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1. Introduction 

The examination and establishment of causal relationships is often at the heart of econometric 

analysis (Imbens 2022). For example, researchers may be interested how obtaining a 

microcredit affect the future income of individuals. In such a context, the predominant number 

of studies and authors is concerned with estimating the average treatment effect (Angrist and 

Pischke 2009). In essence, this entails to examine if the average income decreases or increases 

following the receipt of a microcredit.  

However, estimating the average treatment effect is often of limited interest for policymakers 

as they aim to establish targeted policy interventions for individuals with strong positive 

treatment effects (Kravitz, Duan, and Braslow 2004). This is the case as treatment effects are 

likely to vary with distinct individual characteristics. In addition, a positive average treatment 

effect does not imply that the treatment yields a positive treatment effect for every individual, 

as people with certain characteristics may benefit over proportionally from a particular policy 

measure. For instance, individuals with higher levels of education may be better in utilizing 

microcredits they receive, while those with lower education are actually worse off.  

The estimation of heterogenous treatment effects does not only hold a prominent place within 

the discipline of economics but also plays a crucial role in other disciplines. For example, it is 

of utmost importance for doctors to predict the effect of a drug for a specific patient since new 

evidence shows that people respond very differently to the same drug (Kent, Steyerberg, and 

Van Klaveren 2018). Unfortunately, traditional econometric and statistical methods encounter 

large difficulties when it comes to estimating and discovering heterogenous treatment effects 

(Benini and Sperlich 2022). This is the case as these methods often rely on a priori knowledge 

of the researcher to identify variables which may be responsible for differences in treatment 

effects (Athey 2018). These variables are then included in the form of interaction terms with 

the treatment variable, thus indicating if the size of the treatment effect depends on the selected 

variables. However, the a priori knowledge of selecting these variables is often unavailable for 

researchers. Consequently, algorithmic methods selecting these variables from a large, 

predefined set of potential variables associated with heterogenous treatment effects would serve 

as a useful remedy, mitigating the a priori knowledge burden of scientists examining 

heterogenous treatment effects. This is the case since researchers would only need to prespecify 

the larger set of variables, without having to precisely select the variables that presumably entail 

different treatment effect responses. 



6 
 

Due to the upcoming of larger datafiles and increasing computational power in combination 

with machine learning methods, many promising algorithmically driven methods for detecting 

treatment effect heterogeneity have emerged in recent years (Gong et al. 2021). One of the most 

notable methods is the causal tree methodology, developed by the distinguished 

econometricians Susan Athey and Guido Imbens (Athey and Imbens 2016). Their objective was 

to combine traditional econometric causal analysis with the widely employed decision tree 

approach in machine learning. By doing so, they claim that causal trees exhibit superior 

performance in capturing heterogenous treatment effects compared to traditional econometric 

methods. While their method and subsequent extensions of it raised strong interest in the 

academic community (Athey and Imbens 2019), the causal tree methodology has never been 

comprehensively scrutinized.  

This thesis aims to analyse the causal tree method and discusses its potential to provide 

scientists not only with a reliable method for estimating heterogenous treatment effects, but also 

for identifying the underlying reasons for these treatment effect differences. It, therefore, seeks 

to contribute to the literature on applying algorithmic methods for the analysis of treatment 

effect settings. The intended audience for this thesis includes scientists aiming to employ the 

causal tree method, but also researchers who are actively engaged in the adaptation of machine 

learning methods for the application in economics and the social sciences. Given the diverse 

target groups, this work will provide comprehensive explanations and introductions to technical 

concepts. However, it is important to note that while all necessary technical prerequisites for 

following the general argumentation are outlined in the thesis, some parts will require a deeper 

econometric understanding.   

The main contributions are the following: 

1)  I introduce causal trees with the help of decision trees and causal graph notation instead of 

falling back on the conventional potential outcome framework. This approach enables a more 

effective exposition of the advantages of causal trees in comparison to traditional econometric 

methods.  

2) I distinguish between two possible interpretations of causal trees, ultimately leading to the 

rejection of causal trees as an adequate method for uncovering the underlying mechanisms and 

revealing the reasons for differences in treatment effects.  

3) I show that causal trees fail to provide scientists with reliable individual treatment effect 

estimation, which constitutes one of the main goals of causal trees. In addition, I argue that 
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causal trees are unreliable at estimating average treatment effects within subgroups. This also 

refutes the potential of the causal tree method as an approach for clustering treatment effect 

heterogeneity. Subsequently, I reject causal trees as a suitable method to examine treatment 

effect heterogeneity.  

This thesis is structured as follows:  

In chapter 2, I introduce the causal tree method with the help of the decision tree algorithm and 

causal graph notation. Furthermore, the important requirement of unconfoundedness will be 

discussed. I compare standard econometric methods for detecting treatment effect heterogeneity 

with causal trees, aiming to unveil the advantages inherent in algorithmically searching for 

differences in treatment effects. Within this context, I will specifically focus on the issue of a 

priori knowledge in economic research. In particular, I will argue that algorithmically analysing 

treatment effect settings alleviates the need for a priori knowledge since researchers can not 

only include more control variables, but also do not have to prespecify heterogenous treatment 

effect subgroups themselves. In addition, chapter 2 introduces the concept of causal forests, an 

extension of the causal tree methodology. However, I will show that causal forests face a trade-

off between satisfying the unconfoundedness requirement and the establishment of valid 

confidence intervals. Therefore, I will claim that causal forests are ill-suited for the analysis of 

treatment effect scenarios.  

In chapter 3, I come up with the distinction between a weak and strong interpretation of causal 

trees. This distinction is necessary due to the lack of one consistent interpretation of causal trees 

in the existing literature. While interpreting causal trees according to a strong interpretation 

implies that researchers can gain insights into causal relationships, a weak interpretation 

primarily treats causal trees as a clustering technique.  

In chapter 4, I raise three challenges to the causal tree method, aiming to disclose its limitations. 

Firstly, I introduce the notion of inconsistent variables in causal trees which lead to high 

individual variance. Consequently, I claim that causal trees are unreliable at estimating 

individual treatment effects, which is one of the main goals of the approach. Secondly, I focus 

on the issue of tree instability and show that there are good reasons to believe that causal trees 

are a highly unstable grouping mechanism. This also entails high individual variance 

characteristics in causal trees and can impede the reliable estimation of individual treatment 

effects. Thirdly, I discuss the concept of M-bias within causal trees and argue that the high 

number of employed control variables to satisfy the requirement of unconfoundedness makes 
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causal tree results susceptible to M-bias. This is the case as the task of checking for M-bias 

becomes insurmountable for researchers. In addition, I illustrate that the causal tree method is 

prone to simultaneously encountering M-bias and confounding bias due to the incorporation of 

a larger number of control variables. Consequently, I argue that causal trees should be 

considered as an unreliable method for estimating average subgroup treatment effects. 

Furthermore, in chapter 4 I provide arguments why a strong interpretation of causal trees cannot 

be adopted.  

In the end, I summarize the main contributions of this thesis to the literature on causal trees and 

provide some suggestions how machine learning methods may be fruitfully included in 

economics and the social sciences. While this thesis remains rather sceptical about the 

applicability of machine learning in the analysis of treatment effect settings and thus, causal 

analysis, there are continuous technical advancements in this field. Consequently, there may be 

important methodological developments happening in the next years changing that evaluation. 
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2. From decision trees to causal forests  

The following chapter aims to introduce causal trees, a machine learning method developed for 

analysing treatment effect settings. In order to allow for a better understanding of the causal 

tree method, I will begin by discussing decision trees, as the causal tree methodology is built 

upon them. Alongside describing the technical setup of causal trees, potential advantages over 

standard econometric methods will be scrutinized and assessed. Furthermore, in chapter 2.3, I 

will discuss the requirement of unconfoundedness for causal trees with the help of causal graph 

notation developed by Pearl (2009). In addition, the extension of the causal tree method into a 

related method called causal forests will be introduced. However, since causal forests can only 

be employed in settings with a small number of variables, I will demonstrate that causal forests 

are unreliable for estimating treatment effects.  

Given that explaining the method of causal trees involves numerous technical concepts, the 

coming subchapters will mostly follow a similar structure. First, the main idea of the section 

will be presented in simple terms, avoiding technical definitions. Subsequently, additional 

background information will be provided, along with the introduction of more technical notions 

to fully elucidate the methods and underlying mechanisms. As a result, readers who are not 

inclined towards technical expressions can abstain from delving into the technical details, as 

the argumentation can be comprehended based on both the simplified and elaborate 

explanations.  

2.1 Decision trees  

Decision trees have a long history in machine learning dating back to the early 1960s, when the 

first decision tree algorithm1 was developed (Quinlan 1986). Today, decision trees are still 

highly used in various fields and have undergone multiple extensions and adaptations since 

their introduction. Not only have the applied algorithms experienced substantial revisions, but 

also have decision trees been combined with other machine learning techniques such as deep 

learning and reinforcement learning (Rokach and Maimon 2014). The primary goals of decision 

trees are prediction and exploratory data analysis, which have remained unchanged over time 

(Kotsiantis 2013). While an extensive introduction to decision trees would go beyond the scope 

 
1 Algorithms can be understood as mathematical procedures which help one to make predictions and thus, learn 

from the data. These procedures are automatized and therefore, can be applied off the shelf. (Athey and Imbens 

2019) 
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of this chapter, the aim is rather to provide the reader with all the necessary background 

knowledge to follow the provided argumentation in this thesis.  

In essence, a decision tree is a graphical representation that illustrates various averages 

(Breiman et al., 2017). The construction of a decision tree begins with a random representative 

sample from the population of interest, comprising multiple data points (Quinlan 1986). These 

datapoints consist of a dependent variable (e.g. income) and various characteristics, also known 

as predictor variables, such as age and education. Suppose a researcher is interested in 

predicting the income of an individual outside the sample. Utilizing the overall average income 

value of the entire sample may not yield accurate predictions due to the diverse nature of the 

individuals within it. In order to enhance the predictive accuracy, a decision tree aims to group 

people based on similar characteristics. For example, individuals may be grouped based on their 

educational background. By calculating the average income of people with the same 

educational background, a better predictive performance can be achieved since people with a 

similar educational background tend to have similar income levels. For example, there is ample 

evidence that people with a university degree have higher incomes on average than people who 

quit school relatively early (Oh, Ra, and Jee 2019).  

Figure 1 depicts a decision tree that generates subgroups based on age, education and 

motivation to better predict the income of an individual. It is essential to consider a decision 

tree from top to bottom. For example, the entire sample in figure 1 is split into two subsamples 

based on the age of the individuals in the sample. More specifically, people below and above 

50 are grouped into two subsamples. Examining the decision tree further, the two subsamples 

based on age are subsequently split according to educational level and their motivation. 

However, it is crucial to note that the second splits are contingent upon the first split, signifying 

that the grouping process continues from the two subsamples of individuals above and below 

the age of 50.  Ultimately, the sample has been grouped into eight different subgroups based on 

specific characteristics2. Finally, the average income of all individuals within each subgroup is 

calculated. When predicting the income value of a random individual outside the sample, the 

person is assigned to one of the eight subgroups based on her characteristics, and the average 

income value of that group is utilized as the prediction for her income. Importantly, the 

predictive accuracy increases as more characteristics of the person of interest are taken into 

consideration while progressing down the tree. In addition, the selection of characteristics for 

 
2 It should be noted that the third splits (high motivation) are the same for each subgroup for illustrative 

purposes.  
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grouping the sample into the eight subgroups is not predetermined but carried out by the 

decision tree algorithm automatically. Consequently, the decision tree algorithm is an algorithm 

for deciding where the splits should be and thus, for generating a decision tree. Therefore, 

decision trees enable more accurate predictions of a dependent variable, such as income, by 

generating numerous subgroups based on various characteristics that play a crucial role in 

predicting an individual's income level (Breiman et al. 2017). 

                                                                age ≤ 50 

 

 

 

                           education ≥ preschool                 education ≤ preschool 

 

 

             high motivation       high motivation     high motivation    high motivation 

 

 

      1.4                       5.3          3.2                    1.8       6.4                   4.2    5.6                  10.2 

Figure 1. Decision tree predicting the income level of individuals. 

While similar predictions could be made with simple linear regression methods3, decisions trees 

are more flexible since they do not assume linear relationships between the predictor variables 

(Kotsiantis 2013). In a linear regression framework, the relationship between the outcome 

(income) on the one hand and each of the predictor variables (age, education and motivation) 

is assumed to be linear (James et al. 2013). Even though this method can be effective in many 

applications, real world systems may not always adhere to linear relationships. While linear 

regressions cannot account for non-linear relationships between the predictor variables, 

decision trees can equally well model non-linear relationships between variables (Kotsiantis 

2013). In addition, since decision trees can incorporate many variables with different 

relationships between them, one speaks of high-dimensional decision trees (Athey and Imbens 

2019). Despite different possible understandings of the term high dimensionality, in this thesis 

 
3 Linear regression methods make use of linear functions to depict the relationship between different variables 

and quantify their relations (James et al. 2013).  
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it is understood as the possibility to include many different variables into the model with 

potentially non-linear relationships. While in the standard linear regression case only a few 

variables can be employed to predict the income of an individual without the method becoming 

unreliable, researchers can arguably include many more variables applying high dimensional 

methods like decision trees (Quinlan 1986).  

