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Abstract

Terminal Operating Systems are complex systems that contain multiple algorithms with

parameters that can be tuned to improve the performance of a container terminal. This

parameter tuning is a time-consuming process that is often done by hand. In this thesis

we investigate the possibility to automate the tuning process for the stowage planner of a

Terminal Operating System. This automation would reduce the labor needed for parameter

tuning and it can also improve the performance of the container terminal. We develop

our Iterative Parameter Tuning Method and apply it on historic data from a container

terminal that is currently live. The Iterative Parameter Tuning Method iteratively estimates

the effects of parameters using emulations and a linear regression on the results of those

emulations and applies our Parameter Suggestion Model until we get convergence. For our

Parameter Suggestion Model, we investigate four different heuristics that model the stowage

planner. Our Iterative Parameter Tuning Method reaches convergence within seven iterations

and this tuning advice reaches a higher Quay Crane productivity than the benchmark we

compare our advice to. Often, the Iterative Parameter Tuning Method already reaches

convergence within three iterations. The results show that automation of the tuning process

is a possibility.

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second
assessor, Erasmus School of Economics or Erasmus University Rotterdam
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1 Introduction

Operating a container terminal is a complex process. A container terminal often has thousands

of containers laying in its yard and there are often multiple vessels that need to load and

discharge containers. All these containers need to be assigned to locations on the vessel and in

the container yard. In most container terminals there is a Terminal Operating System (TOS)

that controls all the processes and the people in the container terminal. All those processes

depend on each other and a small delay at one process often also impacts the other processes.

As a result, small inefficiencies in one part of the container terminal can result in delays and

extra costs over the entire container terminal. Improving the TOS can have a huge effect on the

performance of a container terminal (C. Boer & Saanen, 2012).

A TOS contains multiple algorithms that it uses to make decisions in the container terminal.

Those algorithms have multiple parameters that can be tuned to improve the performance of

a container terminal. The goal of this thesis is to investigate the possibility to automate the

optimization of the container terminal performance by tuning the parameters of one of the

algorithms that the TOS uses. We focus on the stowage planner algorithm that computes the

stowage plan for a vessel that assigns containers to specific locations on the vessel.

Currently, functional experts at Konecranes or employees from the container terminal im-

prove the performance of the TOS by tuning the parameters of the algorithms in the TOS by

hand. They make use of Key Performance Indicators, computed based on emulations using

CONTROLS, the emulation tool from Konecranes. Emulation is a simulation of a virtual con-

tainer terminal that integrates the real TOS. The most important Key Performance Indicator

that they use to determine the performance of the TOS is the Quay Crane (QC) productivity

(Jonker et al., 2021).

The tuning process by hand is time consuming, as the functional experts need to configure

different settings, start new emulations and interpret the Key Performance Indicators. To be

able to interpret all the results from the emulations correctly, the functional experts also need to

have enough experience with the parameters and the algorithm. Otherwise, their tuning efforts

might not even actually improve the performance of the container terminal. Automating the

tuning process would decrease the amount of labor needed to tune the parameters from the TOS.

Next to that, parameter tuning would also become available for people with less experience in

parameter tuning as the automated parameter tuning would take most of the decisions.

We develop our Iterative Parameter Tuning Method to tune the parameters from the stowage

planner. This Iterative Parameter Tuning Method first estimates the effects from the stowage

planner parameters on the QC productivity using a linear regression on the results from emula-

tions with stowage plans generated by the stowage planner for different sets of parameter values.

Then the Iterative Parameter Tuning Method iteratively suggests a parameter suggestion using

our Parameter Suggestion Model and updates the linear regression until we get convergence of

the parameter suggestions. In the Parameter Suggestion Model, we can use one of four heuristics

that we propose to model the stowage planner. Those heuristics are the Simple Local Search,

the Greedy Randomized Adaptive Search Procedure, the Simulated Annealing, and the Large

Neighborhood Search heuristic. To evaluate our approach, we use the historic data from a

terminal that is currently live.
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We find that the Iterative Parameter Tuning Method for each heuristic reaches convergence

within seven iterations. For most of the heuristics the Iterative Parameter Tuning Method even

reaches convergence within three iterations. The estimated QC productivity of the stowage plan

that the stowage planner generates for the tuned parameters is higher than the benchmark we

compare our results to. This indicates that the Iterative Parameter Tuning Method is able to

tune the parameters successfully. The Iterative Parameter Tuning Method gets the best results

if it uses the GRASP heuristic in the Parameter Suggestion Model.

There is one problem with the Iterative Parameter Tuning Method and that is the long

computation time of the method. This can make the application of the method on a real-time

problem difficult. However, the Iterative Parameter Tuning Method can still be applied in more

long term parameter tuning projects that aim to find the best parameter values of the stowage

planner on the long term.

The Iterative Parameter Tuning Method that we develop in this thesis is able to tune the

parameters of the stowage planner successfully and all the steps of the Iterative Parameter

Tuning Method can be fully automated. This shows that it is possible to automate the parameter

tuning of the stowage planner.

In Section 2 we give an overview of the relevant literature, while we describe the problem

in Section 3. We describe our methods in Section 4 and our computational experiments in

Section 5. Finally, we give our conclusion in Section 6.
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2 Literature review

In this section we go over the literature that concerns the problem discussed in this thesis. First,

we give a small overview about emulation and how we can use it to optimize the performance of

a Terminal Operating System (TOS). Then we give an overview on the literature in black-box

optimization and lastly, we go over literature on making vessel stowage plans.

2.1 Emulation

Emulation is a way to evaluate the performance of control systems. Compared to a real simula-

tion, a part of the simulation is replaced by the real control system (McGregor, 2002). In this

way emulations are closer to real live, which gives a better representation of how the control

system would work in real live.

Emulation is not the only option to evaluate the performance of a control system. Other

options are full simulation, real-time control and prototyping (C. A. Boer & Saanen, 2008). In

Table 1 we give an overview of how we can apply those four options to the testing and tuning

of the TOS from a container terminal. Testing the container terminal using prototyping would

give the most accurate results. However, as prototyping uses the real TOS and the real terminal,

there could be real consequences if something goes wrong while testing.

Table 1: Overview of the different possibilities to test the performance of a TOS
Method TOS Terminal

Full simulation Simulated Simulated
Real-time control Simulated Real

Emulation Real Simulated
Prototyping Real Real

C. A. Boer & Saanen (2008) developed an emulation tool for container terminals. They call

their emulation tool CONTROLS. Other emulation software for container terminals is CHESS-

CON developed by AKQUINET group (2023). We make use of CONTROLS to tune the perfor-

mance of a stowage planner from a TOS. C. Boer & Saanen (2012) already apply this successfully.

For example, they use CONTROLS to test whether changing the dispatching algorithm and the

corresponding parameters would result in improved truck turn-around times. This results in

improvements of approximately 30% of those truck turn-around times.

One restriction of emulation is that we cannot speed the emulations up too much compared

to real time, as it uses the real TOS. If we speed up the emulation too much, it affects the

decision making of the TOS. Because of that, one emulation can take several hours. Comparing

different parameter settings thus takes a long time.

2.2 Black-box optimization

Black-box optimization is the optimization of a problem of which it is unknown how the objective

function and the corresponding constraints are defined according to Alarie et al. (2021). They

mention that optimization problems that require a simulation to be able to evaluate the objective

are an example of a black-box optimization problem that occurs often. This corresponds to the
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problem we consider in this thesis, where we tune parameters using emulation runs. Black-box

optimization is also called derivative-free optimization (Rios & Sahinidis, 2013).

There are numerous ways to solve a black-box optimization problem. One of the classifiers

Rios & Sahinidis (2013) uses to distinguish between the different options, is whether the solu-

tion approach is direct or model-based. According to Audet (2014), direct search methods are

methods that only use the function evaluations of the function they are trying to optimize and

not their derivatives.

Generalized pattern search (GPS), proposed by Torczon (1997), is an example of a direct

solution approach. In a GPS algorithm, the algorithm improves an initial solution in multiple

iterations. Each iteration they define a step size and based on this step size they find a new

solution. If this results in an improvement of the objective function, this newfound solution

becomes the current best solution. Then they update the step size parameter for the next

iteration and repeat the process.

GPS has later been adapted by Audet & Dennis Jr (2006) to be able to handle general

constraints and to be able to search in all directions. They call this adapted algorithm Mesh

Adaptive Direct-Search (MADS). One advantage of using a direct search algorithm is that this

method can be parallelized, which would increase the speed of the algorithm (Conn & Le Digabel,

2013).

Another possibility to solve a black-box optimization problem is using a model-based ap-

proach. A model-based approach uses a surrogate model to approximate the real function (Rios

& Sahinidis, 2013). New parameter estimates can then be based upon that model. Vu et al.

(2017) mentions polynomials, radial basis functions, kriging, support vector machines and mixed

surrogate models as possible surrogate models.

Papalexopoulos et al. (2022) and Zhu & Bemporad (2023) explain that it is possible to

rewrite some of those surrogate models in Mixed Integer Programming (MIP) formulations. In

this way it is also possible to add restrictions on the parameter that you are optimizing. When

you apply this methodology, the model becomes specific to a certain problem and as a result it

is difficult to apply the same model to multiple different problems.

In our thesis we treat the algorithm of the stowage planner as a black-box. We give the

stowage planner the parameters as input and this then generates a stowage planning. We use

the surrogate model approach, as we model the stowage planner using a MIP formulation. We

also treat the relationship between the stowage planner parameters and their QC productivity

as a black-box, because this relationship depends on an emulation and the stowage planner.

Again, we use the surrogate model approach, however this time we use a regression to model

the relationship.

2.3 Vessel stowage planning problem

Now we examine the literature on how to model the vessel stowage planning problem. There

are two main approaches to solve the stowage planning problem. Some papers try to solve the

entire stowage planning problem at once, while there are other papers that use decompositions

to make solving the problem easier.
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Larsen & Pacino (2021) solves the stowage planning problem without decompositions. They

give a mathematical formulation, which they solve using an Adaptive Large Neighborhood Search

(ALNS) framework. In total they make use of nine different Key Performance Indicators, which

they insert in a weighted sum, to assess the quality of their solution.

A decomposition of the stowage planning problem that is often used is the 2-phase hierarchi-

cal decomposition used by Pacino (2012). They first distribute groups of containers to sections

on the vessel to make a planning that they call the master planning. Then they allocate the

individual containers in those groups to specific locations in the sections. This second stage

problem is also called the container slot planning problem.

Pacino (2012) solves the master planning in their decomposition approach using a MIP

approach and they solve the container slot planning problem for each of those sections using

constraint programming. They use multiple objectives in the container slot planning problem.

They minimize the number of shifts, the number of normal containers in the reefer spots, the

number of stacks used and the number of different port of destinations in a stack.

Parreño et al. (2016) focuses only on the container stowage slot planning problem. They

propose an integer programming formulation and find a solution to this formulation using a

Greedy Randomized Adaptive Search Procedure (GRASP). They use the same objective as

Pacino (2012). Another paper that only focuses on the container stowage slot planning problem

is Korach et al. (2020). They also propose an integer programming formulation, however they

use a ruin-and-recreate matheuristic to solve their problem.

In this thesis we only focus on the container stowage slot planning problem part of the

stowage planning problem. Compared to all the papers described above, we have a completely

different objective. The main goal in our thesis is to optimize the Quay Crane (QC) productivity,

while the other papers focus more on overstowage/shifts and other performance indicator on the

ship itself. Their goal is more to prevent extra inefficiencies in the stowage plannings on the

next destinations of the vessels, while we focus on the current container terminal.

There are also papers that do focus on the terminal side of things. One example of such

a paper is Monaco et al. (2014), who use the travel time between the yard and the vessel and

yard shuffles in their objective function from their Binary Integer Program. To solve their

formulation, they make use of a two-step heuristic, where they first construct a feasible solution

and then use Tabu Search to improve that solution in a second stage.
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3 Problem description

The main goal of this thesis is to investigate whether it is possible to automate the parameter

tuning process of the stowage planner algorithm from the Terminal Operating System (TOS) of

a container terminal. To give a better understanding of the problem we first give a description

of how a container terminal works. Then we explain what the difficulties in stowage planning

are and thereafter we give a description of how the stowage planner algorithm works.

3.1 Container terminal explanation and definitions

There are two main operations on container terminals. One of those is the waterside operation

that focuses on moving containers from the yard to the vessel and the other way around. The

other is the landside operation that focuses on moving containers from trucks and/or trains to

the yard and the other way around. As there is time between the arrival of containers in the

container terminal and the departure from the container terminal, containers must be stored in

a container yard for this time period.

In this thesis we focus on the stowage process where containers are loaded to a vessel. This

process makes use of multiple different machines. Rail Mounted Gantry Cranes (RMGs) or Rub-

ber Tired Gantry Cranes transfer containers from the container yard to the transfer bay near the

container yard. From this transfer bay Automated Guided Vehicles (AGVs) or Straddle Carries

(SCs) pick up those containers. The AGVs or SCs then bring the containers to the transfer zone

under the Quay Cranes (QCs). From there the QCs place the containers on the vessel.

We use a few descriptions of positions in the container terminal in our thesis. The yard is

divided in multiple distinct parts. We call each of those parts a yard block. We call a stack of

containers in a yard block a yard stack. On a vessel we define a vessel location as a slot on the

vessel where a container can be stored.

To determine the performance of the stowage plan we use the QC productivity as the Key

Performance Indicator. QC productivity denotes the number of containers that one QC handles

within an hour. This includes the containers that the QC handles to load a container to the

vessel and to discharge a container from the vessel. Jonker et al. (2021) explains that QC

productivity is the most important Key Performance Indicator to evaluate the performance of a

container terminal. C. Boer & Saanen (2012) also uses the QC productivity in their evaluations

of the container terminal performance.

3.2 Vessel stowage plan

We focus on making the vessel stowage plan from the container terminals perspective. Before a

container terminal can make their vessel stowage plan, they receive a first stowage plan, called

the projections, from the vessel operator. To make the projections vessel operators put all the

containers, which need to be loaded onto the vessel, in different stowage groups. The vessel

operator then assigns those stowage groups to certain parts of the vessel. Those stowage groups

depend on the port of destination from the container, the type of the container and the weight of

the container. The container terminal operator then uses those projections to make the second

stage of the stowage plan, where it connects specific containers to specific vessel locations.
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When making a vessel stowage plan there are a few situations that must be avoided as much

as possible. Often, not all containers, which are loaded onto a vessel, have the same port of

destination. At the next port, it should be possible to pick up all the containers for that port

without too much unnecessary moves. Thus, a proper stowage planning should not include

situations where you place a container on another container that has a port of destination that

the vessel arrives at earlier. Otherwise, you would have to move containers to be able to reach

the containers that are destined for the current port. Normally, container terminal operators do

not take this into account, as vessel operators handle those situations in the projections.

Furthermore, the containers need to be distributed in such a way that the weight distribution

of the containers is safe on the sea. If all the heavy containers would be allocated to one side

of the vessel, then the vessel would lean over towards that side. On the sea this would not be

stable and thus would result in dangerous conditions. This optimal distribution of the weights

of the containers differs per vessel. Partially, the projections already take this into account.

The vessel operator uses the weight class corresponding to the stowage groups as one of the

inputs for their projections. However, as not all containers in a stowage group have the same

weight, those weights also must be divided across each planned group. One of the situations

the container terminal operator tries to avoid in their stowage plan is placing heavier containers

above lighter containers. This is called weight inversion as the weights of the containers are

inverted compared to the more optimal situation.

