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Abstract

Banks are mandated to gauge market risk using internal models for Value-at-
Risk and Expected Shortfall. Broadly speaking, the models fall into three categories:
unconditional, conditional and quantile. Using these categories and also including
forecast combinations, we address two questions. First, we investigate which cat-
egory of models provides ’adequate’ joint risk estimation at both a 1- and 5-day
holding period. Second, we test whether including time-varying components for the
link between VaR and ES enhances quantile models. A novel score-driven extension
is included to incorporate higher moments.

Using returns data from Morgan Stanley and HSBC in combination with rigorous
testing and the Model Confidence Set, we aim to find an empirical answer. Findings
highlight the underperformance of the unconditional models, even though it is used
by roughly 75% of the banks under ECB supervision. Moreover, the potential of the
forecast combination and quantile models is highlighted. The forecast combination
using all models appears to be a stable risk estimator, not over- or underestimating
the risk measures significantly. The time-varying component of the quantile models
does not appear to provide improved results. Altogether, this thesis stresses the
importance of more prudent model choices in risk evaluation.
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1 Introduction

To measure Value-at-Risk (VaR) and Expected Shortfall (ES) for regulatory purposes,
banks are allowed to create an internal model (BIS, 2019). In general, there are three
categories to choose from, namely the unconditional, conditional and quantile models1.
While VaR or ES models within a category have been compared previously, it may
be more worthwhile from a regulatory perspective to include a variety of models from
different categories in one paper to compare and contrast (Ardia et al., 2018). This can
help with finding which (category of) models to exclude from usage due to undesirable
characteristics such as consistent underestimation of risk. To our knowledge, a limited
amount of papers have compared a wide variety of models producing VaR or ES forecasts,
while even fewer have focused on comparing the models based on both risk measures
(Righi and Ceretta, 2015; Steen et al., 2015; Trućıos and Taylor, 2022). Additionally,
these papers focus on 1-day holding periods, while Basel rules require longer holding
periods for estimations as banks may not be able to directly liquidate their positions,
especially in distressed markets (BIS, 2019). Therefore, one of the questions this thesis
will examine is:

RQ1 Looking at performance, which (group of) models are ’most capable’2 of jointly
estimating the 95% VaR and ES both for the 1-day and 5-day horizon, based on
trading book data?

To assess the performance of the categories, it is valuable to include different kinds of
models to capture the diversity of behaviour possible within a category. For example, one
could use a different distribution within a model or incorporate time-varying elements.
Focusing on time-varying elements, unconditional and conditional models either impose
or simulate a distribution to estimate VaR and ES simultaneously. As a result, the
relation between their VaR and ES estimates can be time-varying. Quantile models,
on the other hand, let ES be dependent on the estimate of VaR. In a simple case, the
ES is equal to the VaR estimate multiplied by a non-time-varying parameter (Le, 2020;
Taylor, 2019). For such a case, the constant parameter implies ES will exactly be ’x’
times as large as VaR irrespective of the period. Assuming this non-variability can be a
significant assumption to pose. Therefore, we investigate the following question as well:

RQ2 Does applying time-varying elements to the relation between VaR and ES for
quantile models increase explanatory power and improve results?

In addition to the models from each of the three aforementioned categories, forecast
combinations are included in the performance comparison. One is added per category
and one for all models. Regarding data, this thesis will use returns data from Morgan
Stanley (MS) and HSBC Bank Plc (HSBC) to accurately reflect the patterns that occur
in a trading book. Given the estimates of each of the models for both time horizons and
datasets, several tests and a Model Confidence Set (MCS) using the joint elicitability

1See sections 3.1-3.3 for an explanation of the categories.
2Most capable referring to the joint elicitability approach.
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approach will be used to come to a robust conclusion on the performance of the categories
and individual models.

The results show the following patterns. First, the unconditional models appear to
lack adaptability to changing market conditions. As a result, they are mostly excluded
from the confidence set and perform generally poorly on the tests. This suggests that
these models might not adequately capture VaR and ES, which has potential implications
for the banking sector as a rough 75% of them employ unconditional models. The
conditional models are underrepresented in the confidence set for lower confidence levels.
This indicates that quantile and FC categories might be preferred to conditional models.
A reason for this may be that conditional models rely on estimating the current volatility.
If the volatility estimates are imprecise, this could lead to inaccurate forecasts. The
quantile and FC categories perform well for most datasets. FCall demonstrates strong
performance, which is likely due to its ability to use a variety of models to capture current
information. While the method appears to do well on this data, it uses a significant
number of models. This might limit its practicality, especially for banks with small
trading books. An alternative may be quantile models, which are frequently included in
the confidence set. In particular, the non-time-varying setup for both the CAViaR-ES
and MIDAS models is chosen more often as a top performer in the quantile category.
Related to that, this research found the effect of adding a time-varying component to
be limited, both performance-wise as well as when looking at the coefficients.

In conclusion, the study emphasizes the inadequacy of unconditional models and
highlights the potential of FC, and possibly quantile, models. It underscores the impor-
tance of selecting appropriate models for accurate risk measure estimation in financial
contexts. Further research is encouraged to refine these findings and explore their im-
plications for risk management and regulatory decisions.

2 Risk measures

2.1 VaR and ES

Value-at-Risk can be mathematically defined as

V aRα(X) = inf{x ∈ R : FX(x) > α}, (1)

where X defines a return distribution and α defines the respective quantile. At times, a
minus is put in front to make the ’loss’ a positive value. However, as we will see later,
VaR can be positive. Hence, we refrain from using this common notation.

One of the flaws of VaR is that it is not a ’coherent’ risk measure. A coherent
risk measure satisfies four properties, namely monotonicity, sub-additivity, positive ho-
mogeneity, and translation invariance (Artzner et al., 1999). VaR violates the sub-
additivity3 property if the distribution of returns is not elliptically distributed. Thus,
the measure is incoherent. As a result, portfolio diversification may be discouraged

3A risk measure is sub-additive when the risk of the total position is less than or equal to the sum of
the risk of individual portfolios, implying that diversification leads to risk reduction
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when only using the VaR measure. Next to that, VaR does not look at the tail risk
itself. Rather, it looks at the boundary of tail risk. This results in two additional weak-
nesses. First, if a tail risk event occurs, an investor remains in the dark as to what the
expected loss is. Second to that, two portfolios may have the same VaR, but different
’tail risks’. A fabricated example is shown in figure 1, where the average loss beyond
the VaR is different for the two distributions. Expected Shortfall was introduced to the
Basel legislature as a possible remedy by the Basel committee and can be defined as

ESα(X) = E[X|X < V aRα(X)] = α−1
∫ α

0
V aRs(X)ds. (2)

Next to being a coherent risk measure, ES may be able to take into account the dis-
tribution of the tail better than VaR as it measures the average loss beyond the VaR
boundary. The method is, however, not a perfect solution. One of the caveats of ES
is the larger estimation error compared to VaR (Yamai and Yoshiba, 2005). If the dis-
tribution of returns has fat tails, the probability of infrequent and large loss is high,
resulting in larger errors, implying the approach is less robust. Additionally, ES is not
elicitable4, while VaR is (Gneiting, 2011). This means that models for ES cannot be
directly compared, only approximately.

Figure 1: Two artificial distributions with a similar VaR, but different ES.

Overall, the previous arguments show that both risk measures have their strengths and
weaknesses. Therefore, it may be wiser to assess the models through both metrics. A
recent paper by Fissler and Ziegel (2016) showed that ES is jointly elicitable with VaR,
working around the non-elicitability of ES5. Hence, we include both VaR and ES as risk
measures.

4A risk measure that is elicitable means it can be acquired by minimizing the expectation of a
forecasting objective function. This is considered advantageous since the forecasting objective function
can be used to assess various methods

5More on this approach in section 4.1

3



3 Models

The following section introduces the models with which joint VaR-ES estimation will be
done. For this paper, we take daily returns xt from HSBC and MS, see section 5, to
estimate the 1- and 5-day risk measures. Additionally, when we use V aRt or ESt, we
imply the estimate of the risk measure at time t − h for the period t − h + 1, ..., t for
α = 0.05.

3.1 Unconditional models

The first category is unconditional in the sense that no filter is put on observations.
Based on historical observations of returns, a distribution is found. This can be done
either in a parametric manner by imposing a distribution, using extreme-value-theory
(EVT) or through a non-parametric take by using kernel density estimation. Based on
the estimated distribution, VaR and ES can be calculated. A frequently used name
for this method is historical simulation (HS). HS is used by a large share of financial
institutions as it has the advantage of being simple to implement (Pérignon and Smith,
2010).

The unconditional models will be split up into a parametric, non-parametric, and
EVT approach. We use the last N = 252 observations6 of the returns, as at least one
year of observations is required according to Basel standards and as it is recommended
by Humphreys (2006). Starting with the parametric approach, we use historical data
in combination with a pre-defined distribution to calculate risk measures. A stylized
fact of financial time series is the leptokurtic behaviour. Therefore, next to the normal
distribution, the student’s t-distribution will be used. Where the normal distribution
depends on µ and σ, the Student’s t-distribution depends on the degrees of freedom ν as
well. Thus, assuming the distribution F to be Φµ,σ or Tµ,σ,ν , we define the parametric
historical simulation estimator as

V aRt = F−1(α), (3)

ESt = α−1
∫ α

0
V aRtds. (4)

However, given that the interest in risk management is the tail, imposing a structure
based on all data may seem restrictive or unnecessary. EVT models may be the remedy,
focusing solely on the tails. Assuming i.i.d. observations, Pickands III (1975) has shown
that excesses Y = X − u ∼ GPD(ξ, β), where u is set as the threshold variable, β is a
scale parameter and ξ is the tail parameter. Initially, the choice of umay seem important.
Setting u too high can lead to a large variance due to limited observations, and setting it
too low can lead to a bias as observations may not follow the GPD (Christoffersen, 2011).
Additionally, the parameters fluctuate significantly depending on the chosen threshold

6The number of observations taken into account can be of great importance. Too few can lead to
high uncertainty in the estimates. Too many may imply using observations that are not as realistic due
to changes in financial markets. Therefore, we will also use N = 504 observations in the sensitivity
analysis.
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value. For example, Benito et al. (2023) find that the scale parameter increases by
2233% when moving the threshold from the 80th to 90th percentile for S&P500 data.
However, changes in parameters or increased bias due to threshold value changes may
not significantly change risk estimates. Benito et al. (2023) provide empirical support
for this hypothesis by finding that VaR and ES estimations are practically equivalent
using a wide variety of thresholds. Hence, we set the threshold u to the 85th percentile7.

Returning to the estimation, the GPD is defined as

GPDβ,ξ(x) =

{
1− exp(1 + ξx

β )
− 1

ξ , if ξ ̸= 0,

1− exp(−x
β ), if ξ = 0.

(5)

For ξ > 0 the distribution has heavy tails. For ξ = 0 the tail decreases exponentially, like
a normal distribution, and for ξ < 0 the distribution has a finite right endpoint. With
the distribution defined, we can turn to the estimation of the risk measures. Given the
threshold u, we can estimate VaR and ES through the following equations

V aRt = u+
β̂

ξ̂

(( N
Nu

(1− α)
)−ξ̂−1

)
, (6)

ESt =
V aRt

1− ξ̂
+

β̂ − ξ̂u

1− ξ̂
, (7)

where Nu is the number of excesses beyond the threshold8.
Last, it is possible to impose no structure on the returns through a non-parametric

approach. There are several advantages the non-parametric approach has over the para-
metric approach and the EVT approach (Chen, 2008). First, there is the avoidance of
misspecification. The focus of the risk metrics is on the tail of the distribution, which
has a limited number of observations. Hence, it is hard to specify a proper parametric
model. Moreover, it is well known that financial time series have shown tail dependence
(Schmidt and Stadtmüller, 2006). The non-parametric approach has the advantage of
being able to capture this, while an EVT approach assumes independence. Finally, a
strength is that the probability of a more negative return may increase, such as in fig-
ure 1, which a non-parametric approach can identify, while e.g. a normal distribution
cannot. The only requirement for the non-parametric method is the i.i.d. assumption.

Even though the non-parametric approach may have its theoretical advantages,
research has shown that this effect is not found empirically. Using kernel smoothing,
Chen (2008) shows that the non-parametric take introduced a bias, while not reducing
the variance compared to a parametric approach, leading to a higher mean squared
error (MSE). A possible reason for the unexpected result is that the unconditional ES
functions as a mean parameter, which can be estimated with great accuracy through
simple averaging. Nonetheless, the model is included due to its theoretical differences.

