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ABSTRACT

Forecasting the future by means of timeseries is a crucial task in any type of industry.

There exists a wide range of forecasting techniques, but choosing the right one is deemed

difficult. In our research we extend research in the forecasting literature by combining

the topics of Machine Learning, Cross-Learning, Meta-Learning and Stacking to develop

a new method for forecasting timeseries data. The new method we propose is Learning

with Subset Stacking for Timeseries (LESST). The method is based on the Learning

with Subset Stacking model by Birbil et al. (2021). We develop the model by means

of the M4-competition dataset. The method considers clustering subsets of timeseries

using K-Means clustering. For the timeseries subsets, Local Models are trained which

are then weighted and combined in a Global Model. As a benchmark model we make

use of the Theta model that won the M3-competition. With LESST we are able to beat

the Theta model solely for one out of the six datasets of the M4-competition. On some

occasions LESST performs closely with the Theta model. In conclusion, the LESST

model performs competitively, however, it is not yet a state of the art method. There

is more room for improvement by means of further research.
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1 Introduction

The success of organizations relies on good decision making and planning. To make these

decisions wisely and plan well, is a challenging task, as the future holds many uncertainties.

As organizations seek to minimize their risk and maximize their utilities, forecasting has

been an important tool for good decision making and planning. In the real world there are

a lot of applications for forecasting, which calls for a diverse range of forecasting methods

to tackle real-life challenges. In essence there are a lot of different models to consider for

producing forecasts. These models all rely on time series data of good quality, as we would

like to develop good quality forecasts for future values.

Essentially, there are two approaches to forecasting time series nowadays: generating fore-

casts from a single model and combining forecasts from a set of different models. Combining

different models into one forecast is called forecast model averaging. A lot of research has

already been developed on the combination of different forecasting models, of which many em-

pirical applications show that the combination of forecasting models is often superior to that

of an individual model (Yin et al., 2012). Combining forecast models by using a weighted

average is a simple and effective method, as it avoids the risk of selecting a mis-specified

model. A major challenge, however, is to select a set of weights that optimizes the accuracy

of the model. Often the resulting weights cause a worse model performance than when equal

weights are used (Wang et al., 2022).

As of late, Artificial Intelligence (AI) has become popular and has frequently been used

in practice and research. However, as the methods are still quite young it still requires a lot

of research as compared to statistical methods. Machine Learning (ML), which is a branch of

AI, is often used in Forecasting context as of late. However, research has shown that classical

statistical methods often outperform ML methods in terms of forecasting (Makridakis et al.,

2018).

The literature on ML methods in forecasting often do not use proper benchmarks to com-

pare their methods, resulting in untrustworthy results. Even though, ML has some drawbacks
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in forecasting, it shouldn’t be dismissed. Further research is required, which is also why the

M-competitions are organized. These competitions bring researchers together and have them

compare their methods in terms of forecasting accuracy. In the M3 competition the winner

consisted of a statistical method, the Theta model (Assimakopoulos & Nikolopoulos, 2000).

Remarkably, the method that made first place in the most recent competition (M4) was

not purely a statistical method but instead, a combination of ML and a traditional statistical

method (Smyl, 2019). Cross-Learning (CL) methods were among the top models in the com-

petition. The Cross-Learning methods leverage the information across all the different time

series to build their forecasting models. However, not all Cross-Learning methods performed

well, therefore Semenoglou et al. (2020) investigated these methods further. Their findings

found that simple cross-learning methods easily outperformed traditional forecasting meth-

ods and are even further enhanced by making use of time series features. The accuracy of

these methods however, come at a great computational cost as compared to traditional sta-

tistical methods. Clearly, not all CL methods can be covered within one paper, hence further

research is needed to decide which CL approaches are more suitable for what instance.

Therefore, we aim to extend research in the forecasting literature by combining the topics of

Machine Learning, Cross-Learning, Meta-Learning and Stacking to develop a new method

for forecasting timeseries data. To achieve this, we make use the M4 data competition set.

Our method is based on the idea of Learning with Subset Stacking (LESS), which was devel-

oped by Birbil et al. (2021). LESS is a method which leverages the heterogeneous behaviour

between the input and output space. The method consists of a meta-learning process in

which the input is clustered into multiple sub-samples. For these sub-samples, multiple Lo-

cal Models are trained and then combined using a form of stacking. In their method they

weight the Local Models by the distance to other subsets, which are in the end combined

into one Global Model. LESS has been tested on multiple datasets and has shown to perform

competitively.

However, the method has not been developed for forecasting timeseries. Our method will

consider the same framework, in which we will train Local Models for the different subsets of
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the time series data. Finally, we develop a global model that combines the results from the

multiple Local Models. Instead of creating subsets that contain data points as considered in

Birbil et al. (2021), we will create subsets that contain multiple timeseries. For the clustering

approach we have decided to use a feature based clustering approach. This is an approach

that uses time series features of the timeseries to compile a K-means clustering method. Sub-

sequently, it will allocate our series in different sets that share similar timeseries properties.

In the Local Models, Birbil et al. (2021) considers the use of the Ordinary Least Square

(OLS) method. With our model we have the capability of using OLS as well. However, we

use the model with a direct pooled forecasting approach using the different time series. In

addition, we also consider the use of other methods for forecasting. The first methods being

tree-based methods, where we make use of the RandomForest, XGBoost and LGBM method

and the latter being a more robust approach to OLS, namely the Huber regression.

Lastly, we combine these local models into one global model. For the Global Model we

are able to use the same type of methods as we do in the local model. However, similarly

to Birbil et al. (2021), the input to the Global Model will be the weighted forecasts of the

Local Models.

As a benchmark for our method, we will consider using Theta model that was proposed

by Assimakopoulos & Nikolopoulos (2000). This model received the first place in the M3

competition. The method considers deseasonalization of the data if applicable and makes

use of classical statistical methods. It is therefore commonly used as a benchmark, especially

for methods developed for the M4 competition.

2 Literature review

In this section we will discuss the relevant literature on forecasting models. Birbil et al. (2021)

proposes a new learning algorithm for a set of input-output pairs. Their method Learning

with Subset Stacking (LESS), considers a three step process for developing a model. These

steps consist of clustering data points together into subsets, training local models for each
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subset and developing a global model from a combination of weighted local model predic-

tions. In their research they obtain competitive results with other state-of-the-art methods.

Their method consists of stacking models together from separate clusters, however, it does

not consider the use of time series data. In our research we aim to extend the concepts used

in this method for use of timeseries forecasting.

Combining machine learning and standard forecasting methods has become more com-

mon. Zhao & Feng (2020) develop a framework which takes forecasts developed by the

standard methods as inputs into a machine learning model. Their intuition regarding the

inputs is that the forecasts are good features that characterise the time series well. The

machine learning models they propose are the Convolutional Neural Network (CNN) and the

Recurrent Neural Network (RNN) model. Their method For2For outperforms all M4 data

competition submissions for quarterly data and performs highly for monthly series. However,

their method suffers from over-training for small sample sizes. Another point they note is that

using a single RNN model for all frequencies performs better overall than separate models.

The model considered in this research for combining the forecasts could prove beneficial in

the Global Model of our method. However, as we do not consider the use of Neural Network

models in our research, we leave it for future reference.

The model that reached second place in the M4 data competition also considered stacking

methods in combination with cross-learning. This method uses time series features to build

a meta-model that calculates weights for combining different forecasting models. It has been

developed by Montero-Manso et al. (2019) and outperforms simple forecasting combination

models as well as most methods in the time series forecasting literature. By combining time

series features for each individual time series within a training set, the model is able to train

a meta-model that produces weights. Their meta-model is trained by use of the xgboost

optimizer. For any new series to be forecasted, the features are required and given to the

meta-model to produce weights for combining forecasts. They claim their method to be ro-

bust as removing a model does not alter the forecasts strongly. The idea of using timeseries

features for developing a model to produce weights is interesting. The weights we develop in

our method for combining Local Models are dependent on the timeseries features. Although,

these weights are created by means of distances from clusters. It could be interesting to use
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the features themselves for developing weights as done in Montero-Manso et al. (2019) for

producing weights to combine the Local Models.

The importance for deseasonalizing the data of the M4 competition is heavily emphasised

in Smyl (2019). Hence, we consider to incorporate deseasonalization as a part of our method.

His method won first place in the M4 competition. It considers a hybrid method for forecast-

ing by combining exponential smoothing and Recurrent Neural Networks. The method is

hybrid in the sense that it combines traditional statistical methods with machine learning, in

this case a recurrent neural network. The first step in the framework consists of performing

exponential smoothing. This is done before the data is used for training a Long Short-Term

Memory model (LSTM), the output of the LSTM model is then re-transformed. With this

method, he combines global and local parameters to enable cross-learning and giving the

method a hierarchical nature. The use of exponential smoothing might be a good additional

component to our method for future reference. Especially when Neural Network models are

being used, since it has proved beneficial for enhancing performance (Smyl, 2019).

