairing the routes, tries to improve the solution.

This metaheuristic is highly popular (Windras Mara et al., 2022) since it allows for diversification,

flexibility and is easy to adjust (Sacramento et al., 2019). Windras Mara et al. (2022) surveyed

over 250 scientific publications on ALNS and showed that there is increasing use of ALNS in recent

years. Moreover, it is noted that more emphasis should be placed on the adaptive mechanism.

However, limited research has been performed into the VRPTW with stochastic demand (Zhang

et al., 2016). Often two-stage stochastic programming is used, e.g. by Chang (2011) or Lei et al.

(2011), where initial routes are constructed and then adjusted based on actual demand. Another

approach is to generate a finite set of possible demand realizations, based on a probability distribu-

tion for customer demand, and construct routes based on these realizations (Spliet & Desaulniers,

2015). Boujlil & Lissane Elhaq (2020), after reviewing 50 papers, advice to develop metaheuristics

to solve the VRPTW with stochastic demand. The review mainly highlights the research by Lei et

al. (2011) who use ALNS to find robust solutions.

2.2 Truck Driver Scheduling Problem

Since April 2007 there are regulations regarding the Hours of Service (HoS) for truck drivers in

the form of regulation (EC) No. 561/2006 (European Parliament, 2006). Goel (2008) deemed the

workforce scheduling problem adhering to these regulations as the Truck Driver Scheduling Problem

(TDSP). The TDSP is a special case of the workforce scheduling problem and as a consequence is NP-

hard (Lau, 1996). Moreover, Goel (2010) first found that the legislative constraints made the truck

driver scheduling problem much more complex to solve than regular workforce scheduling. Recent

Erasmus University Rotterdam 3

research by Sartori et al. (2022) also shows that solving the TDSP results in lengthy computational

times.

Van Den Bergh et al. (2013) reviewed over 300 scientific publications on workforce scheduling

and found that exact approaches using a set covering formulation were most common. Alternatively,

genetic algorithms or tabu search are often used to improve the solution from construction heuristics.

The literature survey performed by Castillo-Salazar et al. (2016) confirms these findings. Regardless,

the vast majority of literature ignores all types of uncertainty as well as working preferences (Van

Den Bergh et al., 2013).

In the TDSP the problem at hand is to assign routes, with a given time duration, to available

drivers. The structure of this problem is similar to bin-packing, where items of a certain size need

to be allocated to as few bins as possible. Witteman et al. (2021) showed that, in the field of

aircraft maintenance, a bin-packing-based approach results in small optimality gaps and limited

computational time. Marzouk & Kamoun (2020) explored a bin-packing-based approach for the

nurse-to-patient assignment problem, which takes into account nurse skills, different shifts and

different assignment zones. The authors found that the bin-packing-based heuristic provided flexible

and feasible solutions, regardless of the shift or assignment zone.

2.3 Vehicle Routing and Truck Driver Scheduling Problem

As both the TDSP and VRPTW are NP-hard, the integrated problem is definitively NP-hard.

Castillo-Salazar et al. (2016) explore the Workforce Scheduling and Routing Problem (WSRP),

which is similar to the VRTDSP, but also adheres to working preferences. In their literature review

Castillo-Salazar et al. (2016) find that often exact approaches are used for the routing, but heuristics

for the workforce scheduling. Alternatively, as the literature review by Pereira et al. (2020) confirms,

(meta)heuristics are used to solve the WSRP as a whole. Pereira et al. (2020) further extend the

WSRP to include multi-period workforce scheduling with dependent tasks. They use ant colony

optimization, which finds the same solutions as an exact approach in a fraction of the time for most

instances.

Perumal et al. (2021) researched a problem similar to the VRTSP, where bus drivers and buses

are scheduled simultaneously using ALNS. They find that improvements up to 4.37%, in terms of

operational costs, can be achieved using ALNS over sequential methods. Mor et al. (2022) find that

significant savings can be achieved by using heuristic methods, compared to current practice, in the

VRTDSP for long haul transport complying with HoS regulations. Wen et al. (2011) extend the

VRTDSP to weekly planning under HoS regulations, time windows and vehicle size. They use a

multilevel variable neighbourhood search heuristic with five large neighbourhoods in combination

with diversification and intensification, where first the problem size is reduced through node ag-

gregation. Wen et al. (2011) found that, based on real-life data, their heuristic for the VRTDSP

outperformed industry standards both in terms of total travelled distance and number of vehicles

used.

Erasmus University Rotterdam 4

3 Problem Definition

Consider the complete graph G = (V,A), where V = {0, 1, ..., n + 1} correspond to the set of all

locations and V ′ = {1, ..., n} the set of customers, where vertices 0 and n + 1 represent the depot.

More specifically, vertex 0 is where the route starts and vertex n + 1 is where the route ends. Let

cij and tij represent the cost and time respectively to travel from location i to j. The total travel

costs are defined as Ct. The service time for each customer is included in the travel time. Define

ei and li as the earliest and latest allowed time to arrive at customer i, thus leading to the time

window [ei, li]. Each customer i has stochastic demand zi with a known distribution, where zi is

non-negative and is less than Y.

There is an unlimited fleet of K trucks available with capacity Qk, note that Y ≤ minQk. If

customer i can be served by truck k, then vki = 1. To account for weekly planning, dummy vertices

are introduced, so each customer has a separate vertex for every day of the week, where mdj = 1 if

customer j needs to be served on day d ∈ D.

Furthermore, there is a sufficiently large set of P drivers available with certain driving skills and

working preferences for the week. These preferences relate to working days, total working hours,

starting time and end time. If driver p can and wants to drive truck k then wk
p = 1. Each driver

has a preferred starting time ap, end time bp and weekly working hours hp. Moreover, if driver p

prefers to work on day d then opd = 1. The costs associated with violating these preferences are

ctardiness which relate to starting earlier or later than preferred per time unit, cover per time unit

of overtime and cday per non-preferred scheduled day respectively. The sum of these costs over the

drivers is called the preference violation costs Cp.

Additionally, there are HoS regulations, by European Parliament (2006), that apply to each

driver. Since short-haul transport is considered in this report, only constraints with regard to

consecutive working time and rest periods apply:

HR.1 Being scheduled for between 6 and 9 hours consecutively requires a break of at least 30 minutes

HR.2 Being scheduled for more than 9 hours consecutively requires a break of at least 45 minutes

HR.3 It is allowed to take the breaks in 15-minute segments

HR.4 A minimum daily rest of 11 hours, which can be reduced to 9 hours, but no more than three

times between any 2 weekly rest periods

A route is feasible if (i) the capacity of the truck is not exceeded, (ii) the time windows of served

customers are respected, and (iii) the customers are served by the correct truck.

A schedule is feasible if (a) HR.1 through HR.4 are satisfied, (b) all customers are served, (c) all

routes are assigned to drivers and (d) the driver can drive the trucks corresponding to the assigned

routes.

Erasmus University Rotterdam 5

To model demand uncertainty, consider a finite set of demand scenarios Ω and corresponding

probability pω such that
∑

ω∈Ω pω = 1. Each customer i has demand dωi in scenario ω. It is assumed

that demand follows a discrete distribution, for similar reasons as Spliet & Desaulniers (2015).

The problem can be split into two stages. In the first stage the actual demand realization is

unknown and is approximated via scenarios Ω, whereas in the second stage demand is known. In

practice, the realized demand is only known a week in advance, but the driver schedules need to be

known further in advance. Consequently, in the first stage, a global driver schedule is constructed,

which is communicated to drivers and serves as starting schedule for the second stage. In the second

stage, routes are computed based on actual demand and a local driver schedule is constructed. In

the ideal case, the local driver schedule can be fitted into the global driver schedule without any

violations.

The global driver schedule can be seen as the schedule provided to drivers a substantial amount

of time in advance, with information on working days and times. Note that the global driver schedule

is the same for all demand scenarios, whereas the routes and local driver schedule are specific to the

scenario ω. It could be, for some demand scenario ω, that the global driver schedule is violated by

the local driver schedule. The global driver schedule is only violated if a driver needs to start later or

earlier, or on a different day than planned in the global driver schedule. Therefore, additional costs

are introduced: sctardiness per time unit for being scheduled earlier or later than in the global driver

schedule and scday per differently scheduled day respectively. For a certain scenario ω summing

these costs over the drivers results in the schedule change costs, defined as Cω
s .

Now the objective of the SWVRTDSP can be formally stated: find a global driver schedule which

minimizes the expected costs over the demand scenarios. The costs are threefold per scenario: travel

cost (Ct), preference violation cost (Cp) and schedule change cost (Cs). The travel costs for scenario

ω can be calculated by multiplying the used arcs in the routes with the corresponding costs cij . To

calculate the expected costs, the costs (Cw) per scenario ω are multiplied with probability pω and

summed over all scenarios Ω. Consequently, the total objective value f is:

f = Cp∥Ω∥+
∑
ω∈Ω

(pωC
ω
t + pωC

ω
s) (1)

Erasmus University Rotterdam 6

4 Adaptive Large Neighbourhood Search

In this section, an ALNS algorithm is presented to solve the SWVRTDSP. Based on Section 2,

(meta)heuristics appear to be more suitable than exact methods due to the size of the instances,

which include 100 up to 671 customers per day, and the complexity of the problem. More specifically,

Wen et al. (2011) found that ALNS, or a variant thereof, is applicable to weekly planning and Lei

et al. (2011) show it is suitable to use in case of stochastic demand. Therefore, ALNS is deemed fit

to purpose to solve the SWVRTDSP in this report.

Section 4.1 describes the generation of demand scenarios and how HoS regulations are imple-

mented. To create an initial solution, first, a construction heuristic for routes and then a bin-

packing-based heuristic for scheduling are used, see Section 4.2. An overview of all neighbourhoods

including time complexity is provided in Section 4.3. A sequential approach to the SWVRTDSP

using the already available neighbourhoods is described in Section 4.4. The specifics of the prob-

abilistic neighbourhood selection mechanism are elaborated on in Section 4.5. After the stopping

criterion, see Section 4.6, has been met, the best solution is returned.

4.1 Scenarios and hours of service regulations

The complexity of the problem mainly comes from the demand uncertainty, as described in Section 3.

For large instances, the number of possible scenarios is simply too large (Verweij et al., 2003).

Consequently, a Sample Average Approximation (SAA) approach is used. With SAA the objective

value is approximated by an average of objective values from a random sample. This random sample

is a subset of demand scenarios, which is considered as Ω for the ALNS and is generated via the

underlying distribution, with the mean equal to the expected demand of each customer. Do note

that the actual demand scenario is not necessarily included in Ω for large datasets. The total

objective value is calculated according to Equation (1).

Recall that any feasible schedule needs to satisfy HoS regulations HR.1 to HR.4. This is enforced

in the following way. When scheduling, it is assumed that a route with a duration between 6 and

9 hours contains 30 minutes of rest according to HR.1. Do note that the route rest time is not

explicitly checked for. If a route of 7 hours and a route of 3 hours are assigned to a driver, then it

is assumed HR.1 is already satisfied by the route of 7 hours, so there need to be at least 15 minutes

between the routes according to HR.3 to satisfy HR.2. If a route with a duration of more than 9

hours is assigned to a driver then HR.2 is always satisfied, regardless of other routes assigned to the

driver. The nightly rest times are explicitly checked for and need to satisfy HR.4.

Not checking routes for rest time explicitly was done for two reasons. First and foremost, the

main challenge lies in enforcing the nightly rest time according to experts in the field, as route

rest times are usually respected effortlessly. Second, route rest checking resulted in doubling the

run time, which due to the time frame of this project would have meant half of the experiments.