7Note that by setting this threshold, we have to transform the returns through xnew
t = −xt for the

EVT approach. As a result, the negative of the VaR and ES estimates will need to be used.
8 Nu

N
is the empirical estimate of F (u). By using the empirical estimator we are implicitly assuming

that there is a sufficient proportion of sample values above the threshold u for reliable estimation.
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Defining E′ as the empirical, smoothed, distribution, we get

V aRt = E′−1(α), (8)

ESt = (Nα)−1
N∑
i=1

xiI
{
xi ≤ V aRt

}
, (9)

where I(·) is the indicator function.
The focus of this research is on longer holding periods, with the minimum holding

period being 5 trading days so that investors are able to liquidate their positions due
to price changes. Unconditional models provide us with a distribution of 1-day returns,
assuming we have daily data. A simple approximation to gain h−day forecasts for this
is multiplying the VaR value by the square root of h days, e.g. the square root of 5 days.
However, this is only valid if the data is i.i.d., which is a large assumption to make.
Nevertheless, because regulatory bodies approve the measure, it is used in practice. In
the case of ES, there is an approximation rule for log returns (Hull and White, 2014).
However, given the data shown in section 5, this approximation cannot be constructed.
Hence, we use the same square root rule to make sure the relation between the risk
measures and the dataset is not altered significantly.

Having gone over all unconditional approaches, there are some broader issues that
have not been covered yet. A large issue is the assumption of i.i.d. observations. Many
stylized facts of financial time series, such as volatility clustering and asymmetric return
behaviour, cause the assumption to break down. Next to that, as noted by Pritsker
(2006), HS is highly sensitive to the estimation window, causing fluctuations in estima-
tions. For example, the method is under-responsive to movements in conditional risk,
which poses a serious problem. Finally, there is no way to extrapolate the 1-day forecast
to a 5-day forecast rigorously. Thus, for this research, the unconditional methods will
be used as the benchmark.

3.2 Conditional models

To combat the absence of a model and deal with volatility clustering, filtered historical
simulation (FHS) was introduced (Barone-Adesi et al., 1999). Conditional models add
an extra step by filtering the observations. Observations are filtered through volatility
estimates, usually combined with an autoregressive model to include the conditional
mean. The purpose of this additional step is to create an i.i.d. sample to draw from. To
illustrate the filtering process, let us introduce a simple AR(1)-GARCH(1,1) model first

xt = ν + µxt−1 + εt, (10)

εt = etσt, et ∼ N(0, 1) (11)

σ2
t = ω + αε2t−1 + βσ2

t−1. (12)

We require α to be greater than zero and β ≥ 0 to ensure positivity. Additionally, we
set ω = 0 to give more weight to recent data. For stationarity α+ β < 1 and |µ| < 1. ν
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is a constant, while σt and εt respectively denote the volatility and residual. Using the
volatility estimates {σ̂t} and residuals {ε̂t} under the specified model, the first step of
FHS is to standardize the residuals through

êt =
ε̂t
σ̂t

. (13)

Assuming the model specification is correct, the standardized residuals are i.i.d. and thus
suitable for HS, but in a different manner than seen in the previous section. Where in
section 3.1 HS meant direct calculation of VaR and ES through an estimated distribution,
FHS in this case takes a different route.

• From the standardized residuals {ê1, ..., ês} with length T , draw with replacement
a random vector {e∗s+1, ..., e

∗
s+h}, where h is the number of days to look ahead.

• Set up initial values σ∗
s = σ̂s and ε∗s = ε̂s.

• For t = s+1, s+2, ..., s+ h, plug the initial values into the following equations to
obtain estimates for σ2

t , εt and xt,

σ2∗
t = α̂ε2∗t−1 + β̂σ2∗

t−1, (14)

ε∗t = e∗tσ
∗
t , (15)

x∗t = ν̂ + µ̂x∗t−1 + ε∗t . (16)

• Repeat this operation Q times, giving the bootstrapped returns {x1∗t , ..., xQ∗
t } for

t = s+ 1, s+ 2, ..., s+ h.

• Using these daily returns, we can get a vector of h−day returns X∗ = (x1∗, ..., xQ∗)
through

xj∗ =

s+h∑
t=s+1

xj∗t , for j = 1, ..., Q. (17)

Using the bootstrapped predicted returns for the simulated distribution E′, we can
calculate the VaR and ES through equation 8 and 9 respectively. For accurate estimates,
we can use deterministic or stochastic modelling. Regarding the deterministic approach,
a simple GARCH is a good starting point, but more elaborate models may be deemed
more appropriate.

3.2.1 Deterministic models

An issue of the standard GARCH is that it may not be able to capture all stylized facts.
There are plenty of GARCH variations, such as exponential GARCH (EGARCH) and
Glosten-Jagannathan-Runkle GARCH (GJR-GARCH), each imposing a different struc-
ture to include more information. This, in combination with different error distributions,
may solve issues of leverage, asymmetry and fat-tails in financial time series (Almeida
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and Hotta, 2014; Komunjer, 2007). Zhu and Galbraith (2011), for example, compare
more general models, where stylized facts may occur, to stringent symmetric models.
Their findings indicate that the more general models outperform stricter models. Simi-
lar results are found by Komunjer (2007). To include fat-tails and asymmetry one may
append equation 11 to

εt = etσt, et ∼ t(0, 1, ν, ξ), (18)

creating a t-GARCH model with skewness included through ξ.
Chen et al. (2012) show that next to accounting for fat-tails, adding a leverage

effect into the equation may also be beneficial. The leverage effect occurs when negative
returns have a greater effect on future volatility than positive returns. There are various
GARCH alterations that take into account this effect. We opt to take the well-known
GJR-GARCH approach,

σ2
t = αε2t−1 + βσ2

t−1 + I{εt−1}ϕε2t−1 (19)

where I{εt−1} = 0 if εt−1 ≥ 0 and I{εt−1} = 1 if εt−1 < 0. If ϕ > 0 it is an indication that
the leverage effect occurs. For positivity α > 0 and β, ϕ ≥ 0. For covariance-stationarity
α+ β + ϕE[ε2t I{εt < 0}] < 1.

The previous method appends the regular GARCH structure but does not look into
time-varying parameters, even though this might be beneficial. One could expect based
on prior research that volatility behaves differently throughout time, for example in
crisis versus non-crisis periods (Bauwens et al., 2014; Lamoureux and Lastrapes, 1990).
One option to include time-varying parameters is through a regime-switching model
such as Markov-switching GARCH (MS-GARCH). A thorough study done by Ardia
et al. (2018) showed that MS-GARCH models acquire better results than single-regime
GARCH models for daily, weekly, and ten-day equity returns.

Allowing the process to be regime-switching, the MS-GARCH process can be de-
scribed as

εt|(st = k, It−1) ∼ Dk(0, σk,t, ξξξk), (20)

where It−1 denotes the information set up to t− 1 and εt are the residuals of the AR(1)
dynamics. Dk(0, σ

2
k,t, ξk) is a continuous distribution with zero mean, variance σ2

k,t and
additional shape parameters ξξξk. st is the integer value giving the current state on the
discrete space {1, ...,K}. It evolves through a first-order Markov chain with K × K
transition probability matrix P

P ≡


p1,1 · · · p1,K
...

. . .
...

pK,1 · · · pK,K

 . (21)

pi,j is defined as the probability of a transition from state st−1 = i to st = j, P (st =
j|st−1 = i). The variance of the return xt is thus conditional on the realization of the
state st, E[ε2t |st = k, It−1] = σ2

k,t.
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Taking K states, we can rewrite the GARCH models given in equation 12 to

σ2
k,t = αkε

2
t−1 + βkσ

2
k,t−1, (22)

(23)

for k = 1, ...,K. The same conditions as stated before hold, but now for each set of
parameters per state k. See Ardia et al. (2019) for the estimation procedure, either
through Bayesian Markov Chain Monte Carlo (MCMC) or Maximum Likelihood Esti-
mation (MLE), and further details.

3.2.2 Stochastic models

A different approach to estimating volatility for FHS is using discrete time stochastic
volatility (SV) models. Rather than imposing a structure, these models imply that
volatility is randomly distributed. Looking at the theoretical properties, SV is able
to capture stylized facts similar to the GARCH model and its variations (Pederzoli,
2006). A theoretical advantage is that SV contains a contemporaneous innovation in the
variance equation, thus being able to include random new information. A disadvantage
is the estimation procedure as the model is relatively more complex, also with respect
to ES (Grabchak and Christou, 2021). Empirically, Carnero et al. (2001) find that SV
models are better at capturing some aspects, such as excess kurtosis and high persistence
of volatility, while also being less dependent on the choice for the distribution of the
returns. With respect to risk measures specifically, both Grabchak and Christou (2021)
and Chen et al. (2012), however, conclude that SV shows inferior outcomes compared
to a GARCH approach. Note though, that most of the aforementioned papers use the
canonical model autoregressive SV (ARSV).

Another option is to include fractionals. Mandelbrot and Taleb (2010) discuss that
the use of fractals is essential to capture wild randomness9, as opposed to mild random-
ness which can be captured by bell curves alike. It is argued that man-made variables
such as returns exhibit the wild randomness property. Multifractality implies that the
behaviour of volatility is a function of the time interval it operates on (Cont, 2001).
GARCH models are not able to handle this, but multifractal models can. While not
directly applied to ES, multifractal models showed promising results on VaR compared
to GARCH models on financial data (Batten et al., 2014; Lee et al., 2016; Liu and Lux,
2008; Wei et al., 2013).

One such multifractal model is the Markov-Switching Multifractal (MSM). The
model assumes a multiplicative and hierarchical structure of volatility with varying du-
rations. It is able to create outliers, has a long memory, and can decompose volatility
into components with differing decay rates (Calvet and Fisher, 2004). MSM has the

9Wild randomness can be seen as an environment in which a single observation can significantly
influence calculations (Mandelbrot, 2013). See Mandelbrot and Taleb (2010) for examples.
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following structure to decompose the volatility

εt = σtzt, σt = σ

(
K∏
k=1

Mk,t

) 1
2

, (24)

where σ is a positive constant and {zt} are i.i.d. with a standard normal distribution.
Putting the K volatility components Mk,t in a vector Mt = (M1,t, ...,MK,t), the time-

varying volatility can be rewritten to σt = σ[h(Mt)]
1
2 with h(Mt) =

∏K
k=1Mk,t. Thus,

it is clear that the volatility σt is driven by changes in the vector Mt.
However, Mk,t is not defined yet. Calvet and Fisher (2004) suggest the process

to be defined as a first-order Markov process. Assuming the vector Mt is known, each
component Mk,t+1 can be drawn in the following manner

Mk,t+1 =

{
Mk,t, with probability 1− γk,

D, with probability γk,
(25)

where each of the components Mk,t adheres to the following conditions: Mk,t ≥ 0 and
E(Mk,t) = 1. To satisfy these conditions, we impose a Bernoulli distribution on D. That
is,

D =

{
m0, with probability 1

2 ,

2−m0, with probability 1
2 ,

(26)

where m0 is an unrestricted parameter to be estimated. Additionally, the transition
probabilities γ ≡ (γ1, ..., γK) are related through the following equation

γk = 1− (1− γ1)
bk−1

, (27)

where γk ∈ (0, 1) and b > 1. The use of this equation is twofold. First, it makes sure
the model is parsimonious as adding components does not result in more variables to
be estimated. Additionally, the probability is increasing in k implying that components
with a higher k switch relatively faster to a new value. Therefore, the higher k is, the
lower the memory of the component Mk,t is.

Altogether, the parameters to be estimated are θ = (m0, σ, b, γ1), highlighting the
parsimony of the model. As it is a Markov-switching variant, the parameters can be
estimated through MLE with Hamilton filtering (Calvet and Fisher, 2004). For this
research, we set the number of components K = 5. For FHS, the process is identical to
the GARCH models apart from equation 14, which should be replaced by equation 24.

3.2.3 EVT

The EVT model seen in the unconditional section assumes that extreme values are
realized from i.i.d. samples. However, we have seen that the observations need to
be made i.i.d. first through filtering. Adding this step has shown to be beneficial
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(Allen et al., 2013; Chinhamu et al., 2015; Paul and Sharma, 2017). We follow the
proposed algorithm of Danielsson and De Vries (2000) and McNeil and Frey (2000) to
gain conditional EVT estimates:

• Take the standardized residuals found in equation 13 that exceed the threshold u
and estimate a GPD distribution.

• Draw with replacement a random vector {e∗s+1, ..., e
∗
s+h}, where h is the number of

days to look ahead.

• If one of the draws e∗i exceeds the threshold u, replace it with a new observation
e∗i,new. Drawing an observation x from the estimated ˆGPD(ξ̂, β̂), e∗i,new = u− x.

• Perform the same steps seen in equations 14-17 to obtain returns with which one
may estimate VaR and ES.

