
Erasmus University Rotterdam

Erasmus School of Economics

Master Thesis MSc Data Science and Marketing Analytics

Comparative Analysis of Embedding Techniques for

Sentiment Analysis in Finance

Chenyu Wang (541515)

Supervisor: Eran Raviv

Second assessor:

Date final version: 26th October 2023

The content of this thesis is the sole responsibility of the author and does not reflect the view

of the supervisor, second assessor, Erasmus School of Economics or Erasmus University.

Abstract

The research comprehensively compares various embedding techniques to assess their ef-

fectiveness in financial sentiment analysis. We begin by outlining financial English’s linguistic

features and highlighting the potential challenges for the embedding stage. In the following,

we select representative embedding techniques from traditional word embedding (Word2Vec,

GloVe, FastText), sense embedding (Sense2Vec), and contextualized embedding (BERT, ELMo,

Embedding in GPT-2). Additionally, inspired by graph embedding, we also provide an innov-

ative method to improve word embedding and contextuaAutoencoderdings with Autoencoder.

Utilizing the embeddings, we proceed to train logistic regression and Support Vector Machine

multiclass classification models for sentiment analysis based on Financial Phrase Bank. Then,

we conduct intrinsic evaluation for embeddings by word similarity and extrinsic evaluation by

multiple metrics. From the evaluation comparison, we conclude that the contextualized embed-

ding technique, especially ELMo, outperforms other embedding techniques in most evaluation

metrics. We also notice that Autoencoder-enhanced embedding has significant intrinsic improve-

ment in terms of word similarity.

Keywords: word embedding, contextualized embedding, graph embedding, sense embedding,

sentiment analysis, financial market, natural language processing

Contents

1 Introduction 3

1.1 Background . 3

1.2 Research Question and Thesis Structure . 4

2 Literature Review 6

2.1 Linguistic Features of Financial English and Implications for Embedding Tech-

niques Selection in Financial Sentiment Analysis 6

2.2 Survey of Embedding Techniques Comparative Analysis 7

2.3 Research Gap . 8

3 Data 9

3.1 Data Gathering and Organization . 9

3.2 Data Pre-processing . 9

3.3 Explanatory Data Analysis . 10

4 Method 14

4.1 One-hot encoding . 14

4.2 Word Embedding . 15

4.2.1 Word2Vec . 15

4.2.2 GloVe . 17

4.2.3 FastText . 17

4.3 Sense Embedding . 18

4.3.1 Sense2Vec . 18

4.4 Contextualized Embedding . 18

4.4.1 ELMo . 19

4.4.2 Basics of BERT and GPT-2: Transformer 20

4.4.3 BERT . 21

4.4.4 Embedding in GPT-2 . 23

4.5 Graph Embedding . 24

4.5.1 Autoencoder-enhanced Embedding . 24

4.6 Evaluation Metrics . 27

4.6.1 Intrinsic Evaluation . 27

4.6.2 Extrinsic Evaluation . 28

4.7 Multiclass Classification Algorithm . 30

1

4.7.1 Support Vector Machine . 30

4.7.2 Logistic Regression . 32

5 Results 34

5.1 Extrinsic Evaluation Results . 34

5.2 Intrinsic Evaluation Results . 35

6 Discussion and Conclusion 38

6.1 Discussion and Further Explanation of the Results 38

6.2 Limitations and Potential Future Research . 39

References 41

A Word Cloud 44

B Implementation of Embedding Techniques 46

C Extrinsic Evaluation 48

2

Chapter 1

Introduction

1.1 Background

Finance has long been recognized as an industry that relies on numbers, statistical analysis, and

quantitative methods. However, in the past decade, people have seen a significant shift in this

perspective as Machine Learning has begun to permeate various facets of the financial world.

The integration of machine learning into finance has resulted in enhanced capabilities in risk

prediction, quant trading, fraud detection, and credit scoring, among others. These techniques,

leveraging Big Data and advanced algorithms, have enabled institutions to make more informed

and efficient decisions, opening up new avenues for exploration and innovation in the field.

Amidst the myriad applications of machine learning in finance, sentiment analysis, an im-

portant branch of Natural Language Processing (NLP), stands out due to its unique role in

interpreting the intangible aspect of financial markets: market sentiment. Market sentiment,

reflecting stakeholders’ collective attitudes and moods, has a long history of influencing market

dynamics. A notable instance is the Tulip Mania in the Netherlands in the 17th century, a

speculative bubble driven largely by market sentiment rather than fundamental value of tulip.

Fast forward to the 21st century, the impact of market sentiment remains robust, for instance

on stock returns and asset allocation (Malandri, Xing, Orsenigo, Vercellis & Cambria, 2018),

monetary policy (Kashyap & Stein, 2023), and many other areas.

Given the importance of sentiment in finance (Baker & Wurgler, 2006), sentiment analysis,

which involves extracting, interpreting, and classifying sentiment from textual data, has become

a critical component in the Machine Learning toolkit for finance (Loughran & McDonald, 2011).

From analyzing financial news (Tetlock, 2007), and social media posts, to earnings call tran-

scripts (Davis, Piger & Sedor, 2012), sentiment analysis provides valuable insights into market

dynamics (Tetlock, Saar-Tsechansky & Macskassy, 2008), investor behaviour (Frieder & Zittrain,

2007), and financial trends (Loughran & McDonald, 2016).

Central to sentiment analysis’ performance is the technique of Embedding. Embedding,

which maps objects to vectors of real numbers, lays a crucial foundation for text representation

and interpretation in sentiment analysis and other downstream NLP tasks. Different embedding

techniques can significantly influence the outcomes of sentiment analysis, including aspects such

as accuracy, speed, precision, and recall, among others (Bakarov, 2018). This suggests that

choosing an appropriate embedding technique is critical for optimizing sentiment analysis and

3

harnessing its full potential.

However, the exploration and understanding of how different embedding techniques perform

when applied to financial sentiment analysis remain insufficient due to the sparsity of finan-

cial corpus(Malo, Sinha, Korhonen, Wallenius & Takala, 2014). This prompts the need for a

comprehensive comparative study of various embedding methods in financial sentiment analysis.

1.2 Research Question and Thesis Structure

In this research, our objective is to undertake a comparative analysis of various embedding

techniques, including word embedding, sense embedding, graph embedding and contextualized

embedding. We will compare the efficiency and performance of various embedding techniques

by implementing these methodologies within the context of the sentiment analysis based on

Financial Phrase Bank(Malo et al., 2014). The intention of this analysis is to reveal unique

attributes and potential limitations associated with each technique. Our ultimate goal is to

formulate clear guidance regarding the situations and applications in which each word embedding

technique may be optimally utilized, specifically within the scope of financial sentiment analysis.

In conclusion, our central research question can be articulated as follows:

What are the comparative strengths and weaknesses of various embedding

techniques when applied to financial sentiment analysis?

In order to address the central question of the research, the following structure has been

adopted for this research. In Chapter 2, a comprehensive literature review is undertaken, focus-

ing on prior comparative analyses of word embeddings, as well as linguistic features of English

used in the finance realm. Chapter 3 provides an in-depth introduction to the Financial Phrase

Bank. This includes a description of the dataset’s composition, its structural characteristics,

and a preliminary exploratory analysis of its data. Chapter 4 introduces the various embed-

ding methodologies that we employ. These span from rudimentary techniques such as one-hot

encoding to more advanced models based on autoencoders. Besides the embedding methods,

evaluation metrics for assessing embedding techniques’ performance are also presented. Addi-

tionally, this chapter introduces the machine learning approaches that we utilize for the training

of the models as well. In Chapter 5, the resultant findings are analyzed and elucidated. A more

detailed explanation for the difference in performance among embeddings is presented in Chapter

6. Furthermore, Chapter 6 concludes with a conclusive synthesis of the research findings. We

find that, among all embedding techniques, contextualized embedding is believed to have the

best performance in terms of both extrinsic and intrinsic evaluation metrics. Moreover, we also

notice that Autoencoder can be used for optimizing traditional and contextualized embedding

techniques’ intrinsic evaluation task’s performance. This chapter also provides recommendations

concerning the potential optimal utilization of embeddings in the realm of financial sentiment

analysis. The illustration of the research structure is shown in Figure 1.1.

4

Figure 1.1: Research Design of Comparative Analysis of Embedding Techniques in Financial
Sentiment Analysis

5

Chapter 2

Literature Review

In this chapter, we underscore the significance of selecting appropriate embedding techniques

for financial sentiment analysis by considering the linguistic intricacies of financial English.

Subsequently, we will examine extant comparative analyses of embedding techniques within the

context of sentiment analysis and other analogous NLP tasks so that we can discover the existing

research gap.

2.1 Linguistic Features of Financial English and Implications

for Embedding Techniques Selection in Financial Sentiment

Analysis

English is commonly known as the dominant language in finance realm. This dominance has

also led to the development of a specialized form of English, namely, ”Financial English”. Fin-

ancial English is characterized by its unique lexicon, syntactic structures, and semantic nuances.

Nickerson (2005) highlights that this specialized language is replete with jargon, acronyms,

and terms that might be ambiguous to the layperson but have precise meanings in financial

contexts. Furthermore, the concise and unambiguous nature of financial reports and commu-

nications necessitates a specific linguistic structure, often favouring passive constructions and

nominalizations (Dudley-Evans & St John, 1998).

These linguistic features become the challenge in NLP tasks of financial English after em-

bedding starts to capture the semantic and syntactic relationships between words (Mikolov, Yih

& Zweig, 2013). One of the main reasons is that the features can significantly influence the

performance of embedding techniques. Given the specialized vocabulary and unique syntactic

structures of Financial English, embeddings trained on general corpora might not capture these

nuances effectively. This is supported by McEnery and Baker (2015), who state that domain-

specific corpora are essential for pre-training that are sensitive to the linguistic peculiarities of

specialized fields like finance. Moreover, the frequent use of jargon and technical terms in various

realm may require embeddings that can capture domain-specific knowledge, which is highly rely

on external resources such as pre-trained models (Rawte, Gupta & Zaki, 2020; Adhikari et al.,

2023).

In the context of financial sentiment analysis, it is even more challenging to embed due to the

6

more nuanced difference between sentiment and often the understated language used in financial

reports, comments and news. Loughran and McDonald (2011) note that traditional sentiment

dictionaries often misclassify financial terms, leading to inaccurate sentiment scores. Based on

all these challenges, the selection of embedding techniques plays an important role in achieving

optimal financial sentiment analysis results (Dang, Moreno-Garćıa & De la Prieta, 2020).

2.2 Survey of Embedding Techniques Comparative Analysis

Due to the importance of embedding technique selection, many researchers work on evaluating

and comparing the embedding techniques. A crucial decision in embedding selection is the

choice between pre-trained embeddings and custom embeddings. Pre-trained embeddings, such

as GloVe and FastText, encapsulate general language semantics and can be beneficial for tasks

with limited data(Pennington, Socher & Manning, 2014), which is especially helpful in finance

realm where available corpora is limited(Malo et al., 2014). On the other hand, some researchers

state that custom embeddings which are trained on task-specific data can often outperform

general embedding techniques in capturing domain-specific nuances. For instance, Araci (2019)

creates a customed embedding model FinBERT based on BERT and finance corpora, and the

model significantly outperforms general BERT in financial sentiment analysis.