In linear regressions, all variables included in the model are used to predict the outcome (James 

et al. 2013). In contrast, decisions trees may only use a subset of the included variables to 

construct a decision tree similar to that in figure 1. The decision which variables are used for 

predicting the outcome and generating the splits are automatically determined by the algorithm 

(Quinlan 1986). This is important as it allows for my distinction between active predictor 

variables and non-active predictor variables in decision trees, which will be of importance later 

in this thesis. While active predictor variables are actually employed to generate different 

subgroups in the decision tree estimation procedure, non-active predictor variables are included 

as potential predictor variables by the researcher but not selected by the algorithm to split on. 

In other words, the decision tree algorithm automatically selects a subset of variables (active 

predictor variables) from the set of all included predictor variables for generating the splits, 

while the rest of the included variables (non-active predictor variables) are not used for building 

the decision tree. In addition, the researcher can only determine the set of all included predictor 

variables before employing the decision tree algorithm but does not have any influence on 

which variables the decision tree algorithm performs the splitting procedure.  

As has been mentioned earlier, a decision tree aims to create different subgroups based on some 

characteristics to predict the value of some outcome variable. In order to do so, decision trees 

employ splitting criteria. Splitting criteria can be understood as optimization tasks that allow 

decision tree algorithms4 to detect the best splits for predictive performance (Athey 2018). One 

of the most commonly used splitting criterion is the mean squared error (MSE) (Breiman et al. 

2017). The objective of this splitting criterion is to minimize the difference between the actual 

value of the outcome vs the predicted value of the outcome at each splitting point (Quinlan 

1986). In the context of the example depicted in Figure 1, this implies that the difference 

between the actual income value of each individual and the income value predicted by the 

 
4 The decision tree algorithm determines the process of finding the best splits and building the decision tree. 

Thus, different decision tree algorithms lead to different decision trees.   
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decision tree should be minimized as much as possible. This entails the following optimization 

criterion for splitting decisions: 

 

In the case of the MSE criterion, the algorithm searches for the minimal squared difference 

between the observed and predicted values (Breiman et al. 2017). Again, in terms of example 

1, the algorithm tries to minimize the difference between the actual income values and the 

income values predicted by the decision tree. Once the result is obtained, the algorithm divides 

the data into two subgroups based on the lowest difference between actual and predicted values 

and the process repeats (Breiman et al. 2017). Basically, at every point the decision tree splits, 

new subgroups are created according to some criterion like the MSE. This process continues 

until a predetermined stopping point. This is necessary as the decision tree would grow 

infinitely large without any stopping point, deteriorating the interpretability of the resulting tree 

(Quinlan 1986). While the machine learning literature proposes many possible stopping rules 

(James et al. 2013), it is mostly set to some predictive performance threshold. Consequently, 

the decision tree stops generating new subgroups when adding further splits only marginally 

improves the predictive performance (Breiman et al. 2017). For instance, the decision tree in 

figure 1 splits only once on age instead of creating more and finer subgroups with respect to 

age. The decision may be driven by the fact that the predictive performance is already very 

strong, rendering the creation of additional subgroups unnecessary.  

In general, finding the right stopping point is challenging. While generating too many 

subgroups deteriorates the interpretability of decision tree results, it also may lead to the 

phenomenon of overfitting (Quinlan 1986). In the case of overfitting, the decision tree contains 

too many splits and as a result, fits too much noise or random fluctuations to the model (Breiman 

et al. 2017). Because all observations potentially involve random fluctuations, grouping data 

into larger groups can be an effective strategy to avoid being led astray by these random 

fluctuations.  Larger subgroups encompass more observations, which facilitates the balancing 

and reduction of the potential influence of random fluctuations on the predictive value of these 

subgroups. Therefore, a trade-off exists between achieving excellent predictive performance 

within the sample and obtaining generalizable results that extend beyond the sample (Athey 

and Imbens 2019). Although a decision tree might perform exceptionally well for the data at 



14 
 

hand, it may exhibit poor predictive performance for out-of-sample units due to overfitting 

(sensitivity to random fluctuations). Importantly, researchers are in most cases not interested in 

capturing specific data sample characteristics but aim for generalizable results (James et al. 

2013). Therefore, finding the right stopping point is of utmost importance for finding the right 

balance between including sample related characteristics and aiming for generalizable results.  

Due to the elaborated reasons, reducing overfitting and thereby improving the general 

performance of the model is crucial for decision trees. In order to achieve this goal, multiple 

different techniques like pruning and cross-validation are applied to decision trees (Breiman et 

al. 2017). Simply expressed, these methods remove splitting points from the model that do not 

improve its predictive accuracy (Quinlan 1986). Thus, every splitting point is individually 

evaluated with additional data to determine if it improves the predictive performance of the 

decision tree. If not, it is simply removed.  

One of the most employed methods in this context is reduced-error pruning, which evaluates 

the effect of the removal on predictive accuracy using a validation set (James et al. 2013). The 

validation set comprises data points that were not utilized in the building stage of the decision 

tree but can then be used to evaluate the predictions made by the decision tree (Breiman et al. 

2017). Consequently, the original dataset is divided into a training and validation set to later 

assess the performance of the decision tree during the pruning stage. While the training set is 

used by the decision tree algorithm to build the decision tree, the validation set is only used to 

evaluate the predictive performance of the decision tree. If removing a splitting point improves 

the predictive accuracy of the regression tree on the validation set, the node is pruned. In 

general, the pruning stage continues until further pruning does not entail higher predictive 

performance on the validation set (Breiman et al. 2017). Finally, the resulting decision tree can 

be assessed based on accuracy and predictive performance using established measures like the 

R-squared score or additional cross-validation techniques, that partitions the data in several 

testing subsets (James et al. 2013). However, this step is optional and thus, does not require 

further elaborations.  

In addition to the before explained pruning method, several extensions modifying the 

underlying decision tree method have been proposed in the literature to resolve the issue of 

overfitting. The most important one, often referred to as bagging, was introduced by Breiman 

(1996). Essentially, bagging combines many decision trees and takes the average value of the 

individual decision tree predictions. Due to technical reasons, the individual decision trees do 
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not need to apply pruning strategies5. The most popular bagging strategy is the random forest, 

which consists of multiple averaged decision trees. In a nutshell, various decision trees are 

estimated, their predictive values for each individual are aggregated by summing them up and 

divided by the total number of generated decision trees (Breiman et al. 2017). Given its 

powerful features, the random forest algorithm has gained widespread popularity in machine 

learning (Hastie, Tibshirani, and Friedman 2009). One drawback concerning the application of 

bagging algorithms concerns its difficulty to interpret the results. In contrast to decision trees, 

which are relatively easy to visualize and understand, bagging methods like random forests 

cannot be visualized anymore as it is difficult to depict many averaged decision trees (Strobl et 

al. 2007). 

While developers in the field of machine learning primarily focus their attention on addressing 

the issue of overfitting, econometricians are more interested in the variance and bias properties 

of these algorithms (Breiman 2001). Since econometricians try to avoid both high variance and 

biased results, a trade-off arises between these two properties.6 In general, when 

econometricians discuss the variance of an estimator, they are concerned with what will be 

referred to as the sample variance in this thesis. To better clarify what is meant by the term 

sample variance, it may be helpful to think about the following experimental setting: 

Consider a scenario where researchers are interested in the average height of children at the age 

of 8 in the Netherlands. Ideally, the researchers would be able to measure every single 8-year-

old child in the Netherlands, thereby obtaining the true value with absolute certainty. However, 

this appears impracticable due to the associated costs and logistical difficulties. Instead, they 

will take a representative sample of children at the age of 8 in the Netherlands and measure 

their average height. Consequently, the measured average height is then taken as the best 

approximation of the true average height of children at the age of 8 in the Netherlands. 

Nevertheless, there will persist some measurement uncertainty since the researchers have not 

measured every 8-year-old child in the Netherlands but have taken a sample. This source of 

uncertainty can be understood as sample variance. Since researchers are interested in the precise 

population value, they try to avoid high sample variance results. One way to decrease the 

 
5 For interested readers: Pruning is not necessary since errors cancel out when the different decision tree 

predictors are combined to reduce overfitting (Breiman 1996).  
6 The bias-variance trade-off states that the more variables are included into a model, the lower the bias as the fit 

of the model increases. However, adding more variables increases the variance of the model. (Angrist and 

Pischke 2009) 
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uncertainty and hence the sample variance, involves increasing the sample size. This appears 

quite intuitive as measuring the height of more 8-year-old children would provide the 

researchers with more information about the true average height of children at the age of 8 in 

the Netherlands and thus, decreases the sample variance (uncertainty).  

Similar to high sample variance7 outcomes, researchers seek to avoid biased results (Angrist 

and Pischke 2009). Bias occurs when some factors distort the outcome of a model, leading to 

either systematic over- or underpredictions of the value of interest8 (Athey and Imbens 2017). 

Referring back to the previous example, biased results would render height level predictions 

unreliable. A potential reason for the emergence of such bias could be the use of skewed height 

measurement scales for measuring the height, leading to measurement errors. 

In contrast to the sample variance of a result, researchers can also be interested in the individual 

variance of a result. Individual variance in this thesis is understood as a measure of reliability 

of the estimated result when applied as a prediction for an individual not included in the original 

sample. Referring back to the example from above, the individual variance indicates how well 

the measured average height from the selected representative sample can be taken as an 

approximation for the height of an eight-year-old child in the Netherlands outside the sample. 

For example, if the children´s heights in the sample significantly differ, the average height may 

serve as a poor predictor for the height of a randomly selected eight-year-old child in the 

Netherlands. However, in cases where the variability in children´s height within the population 

is minimal, taking the average height as a prediction for a child outside the sample may be 

appropriate. Consequently, sample variance and individual variance are not necessarily related. 

While the sample variance may be very low in cases involving a large sample, the individual 

variance may be high due to a significant height variability within the examined population. 

This distinction is important, for example in contexts such as assessing the impact of a drug on 

the survival rates of cancer patients.  In such scenarios, it is not only crucial to have a high 

reliability of the true value of the drug´s average effect in the population (low sample variance), 

but also to have knowledge of the individual variance of the drug´s effect. This knowledge 

allows doctors to better predict the potential effect of the drug on an arbitrary individual from 

 
7 High sample variance results are often a good indicator for overfitting tendencies. This is the case since models 

with high sample variance tend to include many variables and hence, capture many specific data peculiarities. 

Consequently, like in the case of overfitting, the model entails a bad out of sample performance.   
8 One reason for biased results will be extensively discussed in chapter 2.3.  
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the population and could, in case of high individual variance, prompt additional considerations 

and adjustments.   

The key takeaway from this chapter is that decision trees are a powerful method to predict 

outcomes in settings with many variables (characteristics) and potentially non-linear 

relationships between them. To achieve this, decision trees apply an optimization criterion and 

generate different subgroups as was presented with the help of figure 1. Nevertheless, it should 

be noted that decision trees entail the issue of overfitting that makes the application of pruning 

or extensions like random forests necessary. In addition, the distinction between sample 

variance and individual variance of an estimation result was drawn and discussed as an 

understanding of these concepts is important for the further argumentation in this thesis.  

2.2 Causal trees  

In comparison to decision trees, causal trees represent a recent development and are primarily 

employed in treatment effect settings (Imbens 2022). For instance, researchers may use them 

to better analyse the effect of a drug on the recovery time of people having the flu. In essence, 

causal trees exhibit many similarities with decision trees. Similar to decision trees, causal trees 

aim to establish heterogeneous subgroups based on characteristics (splitting variables) (Athey 

and Imbens 2016). Although the two algorithms slightly differ concerning their technical 

aspects9, the underlying mechanism is similar. In general, the causal tree algorithm differs from 

decision trees in only two ways: 

First, causal trees estimate treatment effects rather than focusing solely on predictive outcomes 

(Athey and Imbens 2019). In other words, causal trees are used to analyse treatment effect 

settings, which aim to investigate the effect of a treatment on a particular outcome. For instance, 

a typical application of causal trees is to examine the effect of receiving a microcredit on the 

future income of an individual. Therefore, the average treatment effect for all established 

subgroups is estimated and then employed as an approximation of the individual treatment 

effect for individuals outside the sample. In other words, the average treatment value of the 

subgroup to which an individual would belong is taken as the estimate of the individual 

treatment effect for that individual. Given that the causal tree algorithm does not provide 

researchers with exact individual treatment effect estimations, they must rely on average 

subgroup treatment estimates. Establishing subgroups with different treatment effects allows, 

 
9 Since the technical details are not important for the further argumentation provided in this thesis, I will not present 

them here. Instead, I refer interested readers to Athey and Imbens (2016). 
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for example, doctors to provide patients with tailored drug recommendations instead of 

following generalized guidelines designed for the average patient across all subgroups. 

