
Erasmus University Rotterdam

Erasmus School of Economics

Master Thesis Analytics and Operations Research in Logistics

Container Yard Planning Strategies

Using (Convolutional) Neural

Networks
E.M.C. van der Leeden (473936)

Supervisor: R.S.H. Willemsen

Second assessor: P.C. Bouman

Supervisors Konecranes: C. Boer & S. van Dijk

Date final version: 30th November 2023

The content of this thesis is the sole responsibility of the author and does not reflect the view

of the supervisor, second assessor, Erasmus School of Economics or Erasmus University.

Abstract

Currently, all terminals base the container slot selection on penalty functions. However

there are many patterns in the arrivals and departures of containers that provide learning

possibilities for algorithms. In this paper we investigate how Artificial Intelligence can be

used to improve the container slot selection in container terminals. We use a (convolutional)

neural network and compare this with a simplified benchmark algorithm from Konecranes.

We generate data to train the (convolutional) neural networks using a simulation, based

on the benchmark algorithm. The same simulation is used to compare the performance of

the algorithms. We use two scenarios for the simulation, one more simplified to test the

abilities of the models, and a second that more closely resembles how terminals work in

practice. We measure the performance of the methods as the average delay of the containers

leaving the terminal. In the first simulation we find that the neural networks always perform

worse than the benchmark algorithm. In the second simulation find that the convolutional

neural network performs better than the benchmark in one of the cases. We also look at a

convolutional neural network that is trained on extra data and see no performance difference

compared to the original convolutional neural networks. We find that all (convolutional)

neural networks perform better when predicting based on a short term delay compared to

predicting delays longer ahead. Besides, we show that a good implementation of Artificial

Intelligence has the potential to perform similar to or sometimes even better than the current

benchmark implementation.

1

Contents

1 Introduction 3

2 Problem description 5

3 Literature review 10

3.1 Container differentiation . 10

3.2 Objectives . 11

3.3 Yard planning strategies . 11

3.4 Algorithms . 13

3.4.1 Operations research algorithms . 13

3.4.2 Machine learning algorithms . 14

3.5 Simulation models for container yards . 16

4 Methodology 18

4.1 Benchmark algorithm . 18

4.2 Machine learning algorithms . 18

4.2.1 Input data . 19

4.2.2 Neural network . 20

4.2.3 Convolutional neural network . 22

4.3 Simulation . 22

5 Results 24

5.1 Algorithm and simulation set-up . 24

5.1.1 Benchmark algorithm . 24

5.1.2 Neural networks . 24

5.1.3 Simulation . 26

5.2 Simple simulation . 30

5.3 Advanced simulation . 35

6 Conclusion 41

References 43

A Simulation algorithms 47

B Hyper parameters of tuned neural network 49

C Hyper parameters of convolutional neural network 50

D Code description 51

2

1 Introduction

During the 1980s, economies of scale facilitated the production of larger container ships which

in turn led to more container traffic. This put more pressure on the container terminals. In 1980

the Panamax vessel, which was based on the size of the Panama canal, was introduced with a

maximum capacity of 3,000 to 3,400 twenty-foot equivalent units (TEU), which is the standard

measurement of container size. In 2019 the Megamax-24 vessel was introduced, which has a

maximum capacity of 21,000 to 25,000 TEU (Rodrigue, 2020; Salido et al., 2012). These larger

vessels can thus hold up to 8 times more than the older versions. The amount of containers

per vessel is increasing, but the number of vessels is not decreasing. To be able to handle this

increasing container load the terminals need to increase their productivity (Dekker et al., 2007;

Saanen & Valkengoed, 2005; Wang & Meng, 2007; Zhen, 2014). Vessel operators often demand

at least the same, or even higher service levels than before, such as service time. This increases

the competition between different ports, and makes it even more important that the terminal can

keep up its productivity. The application of modern technologies such as Artificial Intelligence

(AI), cloud computing, and internet of things can help increase the productivity (Firooz et al.,

2022).

To improve the productivity in a container terminal you can look at one of the three main

parts: the quay cranes, the intra-terminal transport, and the container yard (Duinkerken et al.,

2001). The quay cranes transport the containers between the container yard and the vessels that

are berthing at the terminal. Within the terminal the containers are moved via intra-terminal

transport to and from the container yard where the containers are stored. On the other side of

the terminal the containers can arrive and leave via the gate. The container yard is thus the

centre of the terminal that connects the other parts, and is often seen as the most important

part of the container terminal (Guiliang & Lina, 2009; Tierney & Voß, 2016; Weerasinghe et al.,

2023; A. Wong & Kozan, 2010).

Besides this central position, the container yard operations take up the most time in the

terminal operations (Hirashima et al., 2005, 2006). Therefore, it is crucial to increase the

efficiency and productivity in the container yard if you want to increase the efficiency and

productivity in the entire terminal (Chen, 1999; Firooz et al., 2022; Guiliang & Lina, 2009).

One way to improve the productivity in the container yard is by applying a good algorithm

for finding slots in the yard to place a container. These algorithms can often be improved with

the use of Artificial Intelligence (AI) (Devanga et al., 2022; Fancello et al., 2011; Jin et al.,

2023; Xie et al., 2022). The application of AI has advantages. For example, it requires less

maintenance, because parameters no longer need to be manually updated, and it is continuously

optimising. AI can also improve the situation by needing less employees and using equipment

more efficiently, leading to less costs, and it can improve the quality of solutions (Sikorra et

al., 2021). Besides, algorithms that incorporate AI aspects scale better to larger problems, can

often provide better solutions, and can do this faster (Jin et al., 2023; Krizhevsky et al., 2017;

Taddy, 2018).

In this paper we compare three algorithms for finding slots when placing a container in the

yard. We first define a benchmark algorithm which is a penalty function. This is based on

the algorithm as implemented by Konecranes, which is a competitive algorithm in the market.

3

The next algorithm is based on a regular neural network (NN), and the last is based on a

convolutional neural network (CNN). We compare the algorithms by incorporating them within

a simulation study.

We find that for a more simple implementation of the simulation study the NNs are unable

to provide results that are similar to or better than those provided by the benchmark algorithm.

When looking at the more advanced simulation we find one CNN which is able to provide

better results than the benchmark. Besides this, the CNNs are closer to the performance of the

benchmark algorithm than the NNs were in the simple simulation. However, in most cases the

benchmark algorithm still performs the best.

Applying AI to container yard problems is not yet implemented in practice and is therefore an

interesting and innovative field of research. This paper, thus, provides an interesting contribution

to the literature. We find that neural networks have potential to provide results at least similar to

or even better than what is currently implemented. Our research thus provide a starting point

for further research into the possibilities of neural networks, and show that a more detailed

simulation study might improve the performance of the neural networks. Based on our findings

Konecranes can already consider implementing a neural network for their yard slot selecting,

however this neural network has to first be created and trained on actual data from a terminal.

A neural network can also be used as part of the container slot selection process, instead of

replacing the penalty function entirely.

The remainder of the paper is structured as follows. In Section 2 the problem and its

assumptions are described in detail. In Section 3 we provide a more in depth overview of

the previous research on this topic. The methods and approaches applied to the problem are

mentioned in Section 4 and in Section 5 we provide the data for and the results from these

methods. Lastly, we present a conclusion in Section 6.

4

2 Problem description

The container terminal consists of three main areas, namely the gate, the yard, and the quay, as

presented in Figure 1a. In these areas we find the main types of logistics. There are the logistics

on the waterside (WS) of the terminal along the quay. Here it has to be determined where and

for how long the vessels berth. Besides this, decisions have to be made on the assignment of

quay cranes that move the containers between the vessel and the quay. On the other side of the

terminal there is the gate with its own logistical decisions. On this side the inland modalities

arrive and leave. The inland modalities include trucks, rail, and barges. The last area is the

yard, where the containers are stored. In this area logistic decisions have to be made on where to

store the containers, how and when to rearrange the containers, and what equipment to assign

to the movement of the containers (Anwar et al., 2019; Chen, 1999).

(a) Container terminal. (b) Module.

Figure 1: Schematic overviews of container terminal components.

Containers leave the terminal either via the waterside or the landside (LS) (Chen, 1999;

Weerasinghe et al., 2023). The container yard is split into several modules such that there is

space for yard vehicles or stacking cranes to move throughout the yard (A. K.-s. Wong, 2008;

Zhen, 2014). These are the horizontal transport vehicles that move containers to and from the

modules, and the stacking cranes that move the containers within a module. An overview of

a module, with the definitions of various measures that we use, based on the definitions from

Konecranes, is shown in Figure 1b. The width and the length of a module determine how many

rows and bays a module has respectively. This influences the amount of containers that fit in

one module (Duinkerken et al., 2001). To define the dimensions of the yard we use the notation

as shown in Table 1. The size of the yard is determined by the number of modules in the yard

and the size of each module. The number of tiers defines how many containers can be stacked

on top of each other.

5

Table 1: Notation for the dimensions of the yard.

Parameter Explanation

m Number of modules
r Number of rows in a module
b Number of bays in a module
h Maximum number of tiers

One of the main components of a container terminal is the terminal operating system (TOS).

This system controls many aspects of the terminal such as the vessel and yard planning, the

equipment control, and the gate planning (Boer & Saanen, 2012). In this paper we focus on

the improvement of the placement of containers in the yard given a specific layout. This yard

planning strategy is also referred to as a stacking algorithm. This algorithm defines where the

containers are placed in the container yard, but also how the containers are removed from the

yard. It is important to do this efficiently since the containers have to be placed on the vessel

in the correct order because they cannot be reshuffled once they are on the vessel (Dekker et

al., 2007; Hirashima et al., 2005). Currently, no TOS implementation bases the container slot

selection on more advanced methods such as Artificial Intelligence (AI), as it is always parameter

based. Since the vessel arrivals follow a recurring schedule, meaning that the same vessels with

similar content arrive on a weekly or monthly basis, there is the possibility to learn from this

and implement this in an algorithm.

Assumptions

We base our model on the layout which is defined as the most important for this research

by experts from Konecranes, due to verification purposes. This is a terminal which has rail

mounted gantry (RMG) cranes in the yard, these are also referred to as automatic stacking

cranes (ASCs). A terminal that uses RMG cranes tend to have a layout where the modules are

placed perpendicular to the quay. There are many other options available for the cranes that

are used in the yard, such as straddle carriers and rubber tired gantry cranes (Weerasinghe et

al., 2023). Other options for the layout of the yard are also possible, such as modules parallel

to the quay or other layouts based on the availability of space.

The layout of the terminal is shown in Figure 2. This figure shows how we assume the

processes in the terminal to work and which parts we simplify. We assume that there are two

modalities in the terminal, the vessels on the waterside and the trucks on the landside. We

consider two possible routes through the terminal for containers. A route for export containers

and a route for import containers. The export containers arrive at the terminal at the gate.

Next, they are moved to the LS transfer zone (TZ). Then, they are placed in the module.

When they leave the terminal they go from the module to the WS TZ, and then are placed on

the vessel. We track the export containers until they are placed in the WS TZ. The import

containers follow the same route as the export containers but in the opposite direction. The

differences between the routes are that the import containers stop at the quay when they are

removed from the vessel, and we track these until they are placed in the LS TZ.

6

Figure 2: Terminal layout with sample paths for export and import containers.

We make the following assumptions on the arrival and departure processes of the containers.

We assume the vessels arrive at the terminal using a recurring schedule. The vessels deviate

from their expected arrival time according to a triangular distribution. According to experts

from Konecranes this is representative of reality. A triangular distribution consists of three

parameters, Triangular(a, b, c), a represents the lower limit of the distribution, b the upper

limit, and c the mode. This distribution then has the following probability density function,

f(x) =

2x
c if a ≤ x ≤ c

2(1−x)
(1−c) if c ≤ x ≤ b

0 otherwise.

(1)

The vessel arrivals and operations can take place during the whole day. The containers that

need to leave with these vessels arrive before the expected arrival time of the vessel according

to a triangular distribution. The arrivals at the gate only occur during working hours, which

we assume to be the whole day, however in practice gate operations are often halted during the

night. The containers that need to leave via the gate, stay in the yard according to a triangular

distribution.

The common setup in practice is as follows. One module is serviced by two RMGs, one

for the LS operations, and one for the WS operations. Each RMG can reach a predetermined

number of rows on the corresponding side of the yard. These two cranes thus have an overlapping

zone which they both can reach. However, using two RMGs like this does come with some extra

restriction on their movement. Namely, (1) the RMGs are unable to cross each other, and (2)

the containers can only be moved to the transfer zone on each of the sides by the corresponding

crane. Thus, for this paper we start with a simpler implementation where there is one RMG that

services the entire module. In this case the crane has more work but there are less restrictions.

7

Next, we implement a situation with two RMGs per module. In our case we let these RMGs

cross, and they thus move over each other. This is a less common setup than one RMG on

each side. In fact this is a unique setup that has only been implemented in the CTA terminal

in Hamburg (van Valkengoed et al., 2004). However Saanen & Valkengoed (2005) find that

the productiveness is similar as long as there is a similar level of demand on each side of the

terminal.

Since the focus of this paper is on the yard we simplify the other operations in the terminal.

We make the following assumptions on these aspects. First, the quay cranes (QCs) load and

unload containers from the vessels in constant time. Second, we have unlinked interchange,this

means that all terminal vehicles can operate completely independent of the other vehicles. We

do not keep track of any of the other equipment in the terminal besides the RMGs. And lastly,

since we do not keep track of any other terminal equipment besides RMGs, we assume that all

movements that do not require RMGs or QCs can be performed immediately.

We assume two main simplifications in the container types. We assume that we only have

import and export containers, and we only have container sizes 20ft and 40ft. To ensure proper

placement we assume two restrictions on the placement of the containers. First, the slots in

the yard are defined in TEU, thus 20’ containers need one slot, and 40’ containers need two

consecutive slots in a row. Second, containers can only be placed directly on top of containers

of the same size, or on empty ground slots.