Besides categorising embeddings into custom and pre-trained, Pilehvar and Camacho-Collados

(2020) categorize embedding techniques into conventional embedding, word embedding (includ-

ing sentence embedding and document embedding), sense embedding and contextualized em-

bedding based on embeddings’ target and training methods. Conventional embedding, such

as one-hot encoding, paves the way for the following embedding techniques, but due to a lack

of measuring word similarity, it is rarely used in nowadays’ NLP tasks(Pilehvar & Camacho-

Collados, 2020). Word2Vec and GloVe are considered as pioneers in vectorizing words in se-

mantic space and start the era of embedding. However, they still have limitations, such as being

computationally intensive and failing to handle out-of-vocabulary(OOV) words(Pennington et

al., 2014; Mikolov, Chen, Corrado & Dean, 2013). Even though embedding techniques such as

FastText innovatively generate embeddings for OOV words. But the embeddings are still suffer

from the large number of dimensionality. After the introduction of the Transformer and biLSTM,

embedding techniques such as BERT and ELMo become popular. Those techniques succeed in

producing state-of-the-art context-dependent embedding that captures both syntactic and se-

mantic information of words. But all these methods require computational resources(Peters et

al., 2018; Devlin, Chang, Lee & Toutanova, 2018) and the generative model may not always

produce embedding that is optimal for domain-specific tasks(Radford et al., 2019). Autoencoder-

based models such as AutoExtend is also receiving more and more attention these days. The

models can capture non-linear relationships in the data and enhance the quality of embeddings.

However, the performance is highly dependent on tuning and may lead to overfit(Makhzani,

Shlens, Jaitly, Goodfellow & Frey, 2015).

These previous researches help us understand the strengths and weaknesses of different em-

bedding techniques. The choice of embedding technique should be informed by the specific

requirements of the NLP task at hand. While some embeddings excel in capturing semantic re-

lationships, others might be more suited for domain-specific tasks that require an understanding

7

of specific knowledge. In that case, evaluation methods for word embedding are crucial.

Schnabel, Labutov, Mimno and Joachims (2015) summarizes embedding evaluation metrics

into two classes: extrinsic evaluation and intrinsic evaluation. Researchers can evaluate embed-

ding based on the technique itself by comparing word similarity or evaluating the performance

of downstream NLP tasks like sentiment analysis. Bakarov (2018) is seminal for providing a

comprehensive survey on both intrinsic and extrinsic evaluation methods of embeddings. The

author identifies several major challenges in evaluating word embeddings. These include the

inherent obscureness of semantics, the absence of proper training data for evaluation, a lack of

correlation between task-dependent intrinsic and extrinsic evaluation methods, the absence of

significance tests, and the hubness problem. The author states that due to various limitations,

no single evaluation metric is superior. Evaluation should be comprehensive and task-specific.

2.3 Research Gap

The existing literature extensively covers embedding techniques and their respective applica-

tions. However, a discernible void exists regarding comprehensive comparative analysis within

the finance domain, particularly concerning financial sentiment analysis. Owing to the distinct

linguistic features inherent in financial texts, an in-depth understanding of the efficiency and

performance of various embeddings is paramount. Thus, an urgent demand emerges for re-

search that probes into the comparative analysis of embedding techniques specifically tailored

for financial sentiment analysis.

Furthermore, current academic discourse on embedding comparisons mainly centres around

traditional word embedding methodologies such as GloVe and Word2Vec or contemporary tech-

niques like ELMo and BERT. Due to the popularity of Transformer-based architectures in the

field, models rooted in Autoencoders and those incorporating enhancements through Autoen-

coders are conspicuously underrepresented. In our research, we shall also go beyond recognized

embedding strategies and explore the potential contributions of Autoencoders to embedding.

8

Chapter 3

Data

In this chapter, we are going to introduce the database we will use for research, which is Financial

Phrase Bank. We will first delve into the origin and structure of the database, then we will

conduct a series of in-depth analyses of our database to gain a more profound understanding of

our data.

3.1 Data Gathering and Organization

As mentioned before, to advance the comparison of word embedding techniques in financial

sentiment analysis, this study employs a dataset known as the Financial Phrase Bank from

Malo et al. (2014), which was developed with support from the Emil Aaltonen Foundation and

the Academy of Finland in 2013. This dataset aggregates 4840 sentences and all the sentences

come from finance-related English news, comments and research reports of listed companies in

OMX Helsinki. The dataset counters the scarcity of quality annotated data for model training

in the financial domain.

According to Malo et al. (2014), all sentences in the Financial Phrase Bank are annotated by

finance professionals, which means individual subjective opinions highly affect the annotation

outcome. The authors separate sentences into four categories based on the strength of majority

agreement. For the purpose of our research on comparing embedding techniques, we would like

to use sentences with 100% agreement rate. Our final selected dataset consists of 2264 rows of

sentences with the texts themselves and corresponding sentiment annotation.

3.2 Data Pre-processing

In the financial phrase bank, each sentence has been categorized into one of three distinctive sen-

timent classes: positive, negative, or neutral. As illustrated in Figure 3.1, the dataset comprises

a total of 303 sentences that have been annotated with negative sentiment and 570 sentences as

positive sentiment. In contrast, a significantly larger portion, amounting to 1391 sentences, has

been identified as neutral. This classification was determined by the inherent sentiment con-

veyed within the content of each sentence. Furthermore, as a part of our analytical approach in

the study, we transform sentiment to numeric value so that the sentiment score can fit in certain

embedding techniques and the following modelling stage. In our dataset, neural sentiment is

9

Figure 3.1: Distribution of sentiment classes in the selected Financial Phrase Bank dataset. The
Y-axis shows the number of occurrences of a certain sentiment in the dataset. The X-axis shows
the name of sentiment, from left to right, they are ”negative”, ”neutral” and ”positive”.

labelled as 0, positive as 1 and negative as -1. We provide the initial five data samples in Table

3.1 to help understand the data structures.

Table 3.1: The first five samples of the selected Financial Phrase Bank dataset
Index Sentence Sentiment Value

0 According to Gran , the company has no plans t... Neutral 0

1 Technopolis plans to develop in stages an area... Neutral 0

2 The international electronic industry company ... Negative -1

3 With the new production plant the company woul... Positive 1

4 According to the company ’s updated strategy f... Positive 1

3.3 Explanatory Data Analysis

In order to gain more insight into the dataset and detect potential challenges in the following

stages of the study, we conduct a series of explanatory data analysis to highlight its statistical

characteristics. In this section, we will present the results of the LDA, TF-IDF values, and

WordCloud and the findings from the results.

Average Term Frequency-Inverse Document Frequency Value Rank

In order to gain a comprehensive understanding of the frequency of related words in every sen-

tence, we first determined the TF-IDF values of each word. TF-IDF stands for Term Frequency-

10

Inverse Document Frequency, it is a metric that could be used for measuring the frequencies

of words in a large corpus. It measures the importance of a term in a document relative to its

importance across all documents in the corpus. Mathematically, TF-IDF values are calculated

by equations 3.1 to 3.3.

TF(t, d) =
Number of times term t occurs in document d

Total number of terms in document d
(3.1)

IDF(t,D) = log
Total number of documents in corpus D

Number of documents containing term t
(3.2)

TF-IDF(t, d,D) = TF(t, d)× IDF(t,D) (3.3)

The top 20 most frequent words are presented in Figure 3.2. In Financial Phrase Bank, the

5 most frequent words are ”eur”, ”profit”, ”net”, ”operating”, and ”sales”. The prominence of

”eur” underscores the dataset’s European or specifically Finnish context, given that the euro

is the official currency of Finland. Terms like ”profit”, ”net”, ”operating”, and ”sales” are

foundational in financial reporting and analysis, indicating that the dataset contains a wealth

of information on companies’ financial performances and operations. The outcome confirms

the description provided by the authors, namely, the comments primarily focus on the financial

metric in European or Finnish Economics.

Figure 3.2: Top 20 frequent words based on average TF-IDF. The X-axis displays the details
of the words and the height of each bar shows the average TF-IDF value of the corresponding
word.

11

Latent Dirichlet Allocation Result

Latent Dirichlet Allocation (LDA) is a probabilistic model that presents the underlying thematic

structure of all documents. By assigning mixtures of topics to documents and words to topics,

LDA allows for the interpretation of text corpora in terms of a few key topics. LDA outcome

provides a quick overview of the main themes present in the Financial Phrase Bank.

In the context of the Financial Phrase Bank, by setting topic numbers to three, the outcome

is shown in Figure 3.3, :

Topic 1 is about market dynamics and company performance, with keywords like ”share,”

”sales,” ”market,” and ”company.” This topic likely captures discussions about market shares,

sales figures, and overall company standings in the Finnish market.

Topic 2 focuses on financial metrics with terms such as ”EUR,” ”mn” (million), ”profit,”

”sales,” and ”period.” This suggests discussions related to financial reporting, earnings, and

specific monetary values indicate quarterly reports or financial summaries.

Topic 3 has a regional focus, with the term ”Finnish” being prominent alongside ”mln,”

”euro,” and ”said.” This topic might capture news or reports specifically related to Finnish

companies or the Finnish economy, which is again in line with the dataset description above.

Instead of going through each sentence, we can get a sense of the dataset’s content by looking

at these topics. Furthermore, for sentiment analysis, these topics can be crucial. Knowing the

prevalent themes can help in understanding the context in which sentiments are expressed. For

instance, sentiments in financial reporting (topic 2) might be more objective and data-driven,

while sentiments in market dynamics (topic 1) might be more speculative or opinion-based.

Figure 3.3: Outcome of LDA analysis. The X-axis displays the terms. The Y-axis represents
probabilities associated with each term in the specific topic. The height of each bar indicates
the relevance of a term to the corresponding topic. From left to right, they are topic 1,2 and 3.

Word Cloud

Word Cloud, firstly proposed by Bausch and Bumgardner (2006), is a visual representation of

words in a corpus that could indicate the frequencies and importance of words. It is worth

noticing that, in the following visualization, we remove all articles, prepositions and ordinal

numbers.

Detailed Word Cloud visualization can be found in Appendix A. Figure A.1 shows the word

cloud for comments with negative sentiment. The word cloud is dominated by terms describing

12

decline such as ”down” and some financial terms that may have a potential negative impact on

market sentiment, such as ”operating loss”. In contrast, Figure A.2 reflect a more optimistic

tone by terms such as ”operating profit”. Figure A.3 shows that neutral comments are mostly

characterized by terms that are not directly related to financial operations, such as ”service”,

”share”, and ”business”. We propose that this may be because neutral comments are mainly

statements of facts.

Dataset Characteristics Summary

Based on the TF-IDF and basic information of the dataset, we notice that the sentiment of

the dataset is not balanced. An imbalanced dataset may lead to misclassification in the later

modelling and test stage. However, we believe it reflects a scenario closer to reality. As mentioned

before, financial English is considered to be understated and more likely to convey neutral

sentiment because most professionals tend to give out neutral advice and comments regarding

financial markets. In that case, we would like not to take action against this challenge.