Other inefficiencies that the container terminal operator wants to avoid are concerned with

picking containers up from the yard if they make a vessel stowage plan. An example of this is

when there are two containers that are stacked on top of each other in the yard that both need

to be loaded to the same vessel. This causes an unnecessary move, if they need to move the

container below before the upper container. Thus, they want to avoid that as much as possible.

There could also arise delays if multiple containers come from the same yard block in close

succession. If this occurs the RMGs cannot keep up with the demand for the containers. At a

certain point, those delays transfer to other equipment in the container terminal, causing even

more delays.

3.3 The stowage planner

In this section we introduce the stowage planner that we tune the parameter from. The stowage

planner makes the second stage of the stowage planning, also called the container slot planning,

using the projections as an input. The algorithm is build-in in the TOS. Before the container

terminal commences stowing an arriving vessel, the container terminal runs the algorithm. This

generates a stowage plan that the stowage planner then sets as the stowage plan in the TOS.

To determine the stowage plan the stowage planner makes use of a recursive-based iterative

algorithm. We give a pseudocode of this algorithm in Algorithm 1. The first step in this

algorithm is to create an initial solution, which is only based on the weight of the containers and

the stowage groups. To accomplish this, the stowage planner sorts all the vessel locations for each

stowage group based on the optimal weight distribution. For each stowage group, the algorithm

then assigns the container with the most weight each time to the first vessel location in the

sorted list of vessel locations. Algorithm 2 gives the pseudocode for the initial solution creation.

9



Algorithm 1: Stowage planner pseudocode

Input : S: Set of all stowage groups
L: Set of all vessel locations
C: Set of all containers
SearchDepth : Stowage planner setting
SearchWidth : Stowage planner setting

Output: PL: Stowage planning
PL ← CreateInitialSolution(S, L, C); // See Algorithm 2 for this function

Ss ← ∅; // Initialize the set of stowage groups already selected

Sn ← S; // Initialize the set of all stowage groups not yet selected

TotPEN ← Total penalty of the current planning PL;
while Sn ̸= ∅ do

s← Stowage group out of Sn with the lowest penalty;
TempPL ← ImproveSolution(s,Ls,Cs,SearchDepth,SearchWidth); // See

Algorithm 3 for this function

TempPEN ← Total penalty of the planning TempPL;
if TempPEN ≤ TotPen then

PL ← TempPL;
TotPEN ← TempPEN;

end
Ss ← Ss ∪ {s};
Sn ← Sn \ {s};

end

Thereafter, the algorithm aims to improve this initial solution. It computes the total sum of

all the penalties for each stowage group. Then it tries to improve the solution of each stowage

group once in an order based on the total sum of penalties corresponding to the stowage group.

When the algorithm tries to improve the solution for one of the stowage groups, it starts by

completely removing the solution for that stowage group. Then, the algorithm tries to find the

optimal container for all the vessel locations without an assigned container. The order in which

it considers the vessel locations depends on their expected move time. This expected move time

is the planned time that a container is stowed to that vessel location. The algorithm selects the

vessel location with the earliest move time that has no assigned container first.

There are two settings that influence how the stowage planner finds the containers for a

Algorithm 2: Function that describes initial solution creation for the stowage planner

Input : S: Set of all stowage groups
L: Set of all vessel locations (split in subsets per stowage group: Ls)
C: Set of all containers (split in subsets per stowage group: Cs)

Output: PL: Intial stowage planning
Function CreateInitialSolution(S, L, C):

for s ∈ S do
Sort Cs based on container weight;
Sort Ls based on their tier and stack;
Assign each container in Cs to the vessel location in Ls with the same index;

end

end
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Algorithm 3: Recursive algorithm that improves the solution for a stowage group

Input : s: Stowage group
Cs: Set of container in stowage group s
Ls: Set of vessel locations in stowage group s
SearchDepth : Stowage planner setting
SearchWidth : Stowage planner setting

Output: PL : Updated stowage planning
Function ImproveSolution(s, Cs, Ls, SearchDepth, SearchWidth):

Sort Ls based on the planned move time;
foreach l ∈ Ls do

/* Define Oi as the set of all the different chains of containers

considered for the first i vessel locations starting from l */

O1 ← Set of the SearchWidth containers with the lowest penalty for location l;
for i = 2 to SearchDepth do

foreach o ∈ O(i−1) do
O′

i ← Set of the SearchWidth containers with the lowest penalty for
location l of the remaining containers;

foreach o′ ∈ O′
i do

Add the new chain (add o′ after o) to Oi;
end

end

end
Assign the first container of the lowest total cost chain in OSearchDepth to vessel
location l;

end

end

vessel location. This are the settings SearchDepth and SearchWidth. The setting SearchDepth

sets the number of different containers that it considers for each vessel location, while the setting

SearchWidth defines the number of steps the stowage planner looks forward in deciding the best

container for a vessel location. In this thesis we keep those two stowage planner settings constant

on a value of five. Increasing both these settings often results in better solutions, however it

also increases the computation time of the algorithm.

The stowage planner selects for each vessel location a configurable number of options and then

looks forward a configurable amount of steps based on the stowage planner settings SearchDepth

and SearchWidth. This creates chains corresponding to different orders of assigning containers

to the vessel locations. At the end, the stowage planner selects the container which is the first

container in the chain with the lowest total cost. Then it moves on to the next vessel location and

it repeats the entire process. We give the pseudocode for this container selection in Algorithm 3.

We give an example of how the stowage planner selects a container for a vessel location in

Figure 1. For this example, we assume that the stowage planner setting SearchWidth is set to

two and the stowage planner setting SearchDepth is set to three. We are searching for the best

container to load to vessel location 1. As stowage planner setting SearchWidth equals two, we

select for each vessel location that we consider the two best containers. Figure 1 illustrates two

possible containers for the first vessel location: container 1 and container 2. Furthermore, the

figure also illustrates the next two vessel locations that the algorithm considers, because stowage
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Figure 1: Example of how the stowage planner selects a container for vessel location 1 as
defined in Algorithm 3. Each container has a value that denotes the penalty if the container is
allocated to the location of interest given the chain above it. Between parentheses it gives the

penalty of the entire chain until the container of interest.

planner setting SearchDepth is three. For each vessel location it illustrates the two container

options with the lowest penalty given the containers selected in the earlier vessel locations.

As we demonstrate in the example, the stowage planner settings for SearchWidth and

SearchDepth result in eight different chains of possible solutions (23). The algorithm selects

the chain with the lowest total penalty. In this example that is the chain with the green color

that has a total penalty of 81 compared to the other chains that all have a total penalty higher

than 90. Given these total penalty values, the stowage planner selects container 1 as the con-

tainer that is allocated to vessel location 1. The stowage planner then repeats this process until

it has allocated all containers to a vessel location.

3.4 Stowage planner parameters and penalties

Now we know how the stowage planner works, we give an overview of the parameters from

the stowage planner that we consider in this thesis in Table 3. These are the parameters that

we tune and some parameters that have the aim to limit weight distributions problems. The

decision on which parameters to tune, has been made with the help of a functional expert from

Konecranes. We have chosen those parameters, because the functional expert expects that they

have the biggest impact on the QC productivity out of all the available parameters.

The first two parameters that we tune are the CCSPA and CLDPA parameters. The stowage
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Table 2: An overview of the parameters and penalties that we use from the stowage planner
Penalty Parameter Parameter explanation

Non-weight
related
penalties

CCSPE
CCSPA Penalty value for close containers from same block
CLDPA Value that sets when two moves are close

QCSPE QCSPA Penalty value for each extra QC containers go to per stack
YASPE YASPA Penalty value for each yard shift

Weight related
penalties

WEIPE WEIPA Penalty value for each case of weight inversion
OWDPE OWDPA Penalty value for each difference with the optimal weight

planner uses both these parameters to compute the CCSPE penalty. The goal of the CCSPE

penalty is to limit the number of times a certain QC handles multiple containers that come

from the same yard block in close succession of each other. This is important because it could

cause delays if the ASC (Automated Stacking Crane) in that yard block cannot keep up with

the demand for containers. Spreading the containers out over time avoids those delays and thus

most likely improves the performance of the QCs.

The CLDPA parameter defines the number of moves that the stowage planner considers as

close. Thus, if the CLDPA parameter is three, then the stowage planner applies a penalty if a

container is moved from the same yard block in the two moves before the current move. We can

set the size of the penalty with the CCSPA parameter. The closer two moves from the same

yard block are, the more the stowage planner applies the penalty.

Another parameter that we tune is the QCSPA parameter. This parameter sets the size of

the penalty for the QCSPE penalty. The goal of the QCSPE penalty is to minimize the number

of times that containers in one yard stack are send to multiple different QCs as this increases

the chance on yard shifts. It is possible that one of the QCs is behind on schedule and thus

containers, scheduled to that QC, are removed from the yard later than planned. If containers

in one yard stack go to different QCs, there can be containers below those containers that are

stowed earlier then the delayed containers. This causes extra yard shifts. If all the containers in

one yard stack go to the same QC this would not be a problem as all the containers in the yard

stack will be delayed. If the stowage planner plans containers in one yard stack to more than

one QC then it adds a penalty of the size QCSPA to the QCSPE penalty for each extra QC.

The last parameter that we tune is the YASPA parameter belonging to the YASPE penalty.

Each time a yard shift has to be applied with at least two containers that have to be stowed to

the vessel, the stowage planner adds YASPA to the YASPE penalty. The goal of this penalty is

to limit yard shifts and thus delays in the yard which in turn result in a lower QC productivity.

We also explain two penalties and their parameters that we do not tune. These are penalties

that limit weight distribution problems. The WEIPE penalty is a penalty for weight inversions.

Each time the stowage planner stacks a heavier container above a lighter container from the

same stowage group on the vessel, we add the value of the WEIPA parameter to the WEIPE

penalty. There is also a penalty for each container that the stowage planner assigns to a vessel

location if the weight of the container is heavier than the optimal weight of that vessel location.

This is the OWDPE penalty and the OWDPA parameter sets the size of this penalty. Each time

the stowage planners assigns a container it also recomputes the optimal weight for the remaining

empty vessel locations.
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4 Methodology

4.1 General outline of the Iterative Parameter Tuning Method

In this section we describe the steps of our Iterative Parameter Tuning Method that we use to

tune the stowage planner parameters. Our Iterative Parameter Tuning Method comes down to

the following steps:

• Estimate the effects of the stowage planner parameters on the QC productivity.

• Suggest stowage planner parameters values using the estimated effects.

• Repeat until we get the same parameter suggestion three iteration in a row.
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Figure 2: Overview of the Iterative Parameter Tuning Method

Figure 2 gives a more precise overview of all the steps that we take in our Iterative Parameter

Tuning Method. Some shapes in this Figure have a distinct color. The yellow color indicates

the input of the methodology. The orange color indicates a method or decision that we use and

green indicates the output of our methodology. All methods that we use have an oval shape and

all decisions a diamond shape. The other shapes indicate inputs and outputs of the methods. If

these shapes consist of multiple shapes behind each other, then there are multiple sets of inputs

or outputs that follow the same path.

We commence the Iterative Parameter Tuning Method in the initialization phase. The goal

of this initialization phase is to generate enough information to be able to do a representative

regression from the stowage planner parameters on the QC productivity. We first select multiple

sets of stowage planner parameters. For each set of stowage planner parameters, we create a

stowage plan using the stowage planner. For each stowage plan we use CONTROLS to get an

estimate of the QC productivity for that stowage plan. Emulations do not use a real container
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terminal, but a simulated one (C. A. Boer & Saanen, 2008). Therefore, there is randomness in

the TOS that snowballs throughout the entire emulation. If the TOS takes a different decision

at the start of an emulation, this automatically has an effect on all the next decisions. This

means that we can only get an estimated QC productivity for a stowage plan.

After collecting all the estimated QC productivities for the different stowage plans, we apply

a linear regression on those results. This regression yields the estimated effects of the stowage

planner parameters on the QC productivity, which we use in the next step. We use this regression

as a surrogate model for the real relationship between the stowage planner parameters and the

QC productivity. We present a more extensive explanation of our regression in Section 4.4.

Using the estimated effects of the stowage planner parameters on the QC productivity,

we generate a stowage planner parameter suggestion. For this suggestion we introduce our

Parameter Suggestion Model that we explain in more detail in Section 4.7. The goal of this

model is to suggest parameters that result in an as high as possible QC productivity. There is

one restriction on the parameter suggestion. We want to keep the total weight related penalty

from the stowage plan that corresponds to the stowage planner parameter suggestion under a

set value. In this way we limit the number of weight related inefficiencies that occur in the

parameter suggestion from the Parameter Suggestion Model.

To be able to compute the total weight related penalty we have to compute solutions to

the stowage problem given a stowage planner parameter set. We have decided not to use the

stowage planner itself as one run of the algorithm can take up to three minutes. In the worst case,

our Parameter Suggestion Model needs to compute the total weight related penalty hundreds

of times, which would mean that the Parameter Suggestion Model would take hours to get a

parameter suggestion. Compared to the long emulation times this is still not long, but it is

inconvenient to add this extra computation time.

We treat the algorithm of the stowage planner as a black box and use a Mixed Integer Pro-

gramming formulation as a surrogate model. We present our MIP formulation of the stowage

planner in Section 4.5. As different options to solve the surrogate model, we introduce four

different heuristics in Section 4.6. Those four heuristics are a Simple Local Search, a Greedy

Randomized Adaptive Search Procedure (GRASP), a Simulated Annealing, and a Large Neigh-

borhood Search (LNS) heuristic.

When we have a stowage planner parameter suggestion, we create a stowage plan using the

stowage planner for this parameter suggestion. We evaluate the performance of this stowage

plan using CONTROLS and add the resulting estimated QC productivity to estimated QC pro-

ductivities from the initialization phase and previous iterations. We continue by performing a

new regression with the extra added estimated QC productivity and generate a new param-

eter suggestion with the Parameter Suggestion Model. We continue this iterative process of

the Iterative Parameter Tuning Method until the Parameter Suggestion Model gives the same

parameter suggestion for three iterations in a row, which we call convergence of the parameter

suggestions. We assume that there would be no more further changes if we would continue more

iterations when the parameter suggestion already stays the same for three iterations.
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4.2 Parameters and sets

We continue by giving an overview of all the parameters, sets and decision variables that we use

in our methodology in Table 3.