We also define which container attributes are incorporated in the strategy. All container at-

tributes that are incorporated in this paper with their corresponding possible values are presented

in Table 2. Some of the attributes which are usually presented as a string of text are changed to

a numeric value in our notation, for example lineOperator and outboundCarrierID, this does

not influence the performance of the algorithms. Using numeric values allows for easy extension

of the model when more value options need to be added, and it allows for easy comparison

between values. Some of the attributes are specific to import or export containers, for those

attributes we set the value to 0 when the container does not have that transit direction.

Note that almost all container attributes have discrete values which represent the possible

classes. The attribute ‘edt’, the estimated departure time, is the only one with a continuous

value with an ordering. Besides, there are two attributes that can take on discrete values, but

do have an ordering to them, these are ‘weight’ and ‘length’. The ‘weight’ attribute has three

classes from light to heavy. The actual weights of the categories are not relevant in this case,

these can be defined by Konecranes themselves, as long as they have the light to heavy ordering.

It should be defined such that a container belongs to a weight class if its weight is in between

two boundaries. In an actual terminal the weight classes of the containers help define the order

in which they are placed and removed from the yard, because the heaviest containers are loaded

as low as possible on the vessels.

8

Table 2: Container attributes with their possible values and explanation.

Attribute Values Meaning

containerID N Unique ID to identify each container.
inboundType gate, vessel The modality with which the container arrives

at the terminal.
outboundType gate, vessel The modality with which the container leaves

the terminal.
weight 1, 2, 3 The weight class of the container, with 1 the

lightest, and 3 the heaviest.
lineOperator N The owner/operator of the container.
nextDestination A, B, C, D, E,

F, G, H
The next destination of the container.

edt R+ The time at which the container is expected to
leave the terminal.

x 1,2,...,r The row in which the container is currently loc-
ated.

y 1,2,...,b The bay in which the container is currently loc-
ated.

z 1,2,...,h The height at which the container is currently
located.

module 1,2,...,m The module in which the container is currently
located.

transitDirection import, export The direction of the container through the ter-
minal.

length 20, 40 The size of the container in ft.
outboundCarrierID N The ID of the specific vessel that takes the ex-

port container, 0 if the container is import.
outboundServiceID N The ID of the service line that takes the export

container, 0 if the container is import.
outboundCarrierVisitID N The ID of the actual visit of the vessel for an

export container, 0 if the container is import.
inboundServiceID N The ID of the service line that brought the im-

port container, 0 if the container is export.
yardDirection in, out To track whether the container is moving (or

just moved into) or out of the yard.

9

3 Literature review

A yard planning strategy is dependent on two main aspects, the amount of attributes that

are considered when differentiating between the containers, and the objective that one tries to

achieve with this strategy. Given the chosen information for these aspects a strategy can be

defined. Next, an algorithm can be created to implement this strategy. Lastly, these algorithms

and strategies are often compared in literature using a simulation study.

3.1 Container differentiation

Determining where to place a container is mainly based on the information that is available

on this container and the other containers in the yard. The most important aspects of this

information are the type, the size, the destination, and the weight of the containers. However,

other aspects such as modality, shipping line, vessel, and customs information can also be used

to determine the position of the container (Dekker et al., 2007; Firooz et al., 2022; K. H. Kim

& Lee, 2006; Lee & Hsu, 2007).

The first aspect is the type of container, this refers to the type of cargo that it stores. The

most basic type are the dry storage containers. Other types that have special requirements

for placement are refrigerated containers (reefers), which need to be stored near an electricity

outlet, and containers storing dangerous goods, which need to be placed at a certain distance

from each other and certain other containers for safety reasons. There are many other types

such as out of gauge, flat rack, open top, empty, and more (Firooz et al., 2022).

The second aspect is the container size. The most common container sizes are 20ft, 40ft,

and 45ft. There are also other sizes available such as 10ft and 60ft, however these are much

less common (Firooz et al., 2022). The ground slots in the yard are measured in twenty-foot

equivalent units (TEU). Thus 20ft containers need one TEU and 40ft containers need two TEUs.

The third important aspect of a container is the destination of the container. This can

be defined in detail by the port of discharge, which is the destination port of the container.

However, it can also be defined roughly by how the container leaves the terminal, which is the

transit direction of a container. For this second type of definition there are four main options,

import, export, transit, and transhipment. Import containers arrive via vessel and leave the

terminal via inland modalities such as rail, truck or barge. Export containers arrive via inland

modalities and leave the terminal via deep sea or feeder vessel. If a container arrives and leaves

via feeder or deep sea vessel it is called a transhipment container. Lastly, there are transit

containers. These are moved inland across international borders (Firooz et al., 2022). Other

destination types such as storage, restow, and through can also be defined.

A last component that we consider is the weight of the container. In general there is a limit

to how much weight can be placed on a container, and thus it is not ideal to place heavier

containers on top of lighter containers. The heaviest containers usually need to be loaded on the

vessel before the lighter containers because these need to be placed on the bottom of the vessel.

Due to this loading order the weight or weight class of a container is an important aspect for a

stacking algorithm (A. K.-s. Wong, 2008).

Besides all the information on the container as mentioned above, a strategy also needs

10

information on the current situation in the yard. The current situation in the yard can, for

example, contain information on all the containers currently in the yard, on how busy the

transfer zones are, and on the current locations of the RMGs.

3.2 Objectives

There are various objectives that a stacking strategy can focus on. The choice of objective

influences the placement and spread of containers in the yard. For example, some objectives

may require to use many ground slots as possible, while others may stack the containers as high

as possible.

Moving a container to a different slot after it has been placed in the yard is referred to as

(re)shuffling or remarshalling. This is a move that is seen as unproductive since it does not

add to the productiveness of the cranes. Productive crane moves are moves that are absolutely

necessary, and thus consist of moves to and from the transfer zones. One of the objectives seen

in yard planning is to minimise these remarshalling movements (K. H. Kim & Kim, 1999; Lee

& Hsu, 2007; Salido et al., 2009).

Objectives can also be based on the usage of the equipment. This can be defined as the

spread of the workload across the quay or yard cranes, or the utilisation of the cranes (Dekker et

al., 2007; Duinkerken et al., 2001; K. H. Kim & Lee, 2006; Zhen, 2014). It can also be measured

as the quay crane capacity and the yard throughput capacity. These are the number containers

in TEU that can be handled over the quay, and the number of containers that the yard can

handle and store in TEU per year respectively.

There are two other common objectives in literature when optimising the yard allocation or

remarshalling processes. The first is to have a high density in the yard, and thus use as much

as possible space in the yard. This is mainly important in terminals where the yard is relatively

small (Sikorra et al., 2021). The second is based on minimising the time spent in the yard.

This can be defined as the time needed to retrieve a container, or the time needed to handle

a container in general (Dekker et al., 2007; Duinkerken et al., 2001; K. H. Kim & Lee, 2006;

A. K.-s. Wong, 2008).

3.3 Yard planning strategies

In general, a classification into three stacking strategies can be made. These are preassigned

stacks, dump-and-sort, and a dynamic strategy. Each of these strategies has their own advant-

ages and disadvantages, an overview of which is presented in Table 3.

When using preassigned stacks, there are designated sections of the yard reserved for the

containers that belong to a certain vessel. This is the same as the category stacking strategy as

mentioned by Dekker et al. (2007). Some advantages of this strategy are that it is easy to execute

and that it is possible to decrease the driving distances for the yard equipment. However, this

strategy is not flexible and may require a lot of housekeeping moves to make the block empty

for other vessels.

The second strategy is dump-and-sort. In this strategy the containers are placed in a dump

stack when they arrive, and are later moved to a better location. This method is easy to imple-

ment during discharge operations, and allows the discharge operation to go fast. Disadvantages

11

Table 3: An overview of the advantages and disadvantages of the three main classes of strategies.

Strategy Advantages Disadvantages
Preassigned stacks Easy to execute. Not flexible.

Possible to decrease driving distances. May require a lot of housekeeping
moves.

Dump-and-sort Easy to implement during discharge
operations.

Requires many housekeeping moves.
Requires quite some planning

Fast discharge operations.
Dynamic Good use of entire yard. More effort to implement.

High flexibility. May require more equipment.
Can avoid housekeeping moves. May require larger travel times in the

yard.

of this method are that it requires many housekeeping moves to move the containers to their cor-

rect location, and it requires quite some planning. A strategy that is similar to this is mentioned

by Chen (1999), who calls it premarshalling.

The last strategy is a dynamic strategy. Here, the slots in the yard are chosen based on

the container aspects and the situation in the yard. Then the container is moved to the best

slot. What makes a slot the best compared to the others can be determined separately for each

implementation. This method has many advantages, it can make good use of the entire yard

and spread the load, it has a high flexibility, and it can avoid housekeeping moves. There are

two main disadvantages of this method. The first is that due to the location selection in the

yard there may be larger travel times to the slots in the yard, which may also require more

equipment to perform all the moves. The second disadvantage is that it requires more effort to

implement for the people in the yard and it needs more advanced software. Chen (1999) refers

to this dynamic strategy as the sort-and-store strategy.

Some papers define their own split in stacking strategies. Dekker et al. (2007) and Sikorra

et al. (2021) define the distinction between category and residence time stacking. In the first

the containers are assigned to categories and containers from the same category are stacked on

top of each other. In the second a container is stacked on top of another when the departure

time of that container is earlier than all the containers below it. Steenken et al. (2004) define

storage planning and scattered stacking. Storage planning is similar to the preassigned stacks

strategy. In the scattered stacking method the containers are stochastically spread through a

specific part of the yard based on the berthing place of the vessel.

Duinkerken et al. (2001) split the assignment of a container to a slot in two steps. In the

first step, called the stacking method, they find the row for the container. In the second step,

the stacking strategy, they find the best slot within the selected row. They mention two options

for the stacking method, selecting a row randomly, and selecting the row based on the quay

crane. They mention four options for the stacking strategy: random, levelling, closest position,

and maximum remaining stack capacity.

There are some general aspects that planning strategies try to implement, because they are

known to be effective. First, the two main transit directions of containers each have a preferred

stacking height. For the export containers it is efficient to stack them as high as possible.

This is because these containers tend to have information available on their departure. For the

import containers holds the opposite. You want to stack these as low as possible because their

12

departure from the yard can be unpredictable (Chen, 1999). This is because trucks do not have

predetermined arrival times at the terminal, and it is not known exactly which container they

will pick up. The empty containers and the reefers also have a preferred stacking height. The

empty containers can be stacked very high because it usually does not matter exactly which one

is selected as long as they belong to the same company. The reefers cannot be stacked very high

because they need to be accessible for checks and they need access to power.

Another basic aspect is about the side of the yard in which the containers are placed. It

seems to be effective to place export container close to the waterside and import containers close

to the landside because these are the sides on which these containers leave the yard. Besides

this, there are often specific stacks available for the reefers, and specific stacks available for the

empty containers.

3.4 Algorithms

To improve the placement of the containers in the yard we need to know more than the strategy

on which we base the placement of containers. We want to choose an algorithm that can imple-

ment a strategy. In general, the algorithms can be split into ‘classic’ operations research (OR)

algorithms and Artificial Intelligence (AI) algorithms. OR is a scientific method for decision

making, where it is sought to find the best way to operate a system, usually under circum-

stances of scarce resources (Winston, 2004). Some examples of these algorithms are genetic

algorithm (GA) and ant colony optimisation (ACO). AI is based on the opportunities of com-

puters, and often does not contain explicit instructions, some examples of these methods are

Q-learning and neural networks (NNs).

There are advantages to applying AI to problems. Some of these advantages are less main-

tenance, improved quality due to continuous optimisation, the possibility to save costs, and the

possible need for less employees (Sikorra et al., 2021). Many papers have therefore looked into

the application of AI to container terminal processes (B. Kim et al., 2020; Salido et al., 2009;

Sikorra et al., 2021; Wang & Meng, 2007).

AI can be defined as enabling systems to mimic human behaviour. The idea is to artificially

implement techniques in a system such that it can learn from and interpret data in the same

way as humans do (Anwar et al., 2019; Firooz et al., 2022; Taddy, 2018). In general some main

approaches to AI are machine learning and more specifically deep learning. Anwar et al. (2019)

mention some possible AI methods that can be applied to container terminals, these are multi-

agent system (MAS), (artificial) neural network (NN), decision support system (DSS), search

algorithms, and automation.

3.4.1 Operations research algorithms

operations research (OR) algorithms are algorithms that are commonly applied in the context

of OR. Examples of these for container terminals are genetic algorithm (GA) and ant colony

optimisation (ACO) (Weerasinghe et al., 2023; A. K.-s. Wong, 2008).

Genetic Algorithm

The idea of GA is based on natural selection as is seen in nature. First, create a population

13

of entities, which represent solutions, where there is some diversity between the chromosomes,

which define the values of attributes for an entity. Second, select a set of parents from this

population based on a certain fitness value. Next, create children who are a mixture of the

chromosomes of the parents, and mutate the chromosomes of the children in some way. Lastly,

continue the second and third step with this new population until a certain stopping criterion is

achieved, for example when the change in optimal solution value is less than ϵ. Guiliang & Lina

(2009) create a method that combines a GA with simulation. They create a simulation model,

and then use the output of this model to optimise their algorithm. Then they run the simulation

again. They continue this process until a stopping criterion is reached. They specifically apply

this technique to the problem of optimally allocating storage space in container freight stations.

They find that this approach improves the system in many aspects, such as decreasing errors

and improved operation efficiency.

Ant Colony Optimisation

ACO is based on the behaviour of ants. The idea is to find the best path along certain nodes

from a starting to an end point. The agents (based on the ants) walk along a path and leave

pheromones on this path. The other agents will then select the path with the most pheromones.

Wang & Meng (2007) provide an algorithm that is based on both GA and ACO. They use a GA

to find the best resource allocation in a container terminal. Next, they use ACO to optimise the

scheduling plan based on the allocation plan that was found with GA. They test their algorithm

on a tugboat allocation problem and find that it can improve the tugboat utilization rate.