While the EVT approach can use any of the aforementioned GARCH models, we opt to
only use the EVT approach combined with the t-GARCH model to keep the number of
models used in this paper reasonable.

3.3 Quantile models

3.3.1 CAViaR-ES

Opposite of the (un)conditional models, quantile models do not impose a distribution
on the returns or the residuals. Rather, the dynamics of VaR are modelled directly. One
example is the conditional autoregressive VaR (CAViaR) models (Engle and Manganelli,
2004). Christou and Grabchak (2022) and Taylor (2008) show it to be a competitor to
benchmark models. With the benefit of not having to assume a distribution comes the
cost of being unable to estimate the expected shortfall. To solve this Taylor (2019)
proposes a semi-parametric approach to jointly estimate VaR and ES based on the
Asymmetric Laplace distribution (ALD). Similar to CAViaR models, Meng and Taylor
(2020) show that joint estimation of VaR and ES through CAViaR-ES provides compet-
itive results. Rewriting the AL density to include the VaR and ES, we get the following
density

f(xt) =
1− α

µt − ESt
exp

(
−
(xt − V aRt)(α− I

{
xt ≤ V aRt

}
)

α(µt − ESt)

)
, (28)

where V aRt is the quantile at probability level α and ESt is the conditional ES. µt is
the conditional expectation of the returns, based on an AR(1) model µt = φ0 + φ1xt−1.
Even though Taylor (2019) avoids the use of the conditional mean as for daily returns
it is approximately zero, for longer horizons this approximation may not hold. Also
important to note is that no assumptions on a distribution for the returns are needed.
Whilst f(xt) stems from the ALD, α is selected a priori and therefore only a quantile is
estimated. ALD is merely used for its computational convenience to base the approach
on.
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The density can be used for MLE, but the dynamics of V aRt and ESt still need to
be formalized. Starting with VaR, we can use the CAViaR model with symmetric effects
introduced by Engle and Manganelli (2004)

V aRt = β0 + β1|xt−1|+ β2V aRt−1. (29)

Having identified a relation for VaR, we turn to ES. An important restriction to take
into account when modelling ESt is that ESt ≤ V aRt. Thus, a simple way to model ES
is through

ESt =
(
1 + exp(γ0)

)
V aRt. (30)

The exponent makes sure that ES will be larger, in absolute terms, than VaR. γ0 controls
the joint dynamics of VaR and ES.

Similar to unconditional models, the CAViaR-ES approach gives us 1-day ahead
forecasts but is unable to directly provide forecasts for longer horizons. Hence, the same
transformation as for the unconditional models will be applied, even if the approach is
questionable from a theoretical point of view.

For optimization, we start with 1000 randomly selected parameter sets, only re-
stricted to adhere to the mentioned constraints. With these parameters, the likeli-
hood can be estimated per set. Using the top three performers as starting values, the
function is optimized by iterating through the Nelder-Mead and Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) until a convergence criterion is met.
For simplicity, we set it such that the sum of absolute differences between the old and
updated parameters needs to be larger than 0.01. Using the three optimized likelihoods,
the parameter set with the best score is chosen.

3.3.2 MIDAS

Not all quantile methods struggle with direct multi-period forecasting. Le (2020) solves
this by employing mixed data sampling (MIDAS). Using returns from the past D days,
the following form is used

V aRt = β0 + β1

D∑
d=1

ϕd(κ)|xt−d,1|, (31)

where ϕd(·) is a polynomial that filters the returns linearly and κ defines the shape the
filter has. β0 is the constant for VaR, while β1 contains the impact of the variations
of past returns. θ = (β0, β1, κ) is the set of parameters that need to be estimated.
Compared to the CAViaR-ES model, the MIDAS approach only depends on previous
returns to estimate VaR, rather than also using the previous VaR estimate. Following
Le (2020) and Ghysels et al. (2016), ϕd(κ) follows a Beta distribution defined as

ϕd(ι, κ) =
f( d

D , ι, κ)∑D
d=1 f(

d
D , ι, κ)

, (32)

12



where f(·) is a Beta distribution. Based on Ghysels et al. (2006) the lag length D is
chosen to be 50 days, ι = 1 and κ > 1. The ES can be modelled in the same way
as in equation 30. Using the dynamics for VaR and ES, MLE can be applied using
equation 28. For the optimization, h−day return time series are formed for f(xt,h)

through xt,h =
∑h

i=1 xt+i. Thus, the MIDAS approach does not require the square root
rule. The optimization procedure of CAViaR-ES will be used for MIDAS as well.

3.3.3 Time-varying extension

As argued before, it can be restrictive to assume that VaR and ES have a non-changing
relationship throughout time, implying that ES is always ’x’ times as large as VaR. As
the measures are jointly estimated, this may not only lead to biased results of ES but
also of VaR. Thus, we include two time-varying options.

First, taking into account that ES and VaR do not need to have similar dynamics,
the following relationship is put forward

ESt = V aRt − jt, (33)

jt =

{
γ0 + γ1(V aRt−1 − xt−1) + γ2jt−1, if xt−1 ≤ V aRt−1

jt−1, else
, (34)

where {γi} are restricted to be non-negative to make sure that ES will be greater than
VaR in absolute terms (Taylor, 2019). In this case, jt is the parameter that relates ES
to VaR, rather than γ0 seen in equation 30. When an observation exceeds the VaR, jt
changes depending on the size of the observation. A larger deviation from VaR results
in a larger jt and therefore a larger ES.

While the prior option provides an extension that results in increased flexibility, we
extend the proposed time-varying relationship by including a score-driven term. First
proposed by Creal et al. (2013), score-driven models link the dynamics directly to the
shape of the conditional observation density. This may be worthwhile to add when the
form of the updating equation is not obvious (Artemova et al., 2022). In this case, we
may suspect that an exceedance has an influence on the size of the difference between
VaR and ES. Yet, it is not obvious how the influence takes shape. For example, squared
terms or other forms of non-linearity could be required to correctly portray the process.
Thus, we propose the following structure

ESt = V aRt − jt, (35)

jt =

{
γ0 + γ1(V aRt−1 − xt−1) + γ2jt−1 + γ3St−1∇t−1, if xt−1 ≤ V aRt−1

jt−1. else
,

(36)

where ∇t =
∂log

(
f(xt|jt; θ)

)
∂jt

and St = It−1 = −E
[
∂2log

(
f(xt|jt; θ)

)
∂j2t

]−1

(37)

∇t provides the score function linking the distribution to jt, while St scales the score. θ
includes the other parameters. Plugging ESt = V aRt − jt into equation 28 and setting
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ϱt = jt + µt − V aRt, we find

∇t = α
(
α− I

{
xt ≤ V aRt

})xt − V aRt

(αϱt)2
− 1

ϱt
(38)

St = −E

[
1

ϱ2t
− 2

(
α3(α− I

{
xt ≤ V aRt

}
)ϱt

I
{
xt ≤ V aRt

}
(αϱt)4

)]−1

(39)

Given the complexity of the derivatives, we opt to use the empirical information function,
avoiding taking the expectation required for St.

3.4 Forecast combinations

While the individual models mentioned before can be useful, Taylor (2020) finds that
combining forecasts is an improvement over individual forecasts. To create forecast
combinations, individual forecasts are combined with weights as accuracy per forecast
may differ. To estimate the weights for the FC, a score function is required. Fissler and
Ziegel (2016) proved that the following score functions are consistent

L1 : S (V aRt, ESt, xt) =
(
I
{
xt ≤ V aRt

)
− α

}
G1 (V aRt)

− I
{
xt ≤ V aRt

}
G1 (xt)

+G2 (ESt)
(
ESt − V aRt + I

{
xt ≤ V aRt

}
× (V aRt − xt) /α)− ζ2 (ESt) + a (xt) ,

(40)

where G1, G2, ζ2 and a are functions that need to have the following properties. G2 = ζ ′2,
G1 is increasing and ζ2 is increasing and convex.

A wide variety of scoring functions can be based upon equation 40. Taylor (2019)
tested these specifically for forecasting combinations, but no particular preference was
found. Therefore, we opt to use G1(x) = 0, G2(x) = − 1

x , ζ2 = −log(−x) and a =
1−log(1−α). Plugging the functions into equation 40 gives us the negative log-likelihood
function of the ALD with time-varying location and scale. Thus, it is quite similar to
the optimization function of the quantile models seen in section 3.3, which requires a
constant scale instead of time-varying.

To create forecast combinations for VaR, a regular weighing option is used. To
combine ES estimations, the difference between ES and VaR forecasts is combined. This
is done because VaR and ES accuracy are closely related. Additionally, it makes sure
that the ES forecast is larger in absolute terms (Taylor, 2019). The method, named
minimum score combining, can be expressed as follows

Q̂ct =

M∑
i=1

wQ
i Q̂it, (41)

ÊSct = Q̂ct +
M∑
i=1

wS
i

(
ÊSit − Q̂it

)
. (42)
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M is the number of models included. Q̂ct and ÊSct are the combined forecasts for VaR
and ES at time t, while Q̂it and ÊSit are the individual forecasts. wQ

i and wS
i are the

combining weights for VaR and ES. Both are required to be non-negative and sum to 1.
The weights can be estimated by minimizing the score function.

Next to the FC per category, we create one FC that includes all models. At the
cost of being less interpretable directly, it may improve performance. Additionally, the
weights may give a hint to which models are preferred, albeit less rigorously, as a high
weight implies that a method is more relevant to minimizing the scoring function than
other approaches.

3.5 Model overview

Including the FCs concludes the introduction of the models. For clarity, an overview of
all models is given below. Each model is denoted as Mi, where M is the model and i is
short for the method that is used to translate 1-day returns to h−day returns. In table
1 a summary of all the models is shown.

Table 1: All models

Category

Unconditional Conditional Quantile FC

Normal√h GARCHFHS CAViaR-ES√h,1 FCu

Student’s t√h t-GARCHFHS CAViaR-ES√h,2 FCc

EVT√
h GJR-GARCHFHS CAViaR-ES√h,3 FCq

Non-parametric√h EVT-GARCHFHS∗ MIDASM,1 FCall

MS-GARCHFHS MIDASM,2

MSMFHS∗ MIDASM,3

Note: The underscore notes which approach is used to gain h−day forecasts, where h >
1. It can be the square root rule M√

h, FHS MFHS or the MIDAS approach MM . Be-
cause FHS is done slightly differently when using EVT or the MSM approach, it is denoted
by MFHS∗ . The FCs require no translation, as they are optimized using the h−day forecasts.

Regarding the performance of the categories, Righi and Ceretta (2015) find that there is
a predominance of conditional models, especially those that respect the stylized facts of
financial returns. Additionally, they find that the VaR estimation is important for the ES
estimation, as the models that obtain an incorrect violation rate also present low p-values
for the ES. For cryptocurrency, Trućıos and Taylor (2022) observe that there are no clear
superior models and that forecast combinations do not outperform individual models.
However, it should be taken into account that cryptocurrency returns may not show
similar behaviour to bank portfolio returns. Finally, for the commodity market, Steen
et al. (2015) show that quantile regression outperforms historical simulation for VaR
estimation. Altogether, we may expect conditional and quantile models to be a ’better’
approach than an unconditional approach for a 1-day holding period. No research has
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yet been done on how a longer time horizon will influence the performances per category.
Therefore, we cannot define a hypothesis beforehand based on previous research.

4 Model evaluation & selection

4.1 Traditional backtesting

Given the variety of models, it is important to backtest to see which ones are appropriate
and provide accurate results. To do so, there are two main backtesting options to include.
First, the appropriateness of an individual model can be checked through model testing.
Second, the models can be ranked through a loss function.

4.1.1 Model testing - VaR

Regarding VaR, one should expect an appropriate model to provide VaR estimates that
are exceeded by the returns as often as defined by α. The exceedances should not occur
too often or too few, as it implies underestimation or overestimation of risk respectively.
Additionally, the occurrences should be independent over time. If occurrences show a
pattern, for example, there are more exceedances around a period of higher volatility in
the market, the model may not have been able to capture (changing) characteristics of
the returns adequately.

The first test was originally introduced by Kupiec, Paul H and others (1995) and
is named the unconditional coverage test. The focus is on testing if the number of
exceedances is in line with the confidence level α. The test can be defined as follows

hαt =
T∑
t=1

(xt > V aRt), (43)

α̂ =
1

T
ht, (44)

Tunc : LRunc = 2log

((
1− α̂

1− α

)T−ht
(
α̂

α

)ht
)

∼ χ2
1, (45)

where χ2
1 denotes the chi-squared distribution with one degree of freedom. When the

number of exceedances α̂ is equal to the expectation α, the test statistic has a value of
0. Increasing (or decreasing) the number of exceedances results in underestimation (or
overestimation) of the risk in a portfolio. Taking the null hypothesis as

H0 : E(ht) = α̂, (46)

a rejection of the null implies that the model likely over- or underestimates the VaR
given the data.