Consequently, causal trees appear to be a powerful and valuable method for exploring 

heterogeneity in treatment effects as it establishes several subgroups with different treatment 

effects.  

Second, the causal tree algorithm employs different segments of the sample to select the 

splitting points and estimate the treatment effects for the specific subgroups (Athey and Imbens 

2016). Initially, the training set is divided into two parts. While half of the training dataset is 

used in the estimation process to determine the variables on which the causal tree is splitting, 

the other half is employed to estimate the treatment effect for each established subgroup. Hence, 

the causal tree algorithm can be imagined as a three-step process: First, subgroups are formed 

based on one part of the training sample data. Second, another part of the training sample data 

is used to estimate the average treatment effect for each of the established subgroups. Third, 

some subgroups are removed through cross-validation and pruning techniques to prevent 

overfitting, employing the cross validation set. This process is in the literature referred to as 

honest estimation (Athey and Imbens 2016). In contrast, the decision tree algorithm is 

simultaneously establishing different subgroups and making predictions for each subgroup, and 

can therefore, only be described as a two-step process (Breiman et al. 2017). According to 

causal tree proponents, the additional step in their methodology is necessary for obtaining 

confidence intervals for the treatment effect results (Athey 2018). Confidence intervals serve 

as a metric for assessing the reliability of the causal tree results, providing a range within which 

reliable outcomes lie (James et al. 2013). For instance, if a 90% confidence interval is 

constructed for the estimated income value of a subgroup, it implies that there is only a 10% 

chance that the true income value10 lies outside the confidence interval.  

Moreover, results with smaller confidence intervals are more reliable than results with larger 

confidence intervals. This is the case as smaller confidence intervals imply less variation and 

consequently, reduced uncertainty in the predicted income value (Hastie, Tibshirani, and 

Friedman 2009). Therefore, the reliability of a result increases as the confidence interval 

becomes narrower. As confidence intervals serve as a measure of reliability, they are especially 

important when translating estimation outcomes into policy recommendations. Therefore, the 

 
10 The true income value describes the unknown true value one tries to estimate with the help of statistical 

methods.  
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adapted causal tree methodology with honest estimation represents a crucial step in enhancing 

the applicability of tree algorithms, as it allows for the analysis of result reliability. 

2.3 Unconfoundedness in causal trees 

One important assumption for the application and a proper understanding of causal trees is the 

requirement of unconfoundedness, which will be introduced and discussed in the section to 

come. While the requirement of unconfoundedness can be presented using various frameworks, 

I will focus in this section on Pearl´s causal graph notation and argumentation as presented in 

Pearl (2009) due to its intuitive nature and ease of visualization.  

As has been elaborated in the previous section, causal trees are primarily employed in treatment 

effect settings. Therefore, researchers are interested in examining the effect of a treatment on 

some outcome variable. The unconfoundedness requirement now posits that the outcome is only 

influenced by the treatment and other variables that are not correlated with the treatment 

(Angrist and Pischke 2009). This leads to the result that the differences in outcomes between 

units receiving the treatment and units not receiving the treatment can be exclusively attributed 

to the treatment itself.          

                      

Figure 2. Unconfoundedness assumption in causal graph notation. 

In terms of the causal graph notation, the requirement of unconfoundedness can be expressed 

as the requirement that all causal backdoor paths are closed (Pearl 2009). Let me now explain 

what this means in more detail. In general, there are three ways variables can be associated11 

with each other. In other words, there are three possibilities for an open causal path between 

two variables. First, there can be a direct causal relation between two variables. As depicted in 

figure 2, T (treatment variable) has a direct causal impact on Y (outcome variable), indicated 

 
11 It is important to note that in this thesis association and correlation are used interchangeable.  
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by the arrow from T to Y. In addition, there is a second option how two variables can be 

associated. Two variables can share a common cause, which opens a non-causal association 

between the two. As depicted in figure 2, X is a common cause of both variables, T and Y. This 

is shown by the two arrows, directed from X to T and Y. Consequently, figure 2 depicts the 

situation that X has a causal effect on T and Y. However, such a situation is problematic for 

analysing the effect of T on Y since the two variables are not only associated through the direct 

causal path from T to Y, but also through a non-causal association via the common cause X. 

Consequently, using the correlation between T and Y to estimate the effect of T on Y would 

yield biased results, as both the causal and non-causal paths would contribute to the correlation 

between X and Y and thereby to the estimate of the causal contribution X makes to Y. Thus, the 

common cause X is acting as a confounding variable, affecting the estimated effect of T on Y, 

and leading to biased results due to the influence of the non-causal link between T and Y via X. 

Furthermore, there exists a third option how two variables can be associated with each other. 

More specifically, two variables can share a common effect, resulting in the emergence of a 

collider. In contrast to the scenario illustrated in figure 2, a collider situation would imply that 

the causal arrows are leading from T and Y to X. Consequently, both variables T and Y would 

cause the variable X. This situation can pose problems for the estimation of causal effects as it 

again opens an additional non-causal association between T and Y, similar to the second 

situation in which X functioned as a confounding variable.  

When analysing treatment effect settings, researchers are primarily interested in the causal 

effect of T on Y. Consequently, researchers need to be cautious in opening and blocking causal 

paths. In general, a causal path can be understood as an association between two variables as 

depicted in the causal graph notation by an arrow leading from one variable to the other. Given 

that the effect of Y on T is the subject of interest, researchers need to make sure to block all 

non-causal associations possibly emerging as the result of a common cause or common effect. 

However, there are important differences between blocking the causal path of a common effect 

and a common cause: 

To block the non-causal path between T and Y via X in the case of a common cause (potential 

confounding variable), the common cause X can be included as a “control variable” in the 

estimation process (Cinelli, Forney, and Pearl 2020). Thus, the non-causal association between 

T and Y can be blocked through employing the potential confounding factor as a variable in the 

estimation process. Control variables can be analogously understood as predictor variables in 

the case of a decision tree, only that one speaks of control variables in a treatment estimation 



21 
 

framework. In contrast, a non-causal association in the case of a common effect emerges only 

when researchers include a control variable, which happens to be a common effect of T and Y, 

in the estimation process. Importantly, the association between T and Y is dependent on the 

stratification of the common effect control variable. In other words, the non-causal association 

between Y and T only arises when researchers control for the specific variable in the estimation 

process (employ it as a control variable in the estimation process). If one does not control for 

the common effect variable, T and Y are independent of each other12. Researchers often speak 

of stratified correlation in this context (Pearl 2009). Consequently, while the issue of common 

cause variables (confounding variables) can be addressed by employing the specific factor in 

the estimation process, it is the other way around in the case of a common effect. By default, T 

and Y are independent of each other. An association only arises if the common effect factor is 

introduced as a control variable, connecting T and Y in further consequence. In the context of 

causal trees, controlling for variable X simply means that one allows the causal tree to split on 

X if it improves the estimation of treatment effects. Consequently, the variable X is included as 

a control variable in the causal tree estimation process in case the correlations would give rise 

to a confounding situation13. As open non-causal associations lead to biased and unreliable 

results, it is crucial for the causal tree method to identify potential confounding variables and 

incorporate them as control variables into the causal tree estimation process, despite the risk to 

control for a common effect variable. An example of a potential confounding variable can be 

illustrated with the following situation:  

Suppose a researcher aims to examine the effect of microcredits on future income. In this 

example, the treatment variable (T) indicates whether an individual receives the microcredit or 

not, and the outcome variable (Y) is the future income. In addition, the researcher introduces 

age as a control variable (X) as she believes that age may potentially be a confounding variable. 

On the one hand, the researchers knows that certain age groups are more likely to receive the 

treatment. On the other hand, she is convinced that age affects future income since younger 

individuals tend to be more diligent than older ones. Thus, including age as a control variable 

becomes necessary to block the non-causal association between the treatment and outcome 

 
12 This of course only holds true when the two variables are not associated with each other through a 

confounding variable or direct causal path. 
13 Although the causal tree has the option to split on X, it does not have to be the case as it may not necessarily 

improve the estimation of the average treatment effects for the respective subgroups. In addition, this cannot be 

decided by the researcher but is automatically implemented by the tree algorithm as described in chapter 2.1.  
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variable. Without the inclusion of age as a control variable, the resulting estimates would be 

significantly biased. 

However, identifying potential confounding variables is not a straightforward task and often 

involves contentious debates. This is the case as confounding variables cannot be detected 

through statistical testing but only through theoretical reasoning. In other words, the assertion 

that one variable caused another one cannot be tested empirically, without relying on prior 

knowledge, theory, or intuition. While it is possible to test for correlative associations between 

variables (Hastie, Tibshirani, and Friedman 2009), the same does not hold true for causation. 

Going back to the example mentioned earlier, it may be equally plausible that the researcher is 

mistaken about the causal link between age and future income. Nevertheless, such a proposition 

cannot be empirically tested but only argued for on a theoretical level. In addition, controlling 

for a potential confounding variable may yield unintended consequences as controlling for a 

variable may result in a collider association in case the control variable is the common effect of 

T and Y. While confounding bias occurs when researchers fail to control for a specific variable, 

bias stemming from a collider variable only arises if one controls for a common effect variable. 

Consequently, it is of utmost importance to have strong theoretical reasons to believe that a 

variable is a common cause (confounding variable) between the treatment and outcome variable 

when employing it as a control variable. 

Consequently, in standard econometric methods the researcher's beliefs play a crucial role in 

deciding which variables to include as control variables. As a result, two researchers analysing 

the same treatment effect setting may yield different results since they might include different 

control variables, leading to different estimation results. The causal graph notation introduced 

in this chapter provides researchers with the possibility to visually examine the 

unconfoundedness requirement, which states that researchers need to control for every potential 

confounding variable to block the non-causal association between the treatment (T) and 

outcome variable (Y).  
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2.4 Advantages of causal trees over standard econometric methods 

After pointing out the differences between decision trees and causal trees and introducing the 

important requirement of unconfoundedness, this section aims to address some prima facie 

reasons why economists and social scientists should adopt the causal tree method. Specifically, 

I want to emphasize two prima facie advantages of causal trees over standard econometric 

methods in their analyses of treatment effect settings. While causal tree proponents often focus 

on the technical details of the causal tree algorithm, less attention is devoted to discussing issues 

related to the practical implementation of causal trees. Consequently, I try to fill this gap in the 

literature by systematically examining the advantages of the causal tree method over standard 

econometric techniques. First, I will claim that prima facie causal trees yield more reliable 

results since they better satisfy the aforementioned requirement of unconfoundedness. This is 

due to the fact that causal trees can incorporate a greater number of control variables compared 

to standard econometric methods. Second, I will argue that causal trees do not rely on theoretical 

knowledge for forming specific heterogenous treatment subgroups and are hence superior from 

an epistemic standpoint. 

Causal trees appear to be advantageous over standard econometric methods as they allow to 

include more control variables in the estimation process. In social science settings, there are 

numerous potential confounding variables, which often cannot be known a priori by the 

researcher (Keane 2010). Due to their large number, one cannot incorporate all potential 

confounders as control variables in a regression equation in the standard econometric 

framework as this would inevitably lead to overfitting (Pacifico 2021)14. The underlying reason 

is similar to the cause for overfitting in decision trees as has been discussed in chapter 2.1. In 

case of incorporating too many variables, the resulting model tends to entail bad generalizing 

properties since it is well fitted to the noise in the sample data but performs poorly on out of 

sample data.  

In contrast, machine learning methods like causal trees can handle large sets of control variables 

as they are designed to operate in settings with a high number of variables (Breiman et al. 2017). 

The difference to standard econometric methods lies in the fact that the tree algorithm does not 

have to employ them as splitting variables (and hence incorporate them in the estimation 

process). Instead, they can be incorporated in the control variable pool as potential variables to 

 
14 For a more detailed explanation of overfitting and the variance-bias trade-off see chapter 2.1. 
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split on.15 This resembles the distinction drawn in chapter 2.1 between active predictor and non-

active predictor splitting variables. On the other hand, standard econometric methods require 

all employed variables to be included in the estimation process. Hence, standard econometric 

techniques solely incorporate active predictor variables. Consequently, situations like the one 

depicted in figure 3 can only be effectively analysed using machine learning methods. A 

potential real-world example illustrating this issue can be taken from the microcredit literature: 

Measuring the effect of microcredits (the treatment) on income is a situation with many 

potential confounding variables. Not only can individual characteristics such as age, education, 

risk attitude, motivation, and more, be associated with selection into treatment, but also 

influence the outcome. In addition, there may be various additional potential confounders 

related to the environmental context, such as geographical location, economic conditions, 

specific laws/regulations and so forth. As previously mentioned, it is inadvisable to include all 

potential confounders as control variables in a standard econometrics setting as the risk of 

overfitting increases with every additionally included variable. Therefore, treatment effect 

settings which require the inclusion of many control variables can only be analysed using causal 

trees. Standard econometric methods can only employ few control variables and hence, are 

susceptible to confounding bias in situations which would require the incorporation of many 

control variables. Consequently, causal trees are prima facie more reliable in satisfying the 

unconfoundedness requirement given that numerous potential confounding variables can be 

included in the estimation process and thus, more non-causal paths be blocked.  