3.4.2 Machine learning algorithms

Machine learning can be split in three main categories: supervised learning, unsupervised learn-

ing, and reinforcement learning (RL) (Belsare et al., 2022; Morales & Escalante, 2022). In

supervised learning the outcome of the problem is known and we try to find how the output

can be determined based on a certain input (B. Kim et al., 2020). In unsupervised learning the

output is not known and we try to find patterns in the data (Hastie et al., 2009). In RL an

objective is optimised where the actions that should be taken are learned via interactions with

the environment (Morales & Escalante, 2022). The most relevant for our problem are supervised

and reinforcement learning.

There are advantages and disadvantages to both reinforcement and supervised learning. An

RL method allows for constant updating, this means that the algorithm will be based on the

most recent data set which might provide better predictions. However, this also means that the

algorithm constantly has to run and that it will be influenced by abnormalities in the data set.

A supervised learning algorithm may need to be updated by manually adding new data every

time period, however this will also provide a more robust solution against abnormalities since

these can easily be excluded from the data set.

Reinforcement learning

RL is the most popular method in the context of container terminals. The technique for RL can

be described with the following steps. First the environment is observed, then a certain strategy

14

is used to undertake an action. After performing this action a reward or penalty is observed,

and based on this outcome the decision making strategy is adjusted. This process is continued

until a strategy is achieved that satisfies the given stopping criteria (Belsare et al., 2022; Fechter

et al., 2019; B. Kim et al., 2020; Xie et al., 2022).

RL does not need any information on the environment at first, and therefore it is appropriate

to apply to a variety of problems for which the environment is unknown but where learning is

possible (Fechter et al., 2019). RL techniques work especially well for problems that can be

defined as a Markov decision process (MDP) (Devanga et al., 2022; Fechter et al., 2019). In

an MDP you move between states with certain probabilities, which are based on the current

state and the action chosen in that state. Sikorra et al. (2021) and Xie et al. (2022) agree that

RL would be an appropriate method for stacking problems. Sikorra et al. (2021) tested their

method on slot allocation in a container terminal and find that it learns well for a small storage

block.

The most common method to train an RL algorithm is by using simulation. These types of

algorithms need a lot of data to make good estimations. In general an original data set can be

used, but because it is much cheaper and faster to simulate situations and create data this way,

simulations are more popular (Belsare et al., 2022; Devanga et al., 2022; Taddy, 2018; Xie et al.,

2022).

Q-learning

A specific technique derived from reinforcement learning is Q-learning (QL), this is a model-free

technique that can learn rewards on its own (Devanga et al., 2022). When applying QL, a

Q-table is defined which stores the Q-values. A Q-value is the expected sum of future rewards

when a certain action is performed in a certain state, they are defined for every combination

of state and action (Devanga et al., 2022; Sikorra et al., 2021). For example, for Hirashima et

al. (2005) this represents the value for each combination of a layout and the movement of a

container. The function that determines this sum of future rewards is called a Q-function.

The main advantage of using QL is that it is an effective learning method when applied to

an unknown environment (Hirashima et al., 2005, 2006). The main disadvantage of the method

is the amount of storage that is required. The amount of values that need to be stored in the Q-

table can become increasingly large, making the method not applicable to all types of problems

(Hirashima et al., 2005; Sikorra et al., 2021).

Various papers have provided an implementation of a QL algorithm for the container yard.

Sikorra et al. (2021) define a method for container slot allocation in the yard which is based on

simulation and a deep Q-network. Hirashima et al. (2005) and Hirashima et al. (2006) provide

a Q-learning algorithm for placing containers on their desired positions in the yard. They split

the process in two steps. In the first step the desired position of a container is determined, and

in the second step the steps needed to make this position available are determined. For each

of these steps they define separate Q-tables to which the other step can reference when needed.

Hirashima et al. (2005) and Hirashima et al. (2006) both find that this method is able to learn

well and provide better results than conventional methods.

Some researchers looked into improving QL algorithms. Since the main problem with this

15

method is the storage space, Hirashima et al. (2005) provide an improvement to decrease this.

They adjust the method such that there is a limit to how long Q-values should be stored. Hir-

ashima et al. (2006) provide a different solution to this problem by only storing Q-values that

are referred to during the learning process. Besides this, they also define a binary tree method to

store the Q-values more efficiently. Both Hirashima et al. (2005) and Hirashima et al. (2006) find

that QL with these adjustments can be applied to larger problems and provide better solutions

for these larger problems.

Neural Network

Neural networks (NNs) are a machine learning technique that learns from data in a similar

way as the human brain. It is a part of deep learning that uses nodes and a deeply layered

structure to achieve this. The key to the effectiveness of NNs is the recursive combination of

linear combinations and non-linear transformations (Srivastava et al., 2014; Taddy, 2018).

The main advantage of a NN is that it is known to produce universal function approximations,

which means that for any continuous function it can provide a function approximation that is

accurate up to some level ϵ (DeVore et al., 2021; Srivastava et al., 2014). Besides this, NNs

are also known to perform well under circumstances, such as problems with a lot of dimensions

(DeVore et al., 2021; Krizhevsky et al., 2017), problems with non-convex objective functions

(Kingma & Ba, 2014), and problems with a lot of noise (Hastie et al., 2009; Krizhevsky et al.,

2017). Lastly, NNs have the advantage that they are not very dependent on human experience,

and can solve problems at high speeds (Jin et al., 2023).

Because a NN can approximate nearly every function to any desired level of accuracy, it is

important to prevent overfitting (Srivastava et al., 2014; Taddy, 2018). This occurs when the

model starts to fit the training data too well and is therefore no longer able to generalise to other

data (Hastie et al., 2009). Three options to prevent overfitting are: early stopping, which uses

a validation set to check when the model starts to overfit; regularisation, which adds a penalty

to the loss function; and dropout, which randomly drops a subset of nodes (Srivastava et al.,

2014; Taddy, 2018).

NNs can also be used in other algorithms. For example, deep learning is based on NNs,

these algorithms have a very large structure, and specifically contain a lot of hidden layers. NNs

can also be applied in RL settings (Belsare et al., 2022). An example of this is a double deep

Q-network. In this method the Q-learning function is approximated by NNs (Devanga et al.,

2022; Taddy, 2018).

3.5 Simulation models for container yards

One of the most popular techniques to validate the effectiveness and correctness of an algorithm

for a container terminal is by using a simulation (Anwar et al., 2019). For example, Fechter

et al. (2019) test their stacking problem algorithm using a simulation based on the SimSharp

framework, and Hirashima et al. (2006) provide a Q-learning algorithm for marshalling plans

that they test using simulation. Duinkerken et al. (2001) provide a complete simulation model

for the terminal that integrates multiple aspects of a container terminal. Xie et al. (2022) also

use a simulation based on discrete event simulation (DES) to run their experiments to compare

16

various NNs.

In some cases the optimisation process is combined with the simulation process, also known

as simulation-optimisation. An example is provided by Guiliang & Lina (2009), who test their

optimisation algorithm based on GA and simulation using the platform Arena. Furthermore,

Devanga et al. (2022) combine a simulation with their RL algorithm.

Overall, the validation of algorithms for container terminals commonly involves simulation

techniques. Where some studies also integrate the optimization processes, showing the versatility

of using simulations.

17

4 Methodology

Containers have a specific time at which they need to be picked up and leave the yard. We

optimize the time it takes to retrieve the containers. Thus, our main objective is to minimize

the delay experienced by containers when they are picked up from the yard, this was defined as

the most relevant for Konecranes by their experts.

To tackle this problem we execute a quantitative research based on the following steps.

We set up three algorithms, namely a benchmark algorithm, a regular neural network (NN),

and a convolutional neural network (CNN). Next, we implement a simulation, which we use in

combination with the benchmark algorithm to generate data for the NNs. Lastly, we also use

this simulation to compare the algorithms.

4.1 Benchmark algorithm

To compare whether our algorithm produces better results we define a benchmark algorithm,

which is based on a penalty function from Konecranes. In our research we use a simplified

version of this function which is based on the same concepts. The penalty function f(·) defines
the value of each slot, which is equal to the sum of penalty values corresponding to a set of

relevant attributes. Using Algorithm 1 we can then find the best slot in a module. The idea is

to go over all slots and select the slot that has lowest penalty value. Note that we only check

the slots in the yard where a container can be placed, thus it has to be placed on a ground slot

or on top of another container. We find the best module for a container using Algorithm 2.

Algorithm 1 Finding best slot in a specific module using benchmark algorithm.

1: Define z∗ = ∞: lowest penalty value, and x∗ = 0: best slot.

2: Define S: set of available slots.

3: Define c: the container that we try to place.

4: while S ̸= ∅ do

5: Select x ∈ S.

6: Compute z = f(x, c).

7: if z < z∗ then

8: Update best solution, z∗ = z and x∗ = x.

9: end if

10: Update set S, S = S \ {x}.
11: end while

12: Return x∗.

4.2 Machine learning algorithms

We base our algorithm on a supervised learning method. We use this because these algorithms

are easily applicable in container terminals and there is more control over which data is used

in the determination of the method. Specifically we use neural networks (NNs). We use these

because they are able to approximate nearly any function, and we have no information on what

the function for our problems looks like.

18

Algorithm 2 Finding best module using benchmark algorithm.

1: Define z∗ = ∞: lowest penalty value, and m∗ = 0: best module.

2: Define M : set of all modules.

3: while M ̸= ∅ do

4: Select m ∈ M .

5: Compute z, the penalty value of the best slot, using Algorithm 1.

6: if z < z∗ then

7: Update best solution, z∗ = z and m∗ = m.

8: end if

9: Update set M , M = M \ {m}.
10: end while

11: Return m∗.

4.2.1 Input data

The input data for the NN contains information on the status of the yard after a container

has just been placed. The values that the NN tries to predict are based on the delay of the

containers. Note that we input the data per module, as we assume that all modules operate

identically.

The exact data that is used as input for the NN is based on stack information, which

contain values for attributes for each stack in the yard. We thus do not present individual

container information to the model, since this can create data sets of extreme sizes. We only

use attributes that contain information that cannot be retrieved from other attributes, and that

provide container specific information. We also do not use attributes that are not reliable in

practice according.

Because the NN needs numeric input variables, and because we want to ensure that there

is no specific ordering in the categorical variables we use one-hot encoding on the categorical

attributes. One-hot encoding transforms the value into an array of binary values, where at most

one column contains a 1, and the others contain a 0 (Seger, 2018).

The delay of a container is based on the time it is expected to leave the yard compared to the

actual time it leaves the yard. A performance measure can be defined as the effect a placement

has on the delay of the container that has just been placed, the delay of all containers, or the

delay of any other subset of containers. We define the performance measure as the average delay

of the containers that leave the module in which the container is placed in the λ hour(s) after

the container is placed because we want to minimise the delay of all containers in the yard,

and the various stacks may influence each other due to reshuffles. We look at λ = 1, 24, and

168 (one hour, one day, and one week respectively). The results may change in steps, which

may be interesting for other values of λ, however we do not look at those in this paper. All

data for the NN is generated using a simulation model where the decisions are made based on

the benchmark algorithm. The idea is that the NN learns which actions from the benchmark

algorithm are effective.

19

4.2.2 Neural network

A feed forward neural network (NN), a NN with information flow in one direction and no cycles,

with a single hidden layer can be represented by,

f̂(x∗) = β
(2)
0 +

M∑
j=1

β
(2)
j h(aj(x

∗)). (2)

In this function the numerical input of the model is represented by x∗, the β(2)’s are the

weights, and the number of nodes in the hidden layer is represented by M . Next, we have the

activation function defined by h(·), and the activation defined by,

aj(x
∗) = β

(1)
j0 +

p∑
i=1

β
(1)
ji x∗i . (3)

Here p is the number of inputs, and the β(1)’s are the weights that transform the input data.

This shows that a neural network is based on taking a weighted sum of inputs and transforming

this using an activation function.

If the model has more hidden layers this same principle can be applied where the output

of the nodes from the previous layers, as defined by f̂(·), are the input for the next layer. A

transformation of the weighted sum of these inputs then provides the output of this next layer.

This is equal to applying (2) with its own new weights, with the outputs of the previous layers

as x∗, which could have a different number of nodes M (DeVore et al., 2021; Hastie et al., 2009).

We have to decide on how many hidden layers, L, and what those look like. Each layer is

defined by its number of hidden units, M , and the activation function, h(x). Some examples of

activation functions are the identity function, sigmoid function, tanh function, and the rectified

linear unit (ReLU) function, which are shown in (4), (5), (6), and (7) respectively (DeVore et

al., 2021; Hastie et al., 2009; Zhang et al., 2023).

h(x) = x (4)

h(x) =
1

1 + e−x
(5)

h(x) =
ex − e−x

ex + e−x
(6)

h(x) = max(0, x) (7)

To define the hyperparameters we use the tuner as integrated in Keras (O’Malley et al.,

2019), with the tuning options as in Table 4. Note that the number of nodes and the activation

function can be different for each layer. The final layer is the output layer, in which we want

to generate the output to the model. We have a regression type model and, thus, want a single

numerical output. We use the recommended activation function for this layer which is the

identity activation function as in (4) (DeVore et al., 2021; Hastie et al., 2009; Jin et al., 2023).

The tuner is used to search through the hyper parameter space to find the best values (Chollet

et al., 2015). First, we select the random search tuner, this allows the tuner to randomly go

20

Table 4: Hyperparameter tuning options for the whole model and per layer i.

Hyperparameter Values

N 4, 5, 6
Mi 4, 8, 12, ..., 256
hi(x) ReLU, tanh, sigmoid
α 0.01, 0.001, 0.0001

through the possible options and combinations of the hyperparameters. The objective that we

focus on is the accuracy on the validation set, this is equal to the amount of correctly predicted

values in the validation set divided by the total number of observations in the validation set. A

score is predicted correctly when the predicted value is equal to the actual value. While mainly

relevant for classification problems, this score will provide an indication of whether the model

can predict any of the values correctly. Next, the maximum number of different settings that

can be tried, which are called trials, is equal to 10. Lastly, each trial can consist of 2 executions,

the number of times the model is build from scratch given these parameters, and each of these

executions consist of 2 training epochs, which are the number of batches of data on which this

model is trained.

