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Abstract

The confidence sequences derived by Choe & Ramdas (2022) to compare the forecast

quality of two forecasters are anytime-valid but come at a cost: loss of power. We assess

the loss of power for sample sizes smaller than 600 to judge whether confidence sequence

can be applied to macroeconomic data. We perform a simulation study to compare the

power of confidence sequences against that of the DM and GW tests. We also assess

their anytime-validity. Confidence sequences need more than twice as much data to

achieve the same power as the DM test. In addition, confidence sequences need more than

100 observations more than the DM test to detect a change in forecaster performance.

This amounts to 25 years of quarterly or roughly eight years of monthly data. Finally,

we implement confidence sequences to compare directional forecasts constructed from

consumer sentiment, professional forecasters, and economists’ expectations. We find that

confidence sequences can detect past changes in forecaster performance.
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1 Introduction

The Diebold & Mariano (1995) test (DM) is widely used to assess if forecaster A is

significantly better than forecaster B. Aside from the stationarity assumption, it suffers

from an inflated type I error rate in the case of continuous monitoring. Anytime-valid

approaches, such as the confidence sequences developed by Choe & Ramdas (2022), offer

a valid alternative under continuous monitoring. However, this anytime-valid property

comes at a cost: loss in power.

Nevertheless, Choe & Ramdas (2022) states that anytime-valid methods do not need

larger sample sizes than the DM and Giacomini & White (2006) (GW) tests for high

power. They base their results on a simulation study involving a sample size of 10,000

observations. Such a large amount of data is unrealistic for macroeconomic data such as

GDP and inflation. Their sample size corresponds to 833 and 2500 years of monthly and

quarterly observations, respectively. In contrast, we limit ourselves to 600 observations,

which corresponds to 50 and 150 years of monthly and quarterly observations, respectively.

Such a smaller sample size ensures that our results are generalizable to macroeconomic

data. This aids, among others, policymakers who could utilise anytime-valid methods to

select the best forecaster. Accurate forecasts are needed to support decision-making,

and identifying the best forecaster is therefore essential. However, the best forecaster

can vary over time. Anytime-valid methods might demonstrate how this finding might

differ over time as new data becomes available. Macroeconomic data are published at

a low frequency: mainly annually, quarterly or monthly. Having a method that can

incorporate the latest information and allow for inference considerably aids policymakers,

in particular, who rely on these forecasts.

In this research, we investigate the advantages and disadvantages of confidence se-

quences (CS) relative to the Diebold-Mariano (DM) and Giacomini-White (GW) tests for

evaluating probability forecasts in cases with small sample sizes, T ≤ 600. We assess the

power of confidence sequences and the DM and GW tests, and their type I errors under

continuous monitoring through a simulation study.

We perform a power analysis to study the relationship between the effect size, sample

size, and power of CS and the DM and GW tests. Moreover, we examine how much data

CS, DM and GW tests need to detect a change in forecaster performance. In addition, we

examine the (cumulative) type I error to contrast their anytime-validity. Lastly, we present

1



an empirical application of confidence sequences to directional forecasts constructed from

consumer, economist and professional forecaster expectations.

We find that the loss in power of confidence sequences is significant. Confidence

sequences need more than twice as much data as the DM test to reject the null hypothesis

when it does not hold. In the scenario where a trend is introduced in the score differentials,

confidence sequences need three times as many or 100 observations more than the DM

test to reject the null hypothesis. This corresponds to more than 25 years of quarterly or

roughly eight years of monthly macroeconomic data.

As expected, unlike the DM and GW tests, the confidence sequences are anytime-valid.

The cumulative type I error of the CS is and remains zero, while it rapidly grows large

for the DM test and reaches up to 27%. The GW test performs slightly better in this

regard, although it also is not anytime-valid. Its cumulative type I error reaches 20%.

Our empirical application to directional forecasts shows that CS can be used in prac-

tice given enough data, and there is a significant gap in forecasting performance between

two competing forecasters. We find that forecasts constructed from economist and pro-

fessional forecaster expectations on average outperform those constructed from consumer

sentiment. In addition, CS can detect changes in past forecasters’ performance.

These findings demonstrate challenges to using anytime-valid methods to compare

macroeconomic forecasts as data comes in slowly, particularly yearly data. These methods

are valid under continuous monitoring, but lack sufficient power to quickly detect changes

in forecast performance to be useful in live testing. However, they can be used to ’look

backwards’ and examine whether Forecaster A outperformed Forecaster B on average in

the past and how that changed.

This paper proceeds as follows. Section 2 discusses the literature surrounding forecast

evaluation of continuous, binary and directional forecasts. Anytime-valid confidence se-

quences are discussed in Section 3. Our simulation study is presented in Section 4 and

in Section 5 we apply confidence sequences to compare directional forecasts. Section 6

concludes the paper with suggestions for future research.
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2 Literature Forecast Evaluation & Directional Fore-

casts

Forecast evaluation has mostly been concerned with accuracy metrics to get a sense of

the forecast accuracy. For continuous outcomes, the most popular metric is the mean-

squared error (MSE). Other accuracy metrics exist such as the MAE, RMSE and accuracy

metrics that are scale-independent. Hewamalage et al. (2023) summarised it as follows.

Many different point forecast accuracy measures have been proposed in the forecasting

literature based on (i) whether squared or absolute errors are used (ii) techniques used

to make them scale-free and (iii) operators such as mean, and median used to summarize

the errors.

In this research, we focus on probability forecasts of binary outcomes. These make

use of other accuracy metrics. Among those, the Brier score proposed by Brier (1950)

is widely used as Lai et al. (2011) states. Examples of other score functions are the

logarithmic score proposed by I. J. Good (1952) and the spherical score (I. Good, 1971).

These score functions are examples of proper score functions and Choe & Ramdas (2022)

state that they are the main approach to evaluate probabilistic forecasts. The reason is

that they assess both calibration and sharpness. Calibration is defined as the statistical

consistency between the distributional forecasts and the observations, and sharpness refers

to the concentration of the predictive distributions (Gneiting et al., 2007).