According to LDA results, we can divide the topics into financial metrics, market dynam-

ics, and Finnish economics. Even though the whole corpora is under the theme of the finance

industry in Finland, however, internal topics among sentences are various. Diversity of topics

may lead to many challenges in embedding. Firstly, diverse topics may cause some topics to be

underrepresented due to the sparsity of the corpora. In such cases, we believe contextualized

embedding models are more likely to outperform. Secondly, there is a higher chance of encoun-

tering out-of-vocabulary words, even for using the pre-trained models. Last but not least, some

evaluation metrics, such as analogy tasks, may not be comprehensive enough to measure quality

across topics.

From the Word Cloud, we can notice two challenges we may face in the following sentiment

analysis. In the first place, we see a significant overlapping of words between different senti-

ments. For instance, common financial terms such as ”operating profit” are widely used in both

positive and negative comments. Moreover, some words may refer to different sentiment, and the

classification of these words highly depend on contexts, such as ”loss”. These may potentially

affect the performance of embeddings based on their capability of disambiguation. In that case,

taking senses and contexts into account is necessary for better word representations.

In the following chapters, we will combine the features of the data we learn from the analysis

to model selection, result explanation and discussions.

13

Chapter 4

Method

In this chapter, we will introduce the involved embedding techniques and machine learning

method we used for the following comparative analysis. Generally speaking, the embedding

techniques we use can be categorized into four classes based on the framework in Pilehvar and

Camacho-Collados (2020): word embedding, sense embedding, graph embedding and contextu-

alized embedding.

Descriptions pertaining to the implementation of each embedding technique are presented

in Table B.1 and Table B.2 in Appendix B. This table clarifies whether certain embedding

technique is pre-trained or customed and provides an introduction to the pre-trained models we

utilized.

This research covers selected models that are popular in each class so that it can show how

different categories of embedding affect the performance of sentiment analysis and also compare

across embedding techniques. For each technique, we will introduce the architecture and basic

theory. For the purpose of comparison, we will introduce evaluation metrics after the embedding

techniques. In the end, we will also give a brief introduction to the Support Vector Machine

and Logistic Regression we use for training models.

4.1 One-hot encoding

Before the 1990s, count-based models for constructing discrete vector space are dominant in

word representation. One-hot encoding is the most basic Term-document count-based word

representation. The technique represents each word in the corpus as a unique vector, and the

vector has a dimensionality that equals to the size of the vocabularies. As shown in the example

in Figure 4.1, in a sentence with four words, one-hot encoding representation constructs a 4 x 4

matrix. Such representation technique has salient limitations. First of all, the way it constructs

vector lead to high dimensionality, which makes it highly storage-sensitive when dealing with

large datasets in the era of Big Data. Furthermore, such representation has no measurement of a

word’s semantics. One-hot encoding is a traditional and simple count-based word representation,

but it lays the foundation for the development of other embedding techniques and paves the

way for more complex and efficient models. Basically, all successor techniques inherit the idea

of vectorizing words.

14

Figure 4.1: One-hot encoding illustration. The left part is text input and the right part illustrate
how the word are encoded to vectors.

4.2 Word Embedding

Salton, Wong and Yang (1975) proposes the Vector Space Model (VSM) to present a solution

to the limitations of one-hot encoding, such as unreasonable variable size and no capability

of representing words’ semantics and syntaxes. In the context of NLP, it represents objects

such as words, sentences or documents in a multi-dimensional space called semantic space.

Unlike one-hot encoding, semantic space is distributed and continuous. VSM is built upon

distributional hypothesis (Firth, 1957), meaning words’ semantic similarities can be measured

by their statistical distance. For instance, in our dataset, ”profit” and ”sales” frequently co-

occur in comments because they usually both appear in the context of the financial performance

of companies’ operations. In this section, we will introduce three traditional and powerful word

embedding techniques based on VSM theory.

4.2.1 Word2Vec

Word2Vec, firstly proposed in Mikolov, Chen et al. (2013), is seen as the technique that start

the era of neural network application in word representation. It popularised word embedding

in various NLP tasks, including sentiment analysis. The general idea under Word2Vec is to

represent words as vectors in multi-dimensional semantic space and, as a VSM, words that

appear in similar contexts have lower statistical distance. Mikolov, Chen et al. (2013) proposed

two different Word2Vec models, namely, Continuous Bag-of-Words and Skip-Gram. We will

utilize both models for our analysis.

Countinuous Bag of Words (CBOW)

The CBOW model predicts the target word by its surrounding words. The model aims at

minimizing the negative value of the probability of occurrence of a target word given the context.

Mathematically, the loss function can be represented as:

L(θ) = − log(p(wt|Wt)) (4.1)

where wt represents the target word and Wt is the matrix constructed by the surrounding

words vectors, namely, Wt = wt−n, ..., wt, wt+n. The architecture of CBOW is shown in Figure

4.2. The Embedding process of the CBOW model has an input layer, a hidden layer and

an output layer. The input layer consists of the one-hot encoded surrounding words. After

feeding the input to the hidden layer, the word vectors are multiplied by the weight matrix and

15

construct a dense word vector. Based on the dense vector, the output layer predicts the target

word by minimizing the loss function, namely, finding the word that has the highest probability

of occurrence.

Figure 4.2: Architecture of Continuous Bag of Words. The figure illustrates an instance of
CBOW: Two words before the target word and two words after the target word are fed into the
input layer. After summation, the target nth word is predicted.

Skip-Gram Model

Skip-Gram model has a reverse architecture of CBOW model. As shown in Figure 4.3, its

input layer is the target word, and the output layer has as many neurons as the words in the

vocabulary. It provides the probability distribution of all words in the vocabulary, and the

contextual words are predicted based on the likelihood of co-occurrence with the target word as

well. The objective function is shown as:

L =
1

T

T∑
t=1

∑
−c≤j≤c,j ̸=0

log p(wt+j |wt) (4.2)

where T is the size of the vocabulary, and the inner summation is over the surrounding words

of the target word wt.

Figure 4.3: Architecture of Skip-Gram model

16

4.2.2 GloVe

Another popular word embedding technique we use in our analysis, GloVe, is first proposed in

Pennington et al. (2014). Similar to Word2Vec, it is also a technique for representing words

in semantic space. The main idea of GloVe is using ratios of word co-occurrence probabilities.

GloVe aims to learn word vectors such that their dot product equals the logarithm of the words’

probability of co-occurrence. Given a co-occurrence matrix X, where Xij represents frequencies

of co-occurrence between word i and word j. The mathematical representation is shown as

follows:

L =

V∑
i,j=1

f(Xij)
(
wT
i w̃j + bi + b̃j − log(Xij)

)2
(4.3)

f(x) =

(x/xmax)
α if x < xmax

1 otherwise
(4.4)

where f is a weight function that assigns weights based on frequencies of co-occurrences. wi

and wj are vector representations for word i and word j. bi and bj are bias terms. Unlike the

conventional word representations we mentioned in the last section, GloVe captures the semantics

of words, which are crucial for our sentiment analysis, where semantics plays an important role.

Furthermore, as a pre-trained model, we can take advantage of the massive corpora the model

is trained on.

4.2.3 FastText

Word2Vec and GloVe are both considered predictive models since they both involve predicting

target words in a context based on neural networks. However, if the word is out-of-vocabulary

(OOV), the previous embedding technique may not be efficient. In that case, this may lead to

misunderstanding if the OOV word is the keyword of the context or document. Solutions to

such challenges are crucial in financial sentiment analysis. One of the most important reasons

is that language in the finance area is dynamic. Every new emerging industry, company, event

or technology advancement may lead to new words or phrases that may not be contained in the

pre-trained embedding model’s vocabulary. Especially in our case, as shown in our LDA results,

diverse topics lead to the possible existence of domain-specific keywords.

To solve this problem, a series of embedding techniques, which is known as character em-

bedding, is developed. FastText is one of them and has better performance in handling OOV

words.

FastText is an open-source library developed by Facebook (Bojanowski, Grave, Joulin &

Mikolov, 2017). The main idea behind this model is breaking words in a corpus into a group

of semantically meaningless character n-grams. For instance, ”finance” can be represented by

”fin”, ”nan”, ”nce”, and so on. Such n-gram representation can partly solve the OOV word

challenge. But we should not ignore the fact that two different words may have similar n-gram

constituents, for example, ”capital” and ”capitol”.

17

4.3 Sense Embedding

Based on the previous introduction to word embedding and conventional word representation.

We can easily notice that they are under the objective of representing words as a single point

in a static semantic space. Such representations lead to Meaning Conflation Deficiency, which

means that it is not possible to unambiguous lexical meaning of a single word (Schütze, 1998).

The deficiency can significantly hamper the performance of the downstream NLP task. This is

crucial in the finance area as well. For instance, the word ”bond” is commonly used to refer to

debt security, while it can also be used to describe relationships between target companies and

stakeholders. In that case, conflating the meaning of ”bond” into one single point will lower the

accuracy of sentiment analysis. There are a lot of similar situations, such as ”interest”, ”bank”,

and so on, so it is crucial to take the sense of financial words into account when embedding (Li

& Jurafsky, 2015). A series of embedding techniques, which is known as ”sense embedding”,

has been developed to alleviate the meaning conflation deficiency. In the next section, we will

introduce Sense2Vec, a sense embedding technique we will use in our research.

4.3.1 Sense2Vec

Sense2Vec, proposed in Trask, Michalak and Liu (2015), addresses the challenge of word sense

disambiguation in previous word embeddings. Traditional word representations often provide

a single representation for each word, but Sense2Vec takes the polysemous nature of financial

English words and phrases into account. Sense2Vec models multiple embeddings for each word

based on supervised disambiguation. This means that a word with multiple senses will have dis-

tinct embeddings for each sense. When integrated into downstream NLP tasks such as sentiment

analysis, Sense2Vec allows these models to select the most appropriate sense-disambiguated em-

bedding for a word based on its context. This selection process enhances both the accuracy

and efficiency of the following model. Beyond just disambiguating between completely different

senses of a word, Sense2Vec is also capable of distinguishing between nuanced senses, providing

a richer representation of language.

As illustrated in Figure 4.4, in the example sentence ”Banks at the bank”, the word ”bank”

is simply represented by a single vector in traditional semantic space, such as Word2Vec. In

contrast, Sense2Vec provides multiple embeddings for a single word, and we can distinguish the

verb ”bank” and noun ”bank” through sense embedding.

4.4 Contextualized Embedding

Usually, Word2Vec, GloVe and FastText are considered as static embedding techniques. Namely,

the representation of words in the corpus is fixed. In contrast, Sense2Vec is considered a dynamic

embedding. In the following, we will introduce another type of dynamic embedding technique,

which is commonly called contextualized embedding. Contextualized Embedding represents

words based on context and gives more representations for a single word than Sense embedding.

Take the previous ”bank” as an example, Word2Vec and GloVe have static single representa-

tions for the word, and sense embedding provides two embeddings based on the word’s sense.

Dynamic contextualized embedding, however, provides different vectors for ”bank” based on its

18

Figure 4.4: Sense2Vec illustration. In the instance, Sense2Vec pre-trained model has three
embeddings for ”bank” based on its sense, namely, noun, verb and pronoun. In the example
sentence ”Banks at the bank”, the two ”bank” have different senses and, in that case, have
different embeddings.

surrounding context. In this section, LSTM-based model ELMo and Tranformer-based model

GPT-2 and BERT will be introduced.