After the tuner finds the best parameter settings we build the model using these settings

and train the model on the test and the validation set combined. To prevent overfitting in this

last step, we implement early stopping with a patience of 20, which means that the algorithm

stops training if there is no improvement for during last 20 training epochs. After the training

has stopped we select the best parameter values that were found for the final model.

As optimisation method we use Adam as defined by Kingma & Ba (2014). This is a version

of the stochastic gradient descent (SGD) method with a faster convergence rate than SGD.

Kingma & Ba (2014) find a lot of advantages for their method compared to other methods,

such as the computational efficiency, the small memory requirements, and the efficiency when

working with a large data set and/or a large amount of parameters. We only tune the learning

rate, α, as defined in Table 4, this value approximately bounds the magnitude of the steps for

the parameters. For the other hyperparameters we use the standard values as recommended by

Kingma & Ba (2014), which can be found in their paper.

Next we define the loss function based on which the model will optimise the parameters, as

this is used for defining the penalty for errors in the prediction. As recommended by Hastie et

al. (2009) we use the sum of squared errors function. If we define the actual output as y, the

predicted output as f̂(x), and the number of observations as N , we can define this loss function

as,

L(y, f̂(x)) =
N∑
i=1

(yi − f̂(xi))
2. (8)

We apply the following methods to prevent overfitting. First, we apply L2 regularization,

with default parameter value 0.01. This means that we add the term 0.01 ·
∑p

j=1 β
2
j to the loss

function, which causes the weights to stay lower and thus helps minimize the amount of nodes

that are active in the model (Chollet et al., 2015; Hastie et al., 2009; Kingma & Ba, 2014).

Besides, we apply early stopping by using a validation set. The validation set ensures that the

21

model stops the fitting when the error on the validation set starts increasing while the error on

the training set is decreasing. From the total data set, 70% is used for the training of the model,

15% is used for the validation, and the last 15% is used for testing (Hastie et al., 2009). The

test set is used for the comparison of different models.

4.2.3 Convolutional neural network

We use the neural network as described in Section 4.2.2 as the starting point for the convolutional

neural network (CNN). We provide the input data for this neural network in 3D-form and add a

convolutional layer before the other layers in the NN. The data is presented in 3D-form because

this allows us to keep the yard dimensions and the locations of stacks relative to each other.

The convolutional layer will be a 2D-convolutional layer, which has two parameters that are

fixed a priori. The first is the input shape, which has to be used if the convolutional layer is

the first layer in the model and defines the shape of the input for the model. We set this to

(r, b, S), with r the number of rows in one module, b the number of bays in one module, and S

the number of data values in one stack. Next, we set the kernel size to (2, 2). This defines the

height and the width of the convolution window, which is the size of a matrix of values that the

model looks at as one observation to find connections between surrounding data points. We use

these values because we aspect that the slots directly next to each other are the most related.

The convolutional layer also has two parameters which we tune, these are presented in Table 5.

The first hyperparameter is the number of filters, F , this defines the number of output channels

from the convolutional layer. The second is the activation function for the convolutional layer,

hC(x). To ensure we can use the output of the convolutional layer in this rest of the model we

add a flattening layer, this turns the data into a one-dimensional array.

Table 5: Additional hyperparameter tuning options for the CNN.

Hyperparameter Values

F 2, 4, 6, ..., 30
hC(x) ReLU, tanh, sigmoid

4.3 Simulation

We use simulation to validate and test our methods, as has been done by Duinkerken et al.

(2001), Hirashima et al. (2006), and Xie et al. (2022). Our simulation represents a simplified

version of a container terminal in which we only account for import and export containers. We

use coordinates to define the locations of the slots within a module. We simplify the transfer

zones by assuming that containers are located in one spot. The coordinates of the transfer zones

on the landside and the waterside are the same for each module and are (x, y, z) = (
⌈
r+1
2

⌉
, b+1, 1)

and (x, y, z) = (
⌈
r+1
2

⌉
, 0, 1) respectively.

Whether a vessel can berth is determined by the number of quay crane (QC)s that are

available on the quay, and the number of QCs that the vessel requires. If there are enough QCs

available the vessel berths, otherwise it waits 60 seconds before trying again. We do not account

for whether the QCs are next to each other, we only look at the amount that is available. We

22

assume that a vessel berths exactly in the middle of all modules.

For the arrivals at the gate, thus the land side, we use a method that differentiates between

the busy and the calm hours. This means that if a% of gate arrivals occur during the busy period

and (1 − a)% during the calm period, we implement this as follows. Every time we generate a

gate arrival, we check during which time period this moment falls, and we accept this time with

the respective probabilities a and (1− a)%. If the time is not accepted, we generate a new time

and repeat the process.

We assume the following about the rail mounted gantry (RMG) cranes. The starting position

of the first RMG in coordinates is (x, y, z) = (
⌈
r+1
2

⌉
,
⌈
b+1
2

⌉
, h), and of the second RMG is

(x, y, z) = (
⌈
r+1
2

⌉
,
⌈
b+1
2

⌉
, h+ 1). If an RMG has placed a container and there are no other jobs

to perform it will wait at its current spot. The travelled distance when performing a move is

calculated as the Manhattan distance. This distance from point (x1, y1, z1) to point (x2, y2, z2)

can be calculated as,

distance = |x1 − x2|+ |y1 − y2|+ |z1 − z2|. (9)

In general, container yards are filled for 60-80%, thus we use this as an indication for the

amount of arrivals, and how far we fill the yard before starting the simulation. We use a specific

method to fill the yard before starting the actual simulation, as is also done by for example

Dekker et al. (2007). For filling the yard we let ships arrive that only drop off containers, which

are immediately placed in the yard. The slots where these containers are placed are based on

the algorithm that is implemented in the simulation.

We implement the model as a discrete event simulation (DES) using the free package Salabim

in Python 3.11.5 (van der Ham, 2018). An overview of the steps in each of the events is shown in

Appendix A. We initialise the simulation by planning the arrival of the vessels, and with this the

arrivals of the containers that need to be loaded on those vessels. When these containers arrive

at the gate the best module is selected and they are moved to the LS transferzone corresponding

to this module. When in the LS transferzone, the best slot in the module is selected and the

container is moved there. At the expected departure time of these containers, they are moved to

the WS transferzone, and they leave the simulation. Next, with every vessel arrival we unload

containers from this vessel. These then arrive at the quay. Upon arrival at the quay the best

module is selected and they are moved to the WS transferzone corresponding to this module.

At the quay the expected departure time for this container is also determined. When in the WS

transferzone the best slot in the module is found and the container is moved there. When their

departure time comes around they are removed from the yard and placed in the LS transferzone

and they leave the simulation.

We make the following note on the reshuffling of a container. When trying to remove a

container from the yard it is checked if all slots above this container are empty. If there is a

container in the highest slot, this container gets reshuffled, and we plan the departure of the

original container again. Continuing until the container is actually removed. When we reshuffle

a container we plan the departure from its new slot at either its actual departure time, or the

current time, whichever is the latest. Also note that when we try to remove a container from a

slot we are not allowed to place any containers in this stack until the container is removed.

23

5 Results

In this section we present the results of our research. We first elaborate on the data we use,

then we describe and compare the results we find with the neural networks for two versions of

our simulation.

5.1 Algorithm and simulation set-up

5.1.1 Benchmark algorithm

We define the benchmark algorithm based on a penalty function. The used attributes and their

corresponding penalty values are presented in Table 6. The information in this table is defined

based on information from experts at Konecranes. The penalty values for ‘empty ground slot’,

‘workload’, and ‘TZ occupancy’ are pre-tuned to ensure the containers are distributed over all

the modules. The penalties are split in three categories, (1) penalties that are relevant for all

containers, (2) penalties that are relevant if the container has transit direction export, and (3)

penalties that are relevant if the container has transit direction import. Note that the penalties

for ‘workload’ and ‘TZ occupancy’ are module specific, and thus may influence the selection of

a module, but do not influence which slot is the best within a module.

5.1.2 Neural networks

Next, we define the input data for the neural networks, which is based on the stack information.

The specific attributes that are used are presented in Table 7. The categorical attributes ‘transit

direction’, ‘outbound service ID’, ‘outbound carrier ID’, ‘next destination’, ‘line operator’, and

‘inbound service ID’ are transformed using one-hot encoding, see explanation in Section 4.2.1.

An example of the one-hot encoding for the attribute ‘transit direction’ is shown in Table 8. Some

attributes are not included in this information because they provide no additional information

or are not reliable in practice. An example of an attribute that is not reliable in practice is

‘edt’. In our implementation the estimated departure time of a container corresponds with the

actual departure time of a container, and in our case we define this value before the container is

placed in the yard. However, in practice there are many deviations possible from the expected

departure time, and it is not known in advance.

24

Table 6: The penalty values and their definitions.

Attribute Penalty Value Definition

ALL CONTAINERS

Transit direction 400 When the transit direction of the container differs
from any of the containers below.

Empty ground slot 70 When this slot is an empty ground slot.
Workload 7500 · cfill Based on how filled the yard is, with cfill the

percentage of the module that is filled with con-
tainers.

TZ occupancy 0.2 · c3wait Based on the occupancy of the transferzone, with
cwait the percentage of the total waiting contain-
ers that are waiting for this module.

Outbound service 50 When the outbound service of the container dif-
fers from the container below.

Outbound vessel visit 50 When the outbound vessel visit of the container
differs from the container below.

Outbound vessel 50 When the outbound vessel of the container differs
from the container below.

Next destination 50 When the next destination of the container differs
from the container below.

Lower than max weight 75 · cmax When the weight class of the container is lower
than the maximum weight class of the stack,
where cmax is the class difference to the maximum
weight.

Lower than top weight 75 · ctop When the weight class of the container is lower
than the weight class of the container below,
where ctop is the class difference to the top con-
tainer weight.

Higher than max weight 10 · cmax When the weight class of the container is higher
than the maximum weight class of the stack,
where cmax is the class difference to the maximum
weight.

Higher than top weight 50 · ctop When the weight class of the container is higher
than the weight class of the container below,
where ctop is the class difference to the top con-
tainer weight.

EXPORT CONTAINERS

Tier index 6− z For every tier, where the tier of the slot is given
by z.

Bay index y For every bay, the number of bays from the water
side, where the bay of the slot is given by y.

IMPORT CONTAINER

Tier index 10 · z For every tier, where the tier of the slot is given
by z.

Bay index 47− y For every bay, the number of bays from the land
side, where the bay of the slot is given by y.

Note that these penalty values are specific for our terminal layout and dimensions.

25

Table 7: Stack information attributes.

Attribute Definition

Length The length of the containers in the stack, 0 if empty.
Transit direction The transit direction of the containers in the stack, ‘mixed’

if it contains both ‘import’ and ‘export’ containers, ‘none’ if
empty.

Outbound service ID Outbound service ID of the top container in the stack, -1 if
empty.

Outbound carrier visit ID Outbound carrier visit ID of the top container in the stack,
-1 if empty.

Outbound carrier ID Outbound carrier ID of the top container in the stack, -1 if
empty.

Next destination Next destination of the top container in the stack, ‘none’ if
empty.

Tier The lowest empty tier in the stack, 1 if empty.
Max weight The weight class of the heaviest container in the stack, 0 if

empty.
Top weight The weight of the top container in the stack, 0 if empty.
Line operator The line operator of the top container in the stack, -1 if

empty.
Inbound service ID The inbound service ID of the top container in the stack, -1

if empty.

Note that for most attributes the value for an empty stack is equal to -1, because the value 0 is already
reserved for the case that the transit direction does not correspond to the transit direction for which
this attribute is defined.

Table 8: Example of one-hot encoding for the attribute ‘transit direction’.

Value One-hot encoded array

import [1, 0, 0]
export [0, 1, 0]
mixed [0, 0, 1]
none [0, 0, 0]

5.1.3 Simulation

To compare the different algorithms we implement a simulation. We create three data cases,

small, medium, and large, on which we compare the algorithms. For the simulation we first

define the parameters, sets, and distributions that are the same in all simulations. These are

presented in Table 9. All parameters are assigned a value based on information from experts at

Konecranes. First, srmg defines the speed at which the RMGs can move through the yard. The

distance these travel is based on the dimensions of the containers. Standard 20ft containers have

a width of 2.44 meters, a length of 6.1 meters, and a height of 2.59 meters (20-foot Container -

Dimensions, Measurements and Weight , 2023). Next, sqtz defines the speed at which containers

are moved from the quay to the transfer zones.

Next, we define 5 sets for the simulation. These define the possible values that containers

can have for certain attributes. We define the set W for the attribute ‘weight’, and the set δ for

the attribute ‘length’, for distributions across these two sets can differ per vessel. Next we have

26

Table 9: The parameters, sets, and distributions that are the same for all simulations, with their
corresponding values. All distances are in meters, times in seconds, and speeds in m/sec.

Parameter Abbreviation Value

Bays b 46
Rows r 8
Tiers h 5
Number of modules case small msmall 1
Number of modules case medium mmedium 3
Number of modules case large mlarge 15
RMG speed srmg 3.25
Q-TS Speed sqts 8
QC move time for case i tqc 120/NQC,i

Sets

Weight classes W {1, 2, 3}
Container length δ {20, 40}
Next destination 1 D1 {A, B}
Next destination 2 D2 {A, B, C, D}
Next destination 3 D3 {A, B, C, D, E, F, G, H}
Distributions

Export arrival FEA Triangular(86400, 1209600, 475200)
Import departure FID Triangular(86400, 1209600, 475200)
Vessel arrival FV A Triangular(-43200, 432000, 43200)

the sets D1, D2 and D3 for the attribute ‘next destination’. The distributions for these sets are

always as presented in Table 10. Lastly, we define the distributions that are the same for all

simulations. Export containers arrive a certain amount of time before the expected arrival of the

vessel, the first distribution, FEA, provides the distribution for this time in seconds. The second

distribution, FID, determines the amount of time an import container stays in the yard before

it is picked up by a truck. The last distribution, FV A, provides the deviation from the expected

arrival time for the vessel. This means that the vessels arrive somewhere between 43200 seconds

(half a day) before, to 432000 seconds (5 days) after their expected arrival time.