Therefore, it was the author’s choice was to not explicitly check for route rest time.

Erasmus University Rotterdam 7

4.2 Initial solution

A Push Forward Insertion Heuristic (PFIH) is used to provide initial feasible routes for the VRPTW.

Wang et al. (2014) state that this heuristic, first introduced by Solomon (1987), efficiently provides

good initial routes. The customers are split per day and per retailer to speed up this process.

For the TDSP it is reasonable to assume that bin-packing-based heuristics provide good solu-

tions, since Marzouk & Kamoun (2020) showed bin-packing is effective for worker preferences and

shifts. For the TDSP the routes are known, so the problem is how to assign the routes to the drivers.

For each route, it is precomputed whether it violates driver preferences or the driver’s skills. This

makes assigning routes to drivers much easier since the only thing left to check is if routes overlap

or HoS regulations are violated.

The following procedure is used: First, the lists of drivers and routes are randomly shuffled.

This is important as this is the order routes and drivers get iterated over. Second, it is attempted

to construct a schedule that conforms to all driver preferences. A greedy approach is used, where

the route is assigned to the first driver that can handle the route during the iteration process. If

this is not possible, the driver preferences are ignored and the only objective is assigning all routes

greedily to drivers. If not all routes are assigned to drivers, then return to the first step. Due

to the randomness of this procedure, a local search is added to improve the solution quality. The

following neighbourhoods are visited in order: (a) moving routes from one driver to another, (b)

swapping routes between drivers and (c) swapping days between drivers. More information on these

neighbourhoods can be found in Section 4.3.11, Section 4.3.12 and Section 4.3.13 respectively.

Experiments with the ALNS algorithm showed that the bin-packing-based heuristic without local

search took relatively long to run and did not provide good quality solutions. Especially with the

addition of HoS regulations. Therefore, the greedy scheduling approach, described in Section 4.3.5,

was developed, which found better quality solutions in significantly less run time. The bin-packing-

based heuristic with local search is still used to construct initial schedules, but the greedy scheduling

approach is used to find a schedule after each removal and insertion operation.

4.3 Neighbourhoods

This report makes use of thirteen different neighbourhoods. There are four neighbourhoods focused

on vertex removal and four neighbourhoods focused on vertex insertion in routes. If selected, q

vertices are removed and inserted each day; q is selected randomly in the interval [⌈0.1n⌉, ⌈0.2n⌉],
as also used by Jia et al. (2023) and Lei et al. (2011), where n indicates the total number of

nodes. After insertion, the old local driver schedule is likely not feasible anymore. Therefore, each

insertion neighbourhood has a specific schedule construction mechanism. Additionally, there are

two problem-specific neighbourhoods and three neighbourhoods purely focused on the local driver

schedule. For each neighbourhood, the general idea and approach are described, as well as the time

complexity.

Erasmus University Rotterdam 8

4.3.1 Random Removal (RR)

To diversify the search, this neighbourhood selects q vertices at random to remove. This is of great

importance as poor local optima differ significantly from the global optimum (Lourenço et al., 2003).

Selecting a random vertex to remove takes O(1) time, which is repeated O(q) times. Therefore, this

neighbourhood is of complexity O(q).

4.3.2 Similarity Removal (SR)

First proposed by Shaw (1998) and also called Shaw Removal, this neighbourhood selects a first

vertex to remove randomly and removes vertices that are similar in terms of proximity and time

window until q vertices are removed. The same similarity measure as Lei et al. (2011) is used:

S(i, j) =
1

cij
cmax
i

+ 1
τij+τji

(2)

where cij is the travel cost from customer i to j, cmax
i is the maximum cost between i and any other

vertex. The time window similarity, τ , is defined below in Equation (3). Do note that u in the

left-hand side in the maximum should be chosen carefully. It prevents τij from becoming negative,

if the right-hand side is negative, so should be chosen such that u > 0. In this application time is

expressed in minutes, so u = 1 is chosen. However, if tij was defined in hours, u should be chosen

much smaller. To prevent a high similarity measure when there is no similarity.

τij = max{u,min{lj , li + tij} −max{ej , ei + tij}} (3)

As the location and time windows of vertices do not differ for different scenarios, the similarity

measure is calculated for all vertices in advance. This process takes O(n2) time since for all O(n)

vertices the similarity measure to all other O(n) vertices is calculated. Per vertex, the other vertices

are then sorted in decreasing order of similarity measure, which takes O(n log n) time. So per vertex,

the computation time is O(n + n log n) reducing to O(n log n). Resulting in a total complexity of

O(n2 log n). In each iteration selecting the first vertex to remove takes O(1) time, and selecting

the remaining vertices takes O(q) time as there are presorted lists available. Therefore, the time

complexity per iteration is only O(q) due to the preprocessing. Do note that it is also possible

to calculate the similarity measure during each iteration. Then the time complexity would be

O(n log nq) per iteration. This means that time savings are achieved after roughly n
q iterations by

preprocessing. However, significantly more memory is required.

4.3.3 Worst Removal (WR)

This neighbourhood aims to remove the vertices with the largest removal costs. The removal cost

is defined as the change in route costs when a vertex is removed from the route. The q vertices

with the highest removal cost are removed. A naive approach is used where the removal costs are

calculated once, before any vertices are removed, and not updated once vertices get removed. The

Erasmus University Rotterdam 9

removal costs are calculated for all O(n) vertices. Then the costs are ordered in decreasing order of

removal costs. Resulting in a time complexity of O(n log n). Then the first q vertices get selected to

be removed, which takes O(q) time. Consequently, this neighbourhood is of complexity O(n log nq).

4.3.4 Adjusted Worst Removal (AWR)

Contrary to WR, instead of only looking at removal cost in the route, it is also checked how much

each vertex impacts the schedule change and preference violation costs. Then the q vertices with the

highest combined costs get removed. The idea is that this results in twofold savings, both in terms

of routing costs and scheduling costs. A naive approach is used where the adjusted removal costs

are calculated once, before any vertices are removed, and not updated once vertices get removed.

Similar to Section 4.3.3, this neighbourhood is of complexity O(n log nq).

4.3.5 Greedy Insertion (GI)

The approach of this neighbourhood is similar to the PFIH defined in Section 4.2. Starting at

the first removed vertex, it is checked where the vertex can be inserted with the least additional

cost, where it is then inserted. Which takes O(n) time. This procedure is repeated until all O(q)

removed vertices are inserted again. If a vertex cannot be inserted in an existing route, a new route

is created. As it is possible to keep track of the best insertion place whilst calculating the insertion

costs, there is no need to sort the costs at the end, which saves O(log n) time. This logic is applied

to all processes which require a single position to be returned. Therefore, this process is of time

complexity O(nq). Assume that any insertion neighbourhood results in O(r) routes.

Additionally, a new local driver schedule needs to be constructed. A greedy approach is used:

The list of routes is shuffled, which takes O(r) time, and then the first route in the list is selected

to be inserted first. For each driver, it is calculated what the insertion costs are and the driver

with the lowest insertion costs is selected, which takes O(p) time. This is repeated for all remaining

routes. This process is of time complexity O(rp). If a route cannot be assigned to any driver, the

routes are shuffled again and the process is repeated. Technically, the size of the neighbourhood is

O(rp+ r) due to the shuffling, but this simplifies to O(rp).

4.3.6 Demand and Failure Sorting Insertion (DFSI)

The general idea of this neighbourhood is that the most constraining vertices, e.g. with the most

demand, should be assigned to the route with the most leftover space. Therefore, DFSI sorts the

vertices to be inserted in decreasing order of expected demand. It also sorts the routes in decreasing

order of leftover space. The sorting is of time complexity O(r log r+ n log n) and since there are at

most as many routes as vertices, this results in O(n log n) time. A naive approach is used, where

the sorting is only done initially and not updated as vertices get assigned. Then, the first vertex of

the sorted list is inserted in the first feasible route of the sorted list of routes. More specifically, at

Erasmus University Rotterdam 10

the location in the route, where the route costs increase the least. If a vertex cannot be inserted

in an existing route, a new route is created. This takes O(n) time. This procedure is repeated for

each vertex to be inserted. Resulting in a time complexity of O(nq) for the insertion. Technically,

the neighbourhood is of size O(nq+n log n), but it is assumed that q > log n. Therefore, the vertex

insertion is of time complexity O(nq).

The assignment of routes to drivers is also load based. The routes are sorted in decreasing order

of loads, which takes O(r log r) time. Each route in the sorted list is then assigned greedily to a

driver, which takes O(rp) time. It could be that at some point a route cannot be assigned to a driver

anymore. Then the greedy procedure defined in Section 4.3.5 is used. It is assumed that p > log r

Therefore, the process is of time complexity O(rp), since O(rp+ r log r) simplifies to O(rp).

4.3.7 Regret Insertion (RI)

As opposed to Section 4.3.5, for each vertex the difference in cost of inserting it at the best and

second best position is calculated, defined as regret value. This takes O(n2) time. The vertex

with the highest regret value is inserted first. Then the procedure is repeated until all vertices are

inserted again, so O(q) times. If a vertex cannot be inserted in an existing route, a new route is

created. This process is of time complexity O(n2q).

The assignment of routes to drivers is also performed with a regret mechanism. For all routes,

the costs of assigning it to the best and second best driver are calculated, which takes O(rp) time.

The route with the highest costs is inserted first. Then the process is repeated until all routes are

assigned, which is O(r) times. Resulting in a complexity of O(r2p). It could be that at some point

a route cannot be assigned anymore. Then the greedy procedure defined in Section 4.3.5 is used.

As O(r2p) > O(rp), the complexity is O(r2p) regardless of the usage of the greedy procedure.

4.3.8 Memory Regret Insertion (MRI)

Before the removal of vertices, it was known which vertices were in which routes and which routes

were assigned to which driver. Consider this as the memory. This neighbourhood uses the memory

by adding regret if the memory gets violated. It implicitly assumes that the memory consisted of

a good solution, and should only be violated if there is a much better option. Therefore, a similar

procedure to Section 4.3.7 is used, but regret is also added if a vertex is assigned to another route

than before the removal. This process is O(n2q).

For the assignment of routes to drivers, a similar regret approach is used. As opposed to

Section 4.3.7, regret is also added if a route is not assigned to the same driver as it was previously

assigned to. It could be that at some point a route cannot be assigned anymore. Then the greedy

procedure defined in Section 4.3.5 is used. This process is O(r2p).

Erasmus University Rotterdam 11

4.3.9 Similar Route Splitting (SRS)

The general idea of this neighbourhood is to split a conflicting route, e.g. a route that starts or ends

too late for a specific driver, at the conflicting vertex and try to assign the conflicting part to another

driver. This leads to an increase in routing costs, but could significantly reduce schedule change

costs. The similar element is to not consider a single driver, but consider a subset of drivers with

similar skills, but different start and end time preferences. Assignment of the split routes should be

relatively straightforward, as all drivers in the subset have similar skills. Another advantage is that

splitting routes is always feasible in terms of time windows and truckload, so requires no feasibility

checks.