Godahewa et al. (2021) investigate the improvement of Global Forecasting Models (GFM).

They localize the GFM by using clustered ensemble models. Similarly, their method consid-

ers feature-based clustering and distance clustering using Dynamic Time Warping (DTW).

However, their method is inherently different from what we are considering. Their frame-

work considers training the Global Model iteratively per cluster, producing forecasts in each

iteration. In the end all the forecasts for each iteration are averaged over and used as final

forecasts. Using their localization method they successfully conclude that it improves the

GFM. This framework could promise interesting for combining our Local Model results. In-

stead of one Global Model prediction there would be multiple predictions that are aggregated.

This could be either done by using the model as described in Godahewa et al. (2021) or by

using multiple global models (e.g. Random Forest) that would then be trained iteratively

with their forecasts being aggregated.

In Semenoglou et al. (2020) the added benefit of cross-learning is investigated. They

consider a wide variety of different cross-leaning methods. As their base model they use a

Neural Network model. Other varieties include feature-based methods and clustering. Like-

wise, they consider feature-based clustering for separating the dataset into subsets. However,
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they only consider training local models per cluster, without leveraging information from the

other clusters. They conclude that the utilization of cross-learning improves forecasting ac-

curacy. Furthermore, the method leveraging feature based methods outperformed all of their

other methods, specifically the method using features as input to the model.

Liang et al. (2021) considers clustering timeseries of stocks using DTW clustering. They

conclude that with the use of this method, they obtain more accurate clusters compared to

many other traditional similarity methods. Even though this cluster method seems promis-

ing, we do not consider to use it in our method. This is mainly due to the running time of

the clustering method. As we are considering a large dataset of many series, it would become

infeasible to use this clustering method.

Grinsztajn et al. (2022) show the difference in performance of tree-based and deep learn-

ing methods for tabular data. They reach the conclusion that tree-based methods clearly

outperform their deep learning counterparts, especially for datasets with less observations.

Furthermore, the tree-based methods also require a smaller time frame to fit the data. Hence

we have decided that it is more useful to focus on tree-based methods as opposed to a deep-

learning method in our research.

3 Data

In this research we use the M4 Dataset from the M4 data competition. In this competition

multiple researchers competed to produce the most accurate model using this specific dataset.

It is the same dataset used in Montero-Manso et al. (2019) and Smyl (2017) to produce their

models. The M4 dataset consists of 100,000 distinct timeseries which were all used in the

Makridakis forecasting Competition. The timeseries data consists of multiple timeseries

frequencies, namely: yearly, quarterly, monthly, weekly, daily and hourly. Furthermore, the

data consists of timeseries data from different sectors. For each timeseries it is given as a

covariate to which sector it belongs. The sectors present in the dataset are macro, micro,

industry, financial, demographic and other data. For each time frequency, the series are split
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into a train and test set. Hence, we have 6 different sets of training data and 6 different sets of

testing data. What is important to note is that not all timeseries within the training dataset

consist of the same number of observations. A brief summary of the number of timeseries

can be viewed in table 1. The M4 dataset we obtain from Kaggle (2020).

Table 1: Overview M4 dataset

Frequency Micro Industry Macro Finance Demographic Other Total

Yearly 6,538 3,716 3,903 6,519 1,088 1,236 23,000

Quarterly 6,020 4,637 5,315 5,305 1,858 865 24,000

Monthly 10,975 10,017 10,016 10,987 5,728 277 48,000

Weekly 112 6 41 164 24 12 359

Daily 1,476 422 127 1,559 10 633 4,227

Hourly 0 0 0 0 0 414 414

Total 25,121 18,798 19,402 24,534 8,708 3,437 100,000

Source: Makridakis et al. (2020)

In our method we do not separate the data for different sectors, hence we do not make use

of any covariates. Therefore, we are left with the amount of timeseries in the Total column

that can be viewed in table 1. We define the dataset of timeseries as Y , we develop models for

each frequency separate but in the exact same manner. The dataset Y consists of timeseries

yi, where i = 1, 2, ..., N and N is the number in the Total column in table 1 depending on

the dataset we are using. Furthermore, the dataset Y has already been split into a training

set Ytrain and a test set Ytest by the organizers of the M4 competition. Ytest has the dimension

of N by h, where h is the amount of steps ahead that need to be forecasted by the model.
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Table 2: Details M4 dataset

Prediction steps Avg. data points Total data points

Yearly 6 31 720,458

Quarterly 8 92 2,214,108

Monthly 18 216 10,382,411

Weekly 13 1022 366,912

Daily 14 2357 9,964,658

Hourly 48 854 353,500

Each dataset considers a different amount of steps to be forecasted, for each dataset the

amount for h can be found in table 2 in the column prediction steps. Furthermore, in table 2

we include the total amount of data points in the training set of all timeseries combined and

the average amount of data points for each timeseries for each dataset. However, each series

within the dataset has a different time frame (length), hence we denote the observation at

time t as ti for series i. The dimension of the training set Ytrain are therefore N by ti. In the

methodology 4 we refer to Ytrain simply as Y for simplicity, where Y is defined as in equation

1.

Y = {yi = yi,1, yi,2, ..., yi,ti
|i = 1, ..., N} (1)

For any series yi in the dataset it is possible that it has seasonal patterns or is not stationary.

We tackle this in the section 4.1.6.
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4 Methods

4.1 Learning with Subset Stacking for Timeseries
We consider adopting the framework of Learning with Subset Stacking (Birbil et al., 2021)

and adjust it in such a way that it will leverage multiple time series for producing forecasts.

The original method LESS clusters data points within a single series of data. Our method

on the other hand considers the clustering of similar time series. We use the M4 dataset

described in the data section 3 and consider a different model for each frequency.

Consider our dataset for an arbitrary frequency Y = {y1, y2, ..., yN} where N is the num-

ber of different time series. For each timeseries we calculate the Timeseries Features, we

perform this process separately as it saves time for training multiple models. The Timeseries

Features are used in the clustering step, where timeseries will be allocated in different sub-

sets {Y (1), Y (2), ..., Y (K)} where K is the number of clusters considered. During the clustering

process we also calculate a set of weights WNxK , which is a N by K matrix where N is the

number of series and K the number of clusters. The weights represent the odds (according

to distance) for a series n to belong to a specific cluster k.

For each subset Y (k) where k = {1, 2, ..., K} we train a different Local Model L(y|Y (k)).

Once the subsets are formed between all series and the Local Models have been developed,

we combine their forecasts by weighting the output of the Local Models using the weights pro-

duced in the clustering step, these are then saved into a matrix Z = WL(y|Y (1), Y (2), ..., Y (K))

(see section 4.1.14 for more details) which is a N by h matrix, where N is the number of

series and h the forecasting horizon.

Finally, we use the produced Z matrix as input for our Global Model G(y|Z), which

combines the different weighted local forecasts into one final forecast. We develop the model

using the programming language python. In addition we make use of some external python

libraries which can be viewed in the appendix 7.3.1

In section 4.1.1 we start off by explaining the process of obtaining the Timeseries Fea-

tures. Secondly, we discuss the clustering method and the calculation of the weights in
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Section 4.1.2. Followingly, we explain the process of deseasonalization of the data in Section

4.1.6. In section 4.1.4 we dive into further detail on the Local Models and lastly, in section

4.1.14 we finalize the details on the global model.

4.1.1 Timeseries Features

Before building the model we start off by processing the data. For each timeseries y in the

training set Y we calculate a set of 41 different timeseries features. We are using the same

features that have been used in the FFORMA model and are available in the R forecasting

package. The features we consider with their respective explanation can be found in the

appendix 7.2. The calculation is done for N different time series and results in S ≤ 41

features. Features that were not able to be calculated for a series are removed from the set of

features. We are left with a matrix FNxS (a N by S matrix), which contains all the features

for the series in our set Y . This process is performed separately for each frequency of the

data. As the M4 dataset consists of 6 different datasets with different time frequencies, we

are left with 6 different datasets of timeseries features. We save each set for later use, as we

will use these for the clustering step.

4.1.2 Timeseries Clustering

In this step we start dividing the different series in our training set Y into different subsets

using the KMeans clustering algorithm. We make use of the previously calculated features

in F where N = |F | to cluster the series into K different clusters; F1, F2, ..., FK . Our set

F contains S different features that can be found in the appendix 7.2. Furthermore, F

consists of f1, f2, ..., fN points in the space RS. The KMeans algorithm allocates each point

fi, i = 1, 2, ..., N to a cluster with a center ck, k = 1, 2, ..., K where K is the number of

clusters we consider. For our model we will consider several different cluster sizes, namely

K ∈ {3, 10, 30, 50, 100}. The KMeans algorithm allocates the points to the clusters in such

a way that it minimizes the k-means cost function ∑k
i

∑
f∈Fi
∥fi − ci∥2. Minimizing the cost

function is the key to minimizing the distance for each point to the cluster centers that are

created by taking the center of the points within the cluster. Once the clustering algorithm

reaches it’s optimum, we save all cluster centers ck into a matrix CKxS where K is the number

of clusters and S the number of features. Furthermore, we save the indices i that belong to
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cluster k into a mapping I = {k : i}. Using these cluster allocations, we create our subsets

Y (1), Y (2), ..., Y (K). These subsets we use later on to train our Local Models.