Table 10: The distributions of the containers across the various destinations for each destination
set.

Destination set Distribution

D1 (0.5, 0.5)
D2 (0.25, 0.25, 0.25, 0.25)
D3 (0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)

Besides the predefined parameters we have parameters which are adjusted per simulation,

see Table 11. We first have the number of RMGs per module, Nrmg, and the number QCs at

the quay, NQC,i. The number of QCs is different for each data case. Next, we have the number

of seconds which a container can be delayed in its removal before we actually count it as a delay,

tdelay. The fourth parameter is the percentage of the yard that we fill with containers before we

start running the simulation, ρ. This thus provides a base level on the number of containers that

are always in the yard. Next is the time required to move a container between the vessel and the

27

quay using the QCs in seconds, denoted by tqc. The parameters τl and τu, define which numbers

of load and unload containers should be used respectively. The parameter Vqc defines which

values of the number of required QCs per vessel should be used. The last three parameters are

related to the distributions that container arrivals at the gate follow. The gate is busy between

θstart and θend, during the other hours it is calm. The percentage of arrivals at the gate that

occur during these busy hours is defined by γ.

Table 11: The parameters that are adjusted per simulation.

Parameter Abbreviation

Number of RMGs per module Nrmg

Number of QCs at the quay per data case i NQC,i

Allowed delay tdelay
Start filling percentage of yard ρ
Time to move a container with a QC tqc
Load containers τl
Unload containers τu
Required quay cranes by vessel Vqc

Start time busy hours at the gate θstart
End time busy hours at the gate θend
Busy percentage at the gate γ

For the containers arriving via vessel we use a recurring vessel schedule. This schedule is

created in correspondence with the simulation department from Konecranes. These schedules

are presented in Table 12. The distributions are presented in the same order as the sets are

presented in Table 9. For each arriving vessel we determine a list of containers with their

attributes that need to be unloaded into the yard, and a list of containers that need to be loaded

onto the vessels. These container attributes are retrieved from sets and their corresponding

distributions. To fill up the yard we use the available data on the vessels.

We need at least a certain amount of data before we can use it to train the NN. We try

various run lengths for the simulation, which produce differently sized data sets, to investigate

the influence of the amount of data on the algorithms. We define three different combinations of

time periods for the simulation run. Each time period consists of two parameters, ϵ the time in

weeks to warm up the simulation, and η the time in weeks, during which we measure statistics.

The total run time then consists of ϵ+η weeks. The combinations of (ϵ, η) that we use are (1, 4),

(4, 20) and (4, 52). During the warm-up period of the simulation we see more containers arrive

than leave the yard, because the containers that need to leave the yard have not arrived yet.

Therefore, we expect that a longer warm-up period will ensure that the arrival and departure

processes have stabilized.

28

Table 12: The vessel schedules and the corresponding distributions for all data cases.

Vessel
Line

Arrival
Day

ETA 1 Load Containers (TEU)
τl = 1 τl = 2

Unload Containers (TEU)
τu = 1 τu = 2

Length
distribution

Weight
Distribution

Destination set
QCs per vessel

Vqc = 1 Vqc = 2

data case = small

1 1 08:00 50 90 60 110 (0.3, 0.7) (0.5, 0.3, 0.2) D1 1 1
2 3 12:00 50 80 50 75 (0.35, 0.65) (0.3, 0.5, 0.2) D1 1 1
3 5 08:00 60 90 30 60 (0.3, 0.7) (0.5, 0.3, 0.2) D1 1 1
4 7 12:00 55 95 50 85 (0.4, 0.6) (0.5, 0.3, 0.2) D1 1 1

data case = medium

1 1 08:00 80 135 100 165 (0.3, 0.7) (0.5, 0.3, 0.2) D1 1 2
2 2 16:00 100 170 75 125 (0.4, 0.6) (0.2, 0.7, 0.1) D2 1 1
3 3 12:00 70 125 80 145 (0.35, 0.65) (0.3, 0.5, 0.2) D1 1 1
4 4 19:00 90 145 105 170 (0.45, 0.55) (0.6, 0.2, 0.2) D1 1 2
5 5 08:00 110 185 80 135 (0.3, 0.7) (0.5, 0.3, 0.2) D2 1 2
6 6 22:00 75 180 95 160 (0.35, 0.65) (0.5, 0.3, 0.2) D1 1 1
7 7 12:00 95 160 80 135 (0.4, 0.6) (0.5, 0.3, 0.2) D2 1 1

data case = large

1 1 08:00 85 260 90 275 (0.4, 0.6) (0.5, 0.3, 0.2) D2 1 1
2 3 12:00 1450 2260 1340 2090 (0.35, 0.65) (0.3, 0.5, 0.2) D3 1 8
3 5 08:00 65 215 90 300 (0.3, 0.7) (0.5, 0.3, 0.2) D2 1 1
4 6 10:00 1350 2130 1500 2370 (0.35, 0.65) (0.3, 0.5, 0.2) D3 1 8
5 7 15:00 70 235 85 285 (0.4, 0.6) (0.6, 0.2, 0.2) D2 1 1

1 Estimated Time of Arrival (ETA).

29

5.2 Simple simulation

Parameter settings

We start with a simple implementation of the simulation, the parameter settings for this sim-

ulation are presented in Table 13. First of all, we define that there is one QC, and each vessel

needs exactly one QC to be serviced. Next, we set that the yard is serviced by one RMG, and

a container counts as delayed if it needs more than 900 seconds (15 minutes) to leave the yard.

The start percentage to which the yard is filled is set to 25%, due to this already decreased

amount of space in the yard we use the sets with a smaller amount of load and unload contain-

ers. Lastly, we assume that the gate is equally busy all throughout the day.

Table 13: Parameter values for the simple simulation.

Parameter Value Parameter value Parameter Value

NQC,small 1 Nrmg 1 θstart 00:00
NQC,medium 1 tdelay 900 θend 23:59
NQC,large 1 ρ 25% γ 100
Vqc 1 τl 1 τu 1

Training neural network

We first run this simulation using the penalty function to generate the input data for the NNs.

The hyperparameters from tuning the neural networks are presented in Table 21 in Appendix B.

The accuracy scores on the test sets for all data cases are presented in Table 14. Note that for

some cases there is no accuracy score because there is no training data available. This occurred

because the simulation using the benchmark algorithm was unable to finish due to it not being

able to find a slot for a container at a certain point and we do not allow the simulation to

continue if a container cannot be placed.

The test accuracy of the neural network is greater than 0.00% for 14 out of the 21 cases for

which training data was available. Another interesting observation is that the accuracy score

of the NN is decreasing as the λ increasing, which means that the models are less accurate in

predicting the delay of containers over a long period of time. We also see no specific influence

from the length of the data set on the accuracy score. Though in all cases the combination

(ϵ, η) = (1, 4) has the lowest accuracy score, the difference with the other lengths is small, and

the effect of going from η = 20 to η = 52 can be either positive or negative.

Comparison using simulation

Since our main goal is not to train a NN that can copy the benchmark algorithm, but to find a

NN that learns from the decisions of the benchmark algorithm to find which actions provide the

least delay for removing containers from the terminal, we compare the two algorithms using a

simulation study. We only run the simulation for the NNs that have an accuracy score greater

than 0.00%, because we expect the algorithm to not have any additional value the score is 0.00%.

The results from these simulations are presented in Table 15 and Table 16. Note that we

have no results for the data case large, because of various reasons. Namely, memory issues, being

unable to find a slot for a container at some point, and having no training data for the NN.

30

Table 14: The accuracy scores of the neural network on the test set based on the simple simu-
lation.

Data case λ ϵ η Accuracy (%)
small 1 1 4 64.69
small 1 4 20 70.78
small 1 4 52 66.18
small 24 1 4 25.85
small 24 4 20 25.63
small 24 4 52 0.00
small 168 1 4 0.00
small 168 4 20 0.00
small 168 4 52 0.00
medium 1 1 4 69.23
medium 1 4 20 71.87
medium 1 4 52 72.39
medium 24 1 4 36.24
medium 24 4 20 41.80
medium 24 4 52 42.88
medium 168 1 4 0.00
medium 168 4 20 0.00
medium 168 4 52 0.00
large 1 1 4 68.93
large 1 4 20 - 1

large 1 4 52 - 1

large 24 1 4 58.85
large 24 4 20 - 1

large 24 4 52 - 1

large 168 1 4 4.81
large 168 4 20 - 1

large 168 4 52 - 1

1 No training data available.

Since we focus mostly on the delay of containers we first look at the delay statistics from the

simulation (Table 15). The first important observation is that the average delay of containers

leaving the yard is always lower using the benchmark algorithm than using the NN. Another

statistic in which it is clearly visible that the benchmark still performs better than the NN is

the 50% score. This indicates that 50% of delays are between the minimum and this value, for

the simulation using the benchmark algorithm this value is always 0, whereas this value goes up

to 1140 seconds for the simulation using a NN. The case for which the NN best approaches the

performance of the benchmark algorithm is for the data case medium with λ = 1, ϵ = 1, and

η = 4. For this case the mean is less than 500 seconds higher, the 50% score is 213 seconds, and

the maximum is just over 3000 seconds higher.

To get some more insight in the distribution of the delays we look at a histogram of delays of

containers leaving the yard for the case in which the NN performs the closest to the benchmark

algorithm. In Figure 3a we see the distribution of these delays when using the benchmark

algorithm. Here we mainly see the peak at a delay of 0 to 250 seconds. After this, the amount of

observations per bin decreases as the delay increases, with the values at the end having so little

observations they are not even visible. In Figure 3b we see this distribution when using the NN.

Here we see the same shape as for the benchmark algorithm. The main difference is the increase

31

Table 15: Statistics on the delay per containers in seconds based on the given performance
measure λ, generated using the simple simulation.

Data
Case

λ ϵ η Algorithm Mean St. dev. Min 50% Max

small 1 1 4 Benchmark 686 925 0 0 5522
NN 2319 2757 0 814 11255

small 1 4 20 Benchmark 675 953 0 0 5208
NN 2613 3067 0 904 11486

small 1 4 52 Benchmark 649 949 0 0 6718
NN 2354 2861 0 516 14152

small 24 1 4 Benchmark 686 925 0 0 5522
NN 2543 2869 0 1140 10096

small 24 4 20 Benchmark 675 953 0 0 5208
NN 2407 2861 0 746 10941

small 24 4 52 Benchmark 649 949 0 0 6718
NN - 1 - 1 - 1 - 1 - 1

small 168 1 4 Benchmark 686 925 0 0 5522
NN - 1 - 1 - 1 - 1 - 1

small 168 4 20 Benchmark 675 953 0 0 5208
NN - 1 - 1 - 1 - 1 - 1

small 168 4 52 Benchmark 649 949 0 0 6718
NN - 1 - 1 - 1 - 1 - 1

medium 1 1 4 Benchmark 762 1328 0 0 7031
NN 1259 1675 0 213 10231

medium 1 4 20 Benchmark 970 1635 0 0 7686
NN 4258 5222 0 1090 20558

medium 1 4 52 Benchmark 1110 1757 0 0 7805
NN - 2 - 2 - 2 - 2 - 2

medium 24 1 4 Benchmark 762 1328 0 0 7031
NN 3439 4727 0 960 19588

medium 24 4 20 Benchmark 970 1635 0 0 7686
NN - 3 - 3 - 3 - 3 - 3

medium 24 4 52 Benchmark 1110 1757 0 0 7805
NN - 3 - 3 - 3 - 3 - 3

medium 168 1 4 Benchmark 762 1328 0 0 7031
NN - 1 - 1 - 1 - 1 - 1

medium 168 4 20 Benchmark 970 1635 0 0 7686
NN - 1 - 1 - 1 - 1 - 1

medium 168 4 52 Benchmark 1110 1757 0 0 7805
NN - 1 - 1 - 1 - 1 - 1

large 1 1 4 Benchmark - 3 - 3 - 3 - 3 - 3

NN - 2 - 2 - 2 - 2 - 2

large 1 4 20 Benchmark - 3 - 3 - 3 - 3 - 3

NN - 4 - 4 - 4 - 4 - 4

large 1 4 52 Benchmark - 3 - 3 - 3 - 3 - 3

NN - 4 - 4 - 4 - 4 - 4

large 24 1 4 Benchmark - 3 - 3 - 3 - 3 - 3

NN - 2 - 2 - 2 - 2 - 2

large 24 4 20 Benchmark - 3 - 3 - 3 - 3 - 3

NN - 4 - 4 - 4 - 4 - 4

large 24 4 52 Benchmark - 3 - 3 - 3 - 3 - 3

NN - 4 - 4 - 4 - 4 - 4

large 168 1 4 Benchmark - 3 - 3 - 3 - 3 - 3

NN - 2 - 2 - 2 - 2 - 2

large 168 4 20 Benchmark - 3 - 3 - 3 - 3 - 3

NN - 4 - 4 - 4 - 4 - 4

large 168 4 52 Benchmark - 3 - 3 - 3 - 3 - 3

NN - 4 - 4 - 4 - 4 - 4

1 NN did not provide accuracy score above 0.00%.
2 Unable to finish simulation due to memory error.
3 Unable to finish simulation because algorithm was unable to find a slot at some
point.

4 There was no training data available for the NN.
32

(a) Distribution using the benchmark algorithm. (b) Distribution using the NN.

Figure 3: Histogram of the delays of containers leaving the yard in seconds for the data case
medium, with λ = 1, ϵ = 1 and η = 4. Based on the simple simulation.

of the amount of values on the x-axis, showing that, though it occurs in very little cases, larger

delays occur than with the benchmark algorithm. The visible bars for both algorithms end just

before 6000 seconds delay.