The subset of drivers is selected as follows. A random number, z, of days between [⌈0.5D⌉, ⌈0.75D⌉]
is chosen. The days are shuffled and the first z days are selected. A random skill k is selected, e.g.

being able to drive truck type 2. Then drivers are selected that want to work on all selected days

and can drive the selected truck. This process is of time complexity O(p). If the subset of selected

drivers contains less than ⌈0.05P ⌉ drivers, the selection process is repeated. It is assumed the subset

of selected drivers is of O(s), where s ≤ p, but likely much smaller. Given the driver subset, create

a subset of routes that make use of truck type k and start too early or end too late compared to

the global driver schedule. This takes at most O(r) time. Resulting in a subset of routes of size

O(m), where m ≤ r, but likely much smaller. The selection process is of complexity O(p+ r), but

simplifies to O(r) as it is assumed that r > p.

Given the subset of violating routes, split these routes at the point of violation, and try to assign

the violating part of the route to another driver in the subset with the lowest additional cost. Which

takes at most O(sm) time. If it is not possible to assign the route to a driver in the subset, it is

randomly assigned to another driver for which the route is feasible, regardless of the cost. This

takes O(p) time. If this is not possible, the original driver schedule and routes without splitting

are returned and the neighbourhood failed. The complexity in the worst case is O(pm), but likely

much smaller. The total complexity is O(r + pm), but for simplicity, it is assumed that pm > r.

The complexity in the worst case therefore is O(pm), in the best case it is O(sm) if sm > r.

4.3.10 Global Driver Rescheduling (GDR)

The global driver schedule is arguably the most important part of the SWVRTDSP. Therefore, a

novel neighbourhood that focuses purely on the global driver schedule is introduced. The local driver

schedules are considered to be fixed. Consequently, only the global driver schedule can be adjusted.

The aim is to construct a global driver schedule that minimizes both Cp and Cs. Moreover, this

problem can be solved for each driver separately as the drivers are independent.

One approach is to try and use a commercial solver to solve this problem to optimality. However,

commercial solvers are expensive to use in practice and have highly varying run times. Therefore,

a novel approach to create a global driver schedule is proposed, based on the piecewise linear cost

structure of the problem. The difficulty lies in enforcing HoS regulations, as will become apparent.

Erasmus University Rotterdam 12

For now, suppose HoS regulations do not exist. Then the only decision variable is the start and

end time of a driver on a certain day d. Since drivers are independent, the method is illustrated

for one driver. The procedure of determining the start time for a driver is similar to the procedure

of determining the end time. Consequently, only the end time is elaborated on. Denote the end

time of a driver on day d as etd and the end time of a local driver schedule as etωd . The preferred

end time of a driver is b, as formulated in Section 3. Define Send
d as the set containing b and all

etωd ∀ω ∈ Ω. Define netd
act as the number of active scenarios and N etd

act as the set of active scenarios at

end time etd. n
etd
act is the number of scenarios for which etwd > etd. The costs of end time violations

can then be determined as Cetd = cover∥Ω∥ ∗ (etd − b) +
∑

ω∈Netd
act

scover ∗ (etωd − etd). Note that

etd ≥ b, so no negative terms can occur. The costs are twofold, the first part relates to the driver

preference violation and the second part relates to the local driver schedule violations. This leads

to the following observation and theorem:

Observation 4.1. Cetd is a piecewise linear cost function in etd and consequently N etd
act .

Theorem 4.2. Without HoS regulations, the optimal end time on day d is equal to the end time of

a scenario or the preferred end time, i.e., etd ∈ Send
d .

Proof. Suppose that the optimal etd /∈ Send
d , then etd is between two points in Send

d , denoted as x

and y. The costs at x and y can be calculated. Due to Observation 4.1, it is known that the costs

are linear between x and y; denote m as the cost slope from x to y. Therefore, if m < 0, the costs

decrease if etd = y, similarly if m > 0 the costs decrease if etd = x. Lastly, if m = 0 the cost remain

equal if etd = x or etd = y.

Now it is possible to determine the optimal start time and end time for each day. Resulting in

costs fd for a specific day. It is known if the driver prefers to work on day d, od = 1 if so, and how

many scenarios, nact, are active that day. Costs scday are incurred if a driver in some scenario ω

needs to work on day d, but not in the global driver schedule. Therefore, the costs of not being

scheduled are scday ∗ nact. If a driver is scheduled on day d, then the costs for time violations are

incurred, fd. Additionally, costs cday ∗ ∥Ω∥ are incurred if the day was not preferred by the driver,

which leads to the following observation:

Observation 4.3. There exists an optimal solution such that a driver works on day d if the costs of

not being scheduled are higher than the costs of being scheduled. If scday∗nact > ∥Ω∥∗cday∗(1−od)+fd

the driver works on day d.

Applying Observation 4.3 to the costs incurred by the optimal start and end times leads to an

initial global driver schedule. This schedule does not, however, conform to a nightly rest period as

per HoS regulation HR.4. It is known that if a driver had 11 hours of rest on day d, then on day

d+ 1 the driver is allowed to have 9 or 11 hours of rest. If the driver had 9 hours of rest on day d,

then the driver must have 11 hours of rest on day d + 1. This leads to a binary choice of 9 or 11

hours of rest time each day. Consequently, the following theorem can be derived:

Erasmus University Rotterdam 13

Theorem 4.4. The size of the set of nightly rest scenarios, nrs, for a week of length D, is known

and is a Fibonacci sequence.

Proof. Suppose 11 hours of rest is denoted as 1 and 9 hours of rest is denoted as 0. 0’s are not

allowed consecutively but 1’s are. Suppose D = 1, then there are a1 = 2 possibilities, if D = 2 then

a2 = 3 possibilities, since the only not allowable combination is 00. Now observe that a feasible

sequence of length n must either begin with 1 or 01. If it begins with a 1, then it must be followed by

a feasible sequence of length n−1, of which there are an−1. If it begins with 01, it must be followed

by a feasible sequence of length n− 2, of which there are an − 2. So the following recursion applies:

an = an−1 + an−2, so nrs is known. Moreover, this is the recursion of the Fibonacci Sequence.

For a week of seven days, only 13 feasible scenarios exist. Theoretically, it would be 21, but

it is assumed the weeks must be scheduled independently, which is achieved by setting the rest

time of the first day of the week to 11. Given one of the nightly rest scenarios, it is known which

nights require 11 hours of rest and which require 9. If the initial schedule already satisfies this, no

adjustments are needed.

Now assume the driver lacks rhoursd of rest time on day d. This means either the end time on day

d needs to be reduced or the start time on day d+ 1 increased or a combination thereof. For each

point, later than std+1 in Sstart
d+1 or earlier than etd in Send

d , the costs are calculated as well as the

cost slope to the respective start or end time. This is also calculated for the points etd − rhoursd and

std+1 + rhoursd . Define the set with line segments from both the start and end times as Ld, where

each line segment ld has a slope md and length sd > 0. A key observation is the following:

Observation 4.5. Any line segment ld in the set Ld leads to a positive rest increase of at most

rhoursd , i.e., ∀ld ∈ Ld : 0 < sd ≤ rhoursd .

The goal is to have as few extra costs whilst increasing the rest time until rhoursd = 0. Leading

to the following theorem:

Theorem 4.6. Repeatedly selecting the line segment with the lowest slope in the set Ld leads to the

minimum cost increase, compared to the costs before enforcing sufficient rest time, whilst reducing

rhoursd to 0. If there are line segments with the same slope, the longer line segment is selected. Do

note that the set Ld is updated every time a line segment is selected.

Proof. Regardless of the line segment ld picked, it is evident that at some point rhoursd = 0 as ld > 0

per Observation 4.5. Denote the initial set of line segments as L1
d and suppose rhoursd = b > 0. By

definition, the line segment with the lowest slope, m∗, leads to the lowest relative cost increase, which

is either increasing the start time or reducing the end time. Suppose it is the end time, similar logic

applies to the start time, and suppose the rest time is increased by s1 hours and rhoursd = b−s1 > 0.

The line segments for the end time need to be recalculated from the point etd − s1, for all these

line segments it applies that the slope is higher than m1. Since if there were to be a slope, say

ms ≤ m1, then there would have existed a line segment with m = a ∗m1 + (1 − a) ∗ms, where a

Erasmus University Rotterdam 14

is the fraction of length taken up by l1. Which per definition would have been lower than m1 or

would have the same slope but a longer length.

The line segments for the start time are the same, except for the line segments that ended after

the point std+1+ rhoursd , these are excluded. It is known that the slopes for any of the excluded line

segments were higher than m1 or, if the slope was the same, the length was shorter. Therefore, the

remaining line segments per definition have slopes higher or equal to m1. Since if there was a slope

ms lower than m1, it would have gotten selected instead of m1. This means that for any slope md

in L2
d, it holds that md ≥ m1.

Therefore, repeatedly selecting the line segment with the lowest slope leads to the minimum cost

increase whilst reducing rhoursd to zero.

Based on Theorem 4.6 the lowest increase is selected iteratively until the required rest time is

achieved, leading to a new start and end time. Leading to the following theorem:

Theorem 4.7. The costs of working on day d after rest time has been enforced, cd, are never lower

than the costs before rest time has been enforced cbefore, i.e., cbefore ≤ cd.

Proof. Suppose initial costs are cbefore and rest time needs to be increased by rhoursd > 0. It holds

that ∀md ∈ Md : md ≥ 0 as the optimal times were determined based on Theorem 4.2. Therefore,

cd never decreases.

After applying Theorem 4.6, Observation 4.3 is applied again, since it could be that it is cheaper

to let a driver not work on day d due to Theorem 4.7. This leads to a new global driver schedule. If

the work days have changed compared to the initial global driver schedule, then apply Theorem 4.6

again to the new global driver schedule. At some point, the working days do not change anymore,

which means the process of finding a global driver schedule is finished. Recall that for every nightly

rest scenario, an initial global driver schedule is constructed and adjusted until Theorem 4.6 is

satisfied and the working days do not change.

Then the total working time is calculated, potentially resulting in overtime. A key difference

between overtime and nightly rest time is that nightly rest times are a hard constraint and working

hours are a soft constraint. Consequently, extra costs are added if a certain end time results in

overtime. This leads to new costs for every time in Send
d and slopes to the current end time. If there

exist negative slopes from the current end time to a new time, then overall costs can be reduced. If

not, then the current time is optimal. If this process is performed simultaneously for all start and

end times for the week, this leads to the optimal solution, given the working days and nightly rest

scenario.

Now, from all nightly rest scenarios, select the scenario with the lowest costs. This leads to

a good global driver schedule, which might be optimal. Optimality is not guaranteed, as not all

combinations of working days were iterated over. A design choice is to iterate over all working

day combinations as this guarantees optimality. However, in the worst case, this leads to O(2D)

Erasmus University Rotterdam 15

additional combinations to be iterated over. The time complexity without guaranteeing optimality

is determined as follows. There are O(∥Ω∥) possible start/end times for O(D) days and O(nrs)

nightly rest scenarios. The entire process above is repeated for every driver, thus the complexity of

this neighbourhood is O(pD∥Ω∥nrs)

4.3.11 Route Moving (RM)

As opposed to previous neighbourhoods, RM strictly considers the local driver schedule and moves

routes from one driver to another. This helps reduce the workload of a busy driver by moving it to

a driver who has time. The number of routes, m, to be moved is selected randomly in the interval

[⌈0.1D⌉, ⌈0.7D⌉]. If a driver does not serve m routes, no routes are selected. A naive approach is

used, where for each driver the m routes are only selected once randomly. This takes O(m) time per

driver. Now it is checked for the other O(p) drivers if the routes can be moved there and what the

costs are. Once a driver is found for which costs are reduced, the routes are moved and the moving

for this driver is finished. This process is repeated for every driver. Therefore, this neighbourhood

is of time complexity O(p2m).