These measures of accuracy enable us to give different scores to competing models.

The natural question that then arises is: Which model performs best? To address this

question, several methods have been proposed. Stekler (1991) has proposed three ways

in which the statistical significance of the difference in model accuracy can be tested: the

MSE regression test developed by Ashley et al. (1980), analysing the percentage of times

forecaster A is better than forecaster B and lastly the Wilcoxon (1947) Rank Sum Test.

Other tests include the Diebold & Mariano (1995) (DM) test, Giacomini & White (2006)

(GW) test, F-test and Friedman test. The latter two are used to compare more than two

forecasts. For a comprehensive overview of which test is applicable in different situations,

refer to Hewamalage et al. (2023) (see Figure 1).

Among these tests, the DM and GW tests can be applied to compare two probabil-

ity forecasts. The DM test is the first formal test that compared predictive accuracy as
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stated by Diebold (2015). The null hypothesis is that the expected loss-differentials of

two forecasters are equal to zero. Diebold & Mariano (1995) derived the asymptotic nor-

mality of the test statistic. Its only assumption is that the loss-differentials are covariance

stationary. On the contrary, Giacomini & White (2006) formulate a test of conditional

predictive ability. Unlike the DM test, the GW test allows for nonstationary score dif-

ferentials. Due to its widespread adoption (Diebold, 2015), the DM test in addition to

the GW test will serve as our benchmark against which we examine the performance of

anytime-valid methods.

The evaluation metrics mentioned above measure the statistical accuracy of forecasts.

In economic decision problems, statistical accuracy does not always conform to economic

utility. As Blaskowitz & Herwartz (2014) states: ”the squared forecast error provides

only a partial assessment of economic forecasts”. This has also been noted by Diebold

& Mariano (1995) and Granger & Pesaran (2000), among others. In a lot of instances,

forecasters are not only interested in the level or size of a forecast but also in the direction

of a forecast. Examples of these include an investor who buys a stock if they expect the

stock to increase in value or a central bank that raises interest rates if inflation is expected

to increase (Blaskowitz & Herwartz, 2011).

Directional accuracy has been used to evaluate the GDP and inflation forecasts. See

Tsuchiya (2016) for an overview. Various methods have been employed to assess direc-

tional accuracy. These include the exact test of Fisher (1922) based on 2x2 contingency

tables, the test proposed by H. Pesaran & Timmermann (1992), and the less frequently

used test introduced by M. H. Pesaran & Timmermann (2009). The null hypothesis in

these tests states that the direction of change in a forecast and the realisation are inde-

pendent. A forecast is considered a useful predictor of the direction of change if the null

hypothesis is rejected (Tsuchiya, 2013). However, these tests have certain methodological

drawbacks.

The aforementioned tests, except for the M. H. Pesaran & Timmermann (2009) test,

tend to over-reject the null hypothesis if the forecasts are serially correlated. Additionally,

none of these tests directly examine the comparative performance of different forecasters.

Rather, they assess the correlation between a forecast and the direction of change.

In contrast, this research evaluates whether anytime-valid confidence sequences that

have little distributional assumptions are practical when comparing two directional fore-
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casters. We evaluate predictions of binary outcomes, namely directional forecasts, and

thus use the Brier score. We contrast the performance of confidence sequences with the

performance of the DM and GW tests. We follow Vrontos et al. (2021) and introduce the

following binary variable

Dt =

1, if Yt > Yt−1

0, if Yt ≤ Yt−1,

where Dt is the variable denoting the directional change and Yt is the underlying time

series. This novel approach has not been implemented before in this strand of literature

despite its economic relevance.

Figure 1: Flow chart from Hewamalage et al. (2023) for statistical tests selection to

measure significance of differences between models
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3 Anytime-Valid Confidence Sequences

In this subsection, we present the Confidence Sequences we use to compare competing bin-

ary forecasts derived by Choe & Ramdas (2022). First, we give a definition of confidence

sequences.

Confidence sequences are a sequence of confidence intervals that are uniformly valid

over a time horizon (Choe & Ramdas, 2022). A (1 − α) confidence sequence (CS) for

a time-varying sequence of target parameters (θt)
∞
t=1 can be defined as a sequence of

confidence intervals (CIs) (Ct)
∞
t=1 such that the probability of any of the CIs excluding

θt is not greater than α, P (∃t ≥ 1 : θ /∈ Ct) ≤ α. Howard et al. (2021) shows that

this guarantee holds even for arbitrary stopping times. This property is referred to as

anytime-valid (Choe & Ramdas, 2022).

In the following, we discuss the literature on confidence sequences and anytime-valid

inference. Afterwards, we explain martingales, Ville’s inequality, and scoring rules that

are used to construct confidence sequences. Finally, we present the confidence sequences

and how they are formed. A more detailed derivation and proofs can be found in Choe

& Ramdas (2022) and Howard et al. (2021).

3.1 Related Works

Confidence Sequences have their origins in the works of Darling & Robbins (1967); Robbins

(1970); Lai (1976) (Choe & Ramdas, 2022). Darling & Robbins (1967) derived confidence

sequences for the mean, median and variance of i.i.d. random variables, Robbins (1970),

among others, formulated a confidence sequence for the mean of a normal distribution

with known variance and the median of i.i.d. random variables, and Lai (1976) used

moment generating function martingales to form confidence sequences for the parameters

of the binomial, Poisson and gamma distribution.

In the clinical trial literature, confidence sequences are known as repeated confidence

intervals (Jennison & Turnbull, 1984, 1989), and other names include always-valid con-

fidence intervals (Johari et al., 2019) and anytime confidence intervals (Jamieson & Jain,

2018), where the latter is used in the machine learning literature (Howard et al., 2021).

Renewed attention to confidence sequences has been sparked in part by recent literature

on the best-arm identification in multi-armed bandits (Jamieson et al., 2014; Jamieson &
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Jain, 2018).