4.4.1 ELMo

Embeddings from Language Model (ELMo), proposed in Peters et al. (2018), takes the whole

sentence as input and are also considered as a type of sentence embedding. ELMo is essentially

a contextualized embedding model that captures the features of both syntax and semantics of

sentences while capturing the features across the context.

ELMo is based on a bidirectional LSTM (biLSTM). Figure 4.5 depicts the architecture of

ELMo. The text is firstly converted to vectors based on a conventional neural network (CNN),

and the word vectors are then regarded as the input of the biLSTM. The biLSTM consists of a

forward pass and a backward pass. The forward pass layer reads the sentence from left to right,

in other words, it reads words before the target word, while the backward reads the sentence

from right to left or reads the words after the target. The information from the two layers will

be combined and form an intermediate vector to represent the target, and then the intermediate

word vectors will be fed into the next layer. To obtain the final embedding, ELMo aims at

minimizing the loss function, which is the sum of the forward and backward log-likelihoods for

a given sequence of tokens. Mathematically, the formula is shown as below:

L = −

(
T∑
t=1

logP (wt|w1, w2, . . . , wt−1) + logP (wt|wt+1, wt+2, . . . , wT)

)
(4.5)

where wt is is the token at position t in the sequence. T is the total number of tokens in

sequence. The first term in the summation is the forward log-likelihood, and the second is the

backward log-likelihood.

19

Figure 4.5: Diagrammatic representation of ELMo (Verma & Sharma, 2020)

4.4.2 Basics of BERT and GPT-2: Transformer

The Transformer architecture represents a significant shift away from traditional RNN and CNN-

based approaches in NLP. It is first introduced by Vaswani et al. (2017). Instead of relying on

sequential processing or local convolutions, the Transformer model utilizes attention mechanisms

to draw global dependencies between input and output, enabling parallel processing and catering

to long-range dependencies.

The core innovation in the Transformer architecture is the ”self-attention” mechanism. This

allows the model to weigh the significance of different parts of the input data, permitting each

word in a sequence to focus on other relevant words in the same sequence, disregarding their

distance (Vaswani et al., 2017).

In detail, for each input object, which is the context in our case, the model computes three

vectors, Q, K and V , which stand for queries, keys and values. The three vectors are computed

as

Q = XWQ (4.6)

K = XWK (4.7)

V = XWV (4.8)

where WQ, WK , WV are weight metrics, X is the matrix of the input objects. At the beginning,

the weights are randomly initialized, and during the forward propagation, input embeddings are

multiplied with weight matrices to produce queries, keys and values. The loss value calculated

from the forward stage will be then backwards propagation to calculate gradients for all para-

meters and then update the parameters. Through the iterative process, the model will converge

at the optimal values.

Given an object, its attention score with any other objects in the sequence is calculated as

20

Score(Q,K) = QKT (4.9)

For stabilizing the gradients during the training, scaling is needed, which is

Scaled Score =
Score(Q,K)√

dk
(4.10)

where dk is the dimensionality of the key vectors.

Attention Weights = softmax(Scaled Score) (4.11)

Output = Attention WeightsV (4.12)

Based on softmax normalization and the weighted sum of values, the output is predicted.

Figure 4.6 depicts the Transformer model’s core components, with two main sections, en-

coders and decoders, which are for processing input and generating output, respectively. Both

the encoder and decoder consist of several identical layers stacked on top of one another, as

represented by the ”Nx” notation. Each layer in the encoder contains two primary compon-

ents: Multi-Head Attention and Feed Forward Neural Network. The decoder has an additional

Masked Multi-Head Attention component.

Transformers revolutionized NLP tasks by setting new state-of-the-art performances across

various benchmarks. This includes tasks like machine translation, question answering, and

named entity recognition, among others. Unlike RNNs, which process sequences token-by-token,

Transformers handle entire sequences at once, offering inherent parallelism. This makes them

scalable and well-suited for modern hardware accelerators.

Traditional models like LSTMs and GRUs often struggle with very long sequences due to the

vanishing gradient problem. Transformers, with their attention mechanisms, can handle long-

range dependencies with ease. Nowadays, due to its architecture and performance, Transformer-

based models are widely used for embedding.

4.4.3 BERT

Bidirectional Encoder Representations from Transformers (BERT) is developed by researchers

at Google (Devlin et al., 2018). Word embedding techniques and sense embedding techniques we

mentioned before all operate in a unidirectional manner, either forward or backwards. But BERT

is designed to consider context from both directions, allowing it to capture a more comprehensive

understanding of each word in a sentence. As mentioned at the beginning of this section, BERT

leverages the Transformer architecture, utilizing self-attention mechanisms to assess and assign

weights to words in a sentence related to a specific word.

BERT’s pre-training involves two main tasks. The first one is Masked Language Model.

In this task, a certain percentage of the input data is randomly selected to be hidden. The

model then predicts the original masked words based on their surrounding contexts. The loss

function for this task is the negative log-likelihood of the masked words, which means the model

is penalized based on how far its predictions are from the actual words. The formula of the loss

21

Figure 4.6: Architecture of Transformer (Vaswani et al., 2017)

22

function is shown as below:

LMLM = −
N∑
i=1

logP (wi|context) (4.13)

The second task is Next Sentence Prediction. For this task, the model is given pairs of

sentences and predict whether the second sentence in the pair follows the first sentence in the

original text. The loss for this task is the binary classification loss between the predicted and

actual labels, which is:

LNSP = −
M∑
j=1

yj log(ŷj) + (1− yj) log(1− ŷj) (4.14)

The complete loss function of BERT is the sum of the two losses above, which is:

L = LMLM + LNSP (4.15)

4.4.4 Embedding in GPT-2

GPT-2, which stands for ”Generative Pre-trained Transformer 2”, is developed by OpenAI in

Radford et al. (2019). It is built upon the Transformer architecture as well. Unlike the typical

transformer model, GPT-2 discards the encoder part and directly uses sentences as input in

decoder. The objective function of GPT-2 is to maximize the likelihood of a word sequence

based on its preceding words. Mathematically, this can be represented as:

L(θ) =
T∑
t=1

logP (wt|w1, w2, . . . , wt−1; θ) (4.16)

where wt is the word at time step t, T is the total number of words, and θ represents the

model parameters.

The gradients required for optimization are derived using backpropagation, with the gradient

of the loss with respect to the model parameters given by:

∇θL(θ) (4.17)

It is worth noticing that GPT-2 is not an embedding technique in essence. But it is feasible to

make use of the embedded sentences in the GPT-2 hidden state. In practice, we first tokenized

the sentence using the GPT-2 tokenizer and then passed the tokenized sentence through the

GPT-2 model to obtain the hidden states for each token. Averaged the hidden states of all

tokens in the last hidden state of the last layer to get an embedding for the entire sentence, and

these embeddings are what we use as input in the downstream sentiment analysis task. The last

layer is known to capture high-level semantic information, making it ideal for understanding the

intricate nuances of financial language.

The choice of contextualized embedding techniques for sentiment analysis of the Financial

Phrase Bank is backed by several compelling reasons. Firstly, these embeddings are inherently

contextual. In the realm of finance, where a word’s sentiment can pivot based on its context,

23

this property is invaluable. For instance, as mentioned in Chapter 3, the word ”loss” might have

a neutral sentiment in a statement about ”loss coverage ratio” but could be negative in the con-

text of ”significant quarterly loss.” Secondly, the comprehensive training data of contextualized

embedding ensures a foundational understanding of language. When combined with fine-tuning,

it makes the model adept at discerning sentiments in intricate financial statements. Lastly, the

capability to fine-tune models means that the embeddings can be tailored to capture the unique

sentiment nuances present in specialized financial corpora like the Financial Phrase Bank.

4.5 Graph Embedding

Autoencoder-based models are commonly used for graph embedding. Graph is a widespread

data structure which is also commonly used for representing semantic networks and for se-

mantic modelling in language. In the scenario of sentiment analysis, where data are often in

the form of texts, graph embedding is also helpful for exploring the relations between texts.

Kaneko and Bollegala (2020) state that pre-trained embedding can be improved by converting

word vectors to graph structures and through Autoencoder-based node embedding and relation

embedding techniques, and it is possible to represent information from texts in graphs. Li and

Jurafsky (2015) state that such autoencoder-enhanced embedding model can generate new well-

represented word vectors apart from pre-trained embedding models. In this section, we will

introduce this potential method of improving embedding techniques.

4.5.1 Autoencoder-enhanced Embedding

Autoencoder outperforms at compressing high-dimensional graph data into more compact, lower-

dimensional representations. This capability is invaluable for diminishing the computational

complexity in downstream tasks. Additionally, it facilitates the visualization of graphs in a

low-dimensional space.

By capturing the inherent structure and patterns present in the graph, Autoencoder can

derive meaningful representations of graph nodes. The training process, which involves recon-

structing the input graph, enables the hidden layers of the Autoencoder to discern vital features

and inter-node relationships.

One of the valuable features of Autoencoder is its ability to be trained in an unsupervised

manner. This is particularly advantageous in situations where labelled data is either limited or

costly to procure, which is exactly the case of financial corpus. Through node embedding and

relation embedding of the graph, Autoencoder can generate useful representations without for

explicit supervision.

Autoencoder can perform pre-training on graph datasets and subsequently be fine-tuned for

downstream tasks. This approach ensures that the representations encapsulate general graph

properties, which can then be transferred to other correlated tasks. Such a transfer learning

strategy can bolster the efficacy and performance of graph embedding models.

As shown in Figure 4.7, an Autoencoder consists of two main parts: Encoder and Decoder.

The encoder takes the input data and compresses it into a compact, lower-dimensional repres-

entation called the ”code”. It does this by passing the input through one or more hidden layers.

24

The decoder takes the compressed code from the encoder and reconstructs the original input

data as closely as possible. It also passes the code through one or more hidden layers.

Figure 4.7: Architecture of Autoencoder. Each neuron in the input layer represents an input
vector. The encoder is responsible for compressing the input data into a lower-dimensional
representation. Code is the central layer in the Autoencoder, which represents the compressed
representation of the input data. The decoder reconstructs the input data from the compressed
representation provided by the Code. The lines between the neurons represent weights.

Given an input vector x, the encoding and decoding processes can be represented as:

h = f(x) = σ(Wex+ be) (4.18)

where We is the weight matrix of the encoder.be is the bias of the encoder.σ is the activation

function.

x′ = g(h) = σ(Wdh+ bd) (4.19)

where Wd is the weight matrix of the decoder. bd is the bias of the decoder.

The main objective of an autoencoder is to minimize the difference between the input x

and its reconstruction x′. This is typically done using the Mean Squared Error (MSE) loss for

continuous data:

L(x, x′) = 1

n

n∑
i=1

(xi − x′i)
2 (4.20)

where n represents the number of input samples.xi is the actual input.x
′
i is the reconstructed

input.

To minimize this loss, the weights We and Wd of the encoder and decoder are adjusted using

optimization algorithms like gradient descent.

25

Transforming text data into a graph format offers a structural representation where relation-

ships between sentences can be quantified. This is advantageous for several reasons. Graphs can

capture the relational context between sentences that might be missed in a simple vector space.