4.3.12 Route Swapping (RS)

RS swaps routes between drivers. The number of routes, m, to be swapped is selected randomly in

the interval [⌈0.1D⌉, ⌈0.7D⌉]. If a driver does not serve m routes, no routes are selected. A naive

approach is used, where for each driver the m routes are only selected once randomly. This takes

O(m) time per driver. Now all other drivers, O(p), are iterated over and for the other driver m

routes are selected randomly. Once a driver is found for which costs are reduced, the routes are

swapped and the swapping for this driver is finished. This process is repeated for every driver.

Therefore, this neighbourhood is of time complexity O(p2m2).

4.3.13 Day Swapping (DS)

DS works similarly to Section 4.3.12 but swaps entire days between drivers. All possible swaps

are enumerated over and the number of swapped days, d, is selected randomly in the interval

[⌈0.1D⌉, ⌈0.7D⌉]. This results in a set of swapping days. A naive approach is used where the

swapping days are selected once and is the same for all drivers. For each driver, all routes which

occur on the selected day are selected. For simplicity assume there are O(k) routes per driver per

day. Therefore each driver has O(kd) routes to swap. Now all other drivers, O(p), are iterated

over and for the other driver also O(kd) routes are selected. Once a driver is found for which costs

are reduced, the routes are swapped and the swapping for this driver is finished. This process is

repeated for every driver. Therefore, this neighbourhood is of time complexity O(p2k2d2).

Erasmus University Rotterdam 16

4.4 Sequential Approach

In practice, often a sequential approach is used. Therefore, a sequential heuristic approach, based on

the neighbourhoods from the previous section, is presented to solve the SWVRTDSP. The approach

consists of the following steps:

1. Initialize ALNS with only route removal and insertion neighbourhoods and the forecast sce-

nario(s). Note that AWR and MRI are excluded, as there are no driver schedules thus reducing

AWR and MRI to WR and RI respectively

2. Run ALNS, without performing scheduling, until the termination criterion has been met and

save the routes

3. Given the computed routes, initialize ALNS again with only neighbourhoods related to schedul-

ing, so GDR, RM, RS and DS

4. Run ALNS until the termination criterion has been met and save the global driver schedule

5. Initialize ALNS with the global driver schedule and the actual scenario(s). Only include the

route removal and insertion neighbourhoods, except for AWR and MRI

6. Run ALNS, without performing scheduling, until the termination criterion has been met and

save the routes

7. Given the computed routes and the global driver schedule, initialize ALNS again with only

neighbourhoods related to local driver scheduling, so RM, RS and DS

8. Run ALNS until the termination criterion has been met and save the global driver schedule,

local driver schedule(s) and corresponding routes

4.5 Adaptive search

Windras Mara et al. (2022) state that changing the adaptive mechanism from the roulette-wheel

principle could result in a more efficient ALNS algorithm. Therefore, in this report, an objective

and performance-based adaptive mechanism is proposed. In each iteration, operations are only

performed for one specific neighbourhood, which is selected based on probabilities derived from

the weighted costs of all scenarios. Given N neighbourhoods with weights wn, neighbourhood n is

chosen with probability wj/
∑

n∈N wn. The weights are initiated at 1 and updated every q (q = 75)

iterations.

Each neighbourhood performs well in certain cases; some are more suitable for reducing pref-

erence violations and some for improving distance travelled. Recall that the objective consists of

three costs: Ct, Cp and Cs. Consequently, each neighbourhood has a weight, wCi
n per cost type.

Erasmus University Rotterdam 17

The performance weights are also defined per cost type defined as common:

pCi
n,j+1 = pCi

nj(1− r) + r
σCi
nj

ϵij ∗ τn
(4)

where σCi
nj and ϵnj are the performance count for costs Ci and number of times the neighbourhood

is chosen in the jth sequence of q iterations respectively. The performance count is defined in terms

of objective value reduction: if a new feasible global best solution is found it is increased by 16, if

an acceptable solution is found that does not improve the objective value it is increased by 6. If

the neighbourhood impacts two elements of the objective, e.g. Cs and Cp for GDR, and if it finds

a new feasible global best solution for two objectives combined, it is increased by 30. In Section 4.6

the acceptance criteria are stated. τn is the time weight of the neighbourhood; if a neighbourhood

is more complex a higher penalty is added, to balance results and run time. Based on the time

complexities, weights are set to τSR = τRR = τGI = τDFSI = τGDR = τSRS = 1, τWR = τAWR = 1.1,

τRM = 2, τRS = 3, τRI = τMRI = τDS = 5. Note that the complexity weights are not exponential,

since using exponential weights did not prove efficient with the above performance points for this

specific report. The learning parameter r is set to 0.1 in this implementation similar to Lei et al.

(2011).

The total weight per neighbourhood can now be calculated. Each cost Ci is expressed in fraction

fCi
j of the total cost, such that the weight of neighbourhood n in the next sequence is defined as

wn,j+1 = max(wnj(1− r) + r ∗
∑
Ci∈C

pCi
n,j+1 ∗ f

Ci
j+1, 0.1) (5)

Note that wn,j+1 ≥ 0.1 at all times. This is a construction choice that allows neighbourhoods

that are more suited for final iterations to still be selected at that point, albeit with a low probability.

4.6 Acceptance and stopping criteria

Santini et al. (2018) tested several acceptance criteria for ALNS and found RRT to be the best

performing. Consequently, similar to Dueck (1993) and Lei et al. (2011), the Record-to-Record

Travel (RRT) algorithm is used to define the acceptance criterion. Assume f∗ is the best current

objective value, called a record. If the next objective value fnext is lower than f∗ + δf∗, δ is set to

0.01, then the solution is accepted. If fnext is lower than f∗ then f∗ is updated. The search stops if

the solution quality has not improved by ϕ ∗ f∗ in the last max(100, 10∥Ω∥) number of iterations,

where ϕ is set to 0.001
∥Ω∥ i.e. 0.1% per scenario. This parametrization in terms of the number of

scenarios aims to prevent premature converging.

Erasmus University Rotterdam 18

5 Computational Results

In this section, the results of the computational experiments are presented. First, the used instances

are described in Section 5.1. Then, the impact of forecast scenarios is discussed in Section 5.2 and

the impact of different solving approaches in Section 5.3. The performance of the neighbourhoods

is analyzed in Section 5.4. The effects of different cost and driver pool configurations are provided

in Section 5.5 and Section 5.6 respectively. Lastly, Section 5.7 compares the current practice to the

best approach found in this report.

All tests are performed on a 2.8 GHz Intel Core i7-7700HQ Quad-Core processor. The algorithms

were coded in Java and run with IntelliJ IDE. To limit the total run time, only the first instance

of every Goel problem class is used. As, on average, an experiment takes roughly six hours per

instance. Only for Section 5.7 all instances were used. An integrated solving approach is used

unless otherwise specified.

5.1 Test instances

The instances used are: (i) instances from Goel & Irnich (2017) and (ii) a real-life instance for a

large logistical company in the Netherlands, kindly provided by Conundra. Euclidian distances are

used for all instances. The 56 instances from Goel & Irnich (2017) can be separated in six problem

classes: C1, C2, R1, R2, RC1 and RC2. Each instance contains locations of 100 vertices, time

windows, demand, service time, number of available vehicles and vehicle capacity. The instances

are adjusted to include stochastic demand, different retailers, different trucks and drivers, including

skills and preferences. Moreover, the instances are designed for six-day time windows.

Therefore, the instances are rescaled to have at most a time window of a day. The following

procedure is used for adaptation: the travel times and time windows are divided by six. Four

retailers are introduced, where each customer has a 25% probability of belonging to a specific

retailer r. Additionally, customers belonging to the last two retailers can be served by the same

truck. Each day 100 trucks are available, and each truck k has a 25% probability of being able

to visit a certain retailer. The truck capacity is equal for all trucks and set to the capacity in the

instances divided by 3. This is a conscious choice as it results in shorter routes, which fit more to

the application of this report. The mean demand for customer i on day d, ddi is taken uniformly

random in the interval [0, 2di], where di is the demand specified in the instance.

A driver pool of 100 drivers is available. Each driver has a 75% probability of wanting to work

on day d and a 75% probability of being able to drive truck k. A driver has a 40% probability of

wanting to start at hour 0 and a 20% probability of wanting to start at hour 6, 12 or 18. Given the

start time tstart, the preferred end time is generated uniformly random, on the interval [tstart + 4,

24]. The preferred weekly hours are drawn from a Poisson distribution with the mean equal to 40

hours.

Erasmus University Rotterdam 19

The real-life instance contains 671 customers per day with time windows, service times, locations

and expected demand. There are three different retailers and seven distinctive truck types, as some

customers can not be served by trucks of other retailers, with the same capacity. There are 710

drivers available for the week. The driver pool is a real driver pool with certain shifts, preferred

working days and hours per driver.

The following is set and saved for each instance: 100 different forecast demand scenarios, and 100

actual demand scenarios. Where all 200 demand scenarios are generated independently via Poi(ddi)

for each customer i on each day d. The 100 actual demand realizations serve to create a reliable

estimate of average performance. Costs are set as: ctardiness = cover = α, cday = 500 ∗ ctardiness =

500α, sctardiness = β, scday = 500 ∗ sctardiness = 500β, cij = γ ∗ tij , with minutes as time unit. This

cost configuration is defined as (α, β, γ), which is set to (1, 2, 1) initially. This configuration is used

as scheduling costs and routing costs are of roughly equal magnitude. Moreover, the costs for Cs

are higher than for Cp, as it assumed that the inconvenience of a last-minute schedule change is

higher compared to one communicated in advance.

5.2 Impact of number of forecast scenarios

In this section, the impact of an increasing number of forecast scenarios on the solution quality is

tested. Table 1 shows the mean realized objective value over the 100 actual scenarios for a varying

number of forecast scenarios.

Table 1: Mean realized objective value based on a certain number of forecast scenarios

Instance µ-1 µ-2 µ-3 µ-5 µ-10 µ-25 µ-50 µ-75 µ-100

C101 94,078 93,602 91,982 94,672 90,803 94,897 91,162 90,210 89,735

C201 77,060 76,183 74,210 76,114 69,165 74,611 74,655 75,891 73,364

R101 71,352 69,438 72,294 72,590 67,526 97,870 71,508 67,341 79,224

R201 58,143 60,031 59,918 60,041 61,278 59,885 59,150 57,958 65,033

RC101 92,170 88,864 89,850 84,462 87,278 87,401 78,628 76,380 81,958

RC201 64,828 69,106 69,546 63,470 64,397 65,685 64,055 78,060 64,560

Average 76,272 76,204 76,300 75,225 73,408 80,058 73,193 74,307 75,645

Note. The first column shows the instance. The other columns show the mean objective value (µ) for

the actual scenarios for a certain number of forecast scenarios, which is indicated at the top as µ-number.

Lastly, at the bottom row, the average objective value over the instances is calculated. Per row, the

lowest mean is highlighted in bold.

The mean objective value can be interpreted as the realized costs for the actual scenarios based on

the global driver schedule, which was created using the forecast scenarios. So a lower objective value

means fewer costs and thus equals a better solution. It can be observed that there is no significant

change in the objective values when using 1, 2 or 3 forecast scenarios in Table 1. However, using

Erasmus University Rotterdam 20

more scenarios, generally speaking, seems to reduce the objective value. For 10 and 50 scenarios

a reduction in objective value of roughly 4% is achieved. At the same time, using 25 scenarios

would increase the objective value by roughly 5%. This is mainly caused by instance R101, as

for this instance the objective value is disproportionately high compared to the other number of

forecast scenarios. A possible reason is that the ALNS terminated prematurely for this instance.