This research builds on the work of Choe & Ramdas (2022) who combined the Empir-

ical Bernstein confidence sequences derived by Howard et al. (2021) that are anytime-valid

and have no distributional assumptions with the martingale property of forecast score

differentials discussed by Lai et al. (2011) to develop a sequential procedure for forecast

evaluation. This research studies the power of Empirical Bernstein confidence sequences

for forecast score differentials proposed in small samples and contrasts its power with that

of not anytime-valid parametric tests, DM and GW tests.

3.2 Prerequisites

The confidence sequences defined later in this section are based on martingales. These

martingales will be bounded using Ville’s inequality (Ville, 1939) which is a generalisation

of Markov’s inequality to martingales. For ease of explanation, we first show how random

variables can be bounded by Markov’s inequality and how Ville’s inequality generalises

this idea to martingales. Lastly, we elaborate on scoring rules as the confidence sequences

bound the difference in score functions.

Consider a non-negative random variable, X ≥ 0, and let α > 0 be a constant.

Markov’s inequality states that the probability of X exceeding α is bounded as follows

P

(
X ≥ E[X]

α

)
≤ α.

Ville’s inequality generalises this inequality to martingales. A martingale is a series

(Xt)
∞
t=0 that given a certain probability distribution P and information set I satisfies the

following property:

E[|Xt|] <∞, for all t ≥ 0, (1)

Et[Xt+h] = Xt, for all t, h ≥ 0, (2)

where Et−1[·] = EP [·|It−1]. A martingale is a supermartingale if the equality sign in

Equation 2 is a ≤ sign and a submartingale if Equation 2 reads Et[Xt+h] ≥ Xt,∀t, h ≥ 0.

In addition, Shafer et al. (2011) defines a test martingale as a nonnegative martingale

starting at one (X0 = 1).
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Ville’s inequality (Ville, 1939) states that if (Xt)
∞
t=1 is a test supermartingale under

P , then for any α ∈ (0, 1)

P (∃t ≥ 1 : Xt > 1/α) ≤ α,

which holds for every time t and without a predetermined sample size.

The second concept we need is scoring rules. Scoring rules are used to evaluate the

quality of a forecaster. The CS bound the difference in score functions of two forecasters

using Ville’s inequality. In a binary outcome space, Y = {0, 1}, with a set of probability

forecasts P = [0, 1], the performance of a (probabilistic) forecast p ∈ P given an observa-

tion y ∈ Y is evaluated using a scoring rule which is a real-valued function, S : P×Y → R.

The scoring rule used in this research is the Brier score S(p, y) = 1 − (p − y)2 proposed

by Brier (1950).

3.3 Game-theoretic setup

The method of Choe & Ramdas (2022) assumes that the forecasts and outcomes are

generated as follows. Consider a forecasting game in which two forecasters each make a

forecast about an event that occurs over time t. A third participant, reality, generates the

outcomes that the forecasters are attempting to predict from a sequence of distributions.

At the start of each round, t = 1, 2, ..,

1. Forecaster A and Forecaster B construct their forecasts at, bt ∈ [0, 1].

2. Reality chooses rt ∈ [0, 1]. The choice of rt will not be revealed to the forecasters.

3. The outcome is sampled, yt ∼ Bernoulli(rt) and is revealed to the forecasters.

This game is observed by an outsider, who compares the performance of the two forecasters

only based on the observed data (at, bt, yt)
∞
t=1. Note that no distributional assumptions

are made about how the forecasts are generated.

3.4 Deriving Confidence Sequences

In this subsection, we present confidence sequences that Choe & Ramdas (2022) con-

structed using martingales and Ville’s inequality. We first discuss the (pointwise) score
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differential and the cumulative score differential. Next, we discuss how the score differ-

ential can be bounded resulting in an upper and lower bound. Thereafter, we discuss the

boundary functions used to produce tight confidence sequences. Lastly, we present the

confidence sequences and the corresponding null hypotheses. Proofs can be found in Choe

& Ramdas (2022) and Howard et al. (2021). A more extensive derivation of confidence

sequences is given in Choe & Ramdas (2022).

3.4.1 Cumulative Score Differential

Given two sequential forecasts ai and bi, ai, bi ∈ [0, 1], of a binary outcome yi, we define

the pointwise score differential δi := Ei−1[S(ai, yi) − S(bi, yi)] to compare the quality of

the forecasts where the expectation is taken over yi ∼ Bernoulli(ri). This parameter is

however not observed because the choice of reality, ri, is unknown. Thus, we define the

empirical pointwise score differential as δ̂i := S(ai, yi)−S(bi, yi) which is observed by the

statistician. The empirical pointwise score differential δ̂i is an unbiased estimator of δi.

To assess the quality of the forecasts over time, we define the average forecast score

differential as

∆t :=
1

t

T∑
i=1

δi =
1

t

T∑
i=1

Ei−1[S(ai, yi)− S(bi, yi)], (3)

and its empirical counterpart as

∆̂t :=
1

t

T∑
i=1

δ̂i =
1

t

T∑
i=1

S(ai, yi)− S(bi, yi). (4)

The objective is to measure how far ∆̂t is from ∆t while accounting for sampling

uncertainty in yt at each time t. We do this by introducing the cumulative score differential

1

Ct := t(∆̂t −∆t) =
t∑

i=1

(δ̂i − δi), i ≥ 1, (5)

1This is a cumulative differential of the score differential. For simplicity, we refer to this as the

cumulative score differential and follow Choe & Ramdas (2022) in this regard.
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where C0 is set to one, C0 = 1. This forms a martingale because

Et−1[Ct] = Et−1[
t∑

i=1

(δ̂i − δi)]

= Et−1[(δ̂t − δt) +
t−1∑
i=1

(δ̂i − δi)]

= Et−1[(δ̂t − δt)] + Ct−1

= Ct−1,

and because Et−1[δ̂t] = δt. Hereafter, we explain how the sum process (Ct)
∞
t=0 can be

uniformly bounded by exponential test supermartingales. By bounding Ct, we also bound

the difference between ∆̂t and ∆t due to how Ct is defined in Equation 5. This allows us

to construct Confidence Sequences.