Table 3: Parameters, sets and decision variables that we use in our methodology
Sets

P Stowage planner parameters - {CCSPA, CLDPA, OWDPA, QCSPA, WEIPA, YASPA}
P t Stowage planner parameters that we tune - {CCSPA. CLDPA, QCSPA, YASPA}
F Stowage planner penalties - {CCSPE, OWDPE, QCSPE, WEIPE, YASPE}
F t Stowage planner non weight related penalties - {CCSPE, QCSPE, YASPE}
F c Stowage planner penalties that we compute per container - {CCSPE, OWDPE, WEIPE, YASPE}
S Stowage groups corresponding to the vessel
T Yard blocks where containers are placed before they move to the vessel
Q QCs that are used to load the vessel
D Yard stacks where containers are placed before they move to the vessel
L Locations on the vessel where containers can be stowed to
Ls Locations on the vessel where containers can be stowed to for stowage group s ∈ S
Lq Locations on the vessel where containers can be stowed that QC q ∈ Q handles
C Containers that need to be loaded onto the vessel
Cs Containers that need to be loaded onto the vessel for stowage group s ∈ S
Ct Containers that need to be loaded onto the vessel that come from yard block t ∈ T
Cd Containers that need to be loaded onto the vessel that come from yard stack d ∈ D
A Emulations used in the regression

Parameters

πp Constant parameter value assigned for parameter p ∈ P used to solve the stowage problem
eci 1 if container c ∈ C is below container i ∈ C and γci = 1, 0 otherwise
gl The number of locations that we stow before location l ∈ L
k The maximum allowed total sum of penalties over weight penalties f ∈ F \ F t

lp The lower bound on a parameter p ∈ P t

ol Optimal weight of the container placed at location l ∈ L on the vessel
up The upper bound on a parameter p ∈ P t

wc Weight of container c ∈ C
λh CCSPE multiplier if two containers from the same yard block are stowed h moves after each other
γci 1 if containers c, i ∈ C are stacked in the same yard block, 0 otherwise
νlj 1 if location j ∈ L is above location l ∈ L, 0 otherwise
ρlj 1 if containers get stowed to location l ∈ L before location j ∈ L, 0 otherwise
rp Estimated effect of a parameter p ∈ P t on the QC productivity following from a linear regression
r0 Constant effect on the QC productivity following from a linear regression

QCprod
a Estimated QC productivity in emulation a ∈ A

bpa Parameter value for parameter p ∈ P t in emulation a ∈ A
ssp Step size that we use in the Parameter Suggestion Optimization heuristic for parameter p ∈ P t

Decision variables

yp Parameter value assigned to parameter p ∈ P t used in the Parameter Suggestion Model
xcl 1 if container c ∈ C is allocated to location l ∈ L, 0 otherwise
bch 1 if in the h, 1 ≤ h ≤ πCLDPA moves to a QC before container c ∈ C there is a container i ∈ C,

such that ac = ai, 0 otherwise

mf
c Penalty value from penalty f ∈ F c for container c ∈ C

mQCSPE
d Penalty value from the QCSPE penalty for yard stack d ∈ D

µdq 1 if QC q ∈ Q is used for containers in yard stack d ∈ D
αci 1 if container c ∈ C is stowed earlier then container i ∈ C
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4.3 Determining optimal weight of the vessel locations

To compute the total weight related penalty, we must know the optimal weight of all the vessel

locations. The assumption that the stowage planner makes is that the ideal weight distribution

of the containers is to put the heaviest containers on the bottom tier and then place the heaviest

containers as close as possible to the middle of each bay. To compute the optimal weights for the

vessel locations, we assign containers to vessel locations based on those rules to make a solution

with the optimal weight distribution. We then set as the optimal weights for all vessel locations

the weight of the container assigned to each vessel location in that solution.

4.4 Regression

To tune the stowage planner parameters, it is important to know the relationship between the

parameters and the performance indicator that we use, the QC productivity. We consider this

relationship as a black box. Using the stowage planner parameters, we create a stowage plan and

then we use emulation to compute the QC productivity. To model the relationship between the

stowage planner parameters and the QC productivity we use a simple surrogate model, namely

a linear regression.

We use a linear regression as the coefficient from each stowage planner parameter gives an

indication of the effects from that parameter on the QC productivity. It indicates if there is a

positive or negative effect and also how big that effect is approximately. Another reason that

we use a linear regression is the fact that we cannot test hundreds of different stowage planner

parameter sets as each emulation takes eighteen hours. More complex regressions need more

information to get a good estimate of the coefficients from the extra added complexities and

with the limited information available to us collecting more information is not a possibility.

As input for the regression, we use the estimated QC productivities for the different sets

of stowage planner parameters. Then we estimate the regression using Ordinary Least Squares

(OLS). In OLS we minimize the total squared sum of errors from the observations compared to

the equations in (1) (Heij et al., 2004).

QCprod
a = r0 + rCCSPAbCCSPA

a + rCLDPAbCLDPA
a + rQCSPAbQCSPA

a + rY ASPAbY ASPA
a , ∀a ∈ A

(1)

4.5 Stowage problem model description

In the next sections we explain our Parameter Suggestion Model. We present the Mixed Integer

Programming (MIP) formulation that we use to determine the total weight related penalty for

a certain set of stowage planner parameters in this section. In Section 4.6 we explain the four

heuristics that we use to solve the MIP formulation. Finally, in Section 4.7 we describe the

Parameter Suggestion Model that uses the heuristics from Section 4.6.
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4.5.1 Objective function and basic restrictions

We present the objective function of our MIP formulation in equation (2a). The goal of the

objective is to minimize the total sum of penalties. Furthermore, we make sure that all containers

are allocated to one vessel location using equation (2b) and that there is a container assigned

to all vessel locations using equation (2c). Equation (2d) defines the binary nature of the xcl

variables.

minimize
∑
f∈F c

∑
c∈C

mf
c +

∑
d∈D

mQCSPE
d (2a)

∑
l∈Ls

xcl = 1 ∀s ∈ S, c ∈ Cs (2b)

∑
c∈Cs

xcl = 1 ∀s ∈ S, l ∈ Ls (2c)

xcl ∈ {0, 1} ∀s ∈ S, c ∈ C, l ∈ Ls (2d)

4.5.2 Restrictions for the weight related stowage planner penalties

We continue by explaining how we model the weight related penalties. These are the OWDPE

and the WEIPE penalties. These are the penalties for the difference in the weight of a con-

tainer with the optimal weight from the vessel location the container is assigned to and for

weight inversion.

We model the OWDPE penalty using equation (3a). For each container, this restriction com-

putes the weight difference compared to the optimal weight of the vessel location the container

is stowed to. If the container is heavier than the optimal weight, we apply a penalty of πOWDPA

multiplied by the weight difference. It is important to note that the stowage planner algorithm

recalculates the optimal weight for each container after every container that is assigned a vessel

location. This is overly complicated to model in an MIP formulation, as we would have to

introduce multiple extra help variables that create extra dependencies. We approximate this

penalty by computing the optimal weights only once at the start. This means that the OWDPE

penalty computed by the MIP is slightly different from the OWDPE penalty computed by the

stowage planner.

Equation (3b) checks for vessel locations if the container allocated to the vessel location

above is heavier than the container located to the vessel location itself. If this occurs and

both vessel locations belong to the same stowage group, we add a penalty of πWEIPA to the

WEIPE penalty.

mOWDPE
c ≥ πOWDPAxcl(wc − ol) ∀s ∈ S, c ∈ Cs, l ∈ Ls (3a)

mWEIPE
c ≥ πWEIPA(xcl + xij − 1) ∀s ∈ S, c ∈ Cs, l ∈ Ls, i ∈ Cs, j ∈ Ls, νlj = 1, wc > wi

(3b)
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4.5.3 Restrictions for the CCSPE penalty

We continue by modeling the stowage planner penalties that are not weight related. We start

with the CCSPE penalty that limits containers coming from the same yard block to the same

QC close after each other.

To compute this penalty for each container we make use of help variables. As defined in

restriction (4b), bch indicates whether there is a container from the same yard block in the move

h, 1 ≤ h ≤ πCLDPA moves before stowing container c ∈ C. We define the binary nature of bch

in equation (4c). Using these restrictions, we compute the CCSPE penalty for each container in

equation (4a). Here we set the penalty for each container c by the lowest h such that bch equals

one as λh increases the lower the value of h is.

mCCSPE
c ≥ λhπ

CCSPAbch ∀c ∈ C, 1 ≤ h ≤ πCLDPA (4a)

bch ≥ γci(xcl + xi(l−h) − 1) ∀s ∈ S, c ∈ Cs, i ∈ Cs, 1 ≤ h ≤ πCLDPA, l ∈ Ls, l > h (4b)

bch ∈ {0, 1} ∀c ∈ C, 1 ≤ h ≤ πCLDPA (4c)

4.5.4 Restrictions for the QCSPE and YASPE penalties

The last two penalties where we define restrictions for are the QCSPE and the YASPE penalties.

Their aim is to limit the number of QCs containers from one yard stack go to and to limit the

number of yard shifts. For the QCSPE penalty we define a restriction in equation (5a), where

we add a value of πQCSPA

2 to the QCSPE penalty each time the stowage solution uses more than

one QC to place containers from one yard stack on the vessel. We compute this using the help

variable µdq that indicates whether QC q ∈ Q is used for containers in yard stack d ∈ D. For

this indication we use equation (5b) and we define the binary nature of the help variables µdq

in equation (5c).

Lastly, we define how we compute the YASPE penalty for each container in equation (5d).

Again, we use a help variable. We set this help variable αci to one if container i ∈ C is stowed

before container c ∈ C in equation (5e). We define the help variable αci as a binary variable in

equation (5f).

mQCSPE
d ≥ πQCSPA

2

∑
q∈Q

µdq − 1

 ∀d ∈ D (5a)

µdq ≥ xcl ∀d ∈ D, q ∈ Q, c ∈ Cd, l ∈ Lq (5b)

µdq ∈ {0, 1} ∀d ∈ D, q ∈ Q (5c)

mY ASPE
c ≥ πY ASPAαci ∀c ∈ C, i ∈ C, eci = 1 (5d)

αci ≥ (xcl + xij − 1)ρlj ∀t ∈ T, c ∈ Ct, i ∈ Ct, j ∈ L, l ∈ L (5e)

αci ∈ {0, 1} ∀t ∈ T, c ∈ Ct, i ∈ Ct (5f)
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4.5.5 Entire stowage MIP formulation

min
∑
f∈F c

∑
c∈C

mf
c +

∑
d∈D

mQCSPE
d∑

l∈Ls

xcl = 1 ∀s ∈ S, c ∈ Cs∑
c∈Cs

xcl = 1 ∀s ∈ S, l ∈ Ls

mOWDPE
c ≥ πOWDPAxcl(wc − ol) ∀s ∈ S, c ∈ Cs, l ∈ Ls

mWEIPE
c ≥ πWEIPA(xcl + xij − 1) ∀s ∈ S, c ∈ Cs, l ∈ Ls, i ∈ Cs, j ∈ Ls, νlj = 1, wc > wi

mCCSPE
c ≥ λhπ

CCSPAbch ∀c ∈ C, 1 ≤ h ≤ πCLDPA

bch ≥ γci(xcl + xi(l−h) − 1) ∀s ∈ S, c ∈ Cs, i ∈ Cs, 1 ≤ h ≤ πCLDPA, l ∈ Ls, l > h

mQCSPE
d ≥ πQCSPA

2

∑
q∈Q

µdq − 1

 ∀d ∈ D

µdq ≥ xcl ∀d ∈ D, q ∈ Q, c ∈ Cd, l ∈ Lq

mY ASPE
c ≥ πY ASPAαci ∀c ∈ C, i ∈ C, eci = 1

αci ≥ (xcl + xij − 1)ρlj ∀t ∈ T, c ∈ Ct, i ∈ Ct, j ∈ L, l ∈ L

xcl ∈ {0, 1} ∀s ∈ S, c ∈ C, l ∈ Ls

µdq ∈ {0, 1} ∀d ∈ D, q ∈ Q

bch ∈ {0, 1} ∀c ∈ C, 1 ≤ h ≤ πCLDPA

αci ∈ {0, 1} ∀t ∈ T, c ∈ Ct, i ∈ Ct

4.6 Heuristics to solve the stowage problem

Implementing the MIP formulation that we present in Section 4.5 results in out of memory errors

due to the high number of variables and constraints. Therefore, we need to define heuristics to

find solutions. We propose four different options. Those options are a Simple Local Search, a

Greedy Randomized Adaptive Search Procedure (GRASP), a Simulated Annealing, and a Large

Neighborhood Search (LNS) heuristic.

Table 4: Overview of the different heuristics and their characteristics
Heuristic Characteristic Section

Simple Local Search Basic heuristic Section 4.6.1
GRASP Uses multiple starting solutions to improve the results Section 4.6.2

Simulated Annealing Sometimes accepts a worse solution to improve the results Section 4.6.3
LNS Explores larger neighborhoods to improve the results Section 4.6.4

In Table 4 we give a brief overview of the four heuristics. It shows the main characteristic

of the four heuristics and the section in which we further explain the heuristic. The Simple

Local Search heuristic is the most simplistic heuristic that we use. The GRASP heuristic uses

multiple starting solutions and the LNS heuristics uses larger neighborhoods to find improved

results compared to the Simple Local Search heuristic. The Simulated Annealing heuristic

sometimes accepts a worse temporary solution to improve the final solution.
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4.6.1 Simple Local Search heuristic

The first heuristic that we introduce is our Simple Local Search heuristic. Our Simple Local

Search heuristic consists of two parts. A constructive heuristic that creates a first solution and

a local search heuristic that improves the solution found by the constructive heuristic. We give

a pseudocode of our Simple Local Search heuristic in Algorithm 4.

Algorithm 4: Pseudocode of the Simple Local Search heuristic

Output: solution : The solution from the simple local search
Function SimpleLocalSearch():

solution ← GenerateGreedyRandomSolution(1); // See Algorithm 5

solution ← LocalSearch(solution); // See Algorithm 6

end

In Algorithm 5 we give the pseudocode for our greedy constructive algorithm. This con-

structive algorithm sorts for each stowage group the containers based on the container weight

and the vessel locations based on their optimal weight. Then the algorithm assigns each con-

tainer randomly to one of the first few vessel locations without an assigned container. The set

of options that the algorithm can assign the container to is called the restricted candidate list.

Algorithm 5: Heuristic to generate a (greedy random) solution to the stowage problem

Input : restrictedCandidateListLength : The number of containers considered for
each vessel location

Output: solution : The solution generated by the function
Function GenerateGreedyRandomSolution(restrictedCandidateListLength):

foreach stowage group s ∈ S do
Sort Cs based on the weight of the container;
Sort Ls based on the optimal container weight of the vessel location;
foreach container c ∈ Cs do

Assign to container c a randomly selected vessel location from the first
restrictedCandidateListLength vessel locations in Ls that are not yet
assigned to a container;

end

end

end

For our Simple Local Search heuristic, we make use of a restricted candidate list with a

length of one. This makes sure that the algorithm allocates all containers to vessel locations

without any weight penalties, because each container has the weight of the optimal weight from

its vessel location. If each container has the optimal weight of the vessel location the container

is allocated to then there are also no weight inversions within stowage groups.

In the second part of our Simple Local Search heuristic, we improve the solution with a local

search. We describe this local search in Algorithm 6. In our local search we try to improve

the solution by searching through different neighborhoods. If we find a solution with a lower

objective value than the original solution in one of these neighborhoods then we select this

solution, otherwise we retain the old solution.
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Algorithm 6: Local search heuristic to improve a stowage solution

Input : solution : The solution before the local search
Output: solution : The solution after the local search
Function LocalSearch(solution):

maxPositionDifference ← number of containers in the largest stowage group;
while improved solution are found do

for positionDifference ← 1 to maxPositionDifference do
Find best swap between containers where the difference between the assigned
vessel locations equals positionDifference;

if the best swap results in an improvement of the solution then
Update solution by swapping the containers;

end

end

end

end

Before we define the neighborhoods that we use in our local search, we first explain some

of the key characteristics of the stowage problem that we consider. In the stowage problem we

assume that the order in which the vessel locations receive containers from the QCs is already

known. This means that we can write a solution to the stowage problem as the order of the

containers, based on the vessel location the container is assigned to.

We use this to define our neighborhood for the local search. This neighborhood consists of all

the solutions where we swap two containers from the same stowage group in the container order.

To accelerate the local search, we split this neighborhood in multiple different neighborhoods.

One for each position difference in the order between two vessel locations.

Algorithm 6 commences by looping over all the different neighborhoods. For each neighbor-

hood we select the best swap of two containers and update the solution if that swap results in an

improvement of the solution. While there are improvements for at least one of the neighborhoods

we continue this iterating over the different neighborhoods.