Additionally, it can be observed that for most instances 75 forecast scenarios lead to the lowest

objective value, but for other instances, i.e. RC201 and C201, fewer forecast scenarios would be

preferred.

Performing the same experiment for a cost configuration of (1, 2, 20) shows there is no consistency

in the optimal number of forecast scenarios. The full results of this experiment can be found in

Table 7 in Appendix A. This variability could be explained by the stochastic nature of the forecast

and actual scenarios. It could be that the set of forecast scenarios simply includes many improbable

or extreme scenarios. On the other hand, the issue could also lie in assessing the mean objective

value. It could be that 100 scenarios are not sufficient to realistically capture the stochasticity and

thus result in an unreliable estimate of the realized costs. Regardless, it holds that increasing the

number of forecast scenarios generally leads to lower objective values.

For further experiments, the number of forecast experiments is set to 10. This number of forecast

scenarios reduces the mean objective value for both cost configurations, with reductions of 3.75%

for (1,2,1) and 1.64% for (1, 2, 20) compared to a single forecast scenario.

5.3 Effects of different solving approaches

In this section, the effect of different solving approaches on the realized solution quality is elaborated

on. There are three possible approaches: sequential (seq), integrated (int) and sequential followed by

integrated (si). These approaches can be used both for creating the global driver schedule, based on

forecast scenarios, and realized solutions, based on actual scenarios, leading to nine possible solving

approaches. Table 2 shows the average results of this experiment for the different approaches.

Erasmus University Rotterdam 21

Table 2: Average results of different solving approaches in terms of objective value and run time

App-f App-a µ-a σ-a Rt-f (s) Rt-a (s) Cp Cs-a Ct-a aaaaaaaaaaaaaaaaaa

int int 77,429 6,020 74 2,546 18,707 3,240 55,401

int seq 72,323 7,876 74 386 18,707 15,818 37,712

int si 72,195 7,899 74 547 18,707 15,660 37,741

seq int 83,446 6,241 12 2,718 18,150 7,138 58,071

seq seq 75,907 8,084 12 505 18,150 19,854 37,809

seq si 73,234 6,950 12 644 18,150 17,188 37,809

si int 77,598 6,359 21 2,785 18,150 3,186 56,178

si seq 74,123 7,781 21 450 18,150 18,086 37,801

si si 74,084 7,766 21 550 18,150 18,038 37,810

Note. Columns related to forecast scenarios are indicated by -f, and columns related to actual scenarios by -a.

The first and second column show the approach (App) used. Columns three and four show the mean realized

objective value (µ) and standard deviation over the scenarios (σ). Columns five and six show the run time

(Rt), in seconds. The last three columns show the average objective value divided into preference violation

costs (Cp), schedule change costs (Cs) and routing costs (Ct). The lowest mean objective value is highlighted

in bold. For future reference, note that Cp, Cs and Ct might not add up to µ due to internal rounding.

Table 2 shows that using an integrated approach to create the global driver schedule results in

the lowest objective values compared to the other two approaches. However, sequential followed

by integrated does find the best objective values for the actual scenarios. Additionally, it seems

the standard deviation generally increases as the objective decreases. The improvement over the

sequential approach found by the integrated approach ranges from 0.05% to 3.52%. In a similar

experiment, based on 25 forecast scenarios instead of 10, improvements of up to 22% were found.

The full results can be found in Table 8 in Appendix A.

Interestingly, for 25 forecast scenarios, using the sequential approach results in the best results.

An explanation is that the initial solution from Section 4.2 might not be sufficient to find good

results. Sequential followed by integrated can be seen as providing the solution from the sequential

approach as the initial solution for the integrated approach. This approach is roughly 5 times faster

than the integrated approach with the initial solution from Section 4.2. From Table 2, it can also be

observed that a purely integrated approach struggles with the routing costs but excels at scheduling

costs. Whereas, for the sequential approach, it is the exact opposite, which seems to indicate that

there is a trade-off between scheduling costs and routing costs. This could be explained by the

duration of the routes, as this is relevant for the scheduling but not for the routing costs.

Not too much emphasis should be placed on run time, as in practice only the run time required

to create the global driver schedule and the run time for the actual scenario are relevant. For any

approach, this means that, on average, it would take at most two minutes to solve.

Erasmus University Rotterdam 22

5.4 Performance of neighbourhoods

In this section, the neighbourhood performance is analyzed, with a specific focus on the problem-

specific neighbourhoods. Table 3 shows the average performance of all neighbourhoods over the six

Goel instances.

Table 3: Overview of average neighbourhood performance using forecast scenarios

Neighbourhood σ
Cp

tot σCs
tot σCt

tot σtot ϵtot τ pavg Rt (ms) aaaaaaaaaaaaaaaaaa

RR 0 82 2,362 2,444 527 1 4.64 0.01

SR 0 79 2,951 3,030 573 1 5.29 0.01

WR 0 152 3,279 3,431 554 1.1 5.63 0.19

AWR 0 110 3,119 3,230 567 1.1 5.18 0.23

GI 0 270 4,449 4,719 651 1 7.25 1.14

DFSI 0 34 1,894 1,928 517 1 3.73 1.01

RI 0 51 2,675 2,726 428 5 1.27 65.89

MRI 0 68 2,694 2,762 465 5 1.19 78.55

SRS 0 517 623 1,140 379 1 3.01 0.02

GDR 2,723 0 0 2,723 676 1 4.03 0.13

RM 0 816 0 816 313 2 1.31 1.78

RS 0 651 0 651 317 3 0.68 0.87

DS 0 922 0 922 297 5 0.62 10.14

Note. The first column shows the neighbourhood name. The next three columns show the total performance

count, σtot, for Cp, Cs and Ct respectively, which are summed in column five. The next three columns

show the total number of times a neighbourhood is chosen (ϵtot), time weight (τ) and average performance

(pavg = σtot

ϵtot∗τ). Lastly, the average run time (Rt) for each neighbourhood is reported in milliseconds. Recall

that the performance count is increased if a certain neighbourhood improves the global solution or finds an

acceptable solution.

Table 3 shows that MRI, RS and DS seem to be performing relatively poorly compared to the

other neighbourhoods, in terms of average performance. Do note, that this is also influenced by

the time weight of the neighbourhood, e.g. MRI would have an average performance of 6 with a

time weight of one. The average run times are mostly in line with the time complexities described

in Section 4.3. However, there are two outlying pairs: MRI/RI and RM/RS. MRI and RI have

the same time complexity (O(n2q + r2p)), but MRI takes roughly 20% as long to run. This could

be explained by the additional regret calculations needed for MRI. This also shows the danger in

purely relying on time complexities, as a similar time complexity can still result in a significant

difference in run time. The difference in run time between RM (O(p2m)) and RS (O(p2m2)) is

directly contradicting the time complexities. One explanation is that, theoretically, there might be

significantly more possible combinations for RS, but due to the driver’s skills this is not the case

leading to less run time than expected. Another explanation is that RM is programmed inefficiently.

Erasmus University Rotterdam 23

From Table 3, MRI and AWR seem to perform slightly worse compared to RI and WR re-

spectively. It could indicate that they are potentially interchangeable and one could be removed.

A similar argument can be made for RS and DS. Therefore, each of these neighbourhoods is ex-

cluded once. Even though SRS is performing well, this neighbourhood is also excluded to further

test if problem-specific neighbourhoods are necessary. Table 4 shows the results of excluding these

neighbourhoods, RM is also added for comparison.

Table 4: Average results of excluding certain neighbourhoods in terms of objective value

Excluded µ-a σ-a Rt-f (s) Rt-a (s) Cp Cs-a Ct-a ∆µ (%) aaaaaaaaaaaaaa

None 77,429 6,020 74 2,546 18,707 3,240 55,401 0.00

WR 83,633 4,871 69 2,303 17,990 4,200 61,360 8.01

AWR 77,281 5,635 83 2,623 18,431 3,042 55,727 -0.19

RI 79,964 5,694 57 1,669 17,740 5,414 56,726 3.27

MRI 76,463 5,946 48 1,660 18,754 1,229 56,406 -1.25

SRS 75,681 6,998 80 3,222 17,851 2,285 55,469 -2.26

RM 80,546 6,892 62 2,632 17,524 8,448 54,481 4.03

RS 77,620 6,432 90 2,825 18,120 3,092 56,325 0.25

DS 77,540 6,949 59 3,682 19,279 5,750 52,431 0.14

Note. Columns related to forecast scenarios are indicated by -f or by -a for actual scenarios. The first column

shows the excluded neighbourhood. Columns two and three show the mean realized objective value (µ) and

standard deviation over the scenarios (σ). Columns four and five show the run time (Rt), in seconds. The next

three columns show the average objective value divided into preference violation (Cp), schedule change (Cs)

and routing costs (Ct). Lastly, the relative objective change, ∆µ, in % is shown compared to no exclusion.

Table 4 shows that excluding WR leads to significantly worse results but excluding AWR results

in a negligible change in terms of objective value. Therefore, it seems that WR is essential and

AWR is not. Excluding RI leads to a significant increase in objective value, whereas excluding MRI

leads to a lower objective value. Showing that MRI potentially diversifies the search too much.

Excluding SRS leads to a better objective value, but also to an increase in run time of roughly

25%. Showing that SRS potentially intensifies the search too much, due to which the run time also

decreases. Lastly, it can be observed that excluding RM leads to significantly worse results, whereas

excluding RS or DS leads to a similar objective value. A key difference is that excluding DS leads

to an increase in the run time of almost 50%, whereas excluding RS only slightly increases the run

time. Therefore, it seems RS and DS serve the same function, but DS does so more quickly.

These experiments have shown that not all neighbourhoods perform well, either in terms of run

time compared to their complexity or improving the solution. Consequently, more neighbourhoods

do not necessarily help ALNS achieve a better solution. Neighbourhoods that could be excluded

are AWR, MRI and RS, as WR, RI and DS are better counterparts respectively. Optionally, SRS

could be removed, as this would improve the solution quality, but increase the required run time.

Erasmus University Rotterdam 24

5.5 Impact of cost prioritization

In this section, the effects of different cost configurations are tested. Figure 1 shows the average

total objective value and the breakdown into the three different costs for certain cost configurations.

First, for the base cost configuration of (1, 2, 1). Then the preference violation, scheduling violation

and routing costs are each prioritized in turn, where costs are set to 10. Lastly, the total scheduling

costs are prioritized. Note that the ALNS is run for the cost configurations shown in the figure, but

for comparison, the costs are scaled back to the base cost configuration in the figure.

Figure 1: Scaled average objective value breakdown for different cost configurations

First, it can be observed that heavily prioritizing one specific cost generally comes with an

increase in the other costs. Prioritizing preference violation costs leads to much higher schedule

change costs and vice versa. Prioritizing the routing costs leads to much higher total scheduling

costs, specifically the schedule change costs. Second, it seems that prioritizing both the preference

and schedule change costs does not significantly reduce scheduling costs compared to the base cost

scenario in Figure 1. This shows that it is not possible, for these instances, to create a global driver

schedule and local driver schedules which overlap and do not violate driver preferences. Third and

last, if the preference violation costs are prioritized, then the total costs are the lowest.

5.6 Impact of driver pool characteristics

In this section, the effects of driver skills and availability on the scheduling costs are explored.