4.1.3 Distance Weighting

In the LESS model the Local Model forecasts are weighted, these weights are created from the

distance of a point to each cluster. We consider a similar process where we use the distance

of the timeseries features of a series to the cluster. Calculating these distances is done by the

KDTree method (Bentley, 1975) using the cluster centers C and the set of timeseries features

F . We define the distances as di = (di1, di2, ..., diK), here i = 1, 2, ..., N is the series, K is the

number of clusters and dik the distance of series i to cluster k. The weights are calculated as

defined in equation 2.

wij =

∑K

k=1 dik

dij∑K
q=1

∑K

k=1 dik

diq

=
1

dij∑K
q=1

1
diq

(2)

Calculating this for all clusters we are left with the vector of weights wi = (wi1, wi2, ..., wiK)

where i = 1, 2, ..., N . Combining these weights for all series i, we obtain the matrix of all

weights WNxK .

4.1.4 Local Model

During the clustering step we split our timeseries into K different subsets Y (1),Y (2),...,Y (K).

For each of these subsets Y (k) we train a Local Model L(yi|Y (k)) where i = {i = 1, 2, ..., N |yi ∈

Y (k)} and k = {1, 2, ..., K}. The first step in training the Local Models will be to fit each

time series yi in Y (K) for a specific model. For this instance, we make use of a pooled di-

rect forecasting approach, as we pool the different series in the subset K to fit one model.

We consider several different regression methods that can be used interchangeably for the

Local and Global Models. The chosen methods are the Extreme Gradient Boosting,

Light Gradient Boosting Machine, Random Forest, Linear Regression and the

Huber Regression. We have chosen several machine learning methods due to their per-

formance and convenience of use for the structure of our model. Furthermore, we con-

sider the simple linear regression due to its low computational cost and to compare to the

more advanced machine learning methods. Lastly, the Huber Regression was chosen due
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to its low computational cost and robustness towards outliers. We will not consider the

Random Forest as a Local Model due to its running time, we instead use it in the Global

Model step. Before any of these models can be fitted on our time series we have to prepare

the data for training.

4.1.5 Data preparation for Local Models

First and foremost, before fitting our models we have to decide the amount of steps h that

we will forecast ahead. The h ahead forecast we consider depends on the frequency of the

dataset, as each frequency has its own test dataset with h data points for all the N timeseries.

Let us consider our training set Y (k) that contains several series yi with length ti. For each

series i in the cluster k we create an input and target set. Before we do this, we first omit the

last h data points from the series i as these will be used later on in the Global Model and to

prevent over-fitting. The model does include the functionality to include all points, however,

we do not consider using this in our results. Once this is done we are left with the series

yi,1, yi,2, ..., yi,ti−h, which we then split into the input vector X
(k)
i,input and the target vector

X
(k)
i,target. Since we are predicting h steps ahead using a direct pooled forecasting approach,

we require to fit h different models. To form the input set we lose h data points as we require

the same dimension of vectors to fit the h models simultaneously. Hence, we define the input

for Local Model k and series i belonging to subset Y (k) as in equation 3 for each step to be

predicted.

X
(k)
i,input = (yi,1, yi,2, ..., yi,ti−2h) (3)

Here i = {i = 1, 2, ..., N |yi ∈ Y (k)}, meaning that for model k only series i is used in the

input. To create the target vector X
(k)
i,target is a bit more complicated. It must have the

same length as the input vector X
(k)
i,input of ti − 2h. The difference is that the entries can

vary between 1 and h steps ahead. The input for fitting the 1-step ahead model consists

of {yi,2, yi,3, ..., yi,ti−2h+1} while for the h-step ahead it consists of {yi,1+h, yi,2+h, ..., yi,ti−h}.

Thus we define the target vector for q = 1, 2, ..., h steps ahead as in equation 4.

X
(k)
i,target = (yi,1+q, yi,2+q, ..., yi,ti−2h+q) (4)
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Where i = {i = 1, 2, ..., N |yi ∈ Y (k)} is the index of the timeseries, k = 1, 2, ..., K is the

cluster number and h the forecasting horizon.

4.1.6 Deseasonalization

Before we fit our Local Models, we consider deseasonalizing the data. For each series yi we

test whether the series shows seasonal behaviour that is significantly present. This test is

performed using the lag auto correlation function rk, that is the function for for the lag k. In

equation 5 we show the test performed, which has been proposed in Fiorucci et al. (2016).

|rm| > q1−a/2

√
1 + 2 ∑m−1

i=1 r2
i

n
(5)

Here m is the frequency used for the data, for the monthly series it would be 12 for example,

which is the seasonal cycle. Furthermore, the sample size is defined by n and q is the

quantile function of the standard normal distribution. Lastly, (1−a)% is the confidence level

for which we opt for 90%. See Fiorucci et al. (2016) for more details. Following the test,

for each series yi that is seasonal according to the test, we deseasonalize the data using a

classical decomposition method. To reseasonalize the data after forecasting we need to use

the seasonal components calculated during the deseasonalization step. We save the seasonal

components for each series i in a set S during the deseasonalization step. Here S consists

of s1, s2, ..., sN , using si we can reseasonalize yi after the deseasonalization was performed,

where i = 1, 2, ..., N . The reseasonalization is performed on the Global Model predictions,

resulting in the predictions for the LESST model using deseasonalization. As the predictions

are only reseasonalized for the Global Model, the Local Models predict the deseasonalized

series, for which the predictions go straight into the Global Model without reseasonalization.

4.1.7 Fitting the Local Models

With our input and target sets defined for each cluster k, we can now start fitting the

local models. Consider our local model L(y|Y (k)), we fit our model in such a way that

X
(k)
target = L(X(k)

input) + ϵ , where ϵ is an error matrix. We perform this for k = 1, 2, ..., K and

save the models inside a mapping L = {1 : L(y|Y (1)), 2 : L(y|Y (2)), ..., K : L(y|Y (K))} for

later use. Due to the direct forecasting approach for h steps, we use h different models for
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each cluster k. These different models are combined into one so that the fit method can be

used in one instance. We will now discuss the different local models in more detail.

4.1.8 Linear Regression

Linear Regression is a standard regression model that uses the fundamentals of Ordinary

Least Squares. To decide the value of the unknown parameters the method minimizes the

sum of squared errors. A linear regression is defined in the following way:

yi = α̂ + xiβ̂ + ei (6)

Here i = 1, 2, ..., N , α̂ is the constant, β̂ the parameter of interest, which shows the effect

of the covariates xi and e is the residual. In our case the covariate xi consists of the lagged

values of yi. The sum of squared residuals is defined as ∑N
i=1(yi − α̂ − xiβ̂)2, which is then

minimized to determine the values of the parameters. In practice, for OLS to produce the

best estimates it is required for a set of assumptions to hold. However, in our research we

are only interested in the predictive ability. In LESST the linear regression is mainly used

as it is a simple method that is fitted in little time on a lot of data.

4.1.9 Huber Regression

The Huber Regression is a linear regression method that is more robust to outliers than OLS.

The main difference between Huber and OLS is that it uses a different function to minimize

over. Instead of minimizing the sum of squared errors it minimizes the following function.

minβ

N∑
i=1

ϕ(yi − α− xiβ) (7)

where ϕ is defined by

ϕ(u) =


u2, if |u| ≤M

2M |u| −M2 if |u| > M

(8)

Here M is some threshold value larger than zero. Even though it is very similar to OLS, it

specifically treats large residuals in a different matter. As the sum of squared errors penalizes

large residuals quadratically, the Huber loss function does this in a linear matter. This causes
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the method to be affected less by large outliers in the data.

4.1.10 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is a tree-based method that makes use of the machine

learning technique tree-boosting. The method has been proposed by Chen & Guestrin (2016).