This is usually ignored in other embedding technique while the relations between sentences in

financial phrase bank is important since, as stated in Malo et al. (2014), similar sentiments are

usually annotated for comments regarding the same finance topic or target companies.

In the graph, nodes represent sentences, and edges can represent semantic or syntactic rela-

tionships. Techniques like Graph Neural Networks (GNNs) or Node2Vec (Grover & Leskovec,

2016) can be employed on such graphs to generate embeddings that consider both node attrib-

utes and topological structures. These embeddings can potentially capture deeper contextual

information.

Figure 4.8: Graph representation of Financial Phrase Bank (TF-IDF). Each node represents a
sentence from the Financial Phrase Bank. The connections between nodes represent similarities
between sentences.

To better understand the conversion process, we take the basic TF-IDF word representation

as an example. Figure 4.8 shows the visualization of TF-IDF-based text conversion. To convert

our texts to graphs, we first add each sentence as a node and add edges between sentences that

have a similar sentiment. The weight of edges is determined by TF-IDF values. Furthermore,

we also combine the nodes with sentiment attributes. Take sentence 1 as an example, its node

representation includes the following attributes: {sentence: ”For the last quarter of 2010 ,

Componenta ’s n...”, sentiment: ”positive”}. Then, we are able to separate the nodes based on

sentiment class and connect nodes with similar semantic features and sentiment. The ring in

the figure indicates that a large part of sentences have high similarities, we propose two reasons

to explain this phenomenon: firstly, as mentioned in Chapter 3, the dataset reflects a practical

scenario and most comments are given neutral sentiment; secondly, some common jargon are

widely used in sentences, such as ”operating profit”. Moreover, we can also see that hardly

26

any isolated nodes exist in the graph, which indicates that most sentences have some level of

similarity with at least one other sentence.

Figure 4.9: Graph representation of Financial Phrase Bank (GloVe)

Similarly, we can conduct the same steps above to other word representations by replacing the

calculation methods of the weight of edges with other techniques. Take GloVe as an example,

the visualization of its conversion is shown in Figure 4.9. Compared to Figure 4.8, the ring

is more dense, which means under pre-trained GloVe models, similarity between sentences is

identified as higher.

After the conversion, Encoder part can compress both semantic and sentiment information

into a reduced dimension space. And decoder will reconstruct the original features from the com-

presses representation. Though minimize the loss function, Autoencoder can learn the optimal

way to represent the corpora. We will try to use the above method to contrast Autoencoder-

enhanced models and improve performance of GloVe, FastText and GloVe.

4.6 Evaluation Metrics

In order to conduct a comprehensive comparative analysis of the embedding techniques we

mentioned above, we will use two classes of evaluation metrics for assessment, which are known

as intrinsic and extrinsic evaluation.

4.6.1 Intrinsic Evaluation

Intrinsic evaluations aim to assess the quality and coherence of semantic vector space generated

by certain embedding techniques. In our research, we use word similarities of manually selected

words as our intrinsic evaluation metric.

27

Word Similarity

Word similarity is a measurement of the semantic closeness between two words. In the context of

financial sentiment analysis, understanding word similarity is crucial, as the financial domain is

replete with nuanced terminology where slight differences in word choice can lead to significant

shifts in meaning.

Word similarity is not just about syntactic or morphological similarity but delves deeper

into the semantic realm. For instance, while ”stock” and ”equity” might not look or sound

similar, they are semantically close in the financial context. Moreover, The similarity between

two words can be context-dependent. For example, ”interest” in a financial context might be

closer to ”rate” than to ”hobby”.

This metric quantifies the cosine of the angle between two non-zero vectors in an inner

product space. When applied to embeddings, cosine similarity offers a measure of how se-

mantically similar two words are based on their vector representations. Specifically, a cosine

similarity value of 1 suggests that the vectors are identical in orientation, indicating high simil-

arity, while a value of 0 implies that the vectors are orthogonal, denoting dissimilarity. In vector

space models, where words are represented as vectors, the similarity between two words w1 and

w2can be computed using the cosine similarity:

similarity(w1, w2) =
w1 · w2

||w1||2 × ||w2||2
(4.21)

where w1 · w2 is the dot product of the two vectorized words, and ||w1||2 and ||w2||2 are their

respective L2 norms.

To compute the cosine similarity between word pairs using various embeddings, a consistent

methodology is employed. For each word in a given pair, its embedding was extracted using a

pre-defined function tailored to the specific embedding technique. These embeddings are then

refined, when applicable, using Autoencoder to enhance their representational power.

To compare the word similarity, we manually select a series of word pairs with close or

exactly the same meanings in most sentences in the Financial Phrase Bank. The selected word

pairs are shown in Table 4.1. Word similarity value 1 indicates that the embeddings of the two

words are identical, and a 0 value indicates the two represented words are completely different.

4.6.2 Extrinsic Evaluation

Extrinsic evaluation metrics aim at evaluating the performance of word vectors generated by

different embedding techniques in our machine learning model for sentiment analysis. In the

domain of sentiment analysis, the performance of models is often evaluated using a suite of

metrics that provide a comprehensive understanding of their strengths and weaknesses, namely,

accuracy, precision, recall, and F1-score.

Accuracy

Accuracy provides a general measure of how often the model’s predictions are correct. Math-

ematically, it is the ratio of correctly predicted instances to the total instances. The calculation

28

Word 1 Word 2

profit earnings
sales revenue
growth increase
market industry
investment capital
shares stock
operating business
financial economic
quarter year
euro EUR
million mn
global worldwide
loss deficit

Table 4.1: Word Pairs. All the word pairs have the same or similar meanings in our context
and are selected manually from Financial Phrase Bank sentences. ”euro” and ”EUR”, ”million”
and ”mn”, ”global” and ”worldwide” are pairs of words with exactly the same meanings in all
sentences in our dataset.

is as below:

Accuracy =
Number of correctly classified comments

Total number of comments
(4.22)

Precision, recall and F1-score

The precision of the model is calculated by dividing the total number of positive predictions

by the number of correct positive predictions. It basically sums up the model’s capacity to

refrain from classifying a negative sample as positive. Recall indicates the model’s capacity

to detect all positive samples by counting the number of accurate positive predictions it made

relative to all real positives. The harmonic mean of recall and precision, or F1-Score, provide a

balanced score between the two metrics above. When there is an imbalance in the distribution

of classes, it is very helpful. In our instance, as shown in Figure 3.1, the majority of comments

are categorized as neutral, which causes the dataset to be unbalanced. The three metrics’

mathematical expressions are displayed below.

Precision =
True Positives

True Positives + False Positives
(4.23)

Recall =
True Positives

True Positives + False Negatives
(4.24)

F1 = 2× Precision× Recall

Precision + Recall
(4.25)

The combination of these metrics provides a comprehensive assessment of the model’s ex-

trinsic performance. While accuracy gives a general idea, precision, recall, and F1-score provide

insights into the financial sentiment classification model’s performance in each sentiment class.

To better understand the overall performance in this multi-classification problem, we also intro-

duce macro average and weighted average as extrinsic evaluation metrics.

29

Weight-Averaging and Macro-Averaging

Besides the extrinsic evaluations account for each sentiment class, we also introduce Macro

Average and Weight Average metrics to obtain a holistic perspective of the results. These two

metrics are commonly used in evaluating classification machine learning tasks, especially in the

evaluation of embeddings’ performance in sentiment analysis (Liu, 2017).

Macro Average calculates the extrinsic evaluation metrics for each class separately before

averaging them., treating all classes equally. For instance, macro-average precision would be the

average of precision values for ’negative’, ’neutral’, and ’positive’ sentiments.

Macro-Average Metric =
1

n

n∑
i=1

mi (4.26)

where n is the number of classes and, in our case, equal to 3; m stands for the extrinsic

evaluation metrics, which are recall, precision, accuracy and F1-score.

The weighted average is determined by calculating the metrics for each label and dividing

the average by the total number of true instances for each label. It can be more informative

than the macro average when dealing with class imbalances in our dataset.

Weighted-Average Metric =

∑n
i=1wi ·mi∑n

i=1wi
(4.27)

where n is the number of classes and also equal to 3; wi is the number of true instances in

class i; m stands for the extrinsic evaluation.

In the context of evaluating embedding performance in sentiment analysis, these metrics are

pivotal. Different embeddings might capture various linguistic nuances, and these metrics help

in understanding which embeddings are more adept at distinguishing between sentiments. By

comparing the values, one can discern which embeddings offer a more balanced performance

across sentiments and which ones might be more skewed towards a particular sentiment.

4.7 Multiclass Classification Algorithm

The downstream NLP task that our research revolves around is financial sentiment analysis,

which is fundamentally a multiclass classification task. To construct our model, we plan to utilize

two traditional classification algorithms: Support Vector Machine and Logistic Regression. This

section is dedicated to providing an overview of both models.

4.7.1 Support Vector Machine

For the purpose of training the classification model in our sentiment analysis, Support Vector

Machine (SVM) is applied. SVM is a supervised machine learning algorithm that can be used for

multiclass classification. SVM works especially well for classifying complicated but small-sized

datasets like the Financial Phrase Bank in our research. The main idea under SVM is to find

the best hyperplanes to separate data points. The points that are closest to the hyperplane in

terms of statistical distance are called support vectors. In basic form, as shown in Figure 4.10,

by finding the maximum margin between the positive margin hyperplane and negative margin

30

hyperplane, the optimal hyperplane in the middle for classification can be determined. For such

a linear SVM with a hyperplane defined by is given:

d(x) =
|w · x+ b|

∥w∥
(4.28)

where w is weight vector and b is bias term, · denotes the dot product and ∥w∥ is the Euclidean

norm of the vector w, d is statistical distance of a point x to the hyperplane.

In our case, where we have three sentiments, binary classification is not efficient. We take

advantage of multiclass classification with SVM.

It is possible to extend basic SVM to handle multiclassification problems. In our research,

we use the One-to-One approach for sentiment identification. In the One-to-One classification

strategy, a distinct hyperplane is constructed to delineate each pair of classes while disregarding

data points from any third class. This implies that the separation is exclusively influenced by

the data points of the two classes under consideration. To illustrate, as shown in Figure 4.11, the

hyperplane distinguishing the green and blue classes is optimized based solely on the distribution

of the green and blue data points, without any consideration for the orange data points. In our

case, SVM will necessitate three classifiers similar to classifiers in binary classification situations.

In order to measure misclassification and maximize margin, the hinge loss is used. The hinge

loss for a single instance is:

Li =
∑
j ̸=yi

max(0, f(xi;W)j − f(xi;W)yi +∆) (4.29)

where Li is the loss for the i
th instance.f(xi;W)j is the score for the j

th class of instance xi given

weight matrix W .yi is the true class of the i
th instance. ∆ is the margin, a hyperparameter that

determines how much the correct class score should exceed the other class scores.

Figure 4.10: Support Vector Machine (SVM) Algorithm

31

Figure 4.11: Multiclass Classification with SVM using One-to-One approach

In the stage of tuning, we applied grid search with 10-fold Cross-Validation to all of the

models and choose the combination of parameters with optimal performance. We split the SVM

models into 10 folds, trained the model on 9 folds and validate on the remaining test fold. The

following results are based on the performance of the optimal parameter combinations for all

models.