 

Figure 3. Unconfoundedness requirement only fulfilled through conditioning on many covariates. 

 
15 Consequently, the causal tree algorithm automatically selects the control variables entailing the highest 

treatment effect differences.  
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In addition, causal trees also appear advantageous in relation to forming heterogenous treatment 

effect subgroups. As discussed in the previous chapter, causal trees classify people into different 

subgroups and estimate the average treatment effects of the established subgroups (Athey and 

Imbens 2019). Since the established subgroups differ in their characteristics, the average 

treatment effect will differ among these subgroups (similar to how predictions vary between 

different subgroups for decision trees). Therefore, one speaks of heterogenous treatment effects.  

In general, the approach to detect heterogenous treatment effects of standard econometric 

methods and causal trees differs in significant aspects. While heterogenous subgroups must be 

specified a priori by economic theory or intuition in a standard econometric setting (Fink, 

McConnell, and Vollmer 2014), causal trees generate them in a data-driven way without prior 

specification (Athey 2018). In other words, standard econometric methods assume that 

researchers know how to form the relevant subgroups before even estimating the econometric 

model.  In a standard econometric framework, the subgroups must be defined based on 

economic theory or established through intuition. In contrast, applying the causal tree method 

solely requires the specification of all control variables that might serve as potential 

confounding variables. Consequently, the causal tree algorithm automatically selects from all 

these many potential confounding variables a smaller set from which to generate the specific 

subgroups. Since this may appear somewhat abstract to some readers, the following example 

illustrates this point: 

Suppose researchers want to analyse the effect of a microcredit on future income. Furthermore, 

assume that researchers are interested in the different treatment responses between various 

subgroups. Analysing it with standard econometric methods requires the researcher to predefine 

the subgroups before estimating the model. This necessitates careful consideration of certain 

characteristics that might influence the treatment effect response. For example, the age and 

education of a person could be factors leading to differences in treatment effects. Younger and 

well-educated individuals may be better in utilizing microcredits to increase their income. 

Therefore, in a standard econometric framework, young and well-educated individuals would 

form a subgroup as researchers expect to obtain different treatment effect results subgroups 

defined by age and education. This process would be repeated until the researcher is satisfied 

with how the sample is divided into distinct treatment effect subgroups, and then the average 

treatment effect is estimated for each subgroup. In contrast, when using causal trees, researchers 

only need to specify the control variables they want to include, and the algorithm itself 

determines the subgroups that entail the highest treatment effect differences. This is the case 
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since causal trees only split on a small number of the control variables.16 Therefore, no 

economic theory or intuition is required when specifying the subgroups for employing the 

causal tree method. The subgroups are automatically identified by the algorithm, making it a 

more data-driven and less theory dependent approach.  

As the discussion and example revealed, applying causal trees involves less reliance on 

economic theory and intuition. While standard econometric methods heavily depend on 

economic theory to predefine potential heterogenous treatment effect subgroups, algorithmic 

methods like causal trees employ the available information in the data to generate these 

subgroups. This aspect can be viewed as a big advantage of causal trees over standard 

econometric methods since the prior beliefs17 of economists and social scientists have less 

influence on the results, given that identifying the subgroups is carried out algorithmically. 

Consequently, this methodology can be evaluated as more explorative, since the algorithmically 

established subgroups may serve as a starting point for further research to understand why the 

causal tree split on specific characteristics to analyse treatment effect heterogeneity. In contrast, 

the subgroups in a standard econometric framework are predefined by the respective researcher, 

limiting the potential for further exploratory research. 

To express this point in more precise technical language18, researchers can only identify 

heterogenous treatment effects in standard econometric settings through the introduction of 

interaction terms between the treatment and the respective variables which they believe are the 

drivers of differences in treatment effects (Fink, McConnell, and Vollmer 2014). Therefore, 

only a few interaction terms can be tested for statistical significance at once since testing 

multiple hypotheses makes the model susceptible to wrongly ascribing statistical significance 

to normally non-significant interaction terms19 (Hoover 2013). Thus, researchers need to be 

cautious in prespecifying the potential subgroups they are interested in. As a result, the approach 

is more confirmatory than explorative since not all possible interactions between variables can 

be included and tested. This is again the case since the a priori beliefs of the involved researchers 

are important for specifying the subgroups. Consequently, subgroups are only included in the 

 
16 As previously defined, these variables are called active predictor variables in this thesis.  
17 The process of establishing subgroups based on economic theory and intuition is a subjective endeavour with a 

large leeway for deviations in the grouping process. For example, some researchers may be convinced that age 

does not have an effect on treatment effect responses and thus, solely define subgroups based on education.  
18 As the main idea has been thoroughly discussed in the paragraph above, readers without appetite for technical 

language can simply skip this section. 
19 This is the case as each interaction term has the probability of 0.05 (p-value) to be wrongly included in the 

model. 
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analysis if researchers already assume them to reveal different treatment effects. This naturally 

restricts the leeway for scientific discoveries in relation to heterogenous treatment effects. In 

contrast, as I have shown in this chapter, causal trees establish subgroups in a data-driven way 

without strong reliance on economic theory.  

2.5 Causal forests  

Since causal trees are equally prone to overfitting as decision trees (see chapter 2.1), 

econometricians have employed bagging strategies to construct causal forests. Based on the 

causal tree methodology introduced earlier, Athey and Wager (2018) proposed the averaging of 

causal trees to create causal forests similar to the process of generating random forests from 

decision trees. Even though the algorithm exhibits slight differences, the process of generating 

causal forests is identical to generating random forests. 

Essentially, multiple causal trees are estimated from different subsets of the sample and the 

average treatment value for each subgroup is computed (Wager and Athey 2018). Due to the 

same technical reasons as in the case of decision trees, no pruning strategies need to be applied 

for estimating the causal trees before averaging them20. Consequently, causal forests employ 

large causal trees as additional splits do not increase the risk for overfitting, which would be 

the case for individual causal trees.  

While causal trees estimate individual treatment effects through taking the average treatment 

effect of established subgroups, causal forests estimate treatment effects for each individual 

(Wager and Athey 2018). This means that individuals are not grouped into different subgroups 

but that the causal forest produces individual estimation results for every individual in the 

sample. This is possible as causal forests can incorporate infinite splits due to the fact that 

bagging rather than pruning techniques are employed to avoid overfitting. Consequently, causal 

forests can group people into one-unit subgroups, making the estimation of individual treatment 

effects feasible. In other words, due to the utilization of large causal trees in the causal forest 

approach, researchers can obtain individual treatment effect results for every individual.  

Nevertheless, interpreting causal forests is difficult as they cannot be easily visualized21. 

Therefore, Athey and Imbens (2019) argue that causal forests should not be seen as a 

replacement for causal trees. Instead, researchers should select the appropriate method based 

on the specific estimation problem they encounter. For instance, if doctors aim to determine the 

 
20 Interested reader can go back to chapter 2.1 for more detailed explanation.  
21 This is again very similar to random forests.  
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potential treatment effect for a specific patient, causal forests may be a more suitable choice, 

while causal trees might prevail in situations where a straightforward visualization of treatment 

outcomes is necessary. 

However, causal forests only possess accurate confidence intervals in settings with few included 

control variables as has been shown by Chernozhukov et al. (2018). This implies that 

confidence intervals can only be reliably estimated when a small number of control variables 

are included in the causal forest estimation process. The technical reason for that limitation is 

that Wager and Athey (2018) hold the dimension in their analysis fixed when proofing the 

existence of valid confidence intervals for different dimensions22. Consequently, the causal 

forest method does not entail accurate confidence intervals in typical causal tree settings with 

many included control variables. Hence, the causal forest will have to have only a few included 

control variables. This characteristic undermines the advantage of the causal tree method 

presented in chapter 2.4, which stated that causal trees better satisfy the important requirement 

of unconfoundedness compared to standard econometric methods. The presented argument was 

that causal trees can incorporate a larger number of control variables and thus, block more 

potentially non-causal associations arising from confounding. However, as I was arguing in this 

chapter, causal forests exhibit a trade-off as they either do not allow for the estimation of valid 

confidence intervals or may only be applicable in settings with a limited number of variables. 

Both properties are pivotal for obtaining reliable results. First, confidence intervals are needed 

as a measure of uncertainty of the estimation results. Second, including more control variables 

is often necessary to satisfy the requirement of unconfoundedness in causal inference settings. 

Consequently, due to this trade-off, causal forests do not seem to be a suitable estimation 

method for individual treatment effects. 

Interestingly, the issue discussed above has been overlooked in the causal inference literature 

so far despite major implications for the application of causal forests. Consequently, this thesis 

is the first work pointing out the dilemma causal forest face: while too many variables make 

the method unreliable from an econometric perspective, including too few variables calls into 

doubt the unconfoundedness requirement. Neither is this dilemma specifically brought up in 

the applied literature on causal forests, nor is it discussed in the theoretical literature on causal 

 
22 No consistent estimator can be estimated once d ⩾ log n. For a more detailed explanation see Stone (1982). 
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inference. This is especially surprising given the fact that causal forests have been increasingly 

applied in the literature over the last years23.   

 
23 See for example Davis and Heller (2017), Miller (2020) or Gulen, Jens, and Page (2021). 
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3. Interpreting causal trees 

After introducing the most important technical details and assumptions of the causal tree 

method, this chapter seeks to distinguish between two approaches to interpreting causal trees, 

namely a strong and weak interpretation.  

3.1 Interpretations of causal trees  

In general, it appears that causal trees can be meaningfully interpreted in two different ways. 

First, causal trees can be seen as a method for understanding the underlying mechanism leading 

to treatment effect heterogeneity. Since causal trees split on the variables which are best to 

group the population into different treatment effect subgroups (Athey and Imbens 2016), a 

strong interpretation of causal trees would assign the splitting variables an explanatory 

interpretation. Consequently, the variables used for splitting can be regarded as the causal 

drivers for treatment effect heterogeneity. Taking the formerly used example analysing the 

effect of microcredits on future income, if a causal tree splits on the control variable age, it 

implies that age influences the treatment effect of microcredits on future income, attributing a 

causal interpretation to age. Employing a strong causal tree interpretation, age is considered as 

a causally contributing factor for the variations in future income.  

Second, causal trees can be given a weak interpretation, where the aim is rather to group 

individuals into different subgroups with varying treatment effects instead of explaining the 

underlying mechanism responsible for these differences. Therefore, the actual variables used 

for splitting within the causal tree can be neglected since only the grouping result is of interest. 

In other words, according to the weak interpretation, causal trees serve as a robust grouping 

method that categorizes individuals into subgroups with varying treatment effects. The results 

can then be used to allocate treatments or assign policies. However, evaluating causal trees from 

this perspective does not allow researchers to draw any conclusions about the reasons for 

differences in treatment effects. Consequently, the actual grouping process remains a black box 

since the splits within causal trees cannot be meaningfully interpreted. Thus, no conclusions 

can be drawn which variables causally affect treatment responses. Applying this definition to 

the microcredit example, interpreting the causal tree results according to the weak interpretation 

means that the causal tree method is of help for grouping people into different future income 

groups but fails in elucidating the underlying reasons for the formation of these divergent 

income groups. Even though the causal tree may split on age, that does not mean that age is a 

causal driver for treatment effect heterogeneity.  
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Based on this distinction, the interpretation of causal trees depends on whether a strong or weak 

interpretation is adopted. While the former aims to explain the causal tree grouping process, the 

latter solely focuses on the grouping outcomes without providing a deeper understanding of the 

differences in treatment effects. 

3.2 Strong interpretation of causal trees  

Even though causal tree proponents are generally cautious about a strong interpretation of 

causal trees, some quotes indicate a desire to ascribe causal trees the potential to explain the 

grouping process. For example, Athey (2018) states: “Treatment effect heterogeneity can be of 

interest either for basic scientific understanding (that can be used to design new policies or 

understand mechanisms), or as a means to the end of estimating treatment assignment policies 

that map from a user’s characteristics to a treatment.” (524) 

While it is commonly stated that causal trees are primarily constructed to detect treatment 

heterogeneity (Wager and Athey 2018), the aforementioned quote by Athey (2018) implies that 

causal trees should also contribute to understanding mechanisms. This indicates a strong and 

causal interpretation of causal trees since understanding a mechanism is only possible if the 

main driving forces of that mechanism are known. The main driving forces on the other hand 

can only be inferred from the respective method employed, which, in this case, is the causal 

tree method. Hence, the requirements of causal trees extend beyond the mapping of “user´s 

characteristics to a treatment” (Athey 2018, 524) when a strong interpretation is applied. 