It specifically makes use of the algorithm gradient-tree boosting which was introduced in

Friedman (2001). The method consists of making an ensemble of different predictive tree-

based models. The objective function which is optimized minimizes iteratively in the direction

of the gradient. The method XGBoost is an upgrade from a standard gradient boosting

algorithm as it converges more quick. This is due to the loss function being expanded with

second order Taylors-expansion. XGBoost optimizes the following objective function (Chen

& Guestrin, 2016):

L =
∑

i

l(ŷi, yi) +
∑

k

Ω(fk) (9)

Here ŷi is the value estimated by the model and yi is the actual value. Furthermore, l is a

differentiable loss function, Ω a penalty function and k the number of classification regression

trees. The decision tree model is defined by f , where fk is the model belonging to tree k. The

penalty function takes the tree model as input Ω(f) and is defined in the following matter:

Ω(f) = γT + 1
2λ∥ω∥2 (10)

In this equation the penalty coefficients are defined by γ and λ. These coefficients prevent

the model from becoming overly complex. Moreover, T is the number of leaves in the tree

model and ω the sum of all the leaf weights

4.1.11 Light Gradient Boosting Machine

The Light Gradient Boosting Machine (LGBM) is just like XGBoost a gradient tree-boosting

method. The method was first introduced in Ke et al. (2017). The fundamental difference

between these two methods is that the tree-models in LGBM grow by their leaves and in

XGBoost they grow in depth. Due to this difference it is possible for LGBM to outperform

XGB but can also lead to the method to over-fit on the data (Ma et al., 2018). Overall,

due to the fundamental difference in tree-growth, the LGBM method is computationally less
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costly.

4.1.12 Random Forest

The Random Forest is a tree-model method that was first introduced in Breiman (2001). It is

a machine learning method that combines multiple tree models together. Using the dataset

given to the algorithm, it samples at random from the dataset for further use. Furthermore,

the method defines several features on which the trees will be split into branches. However,

instead of using all features, each tree-model will only leverage a random sub sample of all

features. The method uses both ensemble and bagging techniques. Combining results from

multiple models is considered an ensemble method. Moreover, bagging is the training of

models on a random subset of the full dataset. Due to this process, the Random Forest

method is less affected by a noisy dataset. For more in-depth details on the method, see the

original paper (Breiman, 2001) or the in-depth research on the topic (Louppe, 2014).

4.1.13 Local Model Predictions

To evaluate the Global Model performance we consider to investigate the Local Model per-

formance for the best performing LESST models. In the Global Model we use all Local

Model predictions using all the series for each model, more details on this can be read upon

in section 4.1.14. To evaluate the Local Model performance we develop forecasts for each

series that belongs to the cluster of the Local Model. Therefore, for yi ∈ Y (k) we make

forecasts using the Local Model L(yti+q|Y (k)), here i = 1, 2, ..., N is the number of the series

considered, q = 1, 2, ..., h is the step ahead, k = 1, 2, ..., K the number of the cluster and Y (k)

the subset which the Local Model L(.|Y (k)) belongs to.

4.1.14 Global Model

With the Local Models trained, we are now ready to combine them into our global model.

The first step now is to split our whole dataset into the input and target vectors for fitting

the model. We consider two different methods of forming the input and target. Firstly, we

cover the method that considers the use of a smaller amount of data points, which is the

method we will use in our main results (section 5.1). For this method, we form a train set

by removing h data points for each series, these h points are used in the target set. We are

then left with the set Xtrain which has N by ti − h data points. Our target set we create by
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taking those last h points for each series and saving them into a set Xtarget, a set with N by

h data points, see equation 13. Followingly, we only use the last data point in the train set

(t = ti−h) for each series i. These points are used to forecast the q = 1, 2, ..., h different steps

ahead for each series i using all the Local Models L(y|Y (1)),L(y|Y (2)), ...,L(y|Y (K)). Using

the Local Model mapping L and the weight matrix W , we are able to create the weighted

q = 1, 2, ..., h-step forecast. This step is performed for each series in the following way:

{wi,1L(ŷi,ti−h+q|Y (1)), wi,2L(ŷi,ti−h+q|Y (2)), ..., wi,KL(ŷi,ti−h+q|Y (K))} (11)

Where we define wi,k as the weight for the series i and the Local Model belonging to cluster k.

Furthermore, L(yti−h+q|Y (k)) is defined as the q = 1, 2, ..., h-step ahead forecast for yi,t=ti−h

for the series i using the Local Model belonging to cluster k. Using equation 11 we define

our input vector for series i and q-steps ahead as in equation 12. Where i = 1, 2, ..., N is the

series and q = 1, 2, ..., h the q-step ahead true values.

Xi,input = (wi,1L(ŷi,ti−h+q|Y (1)), wi,2L(ŷi,ti−h+q|Y (2)), ..., wi,KL(ŷi,ti−h+q|Y (K)) (12)

Combining for each series i and step ahead q we obtain the set Xinput that consists of N ·h ·K

data points. Before we train our Global Model, we define the target Xi,target of the target set

Xtarget in equation 13

Xi,target = yi,ti−h+q (13)

Using our input and target defined as in equation 12 and 13 we are capable of training the

Global Model. For training the model we can use any of the model types which we have

mentioned previously in section 4.1.4.

The second method we consider for forming the target and input set considers significantly

more data points for the Global Model. First of all, instead of only predicting the h different

steps ahead for the last data point at t = ti − h in Xtrain, we use all data points from 1 to

ti − h. Subsequently, we end up with ∑N
i=1(ti − h) · h ·K Local Model predictions.
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Looking back at table 2 makes it clear that this considers a substantial larger amount of

data points going into the Global Model. Therefore, we do not consider using this method in

the main results but instead use it to evaluate the Global Model performance in section 5.3.

Following this process, we end up with the input vector as defined in equation 14. Where

t = 1, 2, ..., ti is the time point of series i = 1, 2, ..., N for the q = 1, 2, ..., h-step ahead being

predicted.

Xi,input = (wi,1L(ŷi,t−h+q|Y (1)), wi,2L(ŷi,t−h+q|Y (2)), ..., wi,KL(ŷi,t−h+q|Y (K)) (14)

Comparing equation 12 with 14 we see that they are exactly the same for t = ti. Lastly, we

define the target for the input in equation 15.

Xi,target = yi,t−h+q (15)

where t = 1, 2, ..., ti is the time point, i = 1, 2, ..., N the series, q = 1, 2, ..., h the time step of

the true value and h the forecast horizon.
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The whole process of training and making forecasts using the LESST algorithm is sum-

marized using psuedocode in the algorithm 1.
Algorithm 1: How to train and forecast using the LESST model

Result: LESST model and predictions
set number clusters ← K
set local model ←Model
set global model ←Model
for dataset in {Yearly,Quarterly,Monthly,Weekly,Daily,Hourly} do

initiate data and parameters
set trainset ← read trainset(dataset)
set testset ← read testset(dataset)
set tsfeatures ← read tsfeatures(dataset)
set frequency ← set frequency(dataset)
set forecast horizon h ← length(testset)
cluster timeseries features
initiate method cluster ← clustermethod(number clusters)
find the clusters ← cluster.cluster features(tsfeatures, trainset)
save cluster allocation in trainset ← clusters.clusters
save weights W ← clusters.weights
save orders O ← clusters.clusterids
fit local models
initiate localmodels ← LocalModel(local model)
prepare input X, output Y ← prepare input output local(trainset, h)
fit localmodels ← localmodels.fit(X, Y )
fit global model
initiate globalmodel ← GlobalModel(global model, localmodels, O, W, h)
prepare input X, output Y ← prepare input output global(trainset, h)
fit globalmodel ← globalmodel.fit(X, Y )
save LESST model
save LESST ← save(globalmodel, localmodels, clusters)
make forecasts using LESST model
predictions ← LESST.predict(trainset)

end

4.1.15 Global Model: Weighted Sum

Instead of using the methods discussed in section 4.1.4 for the Global Model, it also possible

to simply take the weighted sum of the forecasts of all the Local Models. The weighted sum

can be taken in different ways, we consider two of those.

Firstly, we consider simply weighting the Local Model forecasts with the weights W that

we produced in the clustering step. Subsequently, we add up the weighted forecasts of all the
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Local Models to reach one forecast. The weighted sum is performed as shown in equation 16

yti+q = wi,1L(yti+q|Y (1)) + wi,2L(yti+q|Y (2)) + ... + wi,KL(yti+q|Y (K)) (16)

Here i = 1, 2, ..., N is the timeseries considered, q = 1, 2, ..., h is the forecast step ahead and

K is the number of clusters considered. Furthermore, wi,k is the weight for series i and cluster

k and L(yti+q|Y (k)) is the Local Model q step ahead forecast for cluster k of series i.

The second method we consider for taking the weighted sum is simply the even weighted

sum of the forecasts of the Local Models. We can consider the same equation 16 by simply

setting all the weights wi,k = 1/K, where K is the total number of Local Models and clusters.

We do not use the weighted sum method in the Global Model for the main results of

LESST. However, we consider to use it for comparison with the Global Models of LESST.

4.2 Benchmark model
The Theta model proposed by Assimakopoulos & Nikolopoulos (2000) is a univariate fore-

casting method that uses a theta θ coefficient to modify the curvature of a timeseries. The

model is capable of producing accurate forecasts, which has been proven during the M3 fore-

casting competition. In this competition the method reached first place and since has been

frequently used as a benchmark model. To compare our forecasting method with the theta

model we compare the OWA of both methods, this is discussed in section 4.3.