SVM has several attributes that make it a relatively more effective and interpretable method

for our financial sentiment analysis. Firstly, the embeddings all result in high-dimensional se-

mantic spaces and SVMs are proven to be effective in handling high-dimensional data. Secondly,

based on the basics of SVMs that only focus on measuring statistical distance, SVM can be adept

at a small-sized dataset, which is helpful in the finance realm with sparsity of data. Moreover,

the availability of different kernels in SVMs makes it possible to handle non-linear relationships.

4.7.2 Logistic Regression

Logistic Regression is a popular and basic machine learning tool mainly for classification. Its

basic form, binary logistic classification, assumes that the log odds of the target variable is

a linear combination of the independent variables. The odds of an event is the ratio of the

probability of the event happening to the event not happening.

odds =
p

1− p
(4.30)

The log-odds we mentioned before is the logarithm of the odds.

log-odds = log

(
p

1− p

)
(4.31)

32

Based on the assumption, the logistic regression function maps the input vectors to a value

between 0 and 1, which can be regarded as the probability in the above equations. Mathemat-

ically, the logistic function is as follows:

σ(z) =
1

1 + e−z
(4.32)

where z is the linear combination of predictors, namely, z = wTx and w is a parameter vector.

w is determined through Maximum Likelihood Estimation, namely, the training process aims

at finding the parameters that have the highest probability of observing the given target set of

classes.

In our study, we will use multiclass logistic regression to train the models to classify vector-

ized sentences into three sentiment classes. Based on the same assumptions, multiclass logistic

regression used the softmax function to map input. Similar to the function above, the softmax

function takes in the vector of logits and converts them to probabilities. The softmax function

is:

p̂j =
ezj∑K
k=1 e

zk
(4.33)

where zj is the score for class j and K is the number of classes.

In both logistic regressions, the cross-entropy is used as the loss function to measure the

difference between the predicted probabilities and the actual class. The loss function is:

L(y, p̂) = −
K∑
j=1

yj log(p̂j) (4.34)

where yj is the true label and p̂j is the predicted probability for class j.

Logistic regression has several advantages in our study. Firstly, the linearity of logistic regres-

sion makes it relatively simple and interpretable. It is beneficial to use a straightforward linear

model so that any differences in performance can be attributed more directly to the embed-

dings themselves rather than the complexities of the model. Moreover, using logistic regression,

which has fewer hyperparameters and architectural decisions, makes the tuning process easier

and more computationally efficient.

33

Chapter 5

Results

5.1 Extrinsic Evaluation Results

Table 5.1: Comparison of Embedding Techniques by Accuracy in SVM and Logistic Models

Embedding Technique SVM model Accuracy Logistic model Accuracy

ELMo 0.935982346 0.942604857
GPT-2 0.927152318 0.927152318
BERT 0.918322296 0.916114790
autoBERT 0.905077263 0.905077263
GloVe 0.783664462 0.788079470
FastText 0.759381898 0.761589404
Sense2Vec 0.746136872 0.758995735
Skip-Gram 0.739514349 0.743929360
autoGloVe 0.732891832 0.732891832
autoFastText 0.715231788 0.715231788
CBOW 0.653421634 0.666666667

As shown in Table 5.1, in the comparative analysis of various embedding techniques, biLSTM-

based ELMo emerges as the top-performing model in terms of accuracy, which is approximately

93.60% in the SVM model and 94.26% in the Logistic model. This is closely followed by the

transformer-based models GPT-2 and BERT, which have accuracies of 92.72% and 91.83%

in the SVM model and 92.72% and 91.61% in the Logistic model, respectively. This means

contextualized embedding techniques significantly outperform other embedding techniques in

capturing the nuances in financial English and classifying sentiment in the finance domain.

The ranking of overall accuracy is in line with the complexity of the architecture of the models

and their popularity in the industry. Word2Vec (CBOW and Skip-Gram) are proven to have

the lowest overall accuracy, which are 65.34% and 73.95% for the SVM model and 66.67% and

74.39% for the Logistic model, respectively. Sense2Vec, the model inspired by Word2Vec, slightly

improve the accuracy to 74.61% and 75.90%. Similarly, FastText also shows improvement due

to taking OOV into account and raising the accuracy to 75.94% and 76.15%. GloVe, owing to

the abundant external resources, the accuracy outperforms Word2Vec and reaches 78.36% and

78.81%. It is also worth noticing that autoencoder-enhanced models do not show our expected

improvement in extrinsic performance, and all have relatively lower accuracy compared to the

34

Metrics Keypoints

Negative
Precision

CBOW and Skip-Gram fail to classify negative sentiment. Hence, they
have no values in all precision, recall and f1-score of negative sentiment.
BERT model boasts an impressive negative precision and outperforms
GPT-2 and ELMo.

Neutral
Precision

BERT consistently outperform both ELMo and GPT-2.

Positive
Precision

GloVe and FastText display heightened precision for positive sentiments.
Among contextualized embedding, BERT and ELMo are close in accur-
ately identifying positive sentiments.

Negative
Recall

ELMo emerges as the leader in this metric, reflecting its adeptness at
correctly capturing negative sentiments.

Neutral
Recall

Among the contextualized embeddings, ELMo and BERT exhibit the
strongest performances, surpassing GPT-2.

Positive
Recall

ELMo and BERT show robust performances, with values that are higher
than word, sense, and autoencoder-enhanced embedding techniques

Negative
F1-score

ELMo’s dominance is evident, highlighting its balanced precision and
recall for negative sentiments.

Neutral
F1-score

Performance of BERT and ELMo suggest a balance between precision
and recall for neutral sentiments. The conventional models, especially
FastText, demonstrate commendable scores as well.

Positive
F1-score

GloVe emerges as a strong performer among traditional models. ELMo
and BERT still have a good performance

Macro
and
Weighted
Averages

When it comes to macro-averaged precision, recall, and F1-scores, the
contextualized embeddings, especially ELMo and BERT, clearly outper-
form. The weighted averages further underline the consistency of models
like ELMo and BERT across different sentiment classes.

Table 5.2: Key findings from Precision, Recall and F1-score

original models. Another notable observation in this ranking is that the ranking is not affected by

different modelling algorithms, both SVM and Logistic Regression models show exactly the same

accuracy ranking for different embedding techniques. We propose that the extrinsic performance

of embedding techniques is consistent and robust in the downstream financial sentiment analysis

in terms of overall accuracy.

Table C.1 to C.6 in Appendix C shows the detailed results of all extrinsic evaluation metrics.

For precision, recall and F1-score, we summarize the key findings in Table 5.2.

5.2 Intrinsic Evaluation Results

Table 5.3, 5.4, 5.5 show the result of word similarities.

A key observation is that even though original models outperform Autoencoder-enhanced

models in terms of extrinsic evaluation metrics, we observe a salient improvement in word

similarities in refined FastText and BERT. The word pairs ”euro” and ”EUR”, ”million” and

”mn”, ”global” and ”worldwide” are supposed to have exactly the same semantics in all sentences

and the word similarities of the three word pairs theoretically should equal 1. The autoencoder-

enhanced gives values significantly closer to 1 compared to the original versions. It means

35

the Autoencoder does have the capability of capturing the nuances between certain words and

measuring the word similarity in a better manner than the original models. However, we also

notice that Autoencoder-enhanced FastText has a significantly lower score for the word pair

”sales” & ”revenue” compared to the original FastText. This hints that Autoencoder-enhanced

embedding techniques might not always provide a comprehensive improvement for all dimensions

of word similarity.

Other than the first finding, we also notice that traditional word embedding techniques,

Word2Vec fails to measure similarities between word pair ”loss” and ”deficit” due to the low

frequencies of the word ”deficit” in our corpora. GloVe fails to measure similarities between

”EUR” and ”euro” and it is likely because of OOV problem in pre-trained word vectors.

Moreover, similar to extrinsic evaluation comparison, contextualized embedding techniques

still have overall higher performance than the other embedding techniques. Embeddings ex-

tracted from GPT-2 excel across almost all word pairs, with scores typically above 0.9. This

indicates its prowess in understanding word semantics and capturing synonymous relationships.

However, while ELMo exhibits strong results in extrinsic evaluations, it lags behind in captur-

ing synonymous relationships compared to BERT and GPT-2. This observation is particularly

evident from ELMo’s word similarity scores for certain synonyms, where it produces values

considerably less than the theoretical ideal of 1. We propose this is because the transformer’s

attention mechanism in BERT and GPT-2 might be better suited to understanding nuanced

relationships between words, especially in contexts where words are used interchangeably. It

may also be because some abbreviations like ”mn” and ”euro” do not commonly occur in the

corpora that ELMo is pre-trained on.

36

Table 5.3: Word Similarity of Word Embeddings

Word Pairs Skip-Gram CBOW GloVe FastText

profit earnings 0.80 0.99 0.89 0.57
sales revenue 0.89 0.99 0.78 0.64
growth increase 0.98 0.99 0.77 0.44
market industry 0.95 0.99 0.72 0.62
investment capital 0.97 0.99 0.65 0.60
shares stock 0.95 0.99 0.85 0.61
operating business 0.82 0.99 0.61 0.51
financial economic 0.94 0.97 0.77 0.74
quarter year 0.94 0.99 0.69 0.57
euro EUR 0.76 0.97 0.63
million mn 0.89 0.99 0.23 0.48
global worldwide 0.99 0.99 0.72 0.67
loss deficit 0.60 0.46

Table 5.4: Word Similarity of Contextualized Embeddings

Word Pairs BERT ELMo GPT-2

profit earnings 0.85 0.76 0.98
sales revenue 0.81 0.71 0.99
growth increase 0.85 0.54 0.94
market industry 0.80 0.64 0.96
investment capital 0.79 0.41 0.98
shares stock 0.61 0.71 0.98
operating business 0.84 0.43 0.99
financial economic 0.91 0.69 0.99
quarter year 0.66 0.60 0.99
euro EUR 0.75 0.58 0.99
million mn 0.76 0.48 0.97
global worldwide 0.89 0.75 0.99
loss deficit 0.77 0.56 0.98

Table 5.5: Word Similarity of Autoencoder-enhanced Embeddings

Word Pairs autoFastText autoGloVe autoBERT

profit earnings 0.68 0.86 0.94
sales revenue 0.67 0.66 0.92
growth increase 0.52 0.75 0.93
market industry 0.71 0.83 0.90
investment capital 0.63 0.74 0.90
shares stock 0.66 0.79 0.92
operating business 0.53 0.39 0.93
financial economic 0.72 0.82 0.95
quarter year 0.73 0.76 0.86
euro EUR 0.71 0.85
million mn 0.62 0.30 0.88
global worldwide 0.77 0.76 0.94
loss deficit 0.61 0.65 0.89

37

Chapter 6

Discussion and Conclusion

6.1 Discussion and Further Explanation of the Results

Generally speaking, contextualized embedding is believed to have better performance in word

representation. Among the three contextualized embedding techniques, the performance of

ELMo is particularly impressive compared to Transformer-based models. A similar phenomenon

also occurs in Schlechtweg, McGillivray, Hengchen, Dubossarsky and Tahmasebi (2020), where

the authors also detect ELMo’s outperformance over transformer-based models. We propose

that such outperformance may come from several perspectives: Firstly, ELMo typically adds its

pre-trained representations to the task-specific model and only fine-tunes the task-specific para-

meters, while BERT and GPT-2 fine-tunes the entire model. This means that ELMo is less prone

to overfitting when adapting to the specific sentiment analysis task, especially when the amount

of labelled data is limited. Secondly, implementation details or other architectural nuances can

make a difference in performance. Some configurations might favour ELMo architecture over

BERT.