Despite some quotes pointing towards a strong interpretation of causal trees, most causal tree 

developers are cautious about a causal interpretation of the splitting variables24. Nevertheless, 

social scientists employing causal trees for their research often assume a strong interpretation25. 

This inclination does not come as a surprise given that causal tree developers only provide 

vague guidelines for interpreting causal trees. As demonstrated in this chapter, causal tree 

proponents do not consistently apply one interpretation. Consequently, social scientists often 

adopt a strong interpretation of causal trees since establishing data-driven causal relationships 

appears more powerful than simply grouping people into different treatment subgroups. Thus, 

causal tree developers need to engage in further discussions on what the causal tree method can 

truly accomplish to avoid misunderstandings in its application by other researchers. While the 

technical aspects of causal trees are extensively discussed in the literature, it is equally 

 
24 See for example Chernozhukov et al. (2017) and Athey and Imbens (2017). 
25 See for example Bargagli, Stoffi and Gnecco (2020). 
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important to analyse the two distinct interpretations of causal trees and uncover their respective 

assumptions.  

3.3 Weak interpretation of causal trees  

From the perspective of a weak interpretation, the evaluation of causal trees focuses solely on 

the grouping results, disregarding the splitting variables or the understanding of the underlying 

mechanism. Even though it is not specifically addressed in the literature, a weak interpretation 

of causal trees is often assumed to be the underlying objective when estimating causal trees. 

For instance, Athey and Imbens (2017) state that “One example is to examine within subgroups 

in cases where eligibility for a government program is determined according to criteria that can 

be represented in a decision tree,… .” (25). Similarly, the same authors write: “Examples 

include treatment guidelines to be used by physicians … .” (Athey and Imbens 2016, 7354). 

These applications do not require a strong interpretation of causal trees but mainly aim to 

generate subgroups for allocating treatments. Therefore, there is no need for a causal 

interpretation of the splitting variables. Despite occasional references by causal tree proponents 

to a strong interpretation, as demonstrated in the previous section, it appears fair to say that the 

detection of heterogeneous subgroups is one of the primary objectives of causal trees. 

Consequently, causal trees employed in the academic literature should be primarily interpreted 

according to a weak interpretation. Furthermore, in section 4.5, I will present additional 

arguments revealing that upholding a strong interpretation of causal trees is unfeasible.  
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4 Causal trees unmasked: revealing its limitations 

In the following chapter, I will raise three challenges aiming to demonstrate potential pitfalls 

for causal tree methods on both possible interpretations. The first two challenges are concerned 

with the problem of high individual variance for causal tree estimates, which entail bad 

individual treatment effect estimations as I will argue in this chapter. In addition, the third 

challenge is related to the estimation of average treatment effects within established subgroups. 

More precisely, I will claim that causal trees are susceptible to bias, leading to unreliable results. 

In this context, unreliability means that the results of the causal tree method cannot be trusted.  

Firstly, I will elaborate on the issue of inconsistent variables in causal trees and the entailing 

high individual variance properties. Secondly, I discuss causal tree instability and its 

implications, which similarly contribute to high individual variance observed in the estimated 

results. Thirdly, the notion of M-bias will be introduced and analysed within the Pearl 

framework. 

4.1 Inconsistent variables in causal trees 

Statistical methods yielding lower sample variance in their results are preferred to those with 

higher sample variance. Since the causal tree method potentially suffers from high sample 

variance, pruning and cross-validation techniques are necessary to decrease the sample 

variance as has been demonstrated in chapter 2.1. While necessary to decrease the sample 

variance of the causal tree method, I want to show in this chapter that pruning may remove 

important information from the model, deteriorating the estimation of individual treatment 

effects. While this issue is also important for prediction tasks and hence decision trees, it will 

be emphasized that causal inference settings are more vulnerable to the adverse effects 

stemming from aggressive pruning and cross-validation methods due to the application of 

honest estimation. Since this thesis should be accessible to practitioners with non-technical 

backgrounds, I will discuss the problem of aggressive pruning and cross-validation techniques 

through the concept of inconsistent variables, which will be introduced and analysed in the 

remainder of the chapter. An inconsistent variable can be described as following: 

Consider a set of three variables: one serving as the treatment variable, another as the outcome 

variable, and an additional mediator variable that independently affects the outcome variable. 

The influence of the mediator variable on the treatment effect can be either monotonic or non-
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monotonic. In instances where the influence is non-monotonic, the mediator variable is 

classified an inconsistent variable. 

To make better sense for the reader what is exactly meant by that understanding, I will provide 

an example with the help of figure 4, which is the same as was used to introduce decision trees 

and should now be treated as a causal tree. As illustrated in figure 4, the data is split on age at 

the top of the tree creating subgroups on the basis of age. However, it is possible that the 

treatment effect differs not only between people above and below the age of 50 but also 

significantly between those under the age of 20. Consequently, age does not only act as a 

mediator variable, but also affects the outcome in the following non-monotonic way: 

individuals between the ages of 0-20 show a low treatment effect, individuals between the ages 

of 20-50 on the other hand show a high treatment effect, while the treatment effect is low again 

for those between the ages of 50-100. Nevertheless, let´s imagine that the causal tree splits once 

on age as the treatment effect heterogeneity is highest for people below and above the age of 

50. Therefore, researchers may draw the deceiving conclusion that the older the person is, the 

higher or lower the treatment effect. Since the causal tree is not splitting twice on age, it is 

impossible for researchers to infer this information from the data. In this example, age can be 

seen as an inconsistent variable as the effect size does not monotonically increase or decrease 

with age but obtains varying values for different age groups. This can result in highly 

problematic policy implications as people below the age of 20 may not be eligible to apply for 

microcredits due to their seemingly low treatment effects (as depicted in figure 4).  

                                                                age ≤ 50 

 

 

                           education ≥ preschool                 education ≤ preschool 

 

 

             high motivation       high motivation     high motivation    high motivation 

 

 

      1.4                       5.3          1.8                     3.2     6.4                   4.2    5.6                  10.2 

Figure 4. Causal tree analysing the treatment effect of obtaining a microcredit on future income. 
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Some machine learning proponents may not be overly concerned about inconsistent variables 

and may simply claim that the causal tree depicted in figure 4 could be extended so that it splits 

twice on age. This would solve the problematic issue of inconsistent variables for age in the 

provided example. Although it may be feasible to accomplish this for the presented case in 

figure 4, it is normally only possible to a very limited extent. The reason for this is that pruning 

and cross-validation techniques need to be applied to decrease the sample variance of the 

estimates as has been presented in chapter 2.1. Therefore, it is simply not possible to create a 

large number of splits since they would inevitably be partly removed through pruning and cross-

validation strategies. Given that causal trees are built in settings in which many variables may 

impact the outcome, it is highly probable that many inconsistent variables are present in the 

control variable pool for generating the causal tree. This is the case as more variables can be 

employed in machine learning methods like causal trees than with standard econometric 

methods (Athey and Imbens 2019). Nevertheless, it is simply not possible to create that many 

splits as this would inevitably increase the sample variance of the causal tree algorithm. 

Consequently, taking the estimated subgroup treatment effects as an approximation for 

individual treatment effects becomes unreliable as the following example underlies: 

Suppose a group of scientists is interested in examining the heterogenous treatment effects of a 

potentially life-saving drug. However, the drug has very strong side effects and not every patient 

shows a treatment response. Therefore, the scientists conduct an experiment to gain a better 

understanding of whom to give the drug. Nevertheless, there is still the potential issue of 

confounding since some characteristics may affect both the treatment and outcome variable. In 

order to address this issue, the scientists employ control variables as in the case of observational 

settings. As the researchers end up incorporating many different control variables, they 

conclude that machine learning methods in the form of causal trees are needed to analyse the 

heterogeneity of treatment effects. In addition, they do not have any prior knowledge of how to 

specify the respective subgroups. Therefore, the researchers do not want to establish the 

subgroups based on theory but prefer applying an algorithm for this task. As the scientists are 

aware of the overfitting risk, they apply pruning techniques which lead to the causal tree 

depicted in figure 5.  After estimating the causal tree, the scientists assess the following result: 
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                                                               Age ≤ 50 

 

 

 

                                     Age ≥ 20                                        physical condition  

 

 

        treatment within 1h    weight ≤ 75               blood group A        -1.5 

   

 

     0.4                      -0.2       0.1                     -1.1     2.6                          -3 

Figure 5. Causal tree with heterogenous treatment effects for a potentially lifesaving drug. 

According to the causal tree, it seems that age, general physical condition, weight, blood group 

and the timing of the treatment are important drivers for different treatment responses. Now, 

even if one believes that the causal tree in figure 5 correctly analyses the situation of interest, 

the issue of inconsistent variables precludes the extraction of new knowledge for individual 

treatment effects from the causal tree. For example, age, weight and the timing of the treatment 

could be highly inconsistent variables, requiring many more splits to reliably determine 

individual treatment effect responses. Consequently, the causal tree would need to be 

partitioned into many more subgroups as they all entail different treatment effect responses. 

However, the knowledge of potentially inconsistent variables is hidden in the data and cannot 

be inferred from the causal tree with only 3 splits. Given the strong side effects of the drug, the 

subgroup splits are insufficiently reliable to take the estimated subgroup treatment effects as 

approximations for individual treatment effects. This is the case as the treatment effects possibly 

vary even within the subgroups to a large extent due to the presence of inconsistent variables. 

Therefore, the individual variance in causal trees with many inconsistent variables is high. 

Consequently, inconsistent variables necessitate more subgroup partitions in case the causal 

tree method is applied to estimate individual treatment effects. However, as has been pointed 

out before, splitting the tree into more subgroups leads to higher sample variance and hence, 

the risk for overfitting increases.  In the case of the potentially lifesaving drug, even slight 

differences in treatment responses could save additional lives. However, causal trees do not 

seem reliable to gain this necessary knowledge without falling into the overfitting trap.  
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Importantly, the problem of inconsistent variables poses a greater challenge for causal trees 

than for conventional decision trees. While the individual predive performance of decision trees 

also deteriorates in the presence of inconsistent variables, the estimation of individual treatment 

effects is even more problematic. This is because of the honest estimation step, which was 

discussed in the chapter introducing causal trees. Honest estimation requires that half of the 

training set is used to estimate the treatment effect, while the other half is employed to identify 

the splitting variables (Wager and Athey 2018). As a result, fewer observations can be employed 

to generate the causal tree. Fewer observations entail that less information can be used to 

estimate the average treatment effects within the subgroups which in further consequence, 

increases the sample variance of the causal tree algorithm due to higher uncertainty (Hastie, 

Tibshirani, and Friedman 2009)26. In other words, causal trees have a high sample variance as 

the causal tree building process requires more data points than decision trees. Consequently, the 

sample variance of the causal tree in comparison to conventional decision trees is higher, 

making stronger pruning efforts necessary. Therefore, causal trees naturally split on less 

variables since pruning techniques will remove more splits than in the case of conventional 

decision trees. Hence, causal trees can incorporate less inconsistent variables due to the 

application of pruning and cross-validation techniques, entailing even higher treatment effect 

variation within the respective subgroups and thus, higher individual variance. Consequently, 

while the application of pruning and cross-validation techniques is needed to reduce the sample 

variance of causal trees, it can backfire for the estimation of individual treatment effects through 

increasing the individual variance in the presence of inconsistent variables. Given that causal 

trees employ many control variables, the problem of inconsistent variables is likely to occur 

when employing the causal tree method for individual treatment effect estimations.  

As I have been demonstrating by the example of inconsistent variables in this chapter, the causal 

tree method is not reliable at estimating individual treatment effects whenever there exist 

several inconsistent variables that influence the treatment effect. While the inclusion of many 

inconsistent variables is needed to properly account for treatment heterogeneity, this is not 

possible due to the application of necessary pruning and cross-validation techniques, which aim 

to remove splits from the causal tree to reduce its sample variance. Consequently, I have argued 

that the causal tree method cannot properly account for inconsistent variables, entailing high 

individual variance as the information of the inconsistent variables cannot be included and 

 
26 The uncertainty is higher since less information can be gained about the phenomenon of interest due to fewer 

observations. 
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therefore, fails to correctly detect individual treatment effect heterogeneity. While this issue is 

also problematic in the case of pure prediction tasks and decision trees, it is even more severe 

for the causal tree method due to the application of honest estimation. As a result, I conclude 

that causal trees suffer from high individual variance characteristics and thus, taking the 

average treatment effect estimations as approximations for individual treatment effects, 

becomes unreliable.  

4.2 Instability in causal trees 

In addition to the previously analysed issue of inconsistent variables, causal trees also face high 

individual variance properties due to the instability of causal trees which will be discussed in 

this section. While there are various definitions of tree stability, this chapter focuses on the 

stability of causal trees as a grouping and clustering mechanism. Consequently, the following 

subchapter places less emphasis on the question whether causal trees consistently split on the 

same variables.  