Four driver pool configurations are used: balanced (75%, 75%), skilled and available (90%, 90%),

skilled (90%, 60%) and available (60%, 90%). The percentages indicate the probability of being

able to drive truck k and working on day d respectively. Table 5 shows the average results of this

experiment.

Erasmus University Rotterdam 25

Table 5: Influence of driver skills and availability on scheduling violations

Config µ-a Cp Day Early Late Over Pact Cs-a Day Early Late Ct-a

75%, 75% 75,099 17,926 0.67 9,171 8,189 233 67 1,131 0.88 75 49 56,042

90%, 90% 70,245 14,117 0 7,344 6,679 94 65 591 0.43 28 51 55,537

90%, 60% 70,730 14,185 0 7,279 6,669 237 64 639 0.49 31 46 55,906

60%, 90% 69,045 12,756 0 6,688 5,823 245 60 458 0.35 22 34 55,831

Note. Columns related to forecast scenarios are indicated by -f or by -a for actual scenarios. The first column shows

which driver pool configuration is used. The second column shows the mean objective value (µ). Column three

shows the preference violation costs (Cp). Columns four to seven show the breakdown of Cp into non-preferred

working days, starting early, ending late and working overtime respectively. Column eight shows how many drivers

are used (Pact). Column nine shows the schedule change costs (Cs), which can be divided into different working

days, earlier start and later ending times respectively in columns ten to twelve. The last column shows the routing

costs (Ct).

From Table 5 it becomes apparent that, for the tested instances, driver availability is more

important than driver skills. However, it also shows that a balanced driver pool results in worse

scheduling costs than either an available or skilled driver pool. A driver pool that is both skilled and

available performs worse than an available driver pool. There was no sign of premature converging

of the ALNS, so it could simply be due to the randomness in the generation of driver pools. Al-

ternatively, ALNS remains a heuristic, so there is no guarantee that it finds equally good solutions

every time.

A closer look at the breakdown of the scheduling costs in Table 5 reveals that almost all drivers

work on their preferred working days and that this is not violated significantly for the actual

scenarios. Additionally, the overtime of the drivers is also limited to, in the worst case, four hours

for one driver. However, the working time preferences of the drivers get violated significantly over

the week. With drivers, on average, starting roughly 100 minutes earlier and later than they would

have preferred during the week. On the plus side, for the actual scenarios drivers, on average, do

not need to work much earlier or later than they were planned originally.

The large amount of working time preference violations in the schedule is likely caused by the

generation of the drivers in combination with the instance characteristics. Recall that 40% of the

drivers are available from the start of the day. Moreover, the end time is at least four hours later

than the start time but generated uniformly random, causing relatively few drivers to be available

until the end of the day and potentially only being available for four hours a day. The combination

of relatively few drivers wanting to start early and end late seems like a plausible reason for the

time preference violations. From Table 5 it can be observed that fewer drivers are required as the

availability of drivers increases. This means the drivers who are available for a long time each

day, can be used on more days than before. Consequently, leading to fewer drivers required and a

reduction in early starting or late ending.

Erasmus University Rotterdam 26

5.7 Comparison with current practice

In practice, a single-scenario sequential approach is typically used, where the routes are assigned

manually. Similar to Wagenvoort et al. (2022), the manual assignment is mimicked using the

greedy schedule insertion heuristic from Section 4.3.5. The global driver schedule is then equal to

this greedily assigned schedule. For the actual scenarios, a similar approach is used. This entire

procedure is referred to as 1-practice, 1 indicates the number of forecast scenarios. In this section, the

1-practice approach is compared to the 1-seq approach, see Section 4.4, and the 10-int-si approach.

These three approaches are tested on all instances. The average results can be found in Table 6.

Table 6: Comparison of 1-practice, 1-sequential and 10-int-si approaches

Instance Approach µ-a σ-a Rt-f (s) Rt-a (s) Cp Cs-a Ct-a ∆µ-a (%)

C1avg 1-practice 84,116 16,067 2 215 22,100 19,661 42,355 0.00

∥I∥ = 9 1-seq 64,161 8,743 6 750 16,010 5,796 42,355 -23.72

10-int-si 68,307 8,583 144 945 15,724 10,226 42,357 -18.79

C2avg 1-practice 72,352 2,935 3 107 29,027 16,280 27,046 0.00

∥I∥ = 8 1-seq 60,846 4,367 3 230 20,079 13,722 27,045 -15.90

10-int-si 58,907 2,266 21 405 21,373 10,376 27,159 -18.58

R1avg 1-practice 61,459 12,240 2 204 12,747 13,848 34,864 0.00

∥I∥ = 12 1-seq 53,187 6,872 5 768 9,899 8,426 34,863 -13.46

10-int-si 50,531 5,918 83 903 9,210 6,444 34,878 -17.78

R2avg 1-practice 57,269 3,185 4 114 11,856 19,093 26,321 0.00

∥I∥ = 11 1-seq 51,754 2,009 3 215 14,197 11,237 26,320 -9.63

10-int-si 48,833 2,200 15 559 14,389 7,938 26,506 -14.73

RC1avg 1-practice 77,402 11,954 2 263 10,405 20,390 46,607 0.00

∥I∥ = 8 1-seq 64,790 5,331 5 955 12,655 5,531 46,605 -16.29

10-int-si 68,215 5,038 148 1,084 13,316 8,289 46,610 -11.87

RC2avg 1-practice 68,126 5,287 3 119 16,277 20,037 31,812 0.00

∥I∥ = 8 1-seq 60,127 4,028 3 244 20,561 7,757 31,809 -11.74

10-int-si 58,383 3,410 18 466 20,312 6,154 31,918 -14.30

Goelavg 1-practice 70,121 8,612 3 170 17,068 18,218 34,834 0.00

1-seq 59,144 5,225 4 527 15,567 8,745 34,833 -15.65

10-int-si 58,863 4,569 72 727 15,721 8,238 34,904 -16.06

Real-life 1-practice 553,653 107,836 279 5,157 162,892 102,400 288,361 0.00

∥I∥ = 1 1-seq 435,969 42,520 916 11,266 128,831 18,777 288,361 -21.26

10-int-si 426,630 30,089 2,542 16,916 128,677 7,998 289,955 -22.94

Note. Columns related to forecast scenarios are indicated by -f or by -a for actual scenarios. The first two

columns indicate the instance type, with the number of instances ∥I∥ if applicable, and approach respectively.

Columns three and four show the mean realized objective value (µ) and standard deviation over the scenarios

(σ). Columns five and six show the run time (Rt), in seconds. The next three columns show the average

objective value divided into preference violation costs (Cp), schedule change costs (Cs) and routing costs (Ct).

Lastly, the relative objective change, ∆µ, in % is shown compared to 1-practice.

Erasmus University Rotterdam 27

The 1-seq approach is used to show how much practice could potentially improve, whilst still

using a single-scenario sequential approach. The 10-int-si approach was found to be most suitable,

for the tested instances in Section 5.2 and Section 5.3, and is used to show the potential benefits

of a multi-scenario integrated approach. Note that Goelavg is averaged over the problem classes

to prevent the dominance of problem classes with more instances. For any approach, the same

routes are used for the actual scenarios, so the objective value differences are mainly caused by the

scheduling costs. To limit the run time for the real-life instance, a maximum number of iterations

is set to 250, 1000 and 2500 for one forecast, ten forecast and the actual scenarios respectively.

Experiments in verifying the routing costs using Cplex and the VRPTW formulation, see Ap-

pendix B, from Kallehauge et al. (2005) resulted in large optimality gaps for Goel instances. There-

fore, the commercial solver, Optiflow, from Conundra was used for the real-life instance. The best

routing costs found by the sequential approach were roughly 272,000, which are within 1% of the

routing costs found by Optiflow when no limit is set on the number of iterations.

From Table 6, it can be observed that 1-practice yields the worst results in terms of mean

objective value and standard deviation for any type of instance. Interestingly, the performance of

the 1-seq and 10-int-si approaches varies significantly for different instances. This could be caused

by the garbage in - garbage out principle (Kilkenny & Robinson, 2018), a poor quality scenario will

lead to a poor quality solution, which a single-scenario approach is particularly prone to. It can

also be observed that 10-int-si generally increases routing costs, to reduce scheduling costs.

For four out of six Goel problem classes, 10-int-si outperforms 1-seq by 2.56 percentage points

(pp) up to 5.10pp. However, 1-seq outperforms 10-int-si by 4.93pp and 4.42pp for problem classes

C1 and RC1 respectively. On average, for the Goel instances, the 10-int-si performs 0.40pp better

than 1-seq at the cost of a roughly 50% total run time increase. Even so, the standard deviation

is roughly 10% lower for the 10-int-si approach compared to 1-seq. Showing that the global driver

schedule of the 10-int-si approach is more robust than that of the 1-seq approach.

For the real-life instance, a similar trend is visible. The objective value is reduced by 21.26%

for 1-seq, compared to 1-practice. Yet, 10-int-si finds a better solution in terms of objective value.

Furthermore, the standard deviation is over 25% lower compared to 1-seq. Confirming that 10-int-si

results in a more robust global driver schedule. Moreover, these results were found with a limit on

the maximum number of iterations. Letting ALNS converge naturally should result in even better

results. Even so, routing costs are within 10% of the best-found routing costs.

Table 6 shows that the scheduling costs can be reduced significantly, compared to 1-practice,

regardless of the approach. This shows route swapping and moving neighbourhoods reduce the

schedule change costs significantly. Moreover, results show that, for similar preference violation

costs, schedule change costs are, on average, significantly reduced for 10-int-si compared to 1-seq.

This shows GDR works as intended and effectively creates a robust global driver schedule. Lastly,

for the real-life instance, it would take 10-int-si roughly 45 minutes to create a global driver schedule.

This seems acceptable, considering the size of the instance.

Erasmus University Rotterdam 28

6 Conclusion

In this report, the VRTDSP with time windows was extended to include stochastic demand and a

one-week planning horizon, resulting in the SWVRTDSP. An adaptive large neighbourhood search

algorithm was developed to solve for instances with up to 671 customers per day. Additionally,

driver schedules conform to (EC) No. 561/2006 and are based on drivers’ working preferences.

Furthermore, a novel approach, GDR, to effectively and efficiently construct a global driver schedule

based on a set of forecast scenario(s) was presented. The global driver schedule was evaluated using

a sample average approach with 100 actual scenarios. When 10 forecast scenarios were used, it

was found that an integrated approach results in the best global driver schedule, compared to a

sequential approach. For the actual scenarios, the best practice is to first solve sequentially and

provide this solution as an initial solution for the integrated ALNS.

Furthermore, multiple experiments were performed regarding neighbourhood performance, cost

priority and drivers. It was shown that most problem-specific neighbourhoods did not perform

better than commonly used neighbourhoods, except for GDR. Additionally, it was shown that,

regardless of the cost priority, scheduling costs remain. However, it is possible to reduce either the

preference violation costs or schedule change costs to almost zero. Interestingly, there is a trade-off

between routing costs and scheduling costs, reducing one increases the other. Regarding the drivers,

availability seems to be more important than driver skills. A driver pool with highly available drivers

results in 10% fewer drivers being required, whilst also reducing the scheduling costs significantly.