4.6.2 GRASP heuristic

The Simple Local Search heuristic has one big problem and that is that it only searches for

solutions that are in the direct neighborhood of the current best found solution. This neighbor-

hood can contain the global optimal solution, however more often than not this is not the case.

The heuristic gets stuck in a local optimum, as it cannot reach the optimal solution directly via

the different neighborhoods that the heuristic considers. To improve the solution the algorithm

finds, it would be good add diversification to the heuristic.

There are different options to improve the diversification of a heuristic. One option is by

using a Greedy Randomized Adapted Search Procedure (GRASP). This procedure is proposed

by Feo & Resende (1995). The main idea of GRASP is to generate multiple starting solutions

and then apply local search to each of those solutions. This generates multiple solutions of which

in the end GRASP selects the best solution.

We demonstrate our implementation of GRASP for the stowage problem in Algorithm 7.

Again, we use Algorithm 5 to generate greedy solutions. This time, however, we use a restricted
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Algorithm 7: Pseudocode for the GRASP heuristic derived from Feo & Resende (1995)

Input : restrictedCandidateListLength : The length of the restricted candicate list
used to generate the solutions
maxIterationCount : The number of iteration that the GRASP does

Output: bestSolution : The best solution found by the GRASP
Function GreedyRandomizedAdaptiveSearchProcedure(maxIterationCount,
restrictedCandidateListLength):

currentIteration ← 1;
bestSolution ← GenerateGreedyRandomSolution(restrictedCandidateListLength);
bestSolution ← LocalSearch(bestSolution); // See Algorithm 6

currentIteration ← currentIteration + 1;
while currentIteration ≤ maxIterationCount do

tempSol ← GenerateGreedyRandomSolution(restrictedCandidateListLength);
tempSol ← LocalSearch(tempSol); // See Algorithm 6

if ObjectiveValue(tempSolution) < ObjectiveValue(bestSolution) then
bestSolution ← tempSolution;

end
currentIteration ← currentIteration + 1;

end

end

candidate list length of more than one to create random solutions. After the greedy algorithm

has generated a solution, we apply the local search from Algorithm 6 to improve the solution.

We repeat this a fixed number of iterations and after each iteration we keep track of the current

best solution.

4.6.3 Simulated Annealing heuristic

Another possibility to add more diversification to a heuristic is to apply Simulated Annealing.

One of the first who applied this algorithm was Kirkpatrick et al. (1983). They based their

algorithm on the process of annealing, where the temperature of the metal is slowly decreased

to create a metal with certain properties. The main idea of the algorithm is to go through

different solutions in the neighborhood of the current solution. Based on the temperature the

algorithm decides whether it should accept a solution. This temperature decreases slowly which

decreases the chance that the algorithm selects a solution.

In Algorithm 8 we give our implementation of Simulated Annealing for the stowage problem.

Again, the algorithm first generates a solution using Algorithm 5 with a restricted candidate

list length of one. Then it continues applying new iterations of Simulated Annealing until the

temperature has decreased to under one. In each iteration the algorithm first selects a stowage

group. This selection occurs randomly, however the chance of selecting one of the stowage

groups is proportional to the size of the stowage group. We have added this to ensure that the

algorithm spreads its time evenly over the containers, as the size of the stowage group can differ

quite substantially.

When the stowage group is selected, the algorithm selects randomly two containers from the

set of all containers in the stowage group. It then computes the difference in the objective value

if the two selected containers are swapped. Using Algorithm 9 the Simulated Annealing heuristic
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Algorithm 8: Simulated Annealing derived from Kirkpatrick et al. (1983)

Input : temperature : The starting temperature of the simulated annealing algorithm
coolingFactor : The rate with which the temperature is set to cool down

Output: solution : The found solution using simulated annealing
Function SimulatedAnnealing(temperature, coolingFactor):

solution ← GenerateGreedyRandomSolution(1); // See Algorithm 5

while temperature > 1 do
s ← Randomly select stowageGroup where the chance on each stowage group
depends on the number of containers in the stowage group;

c1, c2 ← Randomly select two different containers from stowage group s;
difference ← The difference in the objective value if c1 and c2 are swapped;
random ← Randomly generated double between 0 and 1;
if random < GetAcceptanceProbability(temperature, difference) then

Swap c1 and c2 in solution;
end
temperature ← temperature * coolingFactor;

end

end

Algorithm 9: Function to determine the chance that a solution should be accepted
for simulated annealing

Input : temperature : The temperature at the time of the function evaluation
difference : The difference in objective value between the old and new solution

Output: acceptanceProbability: The chance that the new solution is accepted
Function GetAcceptanceProbability(temperature, difference):

if improvement > 0 then
acceptanceProbability ← 1;

else

acceptanceProbability ← e
− improvement

temperature

end

end

computes the probability that it should accept this new solution. If there is an improvement

in the objective value, then the heuristic always accepts the new solution and thus sets the

acceptance probability to one. Otherwise, the acceptance probability is equal to e
− improvement

temperature .

This is always a value between zero and one. The algorithm then generates a random number

between zero and one. If this random number is lower than the acceptance probability, then

the algorithm accepts this solution and it swaps the two containers in the current solution.

Otherwise, it retains the old solution. After each iteration, the Simulated Annealing heuristic

decreases the temperature by multiplying it with the cooling down factor.

4.6.4 Large Neighborhoods Search using a ruin-and-recreate heuristic

Another option to improve the heuristic compared to the Simple Local Search heuristic is to

increase the size of the neighborhoods. By increasing the size of the neighborhoods, it becomes

easier to escape local minima and this likely results in a better solution. One option to do this

is using Large Neighborhood Search (LNS) in combination with a ruin-and-recreate heuristic.
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Schrimpf et al. (2000) already applies this to a similar problem. They mention that a LNS

heuristic that works in combination with a ruin-and-recreate heuristic each iteration destroys

(ruins) a part of the solution, while it keeps the rest of the solution constant. Thereafter, the

algorithm recreates a solution for the part of the solution that it destroyed earlier. It does this

by solving the MIP formulation.

Algorithm 10: Pseudocode of the LNS using a ruin-and-recreate heuristic.

Input : numberOfIterations : The number of iterations of the algorithm
replanContainerCount : The number of containers selected to replan

Output: solution : The found solution using LNS with the ruin-and-recreate algorithm
Function BreakAndRepairAlgorithm(numberOfIterations, replanContainerCount):

solution ← GenerateGreedyRandomSolution(1); // See Algorithm 5

currentIterationCount ← 1;
while currentIterationCount ≤ numberOfIterations do

s ← Randomly selected stowageGroup where the chance on each stowage group
depends on the number of containers in the stowage group;

numberOfContainers ← Minimum(replanContainerCount, number of containers in s
2 );

C ← Set of numberOfContainers randomly selected containers from s;
Optimally replan containers in set C using MIP formulation;
currentIterationCount ← currentIterationCount + 1;

end

end

In Algorithm 10 we describe our implementation of LNS for the stowage problem. There are

two settings that define the algorithm. There is a numberOfIterations setting that defines the

number of iterations that the algorithm performs and there is a replanContainerCount setting.

The replanContainerCount setting defines the maximum number of containers that LNS selects

to be replanned.

Also in this algorithm we generate a first solution with a restricted candidate list length of one

using Algorithm 5. In each iteration the algorithm selects randomly one of the stowage groups.

The probability that the algorithm selects a certain stowage group is once again proportional to

the number of containers that are part of the stowage group. The algorithm then determines how

many containers it must select from the stowage group. To ensure that the algorithm does not

get stuck trying to select the last few not selected containers we only allow this number to be at

maximum half of the containers in the stowage group. After the containers have been selected,

the algorithm solves the stowage plan for those containers to optimality given the solution for

the other containers. This does not result in optimal solutions for the entire stowage problem,

but only locally given a certain situation for the other containers.

4.7 Parameter Suggestion Model

In this section we define the Parameter Suggestion Model that we use to give our stowage

planner parameter suggestions for the parameter tuning. In the Parameter Suggestion Model,

we use the ComputeWeightRelatedPenalties(yCCSPA, yCLDPA, yQCSPA, yY ASPA, stowageOpti-

mizer) function that we define in Algorithm 11. This function computes the total weight related

penalty corresponding to a given set of stowage planner parameters. We compute this total
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weight related penalty by solving the stowage problem for the selected set of parameters using

one of the four heuristics that we mention in Section 4.6. The stowageOptimizer denotes the

heuristic that we use.

Algorithm 11: Function to compute the total weight related penalty

Input : yp, ∀p ∈ P : The parameter value set constant for stowage planner parameter p
stowageOptimizer : The heuristic used to solve the stowage problem

Output: totalWeightPenalty: The total weight related penalty in a stowage solution
Function ComputeWeightRelatedPenalties(yCCSPA, yCLDPA, yQCSPA, yY ASPA,
stowageOptimizer):

stowageSolution ← Solution to the stowage problem for parameter values
yCCSPA, yCLDPA, yQCSPA and yY ASPA using stowageOptimizer;
totalWeightPenalty ← Total weight related penalty in stowageSolution;

end

We define our Parameter Suggestion Model that we use to compute our parameter suggestions

in equations (7a) - (7d). This Parameter Suggestion Model aims to find the values for the

stowage planner parameters that maximize the QC productivity, while it limits the weight

related infeasibilities. We define the objective of maximizing the estimated QC productivity

in equation (7a). We base this objective on the results from the regression that we define

in Section 4.4. There are three restrictions on this objective. We define the maximum and

minimum values of the stowage planner parameters in equation (7b). We add the restriction

on the weight related penalties in equation (7c), where k denotes the maximum weight related

penalty that we allow. In equation (7d) we define that the stowage planner parameter values

that the Parameter Suggestion Model selects must always be integer.

maximize r0 + rCCSPAyCCSPA + rCLDPAyCLDPA + rQCSPAyQCSPA + rY ASPAyY ASPA (7a)

lp ≤ yp ≤ up, ∀p ∈ P t (7b)

ComputeWeightRelatedPenalties(yCCSPA, yCLDPA, yQCSPA, yY ASPA) ≤ k (7c)

yp ∈ Z, ∀p ∈ P t (7d)

4.7.1 Solving the Parameter Suggestion Model

Finding the solution to the model in equations (7a) - (7d) is not an easy problem as a function

evaluation of ComputeWeightRelatedPenalties(yCCSPA, yCLDPA, yQCSPA, yY ASPA, stowageOp-

timizer) is expensive. Another problem is that all the different heuristics that we use to solve

the stowage problem each give solutions that are most likely not optimal. The relationship

between the stowage planner parameters and the total weight related penalty is, therefore, only

an approximation.

Before we explain the algorithm that we use to get a solution to the Parameter Suggestion

Model, we first explain an important property of the problem. We use a linear regression to

estimate the effects of the stowage planner parameters on the QC productivity. Thus, the

estimated effect of a change in a stowage planner parameter is constant. Therefore, it would

be easy to determine the optimal solution if the restriction on the total weight related penalty

would be left out. If the effect of stowage planner parameter p ∈ P t (rp) is positive then we
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would select the upper bound on that parameter, namely up. We would select the lower bound

on that parameter (lp) if the effect of the parameter is negative. We use this observation to

determine the initial values for the stowage planner parameters in our algorithm to solve the

model. Algorithm 12, that we use to initialize the parameters, demonstrates this.

Algorithm 12: Function to initialize the stowage planner parameters

Output: yp, ∀p ∈ P t : The parameter value selected by the function
Function InitializeParameters():

foreach parameter p ∈ P t do
if rp > 0 then

yp ← up;
else

yp ← lp;
end

end

end

In Algorithm 13 we define our Parameter Suggestion Optimization heuristic. We first gen-

erate an initial solution using Algorithm 12 and then compute the total weight related penalty

for this solution. If this total weight related penalty is lower or equal to k, then we accept the

solution as our suggestion. Otherwise, we must seek a solution with a lower total weight related

penalty.

Algorithm 13: Pseudocode of our Parameter Suggestion Optimization heuristic

Input : stowageOptimizer : The heuristic used to solve the stowage problem
Output: yp, ∀p ∈ P t : The parameter suggestion for stowage planner parameter p
Function GetParameterSuggestion(stowageOptimizer):

yCCSPA, yCLDPA, yQCSPA, yY ASPA ←InitializeParameters();
currentWeightRelatedPenalty ← ComputeWeightRelatedPenalties(yCCSPA,
yCLDPA, yQCSPA, yY ASPA, stowageOptimizer); // See Algorithm 11

while currentWeightRelatedPenalty > k do
bestParameter ← SelectParameterWithMostImprovement(0, ssCCSPA,
ssCLDPA, ssQCSPA, ssY ASPA, stowageOptimizer); // See Algorithm 14

if bestParameter = null then
bestParameter ← SelectParameterWithMostImprovement(-100000,
yCCSPA−lCCSPA

2 , y
CLDPA−lCLDPA

2 , y
QCSPA−lQCSPA

2 , y
Y ASPA−lY ASPA

2 ,
stowageOptimizer); // See Algorithm 14

end

ybestParameter ← ybestParameter − ssbestParameter;
currentWeightRelatedPenalty ←
ComputeWeightRelatedPenalties(yCCSPA, yCLDPA, yQCSPA, yY ASPA,
stowageOptimizer); // See Algorithm 11

end

end

We make an assumption that helps us select a new set of values for the stowage planner

parameters. This assumption is that decreasing the values of the non-weight related stowage

planner parameters eventually results in a lower total weight related penalty. In the ideal
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situation, where we can solve the stowage problem optimally, this assumption holds according

to the following reasoning.

Assume that we have two sets of stowage planner parameters. In the first set of parameter

values only the weight related parameters have a positive value, while we set the other parameters

to zero. In the second set of stowage planner parameters the weight related parameters have the

same value as in the first set, but the non-weight related parameters also have a positive value.

When you optimize the stowage problem for the first set, you only take the weight related

penalties into account. Thus, the optimal solution for this parameter set is also the optimal total

weight related penalty. If you keep the weight related parameters constant, it is not possible to

find a solution with a lower total weight related penalty. In the second set, you also include the

other penalties in your optimization. The solution for the first set is also a feasible solution for

this set. However, most likely it is possible to improve the overall solution for the second set by

trading off weight related penalties for non-weight related penalties. If the non-weight related

parameters increase and the weight related parameter remain constant, the total weight related

penalty can only increase or remain constant.

In our case, neither the stowage planner nor our heuristics solve the stowage problem op-

timally. Therefore, there may be cases where the total weight related penalty increases, when

we increase one of the non-weight related parameters. We assume that on average our solutions

found by the heuristics perform the same as the optimal solutions, meaning that eventually

decreasing the non-weight related parameters, results in a lower total weight related penalty.

We base one of the principles that we use to decrease the total weight related penalty on

the gradient descent algorithm. According to Ruder (2016), gradient descent algorithms are

algorithms that optimize the objective function by using the gradient of the function that it

optimizes. Each iteration the algorithm takes a step in the direction of the steepest descent of

the objective function until it cannot find a direction that would improve the solution further.

We apply this by searching for the parameter that gives the most improvement of the total

weight related penalty per estimated QC productivity. In the next paragraph we explain how

we compute this improvement.

We first compute this improvement of the total weight related penalty per estimated QC

productivity by lowering the stowage planner parameter of interest by one step size (ssp). We

then select the non-weight related stowage planner parameter with the highest improvement. If

none of the stowage planner parameters that we tune indicate an improvement for this step size,

then we recompute the improvement of the total weight related penalty for a different step size.