Next, we look at the statistics on the arrivals and the departures of the containers as in

Table 16. In general the number of arrivals and departures, for both the import and the export

containers, are similar for the benchmark algorithm and the NN. The most interesting statistic

in here is the number of reshuffles, since this is closely related to the delay. The number of re-

shuffles required by the NN is always higher than for the benchmark algorithm. This difference

increases significantly when the length of the simulation is increased. For example for the data

case small with λ = 1, the difference goes from just under 500 moves, to just under 3000 moves,

to finally over 8000 moves.

Summary simple simulation

To conclude, for the simple simulation we find that the benchmark algorithm always performs

better. The accuracy scores of the neural networks were quite high, however the average delays

for the neural networks are always much larger than for the benchmark algorithms. For the

neural networks this higher average is mainly caused by some large outliers. When looking at

the number of reshuffles, we find that these are also much larger for the neural networks.

33

Table 16: Results from simple simulation, with statistics on the arrivals and departures of
containers.

Data case λ ϵ η Algorithm
Import
Arrivals

Import
Departures

Export
Arrivals

Export
Departures

Reshuffles

small 1 1 4 Benchmark 431 340 492 516 1195
NN 435 347 492 516 1630

small 1 4 20 Benchmark 2341 2341 2623 2635 7416
NN 2301 2302 2623 2635 10206

small 1 4 52 Benchmark 6051 6056 6771 6799 18301
NN 6060 6060 6771 6799 26491

small 24 1 4 Benchmark 431 340 492 516 1195
NN 436 347 492 516 1803

small 24 4 20 Benchmark 2341 2341 2623 2635 7416
NN 2291 2297 2623 2635 10097

small 24 4 52 Benchmark 6051 6056 6771 6799 18301
NN - 1 - 1 - 1 - 1 - 1

small 168 1 4 Benchmark 431 340 492 516 1195
NN - 1 - 1 - 1 - 1 - 1

small 168 4 20 Benchmark 2341 2341 2623 2635 7416
NN - 1 - 1 - 1 - 1 - 1

small 168 4 52 Benchmark 6051 6056 6771 6799 18301
NN - 1 - 1 - 1 - 1 - 1

medium 1 1 4 Benchmark 1418 1066 1471 1531 3850
NN 1404 1054 1471 1531 5134

medium 1 4 20 Benchmark 7626 7506 7589 7639 24651
NN 7606 7486 7589 7639 29362

medium 1 4 52 Benchmark 19610 19678 19840 19897 65460
NN - 2 - 2 - 2 - 2 - 2

medium 24 1 4 Benchmark 1418 1066 1471 1531 3850
NN 1394 1051 1471 1531 5252

medium 24 4 20 Benchmark 7626 7506 7589 7639 24651
NN - 3 - 3 - 3 - 3 - 3

medium 24 4 52 Benchmark 19610 19678 19840 19897 65460
NN - 3 - 3 - 3 - 3 - 3

medium 168 1 4 Benchmark 1418 1066 1471 1531 3850
NN - 1 - 1 - 1 - 1 - 1

medium 168 4 20 Benchmark 7626 7506 7589 7639 24651
NN - 1 - 1 - 1 - 1 - 1

medium 168 4 52 Benchmark 19610 19678 19840 19897 65460
NN - 1 - 1 - 1 - 1 - 1

large 1 1 4 Benchmark - 3 - 3 - 3 - 3 - 3

NN - 2 - 2 - 2 - 2 - 2

large 1 4 20 Benchmark - 3 - 3 - 3 - 3 - 3

NN - 4 - 4 - 4 - 4 - 4

large 1 4 52 Benchmark - 3 - 3 - 3 - 3 - 3

NN - 4 - 4 - 4 - 4 - 4

large 24 1 4 Benchmark - 3 - 3 - 3 - 3 - 3

NN - 2 - 2 - 2 - 2 - 2

large 24 4 20 Benchmark - 3 - 3 - 3 - 3 - 3

NN - 4 - 4 - 4 - 4 - 4

large 24 4 52 Benchmark - 3 - 3 - 3 - 3 - 3

NN - 4 - 4 - 4 - 4 - 4

large 168 1 4 Benchmark - 3 - 3 - 3 - 3 - 3

NN - 2 - 2 - 2 - 2 - 2

large 168 4 20 Benchmark - 3 - 3 - 3 - 3 - 3

NN - 4 - 4 - 4 - 4 - 4

large 168 4 52 Benchmark - 3 - 3 - 3 - 3 - 3

NN - 4 - 4 - 4 - 4 - 4

1 NN did not provide accuracy score above 0.00%.
2 Unable to finish simulation due to memory error.
3 Unable to finish simulation because algorithm was unable to find a slot at some point.
4 There was no training data available for the NN.

34

5.3 Advanced simulation

Parameter settings

Next, we implement a more advanced version of the simulation for which the parameter values

are presented in Table 17. In this version we implement two RMGs per module, and allow

there to be more QCs, which differ per data case. We also use that vessels may need a different

number of QCs to berth. To get a more detailed insight in the delay of containers, we count a

container as delayed when it needs more than 0 seconds to leave the yard. For a more realistic

view of the containers in the yard, we do not fill the yard prior to the start of the simulation,

but to get a similar filling percentage during the simulation we use the situations with more load

and unload containers. Lastly, we implement busy hours at the gate during the day, with much

less activity during the night.

Table 17: Parameter values for the advanced simulation.

Parameter Value Parameter value Parameter Value

NQC,small 1 Nrmg 2 θstart 08:00
NQC,medium 2 tdelay 0 θend 20:00
NQC,large 8 ρ 0% γ 98
Vqc 2 τl 2 τu 2

Training convolutional neural network

For the advanced simulation we use the same steps as for the simple simulation. We run the

simulation using the penalty function to generate input to train the convolutional neural network

(CNN). The advanced simulation using the benchmark algorithm was unable to finish for all

combinations with data case large because it was unable to find a slot for a container at some

point, thus we no longer look at this case. The hyperparameters of the CNN are presented in

Table 22 in Appendix C. The accuracy scores on the test sets for the CNNs are presented in

Table 18. Note that in some cases we do not have an accuracy score, this is because of memory

issues. We only find accuracy scores greater than 0.00% when λ = 1. This shows that these

NNs are still unable to predict very far ahead.

Extra training convolutional neural network

Since the accuracy scores are in this case still quite low, we try to improve these by adding

extra data to train the CNNs that have an accuracy score greater than 0.00%. Thus, we run

a simulation with the CNNs to generate the extra data. The CNNs can then learn from their

previous decisions, this would be similar as to how it could be used in reality by Konecranes.

The accuracy scores on the test sets for these extra trained CNNs are also presented in Table 18.

For four out of five cases these extra trained CNNs still provide an accuracy score greater than

0.00%. However, it should be noted that these accuracy scores are the same as the accuracy

scores from the original CNNs. In the small data case with λ = 1, ϵ = 1, and η = 4 we find an

accuracy score of 0.00% while the original CNN for this case had an accuracy score of nearly

15%. This means that the CNN has started to overfit by adjusting the parameters to better fit

the training data, but thus no longer fitting the test data. Lastly, we see no indication that the

35

Table 18: The accuracy scores of the convolutional neural networks on the test sets based on
the advanced simulation.

Accuracy (%) New Accuracy (%)
Data case λ ϵ η CNN Extra trained CNN CNN Extra trained CNN
small 1 1 4 14.61 0.00 58.70 0.00
small 1 4 20 16.19 16.19 14.21 14.21
small 1 4 52 16.10 16.10 15.69 15.69
small 24 1 4 0.00 -2

small 24 4 20 0.00 -2

small 24 4 52 0.00 -2

small 168 1 4 0.00 -2

small 168 4 20 0.00 -2

small 168 4 52 0.00 -2

medium 1 1 4 16.26 16.26 28.37 28.37
medium 1 4 20 15.28 15.28 14.23 14.23
medium 1 4 52 -1

medium 24 1 4 0.00 -2

medium 24 4 20 0.00 -2

medium 24 4 52 -1

medium 168 1 4 0.00 -2

medium 168 4 20 0.00 -2

medium 168 4 52 -1

1 CNN is unable to provide an accuracy score due to a memory error during the training
process.

2 CNN is not trained further because the original CNN has an accuracy score of 0.00%.

size of the data set influences the accuracy of the model.

The test sets on which we determine these original accuracy scores are from the data gen-

erated in simulations using the benchmark algorithm. Because the CNN would be used for the

entire simulation, it is relevant that the CNNs can still predict the delays accurately in simula-

tion using a CNN. Thus, we also look at the accuracy scores on new test sets which are selected

from data that is generated using the original CNN. These new accuracy scores are presented in

the column ‘New Accuracy’ in Table 18. We see the same patterns with these accuracy scores as

with the original accuracy scores. The accuracy score on this new set is larger than the accuracy

score on the original set in 2 cases, and is smaller in 2 cases. This shows that based on the ac-

curacy scores there is no clear improvement in the CNNs by providing it with extra training data.

Comparison using simulation

Next, we also compare the CNN and the extra trained CNN with the benchmark algorithm using

a simulation study. We again only run the simulations for the CNNs that have an accuracy score

greater than 0.00%. The results from these simulations are presented in Table 19 and Table 20.

Since the delay of containers is still the most important results from the simulation, we

analyse these first. The statistics on this are presented in Table 19. For the small data case the

benchmark algorithm still always has the lowest mean. However, for the medium data case the

CNNs have a lower mean for λ = 1, ϵ = 4, and η = 20. And for the data case medium with

λ = 1, ϵ = 1, and η = 4 the results from the (extra trained) CNN simulation and benchmark

simulation are about the same.

36

Table 19: Statistics on the delay of containers in seconds based on the given performance measure
value λ, generated using the advanced simulation.

Data
Case

λ ϵ η Algorithm Mean St. dev. Min 50% Max

small 1 1 4 Benchmark 933 992 0 531 4100
CNN 2395 2420 0 1639 8432
Extra trained CNN 2011 2052 0 1410 6525

small 1 4 20 Benchmark 884 1051 0 299 6587
CNN 1812 2116 0 637 8476
Extra trained CNN 2399 2673 0 1068 11202

small 1 4 52 Benchmark 873 1053 0 271 7073
CNN 2394 2681 0 1042 11989
Extra trained CNN 2394 2681 0 1042 11989

small 24 1 4 Benchmark 933 992 0 531 4100
CNN -1 -1 -1 -1 -1

Extra trained CNN -3 -3 -3 -3 -3

small 24 4 20 Benchmark 884 1051 0 299 6587
CNN -1 -1 -1 -1 -1

Extra trained CNN -3 -3 -3 -3 -3

small 24 4 52 Benchmark 873 1053 0 271 7073
CNN -1 -1 -1 -1 -1

Extra trained CNN -3 -3 -3 -3 -3

small 168 1 4 Benchmark 933 992 0 531 4100
CNN -1 -1 -1 -1 -1

Extra trained CNN -3 -3 -3 -3 -3

small 168 4 20 Benchmark 884 1051 0 299 6587
CNN -1 -1 -1 -1 -1

Extra trained CNN -3 -3 -3 -3 -3

small 168 4 52 Benchmark 873 1053 0 271 7073
CNN -1 -1 -1 -1 -1

Extra trained CNN -3 -3 -3 -3 -3

medium 1 1 4 Benchmark 1692 1948 0 788 7338
CNN 1694 1700 0 1231 7347
Extra trained CNN 1694 1700 0 1231 7347

medium 1 4 20 Benchmark 1517 1927 0 368 7622
CNN 1485 1661 0 656 7669
Extra trained CNN 1485 1661 0 656 7669

medium 1 4 52 Benchmark 1505 1934 0 329 7959
CNN -2 -2 -2 -2 -2

Extra trained CNN -3 -3 -3 -3 -3

medium 24 1 4 Benchmark 1692 1948 0 788 7338
CNN -1 -1 -1 -1 -1

Extra trained CNN -3 -3 -3 -3 -3

medium 24 4 20 Benchmark 1517 1927 0 368 7622
CNN -1 -1 -1 -1 -1

Extra trained CNN -3 -3 -3 -3 -3

medium 24 4 52 Benchmark 1505 1934 0 329 7959
CNN -2 -2 -2 -2 -2

Extra trained CNN -3 -3 -3 -3 -3

medium 168 1 4 Benchmark 1692 1948 0 788 7338
CNN -1 -1 -1 -1 -1

Extra trained CNN -3 -3 -3 -3 -3

medium 168 4 20 Benchmark 1517 1927 0 368 7622
CNN -1 -1 -1 -1 -1

Extra trained CNN -3 -3 -3 -3 -3

medium 168 4 52 Benchmark 1505 1934 0 329 7959
CNN -2 -2 -2 -2 -2

Extra trained CNN -3 -3 -3 -3 -3

1 NN did not provide accuracy score above 0.00%.
2 Unable to finish simulation due to memory error.
3 Not further looked into because simulation using CNN did not provide results.

37

The CNN and the extra trained CNN mostly provide the same results using a simulation.

This is to be expected as the accuracy scores between the two models are also mostly the same,

thus it is expected that the models have not changed. For the data case small with λ = 1,

ϵ = 1, and η = 4 we do expect to see different results between the CNN and the extra trained

CNN. This is reflected in the outcomes of the simulation, where the extra trained CNN performs

better. For the data case small with λ = 1, ϵ = 4, and η = 20 the simulation results between the

CNN and the extra trained CNN are also different, which means that the model has changed,

though it is still able to provide the same accuracy score. However, in this case the extra trained

CNN performs worse than the original CNN, with all delay statistics being larger.

Again we present the distributions of the delays of containers leaving the yard to get a more

in depth analysis of the differences between the benchmark algorithm and the CNNs. We do

this for the data case in which the CNNs seem to perform better than the benchmark algorithm,

which is for data case medium with λ = 1, ϵ = 4 and η = 20. In Figure 4a we present the

histogram of these delays when using the benchmark algorithm. Most of the observations are

between 0 and 250 seconds delayed. The next bin only has a very small amount of observations

compared to the first, and the amount of observations per bin slowly decreases after this. In

Figure 4b we present the histogram of the delays when using the (extra trained) CNN. Note

that the extra trained and the regular CNN provide the same results for this data case and are

thus represented with the same histogram. The largest peak of observations is still in the first

bin, however the number of observations in this bin is lower. We see a similar pattern in the

rest of the histogram as for the benchmark. However, the amount of observations in the later

bins is lower, and the amount of observations in the bins between about 1500 and 4000 seconds

is higher.