Finally, experiments for the SWVRTDSP were performed that compared a multi-scenario in-

tegrated approach to a single-scenario approach commonly used in practice and a more elaborate

single-scenario approach. Results show that the objective value can be reduced by roughly 10%

up to 24% for the elaborated single-scenario approach, compared to practice. However, the multi-

scenario integrated approach, on average, resulted in even lower objective values and a significantly

lower standard deviation, for both the instances from literature and the real-life instance. Showing

that GDR is effective at creating robust global driver schedules. To conclude, a multi-scenario

integrated approach results in the most robust driver schedules and the lowest objective values on

average, with an objective reduction of 22.94% for the real-life instance, compared to practice.

In the future, multiple research directions following the findings of this report can be explored.

First, the required break time in routes should be explored, as this was not explicitly checked for in

this report. Second, the stochasticity could be fully captured in a probabilistic model, similar to Lei

et al. (2011). Third, exact approaches could be explored, either to construct routes, create schedules

or both. Fourth, more research into the inner workings of ALNS could be performed. Fifth and

last, a heuristic method that includes more scenarios or is capable of solving larger instances more

efficiently could be explored.

Erasmus University Rotterdam 29

References

Boujlil, M., & Lissane Elhaq, S. (2020, 12). The vehicle routing problem with Time Window

and Stochastic Demands(VRPTW-SD): Review. 2020 13th International Colloquium of Logistics

and Supply Chain Management, LOGISTIQUA 2020 . doi: 10.1109/LOGISTIQUA49782.2020

.9353927

Bredstrom, D., & Ronnqvist, M. (2007, 2). A Branch and Price Algorithm for the Combined Vehicle

Routing and Scheduling Problem With Synchronization Constraints. SSRN Electronic Journal .

Retrieved from https://papers.ssrn.com/abstract=971726 doi: 10.2139/SSRN.971726

Castillo-Salazar, J. A., Landa-Silva, D., Qu, R., Castillo-Salazar, J. A., Landa-Silva, D., Qu, R., . . .

Qu, R. (2016). Workforce scheduling and routing problems: literature survey and computational

study. Ann Oper Res, 239 , 39–67. doi: 10.1007/s10479-014-1687-2

Chang, M. S. (2011). A vehicle routing problem with time windows and stochastic demands.

http://dx.doi.org/10.1080/02533839.2005.9671048 , 28 (5), 783–794. Retrieved from https://www

.tandfonline.com/doi/abs/10.1080/02533839.2005.9671048 doi: 10.1080/02533839.2005

.9671048

Dueck, G. (1993). New optimization heuristics; The great deluge algorithm and the record-to-record

travel. Journal of Computational Physics, 104 (1), 86–92. doi: 10.1006/JCPH.1993.1010

European Parliament. (2006). Regulation (EC) No 561/2006. Retrieved from https://eur-lex

.europa.eu/legal-content/EN/ALL/?uri=celex:32006R0561

Feillet, D. (2010, 6). A tutorial on column generation and branch-and-price for vehicle routing prob-

lems. 4OR, 8 (4), 407–424. Retrieved from https://link.springer.com/article/10.1007/

s10288-010-0130-z doi: 10.1007/S10288-010-0130-Z/METRICS

Goel, A. (2008, 4). Vehicle Scheduling and Routing with Drivers’ Working Hours.

https://doi.org/10.1287/trsc.1070.0226 , 43 (1), 17–26. Retrieved from https://pubsonline

.informs.org/doi/abs/10.1287/trsc.1070.0226 doi: 10.1287/TRSC.1070.0226

Goel, A. (2010). Truck driver scheduling in the European union. Transportation Science, 44 (4),

429–441. Retrieved from http://pubsonline.informs.org441.https://doi.org/10.1287/

trsc.1100.0330http://www.informs.org doi: 10.1287/TRSC.1100.0330

Goel, A., & Irnich, S. (2017). An exact method for vehicle routing and truck driver scheduling

problems. Transportation Science, 51 (2), 737–754. Retrieved from http://pubsonline.informs

.org754.https://doi.org/10.1287/trsc.2016.0678http://www.informs.org doi: 10.1287/

TRSC.2016.0678

IRU. (2022). Driver Shortage Global Report 2022: Summary.

Erasmus University Rotterdam 30

https://papers.ssrn.com/abstract=971726
https://www.tandfonline.com/doi/abs/10.1080/02533839.2005.9671048
https://www.tandfonline.com/doi/abs/10.1080/02533839.2005.9671048
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32006R0561
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32006R0561
https://link.springer.com/article/10.1007/s10288-010-0130-z
https://link.springer.com/article/10.1007/s10288-010-0130-z
https://pubsonline.informs.org/doi/abs/10.1287/trsc.1070.0226
https://pubsonline.informs.org/doi/abs/10.1287/trsc.1070.0226
http://pubsonline.informs.org441.https://doi.org/10.1287/trsc.1100.0330http://www.informs.org
http://pubsonline.informs.org441.https://doi.org/10.1287/trsc.1100.0330http://www.informs.org
http://pubsonline.informs.org754.https://doi.org/10.1287/trsc.2016.0678http://www.informs.org
http://pubsonline.informs.org754.https://doi.org/10.1287/trsc.2016.0678http://www.informs.org

Jia, S., Deng, L., Zhao, Q., Chen, Y., Jia, S., Deng, L., . . . Chen, Y. (2023). An adaptive large

neighborhood search heuristic for multi-commodity two-echelon vehicle routing problem with

satellite synchronization. Journal of Industrial and Management Optimization, 19 (2), 1187–

1210. Retrieved from /en/article/doi/10.3934/jimo.2021225/en/article/doi/10.3934/

jimo.2021225?viewType=HTML doi: 10.3934/JIMO.2021225

Kallehauge, B., Larsen, J., Madsen, O. B., & Solomon, M. M. (2005). Vehicle routing problem

with time windows. Column Generation, 67–98. Retrieved from https://link-springer-com

.tudelft.idm.oclc.org/chapter/10.1007/0-387-25486-2 3 doi: 10.1007/0-387-25486-2{\ }
3/COVER

Kilkenny, M. F., & Robinson, K. M. (2018, 5). Data quality: “Garbage in – garbage out”.

https://doi.org/10.1177/1833358318774357 , 47 (3), 103–105. Retrieved from https://journals

.sagepub.com/doi/full/10.1177/1833358318774357?casa token=1thm2Jf1PEAAAAAA%

3A3n8jumH35AzNxfk6GFdkrXbkTMgBKGQWMmJOIR7esaFU1nZaOaSMoEKRUlsZvfVMSPk7qKOvCO5u

doi: 10.1177/1833358318774357

Laporte, G., & Nobert, Y. (1987, 1). Exact Algorithms for the Vehicle Routing Problem. North-

Holland Mathematics Studies, 132 (C), 147–184. doi: 10.1016/S0304-0208(08)73235-3

Lau, H. C. (1996, 1). On the complexity of manpower shift scheduling. Computers & Operations

Research, 23 (1), 93–102. doi: 10.1016/0305-0548(94)00094-O

Lei, H., Laporte, G., & Guo, B. (2011, 12). The capacitated vehicle routing problem with stochastic

demands and time windows. Computers & Operations Research, 38 (12), 1775–1783. doi: 10.1016/

J.COR.2011.02.007

Lourenço, H. R., Martin, O. C., & Stützle, T. (2003, 2). Iterated Local Search. Handbook of Meta-

heuristics, 320–353. Retrieved from https://link-springer-com.tudelft.idm.oclc.org/

chapter/10.1007/0-306-48056-5 11 doi: 10.1007/0-306-48056-5{\ }11

Marzouk, M., & Kamoun, H. (2020). Nurse to patient assignment through an analogy with the bin

packing problem: Case of a Tunisian hospital. https://doi.org/10.1080/01605682.2020.1727300 ,

72 (8), 1808–1821. Retrieved from https://www.tandfonline.com/doi/abs/10.1080/01605682

.2020.1727300 doi: 10.1080/01605682.2020.1727300

Mor, A., Archetti, C., Jabali, O., Simonetto, A., & Speranza, M. G. (2022, 1). The Bi-objective

Long-haul Transportation Problem on a Road Network. Omega, 106 , 102522. doi: 10.1016/

J.OMEGA.2021.102522

Özarık, S. S., Veelenturf, L. P., Woensel, T. V., & Laporte, G. (2021, 4). Optimizing e-

commerce last-mile vehicle routing and scheduling under uncertain customer presence. Trans-

portation Research Part E: Logistics and Transportation Review , 148 , 102263. doi: 10.1016/

J.TRE.2021.102263

Erasmus University Rotterdam 31

/en/article/doi/10.3934/jimo.2021225/en/article/doi/10.3934/jimo.2021225?viewType=HTML
/en/article/doi/10.3934/jimo.2021225/en/article/doi/10.3934/jimo.2021225?viewType=HTML
https://link-springer-com.tudelft.idm.oclc.org/chapter/10.1007/0-387-25486-2_3
https://link-springer-com.tudelft.idm.oclc.org/chapter/10.1007/0-387-25486-2_3
https://journals.sagepub.com/doi/full/10.1177/1833358318774357?casa_token=1thm2Jf1PEAAAAAA%3A3n8jumH35AzNxfk6GFdkrXbkTMgBKGQWMmJOIR7esaFU1nZaOaSMoEKRUlsZvfVMSPk7qKOvCO5u
https://journals.sagepub.com/doi/full/10.1177/1833358318774357?casa_token=1thm2Jf1PEAAAAAA%3A3n8jumH35AzNxfk6GFdkrXbkTMgBKGQWMmJOIR7esaFU1nZaOaSMoEKRUlsZvfVMSPk7qKOvCO5u
https://journals.sagepub.com/doi/full/10.1177/1833358318774357?casa_token=1thm2Jf1PEAAAAAA%3A3n8jumH35AzNxfk6GFdkrXbkTMgBKGQWMmJOIR7esaFU1nZaOaSMoEKRUlsZvfVMSPk7qKOvCO5u
https://link-springer-com.tudelft.idm.oclc.org/chapter/10.1007/0-306-48056-5_11
https://link-springer-com.tudelft.idm.oclc.org/chapter/10.1007/0-306-48056-5_11
https://www.tandfonline.com/doi/abs/10.1080/01605682.2020.1727300
https://www.tandfonline.com/doi/abs/10.1080/01605682.2020.1727300

Pereira, D. L., Alves, J. C., & Moreira, M. C. d. O. (2020, 6). A multiperiod workforce scheduling

and routing problem with dependent tasks. Computers & Operations Research, 118 , 104930. doi:

10.1016/J.COR.2020.104930

Perumal, S. S., Dollevoet, T., Huisman, D., Lusby, R. M., Larsen, J., & Riis, M. (2021, 8).