3.4.2 Bounding Sum Process

To bound the sum process we introduce V̂t which measures the deviations of St from zero.

This is also known as intrinsic time (Howard et al., 2020). Suppose that |δ̂i| ≤ c
2
,∀i ≥ 1

for some c > 0. We know that the empirical pointwise score differential, δ̂, is bounded

because we use the Brier score, |δ̂| ≤ 1. Then define the variance process to be

V̂t =
t∑

i=1

(δ̂i − γi)
2,

where (γ)∞i=1 is any predictable sequence that lies in [− c
2
, c
2
]. Following Choe & Ramdas

(2022), we choose γi to be the previous average score differential ∆̂i−1 such that the

variance process takes the form of

V̂t =
t∑

i=1

(δ̂i − ∆̂i−1)
2.

We define a one-sided confidence bound uα(V̂t), which we explain later in more detail,

as any function of V̂t that Ct exceeds with probability α as

P
(
∀t ≥ 1 : Ct ≤ uα(V̂t)

)
≥ 1− α, (6)

which states that the sums are bounded from above by uα(V̂t) at all times with probability

of at least 1− α. A lower bound can be formed similarly for (−Ct, V̂t)
∞
t=0.
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This uniform boundary based on the definitions of (Ct, V̂t)
∞
t=0 exist according to Howard

et al. (2020, 2021) if for all λ ∈ [0, λmax), the exponential process defined as L0 = 1 and

Lt(λ) = exp
(
λCt − ψ(λ)V̂t

)
, t ≥ 1, (7)

is a test supermartingale. Defining Ct =
∑t

i=1(δ̂i − δi) and V̂t =
∑t

i=1(δ̂i − ∆̂i−1)
2. For

any λ ∈ [0, λmax), the exponential process Lt(λ) is a test supermartingale as

Et−1[Lt(λ)] = Et−1

[
exp

(
λCt − ψ(λ)V̂t

)]
= Et−1

[
exp

(
λ

t∑
i=1

(δ̂i − δi)− ψ(λ)
t∑

i=1

(δ̂i − ∆̂i−1)
2

)]

= Et−1

 exp
(
λ
∑t−1

i=1(δ̂i − δi)
)
· exp

(
λ(δ̂t − δt)

)
exp

(
ψ(λ)

∑t−1
i=1(δ̂i − ∆̂i−1)2

)
· exp

(
ψ(λ)(δ̂t − ∆̂t−1)2

)


= Et−1

exp(λ t−1∑
i=1

(δ̂i − δi)− ψ(λ)
t−1∑
i=1

(δ̂i − ∆̂i−1)
2

)
·

exp
(
λ(δ̂t − δt)

)
exp

(
ψ(λ)(δ̂t − ∆̂t−1)2

)


= Et−1

Lt−1(λ) ·
exp

(
λ(δ̂t − δt)

)
exp

(
ψ(λ)(δ̂t − ∆̂t−1)2

)


= Lt−1(λ) · Et−1

 exp
(
λ(δ̂t − δt)

)
exp

(
ψ(λ)(δ̂t − ∆̂t−1)2

)


≤ Lt−1(λ),

where ψ : [0, λmax) → R resembles a cumulant-generating function and controls the speed

with which Ct can grow relative to V̂t (Howard et al., 2020). Choe & Ramdas (2022) have

proven this results to hold as they showed that

Et−1

 exp
(
λ(δ̂t − δt)

)
exp

(
ψ(λ)(δ̂t − ∆̂t−1)2

)
 ≤ 1,

for ψ(λ) = c−2(−log(1−cλ)−cλ) with λ ∈ [0, 1/c), which is the cumulant-generating func-

tion a rescaled centered exponential distribution with a scale parameter, c > 0. Therefore,

there exists a uniform boundary for (Ct, V̂t)
∞
t=0.

3.4.3 Uniform Boundary

The choice for the boundary function u(·) affects how compact the CS is. Howard et al.

(2021) state that the simplest boundary functions are linear functions of V̂t. However,
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compact confidence sequences are obtained with curved functions. Following Choe &

Ramdas (2022) we use the conjugate-mixture (CM) boundary function derived by Howard

et al. (2021) which is a curved boundary function. The CM boundary is defined as follows

uCM
α (v) := sup

{
s ∈ R : m(s, v) <

1

α

}
, v ≥ 0 (8)

m(s, v) :=

∫
exp{λs− ψ(λ)v}dF (λ), (9)

which is crossed with probability α ∈ (0, 1). The rationale behind this is as follows.

For any distribution F defined on [0, λmax), the mixture Lmix
t :=

∫
Lt(λ)dF (λ) is a

test supermartingale since Lt(λ) is a test supermartingale for λ ∈ [0, λmax). This result

is proven by Howard et al. (2021). Therefore, m(St, V̂t) = Lmix
t is a test supermartingale.

Using Ville’s inequality, it holds that P (∃t ≥ 1 : m(St, V̂t) < 1/α) ≥ 1 − α. This in

turn implies that P (∃t ≥ 1 : St < uCM
α (v)) ≥ 1 − α). An appropriate choice for F

yields a closed-form expression for Lmix
t similar to how an appropriately chosen prior

distribution yields a closed-form expression for a posterior distribution. Choe & Ramdas

(2022) report that the exponential ψ in combination with F as a gamma distribution

yields a closed-from expression of u called the gamma-exponential mixture boundary.

This gamma-exponential mixture boundary is given in Appendix A.3 of Howard et al.

(2021).