This time we take half the difference between the lower bound of the stowage planner parameter

(lp) and the current value of the parameter (yp). This time we select the parameter with the

highest improvement, even if this improvement is negative.

Algorithm 14 gives the pseudocode for the parameter selection function that selects the best

parameter for given step sizes. The function loops over all the weight related stowage planner

parameters that have a value higher than the lower bound plus the stepSize (ssp) of that param-

eter. For each of those parameters the function computes the improvement and then it selects

the stowage planner parameter with the most improvement if that improvement is high enough.

Next to the step sizes the parameter selection function also has two other inputs. One of those
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Algorithm 14: Pseudocode for the parameter selection function

Input : startBestImprovement : Sets how high an improvement should be to be
accepted as the current best parameter
stepSizep,∀p ∈ P t : The amount we lower parameter p each step
stowageOptimizer : The heuristic used to solve the stowage problem

Output: bestParameter: The stowage planner parameter that results in the best
improvement

Function SelectParameterWithMostImprovement(startBestImprovement,
stepSizeCCSPA, stepSizeCLDPA, stepSizeQCSPA, stepSizeY ASPA, stowageOptimizer):

bestImprovement ← startBestImprovement;
bestParameter ← null;
foreach parameter p ∈ P t do

if yp ≥ lp + ssp then
yp ← yp - stepSizep;
penaltyImprovement ← currentWeightRelatedPenalty -
ComputeWeightRelatedPenalties(yCCSPA, yCLDPA, yQCSPA, yY ASPA,
stowageOptimizer);

improvement ← penaltyImprovement
stepSizep rp ;

if improvement > bestImprovement then
bestImprovement ← improvement;
bestParameter ← p;

end
yp ← yp + stepSizep;

end

end

end

inputs is the startBestImprovement setting. This setting defines how high the best improvement

of one of the stowage planner parameters should be for the algorithm to return a stowage planner

parameter. If we set startBestImprovement to zero, then the algorithm will give null as output

if there is no improvement for any of the non-weight related stowage planner parameters. If we

set startBestImprovement to -1000000, then the algorithm will almost always select a stowage

planner parameter, even if the best improvement is negative. Furthermore, we have the input

stowageOptimizer that denotes the heuristic that we use to solve the stowage problem.

When the algorithm has decided which stowage planner parameter to decrease, we decrease

this stowage planner parameter by the step size of the stowage planner parameter. We then

recompute the weight related penalty. We repeat this process until we find a solution with a

total weight related penalty lower than k. The stowage planner parameter suggestion from the

Parameter Suggestion Model then equals to the parameter values that result in a low enough

total weight related penalty.
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5 Computational experiments

In this section we evaluate the performance of the Iterative Parameter Tuning Method using

computational experiments. We first explain the data and benchmarks that we use, then we

look at the different heuristics that we propose to model the stowage planner and then we

evaluate the Iterative Parameter Tuning Method itself. Lastly, we shortly discuss the results

of the computational experiments. We use Java 8 as programming language for the Iterative

Parameter Tuning Method. For the LNS heuristic we make use of CPLEX 22.1.0. The laptop

that we use for the computations has 32.0 GB RAM and an i7-11850H 2.5 GHz processor.

5.1 Description of the data

To evaluate the performance of our methodology we run emulations using historic data of a real

container terminal that is currently live. This container terminal consists of two quays. On the

west quay there are five QCs that can simultaneously stow two vessels. Furthermore, there are

twelve yard blocks with two RMGs each and there are in total fifteen Shuttle Carriers (SCs).

In the historic data that we use, there are two vessels that are ready to stow containers

from and to the yard. Three of the five QCs service the first vessel that arrives at the container

terminal with a total of 616 containers on board. These containers must all be discharged to

the container yard, while there are 750 containers that must be loaded to the vessel. The two

remaining QCs service the second vessel in this part of the container terminal. These QCs

discharge 897 containers from the vessel to the container terminal and 485 containers the other

way around. There are no containers that stay on the vessel. The data also includes original

stowage plans for both vessels, information about the 10,974 containers in the yard blocks on

the west quay and activities from trucks on the land side of the container terminal.

Using our methodology we optimize the stowage plan of the first vessel only, as the stowage

planner only makes stowage plans for one vessel. It takes approximately seventeen hours to

complete all the planned moves for this vessel under the original planning. To ensure that it is

possible to load and discharge the entire vessel within one emulation, even for inefficient stowage

plans, we use an emulation length of eighteen hours.

Before we can use the data set for our emulations, we have to make some changes to it.

The original truck activity information only consists of truck activities for the first ten hours

of the emulation. It is important that we have truck activity for the entire eighteen-hour long

emulation, as the truck activity ensures that there is a representative workload for the RMGs in

the container yard. If we would not add extra truck activity, then the RMGs would have more

time to move the containers from and to the seaside of the container terminal. This would limit

the number of disruptions caused by the fact that the RMGs of one yard block cannot handle

the demand for container moves. Without truck activities, we would get distorted effects from

the parameters on the QC productivity. We add extra truck activity by reversing the activity

from the first eight hours and then adding that after the first ten hours.

Now we have given a description of the container terminal and the data set that we use, we

give some extra information about how we use the stowage planner. For each set of stowage

planner parameters, we generate one stowage plan using the stowage planner. We continue
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running emulations, until we get three emulations that finish the entire stowage process of the

first vessel within eighteen hours. Sometimes we have to run more than three emulations, as there

can be disruptions during each emulation that can even completely block an entire CONTROLS

run. We approximate the QC productivity corresponding to a set of stowage planner parameter

by taking the average of the three finished emulations from that stowage planner parameter set

to combat the randomness in emulations. If the Parameter Suggestion Model suggests a set of

parameter values for which we already have results, then we do not run addition emulations.

In Table 5 we define the upper and lower bounds on the parameters that we tune. We also

give the parameter values from the standard settings of the stowage planner. We can technically

set the parameter value to an infinite positive value, but we use the bounds on the parameters

in our methodology as starting point for the Parameter Suggestion Model. Therefore, we define

the bound in such a way that we expect that the optimal solutions fall within the bounds.

Table 5: Stowage planner parameter information
Parameter Standard parameter value Lower bound Upper bound

CCSPA 6 1 12
CLDPA 8 2 8
QCSPA 70 0 140
YASPA 100 0 200

For the parameters QCSPA and YASPA we set the lower bound to zero, as that is the

lowest possible value. We set the upper bound of the two parameters to two times the standard

parameter value, since we expect that the optimal parameter value stays close to the standard

parameter value. Parameters CCSPA and CLDPA have a positive lower bound, as they both

influence the CCSPE penalty. If we would set one of these parameters to their minimum value,

then the CCPSE penalty would always become zero. This gives some unwanted effects on the

regression, as one of the parameters could be set to any value without influencing the resulting

penalty. To make sure this situation does not occur, we set the lower bounds of CCSPA and

CLDPA such that we always can have a positive CCSPE penalty. For the parameter CCSPA

this is a lower bound of one, but for the CLDPA parameter it is a lower bound of two as its

minimum value equals one. We set the upper bound of CCSPA to two times the standard value

but set the upper bound of CLDPA to the standard value to keep computation times of the

stowage planner down.

Next to the lower and upper bounds of the stowage planner parameters, we also have to

define the maximum total weight related penalty that we allow. We base our maximum on the

solution that the stowage planner gives if it uses the standard parameters. The total weight

related penalty of the stowage planning that the stowage planner creates is 1,897. We set our

limit on the total weight related penalty to 2,000. This ensures that the parameter values that

we suggest result in stowage plans that have not too much weight infeasibilities.

5.2 Benchmarks

To show the value of our methodology we benchmark our results to two different solutions applied

to the same data set. We derive the first benchmark from the original stowage plan from the
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data set. With this stowage plan, we run three emulations to estimate the QC productivity that

corresponds to this benchmark. We give the results of those three emulations in Table 6. Our

estimate of the QC productivity for the first benchmark is the average of the three emulations

and that is 29.25 with a standard deviation of 0.39. This stowage plan is not created using

the stowage planner directly, but it is optimized by employees from the container terminal. It

gives an indication of what kind of QC productivity is achievable. It is also important to notice

that the three runs for the first benchmark are successful on the first try. This means that this

stowage plan is also robust for issues with the TOS and issues in the emulation software.

Table 6: Overview of the emulation results for the two benchmarks
Benchmark Run 1 Run 2 Run 3 Average Standard deviation

Benchmark 1 29.34 29.38 29.04 29.25 0.15
Benchmark 2 28.55 28.15 28.49 28.40 0.18

We also have a second benchmark. This benchmark is the solution of the stowage planner

with the standard parameter values that we provide in Table 7 from the common stowage

planner strategy of the container terminal. This benchmark provides an indication of the QC

productivity that our tuned parameters should reach at minimum, as we can reach that QC

productivity without any further tuning. This is the main benchmark we compare our results

to. In Table 6 we present the results of the three successful emulations that have an average QC

productivity of 28.40 with a standard deviation 0.18. This is almost one container per hour per

QC lower than the first benchmark. For this benchmark we need to run five emulations to get

three acceptable runs. Thus, this benchmark is also less robust than the first benchmark.

Table 7: Standard parameter values
Parameter type Parameter Parameter value

Weight related parameters
OWDPA 200
WEIPA 501

Tune parameters

CCSPA 6
CLDPA 8
QCSPA 70
YASPA 100

5.3 Evaluating the heuristics to solve the stowage problem

In this section we compare the four different heuristics that we describe in Section 4.6 as options

to solve the stowage problem in the Parameter Suggestion Model. We solve the stowage problem

for the four heuristics and the stowage planner with the standard parameter values from the

second benchmark that we provide in Table 7 to compare the solutions of the different heuristics

and the stowage planner to each other.

The first heuristic that we consider is the Simple Local Search heuristic from Section 4.6.1.

This heuristic finds a solution with a total penalty of 12,343 in 1.136 seconds. The three other

heuristics have settings that we can adjust and we must select those setting before we can use

the heuristics in the Parameter Suggestion Model.
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For the selection of the settings from the heuristics we take three things into account. We

consider the total weight related penalty and the total penalty of the stowage planning that the

heuristic generates and the computation time of the heuristic. The aim of the heuristics is to

serve as a surrogate model for the stowage planner to approximate the weight related penalty

that corresponds to a set of stowage planner parameter values. Therefore, we select the settings

of the heuristics in such a way that they get a stowage planning with a total weight related

penalty close to the total weight related penalty of 1,897 that the stowage planner realizes as we

show in Table 8, where the solution of the stowage planner corresponds to the second benchmark.

Table 8: Total weight related penalty for the stowage solutions from the two benchmarks
Stowage plan Total weight related penalty

Benchmark 1 506
Benchmark 2 1897

If there are multiple different sets of settings that have a total weight related penalty equally

close to the total weight related penalty that the stowage planner reaches, then we select one of

those options based on the total penalty and the computation time of the solutions. If possible,

we select the option that has the lowest total penalty, as that indicates a better stowage plan,

and the shortest computation time. If there is no such option, we select an option based on

what we decide is the better overall option. An important note for the selection of the settings

for the heuristics is that we base the selection of the settings on one instance of stowage planner

parameters. There is no guarantee that the settings that we select also give a good estimation

of the total weight related penalty for other stowage planner parameter values.

5.3.1 Settings selection for the GRASP heuristic

The first heuristic where we select the settings for is the GRASP heuristic from Section 4.6.2.

For the GRASP heuristic we can select the number of iterations and the length of the restricted

candidate list that the algorithm uses to generate the starting solutions of the algorithm. In

Table 9 we provide an overview of all the different settings that we test for the GRASP heuristic

and the penalties of the corresponding stowage planning. We observe that when the number

of iterations increases, the computation time also increases and the total penalty decreases or

stays constant. There does not appear to be any significant effect of changing the restricted

candidate list length.

We continue by selecting one combination of the two settings that we use in the rest of the

thesis. As we see in Table 9, there are two combinations of options that have a total weight

related penalty the closest to the total weight related penalty of 1,897 for the second benchmark.

That are the combination of a restricted candidate list length of three with ten iterations and

a restricted candidate length of three with 25 iterations that both get a total weight related

penalty of 1,880. We select the option with the lowest computation time and the same total

penalty and thus use a restricted candidate list length of three and ten iterations for the GRASP

heuristic from here onwards.
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Table 9: Results from the GRASP heuristic for different settings
Number of
iterations

Length restricted
candidate list

OWDPE WEIPE
Total weight

penalty
CCSPE QCSPE YASPE

Total
penalty

Computation
time (s)

3 2 1260 0 1260 1914 4025 4200 11399 2.418
5 2 1260 0 1260 1914 4025 4200 11399 5.555
10 2 1420 0 1420 2112 3780 3800 11112 11.811
25 2 1780 0 1780 1776 3500 3800 10856 26.471
3 3 1920 0 1920 2130 3710 3600 11360 3.473
5 3 1780 0 1780 1734 3850 3900 11264 5.374
10 3 1880 0 1880 2310 3465 3300 10955 10.788
25 3 1880 0 1880 2310 3465 3300 10955 26.829
3 5 1380 0 1380 2208 3535 3800 10923 3.192
5 5 1380 0 1380 2208 3535 3800 10923 5.503
10 5 1380 0 1380 2208 3535 3800 10923 10.722
25 5 1380 0 1380 2208 3535 3800 10923 26.894
3 10 2280 0 2280 2280 3780 3600 11940 3.109
5 10 2280 0 2280 2280 3780 3600 11940 5.908
10 10 2000 0 2000 2316 3815 3700 11831 10.914
25 10 1780 0 1780 1752 3850 3700 11082 27.518

5.3.2 Settings selection for the Simulated Annealing heuristic

The next heuristic that we select the settings for is the Simulated Annealing heuristic from

Section 4.6.3. For the Simulated Annealing heuristic there are two settings that we must set

and that are the starting temperature and the cooling factor. In Table 10 we show the ten

combinations of settings that result in the total weight related penalty the closest to the weight

related penalty that the stowage planner achieves. We present the results for all the settings

that we consider in Table 29 in Appendix B. From those results we notice that the closer the

cooling factor is to one, the lower the total penalty becomes and the higher the computation

time becomes. The starting temperature also has a positive effect on the computation time, as

the computation time increases when the starting temperature increases. However, there does

not seem to be any effect from the starting temperature on the total penalty.

Table 10: Results from the Simulated Annealing heuristic for different settings

Temperature
Cooling
Factor

OWDPE WEIPE
Total weight

penalty
CCSPE QCSPE YASPE

Total
penalty

Computation
time (s)

5 0.999 1800 0 1800 12468 5670 20300 40238 0.010
10 0.999 1960 0 1960 11412 5215 18500 37087 0.010
5 0.9999 2000 0 2000 4686 5110 7100 18896 0.061
10 0.9999 2000 0 2000 4230 4935 6500 17665 0.070
50 0.99999 1820 0 1820 1626 3115 2100 8661 0.555
100 0.99999 1960 0 1960 1812 2730 1900 8402 0.668
500 0.99999 1820 0 1820 1836 2870 1900 8426 0.822
100 0.999999 1780 0 1780 1482 2065 1900 7227 4.982
500 0.999999 1800 0 1800 1542 2205 1700 7247 6.942

10000 0.999999 1760 0 1760 1488 2100 1800 7148 10.464

For the selection of the settings for the Simulated Annealing heuristic we again select the

combination of settings with the weight related penalty the closest to that of the stowage planner.