(a) Distribution using the benchmark algorithm. (b) Distribution using the (extra trained) CNN.

Figure 4: Histograms of the delays of containers leaving the yard in seconds for the data case
medium, with λ = 1, ϵ = 4 and η = 20. Based on the advanced simulation.

Next, we look at the statistics on the arrivals and departures of the containers as presented

in Table 20. The most important statistic here is the number of reshuffles. Again, for three data

cases the number of reshuffles is the lowest for the benchmark algorithm, in one case it is the

lowest for the CNN, and in one case for the extra trained CNN. This provides the same analysis

as based on the results presented in Table 19.

38

Summary advanced simulation

In conclusion, for the more advanced simulation we find that the convolutional neural networks

have a performance that more closely resembles the performance of the benchmark algorithm.

The accuracy scores of the CNNs are lower than those of the NNs in the simple simulation, and

we find no improvement in training the CNN on extra data. The average delay of the containers

is lower for one of the CNN models compared to the benchmark, and in a different case the

average is about the same between the two models. We also find that the distribution of the

delays of containers for the CNNs and the benchmarks are similar. Lastly, we also find that

the amount of reshuffles for the two algorithms do not differ as much anymore as for the simple

simulation.

39

Table 20: Results from advanced simulation, with statistics on the arrivals and departures of
containers.

Data case λ ϵ η Algorithm
Import
Arrivals

Import
Departures

Export
Arrivals

Export
Departures

Reshuffles

small 1 1 4 Benchmark 746 582 824 858 2498
CNN 743 582 824 858 3042
Extra trained CNN 743 580 824 858 2168

small 1 4 20 Benchmark 4002 3973 4283 4308 14544
CNN 4015 3989 4283 4308 14333
Extra trained CNN 4012 3987 4283 4308 17635

small 1 4 52 Benchmark 10376 10299 11128 11160 37660
CNN 10366 10299 11128 11160 45149
Extra trained CNN 10366 10299 11128 11160 45149

small 24 1 4 Benchmark 746 582 824 858 2498
CNN -1 -1 -1 -1 -1

Extra trained CNN -3 -3 -3 -3 -3

small 24 4 20 Benchmark 4002 3973 4283 4308 14544
CNN -1 -1 -1 -1 -1

Extra trained CNN -3 -3 -3 -3 -3

small 24 4 52 Benchmark 10376 10299 11128 11160 37660
CNN -1 -1 -1 -1 -1

Extra trained CNN -3 -3 -3 -3 -3

small 168 1 4 Benchmark 746 582 824 858 2498
CNN -1 -1 -1 -1 -1

Extra trained CNN -3 -3 -3 -3 -3

small 168 4 20 Benchmark 4002 3973 4283 4308 14544
CNN -1 -1 -1 -1 -1

Extra trained CNN -3 -3 -3 -3 -3

small 168 4 52 Benchmark 10376 10299 11128 11160 37660
CNN -1 -1 -1 -1 -1

Extra trained CNN -3 -3 -3 -3 -3

medium 1 1 4 Benchmark 2457 1764 2646 2710 7934
CNN 2426 1722 2646 2710 9465
Extra trained CNN 2426 1722 2646 2710 9465

medium 1 4 20 Benchmark 12870 12677 13357 13470 47720
CNN 12833 12583 13357 13470 55165
Extra trained CNN 12833 12583 13357 13470 55165

medium 1 4 52 Benchmark 32848 32932 35011 35091 123932
CNN -2 -2 -2 -2 -2

Extra trained CNN -3 -3 -3 -3 -3

medium 24 1 4 Benchmark 2457 1764 2646 2710 7934
CNN -1 -1 -1 -1 -1

Extra trained CNN -3 -3 -3 -3 -3

medium 24 4 20 Benchmark 12870 12677 13357 13470 47720
CNN -1 -1 -1 -1 -1

Extra trained CNN -3 -3 -3 -3 -3

medium 24 4 52 Benchmark 32848 32932 35011 35091 123932
CNN -2 -2 -2 -2 -2

Extra trained CNN -3 -3 -3 -3 -3

medium 168 1 4 Benchmark 2457 1764 2646 2710 7934
CNN -1 -1 -1 -1 -1

Extra trained CNN -3 -3 -3 -3 -3

medium 168 4 20 Benchmark 12870 12677 13357 13470 47720
CNN -1 -1 -1 -1 -1

Extra trained CNN -3 -3 -3 -3 -3

medium 168 4 52 Benchmark 32848 32932 35011 35091 123932
CNN -2 -2 -2 -2 -2

Extra trained CNN -3 -3 -3 -3 -3

1 NN did not provide accuracy score above 0.00%.
2 Unable to finish simulation due to memory error.
3 Not further looked into because simulation using CNN did not provide results.

40

6 Conclusion

In this paper we looked at how yard planning strategies can be improved using Artificial In-

telligence (AI). We investigated this by comparing a benchmark algorithm as implemented and

provided by Konecranes with three neural networks (NNs). The first NN is a regular NN. The

second NN is a convolutional NN (CNN), this means that the data can be provided as an 3D-

array and the NN contains a convolutional layer to deal with this data. The last model is the

same as the original CNN, however it has been trained on extra data. The comparisons between

the models were made using two simulation models of a container terminal.

In the first simulation we compared the benchmark algorithm with the regular NN. We

find that in 1/3 of the cases the NNs have an accuracy of 0%, meaning that it is unable to

predict the delay. The accuracy scores of the NNs were the highest when predicting the delay

of containers leaving in the next hour. When comparing the algorithms in a simulation we find

that the average delay is always lower for the benchmark algorithm. The number of reshuffles

is always larger for the NN. When the time period increases the difference between the number

of reshuffles between the two algorithms increases.

Next, we adjust the simulation to be more realistic. We use this simulation to compare the

two versions of the CNN with the benchmark algorithm. When training the CNN we find that

it often has a low accuracy score. We tried to improve this score by providing it with extra data,

however this mostly did not affect the accuracy. We compared the algorithms using a simulation

and find that the average delay is mostly lower for the benchmark algorithm. However, there are

some cases in which the CNN is able to perform the same, or slightly better than the benchmark.

For the extra trained CNN we do not find a lot of differences compared to the regular CNN,

because the model parameters mostly did not change. Based on the number of reshuffles we

come to the same conclusions.

We find only one case in which a NN performs better than the benchmark algorithm. This

is for the CNN in the second simulation. Though the CNN only performs better in one case, we

do find results close to the benchmark for this same combination of a more realistic simulation

and a CNN. Our results show that although based on our current implementation a NN cannot

yet replace the effectiveness of the benchmark, with possibly a more realistic simulation, a CNN

may be able learn from the benchmark algorithm to eventually perform better.

Implementing Artificial Intelligence techniques into container slot selection in container yards

is a relatively new subject for which there is not a lot of research available yet. Our paper

provides new insights into the possibilities of neural networks for these problems. We find that

a convolutional neural network combined with a more advanced simulation is able to provide

results similar to the benchmark, which shows that the data from container terminals contains

patterns that neural networks can learn from.

Our current results show that applying neural networks in practice is a possibility. A neural

network can be used in container yard planning, however this model has to be created and trained

on the actual data from a terminal, and it will be terminal specific. Besides, the performance

of the neural networks in this paper are not always as efficient as the benchmark yet, and thus

more research is needed before neural networks can be truly effectively implemented. It should

be noted that the benchmark algorithm, as currently implemented by Konecranes, has been

41

used for a lot of years and is thus based on a lot of knowledge and experience. Therefore, it is

not surprising that it has this level of performance.

As this paper provides a good starting point for further research into this subject we provide

some options to improve the performance of our neural networks, or at least provide a more

extensive analysis of the possibilities.

First, our current implementation of the simulation misses a lot of aspects that might make

it more realistic. Providing the simulation with a more realistic setup and implementation might

help the neural networks perform better as well. When the simulation is more realistic, there is

more data for the neural network to learn from. This data will also be more realistic, meaning

that it contains more of the patterns that can be observed in actual container terminals.

One way to make the simulation more realistic is by adding more uncertainty. All parts of a

container terminal have an uncertain aspect, most of which are not implemented in this paper.

Next, the simulation becomes closer to the situation in practice if more container types are

implemented. In this paper we only looked at import and export containers, however types such

as empty, reefers, and containers storing dangerous goods might provide their own patterns for

a neural network to learn from. A last example of an addition to the simulation, is the addition

of aspects which were left out or simplified in our version. Some examples of these aspects are

the loading and unloading of containers from vessels in batches, picking up containers in order

of weight, and having a limited amount of space in the transfer zones.

A second extension, which is proposed to improve the performance of the neural networks,

is to generate more data sets to help the neural networks in their training process. These data

sets can be provided by various algorithms, such that they include a more diverse set of data

points.

Lastly, it should be noted that our current implementation is based on a specific type of yard,

with a specific corresponding layout. It would be interesting to see how a change in layout, or

a change in equipment would influence the performance of the algorithms. For example, how

would the average delay be affected if we use rubber tired gantry cranes, or if we use a layout

that is parallel, instead of perpendicular, to the quay.

42

References

20-foot container - dimensions, measurements and weight. (2023). https://

www.icontainers.com/help/20-foot-container/#:~:text=Dimensions%20of%20the%

2020%2Dfoot%20container&text=The%20dimensions%20of%20a%2020,wide%20x%207%27%

2010%E2%80%9D%20high. (Accessed: 14-11-2023)

Anwar, M., Henesey, L., & Casalicchio, E. (2019). Digitalization in container terminal logist-

ics: A literature review. In 27th annual conference of international association of maritime

economists, athens (pp. 1–25).

Belsare, S., Badilla, E. D., & Dehghanimohammadabadi, M. (2022). Reinforcement learning

with discrete event simulation: The premise, reality, and promise. In 2022 winter simulation

conference (wsc) (pp. 2724–2735).

Boer, C., & Saanen, Y. (2012). Improving container terminal efficiency through emulation.

Journal of Simulation, 6 , 267–278.

Chen, T. (1999). Yard operations in the container terminal-a study in the ‘unproductive moves’.

Maritime Policy & Management , 26 (1), 27–38.

Chollet, F., et al. (2015). Keras. https://keras.io. (Accessed: 03-08-2023)

Dekker, R., Voogd, P., & Van Asperen, E. (2007). Advanced methods for container stacking.

Container Terminals and Cargo Systems: Design, Operations Management, and Logistics

Control Issues, 131–154.

Devanga, A., Badilla, E. D., & Dehghanimohammadabadi, M. (2022). Applied reinforcement

learning for decision making in industrial simulation environments. In 2022 winter simulation

conference (wsc) (pp. 2819–2829).

DeVore, R., Hanin, B., & Petrova, G. (2021). Neural network approximation. Acta Numerica,

30 , 327–444.

Duinkerken, M. B., Evers, J. J., & Ottjes, J. A. (2001). A simulation model for integrating quay

transport and stacking policies on automated container terminals. In Proceedings of the 15th

european simulation multiconference (pp. 909–916).

Fancello, G., Pani, C., Pisano, M., Serra, P., Zuddas, P., & Fadda, P. (2011). Prediction of

arrival times and human resources allocation for container terminal. Maritime Economics &

Logistics, 13 , 142–173.

Fechter, J., Beham, A., Wagner, S., & Affenzeller, M. (2019). Approximate q-learning for

stacking problems with continuous production and retrieval. Applied Artificial Intelligence,

33 (1), 68–86.

Firooz, K. H., Lee, M., & Tavakoli, M. (2022, 12). Arrangement and placement of containers in

a container terminal.

doi: 10.13140/RG.2.2.16346.62404

43

https://www.icontainers.com/help/20-foot-container/#:~:text=Dimensions%20of%20the%2020%2Dfoot%20container&text=The%20dimensions%20of%20a%2020,wide%20x%207%27%2010%E2%80%9D%20high
https://www.icontainers.com/help/20-foot-container/#:~:text=Dimensions%20of%20the%2020%2Dfoot%20container&text=The%20dimensions%20of%20a%2020,wide%20x%207%27%2010%E2%80%9D%20high
https://www.icontainers.com/help/20-foot-container/#:~:text=Dimensions%20of%20the%2020%2Dfoot%20container&text=The%20dimensions%20of%20a%2020,wide%20x%207%27%2010%E2%80%9D%20high
https://www.icontainers.com/help/20-foot-container/#:~:text=Dimensions%20of%20the%2020%2Dfoot%20container&text=The%20dimensions%20of%20a%2020,wide%20x%207%27%2010%E2%80%9D%20high
https://keras.io

Guiliang, Z., & Lina, M. (2009). The module design of intelligent allocating storage space in

container freight station. In 2009 first international workshop on database technology and

applications (pp. 333–336).

Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical

learning: data mining, inference, and prediction (Vol. 2). Springer.

Hirashima, Y., Furuya, O., Takeda, K., Deng, M., & Inoue, A. (2005). A new method for

marshaling plan using a reinforcement learning considering desired layout of containers in

port terminals. IFAC Proceedings Volumes, 38 (1), 318–323.

Hirashima, Y., Ishikawa, N., & Takeda, K. (2006). A new reinforcement learning for group-

based marshaling plan considering desired layout of containers in port terminals. In 2006 ieee

international conference on networking, sensing and control (pp. 670–675).

Jin, X., Duan, Z., Song, W., & Li, Q. (2023). Container stacking optimization based on deep

reinforcement learning. Engineering Applications of Artificial Intelligence, 123 , 106508.

Kim, B., Jeong, Y., & Shin, J. G. (2020). Spatial arrangement using deep reinforcement learn-

ing to minimise rearrangement in ship block stockyards. International journal of production

research, 58 (16), 5062–5076.

Kim, K. H., & Kim, H. B. (1999). Segregating space allocation models for container inventories in

port container terminals. International Journal of Production Economics, 59 (1-3), 415–423.