To test the independence of the exceedances, Christoffersen (1998) created a test
based on the likelihood ratio. The intuition behind the proposed test is that if two
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consecutive returns exhibit no correlation, then the probability of, for example, no ex-
ceedance the next day should be equal no matter if the previous observation was an
exceedance or not. The test is based on Markov-chains. Thus, we introduce a 2x2
transition matrix based on equation 21

Π1 =

[
π0,0 π0,1

π1,0 π1,1

]
, (47)

where πi,j is the probability of moving from state i to j. Additionally, ni,j is defined
as the number of observations that have value i and previous value j, where i, j = 1
implies an exceedance and i, j = 0 no exceedance. Finally, we specify a hit sequence
{It}, which indicates whether an exceedance occurred. The likelihood of the hit sequence
then equals

L(π1) := L(π1; {It}) = π
n0,0

0,0 π
n0,1

0,1 π
n1,0

1,0 π
n1,1

1,1 . (48)

This is the likelihood assuming the alternative is true. Under the null, the matrix
transforms to

Π2 =

[
1− π2 π2

1− π2 π2

]
. (49)

Thus, under the null, it is clear that the probability of a new observation landing in
state 0 or 1 should not depend on the state of the previous observation. π2 refers to the
probability that an exceedance takes place. Therefore, π2 =

n0,1+n1,1

n0,0+n0,1+n1,0+n1,1
and the

likelihood under the null equals

L(π2) := L(π2; {It}) = (1− π2)
(n0,0+n1,0)π

(n0,1+n1,1)
2 . (50)

With both likelihoods specified, the LR test statistic for the independence of the obser-
vations is

Tcon : LRind = −2log

(
L(Π1)

L(Π2)

)
∼ χ2

1. (51)

Assuming both the unconditional coverage test and the independence test find that the
method is valid, the VaR estimations have a correct conditional coverage with a process
defined as a martingale difference

E[It|It−1] = α, (52)

where It−1 denotes the information set. While the aforementioned tests separately
provide a test for unconditional coverage and independence, the dynamic quantile (DQ)
approach is able to jointly test both properties. Additionally, it is able to include more
lags, which Tcon cannot.

Denoting the demeaned process of exceedances as HITt = It − α, the conditional
expectation given the information set at t− 1 should be equal to zero. Next to that, it

17



must be uncorrelated with previous returns and other lagged variables such as previous
VaR estimations. To test this, the following linear regression can be implemented

HITt = δ +
K∑
k=1

βkHITt−k +
K∑
k=1

γkg[HITt−k, HITt−k−1,...,zt−k,zt−k−1,...] + εt, (53)

where ε is i.i.d. and g(·) is a function containing prior exceedances and other variables,
such as squared returns. δ is a constant, βk quantifies the relation to previous HIT and
γk includes possible non-linear effects. We exclude squared returns or other forms and
include 4 lags. To test for both properties, the null hypothesis is

H0 : δ = β1 = ... = βK = γ1 = ... = γK = 0, ∀k = 1, ...,K (54)

All coefficients should be zero for unconditional coverage. For independence only, how-
ever, δ is allowed to be non-zero. Denoting Ψ = (δ, β1, ..., βK , γ1, ..., γK)′ as the vector
of parameters, with Z containing the observations of equation 53, the test statistic is

Tdq : DQ =
Ψ̂′Z ′ZΨ̂

α(1− α)
∼ χ2

2K+1. (55)

4.1.2 Model testing - ES

There are several methods to compare models regarding ES, introduced by, for example,
Acerbi and Szekely (2014) and Righi and Ceretta (2015). A flaw of these approaches,
however, is that they require a return distribution to work with. This is not an issue
for the (un)conditional models which use (part of) the distribution to compute VaR and
ES. For the quantile methods, on the other hand, it poses a problem. This category
specifically avoids introducing assumptions on the returns. Thus, we can only use tests
in this thesis that avoid distributional assumptions.

A test to assess the quality of the ES estimates, while also avoiding distributional
assumptions, has been introduced by McNeil and Frey (2000). Defining (x,ES)− =
{(xt, ESt) | xt < V aRt} as the series of exceedances and corresponding ES with length
N , we can find the exceedance residuals ei as

êi = x−i − ÊS
−
i , ∀i = 1, ..., N (56)

The exceedance residuals can be tested against the null hypothesis of a zero mean and
i.i.d. behaviour, where we focus on the one-sided test to only look at the risk of un-
derestimation as this is the likely direction of failure (McNeil and Frey, 2000). Using
µ̂ = 1

N

∑N
i=1 êi and σ(µ̂) as the standard error, we get the following test statistic

Ter =
µ̂

σ(µ̂)
. (57)

To test the one-sided null hypothesis, the test statistic can be evaluated using a bootstrap
test (Efron and Tibshirani, 1994).

18



Similar to the VaR tests, we would like to test the performance of ES not only
through one test. Another backtest with a different approach, but also without distri-
butional assumptions, is the regression-based test from Bayer and Dimitriadis (2022).
Given estimates of ES, {ÊSt}, the returns can be regressed on the estimates and an
intercept

xt = γ1 + γ2ÊSt + uet , (58)

where ES(uet |It−1) = 0 almost surely. As the forecasts are generated by the same
information set, this can be rewritten to

ES(xt|It−1) = γ1 + γ2ÊSt. (59)

The hypothesis of correct specification of ES forecasts can be tested through

H0 : (γ1, γ2) = (0, 1) versus HA : (γ1, γ2) ̸= (0, 1). (60)

The parameters (γ1, γ2) cannot be directly estimated, as there is no strictly consistent
loss function for ES. Bayer and Dimitriadis (2022) therefore employ a joint regression
technique, using the joint loss function from Fissler and Ziegel (2016),

xt = V ′
t β + uqt , and xt = W ′

tγ + uet , (61)

where Vt and Wt are k−dimensional vectors. uqt and uet denote the residuals of the
regression using VaR and ES respectively. Also, V aR(uqt |It−1) = 0 and ES(uet |It−1) = 0
almost surely. Using the joint regression, we can perform two backtests, the Auxiliary
and Strict ESR Backtest. For the auxiliary backtest, Vt = (1, ˆV aRt) and Wt = (1, ÊSt).
For the strict backtest, Vt = Wt = (1, ÊSt). In both cases the hypothesis specification
seen in equation 60 is applied, giving the Wald-test statistic

Treg1,2 = T (γ̂ − (0, 1))Ω̂γ(γ̂ − (0, 1))′, (62)

based on a covariance estimator Ω̂γ for the covariance of γ. γ̂ contains the estimates
(γ̂1, γ̂2).

Note that the operations above pose no assumption on the distribution of returns.
Thus, while the mathematics is written for the 1-day return case, the method will also
be applicable for longer horizons. Even so, it is important to take into account that
5-day returns on day t will be closely related to 5-day returns on day t+1. Thus, for the
5-day holding period dataset, we create 5 separate datasets with a 5-day spacing between
the observations. Because of the small dataset10, we decided to do the tests with each
separate dataset, after which the median of those results was taken for robustness.

4.2 Model selection

Having tested for the appropriateness of the models, no decision can yet be made about
the ’best’ category or model. Thanks to the work of Fissler and Ziegel (2016) we have

10See section 5.
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a loss function with which models can be compared and ranked. One such loss function
was mentioned earlier in equation 40. To add robustness to the model selection phase,
an extra loss function is defined as

L2 : S (V aRt, ESt, xt) =α

(
ES2

t

2
+ 2V aR2

t − V aRtESt

)
+ I
{
xt ≤ V aRt

}
×
(
− ESt(yt − V aRt) + 2(y2t − V aR2

t )

)
.

(63)

Using L2, the different frameworks will be contrasted on an individual and category level.
This cannot be done rigorously by visually checking the differences in loss functions.
Therefore, we will use the Model Confidence Set (MCS), proposed by Hansen et al.
(2011), to find a superior set of models.

Starting with an initial set of models M0, the goal is a superior set M∗
1−α∗ at a

specified confidence level. Using an equivalence test δM and an elimination rule eM at a
low and high α∗, the number of initial models will be larger than the final superior set,
M0 > M∗

1−α∗ . Starting with the equivalence test, the following hypothesis is applied

H0,M : E(∆Si,j,t) = 0, ∀i, j ∈ M
HA,M : E(∆Si,j,t) ̸= 0, for some i, j ∈ M,

where ∆Si,j,t denotes the loss difference of model i and j at time t, while M ⊂ M0 holds
the remaining models. The test statistic is

TM = max
i∈M

|ti,j |, where (64)

ti,j =
∆Si,j√

V̂ ar
(
∆Si,j

) ; ∆Si,j =
1

T

T∑
t=1

∆Si,j,t. (65)

V̂ ar
(
∆Si,j

)
is estimated using a block-bootstrap with a block size of l = 4 and 5,000

trials. If the null is not rejected, the final set is M∗
1−α∗. If it is rejected, a model will be

removed from the set based on the elimination rule

eM = arg max
i∈M

sup
j∈M

ti,j , (66)

where the model in M is eliminated if it has the highest value ti,j . This procedure is
repeated until the equivalence test is not rejected, resulting in one superior set of models
M∗

1−α∗ .

5 Data

Indices such as the S&P500 are frequently used for empirical financial papers. An
advantage of using an index is that the data is readily accessible and of good quality.
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There may, however, be a flaw to this approach. For example, the S&P500 aims to
represent the (American) equity market, while a bank’s portfolio includes debt securities,
currencies and derivatives. Each of these assets may influence the day-to-day returns.
Table 2 shows the risk-weighted assets (RWA) in 2022 under the standardized approach
for three major European banks11 and the largest Dutch bank, ING (BIS, 2022). While
not extensive proof, it indicates that equity risk, as opposed to interest rate risk and
foreign exchange risk, appears to play a smaller role in the trading book. Additionally,
banks may incorporate hedges which can also result in a different behaviour. Therefore,
taking an equity index may not accurately reflect the movements of a bank’s portfolio.

Table 2: Risk-weighted assets per firm.

Bank
RWA

Interest rate risk Equity risk Foreign exchange risk

BNP Paribas 831 3,737

Crédit Agricole 70 497

HSBC 1,684 64 10,391

ING 10 5,332

Total 2,595 64 19,957

Under Pillar 3 MR4, banks are required to publish a comparison of VaR estimates with
gains/losses if they use internal models to assess market risk (BIS, 2015). Using this
data avoids having to mimic the portfolio of banks, which would take time and could
lead to inacurrate representation, while giving accurate daily trading book profit and
losses (PnL) figures.

For this research, we use the reports of Morgan Stanley and HSBC Bank Plc, giving
returns from 2017-2022. There are three prime reasons for choosing these banks over
others. First, the amount of the data and its quality differs per institution. Banks
are only required to show a figure comparing their VaR estimates to their daily PnL.
Hence, we need to extract the data from the figures12. Thus, some banks, such as ING,
were dropped as the figures were of insufficient quality. Next to accurate data, some
banks, such as ABN AMRO, have only recently started reporting this data, resulting in
insufficient data points. HSBC and MS offered data of high quality and significant size.
Second, the banks differ in their operations. MS is by and large known as an investment
bank, not taking deposits and dealing as an intermediary between corporations and
the financial markets. HSBC is, similar to the largest Dutch bank ING, a universal
bank, offering both retail and investment services. Finally, whereas HSBC is under ECB
supervision, the FED supervises MS. Thus, both banks have different regulations to
adhere to. These differences may have an effect on their trading book and thus on their

11Banks in the euro area are required to publicly disclose their RWA per risk category. Other, for
example, American banks do not have to.

12We opted to use WebPlotDigitizer to extract the data.
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PnL. Exposing the models to different returns helps to show the behaviour of the models
under different circumstances.

Given the datasets, two choices need to be made: How long will the holding period
be and what is the pre-defined probability of an exceedance? Basel Standards indicate a
10-day holding period to estimate VaR for the Fundamental Review of the Trading Book
(FRTB) (EBA, 2023). Additionally, ES will be added soon for the 97.5% quantile (BIS,
2019). Thus, it seems logical to take 10 holding days with a probability of α = 0.025.
However, there is a large issue if we would proceed with this setting.