There are two sets of settings that are the closest to the total penalty of 1,897 with a total penalty

of 1,960. The option with a starting temperature of ten and a cooling factor of 0.9999 has a high

total penalty with 37,087 and a low computation time with 0.010 seconds. The other options

with a starting temperature of 100 and a cooling factor of 0.99999 still has a low computation
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time of only 0.668 seconds and much lower total penalty of only 8,402. Therefore, we select the

second option and use a starting temperature of 100 and a cooling factor of 0.99999 in the rest

of this thesis for the Simulated Annealing heuristic.

5.3.3 Settings selection for LNS

Lastly, we also select the settings for the LNS heuristic that we describe in Section 4.6.4. We

have to select the number of iterations that the LNS heuristic does and the number of containers

that the LNS heuristics replans optimally each iteration. In Table 11 we present the settings

that result in a total weight related penalty that is close to the total weight related penalty

of the stowage planner. We see that the higher the number of iterations and the higher the

number of containers we consider, the higher the computation time is, but also the lower the

total penalty is. We give the full results for all the settings options that we consider in Table 30

in Appendix B.

Table 11: Results from the LNS heuristic for different settings
Number of
iterations

Number of
containers

OWDPE WEIPE
Total weight

penalty
CCSPE QCSPE YASPE

Total
penalty

Computation
time (s)

100 10 1900 0 1900 10218 5460 18200 35778 10.200
100 30 1820 0 1820 3654 3850 6200 15524 113.553
200 25 1820 0 1820 2496 3360 3400 11076 96.821
200 30 1880 0 1880 2646 3360 2900 10786 176.469
300 5 1880 0 1880 10014 6090 19500 37484 16.863
300 10 2020 0 2020 5388 4830 8700 20938 23.386
300 20 1800 0 1800 2844 3325 3500 11469 221.507
500 5 1900 0 1900 7830 5705 15300 30735 20.905
500 15 1840 0 1840 2682 3325 3800 11647 89.491
500 20 1840 0 1840 2082 3255 2900 10077 255.297

Again, there are two sets of settings that have the closest total weight related penalty to the

total weight related penalty that the stowage planner reaches. We get a total weight related

penalty of 1,900 for 100 iterations and ten considered containers and for 500 iterations and five

considered containers. The computation time of the second option is two times the computation

time of the first option, while the second option reaches a total penalty that is 5,043 higher than

the total penalty of the first option. There is no clear best option, however we select the first

option with the lower computation time, as the second option still has a relatively high total

penalty that is higher than the total penalty that the stowage planner reaches. Thus, from here

on we use 100 iterations and we consider ten containers in each iteration of the LNS heuristic.

5.3.4 Comparison between the different heuristics

Now we have selected the settings for all the heuristics, we can compare the heuristics to each

other and to the stowage planner. For each heuristic we give the resulting penalty values of the

stowage plan that the heuristic creates for the standard parameters in Table 12. We also add

the resulting penalty values of the stowage plans from the two benchmarks, where the second

benchmark corresponds with the stowage planner solution. If we compare our heuristics, we

see that the Simple Local Search heuristic and Simulated Annealing heuristic have the shortest

computation times. The Simulated Annealing heuristic also reaches the lowest total penalty
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with 8,402. The second-best heuristic in terms of the total penalty is GRASP with a total

penalty of 10,955.

We observe that the stowage plan made by LNS has a total penalty of 35,778. That is more

than 20,000 higher than the total penalty of the other heuristics despite it being one of the

slower heuristics. The fact that each iteration takes approximately 0.1 seconds and only changes

ten containers is the main cause for this high penalty. There are not enough opportunities to

improve the solution far enough.

Table 12: Stowage planning result for different Algorithms

Algorithm OWDPE WEIPE
Total weight

penalty
CCSPE QCSPE YASPE

Total
penalty

Computation
time (s)

Benchmark 1 506 0 506 2634 2625 7200 12965 -
Benchmark 2 394 1503 1897 1566 2870 16700 23033 164.88

Simple Local Search 1640 0 1640 2448 3955 4300 12343 1.136
GRASP 1880 0 1880 2310 3465 3300 10955 10.788

Simulated Annealing 1960 0 1960 1812 2730 1900 8402 0.668
LNS 1900 0 1900 10218 5460 18200 35778 10.200

If we compare the stowage plans from the heuristics with the benchmarks, we see that,

except for LNS, they all achieve a lower total penalty than the benchmarks do. Here it is

important to notice that our implementation of the PENTWE parameter differs a little bit

from the implementation used in the stowage planner, as we explain in Section 4.5.2, which

could cause a small difference in the penalties mentioned for the benchmark compared to the

heuristics. Especially for the second benchmark, which is the solution that the stowage planner

gives for the standard parameters, we see a difference in the total penalty of more than 10,000

compared to the total penalties of the heuristics. This shows that there is a significant difference

between the solutions of the heuristics and the solution from the stowage planner.

We can see that same difference if we look specifically at the WEIPE penalty from the

different solutions. The solution from the stowage planner has a WEIPE penalty of 1,503,

while the solutions from the heuristics all have a WEIPE penalty of zero. There are also big

differences in the other penalties, however this difference does not have to be a problem. The

goal of the heuristics is to mimic the performance of the stowage planner to estimate the total

weight related penalty for a certain parameter set. This total weight related penalty is almost

equal to the total weight related penalty that the stowage planner reaches for most heuristics

due to the way we select the settings for the heuristics. For the Simple Local Search heuristic

this does not hold, as we cannot set the any settings for this heuristic. Therefore, the Simple

Local Search heuristic has a total weight related penalty of 1,640 which is 257 lower than the

total weight related penalty of the stowage planner.

We also examine the stowage plan with the lowest total penalty that we find for each of

the heuristics for all the possible settings that we give in Table 13. Here we observe that the

Simulated Annealing heuristic reaches the lowest total penalty with a total penalty of 6,359.

The LNS heuristic also reaches quite a low total penalty with a total penalty of 9,035. Both

these methods do take quite a long time to reach those penalties. The total penalty of solution

from the stowage planner, benchmark 2, is almost than 14,000 higher than the total penalty of

the stowage plan of both the LNS heuristic and the Simulated Annealing heuristic. This shows

that the stowage planner is not able to find a good solution for the stowage problem.
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Table 13: Stowage plans with the lowest found total penalties for the different heuristics

Algorithm OWDPE WEIPE
Total weight

penalty
CCSPE QCSPE YASPE

Total
penalty

Computation
time (s)

Benchmark 1 506 0 506 2634 2625 7200 12965 -
Benchmark 2 394 1503 1897 1566 2870 16700 23033 164.88

Simple Local Search 1640 0 1640 2448 3955 4300 12343 1.136
GRASP 1780 0 1780 1776 3500 3800 10856 26.471

Simulated Annealing 1420 0 1420 1554 1785 1600 6359 319.982
LNS 1740 0 1740 2190 2905 2200 9035 234.235

There are multiple reasons for this difference. One of the reasons is that the stowage planner

considers more parameters and penalties than that we do. Consequently, the stowage planner

trades some of the performance on the penalties that we consider off against the extra penalties

that the stowage planner considers, which results in higher penalties for the parameter that we

consider. Another reason for this is the low parameter value of five for both the SearchDepth

parameter and SearchWidth parameter in the standard parameters. The stowage planner would

give better results for higher values of those parameters. A last reason for this difference is that

the stowage planner only consists of one iteration as we explain in Algorithm 1 in Section 3.3.

This means that the stowage planner has not enough opportunities to reach an optimal solution.

5.4 Evaluation of the Iterative Parameter Tuning Method

In this section we evaluate the performance of the Iterative Parameter Tuning Method that we

develop. We first apply the Iterative Parameter Tuning Method with an initialization phase

that consists of fifteen sets of stowage planner parameter values. Those fifteen sets contain the

original parameter set and fourteen corner points to cover the entire feasible parameter space.

Six of those corner points have parameter values for the CCSPA parameter and the CLDPA

parameter that are not on the lower or upper bound of the parameter value to add a difference

between the two parameters for the regression. This is needed because for those two parameters

it is not possible to have one parameter with the lower bound value and the other parameter with

the upper bound value, as this would always result in a zero penalty for the CCSPE penalty.

In Table 14 we show the results from the emulations for the fifteen selected parameter sets.

In this table we see that we often need more than ten emulations for the parameter sets with

low CCSPA and CLDPA parameter values to get three successful emulation runs. For the other

parameter sets we often only need four to seven emulations to get the three successful runs.

This indicates that having low values for the CCSPA and the CLDPA parameter results in less

robust stowage plans.

The set of parameter values that reaches the highest average QC productivity of 29.26 over

its three successful emulation runs is the set with a CCSPA parameter of twelve, a CLDPA

parameter of eight, a QCSPA parameter of 140 and a YASPA parameter of zero. The worst

average QC productivity is 27.01 and that is for the parameter set with a CCSPA parameter of

zero, a CLDPA parameter of one, a QCSPA penalty of 140 and a YASPA parameter of 200.

If we look at the total weight related penalty of the parameters sets, we see that there are

three sets that have a total weight related penalty above the limit of 2,000 that we have set.

This shows that considering this total weight related penalty is useful, as there are parameter
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Table 14: Emulation results for the large set of parameters sets
Parameter values Number

of runs
QC

Prod 1
QC

Prod 2
QC

Prod 3
Average

Standard
deviation

Total weight
penaltyCCSPA CLDPA QCSPA YASPA

0 1 0 0 12 27.69 27.37 26.84 27.30 0.35 543
0 1 0 200 6 29.43 28.28 29.65 29.12 0.60 1849
0 1 140 0 15 28.45 28.12 27.71 28.09 0.30 551
0 1 140 200 16 26.17 27.43 27.42 27.01 0.59 2470
12 8 0 0 11 28.43 29.46 29.35 29.08 0.46 535
12 8 0 200 8 29.01 28.93 29.65 29.20 0.32 1516
12 8 140 0 5 28.23 29.77 29.78 29.26 0.73 719
12 8 140 200 7 29.53 28.20 27.62 28.45 0.80 2624
6 8 0 0 7 27.62 28.00 27.37 27.66 0.26 46
6 8 140 200 5 27.8 28.16 27.97 27.98 0.15 3071
6 4 0 0 4 27.76 28.67 27.76 28.06 0.43 543
6 4 140 200 5 27.31 27.71 27.53 27.52 0.16 1849
12 4 0 0 4 27.2 28.30 27.08 27.53 0.55 543
12 4 140 200 7 27.07 27.39 27.6 27.35 0.22 1865
6 8 70 100 5 28.55 28.15 28.49 28.40 0.18 1897

sets that are not feasible. We give a full overview of all the penalties of the stowage plan that

the stowage planner generates for the all the parameter sets in Table 31 of Appendix C.

We present the results from the first regression on the emulation results from Table 14 in

Table 15. This regression has an R2 of only 0.200, which indicates that the regression can only

explain 20% of the variance in the emulation results. The only parameter with a coefficient

that is significantly different from zero with 90% confidence is the CLDPA parameter. Most

parameters have a positive effect on the QC productivity, except for the QCSPA parameter that

has a negative effect. The regression indicates that QC productivity improves with 0.003 if we

decrease the parameter value of QCSPA with one. In the next subsections we analyze the

Table 15: Results of the regression after the initialization phase
Constant CCSPA CLDPA QCSPA YASPA R2

27.670** (0.285) 0.001 (0.037) 0.116* (0.060) -0.003 (0.002) 0.001 (0.001) 0.200

Standard errors between parentheses, * p < 0.10, ** p < 0.05

performance of the Iterative Parameter Tuning Method for the four different heuristics that we

use in the Parameter Suggestion Model to model the stowage planner. Thereafter, we also apply

the Iterative Parameter Tuning Method using less sets of parameters in the initialization phase.

5.4.1 Iterative Parameter Tuning Method using the Simple Local Search heuristic

We present the parameter suggestion from the Parameter Suggestion Model with the Simple

Local Search heuristic in Table 16 and the results from the regressions that we use as input for

the Parameter Suggestion Model in Table 17. The Iterative Parameter Tuning Method ends in

three iterations, as it generates the same parameter suggestion in every iteration. To compute

the QC productivity corresponding to the parameter suggestion we need four emulation runs,

which indicates that this parameter suggestion creates a robust stowage plan. The stowage plan

that the stowage planner creates for the parameter suggestion is also feasible as the total weight

related penalty of the stowage plan is below the boundary of 2,000. We give an overview of all

the penalty values for the solution that the stowage planner creates in Appendix C Table 32.
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Table 16: Emulation results of the parameter suggestions for the Simple Local Search heuristic

Iteration
Parameter values Number

of runs
QC

Prod 1
QC

Prod 2
QC

Prod 3
Average

Standard
deviation

Total weight
penaltyCCSPA CLDPA QCSPA YASPA

1-3 6 5 0 200 4 28.94 28.06 28.50 28.50 0.36 1356

Table 17: Results of the regressions for the Simple Local Search heuristic
Iteration Constant CCSPA CLDPA QCSPA YASPA R2

1 27.670** (0.285) 0.001 (0.037) 0.116* (0.060) -0.003 (0.002) 0.001 (0.001) 0.200
2 27.677** (0.276) 0.001 (0.035) 0.116* (0.058) -0.003 (0.002) 0.001 (0.001) 0.205
3 27.681** (0.268) 0.001 (0.035) 0.117** (0.057) -0.003* (0.002) 0.001 (0.001) 0.210

Standard errors between parentheses, * p < 0.10, ** p < 0.05

The average QC productivity of the final parameter suggestion from the Iterative Parameter

Tuning Method using the Simple Local Search heuristic is 28.50. This is only slightly higher

than the QC productivity of 28.40 for the second benchmark. If we look at the regressions

in Table 17 we see no substantial changes in the second and third iteration compared to the

first iteration. The only difference is that in the third iteration the coefficient of the QCSPA

parameter becomes significantly different from zero with a confidence level of at least 90%.

5.4.2 Iterative Parameter Tuning Method using the GRASP heuristic

In Table 18 we present the three parameter suggestions from the Parameter Suggestion Model

with the GRASP heuristic. For the computation of the average QC productivity, we need four

emulation runs, which means that also for the GRASP heuristic we get a robust parameter

suggestion. With a total weight related penalty of only 366, the stowage planner generates a

feasible stowage planning. Table 33 in Appendix C gives the full overview of all the penalties

for that stowage planning.

Table 18: Emulation results of the parameter suggestions for the GRASP heuristic

Iteration
Parameter values Number

of runs
QC

Prod 1
QC

Prod 2
QC

Prod 3
Average

Standard
deviation

Total weight
penaltyCCSPA CLDPA QCSPA YASPA

1-3 12 6 0 200 4 29.20 29.24 30.10 29.51 0.42 366

Table 19: Results of the regressions for the GRASP heuristic
Iteration Constant CCSPA CLDPA QCSPA YASPA R2

1 27.670** (0.285) 0.001 (0.037) 0.116* (0.060) -0.003 (0.002) 0.001 (0.001) 0.200
2 27.664** (0.287) 0.001 (0.037) 0.126** (0.060) -0.004** (0.002) 0.001 (0.001) 0.259
3 27.661** (0.285) 0.001 (0.037) 0.133**(0.059) -0.005** (0.002) 0.002 (0.001) 0.310

Standard errors between parentheses, * p < 0.10, ** p < 0.05

The stowage planning that the stowage planner creates for the parameter suggestion reaches

an average QC productivity of 29.51. This is more than one container per hour per QC higher

than the QC productivity of the second benchmark and it is even higher than the QC produc-

tivity of the first benchmark. Thus, the Iterative Parameter Tuning Method with the GRASP

heuristic can tune the stowage planner parameters in three iterations to such a level that it can

compete with the original planning for the data set. In Table 19 we present the results from

the regressions that are the input to the Parameter Suggestion Model. The directions of the
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effects stay the same across the different iterations, however in the second and third iteration we

see that the effects of both the CLDPA parameter and the QCSPA parameter are significantly

different from zero with a confidence level of at least 95%.