3.4.4 Empirical Bernstein Confidence Sequences and Uniform Boundary

We will present here the Empirical Bernstein CS that we will use to compare sequential

forecasters. This corresponds with Theorem 2 of Choe & Ramdas (2022) who have stated

this for a more general setting where V̂t =
∑t

i=1(δ̂i − γi)
2, where (γ)∞i=1 is any predictable

sequence that lies in [− c
2
, c
2
].

Let u = uCM
α and V̂t =

∑t
i=1(δ̂i − ∆̂i−1)

2. Then for any α ∈ (0, 1)

CSEB
t :=

(
∆̂t ±

u(V̂t)

t

)
, (10)

forms a (1− α) CS for ∆t by Theorem 2 of Choe & Ramdas (2022).

Equation 10 is equivalent to stating that ∆t is contained in the confidence sequence

CEB
t at all times with at least 1 − α probability. Choe & Ramdas (2022) define the

corresponding null hypothesis as

H0(a, b) : ∆t ≤ 0, ∀t = 1, 2, ..., (11)
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which states that forecaster A is on average not any better than forecaster B. The null

hypothesis that forecaster B is on average not any better than forecaster A is given as

H0(b, a) : ∆t ≥ 0. (12)

The null H0(a, b) is rejected if the lower bound is positive, ∆̂t − u(V̂t)/t > 0, while we

reject H0(b, a) if the upper bound is negative, ∆̂t + u(V̂t)/t < 0.

4 Simulation Study

We study the advantages and disadvantages of the anytime-valid confidence sequences

(CS) relative to the Diebold-Mariano (DM) and Giacomini-White (GW) tests. We do

this by examining the following aspects.

1. Power of CS, DM and GW tests

2. Anytime-validity of CS, DM and GW tests

This will demonstrate to us where the benefits of anytime-valid methods lie relative

to the DM and GW tests. In the power analysis, we measure the power of these tests in

the case of a constant average score differential ∆. Afterwards, we introduce a trend in

the score differential ∆ and observe how much data these tests need to reject the null.

This is motivated by the result of Choe & Ramdas (2022) which states that anytime-valid

methods do not need larger sample sizes than the DM and GW test for high power. Lastly,

we assess the impact of continuous monitoring on the parametric test and contrast that

with CS. This shows the effect of continuous monitoring on the power and (cumulative)

type I error of these tests. Here, we also contrast our results against the results of Choe

& Ramdas (2022) and Henzi & Ziegel (2021) who conducted similar experiments.

4.1 Power Analysis

Choe & Ramdas (2022) report that anytime-valid methods do not require a larger sample

size for high power. We will examine this through a power analysis. We simulate a

Bernoulli outcome Yt ∼ Bernoulli(p = 0.7) and select the forecasts at, bt such that the

true average score differential ∆t =
1
t

∑t
i=1 Ei−1[S(ai, yi) − S(bi, yi)] takes values on the

grid {0.01, 0.02, 0.03, ..., 0.48, 0.49, 0.50}. We generate 1000 samples and estimate the

13



(a) T = 50 (b) T = 100

(c) T = 200 (d) T = 500

Figure 2: Power of confidence sequences (CS), DM and GW test for a given score differ-

ential ∆ for various sample sizes.

power. We examine the sample sizes of 100, 200 and 500 and contrast the power of CS

with the power of the DM and GW tests.

Figure 2 displays the results. We find that the DM test has the highest power, followed

by the GW test. Confidence sequences have the lowest power, which is expected. The

power increases in the sample size and the score differential ∆. However, the probability

of rejecting the null is ’volatile’. This volatility decreases in the sample size T . In general,

CS needs more than twice as many observations as the DM test to reject the null for a

given value of ∆. For example, the DM test needs 200 observations to reject the null with

high power for ∆ = 0.05, while CS needs close to 500 observations.

This result is also seen in the following experiment, where we simulate data from

a moving-average process. It displays the power of CS, and DM and GW tests and
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resembles the experiment in Section 4.2 of Henzi & Ziegel (2021). We simulate data from

the following moving-average process

Zt = ϵt + θ
4∑

j=1

ϵt−j (13)

Yt = 1{Zt > 0}, (14)

with ϵ following a standard normal distribution. We compare the following forecasts

at,h = P (Zt > 0|Zt−h) (15)

bt,h = P (Zt > 0|Zt−h−1), (16)

for lags h = 1, 2, 3. Given positive θ, at,h outperforms bt,h. The forecasting skill of at,h

and bt,h diverge for increasing θ and are equal when θ is zero. This data-generating

process introduces an autocorrelation structure in the data. We generate 1000 samples

and contrast the power of CS with the power of DM and GW tests.

Figures 3, 4 and 5 give the power curves for sample sizes 200, 500, and 600, respectively.

Power decreases overall in lag h and increases in sample size T . The DM test has the

highest power, closely followed by the GW test. Confidence sequences have considerably

less power. For θ = 0.6 and lag h = 1, CS need 600 observations to reject the null that

q is on average not better than the forecaster p with high power, while the DM and GW

tests need less than 200 observations. The same can be seen in Figures 3b and 5b. For

lag h = 2 and θ = 0.9, the DM test rejects the null with high power with only 200

observations, while CS do not achieve a power of 40% with 600 observations.

(a) h = 1
(b) h = 2

(c) h = 3

Figure 3: Power of confidence sequences (CS), DM and GW test with different lags h and

T = 200
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(a) h = 1 (b) h = 2 (c) h = 3

Figure 4: Power of confidence sequences (CS), DM and GW test with different lags h and

T = 500

(a) h = 1
(b) h = 2

(c) h = 3

Figure 5: Power of confidence sequences (CS), DM and GW test with different lags h and

T = 600

4.2 Detecting Trends in Forecast Performance

Choe & Ramdas (2022) concluded that CS does not need more data than DM and GW

tests for high power from an experiment in which they introduced a trend in the score

differentials. This setup violates the assumption that underlies the DM test. For the

sake of completeness, the DM test and the corresponding null hypothesis can be found

in Section A. The underlying assumption of the DM test is that the loss-differentials are

assumed to be stationary. This means that the mean, variance and autocovariances are

constant over time. We will perform a similar simulation as Choe & Ramdas (2022) and

violate this assumption by introducing a trend in δt and compare how many observations

the DM, GW and CS need to reject the null hypothesis that ∆t ≤ 0. We simulate 1000

samples and compute the average p-value for each sample size t ≤ T .