We consider fitting the Theta model for each timeseries yi separately, where i ∈ {1, 2, ..., N}.

Considering an arbitrary series from our set yi, to predict the q = 1, 2, ..., h step ahead fore-

cast we make use of the theta model in the forecasting package, which has been proposed

by R. Hyndman & Billah (2001).

4.3 Performance Measure
As a performance measure we will be using the Overall Weighted Average (OWA), which

was used in the M4 forecasting competition. The measure consists of a combination of the

symmetric Mean Absolute Percentage Error (sMAPE) (Makridakis, 1993) and the Mean

Absolute Scaled Error for seasonal timeseries (MASE) (R. J. Hyndman & Koehler, 2006).

We implement these measures as described in Makridakis et al. (2020). We compute these
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measures for each series separately within the dataset (Yearly, Quarterly, etc.) and then take

the mean of the MASE and sMAPE as their final values. The calculation for the measures

for series i can be viewed in equation 17 and 18. To calculate the total MASE and sMAPE

we simply take the average for all series 1
N

∑N
i=1 MASEi and 1

N

∑N
i=1 sMAPEi.

sMAPEi = 2
h

ti+h∑
t=ti+1

|yi,t − ŷi,t|
|yi,t|+ |ŷi,t|

∗ 100(%) (17)

MASEi = 1
h

∑ti+h
t=ti+1 |yi,t − ŷi,t|

1
ti−m

∑ti
t=m+1 |yi,t − yi,t−m|

(18)

Here yi,t is the true value of the time series i at point t, ŷi,t the estimated forecast, h the

forecasting horizon, ti the number of the data points available in-sample for series i, and

m the time interval (frequency) between successive observations considered for each data

frequency: 12 for monthly, 4 for quarterly, 24 for hourly, 52 for weekly and 1 for yearly and

daily data (Makridakis et al., 2020). To calculate the OWA we need to compute the sMAPE

and MASE for the Näıve2 method. Likewise, these are calculated for each series separately

and then aggregated by taking the mean. Consequently we calculate the OWA as follows:

OWA =
sMAP E(model)
sMape(näıve2) + MASE(model)

MASE(näıve2)

2 (19)

Viewing equation 19 we see that the OWA will be of value 1 in the case where the model is

just as good as the näıve2 method. If the OWA is below 1, the model performs better than

the näıve2 and if it is above 1 the model performs worse. the result section 5 we will compare

the OWA of LESST with that of the Theta model to evaluate the performance difference.

Furthermore, to show whether the Global Model improves the Local Model predictions we

compare our main results with those of the Local Model predictions. Furthermore, we com-

pare the performance of the combination of weighted Local Model predictions with those of

the Global Model. As an additional performance measure, we will include the RMSE. The

RMSE calculation for series i is given in equation 20. To calculate the total RMSE we take

21



the average for all series 1
N

∑N
i=1 RMSEi.

RMSEi =

√√√√√ 1
h

ti+h∑
t=ti+1

(yi,t − ŷi,t)2 (20)

Here yi,t is the value of the time series at point t for series i, ŷi,t the estimated forecast and

h the forecasting horizon. As our main method, benchmark and performance measures have

been discussed, we now move on to the result section 5.

5 Results

In this section we will first give an overview on the results of our main method LESST, which

is covered in section 5.1. Moving along, we dive further into the performance of the Theta

model and compare these with our results for the LESST model in section 5.2. Lastly, we

discuss the Local and Global Model performances of LESST, covering some additional Global

Model methods in section 5.3.

5.1 LESST model results
Using the LESST model we have obtained results for the case where the data was not

deseasonalized at all and the case where series with seasonality were deseasonalized. In

table 3 we show the OWA results of LESST for non-deseasonalized series having used the

Yearly dataset. On the left axis of the table we see the models used in the LESST method,

here the left is the method used for the Local Model and the right is the Global Model

method. The number of clusters used in the model can be viewed in the columns of the

table.
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Table 3: Yearly OWA results LESST for non-deseasonalized data

3 clusters 10 clusters 30 clusters 50 clusters 100 clusters

Ols-Ols 1.184 1.190 1.178 1.176 1.177

Huber-Huber 0.965 0.958 0.967 0.968 0.953

Xgb-Xgb 1.172 1.159 1.150 1.146 1.144

Lgbm-Lgbm 1.153 1.152 1.139 1.133 1.131

Huber-Rf 1.240 1.147 1.109 1.102 1.096

Lgbm-Huber 1.033 1.077 1.090 1.092 1.054

1 This table contains the OWA scores for LESST using the Yearly dataset without deseason-

alization. The Local-Global model combination is presented by the most left column and all

other columns represent the number of clusters used in fitting the LESST model

Viewing table 3 we see that LESST does not perform better than the Näıve2 method in

most cases except for the Huber-Huber method, according to the OWA, as all other values

are above 1. In table 3 the best OWA score is marked dark green, for any other model

combination the best OWA score is marked light green and the worst OWA score is marked

red.

It is visible from the table that the model improves with a higher number of clusters

for most model combinations. The only case where this doesn’t apply is the Lgbm-Huber

method. For this exception, the number of clusters was 3 with which it obtained an OWA

of 1.033. LESST performed its best using the Huber method as both the Local and Global

model, obtaining an OWA of 0.953. The OLS however, performed the worst out of all the

Local-Global model options. The OWA for this model combination seems to be much higher

than that of the other models where the worst OWA obtained was 1.184.

We now move on to the results of LESST for the deseasonalized Yearly series, these can

be viewed in table 4. The structure of the table is the same as in table 3. The way of

marking OWA values using colors is also the same, however one row is completely marked

red as the OWA values are terrible.
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Table 4: Yearly OWA results LESST for deseasonalized data

3 clusters 10 clusters 30 clusters 50 clusters 100 clusters

Ols-Ols 3.192 3.131 3.122 3.177 3.542

Huber-Huber 1.105 1.104 1.106 1.113 1.114

Xgb-Xgb 1.225 1.340 1.424 1.387 1.376

Lgbm-Lgbm 1.332 1.505 1.519 1.458 1.507

Huber-Rf 1.251 1.146 1.118 1.106 1.102

Lgbm-Huber 1.7346 1.554 1.320 1.210 1.213

1 This table contains the OWA scores for LESST using the Yearly dataset with deseasonalization.

The Local-Global model combination is presented by the most left column and all other columns

represent the number of clusters used in fitting the LESST model

The OWA results in table 4 seem fairly different from those in table 3 at a first glance.

The OWA values are overall higher than in the previous table. The Local-Global model

combination using the OLS does not appear to be the right model for this method, as the

OWA values are significantly higher. The differences in OWA between model combinations

and cluster numbers are larger than in the non-deseasonalized case. It therefore seems that

the model using the deseasonalized series was a bit more sensitive to parameter tuning as

compared to when using the non-deseasonalized series. For the deseasonalized Yearly series

there is not a clear improvement among the number of clusters. Lastly, we see that the

Local-Global model combination that obtained the best result is the Huber-Rf method using

a 100 clusters, resulting in an OWA of 1.102

Having looked at both the difference between the number of clusters and model methods, we

now summarize the best results over all the datasets in table 5. In table 5 the results of the

best Local-Global model and cluster combination are used, using the LESST model trained

on non-deseasonalized series. Comparing the results for all datasets, it appears that LESST

performs the best in terms of OWA for the Yearly dataset, with an OWA of 0.953. The worst

OWA score was obtained for the Hourly dataset, with an OWA of 4.407. This is a very high

OWA score, which could be due to the data not being deseasonalized.

24



Table 5: Best LESST results for non-deseasonalized series

Yearly Quarterly Monthly Weekly Daily Hourly

OWA 0.953 1.004 1.110 1.194 1.009 4.407

SMAPE 15.118 11.167 15.436 9.655 3.084 34.612

MASE 3.900 1.363 1.224 0.703 1.174 16.600

RMSE 1034.509 738.820 805.962 440.600 215.530 774.176

1 This table contains the best scores for all performance measures, using the LESST

model for series without deseasonalization. The performance measure is given in

the most left column and all other columns represent the dataset used.

Concerning the SMAPE and MASE, it can be seen that the scores are the lowest for the

Hourly dataset as well. For the SMAPE the Daily set obtains the best and for the MASE

the Weekly dataset has a better score. Lastly, comparing the RMSE scores we see that the

model using the Yearly dataset has a much higher OWA value. Here the daily set again has

the lowest value. Comparing LESST with the Näıve2 using the OWA values, we see that in

this case only the LESST model using the Yearly dataset performs better. However, LESST

does get close for the Quarterly and Daily dataset, as these are nearly 1.

We now move on to the best performance measure results for LESST trained with deseason-

alization. The results are visible for each dataset used in table 6.