In other words, one is interested whether two causal trees constructed from the same sample 

data lead to comparable classifications of individuals. Achieving this goal does not necessarily 

entail obtaining the same causal tree as diverse causal trees can result in the same grouping 

results as I will now illustrate. Therefore, it is possible to establish the same subgroups through 

the application of different causal trees. For instance, imagine two distinct causal trees with 

only a single split creating respectively two branches. While the first causal tree splits on 

income, the second splits on education. Nevertheless, it can be the case that both causal trees 

yield identical results, meaning that the sample is divided into exactly the same two subgroups, 

despite splitting on different variables. Consequently, the grouping result is identical even 

though the causal trees differ. Because of this reason, the stability of causal trees in this chapter 

is solely examined in relation to causal trees as a clustering mechanism. Consequently, the 

splitting variables of the causal tree are not of primary concern. 

The definition of stability employed in this chapter is closely related to Turney’s (1995), who 

defines stability as follows: Stability “is the degree to which an algorithm generates repeatable 

results, given different batches of data from the same process. In mathematical terms, stability 

is the expected agreement between two models on a random sample of the original data, where 

agreement on a specific example means that both models assign it to the same class. The 

instability problem raises questions about the validity of a particular tree, provided as an output 

of a decision-tree algorithm. The users view the learning algorithm as an oracle. Obviously, it 
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is difficult to trust an oracle that says something radically different each time you make a slight 

change in the data.” (25) 

In contrast to most other machine learning proponents, Turney (1995) defined stability of 

decision trees in terms of class assignment. In other words, stable decision trees consistently 

assign observations to the same group if built from different batches of the same sample data. 

Hence, data from the same data generating process but different subsamples is used to build 

various decision trees and consequently, check decision tree stability. If the generated decision 

trees do not exhibit strong stability results, this is tantamount to the situation that individuals 

are put into different subgroups with different prediction results every time a different 

subsample is used to construct a decision tree. Consequently, if causal trees generated from the 

same data generating process group individuals into different subgroups with different 

treatment effect estimates, the individual variance of the causal tree is very high. In other words, 

individuals would be assigned to different subgroups with different treatment effect estimates 

depending on which part of the sample data is used to construct the causal tree. Hence, the 

estimated treatment effect for an individual could be different. This is the case as the generated 

subgroups differ in terms of the included individuals in case of high tree instability. Therefore, 

the individual variance of the treatment effect results is very high since individuals are assigned 

to different subgroups every time a causal tree is built from different parts of the sample data. 

As a result, every causal tree would indicate a different treatment effect estimate for the same 

individual, since the average subgroup treatment effect is taken as the approximate individual 

treatment effect. Consequently, this results in a high individual variance. Additionally, by 

construction the subgroup averages are maximally different from each other, meaning that being 

placed in a different group would often lead to a very different estimated treatment effect. 

However, causal trees have never been examined in relation to their grouping stability even 

though they are often interpreted as a clustering mechanism primarily based on a weak 

interpretation as discussed before. Although no research has been carried out directly in relation 

to causal tree stability, I will show in the following section that insights from testing the 

grouping stability of decision trees can provide valuable intuition. This is because the causal 

tree methodology only entails small deviations from the decision tree algorithm as presented in 

chapter 2.3. Therefore, knowledge about the stability of causal trees can be inferred from 

analyses conducted on decision trees. 
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Despite the fact that only very few authors have been so far interested in the exact stability 

definition employed in this chapter, an analysis conducted by Jacobucci (2018) provides 

intriguing results. While Jacobucci (2018) focused on a broader definition of decision tree 

stability, he also assessed classification stability results by estimating the Jaccard coefficient. 

The Jaccard coefficient is a measure of similarity between two sets and ranges from 0 to 1. High 

values indicate that the two decision trees entail similar grouping performance, while low values 

imply a low tree stability (Hastie, Tibshirani, and Friedman 2009). For his analysis, Jacobucci 

(2018) estimated decision trees on 20 distinct real-world datasets. Based on this data, the author 

estimated 20 different decision trees on different subsamples of the data. To generalize the 

results, the employed datasets differed in their characteristics, entailing predictor numbers from 

3 to 23 and different sample sizes. The results clearly indicate very low Jaccard coefficients, 

suggesting low result stability. Only one of the 20 datasets exhibited a stability coefficient 

higher than 0.5 with most values falling below 0.25. Consequently, it can be concluded that 

decision trees perform inconsistently as a clustering mechanism and thus, do not group 

individuals consistently into the same subgroups.  

Given the described similarity between decision trees and causal trees in terms of their general 

mechanism, similar results can be expected when evaluating the stability of causal trees. The 

analysis conducted by Jacobucci (2018) is especially realistic due to the fact that real world 

datasets were employed. Additionally, the R code and datasets used in the study are publicly 

available, enabling easy replication. Thus, causal trees also need to be evaluated as an 

inconsistent clustering mechanism when it comes to establishing consistent subgroups based 

on different subsamples of the same data. Consequently, these results indicate that high 

individual variance results can be expected for causal trees. This arises from the fact that 

treatment effect estimations may differ for individuals as the causal tree algorithm leads to 

different grouping results, depending on the specific sample part of the data employed to 

estimate the causal tree. This means that individuals are classified into different subgroups with 

respectively different average treatment effect estimations since causal trees are likely to suffer 

from high grouping instability. Hence, it can be the case that different grouping results yield 

different individual treatment effect estimates for the same individual as the subgroup treatment 

effect is taken as an approximation for the individual treatment effect.  

While some people may argue that alternative grouping indicators evaluating the stability 

performance of decision trees should be preferred instead of the Jaccard coefficient, the Jaccard 

coefficient values are of such low magnitude that employing alternative indicators appears very 
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unlikely to produce divergent results. Furthermore, it is important to note that the stability 

coefficients were higher for smaller datasets with a low number of predictors (Jacobucci 2018). 

Considering that causal trees are supposed to be applied in high-dimensional settings with many 

control variables and a large sample size, it is likely that stability results are even worse in such 

scenarios. Therefore, it seems even more perplexing that causal tree proponents have so far 

neglected any performance checks of causal trees as a clustering mechanism. Although the 

classification stability results presented in this chapter cast doubt on the effectiveness of causal 

trees as a method to estimate individual treatment effects, there may be cases where the stability 

is high, even in a high-dimensional settings. However, further research is necessary to establish 

valid guidelines for interpreting causal trees in such cases. So far, the research conducted in 

relation to the stability of decision trees clearly indicates that causal trees must be evaluated as 

an unstable grouping mechanism entailing high individual variance properties and leading to 

unreliable individual treatment effect estimations.  

4.3 Implications of high individual variance 

As has been pointed out in the preceding two sections, causal trees are susceptible to high 

individual variance characteristics stemming from inconsistent variables and causal tree 

instability. In the following subchapter I aim to further elaborate on the implications of high 

individual variance for individual treatment effect estimation employing the causal tree method. 

As a measure of reliability for individual treatment effect estimation, I will use confidence 

intervals due to their intuitive interpretation. As has been elaborated in chapter 2.1, confidence 

intervals are important for reliable estimation results since they provide a measure of 

uncertainty and hence, reliability of the result. Moreover, there is a direct association between 

high individual variance and confidence intervals for individual treatment effect estimation. 

More specifically, causal trees with high individual variance properties lead to wide confidence 

intervals for individual causal tree treatment effect estimates. The relationship stems from the 

fact that causal tree estimates with high individual variance entail that the individual treatment 

effects within a specific subgroup significantly differ from the average treatment effect of the 

respective subgroup, thereby widening the confidence intervals.  

As discussed in chapter 2.2, one of the aims of causal trees is to estimate individual treatment 

effects. Therefore, the sample data is split into different subgroups according to some 

characteristics (splitting variables). In further consequence, for every established subgroup, the 

average treatment effect is estimated. If now one wants to obtain the treatment effect for one 

individual outside the sample, the average treatment effect of the subgroup that shares similar 
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characteristics with the individual is taken as an estimate for the individual treatment effect. 

However, as has been argued before, high individual variance properties undermine this 

strategy. This is the case as the treatment effect may highly differ between individuals in the 

same subgroup. To better illustrate this point, imagine the following example employing 

confidence intervals as a measure of reliability: 

Suppose a policymaker wants to decide whom to provide with a microcredit. Therefore, she 

asks a group of researchers to conduct a study investigating the effect of microcredits on future 

income. The researchers decide to carry out a causal tree analysis and forward the results to the 

policymaker. For reasons of simplicity, assume that the causal tree only generated three different 

treatment effect subgroups with the following results depicted in table 1. As shown in table 1, 

three different subgroups based on age and the number of children have been created by the 

causal tree algorithm. Since the causal tree method faces high individual variance 

characteristics, the established confidence intervals for the estimated individual treatment 

effects are very wide as indicated by the values in the third column of table 1. As a result, the 

policymaker cannot use the results to decide whom to provide with a microcredit. Even though 

the employed causal tree established different treatment effect groups with different estimated 

treatment effects, the results for individual treatment effect estimates are unreliable. Because of 

that reason, it can equally well be the case that some members of the second subgroup (750€) 

have a higher treatment effect response than some members of the first subgroup (1000€). This 

is the case as both confidence intervals for estimated individual treatment effects are very wide. 

Because of that reason, the results cannot be employed for policy analysis as the uncertainty is 

too high to allocate microcredits to individuals based on the estimated confidence intervals.  

Similarly, causal trees with high individual variance cannot be applied to provide doctors with 

individual drug recommendations since the variability of the drug´s effect is large within the 

established subgroups. In contrast, estimated individual treatment effect results with small 

confidence intervals provide policymaker with reliable results and only a small degree of 

variability. Hence, the example shows that the creation of various subgroups established by the 

causal tree algorithm does not have to provide researchers with good approximations of 

individual treatment effects. The reason for that is the high individual variance, which can be 

the result of inconsistent variables or causal tree instability. Thus, the causal tree is unreliable 
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for estimating individual treatment effects and fails to accomplish one of its main goals27. 

Consequently, this thesis is the first work to challenge the suitability of the causal tree method 

for the precise estimation of individual treatment effects. 

Subgroup Estimated treatment effect Confidence interval 

age ≥ 40, children ≥ 0 1000€ [125;1875] 

age ≥ 40, children ≤ 0 750€ [0;1500] 

age ≤ 40, children ≤ 0 850€ [0;1675] 

Table 1. Estimated individual treatment effects with corresponding confidence intervals. 

4.4 Biased results in causal tree estimates 

The following subchapter aims to elaborate on the third challenge posed to causal trees in this 

thesis. Specifically, I want to introduce and discuss the problem of M-bias when applying causal 

trees, leading to the unreliable estimation of average treatment effects within subgroups. Biased 

results can occur when the method employed is systematically over- or underestimating the 

target value. In other words, the result is deviating from the true target value of interest hidden 

in the data. There are multiple reasons for these deviations. One of the possible reasons is often 

referred to as M-bias in the causal inference literature (Pearl 2000), which may affect the 

validity of the statistical results. As I will demonstrate in the following subchapter, M-bias is 

especially problematic in causal tree settings and thus, likely influences the results of the causal 

tree method. Consequently, it will be argued that the estimated average treatment effects within 

the subgroups may become unreliable as the causal tree method is highly susceptible to M-

bias28. In order to facilitate the explanation of M-bias and its connection to causal trees, I will 

fall back on Pearl´s (2009) causal graph notation which was previously used to introduce the 

requirement of unconfoundedness in chapter 2.3.  

4.4.1 M-bias in causal trees 

Causal trees offer some advantages as the method allows to include more control variables 

compared to a conventional econometric framework29. Hence, researchers do not have to make 

 
27 Importantly, nothing has been said about the reliability of the causal tree algorithm to estimate subgroup 

treatment effects but only about the reliability to use the estimated subgroup treatment effects as approximations 

for individual treatment effects.  
28 While in the previous chapter it was shown that causal trees are unreliable at providing individual treatment 

effect estimates, this chapter also claims that the average treatment effect estimates within the subgroups become 

unreliable in the presence of M-bias. 
29 See chapter 2.4 for a detailed explanation of why that is the case. 
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decisions with respect to which variables they want to control for30 but can control for every 

variable which potentially affects both the outcome and treatment variable. As was presented 

in previous chapters with the help of Pearl´s (2009) causal graph notation, controlling for 

variables is necessary to decrease the risk of confounding. In addition, it appears prima facie 

that controlling for many different variables in machine learning settings comes with little risk. 

Variables, that are not used by the causal tree method to split on, simply increase the reliability 

of the method as more variables are employed as control variables. In other words, controlling 

for numerous variables in the context of treatment effects lowers the probability of overlooking 

confounding variables that may open additional non-causal associations and lead to biased 

estimates. As has been already elaborated in chapter 2.3, the results are biased since not 

controlling for a confounding variable can result in spurious non-causal associations between 

the treatment and control variable. 

 

Figure 6. Causal graph M-structure (Ding and Miratrix 2015, 42). 