Choe & Ramdas (2022) used a sample size of 10.000 in their experiment. There, they

simulated forecasts with a score differential equal to 0 for about t ≤ 7000, afterwards a
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(a) Trend after T = 100 (b) Trend after T = 200

(c) Trend after T = 300 (d) Trend after T = 400

Figure 6: P-values of the null that forecaster A is no better than forecaster B with a trend

introduced at varying time points

trend was introduced in the score differential ∆. Such a setup makes sense if one has

ample data but not for macroeconomic data as ten thousand observations correspond to

833 and 2500 years of monthly and quarterly observations, respectively. This resulted in

very tight CS before the trend was introduced. In contrast, we will introduce a trend in

∆t after 100, 200, 300 and 400 observations and only limit ourselves to a maximum sample

size of 600 observations. This experiment will be more meaningful and generalizable to

macroeconomic data.

Figure 6 displays the results. We find that the DM test is the first to reject the null

hypothesis, followed by GW and CS. The number of observations that are needed for the

DM and GW tests to reject the null is small. However, CS needs much more data to
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reject the null. Table 1 displays the number of observations the DM, GW test and CS

need to reject the null after the trend is introduced. We find that CS need approximately

three times as much data as the DM test to reject the null and that the difference is more

than 100 observations. In a setting with less than 600 observations, which frequently is

the case when working with macroeconomic data, this is a significant difference. This

corresponds to more than 25 years of quarterly data and roughly 8 years of monthly data.

Table 1: Number of observations needed to reject the null

T = 100 T = 200 T = 300 T = 400

DM 48 60 64 72

GW 72 84 96 100

CS 160 176 192 200

4.3 Anytime-Validity

We assess the impact of continuous monitoring on the DM test and CS via two experi-

ments.

In the first experiment, we assess the impact of continuous monitoring on the type

I error and the power of the DM test, and contrast this with CS. We redo the first

simulation of Henzi & Ziegel (2021). We simulate two forecasts at, bt ∼ Unif(0, 1). Define

a mixing-weight µ ∈ [0, 1]. Then we define πt = µbt + (1 − µ)at and generate Bernoulli

outcome Yt+1 with mean πt. In this case, at is on average at least as good as bt if and

only if µ ≤ 0.5. The null hypothesis that we will be testing is

H0 : E[∆t] ≤ 0, (17)

which holds for µ ≤ 0.5. The rejection rates for µ ≤ 0.5 constitute type I error whereas

the rejection rates for µ > 0.5 constitute the power of the tests. We consider the values

in the grid {0, 0.05, 0.10, .., 0.95, 1.00} for µ the following sample sizes, {100, 200, 500}.

Furthermore, we compare the rejection rates of CS with the rejection rates of the GW

test and DM test with and without continuous monitoring.

We assess the impact of continuous monitoring on the type I error by examining the

rejection rates for µ ≤ 0.5. In particular, we contrast the rejection rates of the DM test
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with and without continuous monitoring by testing at k = 1, 3, 5 equally spaced points

between t = 1 and t = T .

This simulation resembles the simulation in section 4.1 of Henzi & Ziegel (2021), but

differs in the following aspect. In our simulation, we mainly contrast the DM test against

confidence sequences. In contrast, Henzi & Ziegel (2021) contrast the t-test against e-

values which correspond to the null hypothesis that forecaster A is at least as good as

forecaster B at all times. This differs from the null hypothesis of confidence sequences,

namely that forecaster B is an average not any better than forecaster A. A more detailed

discussion about the differences between confidence sequences and e-values of Henzi &

Ziegel (2021) can be found in Choe & Ramdas (2022).

Figure 7 displays the rejection rates of the CS, GW and DM tests with and without

continuous monitoring, where the rejection rates for µ ≤ 0.5 constitute type I error and

the rejection rates for µ > 0.5 represent the power of these tests. We also present the

rejection rates of the student’s t-test to compare our findings with Henzi & Ziegel (2021).

In figure 7a, it is apparent that all tests have a type I error below the significance

level of 5%, even at the boundary of µ = 0.5. However, this is not the case for the DM

test under continuous monitoring as shown in Figure 7b. We find that the type I error

reaches 15% in the case of five stopping times between t = 1 and t = T . Even when

tested only once between t = 1 and t = T , the DM test reports a higher type I error than

the significance level, namely 8%. In contrast, the GW test does perform slightly better

in this regard. We see from Figure 7c that at the boundary of µ = 0.5, the rejection rate

for five stopping times is slightly below 10%. Testing once between t = 1 and t = T still

yields a type I error below the 5% significance level. This implies that the continuous

monitoring has a lesser impact on the type I error of the GW test.

The student’s t-test under continuous monitoring presented in Figure 7d yields similar

rejection rates as the DM test. The type I error also reaches 15% in the case of continuous

monitoring with 5 stopping times, which resembles the findings of Henzi & Ziegel (2021).

In fact, the DM test and the t-test yield the same rejection rates as can be seen in

Figure 7e because the score differential ∆ is not autocorrelated. The DM test adds a

correction for autocorrelation to the variance, see Equation 22 in Section A. In the case

of no autocorrelation, the DM test equals a t-test testing if the the score differentials

have zero mean. Moreover, we find that the DM test has the most power followed by the
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GW test. Confidence sequences have the least power. Furthermore, the DM test with

continuous monitoring has more power (and a higher type I error). The same holds for

the t-test and GW tests with continuous monitoring.