Knowing that we have a total of 6 years of data, of which one will be used to train
the model initially, we are left with 5 years to backtest with. Since there are roughly
252 trading days per year, this results in around 1560 observations. Thus, using a set-
up with a 10-day holding period at a probability of 0.025, we could expect roughly 4
exceedances. To accurately assess the models, this number is low. Especially for ES,
as it is the average beyond VaR, more data is necessary. Therefore, we set the holding
days to h = 5 with α = 0.05. This results in 15-16 expected exceedances, which should
be enough to roughly assess the performance, while still focusing on a longer than 1-day
horizon and the tail. Given the limited exceedances, however, we should not look for one
superior model for the 5-day horizon as a single model may coincidentally outperform
the ’actual’ superior model due to the limited size of the data. Rather, we should look
at the group of superior models.

(a) 1-day returns HSBC (b) 1-day returns MS (c) 1-day returns S&P500

(d) 5-day returns HSBC (e) 5-day returns MS (f) 5-day returns S&P500

Figure 2: 1-day and 5-day returns figures of HSBC, MS and the S&P500 for the period 2017-2022.

Considering the returns in figure 2 and the time period, it is clear that each of the
returns series was affected by the initial downturn of the markets that occurred around

22



the ’start’ of the pandemic. In all cases, it is the largest downturn. Other than that,
each series shows individual large negative returns that do not appear to be due to a
widespread macroeconomic event. Additionally, the S&P500 appears to be increasingly
volatile from 2022 onwards, more so than HSBC and MS. This may, in part, be because
the price of the S&P500 has increased by 33% in that period. A larger size can result in
larger absolute variations, while percentage-wise the variations remain stable. However,
a transformation to log returns showed that around this period the volatility remains
higher still.

Table 3: Summary statistics.

Data Min. Mean Max. Skewness Kurtosis % xt > 0 pARCH-test

1-day

HSBC -326.16 15.10 197.51 -1.40 49.67 86.07 0

MS -257.74 0.61 216.10 -1.01 45.86 53.55 0

S&P500 -324.89 1.02 230.38 -0.69 10.74 52.46 0

5-day

HSBC -384.81 75.60 549.56 0.77 13.07 96.67 0

MS -660.03 3.38 280.10 -3.55 47.88 53.19 0

S&P500 -649.48 6.03 347.19 -1.18 8.75 62.12 0

Second, each of the time series exhibits stylized facts, such as non-normal behaviour
due to fatter tails and heteroskedasticity, backed up by Engle’s ARCH test seen in
table 3. However, the behaviour seems to differ individually in a variety of ways. An
obvious difference to notice is the percentage of positive returns. For the HSBC, this is
significantly higher than that of MS and the S&P500, especially for the 5-day returns.
Additionally, HSBC has higher average returns. Next to that, Appendix A shows that
while the autocorrelation seen in figure 7 appears to be similar across the banks and
index, the autocorrelation among the squared residuals differs per series. Compared to
the banks, the index seems to still be dependent on larger lags. Finally, large negative
or positive returns seem to appear less frequently for the trading book data of HSBC
and MS compared to the index data of the S&P500.

6 Results

6.1 Per model category

6.1.1 Unconditional

Before we dive into the analysis of the figures and tables concerning the unconditional
models, we first discuss the large amount of test results that are obtained. Table 4
shows a total of 144 tests. Thus, assuming all null hypotheses hold at a threshold of
0.05, roughly 7 are expected to be incorrectly rejected. This may lead to erroneous
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conclusions. To counter this approaches such as the Bonferroni correction or the Ben-
jamini–Hochberg procedure can be applied (Benjamini and Hochberg, 1995). Before
applying these methods to our results, we must first ask ourselves whether it is neces-
sary to do so. We believe this is not the case for two reasons.

Let us set the following scenario. Currently, medicine X is in use. Researchers
want to test if medicine Y is better, using a large range of illnesses. Even if medicine
X is ’better’ in reality for each case, the tests can wrongly indicate that medicine Y is
better for a specific disease Z. Thus, the researchers highlight that medicine Y is better
at treating disease Z. For such a scenario, applying a correction may be necessary to
reduce type 1 errors. However, we will not draw conclusions from an individual test.
For example, if we focus on a particular model and its performance with respect to ES
forecasts, we use all 12 tests (3 tests per each of the 4 datasets) to form an opinion.
While some of the tests and datasets may be related, the risk of multiple type 1 errors is
lower than a single type 1 error. Hence, applying a correction may not be as worthwhile.

Additionally, while the corrections reduce the type 1 error, they may increase the
type 2 error. When testing for a life-threatening disease, it is sensible to avoid a type
1 error as much as possible, as else the disease goes untreated. Thus, a more stringent
p-value can be useful, even if it leads to diagnosing more healthy patients with a disease.
In our case, a type 2 error implies that an inadequate model is not diagnosed as such.
Hence, if we apply a correction, we run the risk of not finding as many deficient models.
Next to that, we are in an early stage in this research. The (group of) models are
not ranked definitively yet, and more broadly speaking this research provides an initial
insight to build upon. Consequently, making a type 1 error compared to a type 2 error
may not be as regrettable. Altogether, while we do not impose a correction, we do
recognize the increased likelihood of having at least one type 1 error. Therefore, the
next findings should be approached with more caution.

Moving onto the analysis, figure 3 displays the behaviour of each of the unconditional
models concerning both risk measures. What can be noticed amongst all figures is the
large losses around COVID-19 and the increased VaR and ES levels thereafter for about
a year. The latter is likely because the unconditional models base their distribution on
the last 252 observations13. The larger VaR and ES levels for a year can be seen as
a drawback of the unconditional models, as for the period after the initial spike fewer
to no observations exceed the VaR level even though we should expect around 12 to
13 exceedances ex-ante. This may contradict the independence of exceedances. The
rejection of conditional coverage is partially backed up by test Tcon seen in table 10.
For most of the 1-day VaR estimates, the null of independence is rejected at a 5% level.
For the 5-day period, the test rejects the null for all estimates of the HSBC dataset but
does not reject a single null for the MS dataset. This appears to contradict the initial
observations from the figures. However, it may also be due to the 5-day backtesting
period resulting in a small sample with only around 50 observations the year after the
COVID-19 peak. Comparing the models for the 1- and 5-day VaR of HSBC and MS,
they all appear relatively stable except for the COVID-19 peak. Additionally, all models

13See section 3.1.
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(a) 1-day VaR HSBC (b) 1-day ES HSBC

(c) 5-day VaR HSBC (d) 5-day ES HSBC

(e) 1-day VaR MS (f) 1-day ES MS

(g) 5-day VaR MS (h) 5-day ES MS

Figure 3: Unconditional VaR and ES for HSBC and MS.
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show a gradual increase in the VaR level after 2022, with a more pronounced increase
seen for HSBC. For HSBC, the EVT approach appears to have the closest hit rate
for both holding periods. All other approaches overestimate the risk measure in the
portfolio. For MS, there is no clear ’victor’, with the Student’s t being closest for the
1-day forecast, while the non-parametric approach has the closest hit rate for the 5-day
forecast. Regarding the VaR tests, the results of tests Tunc,con appear to be in line with
Tdq in about half of the cases. That is, when one or both of the tests reject the null,
the joint null of unconditional coverage and independence is also rejected. For the 5-
day forecasts, however, the tests consistently contradict each other. Again, this may be
due to the limited number of exceedances. Given that Tunc,con are of low complexity,
while Tdq requires a regression, we believe that the results of the former should be
taken relatively more seriously, but they should definitely be interpreted with caution.
The tests indicate that all the unconditional models appear inadequate for the HSBC
data, which is similar to what the figures and the hit rates are showing as the models
overestimate VaR and capture the peak inadequately. For MS, almost no tests Tunc,con

are rejected at a 5% level. As HSBC has relatively few negative returns compared to
MS, it may be more difficult for unconditional models to capture the 5% boundary of
lowest returns that VaR tries to estimate for HSBC, hence the large differences.

Table 4: Median p-values of the VaR & ES tests for the unconditional models of HSBC and MS.

HSBC MS

Hit rate VaR Tests ES Tests Hit rate VaR Tests ES Tests

α = 0.05 Tunc Tcon Tdq Ter Treg1 Treg2 α = 0.05 Tunc Tcon Tdq Ter Treg1 Treg2

1-day

Normal 0.024 0 0 0 0.35 0.34 0.01 0.037 0.04 0.01 0 0.01 0.36 0.34

Student’s t 0.030 0 0 0.08 0.17 0.99 0.89 0.051 0.82 0.15 0 0.28 0.84 0.61

EVT 0.051 0.87 0.01 0.63 0.34 0 0 0.057 0.26 0.01 0 0.91 0 0

Non-parametric 0.005 0 0 0 0.44 0 0 0.044 0.33 0.07 0 0.35 0.12 0.26

5-day

Normal 0.012 0 0 0.56 0.15 0.29 0.29 0.037 0.33 0.22 0.01 0.14 0.83 0.83

T-dist 0.012 0 0 0.46 0.28 0.05 0.04 0.066 0.29 0.31 0.02 0.31 0.79 0.88

EVT 0.020 0.01 0.01 0.34 0.20 0.01 0.01 0.070 0.18 0.12 0 0.56 0.18 0.01

Non-parametric 0.004 0 0 0.21 - 0 0 0.045 0.72 0.38 0 0.26 0.78 0.78

Related to this, the overestimation of VaR for the non-parametric approach is worth
mentioning as it has consequences for the estimation of ES. As can be seen in figure 3b
and 3d, the ES estimates of the non-parametric approach are missing around the end of
2019 and halfway through 2021. This is because the ES is estimated by averaging all VaR
exceedances, but there are no exceedances for this period. Figure 3a provides a visual
backup for this statement. Note though, that the estimates are based upon the 1-day
VaR and ES, as the 5-day VaR and ES are the 1-day estimates multiplied by

√
5. Hence,

there are 5-day ES estimates (figure 3d) even though the 5-day VaR (figure 3c) shows no
trespassers. In general, the ES tests seem to agree with each other, showing no rejection
of the null hypothesis of correct specification. For HSBC, the correct specification of the
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non-parametric ES is rejected. However, similar to the argumentation that we applied to
the VaR tests, the ES test Ter for the 5-day period may provide more ’relevant’ results
as Treg1,2 are based on regression.

Finally, judging the figures, it appears that the EVT and non-parametric approaches
provide a wider range of ES estimates with larger variations in small periods of time,
while the normal and Student’s t show smaller variations. This makes sense as the EVT
and non-parametric take allow the tail to be estimated separately from the ’body’ of the
distribution, unlike the normal and student’s t distribution. We also observe that while
the student’s t approach does not provide larger VaR estimates in general compared
to the normal distribution, its ES is larger, especially for the HSBC returns. This is
possibly due to the inclusion of fatter tails, which make sure that larger observations are
still within a feasible realm according to the distribution.

Overall, the unconditional models seem to provide decent results, by not severely
underestimating risk and providing sensible hit rates, but at the cost of inaccuracy and
overestimation at times. A major point of improvement is the independence of the
exceedances, which the unconditional models appear to mostly violate. The conditional
and quantile models may provide a solution to this.

6.1.2 Conditional

At first glance, the conditional models appear to have a better adaptability to current
circumstances. Figure 4 shows that all models have a considerable increase for both
risk measures around the initial COVID-19 peak. However, this does not necessarily
imply that the models capture the conditional coverage ’better’. More formally, the test
Tcon does not reject the null of conditional coverage in most of the cases. While for the
unconditional models the null of Tcon is rejected in approximately 38% of the cases at a
threshold of 0.05, the conditional models have a rate of 21%. Secondly, we see that the
hit rates are close to the expected hit rates in general, especially for the 1-day holding
period. For the 5-day holding period, we find that the hit rates are higher than expected,
which suggests an underestimation of risk. While the underestimation is limited for MS,
it is not for HSBC. This is backed up by the rejection of test Tunc for most models. For
the ES, almost all tests are not rejected, which gives the appearance that the volatility
models do not underestimate ES.

Interestingly, we remark that the VaR of HSBC for the 5-day holding period is
at times positive, see figure 4c. This may appear counter-intuitive at first as VaR is
sometimes informally described as a measure of potential loss, for example by Wikipedia
(2023) and Investopedia (2023). However, by definition, it does not need to be as it
merely looks at the lowest 5% of returns (see equation 1). Given the high mean returns
for the 5-day period in table 3, it is not surprising to see positive values. Moving
onto the individual differences, we notice that the MSM has a higher amount of test
rejections among all datasets apart from the 5-day MS data. For all sets, the model
appears to underestimate the risk. As the main difference between the stochastic and
deterministic approach is the technique to estimate volatility, a reason for the difference
might be found there. Based on figure 9, it appears that the volatility estimates vary
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(a) 1-day VaR HSBC (b) 1-day ES HSBC

(c) 5-day VaR HSBC (d) 5-day ES HSBC

(e) 1-day VaR MS (f) 1-day ES MS

(g) 5-day VaR MS (h) 5-day ES MS

Figure 4: Conditional VaR and ES for HSBC and MS.
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more than the others. That is, the day-to-day differences are larger than that of a
GARCH-type model. As a result, the estimates of VaR are also more volatile, which
can, for example, be seen in figure 4a. Second to that, we also notice that even though
the volatilities have more variation, the estimates are relatively low compared to others
around the COVID-19 peak for both banks, which can be observed in figure 9a. This
results in lower VaR values. Next to underestimation, the ’unnecessary’ spikes in VaR
of the MSM method may also be undesirable as the approach is more susceptible to
individual outliers, increasing risk due to a single observation rather than a ’period’ of
observations due to entering a new ’state’. This can negatively affect the independence
of the exceedances.