Table 6: Best LESST results for deseasonalized series

Yearly Quarterly Monthly Weekly Daily Hourly

OWA 1.102 0.953 1.130 1.160 1.045 0.929

SMAPE 17.020 10.657 15.118 9.383 3.194 18.144

MASE 4.618 1.286 1.289 0.683 1.217 2.085

RMSE 1072.467 698.772 768.130 481.629 219.249 482.247

1 This table contains the best scores for all performance measures, using the LESST

model for series with deseasonalization. The performance measure is given in the

most left column and all other columns represent the dataset used.
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For the LESST results concerning deseasonalized series, it is visible that the method

performs the worst for the Weekly dataset but not in all aspects of performance measures.

Similar to the previous results, we see that LESST is more accurate for the datasets with a

higher frequency. Overall the best results are very similar to the case where LESST was not

deseasonalized. However, in this case we see that LESST improves a lot for the Hourly and

Quarterly dataset using deseasonalization.

Furthermore, the result for the Weekly dataset seem to slightly improve using the desea-

sonalization. With an OWA score of 0.923 and 0.953 for the Hourly and Quarterly dataset

respectively, we see that LESST outperforms the Naive2 method as the OWA value is below

1. The good hourly OWA score could be a result of the MASE being much lower than that

of the Naive2 method, as the SMAPE is scoring worse compared to the other datasets with

an SMAPE of 18.144.

The Yearly dataset obtains once again the highest RMSE and additionally the high-

est MASE with the values being 1072.467 and 4.618 respectively. Overall, comparing the

LESST results for the deseasonalized case with the non-deseasonalized, the deseasonalized

results seem more consistent. However, it is still quite dependent on the dataset and which

parameters are chosen for the model.

To give a short overview of how the Global Model combines the weighted Local Model

forecasts we show the coefficients of the Huber model as Global Model. We show the Huber

coefficients for the Global Model for all datasets using 10 clusters and without deseasonalizing

the data in figure 1.
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Figure 1: Coefficients of the Huber Global Model

1 This box plot figure represent the values of the 10 coefficients for the LESST Global Model using

the Huber model and 10 clusters for each dataset.

From figure 1 it is visible that often the coefficients are close to 1, this is the case for

five out of the six datasets. For these datasets the coefficients only slightly deviate from the

value one. Solely for the Hourly dataset the coefficients of the Global Model are significantly

different, as both negative and positive coefficients are present. Furthermore, the coefficients

are much larger or smaller in size compared to the coefficients of the other datasets, which

could indicate more instability in the Global Model. This doesn’t necessarily have to lead to

instability as the weights with which the Local Models predictions are weighted differ across

models. However, table 5 confirms that this is the case, as the OWA is significantly larger

for the Hourly dataset.

5.2 Theta and LESST performance comparison
Moving on, we now inspect the results of the Theta model, our benchmark model. The re-

sults for the Theta model can be viewed in table 7. Again we consider inspecting the OWA,

SMAPE, MASE and RMSE. It can be easily seen that the Theta model often outperforms the

Naive2 method as the OWA is often below 1. Furthermore, the best OWA score is obtained

by the model using the Yearly dataset.
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The model using the Hourly dataset however, seems to perform worse. Overall, it looks

as if the Theta model performs better in terms of OWA for lower frequency datasets as com-

pared to higher ones. Although, when including the other measures this does not seem to be

the case. We see that the Theta model performs worse on the Yearly dataset considering the

MASE of 3.375 and the RMSE of 1020.48. The Theta model does seem to perform worse on

the hourly dataset overall, also considering the SMAPE of 18.138.

Table 7: Theta performance measures

Yearly Quarterly Monthly Weekly Daily Hourly

OWA 0.870 0.917 0.907 0.948 0.998 1.006

SMAPE 14.564 10.313 13.012 7.833 3.071 18.138

MASE 3.375 1.231 0.970 0.546 1.153 2.455

RMSE 1020.480 673.151 683.716 405.175 210.368 477.616

1 This table contains the scores for all performance measures, using the Theta model.

The performance measure is given in the most left column and all other columns

represent the dataset used.

Similarly, the best SMAPE, MASE and RMSE scores occur for the same datasets as the

LESST model. This could be due to the scale of the data in the dataset. Hence, it might be

more meaningful to compare the results between datasets using the OWA.

Concerning this, we move on to comparing all the performance measures of the best

LESST model combinations in terms of the OWA with those of the Theta model in table 8.
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Table 8: Best LESST and Theta performance measures

Yearly Quarterly Monthly Weekly Daily Hourly

Local Huber Huber Huber Huber Huber Huber

Global Huber Huber Huber RF Huber RF

Clusters 100 3 3 30 30 100

Deseasonalized No Yes No Yes No Yes

LESST OWA 0.953 0.953 1.110 1.160 1.009 0.923

Theta OWA 0.870 0.917 0.907 0.948 0.998 1.006

LESST RMSE 1018.507 698.772 805.962 481.629 215.530 482.247

Theta RMSE 1020.480 673.151 683.716 405.175 210.368 477.616

LESST SMAPE 15.118 10.657 15.436 9.383 3.084 18.114

Theta SMAPE 14.564 10.313 13.012 7.833 3.071 18.138

LESST MASE 3.900 1.286 1.224 0.683 1.174 2.085

Theta MASE 3.375 1.231 0.970 0.546 1.153 2.455

1 This table contains the best model combinations of LESST based on the OWA. The model

specification is given along with the performance measures and the benchmark performance

measures of the Theta model.

We see that in most cases the Huber method performs the best for the LESST method.

However, solely using the Huber method does not appear to be sufficient for outperforming

the Theta model. Accompanying the Huber method in the Local model with the Random

Forest method in the Global model however, seems to do the trick. Using this combination,

LESST outperforms the Theta model with an OWA of 0.923 as opposed to 1.006 for the

Hourly dataset. Overall, it is not the case that the performance of LESST is miles off com-

pared to the Theta model, but there is still a visible difference. LESST does get close with

the Theta model for the Daily, Quarterly and Yearly dataset, considering all the performance

measures available. Additionally, the results for the Quarterly dataset, do not seem to be far

off. The worst performing instance of LESST is that of the Weekly dataset with an OWA of

1.160. Concerning the other performance measures, LESST seems to score a slightly lower

RMSE of 1018.507 for the Yearly dataset. Furthermore, the SMAPE and MASE are also
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better for LESST using the Hourly dataset, with values of 18.114 and 2.085 respectively.

5.3 Local and Global model performance
In this section we give an overview of the performance of the Local and Global Models of

LESST. For the evaluation of the performance the same performance measures are shown. We

compare the results to both the results of the Theta performance (benchmark) and LESST

performance.

Firstly, we start by showing the Local Model results in table 9. These are the results of

the Local Models of the best performing LESST models. The predictions are produced for

each subset of timeseries separately using the Local Model belonging to the subset.

Table 9: Local Model and Theta performance

Yearly Quarterly Monthly Weekly Daily Hourly

Local OWA 0.917 0.982 1.098 0.999 0.961 0.995

Theta OWA 0.870 0.917 0.907 0.948 0.998 1.006

Local RMSE 1010.222 702.595 802.384 421.861 204.892 407.966

Theta RMSE 1020.480 673.151 683.716 405.175 210.368 477.616

Local SMAPE 14.681 10.847 15.327 8.221 2.966 16.343

Theta SMAPE 14.564 10.313 13.012 7.833 3.071 18.138

Local MASE 3.723 1.342 1.206 0.578 1.107 2.638

Theta MASE 3.375 1.231 0.970 0.546 1.153 2.455

1 This table contains the local model results of the best model combinations of LESST based

on the OWA. All performance measures and the benchmark performance measures of the

Theta model are given.

The Local model obtains an OWA of 0.961 and 0.995 for the Daily and Hourly dataset re-

spectively. Whereas, the Theta model obtains an OWA of 0.998 and 1.006. Clearly the Local

Model outperforms the Theta model for the Daily and Hourly dataset, even if we consider all

the performance measures. Solely the MASE of the Theta model is slightly lower compared
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to that of the Local Model. The Local Model performs closely with the Theta model for the

other datasets with the Monthly as exception. The OWA for the Monthly series is 1.098 for

the Local Model, which is much larger than the 0.907 obtained by the Theta Model. What

is more, is that the difference among all other performance measures for the Monthly series

is large. Hence, the Theta heavily outperforms the Local Model for the Monthly series. As

the number of clusters is only three for the Local Model of the Monthly series, it could be

possible that the performance is better for a higher number of clusters. Similarly to LESST,

the Local Model performs better than the Theta model in terms of RMSE. The RMSE ob-

tained for the Local Model values at 1010.222, whereas the Theta model obtains 1020.480 in

the RMSE. Seeing that the OWA is lower than 1 for most datasets, the Local Model does

perform better than the Naive2 method with exception of the Monthly series.