The second experiment contrasts the evolution of the cumulative Type I error of the

DM and GW tests with that of confidence sequences over time. We simulate a Bernoulli

outcome Yt and simulate the forecasts at, bt such that the true average score differential

∆t = 0. We estimate the cumulative type I error given as P (∃i ≤ t : ai ≤ α). According

to Choe & Ramdas (2022), for CS this is equivalent to the cumulative miscoverage rate

P (∃i ≤ t : ∆t /∈ Ci), where Ct is the confidence at time t.

This simulation is similar to the simulation of Choe & Ramdas (2022), but differs in

the following. We calculate the cumulative type I error using a smaller sample than Choe

& Ramdas (2022) who used a sample size of 10,000 observations. This corresponds to

833 and 2500 years of monthly and quarterly observations, respectively. In contrast, we

use a sample size of 600 observations, which corresponds to 50 and 150 years of monthly

and quarterly observations, respectively. The first 50 observations are used as a burn-in

period such that the DM test statistic converges to its asymptotic distribution. Choe &

Ramdas (2022) use a burn-in of 100 observations.

Figure 8 displays the results. In this experiment, ∆t = 0 for t ≥ 1, indicating that the

null hypothesis, H0 : ∆t ≤ 0, holds. We find that the cumulative type I error surpasses

the significance level α = 0.05 after 4 observations and reach a cumulative type I error

of 27%. The GW test surpasses the significance level after 16 observations and reports

a lower cumulative type I error than the DM test, namely 20%. In contrast, confidence

sequences report a cumulative type I error of 0% for all observations. Choe & Ramdas

(2022) attribute this to the fact that CSs are constructed using supermartingales and not

martingales. Additionally, Choe & Ramdas (2022) report in their experiment that the

DM test exceeds the significance level of 5% after 100 observations. However, in their

setup, they test at intervals of 100 observations. We report that the DM test exceeds the

significance level after 4 observations because we test at intervals of four observations.

This corresponds to testing every quarter in case of monthly data or every year in case

of quarterly data. Moreover, our results differ in the following aspect. We report that

the DM test achieves a higher cumulative type I error than the GW test, while Choe &

Ramdas (2022) reports the opposite.
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(a) Rejection rates of CS, DM and GW tests (b) Rejection rate DM with optional stopping

(c) Rejection rates GW with optional stopping (d) Rejection rates t-test with optional stopping

(e) Rejection rate of DM and t-test

Figure 7: Rejection rates of CS, DM, GW and t-test for different values of µ with a sample

size of T = 600. For µ ≤ 0.5 the rejection rates represent the type I error as the null

hypothesis that pt outperforms qt holds. For µ > 0.5, the alternative hypothesis holds

and the rejection rates represent the power of the tests. Similar to Henzi & Ziegel (2021),

we test at k equispaced points between t = 1 and t = T .
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Figure 8: Cumulative type I error of CS, DM and GW tests

5 Empirical Application

In this section, we utilise anytime-valid confidence sequences to compare directional fore-

casts of US GDP growth and inflation. The forecasts are obtained from consumer senti-

ment, professional forecasters’ and economists’ expectations. We first describe our data

set and afterwards, we present our results.

5.1 Data

We compare the directional forecasts of US GDP growth and inflation using anytime-valid

confidence sequences. We analyse three directional forecasts constructed from consumer

sentiment, professional forecasters and economists’ forecasts. These are obtained from

The Surveys of Consumers conducted by the Survey Research Center at the University of

Michigan, the Survey of Professional Forecasters published by the Federal Reserve Bank

of Philadelphia and the Livingston Survey respectively.

22



The Survey of Consumers is a monthly survey where a minimum of 600 respondents

are asked about their attitudes and expectations concerning their personal finances, busi-

ness conditions and buying conditions. This information is summarised in the Index of

Consumer Sentiment (forecasts will be referred to as sentiment forecast). The survey has

been conducted since 1946 and monthly and quarterly indices are published since 1978

and 1960 respectively, resulting in 545 monthly and 253 quarterly consumer sentiment

indices. Figure 9 displays the evolution of the quarterly Index of Consumer Sentiment

over time.

The Survey of Professional Forecasters (forecasts will be referred to as professional

forecast) is a quarterly forecast conducted since 1968. In it, respondents are asked about

their expectations and forecasts of macroeconomic variables, including unemployment,

inflation, GDP, bond yields, and consumption expenditures. We use the mean growth

forecasts concerning GDP and inflation. The forecast horizons2 are the quarter in which

the survey is conducted and the four subsequent quarters. This results in 219 forecasts.

Figure 10 plots the 1-quarter ahead growth forecast against GDP growth over time.

The Livingston survey surveys economists’s expectations twice a year since 1946. The

respondents are asked about their forecasts of variables concerning, amongst others, GDP,

prices and investment. The mean and median of the growth rate of these variables as well

as the mean and median responses of the level are given. The respondents submit their

forecasts for different horizons of which we use the period from two quarters beyond the

survey date to four quarters beyond the survey date. These forecasts number in total 155.

The relevant variables for this research are the mean and median growth rate forecast of

GDP and CPI. Forecasts will be referred to as economists forecast.

Directional forecasts were constructed as follows. Strictly positive growth rate fore-

casts were assigned the value 1. Growth rate forecasts that were zero or negative were

assigned the value 0 following Vrontos et al. (2021). Missing values were not imputed. In

the case of the Survey of Professional Forecasters and the Livingston Survey, the mean

growth rates made available were used. To facilitate the comparison between forecasts

constructed from the Consumer Sentiment Index or Survey of Professional Forecasters

with those constructed from the Livingston Survey, the quarterly growth rates are con-

2For the inflation rate, the forecast horizons given are: the previous, current and subsequent four

quarters as well as the annual inflation rate for the current and subsequent year. However, we only limit

ourselves to the quarterly forecasts of the current and subsequent four quarters.
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Table 2: Summary statistics directional forecasts

growth forecast inflation forecast

mean Brier score mean Brier score

Quarterly professional 0.98 0.97 0.92 0.84

Biannual professional 0.98 0.99 0.96 0.99

economist (biannual) 1.00 0.97 1.00 0.98

Biannual sentiment 0.52 0.49 0.48 0.50

Quarterly sentiment 0.47 0.49 0.50 0.59

solidated into biannual growth rates. This is explained in more detail in Section B of the

Appendix.