Looking at the parameters of the models, we note that the leverage effect is small
and negative for both banks. Thus, negative residuals induce a small reduction in the
height of the volatility. The MS-GARCH parameters show limited changes for the MS
data and larger changes for HSBC. Especially with respect to the degrees of freedom,
the changes are large, with one state having ν = 31.100. This implies that some of the
residuals may better fit in a normal rather than student’s t distribution.

Altogether, the conditional models are able to capture the variation over time better,
which the unconditional models were lacking. Individually, the deterministic models
have limited deviations, while the stochastic model underestimates the risk consistently.
Finally, it appears that the risk measures for the 5-day returns of HSBC remain difficult
to accurately estimate.

Table 5: Median p-values of the VaR & ES tests for the conditional models of HSBC and MS.

HSBC MS

Hit rate VaR Tests ES Tests Hit rate VaR Tests ES Tests

α = 0.05 Tunc Tcon Tdq Ter Treg1 Treg2 α = 0.05 Tunc Tcon Tdq Ter Treg1 Treg2

1-day

GARCH 0.046 0.54 0.81 0.83 0.33 0.31 0.36 0.055 0.45 0.46 0.32 0.42 0.86 0.88

t-GARCH 0.045 0.38 0.64 0.26 0.29 0.56 0.52 0.055 0.45 0.70 0.64 0.41 0.93 0.94

GJR-GARCH 0.044 0.31 0.55 0.61 0.16 0.59 0.57 0.056 0.32 0.60 0.00 0.48 0.81 0.86

EVT-GARCH 0.046 0.54 0.81 0.50 0.03 0.84 0.86 0.051 0.92 0.04 0.73 0.07 0.48 0.47

MS-GARCH 0.045 0.38 0.64 0.30 0.24 0.62 0.57 0.049 0.87 0.98 0.52 0.21 0.92 0.93

MSM 0.080 0.00 0.00 0.00 0.00 0.02 0.11 0.066 0.01 0.02 0.00 0.01 0.12 0.11

5-day

GARCH 0.080 0.04 0.11 0.47 0.82 0.21 0.33 0.057 0.60 0.75 1.00 0.23 0.77 0.75

t-GARCH 0.072 0.13 0.12 0.75 0.92 0.37 0.45 0.053 0.50 0.73 1.00 0.26 0.70 0.67

GJR-GARCH 0.080 0.04 0.11 0.68 0.88 0.55 0.53 0.053 0.50 0.52 1.00 0.23 0.78 0.79

EVT-GARCH 0.092 0.01 0.02 0.12 0.25 0.42 0.39 0.066 0.29 0.56 1.00 0.20 0.78 0.87

MS-GARCH 0.072 0.13 0.31 0.77 0.66 0.59 0.62 0.053 0.60 0.85 0.99 0.25 0.67 0.70

MSM 0.112 0.00 0.00 0.00 0.04 0.18 0.17 0.066 0.29 0.38 1.00 0.17 0.78 0.87

6.1.3 Quantile

Similar to the conditional models, quantile models should, in theory, be able to capture
the time-varying conditions better than the unconditional models. Based on figure 5 this
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appears to be the case as both the CAViaR-ES and MIDAS models show increased VaR
and ES levels around the extreme COVID-19 returns. This hypothesis is backed up in
general by Tcon in table 6. Most of the conditional coverage tests are not rejected. For
the 5-day VaR of HSBC, though, all the tests are rejected. These rejections, however,
may be due to another reason, which leads us to another interesting difference between
the forecasts of the categories.

The unconditional models overestimated the 5-day VaR significantly, resulting in
low hit rates, while the conditional models underestimated the 5-day VaR consistently.
The quantile models appear to provide similar results to the unconditional models, at
times overestimating the risk for the 5-day returns according to the hit rates in table
6. Figures 5c and 5g highlight this, showing limited exceedances and high VaR and
ES levels for the whole period, especially for the 5-day returns of HSBC. These limited
exceedances may hurt the quality of the conditional coverage test, which could be the
cause of the rejections for the 5-day returns of HSBC. Overall though, the hit rates for
the quantile models are quite decent, with some overestimation of the VaR in certain
cases.

Regarding ES, the tests do not reject the hypothesis of no underestimation for the 1-
and 5-day returns of MS and 5-day returns of HSBC, assuming Ter to be leading for the
5-day returns. However, the tests do show conflicting results for the 1-day holding period
of HSBC as Ter rejects the hypothesis of no underestimation for each model, while tests
Treg1,2 do not reject the null of correct specification for each model. As there are enough
data points, no clear conclusion can be drawn on the accuracy of the ES estimations
for the 5-day HSBC returns. Furthermore, the parameters provide additional insight,
especially for the MIDAS models. For example, given the parameters in table 12, we
see that for both banks β1 is more negative for 5-day returns than for 1-day returns and
for MS than for HSBC, implying a larger impact of the past returns for longer horizons,
ceteris paribus. Additionally, κ is generally larger for MS than for HSBC, which implies
that more weight is given to recent observations for MS returns. A higher β1 and κ
together should result in higher volatility of the VaR. Indeed we observe that for the
5-day returns of MS, see figure 5g, the VaR appears more volatile than that of HSBC,
figure 5c. More formally, the standard deviation is 68.47 for MS and 26.81 for HSBC.

Diving into the comparison of the quantile models there are two main differences
to discuss between the models, namely the model type and the specification for the
relation between VaR and ES. Comparing the CAViaR-ES and MIDAS output, the 1-
day forecasts appear to be relatively similar. The most notable difference can be observed
for the risk measures of the 5-day returns of HSBC and MS. Whereas MIDAS is able to
directly forecast h−days ahead, the CAViaR-ES approach requires one to multiply the
results by

√
h. The latter is usually critiqued as it assumes i.i.d. observations. Looking

at the figures 5c, 5d, 5g and 5h, we can see that in general the MIDAS estimations are
more conservative than the CAViaR-ES estimations, both for the VaR and ES. While,
as discussed previously, both models overestimate VaR for HSBC returns, it turns out
that MIDAS (slightly) overestimates the VaR for MS returns as well. Concluding, while
both models appear to provide decent results for the 1-day returns, the MIDAS approach
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(a) 1-day VaR HSBC (b) 1-day ES HSBC

(c) 5-day VaR HSBC (d) 5-day ES HSBC

(e) 1-day VaR MS (f) 1-day ES MS

(g) 5-day VaR MS (h) 5-day ES MS

Figure 5: Quantile VaR and ES for HSBC and MS.
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seems to overestimate the VaR for a 5-day holding period. This hypothesis, however,
should be tested further using more data.

Looking at the specifications, recall that the first setup assumes that the relation
between VaR and ES remains constant, while the second and third include the possibility
of a time-varying relationship between the two risk measures. Based on table 12 it seems
that, given setup 1, the ES is relatively larger than VaR for MS compared to HSBC, due
to the higher γ0. For setup 2 and 3, it seems that while HSBC mostly lets jt depend on
the difference between the exceedance and the VaR, the jt for MS depends more on the
previous value of jt, thus it may fluctuate less. Finally, it is noticeable that the score-
driven extension of γ3 appears unimportant for HSBC, due to the minimal coefficient,
and more useful for MS. Especially in the latter case it may be an interesting addition
as it could be the reason for the improved hit rate of the MIDAS3 for the 5-day returns
of MS. Apart from that, it seems that the specification has a limited effect on the hit
rate and ES tests. The MCS may, however, shine a more definitive light on the relative
performance.

Table 6: Median p-values of the VaR & ES tests for the quantile models of HSBC and MS.

HSBC MS

Hit rate VaR Tests ES Tests Hit rate VaR Tests ES Tests

α = 0.05 Tunc Tcon Tdq Ter Treg1 Treg2 α = 0.05 Tunc Tcon Tdq Ter Treg1 Treg2

1-day

CAViaR-ES1 0.053 0.67 0.03 0.88 0.00 0.08 0.08 0.039 0.07 0.15 0.06 0.18 0.41 0.42

CAViaR-ES2 0.053 0.67 0.19 0.70 0.01 0.38 0.20 0.040 0.10 0.25 0.06 0.25 0.09 0.08

CAViaR-ES3 0.043 0.25 0.14 0.83 0.02 0.88 0.84 0.035 0.01 0.03 0.01 0.10 0.38 0.27

MIDAS1 0.049 0.83 0.98 0.95 0.00 0.20 0.19 0.039 0.07 0.03 0.85 0.29 0.49 0.48

MIDAS2 0.047 0.63 0.78 0.98 0.01 0.27 0.22 0.037 0.03 0.07 0.67 0.15 0.34 0.34

MIDAS3 0.046 0.45 0.38 0.97 0.01 0.45 0.38 0.038 0.03 0.09 0.73 0.16 0.36 0.38

5-day

CAViaR-ES1 0.016 0.00 0.02 0.96 0.11 0.29 0.32 0.049 0.61 0.85 1.00 0.23 0.61 0.62

CAViaR-ES2 0.016 0.00 0.02 0.96 0.11 0.29 0.30 0.049 0.81 0.88 1.00 0.10 0.68 0.66

CAViaR-ES3 0.016 0.00 0.02 0.96 0.11 0.14 0.16 0.049 0.81 0.88 1.00 0.16 0.56 0.54

MIDAS1 0.016 0.00 0.02 0.95 0.93 0.01 0.01 0.025 0.04 0.11 0.97 1.00 0.00 0.00

MIDAS2 0.016 0.00 0.02 0.90 0.74 0.12 0.00 0.037 0.32 0.21 0.73 0.98 0.02 0.02

MIDAS3 0.016 0.00 0.02 0.96 0.69 0.01 0.01 0.041 0.51 0.32 0.83 1.00 0.00 0.00

6.1.4 Forecast combinations

As can be expected, the behaviour of the FC models is similar to what the individual
models per category. For example, the unconditional FC seen in figure 11 shows a
period of higher VaR and ES for a one-year duration after the COVID-19 peak, similar
to the individual unconditional models. Or, when the individual models overestimate
VaR, it leads to an overestimated FC VaR as well. Worthwhile to notice is that the
FCall appears to have a stable hit rate, hovering close to the expected hit rate, also for
the 5-day returns of HSBC. The other FCs sometimes over- or underestimate the VaR
significantly. Thus, FCall appears to be a strong candidate model. This hypothesis will
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be tested more rigorously in the next section.
Aside from the individual behaviour and performance of the FCs, it may be in-

teresting to look at how the weights of the FCs are built up. That way, we can see
which models are preferred to build combinations with. Presented below are the average
weights for each of the FCs over time. Before diving into the specifics, we notice globally
that the weights for VaR and ES FCs may starkly differ. That is, a relevant model to
include in the FC for VaR, may not necessarily be a relevant model to include in the FC
for ES. This observation emphasizes the usage of a variety of models to find FCs.

Starting with the unconditional weights, we see that for VaR the non-parametric
and EVT approach have the largest weights, while for ES the normal and student’s t take
up the bulk of the weights. Thus, all models have their relevance for the unconditional
FC. For the VaR of HSBC, the EVT has the largest weight. This shouldn’t be too
surprising, given the EVT has the closest hit rate as discussed before. For the VaR of
MS, the non-parametric approach and the student’s t are preferred. Again, both models
have the closest hit rates so it may not be a large surprise. For ES, it is harder to
discern why a model is preferred. In general, the normal and student’s t have the least
conservative ES, while the EVT and non-parametric approaches have a large ES for MS
and HSBC respectively. Altogether, the hit rates of the unconditional FC are relatively
close to the expected hit rate, apart from the HSBC 5-day returns as can be seen in
table 13. This is no surprise given that all the individual models overestimate the VaR.
Hence, the combination will too.