Nevertheless, controlling for a large number of variables can also entail the opposite effect, 

namely introducing higher bias compared to controlling for only a few variables. This is the 

case since settings with many control variables are more susceptible to M-bias, which may arise 

when controlling for a potentially confounding variable (Pearl 2009). As illustrated in figure 6 

M-bias is named according to its structure. While U and W are non-observable variables, M, T 

and Y are measured by the researcher. Like in chapter 2.3 which introduced the causal graph 

notation, one is interested in the effect of a treatment (T) on the outcome variable (Y). Without 

controlling for the observed variable M, figure 6 shows that T and Y are not causally connected 

(Ding and Miratrix 2015). However, when researchers believe in the importance of controlling 

for M31, it opens a causal path between treatment and outcome variable, resulting in an 

 
30 As was discussed in chapter 2.4 controlling for too many variables in conventional econometrics settings 

inevitably leads to overfitting. 
31 This could be the case as M may appear to be an important confounding variable. 
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associative connection. This is the case as M is a common effect of U and W. Consequently, the 

causal path is now open once one controls for M. As described in chapter 2.3, a common effect 

can entail a non-causal association between two variables in case the common effect is 

employed as a control variable. Thus, stratified correlation arises between the unobserved 

variables U and W. In contrast, common cause variables, also called confounding variables, 

lead to non-causal associations by default. Their causal path can only be blocked by using them 

as control variables in the estimation process.   

In figure 6, the parent variables U and W serve as the respective causes of T and Y. In the 

absence of additional measures, figure 6 shows that T and Y would not share any association as 

there is no direct causal arrow leading from T to Y. However, M is introduced as a control 

variable, which happens to be the common effect of T and Y. Consequently, a stratified 

correlation between U and W arises, as described in chapter 2.3. Importantly, U and W only 

share an association since M is included as a control variable in the estimation process. In 

further consequence, T and Y also share an association since they are connected to the 

unobserved variables U and W via causal arrows, as depicted in figure 6. Thus, controlling for 

M may lead to the erroneous belief of a causal connection between T and Y, resulting in biased 

estimation results (Pearl 2009). However, the non-causal association between T and Y is the 

result of M, which is the common effect of U and W. To gain a deeper understanding of M-bias 

in a treatment effect setting, one can consider the following example: 

Suppose a researcher is interested in the effect of a microcredit on future incomes among 

individuals living in different villages. Since the researcher believes that the number of children 

(M) may causally affect future income (Y) and the effect of obtaining a microcredit (T), she 

decides to control for the variable number of children (M) to decrease the risk of confounding 

bias. The rationale behind that decision could be that the researcher believes that people having 

more children (M) are more likely to receive a microcredit, while the number of children (M) 

itself may also affect future income (Y) as having many children increases the work capacity. 

However, it is also plausible that factors causing variations in the number of microcredits 

obtained (T) and future income (Y) also impact the control variable number of children (M). 

For example, the specific village one lives in (U) may causally influence the number of children 

(M) people have. At the same time, living in certain villages (U) may causally affect the 

probability of receiving a microcredit (T) assuming that only people from certain villages can 

apply for it. Moreover, the age of a person (W) may have a causal impact on the number of 

children (M) and future income (Y). This could be the case because older individuals, on 
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average, tend to have more children (M). Furthermore, there is a possibility that age (W) could 

causally influence future income (Y), assuming that younger individuals have more work years 

ahead of them. 

Therefore, the number of children (M) is not a potential confounding variable requiring 

controlling for it but creates a causal M-structured graph as shown in figure 6. As a result, 

controlling for the number of children (M) leads to M-bias and hence, incorrectly suggests a 

causal link between the treatment variable (T) and future income (Y). In other words, an 

additional spurious correlation between obtaining a microcredit (T) and future income (Y) has 

been created through employing the number of children as a control variable in the causal tree 

building process. It is important to note that a M-structure can never be detected through 

statistical tests but can only be argued for from a theoretical perspective. As has been discussed 

in chapter 2.3, the same holds true for the issue of confounding. Consequently, had the 

researcher not presented theoretical justifications to control for the number of children (M), no 

association would have been identified between receiving a microcredit (T) and future income 

(Y). This demonstrates that controlling for many variables is not always advantageous to 

decrease the risk of biased results as it increases the probability for M-bias.  

As revealed by the example given above, M-bias appears to be of special relevance for causal 

trees as this method controls for numerous variables. As a result, the likelihood for M-biases 

increases as every potentially confounding variable controlled for could give rise to a M-

structure and thereby bias the outcome. Furthermore, given the inclusion of numerous variables 

in causal trees, scrutinizing these models for potential M-bias becomes an insurmountable task. 

As the precise challenges with M-bias and machine learning techniques like causal trees may 

seem abstract to some readers, the subsequent familiar example should provide an illustration 

of the issue at stake: 

Suppose a researcher wants to group people into different heterogenous treatment effect 

subgroups after conducting a drug trial. Fortunately, a wide array of variables has been 

collected. Since the researcher wants to exclude for the possibility of confounding bias, she 

controls for every observed variable. Consequently, if the researcher wanted to check for the 

presence of M-bias, she would need to individually examine each control variable. First, she 

would have to provide sufficient theoretical justifications demonstrating how each variable may 

plausibly affect both the treatment and outcome variable, making controlling for the variable 

inevitably. Second, the researcher would have to examine every control variable for M-bias, 
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presenting compelling theoretical arguments as to why it seems unlikely that two distinct 

variables causing the control variable independently affect the treatment and outcome variable, 

leading to a M-structured causal graph. In other words, researchers do not only have to provide 

theoretical justifications for the need to control for a specific variable, but also check every 

control variable for potential M-bias.   

Hence, M-bias poses a particular challenge for the causal tree method due to two reasons. First, 

the probability of generating an M-bias increases as researchers control for a larger number of 

variables. Second, it becomes very time consuming to check in practice if a causal tree exhibits 

M-bias. This would necessitate examining each individual variable with the help of causal 

diagrams and theoretical evidence. While the fact that M-bias leads to biased results is widely 

accepted in the literature on causal inference, its prevalence is contentiously discussed. 

Economists like Rubin and Rosenbaum assert that M-bias is a rare phenomenon and thus, does 

not require much attention (Ding and Miratrix 2015). On the other hand, they state that the issue 

of confounding is more widespread in empirical research. Because of that reasoning, scientists 

should control for as many potential confounding variables as possible to decrease the risk for 

biased results in their research. Since M-bias is rare, researchers do not have to be overly 

concerned about generating a M-structure. In contrast, Pearl (2015) claims that M-bias is a 

frequent phenomenon and thus, requires scientists to be cautious about controlling for potential 

confounding variables. Consequently, M-bias cannot be neglected in empirical research 

settings. Even though I do not want to take a stance in the debate on the frequency of M-bias, 

it appears that it is a more prominent concern in the realm of machine learning methods. 

Standard causal inference settings start from controlling for a few variables to an approximated 

maximum of 15 variables (Angrist and Pischke 2009). In contrast, machine learning 

applications such as causal trees can control for a few hundred potentially confounding 

variables (Chernozhukov et al. 2017). Consequently, the risk for M-bias structures must be 

multiple times higher than in standard causal inference settings.  

As has already been demonstrated in this chapter, both potential bias sources, M-bias and 

confounding bias, are theoretical concepts. Because of that reason, it is impossible to resolve 

the debate about the frequency of M-bias in empirical research. As emphasized in this chapter, 

M-bias can never be tested but only be argued for on a theoretical basis32. Consequently, 

variable relationships in causal graphs are frequently subject to intense debate.  Therefore, M-

 
32 As has been discussed in chapter 2.3, only correlative associations between variables can be tested. Thus, these 

correlative relations can only be given a causal interpretation with the help of theory or intuition. 
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bias frequency depends on the subjective standpoint of the respective researcher in how far the 

theoretical arguments for M-bias in specific situations appear credible. Nevertheless, it appears 

fair to conclude that the discussion from above revealed that M-bias is a bigger concern for 

machine learning methods like causal trees which control for numerous variables. 

Consequently, researchers applying causal trees face the insurmountable challenge of checking 

every control variable for M-bias. As this is rather time consuming, M-bias poses a problem for 

the causal tree method. In addition, as confounding bias and M-bias can only be argued for on 

a theoretical basis, the a priori standpoints of researchers play a role in detecting these biases, 

which in further consequence could influence the results of the causal tree method.   

4.4.2 Simultaneous occurrence of M-bias and confounding bias 

Assuming that causal tree practitioners engage in the time-consuming effort of examining every 

control variable for M-bias, another important methodological issue emerges. As argued by 

Pearl (2015), a critical concern arises when a variable holds the potential to introduce 

confounding bias if left uncontrolled, yet simultaneously leads to M-bias if controlled for. In 

other words, the results will be biased either way. The following section aims to provide some 

rough guidelines for the simultaneous occurrence of M-bias and confounding bias for causal 

tree practitioners. While it will be argued that researchers should be more concerned about 

confounding bias, the chapter demonstrates that the double bias problem cannot be resolved 

and thus, is likely leading to biased results when estimating treatment effects.  

For machine learning methods like causal trees which control for many variables, the before 

described scenario may frequently be encountered by causal tree practitioners employing the 

causal tree method. In the literature often referred to as butterfly bias due to its structure, 

describes the complex situation of a simultaneous occurrence of M-bias and confounding bias 

(Ding and Miratrix 2015). As visualized in figure 7, the variable M is at the same time a 

potentially confounding variable and introducing M-bias when controlling for it. In other words, 

the butterfly bias is a situation in which there are good theoretical arguments that a variable 

introduces confounding bias if it is not controlled for. However, controlling for the respective 

variable creates a M-structure similar to the situation described in the previous subchapter. 

Therefore, researchers must decide which bias is potentially lower and consequently, would 

result in less biased outcomes. 
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Figure 7. Simultaneous occurrence of M-bias and confounding bias (Ding and Miratrix 2015, 48). 

In general, scientists should primarily pay attention to the theoretical arguments presented. 

Since both types of biases can only be argued for from a theoretical perspective, scientists can 

base their decision on which bias to accept by evaluating the credibility of the underlying 

theoretical assumptions. It is needless to say that in this case a solid theoretical argumentation 

is necessary to adequately justify the acceptance of one bias. Nevertheless, there may be 

situations in which both the theoretical reasoning for M-bias and confounding bias appears to 

entail similar credibility levels. Consequently, the discussion cannot be settled based on 

theoretical arguments. However, the properties of machine learning methods like causal trees 

may provide some practical advice for researchers.  

As has been demonstrated by Pearl (2015), M-bias is weaker than confounding bias in noisy 

environments. In a nutshell, noise in a statistical environment can be understood as random 

variations in the data, obscuring the true underlying patterns in the data (Hastie, Tibshirani, and 

Friedman 2009). For example, inaccuracies in the measurement process of a variable can lead 

to statistical noise (Angrist and Pischke 2009). Since causal trees employ many variables in 

their analysis, it appears likely that some variables suffer from measurement errors and hence, 

lead to statistical noise in the causal tree. Statistical noise cannot be directly visualized in the 

M-structure shown in figure 7 but can be described as attenuating the associations between the 

parent variables (U, W) and the control variable (M). In other words, the estimated causal 

impact of U and W on M decreases as a consequence of statistical noise. According to Pearl 

(2015), the bias stemming from M-structure is only between 20,8-32,9% of the confounding 

bias in case both biases are present in a noisy environment. Consequently, researchers applying 

machine learning methods like causal trees should prioritize controlling for potential 

confounding variables over avoiding M-bias in cases both biases seem equally credible based 

on theoretical reasoning. This is the case as confounding bias is stronger than M-bias in settings 
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with statistical noise. As has been described above, causal trees are likely to operate in high-

noise situations since numerous control variables are used in the analysis, making measurement 

errors more likely.  

Nevertheless, M-bias remains a significant concern for the application of causal trees since it 

leads to biased results, albeit with lower bias compared to confounding bias. In addition, it is 

impossible to determine the direction of the bias since the variables U and W are assumed to be 

unobserved (Pearl 2015). Their values would be necessary to calculate the correlation between 

U, W and M, to properly distinguish between a positive and negative bias in the causal tree 

results. Consequently, in the presence of both M-bias and confounding bias, accepting a M-

structure due to its lower bias values gives rise to the issue of unknown bias direction, further 

complicating the interpretation of the causal tree method.  

To conclude this subsection, I have argued that M-bias leads to unreliable results of the causal 

tree method mainly due to two reasons: First, causal trees include numerous control variables 

to decrease the risk of confounding, making it almost impossible for the researcher to check for 

potential M-bias structures. Second, when encountering double bias situations as a result of 

simultaneous M-bias and confounding bias, it is impossible to analyze the direction of the M-

bias. Therefore, causal tree results become unreliable since researchers often do not know if M-

bias is present in their research setting. In addition, even if they are aware of it, they do not have 

any idea in which direction M-bias influences the result.  