Solution approaches for integrated vehicle and crew scheduling with electric buses. Computers &

Operations Research, 132 , 105268. doi: 10.1016/J.COR.2021.105268

Ropke, S., & Pisinger, D. (2006, 11). An Adaptive Large Neighborhood Search Heuristic for

the Pickup and Delivery Problem with Time Windows. https://doi.org/10.1287/trsc.1050.0135 ,

40 (4), 455–472. Retrieved from https://pubsonline.informs.org/doi/abs/10.1287/trsc

.1050.0135 doi: 10.1287/TRSC.1050.0135

Sacramento, D., Pisinger, D., & Ropke, S. (2019, 5). An adaptive large neighborhood search

metaheuristic for the vehicle routing problem with drones. Transportation Research Part C:

Emerging Technologies, 102 , 289–315. doi: 10.1016/J.TRC.2019.02.018

Salani, M., & Vacca, I. (2011, 9). Branch and price for the vehicle routing problem with discrete split

deliveries and time windows. European Journal of Operational Research, 213 (3), 470–477. Re-

trieved from https://ideas.repec.org/a/eee/ejores/v213y2011i3p470-477.htmlhttps://

ideas.repec.org//a/eee/ejores/v213y2011i3p470-477.html doi: 10.1016/j.ejor.2011.03

.023

Santini, A., Ropke, S., Lars, , Hvattum, M., Magnus, L., & No, H. H. (2018). A comparison

of acceptance criteria for the adaptive large neighbourhood search metaheuristic. J Heuristics,

24 , 783–815. Retrieved from https://doi.org/10.1007/s10732-018-9377-x doi: 10.1007/

s10732-018-9377-x

Sartori, C. S., Smet, P., & Vanden Berghe, G. (2022, 4). Scheduling truck drivers with interde-

pendent routes under European Union regulations. European Journal of Operational Research,

298 (1), 76–88. doi: 10.1016/J.EJOR.2021.06.019

Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing

problems. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 1520 , 417–431. Retrieved from https://link

-springer-com.tudelft.idm.oclc.org/chapter/10.1007/3-540-49481-2 30 doi: 10.1007/

3-540-49481-2{\ }30/COVER

Solomon, M. M. (1987, 4). Algorithms for the Vehicle Routing and Scheduling Problems with Time

Window Constraints. https://doi.org/10.1287/opre.35.2.254 , 35 (2), 254–265. Retrieved from

https://pubsonline.informs.org/doi/abs/10.1287/opre.35.2.254 doi: 10.1287/OPRE.35

.2.254

Erasmus University Rotterdam 32

https://pubsonline.informs.org/doi/abs/10.1287/trsc.1050.0135
https://pubsonline.informs.org/doi/abs/10.1287/trsc.1050.0135
https://ideas.repec.org/a/eee/ejores/v213y2011i3p470-477.htmlhttps://ideas.repec.org//a/eee/ejores/v213y2011i3p470-477.html
https://ideas.repec.org/a/eee/ejores/v213y2011i3p470-477.htmlhttps://ideas.repec.org//a/eee/ejores/v213y2011i3p470-477.html
https://doi.org/10.1007/s10732-018-9377-x
https://link-springer-com.tudelft.idm.oclc.org/chapter/10.1007/3-540-49481-2_30
https://link-springer-com.tudelft.idm.oclc.org/chapter/10.1007/3-540-49481-2_30
https://pubsonline.informs.org/doi/abs/10.1287/opre.35.2.254

Spliet, R., & Desaulniers, G. (2015, 7). The discrete time window assignment vehicle routing

problem. European Journal of Operational Research, 244 (2), 379–391. doi: 10.1016/J.EJOR

.2015.01.020

Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., & Subramanian, A. (2017, 3). New bench-

mark instances for the Capacitated Vehicle Routing Problem. European Journal of Operational

Research, 257 (3), 845–858. doi: 10.1016/J.EJOR.2016.08.012

Van Den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E., & De Boeck, L. (2013, 5).

Personnel scheduling: A literature review. European Journal of Operational Research, 226 (3),

367–385. doi: 10.1016/J.EJOR.2012.11.029

Verweij, B., Ahmed, S., Kleywegt, A. J., Nemhauser, G., & Shapiro, A. (2003, 2). The

sample average approximation method applied to stochastic routing problems: A com-

putational study. Computational Optimization and Applications, 24 (2-3), 289–333. Re-

trieved from https://www.researchgate.net/publication/225929534 The Sample Average

Approximation Method Applied to Stochastic Routing Problems A Computational Study

doi: 10.1023/A:1021814225969

Wagenvoort, M., Bouman, P., van Ee, M., Lamballais Tessensohn, T., & Postek, K. (2022). An

Exact and Heuristic Approach for the Ship-to-Shore Problem.

Wang, Y., Ma, X. L., Lao, Y. T., Yu, H. Y., & Liu, Y. (2014). A two-stage heuristic method for

vehicle routing problem with split deliveries and pickups. Journal of Zhejiang University: Science

C , 15 (3), 200–210. Retrieved from https://www.researchgate.net/publication/220371726

Heuristic methods for vehicle routing problem with time windows doi: 10.1631/JZUS

.C1300177

Wen, M., Krapper, E., Larsen, J., & Stidsen, T. K. (2011, 12). A multilevel variable neighborhood

search heuristic for a practical vehicle routing and driver scheduling problem. Networks, 58 (4),

311–322. Retrieved from https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/10

.1002/net.20470 doi: 10.1002/NET.20470

Windras Mara, S. T., Norcahyo, R., Jodiawan, P., Lusiantoro, L., & Rifai, A. P. (2022, 10). A survey

of adaptive large neighborhood search algorithms and applications. Computers and Operations

Research, 146 . doi: 10.1016/J.COR.2022.105903

Witteman, M., Deng, Q., & Santos, B. F. (2021, 10). A bin packing approach to solve the aircraft

maintenance task allocation problem. European Journal of Operational Research, 294 (1), 365–

376. doi: 10.1016/J.EJOR.2021.01.027

Zhang, J., Lam, W. H., & Chen, B. Y. (2016, 2). On-time delivery probabilistic models for the vehicle

routing problem with stochastic demands and time windows. European Journal of Operational

Research, 249 (1), 144–154. doi: 10.1016/J.EJOR.2015.08.050

Erasmus University Rotterdam 33

https://www.researchgate.net/publication/225929534_The_Sample_Average_Approximation_Method_Applied_to_Stochastic_Routing_Problems_A_Computational_Study
https://www.researchgate.net/publication/225929534_The_Sample_Average_Approximation_Method_Applied_to_Stochastic_Routing_Problems_A_Computational_Study
https://www.researchgate.net/publication/220371726_Heuristic_methods_for_vehicle_routing_problem_with_time_windows
https://www.researchgate.net/publication/220371726_Heuristic_methods_for_vehicle_routing_problem_with_time_windows
https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/10.1002/net.20470
https://onlinelibrary-wiley-com.tudelft.idm.oclc.org/doi/10.1002/net.20470

A Appendix A

Table 7: Mean realized objective value based on a certain number of forecast scenarios for a cost

configuration of (1, 2, 20)

Instance µ-1 µ-2 µ-3 µ-5 µ-10 µ-25 µ-50 µ-75 µ-100

C101 1,069 1,038 1,038 1,027 1,024 1,043 1,041 1,052 1,038

C201 627 623 615 625 630 627 638 634 622

R101 864 852 844 858 846 842 862 869 854

R201 727 723 723 726 722 715 719 723 721

RC101 1,056 1,040 1,060 1,042 1,060 1,052 1,042 1,057 1,050

RC201 852 835 848 859 828 816 856 834 838

Average 866 852 855 856 852 849 860 861 854

Note. The first column shows the instance. The other columns show the mean objective value (µ) for the

actual scenarios for a certain number of forecast scenarios, which is indicated at the top as µ-number. Note

that the objective has been divided by 103 for readability. Lastly, at the bottom row, the average objective

value over the instances is calculated. Per row the lowest mean is highlighted in bold.

Table 8: Average results of different solving approaches for a cost configuration of (1, 2, 1) and

25 forecast scenarios

App-f App-a µ-a σ-a Rt-f (s) Rt-a (s) Cp Cs-a Ct-a

int int 97,531 8,205 159 2,726 27,363 16,038 54,057

int seq 98,696 16,792 159 259 27,363 27,065 44,193

int si 97,453 16,029 159 1,068 27,363 25,769 44,247

seq int 92,549 12,329 26 2,251 5,345 34,432 52,689

seq seq 87,929 23,693 26 314 5,345 37,158 45,340

seq si 74,452 9,693 26 1,002 5,345 23,714 45,312

si int 91,209 11,351 79 2,005 6,313 31,511 53,303

si seq 102,128 27,455 79 329 6,313 50,440 45,278

si si 79,047 15,838 79 1,539 6,313 27,159 45,486

Note. Columns related to forecast scenarios are indicated by -f, columns related to actual scenarios by -a.

The first and second column show the approach (App) used. Columns three and four show the mean realized

objective value (µ) and standard deviation over the scenarios (σ). Columns five and six show the run time

(Rt), in seconds. The last three columns show the average objective value divided into preference violation

costs (Cp), schedule change costs (Cs) and routing costs (Ct). The lowest mean objective value is highlighted

in bold. Recall that Cp, Cs and Ct might not add up to µ due to internal rounding.

Erasmus University Rotterdam 34

B Appendix B

Here the VRPTW is formulated as a multi commodity network flow problem. The model contains

two sets of decision variables x and s. For each arc (i,j), where i ̸= j, i ̸= n + 1, j ̸= 0, and each

vehicle k, xijk is defined. If a vehicle k drives directly from vertex i to vertex j, xijk = 1, 0 otherwise.

The decision variable sik is defined for each vertex i and each vehicle k and denotes the time vehicle

k starts to service customer i. In case vehicle k does not service customer i, sik has no meaning.

The mathematical formulation is as follows:

min
∑
k∈K

∑
i∈V

∑
j∈V

cijxijk s.t., (6)

∑
k∈K

vik
∑
j∈V

xijk = 1 ∀i ∈ V ′ (7)

∑
j∈V

x0jk = 1 ∀k ∈ K (8)

∑
i∈V

xi,n+1,k = 1 ∀k ∈ K (9)

∑
i∈V ′

zi
∑
j∈V

xijk ≤ Qk ∀k ∈ K (10)

∑
i∈V

xihk −
∑
j∈V

xhjk = 0 ∀h ∈ V ′, ∀k ∈ K (11)

sik + tij −Mij(1− xijk) ≤ sjk ∀i, j ∈ V, ∀k ∈ K (12)

ei ≤ sik ≤ li ∀i ∈ V, ∀k ∈ K (13)

xijk ∈ {0, 1} ∀i, j ∈ V, ∀k ∈ K (14)

The objective function (6) minimizes the total travel costs. Constraint (7) ensures each customer

is visited exactly once by the correct truck. Constraints (8) and (9) ensure each vehicle leaves and

enters the depot respectively. The capacity of a vehicle is enforced in constraint (10). Constraint

(11) is the flow conservation constraint, that makes sure a truck leaves a customer after arriving.

Constraint (12) describes the relationship in departure time from a customer and its immediate

successor, where constraint (13) enforces the window at a customer. The integrality is described in

(14). Note that Mij can be decreased to max(li + tij − ej), (i, j) ∈ A.

Erasmus University Rotterdam 35

	Introduction
	Related Work
	Vehicle Routing Problem with Time Windows
	Truck Driver Scheduling Problem
	Vehicle Routing and Truck Driver Scheduling Problem

	Problem Definition
	Adaptive Large Neighbourhood Search
	Scenarios and hours of service regulations
	Initial solution
	Neighbourhoods
	Random Removal (RR)
	Similarity Removal (SR)
	Worst Removal (WR)
	Adjusted Worst Removal (AWR)
	Greedy Insertion (GI)
	Demand and Failure Sorting Insertion (DFSI)
	Regret Insertion (RI)
	Memory Regret Insertion (MRI)
	Similar Route Splitting (SRS)
	Global Driver Rescheduling (GDR)
	Route Moving (RM)
	Route Swapping (RS)
	Day Swapping (DS)

	Sequential Approach
	Adaptive search
	Acceptance and stopping criteria

	Computational Results
	Test instances
	Impact of number of forecast scenarios
	Effects of different solving approaches
	Performance of neighbourhoods
	Impact of cost prioritization
	Impact of driver pool characteristics
	Comparison with current practice

	Conclusion
	References
	Appendix A
	Appendix B