Moving onto the conditional FC weights, it is less apparent to see which models are
generally preferred. This can be because the models, in general, produced similar fore-
casts. Hence, no clear ’victor’ may exist. Regarding the VaR weights, the GARCH and
t-GARCH models have relatively low weights, with the FC choosing the more complex
methods instead. Additionally, the GJR-GARCH is only included for the 5-day returns
of MS. In all cases, the MSM is included, even though it occasionally underestimates
the risk by a large portion. As a result, the hit rates of the conditional FC are higher
than 5%, indicating an underestimation of the VaR. Regarding the ES, the GARCH and
especially the t-GARCH specifications are included more frequently. This again high-
lights that ’good’ VaR models for the FC, do not necessarily have to be ’good’ models
for ES. Second to that, the MS-GARCH has low weights overall while the GARCH is
only included for the 1-day forecasts. While the GJR-GARCH has a significant weight
for the 1-day forecasts, it has little influence on the 5-day forecasts.

The quantile weights show that the MIDAS approach is preferred for the next-day
forecasts of VaR, while the CAViaR-ES models are of higher relevance for the 5-day
forecasts. This is interesting because the original theoretical advantage of the MIDAS
setup was that it provided a solution to forecast multiple days ahead directly, without
having to use an approximation rule such as the square root rule. It might be, however,
that the advantage appears for longer horizons when the square root rule becomes more
and more likely to have its assumptions violated. Finally, the MIDAS3 method seems
to be irrelevant for the VaR FC. The ES quantile weights show a preference for the
CAViaR-ES models, with summed weights of more than 80% for all data aside from
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(a) Unc. VaR weights (b) Con. VaR weights

(c) Qua. VaR weights (d) All VaR weights

(e) Unc. ES weights (f) Con. ES weights

(g) Qua. ES weights (h) All ES weights

Figure 6: Weights of each of the forecast combinations.
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the 1-day returns of HSBC. Judging the three setups, CAViaR-ES1 or MIDAS1 hold a
relatively high weight for each of the datasets. Thus, the KISS rule appears to apply to
the quantile approach.

Finally, all models were put together to create one FC. Regarding the weights of
the FC for VaR, each of the categories of models is generally included with a signifi-
cant weight. This may be a prime advantage of FCall. For example, even though the
unconditional and quantile models overestimate VaR for the 5-day HSBC returns, the
conditional models underestimate it. Combining all three categories results in a more
’balanced’ version with a closer hit rate. The ES weights also show an interesting per-
spective, as the quantile models take up the bulk of the weights, especially for the MS
data. A reason for this inclusion may be that the quantile models directly estimate ES,
whereas the unconditional and conditional models focus on the full or tail distribution
and base the ES thereof. This could be less accurate.

6.2 Performance comparison

While the previous section described each of the models’ behaviour, their test results
and some possible advantages of the category, the MCS makes the choice for a (set of)
models more rigorous. Shown in table 7, each of the models is included to form an
informative decision on which (category of) models may be preferred for risk measure
estimation.

Starting with the most evident, the unconditional models are mostly absent from
each of the model confidence sets. Besides the EVT approach being chosen for the 5-day
returns of HSBC and the student’s t being included for the 1-day MS returns for the
low α, it is clear that the MCS is quick to exclude the unconditional models. Note
that not only the individual models are excluded, but the unconditional FC as well. A
reason for the exclusion of the unconditional models could be the slow adaptability to
new market situations. For example, if a new state occurs with a different mean and
variance, the model would require a full new year of observations to include the new
state accurately. Knowing the behaviour of financial markets can change quickly, this
period may be too long. Given that at a low α almost all other models are within the
set, we conclude that unconditional models are likely not able to capture VaR and ES
adequately, given the loss function L2. This can have large consequences for lawmakers,
as, during the 2022 Market Risk Benchmarking Exercise of the EBA, 29 out of the 40
banks applied the unconditional approach (EBA, 2022). This may be due to its ease of
application and understanding, but, given that the other categories are also relatively
easy to comprehend and tractable, simplicity should not be the main consideration if it
proves to be an inadequate estimator. Therefore, we suggest policy makers to do further
research on the comparison with more data and scenarios, to further test the hypothesis
of the unconditional models being inadequate for risk estimation.

Next to the unconditional models being left out of most of the confidence sets, the
conditional models are underrepresented compared to the quantile and FC categories
for a high α. This contradicts the observations of Righi and Ceretta (2015). While we
should be more wary to draw conclusions from this observation as the confidence
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Table 7: The MCS for both the HSBC and MS at a low and high α.

Low α High α

HSBC MS HSBC MS

1-day 5-day 1-day 5-day 1-day 5-day 1-day 5-day

Unconditional

Normal

Student’s t

EVT

Non-parametric

Conditional

GARCH

t-GARCH

GJR-GARCH

EVT-GARCH

MS-GARCH

MSM

Quantile

CAViaR-ES1

CAViaR-ES2

CAViaR-ES3

MIDAS1

MIDAS2

MIDAS3

FC

FCu

FCc

FCq

FCall

Note: If a model is included in the MCS, it has a black square, . The top three mod-
els have a striped square with different colors. From rank 1 to 3, we use the squares
, and . Similar to the tests, we use the median loss per model for robustness.

level has lowered, it nevertheless provides a possible indication that the quantile and
FC categories may be preferred in general. As stated earlier, a possible reason for this
may be that the conditional models find a simulated distribution from which to gather
the VaR and ES. A major part of finding the simulated distribution depends upon the
estimated current volatility. If the estimates are inaccurate, this can result in differences
in the distribution, especially for the tail. The quantile and FC categories, on the other
hand, directly estimate VaR and ES through optimization. Thus, their estimates may
more accurately reflect the ’expected values’, whereas the conditional approach may
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better reflect how the general distribution looks. Finally, we note that, in general, it
seems that the holding period does not matter for the conclusion on which category of
models is (not) preferred.

Looking at the performance of the models, it is clear that the FCq and FCall per-
form well for most datasets. This challenges the conclusion of Trućıos and Taylor (2022),
who found that forecast combinations provide no improvement, although it was on cryp-
tocurrency. The FCall is the only model selected for the 5-day returns of HSBC at a
high α. An explanation could be that it is the only model that comes close to the
expected hit rate, with a value of 5.6%. All other models notably over- or underesti-
mate the VaR. Additionally, the FCall has been selected in almost all cases as the top
performer. The reason for the strong performance is possibly because the FC can use
a diversity of approaches with their respective (dis)advantages to select a combination
that captures the current information well. However, given that the method optimizes a
function rather than looking at relationships, it can be interesting to do further research
into the performance of FC for longer holding periods.

As banks have to choose a model, the MCS shows that the FCall can be a good
option to consider for both holding periods. A drawback is that it requires a significant
amount of modelling to include a wide variety of models to draw from. For some institu-
tions, this may be too capital-intensive, particularly if the trading book is small or has
major hedges. For these banks, it may be more beneficial to apply a quantile approach.
Markedly, of the quantile models, the simple setup 1 is most frequently chosen as a top
performer. There is no clear preference for the MIDAS or CAViaR-ES approach.

7 Sensitivity Analysis

In this section, we apply two different scenarios to delve into how the performance of the
models would have differed if the input changes. First, the well-known S&P500 returns
are used to see how the results would have differed if we were to use an index, rather
than trading book returns. While the latter is more realistic, the prior has easy access
and is frequently used in analysis. Secondly, we change the number of observations
included in the unconditional models from N = 252 to N = 504. Longer periods of data
may provide more data for an accurate distribution, though older information may not
portray the current environment as well.

Besides the aforementioned two input changes, we have tried and tested several
other possible avenues. For example, a different distribution, such as the generalized
error distribution, was applied for the residuals of the conditional models. Next to
that, the loss function of the MCS was also altered, using the AL log score of Taylor
(2019). Both of these applications led to small, insignificant changes to the prior results.
Therefore, they are excluded from this section.
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7.1 S&P500

In general, the outcomes in table 8 are in line with the findings of the previous section.
For a low α, most of the unconditional models are taken out of the confidence set.
For a high α most of the models are excluded, with mostly FC and quantile models
remaining. Second to that, the FC category has the most ’top ranking’ models. Finally,
the conditional models are in general worse at estimating VaR and ES for the 5-day
than the 1-day holding period, due to increased underestimation. Nevertheless, there
are some minor differences.

Table 8: The MCS and some basic tests and statistics using the S&P500.

Tests MCS

Hit rate Ter Low α High α

1-day 5-day 1-day 5-day 1-day 5-day 1-day 5-day

Unconditional

Normal 0.076 0.065 0.00 0.00

Student’s t 0.085 0.080 0.82 0.55

EVT 0.069 0.061 0.06 0.09

Non-parametric 0.077 0.072 0.03 0.14

Conditional

GARCH 0.057 0.061 0.96 0.23

t-GARCH 0.055 0.069 0.98 0.18

GJR-GARCH 0.060 0.076 0.98 0.07

EVT-GARCH 0.073 0.088 0.00 0.02

MS-GARCH 0.049 0.065 0.86 0.15

MSM 0.093 0.118 0.00 0.00

Quantile

CAViaR-ES1 0.050 0.072 0.83 0.53

CAViaR-ES2 0.050 0.065 0.06 0.02

CAViaR-ES3 0.050 0.065 0.57 0.17

MIDAS1 0.038 0.061 0.00 0.00

MIDAS2 0.053 0.053 0.95 1.00

MIDAS3 0.053 0.042 0.98 1.00

FC

FCu 0.078 0.069 0.13 0.15

FCc 0.070 0.085 0.99 0.60

FCq 0.053 0.042 0.96 0.80

FCall 0.056 0.050 0.96 0.85

Note: If a model is included in the MCS, it has a black square, . The top three models have
a striped square with different colors. From rank 1 to 3, we use the squares , and .
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First, relatively more unconditional models are included, with 37.5% of the cases being
included at a low α. For HSBC and MS, only 12.5% of the time an unconditional model
was included. The inclusion may be due to a better performance of the unconditional
models, a worse performance of the other categories, or both. It is not apparent what
the ’true’ reason for this discrepancy is. Altogether, more value should be given to the
actual PnL data, but the sensitivity analysis is an indication that additional data may
be necessary to further substantiate the findings.

Secondly, the FCall is less frequently the top performer, particularly for the 5-day
horizon. Nevertheless, it is still included in the confidence set for both a high and low α.
Curiously, compared to the MCS of the HSBC and MS, far fewer models are included
at a high α. This may indicate that there is a larger ’gap’ in performance for the top
models and the remainder for the S&P500.

Finally, at a low α, the amount of selected conditional and quantile models using
1-day returns are the same, but the number of quantile models selected for the 5-day
returns is lower. This contradicts the findings using HSBC and MS returns. Therefore, to
quantify a potential difference in performance between conditional and quantile models,
more data is required. Of course, the actual trading book data should be preferred when
making a decision. Drawing a conclusion on a possible preference is valuable, as FC may
be too labour-intensive to implement for financial institutions.

7.2 Different unconditional size

Rather than using the past year as input, which is currently the minimum requirement
and the preference of most banks in the European Monetary Union (EMU) according to
supervisors, the past two years are used for the modelling.

From table 9 the main insight is that the unconditional models with 2 years of data
are included more frequently than the models with 1 year of data. This holds for each
of the banks, holding period and α’s other than the 5-day returns of HSBC for a high α.
Consequently, even if institutions find switching to more rigorous models not beneficial
enough to implement, a possibly more fruitful solution can be quickly implemented
by adding more data. An important note to make is that, as said frequently before,
supplementary data is useful to gain a better understanding and draw a more ’definitive’
conclusion to the question at hand.

Additionally, we see that the student’s t and EVT for N = 504 are frequently se-
lected at both α’s. This is particularly interesting as the normal and non-parametric
options are preferred for the S&P500 when an unconditional model is selected. For the
HSBC and MS datasets, we have seen that the student’s t and EVT approaches result
in a VaR that is less conservative. Given the limited volatility of the returns of these
banks in general, this may be more fitting. For the S&P500, which has more volatility in
the returns, the models may insufficiently capture the VaR (and ES) because of under-
estimation. Altogether, though, it is hard to draw a strong conclusion on which of the
unconditional models seems most fitting to implement. Applying a forecast combination
instead of an individual model may be an option to consider. This can be looked into
further if financial institutions decide not to deviate from using unconditional models.
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Table 9: The MCS of different unconditional sizes for both the HSBC and MS at a low and high α.

Low α High α

HSBC MS HSBC MS

1-day 5-day 1-day 5-day 1-day 5-day 1-day 5-day

N=252

Normal

Student’s t

EVT

Non-parametric

N=504

Normal

Student’s t

EVT

Non-parametric

Note: If a model is included in the MCS, it has a black square, .