Next, we move to the Global Model performance. For comparison with the Global Model

of LESST, we consider the weighted sum of the Local Model forecasts, which we denote

as Globalsum. Another comparison can be made for the Local Model forecasts which are

weighted evenly, we denote this model by Globaleven. Lastly, as discussed in section 4 we

extend the LESST model by incorporating the whole span of data into the Global Model,

which we denote as LESST+. The results are made available in table 10.
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Table 10: Global Model performance

Yearly Quarterly Monthly Weekly Daily Hourly

LESST OWA 0.953 0.953 1.110 1.160 1.009 0.923

LESST+ OWA 0.911 0.965 1.109 1.302 0.961 1.695

Globalsum OWA 0.912 0.991 1.100 4.977 0.961 152.878

Globaleven OWA 0.903 0.993 1.099 4.487 0.951 208.279

LESST RMSE 1018.507 698.772 805.962 481.629 215.530 482.247

LESST+ RMSE 1040.834 703.658 805.980 536.501 206.477 429.894

Globalsum RMSE 1002.356 704.192 804.452 1688.709 205.647 1716.898

Globaleven RMSE 1008.423 704.635 804.106 1432.296 203.972 1984.330

1 This table contains the Global Model results of the best model combinations of LESST based on

the OWA. LESST+ is an extension of LESST using more data in the Global Model. Globalsum

and Globaleven are the Global Models that use the sum of weighted Local Model predictions

as Global model predictions, the first takes the weights derived from clusters and the latter an

even weight for all models.

Comparing the Global Model results of LESST with LESST+, we see that the OWA is

slightly improved for the Yearly, Monthly and Daily dataset, lowering the OWA from 0.953

to 0.911, 1.110 to 1.109 and from 1.009 to 0.961. However, the performance for the other

datasets decreases using the LESST+ model. Moreover, LESST+ only improves performance

in terms of the RMSE for the Daily and Hourly dataset. The LESST+ model using the Daily

and Hourly dataset was unable to use the exact same model as the best model in LESST.

Therefore, a Huber-Huber model was used using 3 clusters with the same seasonality option

as in LESST. For the Daily dataset there was definitely an improvement made comparing

the exact same model. However, for the Hourly it remained the same. LESST does consider

more parameter tuning leading to its results in comparison. Furthermore, LESST has the

benefit of a much shorter running time compared to LESST+, making parameter tuning more

accessible.

Moving on, we see that the Globaleven and Globalsum model perform closely with one another.
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However, the Global Model using even weights does perform slightly better in terms of OWA.

Overall, to argue which performs better is difficult as it clearly depends on the dataset and

which measure is used.

When comparing the results of the Global Model of LESST with these models, we see

that LESST obtains better results for halve of the datasets in terms of both the OWA and

RMSE. These datasets include the Quarterly, Weekly and Hourly series for which an OWA

of 0.953, 1.16 and 0.923 was achieved. Surprisingly, these are the datasets which required

the series to be deseasonalized. For the datasets that did not require deseasonalization, the

Globaleven model obtained the best results. Moreover, it achieved an OWA of 0.903, 1.099

and 0.951 for the Yearly, Monthly and Daily series respectively.

Lastly, we compare the Local Model performance of LESST with the Global Model per-

formance. We present the results for both the OWA and RMSE in table 11.

Table 11: LESST Local and Global Model performance

Yearly Quarterly Monthly Weekly Daily Hourly

LESST OWA 0.953 0.953 1.110 1.160 1.009 0.923

Local OWA 0.917 0.982 1.098 0.999 0.961 0.995

LESST RMSE 1018.507 698.772 805.962 481.629 215.530 482.247

Local RMSE 1010.222 702.595 802.384 421.861 204.892 407.966

1 This table contains the Local and Global Model results of the best performing LESST

models. Both the OWA and RMSE are considered in this table.

At a first glance, if we consider the OWA in table 11, we see that the Global Model of

LESST outperforms the Local Models only for two of the datasets. When considering the

RMSE, the Global Model only performs better for one dataset. Logically, the performance

of the Global Model is linked with those of the of the Local Models. It is impossible for the

Global Model to perform well if the Local Models perform poorly. However, from table 11

we do see that it is possible to further improve the Local Model predictions in some cases.

Oddly, both the Quarterly and Hourly datasets, were the series requiring deseasonalization

for better performance.
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6 Discussion

Considering all the results previously discussed, we can conclude that our method LESST

was unable to outperform the Theta Model. Only for the Hourly dataset was LESST outper-

forming the Theta model. Although, our method is at least performing competitively. The

dataset with which LESST struggled the most was the Monthly dataset. Furthermore, by

inspecting the Local Models, we see that the Global Model is not always capable of obtaining

better results. However, in some cases the Global Model is capable of further improving the

predictions of the Local Models. Moreover, it seems that for some cases the Local Models

are not optimally combined using the Global Model, resulting in worse predictions. From

the results it was also visible that deseasonalization of the dataset was not always necessary

for it to perform well in the LESST model. Lastly, weighting Local Models with the cluster

produced weights as opposed to using even weights, performed closely with one another for

the weighted sum Global Model method. This indicates that the weights obtained from the

clusters are relatively solid.

All in all, we were capable of producing a competitive model using the framework of the

Learning with Subset Stacking model (Birbil et al., 2021) using timeseries data.

Due to many datasets, steps in the method and the variety of methods used, we were

unable to dive deeply into why certain methods do not work for specific cases. Further-

more, the hyper parameter tuning for the methods used in the Local and Global Models was

limited due to time constraints. Moreover, using the Global Model with all the data avail-

able in the train set is heavily taxing. Too many data points are considered in this model

making it highly demanding on the computer system. Even though this method improved

performance occasionally, it does not seem to be worth the additional computational cost

for larger datasets. In our research we computed the timeseries features before the data was

deseasonalized, doing this differently might affect the results for the case where LESST was

used with the deseasonalized series.

For future research there are several possible extensions. Firstly, different weighting

schemes can be considered, for example an exponential decline in the weights instead of the

linear decline we use. Another approach would be to form clusters of the Local Models and

34



either disregard the Global Model or consider Aggregating Models for the Local Models clus-

tered together. Furthermore, a simple extension would be to use different model methods

in the Local and Global Models. As we mentioned the model methods we included lacked

hyper parameter tuning, it might be something that could be included in future research. In

our research we mentioned that there were some covariates given with the M4 dataset that

defined the industry of the timeseries, possibly these covariates could be used to extend the

LESST model. Considering a different cluster method is also an option, this could either

be a different cluster algorithm or using something else instead of the timeseries features we

use. Furthermore, one could consider to perform the deseasonalization before the calculation

of the timeseries features, to see whether it would improve the LESST results for the model

using the deseasonalized series. Since the LESST model is easily implemented with different

model methods, it is also possible to combine these different LESST models into one by

combining their predictions.
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7 Appendix

7.1 A.1: All OWA results LESST
In this section we show all LESST results concerning the OWA performance measure. For

cases where there is an empty value in the table, the method was unable to train the model.

This was caused by the clustering and smaller datasets causing errors in the Huber method.

7.1.1 Deseasonalized

Table 12: Yearly OWA deseasonalized

3 clusters 10 clusters 30 clusters 50 clusters 100 clusters
Ols-Ols 3.192 3.131 3.122 3.177 3.542

Huber-Huber 1.105 1.104 1.106 1.113 1.114
Xgb-Xgb 1.225 1.340 1.424 1.387 1.376

Lgbm-Lgbm 1.332 1.505 1.519 1.458 1.507
Huber-Rf 1.251 1.146 1.118 1.106 1.102

Lgbm-Huber 1.735 1.554 1.320 1.210 1.213

Table 13: Quarterly OWA deseasonalized

3 clusters 10 clusters 30 clusters 50 clusters 100 clusters
Ols-Ols 10.486 10.204 10.556 9.986 9.407

Huber-Huber 0.953 1.187 1.173 1.041 1.017
Xgb-Xgb 1.385 1.630 1.601 1.660 1.744

Lgbm-Lgbm 1.702 2.626 2.583 2.744 2.656
Huber-Rf 1.321 1.151 1.116 1.108 1.100

Lgbm-Huber 1.491 1.502 1.523 1.406 1.263

Table 14: Montlhy OWA deseasonalized

3 clusters 10 clusters 30 clusters 50 clusters 100 clusters
Ols-Ols 44.369 37.736 36.214 35.067 34.342

Huber-Huber 1.130 1.838 1.809 1.241 1.324
Xgb-Xgb 1.452 1.810 1.792 1.807 1.824

Lgbm-Lgbm 1.918 3.174 3.480 3.653 3.762
Huber-Rf 1.508 1.258 1.234 1.221 1.221

Lgbm-Huber 1.254 1.393 1.480 1.418 1.367
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Table 15: Weekly OWA deseasonalized

3 clusters 10 clusters 30 clusters 50 clusters 100 clusters
Ols-Ols 2.413 25.479 16.424 12.629 23.245