However, while ELMo architecture is proven to have a better extrinsic performance in the

SVM and logistic regression sentiment analysis model, it is computationally more intensive

and slower in processing compared to its transformer counterparts. On the other hand, BERT

and GPT-2, despite their slightly lower accuracy metrics, BERT still outperform in a series of

other metrics and also offer faster processing speeds. Moreover, embedding from GPT-2 also

dominantly outperforms all the other embedding techniques in terms of intrinsic evaluation.

More importantly, transformer-based models are designed to handle a broader range of linguistic

structures due to their advanced architectures. In conclusion, The flexibility of transformer

models and better performance in intrinsic evaluation make transformer-based contextualized

embedding techniques more adaptable to various tasks and datasets in the rapidly changing

finance realm.

Several factors can be attributed to extrinsic evaluation ranking. The superior performance

of models like ELMo, GPT-2, and BERT can be attributed to their intricate architectures

that leverage deep transformer mechanisms and LSTM and are adept at capturing contextual

information. Additionally, the vast datasets on which these models are pre-trained enable them

to discern a wide array of linguistic patterns. In contrast, models like GloVe or FastText generate

static embeddings for each word, which might limit their efficiency.

38

A salient observation from the analysis is the relatively subdued performance of Autoencoder-

enhanced models compared to their original versions in terms of extrinsic evaluation but a

relatively better performance in terms of intrinsic evaluation. The performance of Autoencoder-

enhanced BERT, the highest among the Autoencodee-enhanced models, shows a significant

improvement in word similarities while lagging behind its original version in accuracy. This

trend is consistent in FastText as well. We propose that such intrinsic improvement comes

from Autoencoder-based models’ deeper understanding between sentences through modelling

node relations. However, information loss during the conversion from text to graph causes a

decrease in extrinsic performance. Autoencoders operate by compressing information into a

condensed representation and subsequently reconstructing the original data. This compression

and reconstruction process, while capturing non-linearities and intricate patterns, might also

lead to potential information loss. The added layer of complexity introduced by Autoencoders

does not always guarantee enhanced performance in downstream tasks, especially if the original

embeddings were already task-optimized. Furthermore, the training intricacies of Autoencoders,

which demand meticulous tuning, can sometimes result in the model overlooking essential data

features. It is also worth noting that autoencoders might not be inherently optimized for specific

NLP tasks in the same vein as models explicitly designed for language processing, such as BERT

or ELMo. However, there is no reason that we should ignore the potential in Autoencoder-based

embedding models and graph embedding’s applications in text data due to a slight decline in

extrinsic performance.

Our answer to the central question of this research is: Generally, contextualized embedding

techniques are proven to have a better performance in financial sentiment analysis models in

terms of both extrinsic and intrinsic evaluation. Within contextualized embedding, ELMo has

slightly better extrinsic performance, such as accuracy, while showing significantly poorer per-

formance in intrinsic evaluation. BERT and Embeddings from GPT-2 show high performance

in both extrinsic and intrinsic evaluations. Sense embedding can improve extrinsic performance

in a limited range but it lacks an intrinsic evaluation method. Moreover, it is possible to apply

graph embedding and autoencoder for word representation, even though intrinsic performance

is proven to be better, but the performance in sentiment analysis can not be guaranteed.

6.2 Limitations and Potential Future Research

There are several significant limitations in our research and they can pave the way for further

research.

Even though financial English is widely used across the global finance industry, we still

cannot ignore that non-English-speaking economies are playing an increasingly important role

in the world’s financial system, such as the European Union. In our research, only English

comments are contained. Comparative analysis of embedding techniques in financial sentiment

analysis regarding multilingual corpus still remains void, and there is a research gap in comparing

multilingual embedding techniques, such as M-BERT. Besides the linguistic perspective, more

embedding techniques can be added to the comparison, we only selected several representative

techniques in our research.

Another deficiency in this research is that the correlation between extrinsic and intrinsic

39

evaluation metrics still needs to be explored. In our research, while intrinsic evaluation focuses

on the semantic relation between limited selected words, extrinsic evaluation focuses more on

the overall performance of the models. An embedding technique that perfectly captures word

similarities may not provide sufficient information for sentiment classification. Furthermore,

embedding is just one part of the entire modelling process. Factors in other stages, such as

tuning, may also affect our extrinsic evaluation.

Moreover, pre-trained models’ performance highly depends on the external word vector re-

sources. Lack of universal training corpora may lead us to insufficient comparison results. We

suggest that, if possible, universal training datasets should be constructed and build up finance

domain-specific word vectors. Such pre-trained models will exclusively boost the credibility of

the comparative analysis.

40

References

Adhikari, S., Thapa, S., Naseem, U., Lu, H. Y., Bharathy, G. & Prasad, M. (2023). Explainable

hybrid word representations for sentiment analysis of financial news. Neural Networks,

164 , 115–123.

Araci, D. (2019). Finbert: Financial sentiment analysis with pre-trained language models. arXiv

preprint arXiv:1908.10063 .

Bakarov, A. (2018). A survey of word embeddings evaluation methods. arXiv preprint

arXiv:1801.09536 .

Baker, M. & Wurgler, J. (2006). Investor sentiment and the cross-section of stock returns. The

journal of Finance, 61 (4), 1645–1680.

Bausch, P. & Bumgardner, J. (2006). Make a flickr-style tag cloud. Flickr hacks, 82–86.

Bojanowski, P., Grave, E., Joulin, A. & Mikolov, T. (2017). Enriching word vectors with subword

information. Transactions of the association for computational linguistics, 5 , 135–146.

Dang, N. C., Moreno-Garćıa, M. N. & De la Prieta, F. (2020). Sentiment analysis based on

deep learning: A comparative study. Electronics, 9 (3), 483.

Davis, A. K., Piger, J. M. & Sedor, L. M. (2012). Beyond the numbers: Measuring the in-

formation content of earnings press release language. Contemporary Accounting Research,

29 (3), 845–868.

Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. (2018). Bert: Pre-training of deep bidirec-

tional transformers for language understanding. arXiv preprint arXiv:1810.04805 .

Dudley-Evans, T. & St John, M. J. (1998). Developments in english for specific purposes: A

multi-disciplinary approach. Cambridge university press.

Firth, J. R. (1957). Ethnographic analysis and language with reference to malinowski’s views.

Man and Culture: an evaluation of the work of Bronislaw Malinowski , 93–118.

Frieder, L. & Zittrain, J. (2007). Spam works: Evidence from stock touts and corresponding

market activity. Hastings Comm. & Ent. LJ , 30 , 479.

Grover, A. & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In Pro-

ceedings of the 22nd acm sigkdd international conference on knowledge discovery and data

mining (pp. 855–864).

Kaneko, M. & Bollegala, D. (2020). Autoencoding improves pre-trained word embeddings.

arXiv preprint arXiv:2010.13094 .

Kashyap, A. K. & Stein, J. C. (2023). Monetary policy when the central bank shapes financial-

market sentiment. Journal of Economic Perspectives, 37 (1), 53–75.

Li, J. & Jurafsky, D. (2015). Do multi-sense embeddings improve natural language understand-

ing? arXiv preprint arXiv:1506.01070 .

41

Liu, H. (2017). Sentiment analysis of citations using word2vec. arXiv preprint

arXiv:1704.00177 .

Loughran, T. & McDonald, B. (2011). When is a liability not a liability? textual analysis,

dictionaries, and 10-ks. The Journal of finance, 66 (1), 35–65.

Loughran, T. & McDonald, B. (2016). Textual analysis in accounting and finance: A survey.

Journal of Accounting Research, 54 (4), 1187–1230.

Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I. & Frey, B. (2015). Adversarial autoencoders.

arXiv preprint arXiv:1511.05644 .

Malandri, L., Xing, F. Z., Orsenigo, C., Vercellis, C. & Cambria, E. (2018). Public mood–

driven asset allocation: The importance of financial sentiment in portfolio management.

Cognitive Computation, 10 , 1167–1176.

Malo, P., Sinha, A., Korhonen, P., Wallenius, J. & Takala, P. (2014). Good debt or bad

debt: Detecting semantic orientations in economic texts. Journal of the Association for

Information Science and Technology , 65 (4), 782–796.

McEnery, A. & Baker, P. (2015). Corpora and discourse studies: Integrating discourse and

corpora. Springer.

Mikolov, T., Chen, K., Corrado, G. & Dean, J. (2013). Efficient estimation of word representa-

tions in vector space. arXiv preprint arXiv:1301.3781 .

Mikolov, T., Yih, W.-t. & Zweig, G. (2013). Linguistic regularities in continuous space word

representations. In Proceedings of the 2013 conference of the north american chapter of the

association for computational linguistics: Human language technologies (pp. 746–751).

Nickerson, C. (2005). English as a lingua franca in international business contexts (Vol. 24)

(No. 4). Elsevier.

Pennington, J., Socher, R. & Manning, C. D. (2014). Glove: Global vectors for word repres-

entation. In Proceedings of the 2014 conference on empirical methods in natural language

processing (emnlp) (pp. 1532–1543).

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K. & Zettlemoyer, L.

(2018). Deep contextualized word representations.

Pilehvar, M. T. & Camacho-Collados, J. (2020). Embeddings in natural language processing:

Theory and advances in vector representations of meaning. Morgan & Claypool Publishers.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I. et al. (2019). Language

models are unsupervised multitask learners. OpenAI blog , 1 (8), 9.

Rawte, V., Gupta, A. & Zaki, M. J. (2020). A comparative analysis of temporal long text

similarity: Application to financial documents. In Workshop on mining data for financial

applications (pp. 77–91).

Salton, G., Wong, A. & Yang, C.-S. (1975). A vector space model for automatic indexing.

Communications of the ACM , 18 (11), 613–620.

Schlechtweg, D., McGillivray, B., Hengchen, S., Dubossarsky, H. & Tahmasebi, N. (2020).

Semeval-2020 task 1: Unsupervised lexical semantic change detection. arXiv preprint

arXiv:2007.11464 .

Schnabel, T., Labutov, I., Mimno, D. & Joachims, T. (2015). Evaluation methods for unsu-

pervised word embeddings. In Proceedings of the 2015 conference on empirical methods in

42

natural language processing (pp. 298–307).

Schütze, H. (1998). Automatic word sense discrimination. Computational linguistics, 24 (1),

97–123.

Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock

market. The Journal of finance, 62 (3), 1139–1168.

Tetlock, P. C., Saar-Tsechansky, M. & Macskassy, S. (2008). More than words: Quantifying

language to measure firms’ fundamentals. The journal of finance, 63 (3), 1437–1467.

Trask, A., Michalak, P. & Liu, J. (2015). sense2vec-a fast and accurate method for word sense

disambiguation in neural word embeddings. arXiv preprint arXiv:1511.06388 .