5.4.3 Iterative Parameter Tuning Method using the Simulated Annealing heuristic

We continue with the Iterative Parameter Tuning method with the Simulated Annealing heuristic

of which we give the parameter suggestions of the different iterations in Table 20. Once again,

we only need three iterations of the Iterative Parameter Tuning Method as the Parameter

Suggestion Model suggest three times the same parameter values. We also again only need four

emulation runs to get three successful runs. In Table 34 of Appendix C we give an overview of

the penalties from the solution that the stowage planner creates for the parameter suggestion.

The total weight related penalty of this solution is under 2,000, which means that this solution

is feasible.

Table 20: Emulation results of the parameter suggestions for the Simulated Annealing heuristic

Iteration
Parameter values Number

of runs
QC

Prod 1
QC

Prod 2
QC

Prod 3
Average

Standard
deviation

Total weight
penaltyCCSPA CLDPA QCSPA YASPA

1-3 10 8 0 200 4 28.76 29.62 28.55 28.98 0.46 1877

Table 21: Results of the regressions for the Simulated Annealing heuristic
Iteration Constant CCSPA CLDPA QCSPA YASPA R2

1 27.670** (0.285) 0.001 (0.037) 0.116* (0.060) -0.003 (0.002) 0.001 (0.001) 0.200
2 27.661** (0.279) 0.001 (0.036) 0.121** (0.058) -0.003 (0.002) 0.001 (0.001) 0.237
3 27.656** (0.273) 0.001 (0.035) 0.123** (0.056) -0.003 (0.002) 0.001 (0.001) 0.266

Standard errors between parentheses, * p < 0.10, ** p < 0.05

The average QC productivity of the three successful emulations is 28.98. This is higher than

the second benchmark, but lower than the first benchmark. In Table 21 we present the results of

the regressions that we use. As in the previous two sections, there are no big differences between

the regressions in the different iterations. This is an indication that the set of parameter sets

that we define in the initialization phase gives a good indication of how the QC productivity

reacts on the stowage planner parameters.

5.4.4 Iterative Parameter Tuning Method using the LNS heuristic

The last heuristic where we apply the Iterative Parameter Tuning Method for is the LNS heuristic

and we show the results of this in Table 22. The Iterative Parameter Tuning Method with the

LNS heuristic needs seven iterations before it converges. The parameter values in the row of

iteration 5-7 are the final parameter tuning suggestions from the Iterative Parameter Tuning

Method. The total weight related penalty of all iterations stays below 2,000 meaning that all

the parameter suggestion result in feasible stowage plan. In Table 35 from Appendix C we give

a full overview of all the penalties from the stowage plan that the stowage planner creates for

that iteration.

In each iteration we need approximately ten emulation runs to get three successful runs. This

indicates that the stowage plans that we create using the stowage planner with this method are
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Table 22: Emulation results of the parameter suggestions for the LNS heuristic

Iteration
Parameter values Number

of runs
QC

Prod 1
QC

Prod 2
QC

Prod 3
Average

Standard
deviation

Total weight
penaltyCCSPA CLDPA QCSPA YASPA

1 6 5 0 140 8 26.90 28.77 28.04 27.90 0.77 1386
2-3 8 4 0 190 11 28.57 28.16 27.23 27.99 0.56 1849
4 1 8 0 200 9 28.11 28.34 28.62 28.36 0.21 1364
5-7 12 8 0 0 11 28.43 29.46 29.35 29.08 0.46 535

not robust to disruptions in the emulation. Over the iterations we see that the QC productivity

increases from 27.90 to 29.08. The final parameter suggestion has a QC productivity that is

higher than the QC productivity of the second benchmark. This parameter suggestion even

almost reaches the QC productivity of the first benchmark. Based on Table 22 we also note

that the parameter suggestions for the second and third iteration are the same, but that the

parameter suggestion changes for the fourth iteration. This shows the reason that we only say

that the parameter suggestions converge after three parameter suggestion that are the same.

It is possible that the parameter suggestion still changes in a next iteration if we get the same

parameter suggestion multiple iterations in a row.

Table 23: Results of the regressions for the LNS heuristic
Iteration Constant CCSPA CLDPA QCSPA YASPA R2

1 27.670** (0.285) 0.001 (0.037) 0.116* (0.060) -0.003 (0.002) 0.001 (0.001) 0.200
2 27.633** (0.283) 0.003 (0.037) 0.114* (0.060) -0.002 (0.002) 0.000 (0.001) 0.180
3 27.622** (0.276) 0.001 (0.035) 0.118** (0.058) -0.002 (0.002) 0.000 (0.001) 0.174
4 27.614** (0.271) -0.001 (0.035) 0.120** (0.056) -0.002 (0.002) 0.000 (0.001) 0.170
5 27.619** (0.264) 0.006 (0.028) 0.109** (0.046) -0.002 (0.002) -0.001 (0.001) 0.171
6 27.632** (0.261) 0.011 (0.028) 0.114** (0.046) -0.002 (0.002) -0.000 (0.001) 0.206
7 27.641** (0.258) 0.013 (0.027) 0.117** (0.045) -0.002 (0.002) -0.001 (0.001) 0.237

Standard errors between parentheses, * p < 0.10, ** p < 0.05

We show the results of the regressions that we use for the Iterative Parameter Suggestion

Model with the LNS heuristic in Table 23. In this table we see that for the parameters CCSPA

and YASPA the sign of the coefficient changes. In the fourth iteration the sign of the CCSPA

parameter changes for one iteration from positive to negative. We see the effect of this change

in Table 22, where the parameter suggestion in the fourth iteration is one while it is eight and

twelve in the previous and next iteration. For the YASPA parameter the sign changes from

positive to negative from iteration five onwards. In Table 22 we see that the suggestion for the

YASPA parameter changes to zero as of iteration five.

5.4.5 Comparison between the different heuristics

In this section we compare the final parameter suggestions that the Iterative Parameter Tuning

Method suggests for the different heuristics. In Table 24 we give an overview of those final

parameter suggestions and some statistics about those parameter suggestions. We notice that

the Iterative Parameter Tuning Method gives a different parameter advice for each heuristic. One

of the parameter suggestions differs substantially from the other three parameter suggestions.

That is the parameter suggestion using the LNS heuristic which is the only parameter suggestion

with a YASPA parameter of zero. The stowage plan following from this parameter suggestion

is the least robust stowage plan as we need eleven emulations to get three successful runs, but

it still reaches a high average QC productivity of 29.08.
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Table 24: Overview of the final parameter suggestions for the different heuristics and the
benchmarks we compare the final parameter suggestions to

Heuristic
Final parameter suggestion Number of

iterations
Number
of runs

Average
QC Prod

Total weight
penalty

Computation time
per iteration (s)CCSPA CLDPA QCSPA YASPA

Simple Local Search 6 5 0 200 3 4 28.50 1356 6.76
GRASP 9 7 0 200 3 4 29.51 366 159.85

Simulated Annealing 10 8 0 200 3 4 28.98 1877 3.66
LNS 12 8 0 0 7 11 29.08 535 140.10

Benchmark 1 - - - - - 3 29.25 506 -
Benchmark 2 - - - - - 5 28.40 1897 -

The other three heuristics differ only in the CCSPA and CLDPA parameters. The cause for

this difference is the fact that whether a parameter suggestion gets accepted, depends on the

heuristic that we use. The Simulated Annealing heuristic seems to accept a parameter suggestion

for higher parameter values than the GRASP heuristic and the Simple Local Search heuristic

as it has a final parameter suggestion with higher parameter values than the other heuristics.

One explanation for this difference in when a parameter suggestion gets accepted can be

that a heuristic that reaches a better stowage planning in terms of the total penalty accepts

a parameter suggestion earlier. The reasoning for this could be that a stowage planning with

a lower total penalty on average also has a lower total weight related penalty. As we show

in Table 12, for the standard parameter values the Simulated Annealing heuristic reaches the

lowest total penalty, while the GRASP heuristic has the second lowest total penalty and the

Simple Local Search heuristics the highest total penalty of the three heuristics. This is the

same order that we have in Table 24 in terms of the boundary when a heuristic accepts a

parameter suggestion.

Overall, the heuristic that results in the best parameter suggestion is the GRASP heuristic.

The parameter suggestion from the GRASP heuristic has the highest average QC productivity,

needs only four emulation runs for three successful emulations and has the lowest total weight

related penalty. The Iterative Parameter Tuning Method also only needs three iterations with

the GRASP heuristic. The only disadvantage of the GRASP heuristic is the relatively long

computation time of on average 159.85 seconds per iteration. Compared to the time an emulation

takes this still is a short time.

The LNS heuristic results is the second-best parameter estimate in terms of the average QC

productivity. However, the Iterative Parameter Tuning Method has to perform more iterations

with the LNS heuristic than with all the other heuristics. One cause for this could be that

the LNS heuristic reaches stowage plans with a total penalty substantially worse than that

of the other heuristics. As we have explained earlier in this section, there seems to be an

effect between the total penalty that a heuristic reaches and the point where the Parameter

Suggestion Model accepts a parameter suggestion. This would mean that parameter suggestion

using the LNS heuristic get accepted less, resulting in worse parameter suggestions in terms of

the average QC productivity. Therefore, the LNS heuristic needs more iterations to get to good

parameter suggestions.
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Also, the number of emulations needed to get three successful emulation runs indicates that

using the LNS heuristic is not one of the best options. The cause for those extra emulation

runs is most likely the fact that the final parameter suggestion using the LNS heuristic suggests

a parameter value of zero for the YASPA parameter, causing extra yard shifts and thus extra

disruptions in the emulation.

5.4.6 Shorter initialization phase

As we show in Table 24, for three of the four heuristics, we only need three iterations to get

convergence. This is the lowest possible number of iterations for our Iterative Parameter Tuning

Method as we define convergence as getting the same parameter suggestion for three iterations

in a row. The fact that we can find a parameter suggestion in the lowest possible number of

iterations indicates that we possibly do not need all the sets of parameter values from Table 14

to get good parameter suggestions. This would reduce the computation time of the Iterative

Parameter Tuning Method, as we would have to run less emulations in the initialization phase.

Therefore, we also apply the Iterative Parameter Tuning Method with only the five parameter

sets that we give in Table 25. We do this only with the Simulated Annealing heuristic.

Table 25: Emulation results for the small set of parameters sets
Parameter values Number

of runs
QC

Prod 1
QC

Prod 2
QC

Prod 3
Average

Standard
deviation

Total weight
penaltyCCSPA CLDPA QCSPA YASPA

0 1 0 0 12 27.69 27.37 26.84 27.30 0.35 543
0 1 0 200 6 29.43 28.28 29.65 29.12 0.60 1849
0 1 140 0 15 28.45 28.12 27.71 28.09 0.30 551
12 8 0 0 11 28.43 29.46 29.35 29.08 0.46 535
6 8 0 0 7 27.62 28.00 27.37 27.66 0.26 46

We present the parameter suggestions in the different iterations of the Iterative Parameter

Tuning Method with the Simulated Annealing heuristic in Table 26. Compared to the original

larger initialization phase, we now need two extra iterations to get to convergence. The final

parameter suggestion is exactly the same parameter suggestion as we get for the original larger

initialization phase. This shows that we do not need an initialization phase with fifteen sets of

parameters, but that we can also reach the same results with an initialization phase with five

sets of parameters. Overall, this decreases the number of emulations that we need to run and

thus decreases the total computation time of the entire Iterative Parameter Tuning Method.

Table 26: Emulation results of the parameter suggestions with a shorter initialization phase

Iteration
Parameter values Number

of runs
QC

Prod 1
QC

Prod 2
QC

Prod 3
Average

Standard
deviation

Total weight
penaltyCCSPA CLDPA QCSPA YASPA

1 12 2 140 200 9 26.83 29.29 26.19 27.44 1.34 1849
2 1 8 0 200 9 28.11 28.34 28.62 28.36 0.21 1364
3-5 10 8 0 200 4 28.76 29.62 28.55 28.98 0.46 1877

One observation that we can make on the parameter suggestions from the first three iterations

of the Iterative Parameter Tuning Method is that they differ significantly from each other each

iteration. The cause of this are the results from the regression that we show in Table 27 that

contain multiple changes of the sign of the coefficients. The first regression with the shorter

initialization phase differs substantially from the first regression of the original initialization
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phase. The first regression with the shorter initialization phase has a negative coefficient for

the CLDPA parameter, while this effect is positive for the original initialization phase as can

be seen in Table 15. Also the sign of the QCSPA parameter differs in comparison to the first

regression for the original initialization phase.

Table 27: Results of the regressions with a shorter initialization phase compared to the result
of the final regression with the original initialization phase from Table 21 for the Simulated

Annealing heuristic
Iteration Constant CCSPA CLDPA QCSPA YASPA R2

Original 27.656** (0.273) 0.001 (0.035) 0.123** (0.056) -0.003 (0.002) 0.001 (0.001) 0.266

1 27.450** (0.347) 0.236** (0.069) -0.150 (0.102) 0.006* (0.003) 0.009** (0.002) 0.760
2 27.716** (0.738) -0.051 (0.094) 0.135 (0.188) -0.002 (0.006) 0.004 (0.004) 0.132
3 28.066** (0.522) 0.004 (0.053) 0.018 (0.092) -0.004 (0.005) 0.002 (0.002) 0.103
4 28.020** (0.486) 0.011 (0.048) 0.024 (0.086) -0.004 (0.004) 0.002 (0.002) 0.164
5 28.001** (0.459) 0.013 (0.045) 0.026 (0.082) -0.004 (0.004) 0.002 (0.002) 0.206

Standard errors between parentheses, * p < 0.10, ** p < 0.05. The Original row shows the
results of the final regression with the original initialization phase. The other rows show the

results of the regressions with a shorter initialization phase.

As the first regression does not give a good estimation of the effects from the stowage planner,

the first parameter suggestion is not of the highest quality. We can see this in the average QC

productivity of the first iteration that is only 27.44, while we also need nine emulation runs

to get three successful runs. In the second iteration we see that the signs of the coefficients

become more similar to the results from the regressions for the original initialization phase.

This results in a better parameter suggestion with an average QC productivity of 28.36. In

the third iteration the signs of the coefficients become the same as the signs of the regressions

for the original initialization phase. This shows that the Iterative Parameter Tuning Method

corrects itself if the first regression gives incorrect results. Those results provide low quality

parameter suggestions, which give more information for the next iteration. This then improves

the regression results and following parameter suggestions.

5.5 Discussion of the computational experiments

The final goal of our Iterative Parameter Tuning Method is to automate the parameter tuning

for an algorithm, specifically in this case for the stowage planner. For our computational ex-

periments, we have not yet automated the different steps of the method. We only test whether

the steps that we would take to automate the entire process, would result in good parame-

ter tuning. If we use a long initialization phase with fifteen different sets of parameters, the

Iterative Parameter Tuning Method gives for all the heuristics that we use a final parameter

suggestion which reaches an average QC productivity higher than the second benchmark, the

stowage plan that the stowage planner makes with the original parameter values. For the final

parameter suggestion that the Iterative Parameter Tuning Method creates with the GRASP

heuristic, the corresponding stowage plan even reaches an average QC productivity higher than

the first benchmark, the original planning from the data set.