4.5 Supplementary challenges for a strong interpretation of causal trees 

While the previous chapter raised challenges for both possible interpretations of causal trees, 

this chapter aims to point out an additional difficulty when interpreting causal trees according 

to a strong interpretation. Consequently, I will demonstrate that upholding a strong 

interpretation of causal trees becomes more difficult, even if the before presented challenges 

have been addressed. In a nutshell, I show in this chapter that causal trees give rise to multiple 

different causal models and thus, cannot be given a strong causal interpretation. As has been 

done in previous chapters, I will mainly base my explanations on the causal graph notation 

introduced by Judea Pearl (2000) which facilitates explanation and visualization. While the 

main problem presented in this chapter is partly acknowledged by leading causal tree 

proponents (e.g. Athey and Imbens 2019), the consequences have never been thoroughly 

analyzed and scrutinized. 
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As discussed in section 2.3, causal trees establish heterogenous treatment effect subgroups 

without the need to prespecify the subgroups or splitting variables beforehand. In contrast, 

standard econometric methods require economic theory or intuition to determine the different 

treatment effect subgroups before estimating the econometric model. Despite this big 

advantage, causal trees cannot provide a deeper understanding of the factors underlying 

treatment heterogeneity. Hence, a strong interpretation is untenable. This is the case as one 

causal tree is compatible with multiple causal models. More specifically, causal trees do not 

necessarily split on the causal driving variables but can equally split on highly correlated 

counterparts without changing the grouping results (Chernozhukov et al. 2017). Consequently, 

if variables A and B are highly correlated and yield similar grouping outcomes, the causal tree 

algorithm is unable to differentiate between splitting on variable A or variable B. Consequently, 

in scenarios where only variable A truly acts as a causal driver for treatment differences, the 

causal tree algorithm may choose to split on variable B, with no substantive impact on the 

obtained results.  Therefore, the splitting variables do not have to be the true causal drivers for 

the resulting causal tree but can only be highly correlated with the actual causal driver. To 

further strengthen this point, figure 8 and figure 9 show possible causal models which are both 

compatible with the causal tree in figure 4 (see p.33): 

 

Figure 8. Potential causal model A                             Figure 9. Potential causal model B 

Both causal models could give rise to the same pattern of correlations, which in further 

consequence, lead to the same analysis by the causal tree algorithm. For example, there are 

strong empirical and intuitive reasons for a correlative connection between age and health. It 

seems uncontentious to make claims like: the general health condition tends to decline on 

average from a specific age onwards. Hence, there seems to be a correlation between health and 

age. Similar relations could be formulated for the other variables depicted in figure 8 and 9 
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(education/income, motivation/weather). Furthermore, it is important to note that both potential 

causal models A and B in the example entail that the unconfoundedness requirement is met 

since all causal back-door paths from the treatment to the outcome variable are blocked (Cinelli, 

Forney, and Pearl 2020). Given these correlative connections, the causal tree could have split 

on either of the connected variables as highly correlated variables yield the same grouping 

results (Chernozhukov et al. 2017). In other words, highly correlated variables may lead to the 

same grouping results, since the causal tree algorithm behaves similar in terms of its splitting 

process. This is the case as similar information, despite extracted from different variables, is 

employed in the causal tree building process. Consequently, a single resulting causal tree can 

encompass various causal models. However, it is impossible to detect the actual causal driving 

variables by employing the causal tree method, as there is no way to distinguish between 

potential causal model A and potential causal model B. Causal interpretation can only be added 

based on theoretical knowledge or intuition. While this point is partially recognized in the 

machine learning literature on causal inference, its implications are not extensively discussed 

(Athey, 2018).  

To be more precise, if there are strong empirical or intuitive reasons to believe that a splitting 

variable is connected to another control variable, it is impossible to claim that the first variable 

causally impacts treatment heterogeneity. Given the typical high-dimensional setting with many 

variables in which the causal tree method is normally applied to satisfy the requirement of 

unconfoundedness, many variables may exhibit strong correlative connections. Therefore, 

several causal models could generate the same correlation pattern in the data and hence, 

generate the same causal tree in terms of grouping results. Consequently, the same grouping 

result can be achieved by different variable splits and thus, different causal trees. 

Coming back to the two potential causal models A and B, their causal story differs in important 

aspects: while model A suggests that age, education and motivation are the driving forces for 

treatment heterogeneity, model B makes us believe that health, income and the weather are 

important causal factors for treatment differences. To draw reliable causal inferences, it is 

crucial to understand the causal relationships between the splitting variables and other 

potentially correlated variables. Theoretical knowledge is the only way to identify splitting 

variables as explanatory relevant. However, this entails an equally strong a priori theory 
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commitment as in standard econometric modelling33. Consequently, researchers must possess 

knowledge of the relationships between variables before estimating the causal tree. As a result, 

the causal tree method loses one of its big advantages since the algorithmically driven splitting 

process alone is of little help for identifying the driving variables for treatment effect 

differences. Therefore, it appears that causal trees can only reliably infer causal relationships 

with similar theoretical commitments as those in a standard econometric setting.  

However, causal trees were developed to avoid strong a priori theory commitments by not 

requiring the pre-specification of all potential subgroups before estimating the model (Athey, 

2018). Therefore, it can be concluded that a strong interpretation of causal trees is unattainable 

as it is impossible to infer the causal drivers of treatment heterogeneity from causal trees. While 

the results of a causal tree can be visually represented in a causal tree diagram, it does not 

provide any insights into the underlying mechanism, as correlated variables with the selected 

splitting variables may be the actual drivers of treatment heterogeneity.  Consequently, causal 

trees cannot be of any help when it comes to understanding the underlying mechanism of 

treatment effect heterogeneity. As I have argued in this chapter, this limitation arises because a 

single causal tree can give rise to various causal models due to the presence of highly correlated 

variables within machine learning settings. As a result, extracting information about the 

underlying mechanism responsible for treatment heterogeneity becomes impossible. 

 

 

 

 

 

 

 

 

  

 
33 It is important to remember that researchers need to prespecify the different treatment effect subgroups in a 

standard econometric framework through relying on theory or intuition.  
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5. Conclusion and outlook 

In this thesis, I have analysed causal trees as a method for detecting heterogenous treatment 

effects, revealing essential limitations researchers should take into consideration when 

employing causal trees. My conclusions can be best summarized in the following three points: 

Firstly, I have shown that causal trees fail to provide scientists with reliable individual treatment 

effect estimations, which constitutes one of the main goals of causal trees. Secondly, I argued 

that causal trees are incapable of reliably estimating average treatment effects within subgroups 

due to the complex interplay between M-bias and confounding bias, both of which are likely to 

occur when employing causal trees with many control variables. Thirdly, it has been established 

that causal trees cannot reveal anything about the underlying mechanism at work and thus, 

cannot help researchers to establish causal relationships. In order to arrive at the aforementioned 

conclusions, my argumentation was structured as follows: 

In chapter 2, I introduced the concept of causal trees and elaborated on their advantages in 

comparison to standard econometric methods. Given that the causal tree algorithm is rooted in 

traditional decision tree methodology, my explanations were based on the latter. In addition, 

since causal trees have been developed for analysing treatment effect settings, the requirement 

of unconfoundedness was introduced and discussed with the help of causal graph notation. This 

served the following two purposes: enhancing the reader´s comprehension of the further 

argumentation provided in this thesis and allowing me to reveal the advantages of causal trees 

over standard econometric methods for detecting heterogenous treatment effects. First, I 

rehearsed the standard argument that causal trees allow for the inclusion of a larger number of 

control variables, thereby prima facie improving the credibility of results in relation to the 

unconfoundedness requirement. Second, I presented the argument that the causal tree method 

alleviates the a priori knowledge burden on researchers, as it algorithmically generates 

heterogeneous treatment effect subgroups. Moreover, chapter 2 illuminated a hitherto neglected 

trade-off when aggregating causal trees to a causal forest. Specifically, I argued that causal 

forest treatment effect estimations only possess valid confidence intervals when a limited 

number of control variables is employed. However, this undermines the advantage of causal 

trees to include many potential control variables to satisfy the requirement of 

unconfoundedness. Consequently, I offered a novel argument that causal forests cannot be 

considered a reliable method for the analysis of treatment effect settings. 
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In chapter 3, I introduced the distinction between a weak and strong interpretation of causal 

trees. Interpreting causal trees according to the strong perspective implies that the method can 

reveal the underlying mechanism, thereby disclosing the fundamental causes of heterogeneity 

in treatment effects.  In contrast, from the perspective of the weak interpretation, the evaluation 

of causal trees focuses solely on the grouping results, disregarding the splitting variables or the 

understanding of the underlying mechanism. Consequently, employing a weak interpretation of 

the causal tree method implies that researchers cannot establish causal relationships with causal 

trees but only use it as a sophisticated clustering and prediction method. While a predominant 

number of authors advocate applying a weak interpretation, one can also find references in the 

literature endorsing a strong interpretation.  

In chapter 4, I presented three challenges to the causal tree method, aiming to reveal its 

limitations. First, I introduced the novel concept of inconsistent variables, which are likely to 

be encountered in causal tree settings. As argued, inconsistent variables lead to high individual 

variance and therefore, undermine the ability of causal trees to reliably estimate individual 

treatment effects. Second, this thesis is the first work to examine the issue of grouping 

instability in causal trees. As I have claimed, causal trees are susceptible to suffer from high 

tree instability given the poor performance of decision trees as a clustering mechanism. 

Subsequently, I posited that this instability within causal trees increases the individual variance 

and thus, undermines the ability to estimate individual treatment effects. Third, I analysed the 

notion of M-bias within the context of causal trees and argued that the high number of control 

variables in causal trees makes it very difficult to detect M-bias. Consequently, causal tree 

estimation results are susceptible to bias. Furthermore, I discussed the increased possibility of 

simultaneously encountering confounding bias and M-bias in causal trees. Given that causal 

trees incorporate a large number of control variables, this situation holds particular significance 

for researchers employing this method. Moreover, I argued that causal tree proponents should 

rather tolerate the potential bias introduced by the M-structured causal graph instead of 

accepting confounding bias. Nevertheless, I claimed that causal trees should be regarded as an 

unreliable method for estimating average subgroup treatment effects given the increased 

likelihood of encountering either solely M-bias or the concurrent presence of both M-bias and 

confounding bias. In addition, in chapter 4, I also aimed to reject the possibility to interpret 

causal trees according to a strong interpretation, as one causal tree can encompass multiple 

causal models.  
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In lights of the arguments provided in this thesis, causal trees should not be promoted as a 

promising method to analyse treatment effect settings. Furthermore, future research should 

direct its attention towards the establishment of valid confidence intervals for causal forests 

with many variables in order to address the problem of high individual variance. Even though 

statisticians are sceptical regarding the feasibility of this endeavour, its realization would allow 

researchers to conduct precise individual treatment effect estimations, assuming no M-bias is 

present. Nonetheless, machine learning methods exhibit higher potential for transforming 

economic and social research practices within its original domain, which encompasses 

prediction tasks. For example, remarkable achievements in the field of macroeconomic 

forecasting have been documented in recent years. A notable example is the recently developed 

Macroeconomic Random Forest, a method combing standard linear regression with traditional 

machine learning methods (Goulet Coulombe 2020). Consequently, economists and social 

scientists should dedicate their time to modify and adapt machine learning methods in 

alignment with their specific research needs in relation to prediction tasks. Conversely, this 

thesis has shown that researchers should refrain from employing causal trees for the analysis of 

treatment effect settings.  
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6. Glossary 

Active predictor variables: the variables that a decision tree or causal tree employs to 

generate different subgroups. 

Algorithm: an automated mathematical procedure for making predictions and learning from 

the data. 

Bagging: the practice of combining and averaging individual machine learning models to 

decrease the risk of overfitting. 

Bias-variance trade-off: describes the need to balance bias and variance properties in 

statistical models. 

Causal forest: an extension of the causal tree method that combines and averages multiple 

causal trees. 

Causal trees: a machine learning method, originating from decision trees, modified for the 

analysis of treatment effect settings. 

Cross-validation: a method for checking the generalizable capabilities of a model.    

Decision tree: a machine learning method forming subgroups of the sample data with the 

primary aim of prediction and exploratory data analysis.  

High-dimensional models: statistical models incorporating many variables with potentially 

non-linear relationships.  

Honest estimation: a three-step process in the causal tree algorithm that separates the forming 

of subgroups and the estimation of treatment effects within these subgroups.   

Individual variance: a measure of reliability of the estimated result when applied as a 

prediction for an individual. 

Non-active predictor variables: the variables that a decision tree or causal tree does not 

employ to generate different subgroups despite being in the control variable set. 

Overfitting: a phenomenon that occurs when a model captures too much noise or random 

fluctuations, leading to bad generalization properties.  

Pruning: a method to remove splitting points that do not improve the predictive accuracy of a 

decision tree in order to reduce its variance.   

Random forest: an extension of the decision tree method that combines and averages multiple 

decision trees. 

Sample variance: a measure quantifying the uncertainty of a measurement or parameter 

estimation in a statistical model.  

Splitting: the process of dividing the sample data into smaller subsets based on some 

characteristics/variables and a splitting criterion.  
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