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin,

I. (2017). Attention is all you need. Advances in neural information processing systems,

30 .

43

Appendix A

Word Cloud

Figure A.1: Word Cloud for Comments with Negative Comments

44

Figure A.2: Word Cloud for Comments with Positive Comments

Figure A.3: Word Cloud for Comments with Neural Comments

45

Appendix B

Implementation of Embedding

Techniques

Table B.1: Implementation of Embedding Techniques
Embedding
Technique

Pre-trained model Description

Skip-Gram NaN Custom-trained embeddings
based on Financial Phrase
Bank.

CBOW NaN Custom-trained embeddings
based on Financial Phrase
Bank.

GloVe glove.6B.300d Trained on 6 billion tokens.
Each vector has a dimension-
ality of 300.

FastText wiki-news-300d-1M Autoencoder 1 million words
and phrases in Wikipedia.
Each vector has a dimension-
ality of 300.

autoGlove glove.6B.300d Original model is trained on
6 billion tokens. Each vector
has Autoencoderality of 300.
The model is enhanced with
Autoencoder.

autoFastText wiki-news-300d-1M Original model is trained on 1
million words and phrases in
Wikipedia. Each vector has
a dimensionality of 300. The
model is enhanced with Au-
toencoder.

46

Table B.2: Implementation of Embedding Techniques
Embedding
Technique

Pre-trained model Description

ELMo
elmo 2x4096 512 2048
cnn 2xhighway weights

Available in AllenNLP. The
model has two LSTM layers
and each has 4096 units. Each
embedding has a dimension-
ality of 2048. Both option
and weight files are from this
model.

BERT bert-base-uncased Trained on the BooksCorpus
and English Wikipedia with
more than 3300 million words
in total. It has 110 mil-
lion parameters, including 12
transformer layers, 768 hidden
units, and 12 attention heads.
The model treats uppercase
and lowercase letters as the
same character.

GPT-2 GPT-2 medium Note GPT-2 is not an embed-
ding technique in essence, we
extract embeddings from the
GPT-2 tokenizer and model

autoBERT bert-base-uncased Original model is trained
on the BooksCorpus and
English Wikipedia wAutoen-
coderan 3300 million words
in total. It has 110 mil-
lion parameters, including 12
transformer layers, 768 hidden
units, and 12 attention heads.
The model treats uppercase
and lowercase letters as the
same character. The model is
enhanced with Autoencoder.

47

Appendix C

Extrinsic Evaluation

Table C.1: Word Embedding Extrinsic Evaluation Metrics Comparison for SVM models

Metric CBOW Skip-Gram GloVe FastText

Overall accuracy 0.653421634 0.739514349 0.78366446 0.759381898
negative precision 0 0 0.52631579 1
negative recall 0 0 0.35087719 0.01754386
negative f1-score 0 0 0.42105263 0.034482759
negative support 57 57 57 57
neutral precision 0.6674937965 0.783382789 0.85906040 0.839228296
neutral recall 0.9817518248 0.96350365 0.93430657 0.952554745
neutral f1-score 0.7946824225 0.864157119 0.89510490 0.892307692
neutral support 274 274 274 274
positive precision 0.54 0.612068966 0.67521368 0.581560284
positive recall 0.221311475 0.581967213 0.64754098 0.672131148
positive f1-score 0.313953488 0.596638655 0.66108787 0.623574144
positive support 122 122 122 122
macro avg precision 0.402497932 0.465150585 0.68686329 0.806929527
macro avg recall 0.4010211 0.515156954 0.64424158 0.547409917
macro avg f1-score 0.369545304 0.486931925 0.65908180 0.516788198
macro avg support 453 453 453 453
weighted avg precision 0.549168433 0.638673947 0.76767907 0.790063814
weighted avg recall 0.653421634 0.739514349 0.78366446 0.759381898
weighted avg f1-score 0.565221433 0.683375202 0.77243148 0.711995299
weighted avg support 453 453 453 453

48

Table C.2: Word Embedding Extrinsic Evaluation Metrics Comparison for Logistic Models

Metric CBOW Skip-Gram GloVe FastText

Overall accuracy 0.666666667 0.743929360 0.788079470 0.761589404
negative precision 0.0 0.5 0.547619048 0.666666667
negative recall 0.0 0.017543860 0.403508772 0.105263158
negative f1-score 0.0 0.033898305 0.464646465 0.181818182
negative support 57 57 57 57
neutral precision 0.679389313 0.788059701 0.864406780 0.811145511
neutral recall 0.974452555 0.963503650 0.930656934 0.956204380
neutral f1-score 0.800599700 0.866995074 0.896309315 0.877721943
neutral support 274 274 274 274
positive precision 0.583333333 0.620689655 0.681034483 0.636363636
positive recall 0.286885246 0.590163934 0.647540984 0.631147541
positive f1-score 0.384615385 0.605042017 0.663865546 0.633744856
positive support 122 122 122 122
macro avg precision 0.420907549 0.636249786 0.697686770 0.704725271
macro avg recall 0.420445934 0.523737148 0.660568897 0.564205026
macro avg f1-score 0.395071695 0.501978465 0.674940442 0.564428327
macro avg support 453 453 453 453
weighted avg precision 0.568033860 0.706738402 0.775161038 0.745894555
weighted avg recall 0.666666667 0.743929360 0.788079470 0.761589404
weighted avg f1-score 0.587830894 0.691620264 0.779393372 0.724451040
weighted avg support 453 453 453 453

Table C.3: Contextualized Embedding Extrinsic Evaluation Metrics Comparison for SVM mod-
els

Metric BERT GPT-2 ELMo

Overall accuracy 0.918322296 0.927152318 0.93598234
negative precision 0.867924528 0.814814815 0.88
negative recall 0.807017544 0.771929825 0.771929825
negative f1-score 0.836363636 0.792792793 0.822429907
negative support 57 57 57
neutral precision 0.939716312 0.974729242 0.981549815
neutral recall 0.967153285 0.98540146 0.97080292
neutral f1-score 0.95323741 0.980036298 0.976146789
neutral support 274 274 274
positive precision 0.889830508 0.868852459 0.863636364
positive recall 0.860655738 0.868852459 0.93442623
positive f1-score 0.875 0.868852459 0.897637795
positive support 122 122 122
macro avg precision 0.899157116 0.886132172 0.908395393
macro avg recall 0.878275522 0.875394581 0.892386325
macro avg f1-score 0.888200349 0.880560516 0.898738164
macro avg support 453 453 453
weighted avg precision 0.91724788 0.926093282 0.937016083
weighted avg recall 0.918322296 0.927152318 0.93598234
weighted avg f1-score 0.917460878 0.926532306 0.935661227
weighted avg support 453 453 453

49

Table C.4: Contextualized Embedding Extrinsic Evaluation Metrics Comparison for Logistic
Models

Metric BERT GPT2 ELMo

Overall accuracy 0.916114790 0.927152318 0.942604857
negative precision 0.905660377 0.830188679 0.916666667
negative recall 0.842105263 0.771929825 0.771929825
negative f1-score 0.872727273 0.8 0.838095238
negative support 57 57 57
neutral precision 0.939716312 0.967509025 0.974637681
neutral recall 0.967153285 0.978102190 0.981751825
neutral f1-score 0.953237410 0.972776770 0.978181818
neutral support 274 274 274
positive precision 0.864406780 0.878048780 0.883720930
positive recall 0.836065574 0.885245902 0.934426230
positive f1-score 0.85 0.881632653 0.908366534
positive support 122 122 122
macro avg precision 0.903261156 0.891915495 0.925008426
macro avg recall 0.881774707 0.878425972 0.896035960
macro avg f1-score 0.891988228 0.884803141 0.908214530
macro avg support 453 453 453
weighted avg precision 0.915149091 0.926137260 0.942858009
weighted avg recall 0.916114790 0.927152318 0.942604857
weighted avg f1-score 0.915303543 0.926490107 0.941752680
weighted avg support 453 453 453

Table C.5: Autoencoded Embedding and Sense Embedding Extrinsic Evaluation Metrics Com-
parison for SVM models

Metric autoFastText autoGloVe autoBERT Sense2Vec

Overall accuracy 0.715231788 0.732891832 0.905077263 0.74613687
negative precision 0 0 0.897959184 0.40000000
negative recall 0 0 0.771929825 0.07017544
negative f1-score 0 0 0.830188679 0.11940299
negative support 57 57 57 57
neutral precision 0.757225434 0.788343558 0.939501779 0.82467532
neutral recall 0.95620438 0.937956204 0.96350365 0.92700730
neutral f1-score 0.84516129 0.856666667 0.951351351 0.87285223
neutral support 274 274 274 274
positive precision 0.579439252 0.595238095 0.829268293 0.59259259
positive recall 0.508196721 0.614754098 0.836065574 0.65573770
positive f1-score 0.541484716 0.60483871 0.832653061 0.62256809
positive support 122 122 122 122
macro avg precision 0.445554895 0.461193885 0.888909752 0.60575597
macro avg recall 0.4881337 0.517570101 0.857166349 0.55097348
macro avg f1-score 0.462215335 0.487168459 0.871397697 0.53827444
macro avg support 453 453 453 453
weighted avg precision 0.614064807 0.637141683 0.90458696 0.70873584
weighted avg recall 0.715231788 0.732891832 0.905077263 0.74613687
weighted avg f1-score 0.657031631 0.681052956 0.904138407 0.71064192
weighted avg support 453 453 453 453

50

Table C.6: Autoencoded Embedding and Sense Embedding Extrinsic Evaluation Metrics Com-
parison for Logistic models

Metric autoFastText autoGloVe autoBERT sense2vec

Overall accuracy 0.6931567329 0.7417218543 0.8984547461 0.7527593819
negative precision 0.5 0.5 0.7666666667 0.5416666667
negative recall 0.0175438596 0.1929824561 0.8070175439 0.2280701754
negative f1-score 0.0338983051 0.2784810127 0.7863247863 0.3209876543
negative support 57 57 57 57
neutral precision 0.7257617729 0.8063492063 0.9460431655 0.803125
neutral recall 0.9562043796 0.9270072993 0.9598540146 0.9379562044
neutral f1-score 0.8251968504 0.8624787776 0.9528985507 0.8653198653
neutral support 274 274 274 274
positive precision 0.5666666667 0.6120689655 0.852173913 0.6513761468
positive recall 0.4180327869 0.5819672131 0.8032786885 0.5819672131
positive f1-score 0.4811320755 0.5966386555 0.8270042194 0.6147186147
positive support 122 122 122 122
macro avg precision 0.5974761465 0.6394727240 0.8549612484 0.6653892712
macro avg recall 0.4639270087 0.5673189895 0.8567167490 0.5826645310
macro avg f1-score 0.4467424103 0.5791994819 0.8554091855 0.6003420448
macro avg support 453 453 453 453
weighted avg precision 0.6545078567 0.7154792414 0.8981921517 0.7293579247
weighted avg recall 0.6931567329 0.7417218543 0.8984547461 0.7527593819
weighted avg f1-score 0.6329674473 0.7174007036 0.8980336214 0.7293368883
weighted avg support 453 453 453 453

51