The high average QC productivities from the final parameter suggestion demonstrate that

the Iterative Parameter Tuning Methods works as we expect it to work. After we have selected
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a heuristic and the settings of the heuristic, we can tune the parameters of the stowage planner

without the need to take any decisions ourselves except for the selection of the parameter sets in

the initialization phase. The parameter tuning also results in feasible and robust stowage plans

that can reach a high QC productivity.

There is one disadvantage of our Iterative Parameter Tuning Method and that is the total

computation time of the method. In our application of the Iterative Parameter Tuning Method

with the GRASP heuristic for the initial large initialization phase, we use a total of 121 emulation

runs to get three successful runs for each set of parameters values that we consider. If this is

not done in parallel, this would take at least 90 days to complete the Iterative Parameter

Tuning Method, as one emulation takes eighteen hours in this case. Even if we use the shorter

initialization phase from Section 5.4.6, we still use 73 emulations and this would still take at

least 54 days. This computation time can theoretically be shortened to around a week, if we

first do all emulation runs from the initialization phase in parallel and then for each iteration

all emulations for that iteration in parallel.

There are also other problems that we do not consider in our computational experiments.

One of those problems is that we only investigate the parameter tuning of four parameters

and that we only consider five penalties. The real stowage planner uses more parameters and

penalties. We expect that the Iterative Parameter Tuning Method still performs the same, if we

add those extra parameters and penalties, but there is no guarantee for that due to the added

extra complexity.

We also test our Iterative Parameter Tuning Method only on one vessel in one container

terminal in one data set. The vessel, the container terminal and the data set are all things that

can influence the performance of our Iterative Parameter Tuning Method. It is possible that the

performance of the Iterative Parameter Tuning Method decreases when we change one of those

things. For example, if we would have to stow more containers to a vessel, this would add extra

computational complexity to the heuristics. This could possibly lead to less optimal parameter

tuning advice by the Iterative Parameter Tuning Method. For the results that we use we are

also dependent on the performance of the emulations. The QC productivities for the emulations

can differ more than a value of one container per hour per QC if we run an emulation for one

stowage plan multiple times. It is possible that we would get different results if we would run

all the emulations again.
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6 Conclusion

The goal of this thesis is to investigate whether it is possible to automate the parameter tuning

process of the stowage planner algorithm.

We present our Iterative Parameter Tuning Method to tune the stowage planner parameters.

After an initialization phase that we use to estimate the effects of the stowage planner with a

linear regression, the Iterative Parameter Tuning Method iteratively generates a parameter

suggestion using our Parameter Suggestion Model and updates the linear regression. We get our

final parameter tuning advice when the parameter suggestions from the Parameter Suggestion

Model converge. To evaluate the performance of a parameter suggestion, we run an emulation

with the stowage plan that the stowage planner generates for that parameter suggestion to

estimate the QC productivity.

For our Parameter Suggestion model, we propose four different heuristics as options to

model the stowage planner. These four heuristics are the Simple Local Search, the GRASP, the

Simulated Annealing, and the LNS heuristic. We find that for all the four different heuristics the

Iterative Parameter Tuning Method generates a final parameter suggestion that reaches a QC

productivity higher than the benchmark we compare our parameter suggestion to. Especially

when we use the GRASP heuristic, we get a final parameter suggestion that reaches a high QC

productivity.

There is one problem with the Iterative Parameter Tuning Method and that is the com-

putation time of tens of days. This limits the possibilities of the Iterative Parameter Tuning

Method to tune the parameters of the stowage planner for each vessel in real-time. However,

even with the long computation time the Iterative Parameter Tuning Method is still useful

for more long term parameter optimization projects that aim to find the best stowage planner

parameter settings in the long term.

We conclude that our results indicate that it is possible to automate the tuning process of the

parameters from the stowage planner using our Iterative Parameter Tuning Method. Each step

of the Iterative Parameter Tuning Method can be completely automated and it does not need

any additional inputs after initializing the method. The Iterative Parameter Tuning Method

also gives good working final tuning results, as the final parameter advice of the method reaches

a high QC productivity.

There are still numerous future research possibilities on automating the tuning process. First

it would be interesting to investigate whether it is possible to decrease the total computation

time of the Iterative Parameter Tuning Method, as that is the biggest problem with the current

implementation. It would also be interesting to investigate whether the Iterative Parameter

Tuning Method would also perform the same for different vessels or container terminals as we

only look at one vessel in one container terminal in this thesis. Another future research direction

is to investigate whether it is possible to apply the Iterative Parameter Tuning Method to the

parameter tuning of other algorithms such as the vehicle dispatching algorithm.
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Appendices

Appendix A Abbreviations

Table 28: Overview of the abbreviations used in this thesis
Abbreviation Full description

AGV Automated Guided Vehicle
ALNS Adaptive Large Neighborhood Search
ASC Automated Stacking Crane
GPS Generalized Pattern Search
GRASP Greedy Randomized Adaptive Search Procedure
LNS Large Neighborhood Search
MADS Mesh Adaptive Direct-Search
MIP Mixed Integer Programming
OLS Ordinary Least Squares
QC Quay Crane
RMG Rail Mounted Gantry Crane
SC Straddle Carrier / Shuttle Carrier
TOS Terminal Operating System

Appendix B Results from the settings selection for heuristics

Table 29: Full results for the Simulated Annealing heuristic for different set-

tings

Tempe-

rature

Cooling

Factor
OWDPE WEIPE

Total weight

penalty
CCSPE QCSPE YASPE

Total

penalty

Comput

time (s)

5 0.9 80 0 80 27528 13160 39900 80668 0

10 0.9 80 0 80 27516 13160 39900 80656 0

50 0.9 260 0 260 26796 13020 39700 79776 0.008

100 0.9 280 0 280 26496 13020 39600 79396 0.018

500 0.9 420 501 921 26046 13020 38600 78587 0

1000 0.9 420 501 921 26226 13020 38800 78967 0

5000 0.9 580 501 1081 26322 12880 38900 79183 0.01

10000 0.9 760 501 1261 26454 12740 39000 79455 0.002

5 0.99 460 0 460 23910 12810 36100 73280 0

10 0.99 580 0 580 23946 12740 34700 71966 0.009

50 0.99 720 0 720 21540 12110 32900 67270 0.01

100 0.99 1200 0 1200 20208 12110 32400 65918 0.01

500 0.99 2680 1002 3682 18486 11550 32900 66618 0.008

1000 0.99 2980 1002 3982 17430 11340 32300 65052 0.01

5000 0.99 3280 4008 7288 18588 11900 31000 68776 0

10000 0.99 4460 4008 8468 18606 11690 31700 70464 0.01

5 0.999 1920 0 1920 12972 10850 21200 46942 0.02

10 0.999 1880 0 1880 13020 10150 19500 44550 0.02

50 0.999 2540 0 2540 8850 9730 17600 38720 0.02

100 0.999 2720 0 2720 9846 8750 15200 36516 0.02

500 0.999 3540 0 3540 8628 9800 13300 35268 0.03

1000 0.999 4420 0 4420 8436 10220 15800 38876 0.028

5000 0.999 4580 0 4580 6918 9590 12800 33888 0.04

10000 0.999 4460 0 4460 8802 9800 13400 36462 0.044

5 0.9999 2100 0 2100 4842 7910 8200 23052 0.053
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Table 29 continued from previous page

Tempe-

rature

Cooling

Factor
OWDPE WEIPE

Total weight

penalty
CCSPE QCSPE YASPE

Total

penalty

Comput

time (s)

10 0.9999 2240 0 2240 3990 7070 7900 21200 0.069

50 0.9999 2540 0 2540 3234 6790 5100 17664 0.099

100 0.9999 2420 0 2420 3168 7140 3700 16428 0.101

500 0.9999 2520 0 2520 3558 7210 4400 17688 0.135

1000 0.9999 3120 0 3120 3228 6930 4000 17278 0.157

5000 0.9999 2720 0 2720 2796 7000 4800 17316 0.192

10000 0.9999 3280 0 3280 3108 7000 4400 17788 0.2

5 0.99999 1640 0 1640 2082 6090 4400 14212 0.303

10 0.99999 1840 0 1840 1698 5180 3600 12318 0.349

50 0.99999 1880 0 1880 1764 4760 2800 11294 0.571

100 0.99999 2000 0 2000 1830 4550 2400 10780 0.663

500 0.99999 1900 0 1900 1788 4480 2500 10668 0.85

1000 0.99999 2160 0 2160 1674 4480 2700 11014 0.879

5000 0.99999 2220 0 2220 1902 4270 2200 10592 1.098

10000 0.99999 2040 0 2040 2052 4690 2000 10782 1.192

5 0.999999 1700 0 1700 1770 4200 2900 10470 1.916

10 0.999999 1480 0 1480 1758 4130 3000 10368 2.548

50 0.999999 1920 0 1920 1650 3850 1800 9220 4.422

100 0.999999 1840 0 1840 1488 3710 2100 9138 5.019

500 0.999999 1840 0 1840 1662 3430 1800 8732 7.078

1000 0.999999 1800 0 1800 1614 3710 1800 8924 7.849

5000 0.999999 1880 0 1880 1722 3500 1900 9002 9.778

10000 0.999999 1940 0 1940 1590 3780 2000 9310 11.822

5 0.9999999 1700 0 1700 1674 3290 2500 9164 23.189

10 0.9999999 1440 0 1440 1728 3570 2000 8738 23.964

50 0.9999999 1680 0 1680 1758 3220 1600 8258 40.887

100 0.9999999 1840 0 1840 1590 3080 1700 8210 48.632

500 0.9999999 1660 0 1660 1698 3220 1700 8278 69.864

1000 0.9999999 1820 0 1820 1710 3010 1900 8440 75.501

5000 0.9999999 1700 0 1700 1614 2870 2100 8284 94.192

10000 0.9999999 1740 0 1740 1566 3290 1600 8196 106.186

5 0.99999999 1400 0 1400 1596 1855 1700 6551 196.568

10 0.99999999 1420 0 1420 1554 1785 1600 6359 319.982

50 0.99999999 1580 0 1580 1554 1785 1500 6419 523.762

100 0.99999999 1640 0 1640 1542 1715 1500 6397 520.166

500 0.99999999 1540 0 1540 1542 1785 1500 6367 794.465

1000 0.99999999 1580 0 1580 1500 1820 1500 6400 1008.241

5000 0.99999999 1540 0 1540 1584 1750 1500 6374 1194.31

10000 0.99999999 1500 0 1500 1566 1820 1500 6386 1321.462
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Table 30: Full results for the LNS heuristic for different settings
Number of
iterations

Number of
containers

OWDPE WEIPE
Total weight

penalty
CCSPE QCSPE YASPE

Total
penalty

Computation
time (s)

100 5 1120 0 1120 18750 6230 28800 54900 6.679
100 10 1900 0 1900 10218 5460 18200 35778 10.200
100 15 1300 0 1300 6906 4760 11600 24566 16.809
100 20 1640 0 1640 5334 4095 6400 17469 69.033
100 25 1580 0 1580 3888 3780 5400 14648 46.338
100 30 1820 0 1820 3654 3850 6200 15524 113.553
200 5 1500 0 1500 12960 5950 23600 44010 11.772
200 10 2220 0 2220 6564 5075 10700 24559 16.025
200 15 1480 0 1480 4902 4165 7500 18047 40.232
200 20 1680 0 1680 3444 3745 4300 13169 190.735
200 25 1820 0 1820 2496 3360 3400 11076 96.821
200 30 1880 0 1880 2646 3360 2900 10786 176.469
300 5 1880 0 1880 10014 6090 19500 37484 16.863
300 10 2020 0 2020 5388 4830 8700 20938 23.386
300 15 1680 0 1680 3384 3850 4800 13714 47.303
300 20 1800 0 1800 2844 3325 3500 11469 221.507
300 25 1740 0 1740 2610 3255 2600 10205 173.606
300 30 1760 0 1760 2514 3115 2600 9989 219.280
500 5 1900 0 1900 7830 5705 15300 30735 20.905
500 10 2060 0 2060 4332 4305 5600 16297 34.218
500 15 1840 0 1840 2682 3325 3800 11647 89.491
500 20 1840 0 1840 2082 3255 2900 10077 255.297
500 25 1740 0 1740 2190 2905 2200 9035 234.235
500 30 1760 0 1760 1932 2905 2600 9197 316.172

Appendix C Penalty values from stowage planner solutions

Table 31: Penalty values from the stowage planner solutions for the large set of parameter sets
Parameter values Total

penalty
Total weight

penalty
Penalty

CCSPA CLDPA QCSPA YASPA OWDPE WEIPE CCSPE QCSPE YASPE

0 0 0 0 543 543 42 501 0 0 0
0 0 0 200 25649 1849 346 1503 0 0 23800
0 0 140 0 6711 551 50 501 0 6160 0
0 0 140 200 20160 2470 466 2004 0 6090 11600
12 8 0 0 3595 535 34 501 3060 0 0
12 8 0 200 29356 1516 514 1002 3840 0 24000
12 8 140 0 9235 719 218 501 2496 6020 0
12 8 140 200 43886 2624 620 2004 2772 6090 32400
6 8 0 0 1264 46 46 0 1218 0 0
6 8 140 200 46919 3071 566 2505 1758 6090 36000
6 4 0 0 621 543 42 501 78 0 0
6 4 140 200 49383 1849 346 1503 234 6300 41000
12 4 0 0 723 543 42 501 180 0 0
12 4 140 200 45875 1865 362 1503 720 6090 37200
6 8 70 100 23033 1897 394 1503 1566 2870 16700

Table 32: Penalty values from the stowage planner for the Simple Local Search heuristic

Iteration
Parameter values Total

penalty
Total weight

penalty
Penalty

CCSPE CLDPE QCSPE YASPE OWDPE WEIPE CCSPE QCSPE YASPE

1-3 6 5 0 200 12186 1356 354 1002 1230 0 9600
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Table 33: Penalty values from the stowage planner for the GRASP heuristic

Iteration
Parameter values Total

penalty
Total weight

penalty
Penalty

CCSPA CLDPA QCSPA YASPA OWDPE WEIPE CCSPE QCSPE YASPE

1-3 9 7 0 200 14095 366 366 0 4329 0 9400

Table 34: Penalty values from the stowage planner for the Simulated Annealing heuristic

Iteration
Parameter values Total

penalty
Total weight

penalty
Penalty

CCSPA CLDPA QCSPA YASPA OWDPE WEIPE CCSPE QCSPE YASPE

1-3 10 8 0 200 18187 1877 374 1503 6910 0 9400

Table 35: Penalty values from the stowage planner for the LNS heuristic

Iteration
Parameter values Total

penalty
Total weight

penalty
Penalty

CCSPA CLDPA QCSPA YASPA OWDPE WEIPE CCSPE QCSPE YASPE

1 6 5 0 140 8910 1386 384 1002 804 0 6720
2-3 8 4 0 190 11507 1849 346 1503 728 0 8930
4 1 8 0 200 12100 1364 362 1002 1136 0 9600
5-7 12 8 0 0 3595 535 34 501 3060 0 0

Table 36: Penalty values from the stowage planner with a shorter initialization phase

Iteration
Parameter values Total

penalty
Total weight

penalty
Penalty

CCSPA CLDPA QCSPA YASPA OWDPE WEIPE CCSPE QCSPE YASPE

1 12 2 140 200 53945 1849 346 1503 456 38640 13000
2-3 1 8 0 200 12100 1364 362 1002 1136 0 9600
4 10 8 0 200 18187 1877 374 1503 6910 0 9400
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