8 Conclusion

In conclusion, the analysis conducted on various categories of risk measurement models
using actual PnL data at different holding periods from the HSBC and MS provides
valuable insights into their performance. The MCS framework, in combination with
visualizations and formal testing, has been instrumental in comparing the different model
categories and their suitability for risk estimation. The key takeaways are the following:

• Unconditional Models: The MCS effectively excludes unconditional models, im-
plying a lower performance. This exclusion can be attributed to their limited
adaptability to rapidly changing market conditions, as the models require more
data on the ’new state’ than may be available, to accurately estimate VaR and ES.
Given that roughly three-quarters of the banks under ECB supervision use the
approach, it is suggested to further research the category to assess its adequacy
for risk estimation in dynamic financial markets.

• Conditional Models: The MCS indicates that conditional models are represented
more frequently than unconditional models. This is likely attributed to the better
capturing of the dynamics of the market. The category is underrepresented in
the MCS compared to quantile and forecasting combination categories, albeit at
a low confidence. This could be due to the sensitivity of conditional models to
volatility estimates and their potentially less accurate representation of the tails
of the distribution.

• Quantile Models: The quantile models are frequently included in the MCS, possibly
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showing their usefulness in risk estimation. Among the quantile models, the non-
time-varying setup of the CAViaR-ES and MIDAS models most often emerged as
a ’top performer’ in risk estimation, which may be due to their simplicity and
tractability. The other setups may provide similar results, but given a similar
performance, simplicity may be a better option. There is no clear preference for
the CAViaR-ES or MIDAS models.

• FC Models: The FCs showed a performance similar to their respective categories.
The unconditional FC was excluded, for a similar reason as mentioned above. The
other combinations were frequently chosen at a high confidence, but only FCq

and FCall were consistently chosen at a low confidence. Additionally, the FCall

model stands out as a top performer across various datasets and holding periods.
Its ability to optimize combinations of models is a likely contributor to its strong
performance. However, it requires an extensive set of models, which may be too
labour-intensive to implement for some institutions.

• Different holding periods: The different holding periods only led to marginal dif-
ferences when looking at the performance of the models through the MCS. This
may be due to using only a 5-day holding period, instead of a longer period, and
could be investigated further.

The sensitivity analysis using the S&P500 backed up the aforementioned statements in
general. Although most of the unconditional models were excluded, the frequency of
inclusion in the confidence set increased compared to the HSBC and MS. Thus, if we
had used the S&P500, the drawn conclusion would have been with lower confidence. We
also observed a stronger difference between the number of models included at a high
and low confidence. Finally, the quantile models were included at a similar rate as the
conditional models at a high α. This is contrary to the HSBC and MS cases, where
the quantile models were included more frequently. Next to the different dataset, we
used a different number of observations for the unconditional models to test a possible
preference. Two years of observations may provide better results than one year.

In light of these findings, we encourage policymakers to further study the behaviour
and performance of each category, with a particular focus on the possible underperfor-
mance of the unconditional models. Given that banks have to choose a single model,
we suggest the promising FCall option for risk estimation as it has shown to be ranked
highly consistently. For smaller institutions, a simpler conditional or quantile-based ap-
proach may be wiser. Overall, this study underscores the importance of rigorous model
comparison and ongoing research to ensure accurate risk assessment in dynamic financial
markets.

For further research, a study similar to ours using more PnL data, either through
using other banks, more years or both, would be beneficial to further test the performance
of each of the categories. Similar to the previous proposal, using longer time series can
also lead to research on the performance for longer time horizons, which was unfeasible
for this research. Finally, given the performance of the FC, it may be interesting to look
into applying different weight structures to test for a preference.
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A Data

Figures 7 and 8 show the autocorrelation function (ACF) of the returns and squared
residuals for the HSBC, MS and S&P500 data. Starting with the ACF of the returns,
the 1-day returns show low autocorrelation between the returns. On the other hand, the
5-day returns show significant autocorrelation. This is to be expected because the 5-day
returns at time t are similar to the 5-day returns at time t− 1.

(a) 1-day returns ACF HSBC (b) 1-day returns ACF MS (c) 1-day returns S&P500

(d) 5-day returns ACF HSBC (e) 5-day returns ACF MS (f) 5-day returns ACF S&P500

Figure 7: ACF returns

The ACF of the squared residuals should show some autocorrelation as it is a sign
of heteroskedasticity of the volatility, a stylized fact of financial time series. Indeed, we
observe that there is some autocorrelation for all figures. For the 5-day returns, however,
the effect is more pronounced than the 1-day returns. Additionally, the ACF for the
S&P500 appears to show a longer lag dependency than the ACF for the HSBC and MS
data.
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(a) 1-day squared residuals ACF
HSBC

(b) 1-day squared residuals ACF
MS

(c) 1-day squared residuals ACF
S&P500

(d) 5-day squared residuals ACF
HSBC

(e) 5-day squared residuals ACF
MS

(f) 5-day squared residuals ACF
S&P500

Figure 8: ACF Squared Residuals

B Results

B.1 Parameters

The following tables show the parameters of each of the models. For the unconditional
models, the 1- and 5-day parameters are the same, as the 1-day risk measures are
translated to 5-day risk measures through the square root rule. Unsurprisingly, the
estimated mean is higher for HSBC. Next to that, the variance of the student’s t is lower
than that of the normal distribution. This is likely because the student’s t is able to
capture large returns by increasing the fatness of the tail through the degrees of freedom.

Table 10: Parameters of each unconditional model

Return series
Normal Student’s t EVT

µ σ µ σ df β ξ

1-day & 5-day

HSBC 18.20 25.01 16.19 17.50 3.71 -0.02 14.32

MS 0.98 20.01 0.50 16.28 5.71 0.048 10.37

The conditional parameters show that the current volatility is highly dependent on the
previous volatility rather than on the squared residuals. The MSGARCH approach

48



shows a higher coefficient for the squared residuals compared to the other GARCH
models. Comparing the time series, it appears that skewness has a larger influence on
the HSBC returns than the MS returns. Finally, similar to the unconditional parameters,
the degrees of freedom are higher for the MS data in general.

Table 11: Parameters of each conditional model

Model
HSBC MS

α β ϕ ν ξ m0 σ b γ1 α β ϕ ν ξ m0 σ b γ1

1-day, 5-day

GARCH 0.01 0.99 0.02 0.98

t-GARCH 0.03 0.97 3.95 1.23 0.02 0.97 8.66 1.06

GJR-GARCH 0.03 0.97 -0.01 3.83 1.23 0.03 0.97 -0.01 8.73 1.06

MS-GARCH 0.06 0.93 31.10 1.16 0.07 0.93 5.14 1.07

0.03 0.97 4.59 1.25 0.07 0.93 7.82 1.05

MSM 1.46 4.87 1.00 19.45 1.29 4.80 1.00 17.16

Note: The EVT-GARCH is left out of the table given it uses the same pa-
rameters, but with a different simulation approach. Additionally, the 1-day
and 5-day parameters are the same as FHS is used to gain h−day forecasts.

Table 12: Parameters of each quantile model

Model
HSBC MS

β0 β1 β2/κ γ0 γ1 γ2 γ3 β0 β1 β2/κ γ0 γ1 γ2 γ3

1-day

CAViaR-ES1 -0.82 0.87 -0.22 -2.21 -0.84 0.82 -0.32 -1.02

CAViaR-ES2 -3.35 0.69 -0.39 0.15 0.42 0.00 -0.83 0.82 -0.32 8.48

CAViaR-ES3 -5.02 0.58 -0.53 0.51 0.51 0.07 0.00 -1.73 0.71 -0.51 0.03

MIDAS1 -6.38 -1.60 6.39 -2.07 -4.12 -1.81 8.67 -0.98

MIDAS2 -10.27 -1.23 6.57 0.78 0.28 0.00 -2.59 -2.02 9.30 3.71

MIDAS3 -10.61 -1.24 9.05 0.00 0.34 0.00 0.00 -2.24 -2.04 9.02 1.97

5-day

MIDAS1 9.53 -4.59 5.31 -6.00 10.48 -8.97 9.04 -0.57

MIDAS2 9.99 -4.63 5.27 0.00 0.00 0.00 46.87 -11.76 8.71 1.63

MIDAS3 10.01 -4.63 5.20 0.00 0.00 0.11 0.00 43.39 -11.39 10.16 0.00

Note: Because CAViaR-ES uses the square root rule to translate 1- to h−day forecasts, the parameters
of the 1-day returns are the same as the 5-day returns. Hence, they are excluded for the 5-day holding pe-
riod. Additionally, keep in mind the multiplicative structure of the first setup, compared to the additive
structure of the second and third setup. Hence, γ0 has a different interpretation depending on the setup.

The quantile parameters have been discussed thoroughly in the results section. Some
other interesting notes to add are that the constant, β0, is much higher for the 5-day
MS returns than the 1-day returns for the MIDAS models. Additionally, it appears
that the ES is relatively close to the VaR estimates for the 5-day HSBC case as the γ0:3
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parameters are quite negative for setup 1 and close to zero for setup 2 and 3. Given that
the former uses the translation ESt = (1 + exp(γ0))V aRt, the estimates are practically
equal for a large negative value of γ0.

B.2 Conditional models volatility

In figure 9, we see the volatilities over time of the different deterministic and stochastic
models. In both cases, there was a significant peak around the start of the COVID-
19 pandemic. Additionally, the returns show slightly larger volatility around 2022 and
thereafter, with the HSBC data showing larger changes in volatility in this period as
well. In general, the models appear to provide relatively similar volatility estimates,
though the stochastic approach results in lower estimates in general.

(a) HSBC Volatilities (b) MS Volatilities

Figure 9: Volatility estimations of the various models for HSBC and MS.

(a) HSBC Components (b) MS Components

Figure 10: Components of the MSM approach for HSBC and MS.

The MSM consists of components with different states, going from longer-term states
to short-term states. The components are shown over time in figure 10, where the first
component has the least variability and the last, fifth, component the most. Around the
COVID-19 peak, the first component for both datasets increased significantly. These
components stayed at a high level for a while and dropped quickly, at least for the MS
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case. For the HSBC case, the drop seems to occur at the final stages of the data. For
the other components, it is harder to identify a specific pattern.

B.3 Forecast combinations

The forecast combination figures and test data are provided in figure 11 and table 13.
Regarding the figures, the behaviour is as to be expected. For example, the unconditional
FC is less volatile, with limited action around the COVID-19 peak. Surprising to see
is the spike of the unconditional ES for the 1-day returns of MS in figure 11f, which is
significantly larger than the other models and could be a significant overestimation.

Table 13 provides the test results of each FC. The unconditional FC has the most
tests rejected, while the FC including all models has only one test rejected. The lat-
ter also provides the most accurate hit rates on average, while the other FCs over- or
underestimate VaR for a part of the data. Whereas the conditional FC consistently un-
derestimates VaR, the quantile FC consistently overestimates it. Also relevant to note
is that following Ter, most of the models reject the null of no underestimation of the ES
for the HSBC data at a 1-day holding period, while all models do not reject the null of
underestimation of ES for the 5-day holding period.

Table 13: Median p-values of the VaR & ES tests for the forecast combination models of HSBC and MS.

HSBC MS

Hit rate VaR Tests ES Tests Hit rate VaR Tests ES Tests

α = 0.05 Tunc Tcon Tdq Ter Treg1 Treg2 α = 0.05 Tunc Tcon Tdq Ter Treg1 Treg2

1-day

FCu 0.039 0.07 0.07 0.15 0.10 0.01 0.03 0.049 0.88 0.10 0.00 0.77 0.49 0.47

FCc 0.057 0.29 0.57 0.55 0.05 0.56 0.62 0.061 0.08 0.15 0.00 0.24 0.49 0.47

FCq 0.046 0.46 0.70 0.98 0.01 0.43 0.22 0.038 0.05 0.02 0.83 0.28 0.51 0.58

FCall 0.046 0.54 0.75 1.00 0.04 0.35 0.63 0.049 0.88 0.82 0.16 0.32 0.68 0.67

5-day

FCu 0.020 0.01 0.01 0.35 0.22 0.00 0.00 0.058 0.59 0.31 0.00 0.23 0.71 0.72

FCc 0.100 0.00 0.01 0.17 0.76 0.56 0.47 0.062 0.42 0.53 1.00 0.21 0.87 0.94

FCq 0.016 0.00 0.02 0.97 0.46 0.54 0.42 0.041 0.51 0.53 0.99 0.20 0.59 0.63

FCall 0.056 0.66 0.39 1.00 0.55 0.66 0.79 0.045 0.51 0.56 1.00 0.20 0.70 0.68
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(a) 1-day VaR HSBC (b) 1-day ES HSBC

(c) 5-day VaR HSBC (d) 5-day ES HSBC

(e) 1-day VaR MS (f) 1-day ES MS

(g) 5-day VaR MS (h) 5-day ES MS

Figure 11: Forecast combinations VaR and ES for HSBC and MS.
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Figure 12: Thanks for sitting through the thesis!
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