Huber-Huber 1.708 7.372 4.525 7.830 6.735
Xgb-Xgb 1.643 1.746 1.833 1.811 2.002

Lgbm-Lgbm 2.197 2.555 3.482 4.504 2.842
Huber-Rf 1.388 1.372 1.160 1.232 1.317

Lgbm-Huber 4.727 7.079 11.181 11.909 16.412

Table 16: Daily OWA deseasonalized

3 clusters 10 clusters 30 clusters 50 clusters 100 clusters
Ols-Ols 3.330 6.426 10.145 5.037 5.488

Huber-Huber 1.045 1.066 1.063 1.052
Xgb-Xgb 2.428 1.680 1.603 1.617 1.593

Lgbm-Lgbm 2.918 2.195 1.963 1.843 1.878
Huber-Rf 1.312 1.339 1.267 1.218

Lgbm-Huber 7.581 3.215 2.073 3.198 1.696

Table 17: Hourly OWA deseasonalized

3 clusters 10 clusters 30 clusters 50 clusters 100 clusters
Ols-Ols 14.207 35.008 17.246 45.299 27.739

Huber-Huber 1.695 3.192 3.118 4.816 9.888
Xgb-Xgb 2.283 3.167 4.556 5.249 6.019

Lgbm-Lgbm 6.053 6.240 11.668 5.883 10.749
Huber-Rf 1.289 1.084 0.961 1.008 0.929

Lgbm-Huber 4.286 9.293 762.008 187.876 276.495

7.1.2 Non-deseasonalized

Table 18: Yearly OWA non-deseasonalized

3 clusters 10 clusters 30 clusters 50 clusters 100 clusters
Ols-Ols 1.184 1.190 1.178 1.176 1.177

Huber-Huber 0.965 0.958 0.967 0.968 0.953
Xgb-Xgb 1.172 1.159 1.150 1.146 1.144

Lgbm-Lgbm 1.153 1.152 1.139 1.133 1.131
Huber-Rf 1.240 1.147 1.109 1.102 1.096

Lgbm-Huber 1.033 1.077 1.090 1.092 1.054
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Table 19: Quarterly OWA non-deseasonalized

3 clusters 10 clusters 30 clusters 50 clusters 100 clusters
Ols-Ols 1.349 1.350 1.358 1.362 1.363

Huber-Huber 1.004 1.005 1.025 1.024 1.032
Xgb-Xgb 1.182 1.234 1.221 1.222 1.223

Lgbm-Lgbm 1.158 1.224 1.217 1.204 1.202
Huber-Rf 1.349 1.206 1.168 1.162 1.156

Lgbm-Huber 1.116 1.147 1.202 1.175 1.158

Table 20: Monthly OWA non-deseasonalized

3 clusters 10 clusters 30 clusters 50 clusters 100 clusters
Ols-Ols 1.811 1.824 1.828 1.811 1.805

Huber-Huber 1.110 1.112 1.125 1.133 1.127
Xgb-Xgb 1.382 1.410 1.401 1.396 1.393

Lgbm-Lgbm 1.358 1.427 1.417 1.397 1.381
Huber-Rf 1.678 1.414 1.377 1.370 1.366

Lgbm-Huber 1.206 1.210 1.290 1.285 1.243

Table 21: Weekly OWA non-deseasonalized

3 clusters 10 clusters 30 clusters 50 clusters 100 clusters
Ols-Ols 1.680 1.596 1.601 1.635 1.679

Huber-Huber 1.271 1.330 1.194 1.204 1.320
Xgb-Xgb 1.503 1.530 1.489 1.434 1.514

Lgbm-Lgbm 1.542 1.512 1.489 1.417 1.449
Huber-Rf 1.418 1.396 1.246 1.260 1.237

Lgbm-Huber 2.114 1.768 1.925 2.036 1.959

Table 22: Daily non-deseasonalized

3 clusters 10 clusters 30 clusters 50 clusters 100 clusters
Ols-Ols 1.520 1.174 1.126 1.145 1.148

Huber-Huber 1.020 1.021 1.009 1.021
Xgb-Xgb 1.400 1.591 1.521 1.504 1.489

Lgbm-Lgbm 1.371 1.666 1.655 1.630 1.589
Huber-Rf 1.317 1.338 1.269 1.227

Lgbm-Huber 1.578 1.365 1.428 1.500 1.553

Table 23: Hourly OWA non-deseasonalized

3 clusters 10 clusters 30 clusters 50 clusters 100 clusters
Ols-Ols 77.199 273.541 177.358 85.981 95.671

Huber-Huber 6.910 12.461 14.072
Xgb-Xgb 19.361 19.922 18.741 17.925 17.065

Lgbm-Lgbm 29.025 32.770 24.985 39.220 41.184
Huber-Rf 11.930 4.958 4.407

Lgbm-Huber 10.704 35.275 35.070 271.264 192.286
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7.2 A.2: Time series features

Feature Description
1 length length of time series
2 trend strength of trend
3 seasonality strength of seasonality
4 linearity linearity
5 curvature curvature
6 spikiness spikiness
7 e acf1 first ACF value of remainder series
8 e acf10 sum of squares of first 10 ACF values of remainder series
9 stability stability
10 lumpiness lumpiness
11 entropy spectral entropy
12 hurst Hurst exponent
13 nonlinearity nonlinearity
14 alpha ETS(A,A,N) α̂

15 beta ETS(A,A,N) β̂
16 hwalpha ETS(A,A,A) α̂

17 hwbeta ETS(A,A,A) β̂
18 hwgamma ETS(A,A,A) γ̂
19 ur pp test statistic based on Phillips-Perron test
20 ur kpss test statistic based on KPSS test
21 x acf1 first ACF value of the original series
22 diff1 acf1 first ACF value of the differenced series
23 diff2 acf1 first ACF value of the twice-differenced series
24 x acf10 sum of squares of first 10 ACF values of original series
25 diff1 acf10 sum of squares of first 10 ACF values of the differenced series
26 diff2 acf10 sum of squares of first 10 ACF values of the twice differenced series
27 seas acf1 autocorrelation coefficent at first seasonal lag
28 diff2x pacf5 sum of squares of first 5 PACF values of twice-differenced series
29 seas pacf partial autocorrelation coefficient at first seasonal lag
30 crossing point number of times the time series crosses the median
31 flat spots number of flat spots
32 nperiods number of seasonal periods inthe series
33 seasonal period length of seasonal period
34 peak strength of peak
35 trough strength of trough
36 arch acf sum of squares of the first 12 autocorrelations of z2

37 garch acf sum of squares of the first 12 autocorrelations of r2

38 achr r2 R2 value of an AR model applied to z2

39 garch r2 R2 value of an AR model applied to r2

40 month Month of the year
41 time interval time interval (daily/hourly/15 min interval)

Table 24: All time series features
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7.3 A.3: Repositories

7.3.1 Git Repositories

Forecast R:https://github.com/robjhyndman/forecast

LESS: https://github.com/sibirbil/LESS

TSfeatues: https://github.com/Nixtla/tsfeatures

ESRNN: https://github.com/AlexDowney/ESRNN fork

FFORMA and Rforecast-models: https://github.com/christophmark/fforma

LESST: https://github.com/Stephen97T/LESST

7.4 A.4: Code description
In this section we describe the details on the code, what files contain what and how to run

the results: Follow these steps if running the code for the first time:

• Install R

• Install all required python libraries in the requirements.txt into the python environment

• Change the path in os.environ[”R HOME”] = ”E : /documents/work/mini/envs/work/lib/R”

in the preprocessing.py and tsforecast.py files to the path of your python environment

• Uncomment the R library installations in the preprocessing file

• Run the prepare allm4data function in the preprocessing.py file

• Run the prepare m4tsfeatures function in the preprocessing.py file for calculating all

the timeseries features of all dataset and saving them

• Comment the R library installations in the preprocessing file again

For obtaining the results run theses files:

• ResultsMain.py: main LESST results and benchmark performance

• ResultsLocal.py: performance Local Models

• ResultsGlobal.py: performance Global Model using weighted sum

43

https://github.com/robjhyndman/forecast
https://github.com/sibirbil/LESS
https://github.com/Nixtla/tsfeatures
https://github.com/AlexDowney/ESRNN_fork
https://github.com/christophmark/fforma
https://github.com/Stephen97T/LESST


• ResultsRolling.py: performance Global Model with all training data

• ResultsWeights.py: figure of Global Model coefficients

• formatresults.py: makes excel files out of the dictionaries from the main LESST results

For the dataset information run:

• DataInfo.py: calculates some information on the datasets

Here are details on what the other files contain:

• LESST.py: contains the LESST model

• Models.py: contains the Local and Global Model

• benchmark.py: contains functions for the benchmark method and the performance

measures

• clustering.py: contains the timeseries feature clustering method

• seasonality: contains functions for deseasonalizing the data

• tsforecasts.py: contains the ThetaF model and other R forecasting models

• data prep.py: contains functions for preparing input and target data

• preprocessing: contains functions for calculating timeseries features and reading m4

data
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