Kim, K. H., & Lee, J.-S. (2006). Satisfying constraints for locating export containers in port

container terminals. In Computational science and its applications-iccsa 2006: International

conference, glasgow, uk, may 8-11, 2006, proceedings, part iii 6 (pp. 564–573).

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv:1412.6980 .

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convo-

lutional neural networks. Communications of the ACM , 60 (6), 84–90.

Lee, Y., & Hsu, N.-Y. (2007). An optimization model for the container pre-marshalling problem.

Computers & operations research, 34 (11), 3295–3313.

Morales, E. F., & Escalante, H. J. (2022). A brief introduction to supervised, unsupervised,

and reinforcement learning. In Biosignal processing and classification using computational

learning and intelligence (pp. 111–129). Elsevier.

O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., et al. (2019). Keras-

tuner. https://github.com/keras-team/keras-tuner.

Rodrigue, J.-P. (2020). Evolution of containerships. Retrieved 02-05-2023, from

https://transportgeography.org/contents/chapter5/maritime-transportation/

evolution-containerships-classes/

44

https://github.com/keras-team/keras-tuner
https://transportgeography.org/contents/chapter5/maritime-transportation/evolution-containerships-classes/
https://transportgeography.org/contents/chapter5/maritime-transportation/evolution-containerships-classes/

Saanen, Y. A., & Valkengoed, M. V. (2005). Comparison of three automated stacking al-

ternatives by means of simulation. In Proceedings of the winter simulation conference, 2005.

(p. 1567-1576).

Salido, M. A., Rodriguez-Molins, M., & Barber, F. (2012). A decision support system for

managing combinatorial problems in container terminals. Knowledge-Based Systems, 29 , 63–

74.

Salido, M. A., Sapena, O., Rodriguez, M., & Barber, F. (2009). A planning tool for minimizing

reshuffles in container terminals. In 2009 21st ieee international conference on tools with

artificial intelligence (pp. 567–571).

Seger, C. (2018). An investigation of categorical variable encoding techniques in machine learn-

ing: binary versus one-hot and feature hashing. DiVA.

Sikorra, J., Bohlken, W., & Goes, M. (2021). Allocation of container slots based on machine

learning. Hhla. De, 11–15.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout:

a simple way to prevent neural networks from overfitting. The journal of machine learning

research, 15 (1), 1929–1958.

Steenken, D., Voß, S., & Stahlbock, R. (2004). Container terminal operation and operations

research-a classification and literature review. OR spectrum, 26 , 3–49.

Taddy, M. (2018). The technological elements of artificial intelligence. In The economics of

artificial intelligence: An agenda (pp. 61–87). University of Chicago Press.

Tierney, K., & Voß, S. (2016). Solving the robust container pre-marshalling problem. In

Computational logistics: 7th international conference, iccl 2016, lisbon, portugal, september

7-9, 2016, proceedings 7 (pp. 131–145).

van der Ham, R. (2018). salabim: discrete event simulation and animation in python. Journal of

Open Source Software, 3 (27), 767. Retrieved from https://doi.org/10.21105/joss.00767

doi: 10.21105/joss.00767

van Valkengoed, M. P., Bierhuizen, I. Y. A. S. P., Nederland, T. N. T., & Vis, S. B. D. I. (2004).

How passing cranes influence stack operations in a container terminal.

Wang, S., & Meng, B. (2007). Resource allocation and scheduling problem based on genetic

algorithm and ant colony optimization. In Advances in knowledge discovery and data mining:

11th pacific-asia conference, pakdd 2007, nanjing, china, may 22-25, 2007. proceedings 11

(pp. 879–886).

Weerasinghe, B. A., Perera, H. N., & Bai, X. (2023). Optimizing container terminal operations:

a systematic review of operations research applications. Maritime Economics & Logistics,

1–35.

45

https://doi.org/10.21105/joss.00767

Winston, W. L. (2004). Operations research: applications and algorithm. Thomson Learning,

Inc.

Wong, A., & Kozan, E. (2010). Optimization of container process at seaport terminals. Journal

of the Operational Research Society , 61 , 658–665.

Wong, A. K.-s. (2008). Optimisation of container process at multimodal container terminals

(Unpublished doctoral dissertation). Queensland University of Technology.

Xie, S., Zhang, T., & Rose, O. (2022). Real-time scheduling based on simulation and deep

reinforcement learning with featured action space. In 2022 winter simulation conference (wsc)

(pp. 1731–1739).

Zhang, C., Wang, Q., & Yuan, G. (2023). Novel models and algorithms for location assignment

for outbound containers in container terminals. European Journal of Operational Research,

308 (2), 722–737.

Zhen, L. (2014). Storage allocation in transshipment hubs under uncertainties. International

Journal of Production Research, 52 (1), 72–88.

46

A Simulation algorithms

Event 3 Initialisation
1: for every vessel line do

2: Create a vessel with containers.

3: Determine arrival time of vessel and plan vessel arrival, Event 4.

4: Determine a list of containers that need to be loaded onto the vessel.

5: for Every container that needs to be loaded on the vessel do

6: Determine arrival time and plan gate arrival, Event 9.

7: end for

8: end for

Event 4 Vessel Arrival
1: for every container on the vessel do

2: Determine arrival time on quay, and plan quay arrival, Event 5.

3: end for

Event 5 Quay Arrival

1: Determine best module for the container using algorithm.

2: Determine arrival time and plan arrival at WS transferzone, Event 6.

Event 6 WS Transferzone Arrival
1: if ASC for this module is available then

2: Determine best slot in module for container using algorithm.

3: Determine arrival time and plan container placed, Event 11.

4: Determine departure time for container.

5: Plan import departure, Event 8.

6: else

7: Put the container in the movement queue for this module.

8: end if

Event 7 Export Departure

1: if ASC for this module is available then

2: Determine arrival time at WS transferzone.

3: Plan container placed, Event 11.

4: else

5: Put container in the movement queue for this module.

6: end if

47

Event 8 Import Departure

1: if ASC for this module is available then

2: Determine arrival time at LS transferzone.

3: Plan container placed, Event 11.

4: else

5: Put container in the movement queue for this module.

6: end if

Event 9 Gate Arrival
1: Determine best module for the container using algorithm.

2: Determine arrival time and plan arrival at LS transferzone, Event 10.

Event 10 LS Transferzone Arrival
1: if ASC for this module is available then

2: Determine best slot in module for container using algorithm.

3: Determine arrival time and plan container placed, Event 11.

4: else

5: Put the container in the movement queue for this module.

6: end if

Event 11 Container Placed
1: if queue for this ASC is not empty then

2: if first container in queue needs to go in the yard then

3: Determine best slot in module for first container in queue using algorithm.

4: Determine arrival time and plan container placed, Event 11.

5: Remove this container from the queue.

6: if container is import then

7: Determine departure time for container.

8: Plan import departure, Event 8.

9: else if container is export then

10: Determine departure time for container.

11: Plan export departure, Event 7.

12: end if

13: else if first container in queue is export removal then

14: Determine arrival time at WS transferzone.

15: Plan container placed, Event 11.

16: else if first container in queue is import removal then

17: Determine arrival time at LS transferzone.

18: Plan container placed, Event 11.

19: end if

20: else

21: Make the ASC idle.

22: end if

48

B Hyper parameters of tuned neural network

Table 21: The hyperparameters found when tuning the neural network, for the data cases for which training data was available.

Data
Case λ

ϵ η N M0 h0(x) M1 h1(x) M2 h2(x) M3 h3(x) M4 h4(x) M5 h5(x) α

small 1 1 4 4 12 relu 140 relu 52 relu 232 sigmoid 0,01
small 1 4 20 5 56 sigmoid 48 sigmoid 12 relu 12 relu 216 sigmoid 0,01
small 1 4 52 6 76 sigmoid 140 sigmoid 84 tanh 32 sigmoid 4 relu 4 relu 0,001
small 24 1 4 6 52 relu 28 tanh 80 sigmoid 60 sigmoid 224 relu 208 sigmoid 0,01
small 24 4 20 5 232 relu 144 tanh 136 tanh 192 relu 144 tanh 0,01
small 24 4 52 4 36 relu 132 sigmoid 248 sigmoid 224 relu 0,01
small 168 1 4 6 104 tanh 64 tanh 144 relu 136 tanh 60 sigmoid 4 relu 0,0001
small 168 4 20 5 48 sigmoid 232 relu 248 sigmoid 184 tanh 4 relu 0,0001
small 168 4 52 6 168 relu 164 relu 36 tanh 196 tanh 4 relu 4 relu 0,01
medium 1 1 4 5 164 tanh 120 sigmoid 232 relu 80 relu 20 tanh 0,01
medium 1 4 20 6 24 sigmoid 168 relu 240 sigmoid 164 relu 4 relu 4 relu 0,001
medium 1 4 52 5 208 sigmoid 148 tanh 160 tanh 252 tanh 4 relu 0,01
medium 24 1 4 4 208 tanh 148 tanh 148 sigmoid 204 tanh 0,01
medium 24 4 20 4 152 relu 144 relu 44 relu 20 tanh 0,0001
medium 24 4 52 4 84 relu 52 relu 196 relu 116 tanh 0,0001
medium 168 1 4 5 208 relu 20 sigmoid 116 tanh 188 tanh 4 relu 0,0001
medium 168 4 20 4 100 sigmoid 168 tanh 8 sigmoid 188 relu 0,01
medium 168 4 52 4 88 tanh 240 relu 208 relu 40 tanh 0,0001
large 1 1 4 6 152 sigmoid 48 relu 52 relu 44 sigmoid 116 tanh 192 tanh 0,01
large 24 1 4 4 72 relu 56 tanh 64 relu 100 tanh 0,01
large 168 1 4 4 152 tanh 172 sigmoid 12 relu 16 tanh 0,01

49

C Hyper parameters of convolutional neural network

Table 22: The hyperparameters found when tuning the convolutional neural network, for the data cases for which training data was available.

Data
Case

λ ϵ η N M0 h0(x) M1 h1(x) M2 h2(x) M3 h3(x) M4 h4(x) M5 h5(x) α F hC(x)

small 1 1 4 4 108 tanh 48 tanh 92 sigmoid 168 tanh 0.01 30 sigmoid
small 1 4 20 4 40 relu 132 relu 244 relu 32 sigmoid 0.01 22 tanh
small 1 4 52 4 12 sigmoid 224 tanh 92 relu 236 tanh 0.01 20 tanh
small 24 1 4 5 72 tanh 128 relu 8 tanh 184 sigmoid 244 tanh 0.01 24 tanh
small 24 4 20 4 8 sigmoid 72 relu 244 relu 64 relu 0.001 16 tanh
small 24 4 52 6 164 tanh 44 tanh 40 sigmoid 124 tanh 4 relu 4 relu 0.0001 16 relu
small 168 1 4 5 160 relu 84 sigmoid 64 sigmoid 236 relu 96 sigmoid 0.01 6 sigmoid
small 168 4 20 5 144 sigmoid 24 sigmoid 88 relu 40 tanh 4 relu 0.01 26 tanh
small 168 4 52 4 188 relu 204 sigmoid 84 sigmoid 116 relu 0.01 20 relu
medium 1 1 4 5 236 tanh 132 relu 248 relu 204 tanh 88 tanh 0.01 12 tanh
medium 1 4 20 6 104 sigmoid 4 relu 64 relu 32 relu 164 tanh 12 tanh 0.01 6 sigmoid
medium 24 1 4 6 188 tanh 144 relu 36 sigmoid 188 tanh 4 relu 4 relu 0.0001 2 tanh
medium 24 4 20 4 48 tanh 196 relu 144 sigmoid 108 relu 0.01 8 tanh
medium 168 1 4 5 136 sigmoid 184 relu 192 relu 208 tanh 236 sigmoid 0.01 26 relu
medium 168 4 20 5 8 sigmoid 188 relu 76 relu 64 tanh 4 relu 0.001 4 relu

50

D Code description

The code required to create our results consists of 10 files, which are all written in Python.

mainPenaltyFunctionVersion1.py: Is used to run the simple version of the simulation

based on the penalty function. Thus, this file is used to generate the input data for the neural

networks, and for the comparison in the simulation study.

mainPenaltyFunctionVersion2.py: Is used to run the advanced version of the simula-

tion based on the penalty function. Thus, this file is used to generate the input data for the

convolutional neural networks, and for the comparison in the simulation study.

mainNNSimulation.py: Is used to run the simple version of the simulation based on the

neural networks. Thus, is used for the comparison in the simulation study.

mainNNSimulationVersion2.py: Is used to run the advanced version of the simulation

based on the convolutional neural networks. Thus, is used to generate extra training data for

the convolutional neural networks, and is used for the comparison in the simulation study.

neuralNetworkVersion1.py: Is used to train the neural networks with the data that is

generated with the simple version of the simulation based on the benchmark algorithm.

neuralNetworkVersion2.py: Is used to train the convolutional neural networks with the

data that is generated with the advanced version of the simulation based on the benchmark

algorithm.

extraTrainingCNN.py: Is used to train the convolutional neural networks on the extra

training data, given a starting model.

comparisonCNN.py: Is used to compare the convolutional neural network with the extra

trained convolutional neural network on a new set of test data.

dataExportInformation.py: Is a supportive file for all simulations that provides methods

on how to transform the data such that it can be added to the data files that are generated in

the simulations.

penaltyValues.py: Is a supportive file for the simulations based on the penalty function.

Provides the values of the various penalties, and supportive functions on how to calculate the

penalties.

51

	Introduction
	Problem description
	Literature review
	Container differentiation
	Objectives
	Yard planning strategies
	Algorithms
	Operations research algorithms
	Machine learning algorithms

	Simulation models for container yards

	Methodology
	Benchmark algorithm
	Machine learning algorithms
	Input data
	Neural network
	Convolutional neural network

	Simulation

	Results
	Algorithm and simulation set-up
	Benchmark algorithm
	Neural networks
	Simulation

	Simple simulation
	Advanced simulation

	Conclusion
	References
	Simulation algorithms
	Hyper parameters of tuned neural network
	Hyper parameters of convolutional neural network
	Code description