Lastly, we present some statistics about these directional forecasts in Table 2. We

notice that the means are very close or equal to 1 for the growth and inflation forecasts

constructed from the Survey of Professional Forecasters and the Livingston Survey. These

forecasts also achieve high Brier scores. This implies that these forecasts mostly predict

positive outcomes and directional data mostly consist of positive outcomes. The consumer

sentiment forecasts have a considerably lower mean and Brier score.

5.2 Consumers vs. Professional Forecasters

In our first sequential comparison, we compare the directional forecasts based on the

Consumer Sentiment Index (sentiment forecasts) against directional forecasts based on

the Survey of Professional Forecasters (professional forecasts). The growth forecasts that

we compare span 218 quarters from the fourth quarter of 1968 until the first quarter of

2023. The inflation forecasts start in the third quarter of 1981 and end in the first quarter

of 2023 and number 167 forecasts in total.

Figure 11 displays the results of sequentially comparing the sentiment forecasts against

the professional forecasts. We find that the professional growth and inflation forecasts on

average outperform the sentiment growth and inflation forecasts. Regarding the growth

forecasts, the professional forecasts constantly outperform the sentiment forecasts as

shown in Figure 11a, where the lower bound of the confidence sequence does not de-

crease. While the professional inflation forecasts on average outperform the sentiment
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Figure 9: Consumer sentiment index over time

Figure 10: SPF growth rate forecast over time
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Figure 11: Consumer sentiment vs professional forecasters

Table 3: The confidence interval and Brier score of sentiment and professional forecasters

evaluated at T = 167 for inflation forecasts and T = 217 for growth forecasts

Variable Confidence Interval Brier score sentiment Brier score professional

Growth (0.325, 0.647) 0.49 0.97

Inflation (0.034, 0.481) 0.59 0.84

inflation forecasts after 60 quarters, the performance of the professional inflation fore-

casts relative to sentiment forecasts drops around 120 quarters as is shown in Figure 11b.

This can be seen in the decrease in the lower bound of the confidence sequence.

Furthermore, analysing the average Brier scores of the sentiment forecasts and profes-

sional forecasts given in Table 3, we find that the sentiment forecasts are more capable of

forecasting the direction of inflation than the direction of GDP growth. This results in a

higher Brier score. This finding is in line with economic theory that states that consumer

expectations play a large role in inflation. The opposite is the case for the professional

forecasts. These forecast the direction of growth better than the direction of inflation.

5.3 Consumers vs. Economists

Secondly, we compare the sentiment forecasts against the directional forecasts construc-

ted from economists’ expectations as published in the Livingston Survey (economists

forecasts). To facilitate the comparison, the sentiment forecasts are aggregated into bi-
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Figure 12: Consumer sentiment vs economists’ expectations

Table 4: The confidence interval and Brier score of sentiment and economist forecasters

evaluated at T = 123 for inflation forecasts and T = 167 for growth forecasts

Variable Confidence Interval Brier score sentiment Brier score economist

Growth (0.264, 0.711) 0.49 0.98

Inflation (0.262, 0.714) 0.5 0.98

annual forecasts. The growth and inflation forecasts span 60 years from 1962 until 2023

and number 123 forecasts in total.

The confidence sequences are given in Figure 12. Once more, the sentiment forecasts

are outperformed. This time, both the growth and inflation forecasts of the economists

forecasts consistently outperform the sentiment forecasts. This can be seen in the lower

bound of the confidence sequence which is positive and does not decrease overall.

The Brier score in Table 4 illustrates the large gap in performance with the economists

forecasts obtaining a high Brier score of 0.98. The sentiment forecasts achieve a much

lower Brier score. In contrast with the quarterly sentiment forecasts, the biannual senti-

ment forecasts achieve a similar Brier score for the growth and inflation forecasts. The

same holds for the economists forecasts.
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Figure 13: Professional forecasters vs economists’s expectations

Table 5: The confidence interval and Brier score of professional and economist forecasters

evaluated at T = 84 for inflation forecasts and T = 108 for growth forecasts

Variable Confidence Interval Brier score professional Brier score economist

Growth (-0.086, 0.127) 0.99 0.97

Inflation (-0.159, 0.135) 0.99 0.98

5.4 Professional Forecasters vs. Economists

Next, we compare the professional forecasts against economists forecasts. In the two pre-

vious comparisons, we have seen that both had high Brier scores and therefore on average

outperformed the sentiment forecasts. To facilitate the comparison, the professional fore-

casts are aggregated into biannual forecasts. The forecasts growth span 54 years from

1969 until 2023 and number 108 forecasts in total. The inflation forecasts start in 1981

and number 84 forecasts in total.

The results of the sequential comparison are given in Figure 13. We find that neither

forecasts outperform the other on average. We also note that the widths of the confidence

sequence in Figure 13b increase around 65 observations. This can occur if the variance

of the cumulative score difference increases when the pointwise score differentials δ̂i differ

vastly from the previous period’s average score differential ∆̂i−1.

The average Brier score of the professional forecasts and economists forecasts is given
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in Table 5. We notice that both forecasts achieve high Brier scores close to 1 and both

forecasts achieve similar Brier scores for the growth and inflation forecasts. In contrast,

the quarterly professional forecasts in Table 3 predict the direction of growth better than

the direction of inflation.

6 Conclusion

We have compared the power and anytime-validity of confidence sequences, DM and GW

tests to weigh the advantages and disadvantages of confidence sequences vis-a-vis DM and

GW tests in small samples. We find that confidence sequences have less power: confidence

sequences need more than twice as much data as the DM test to reach the same power and

it needs more than three times as much data to detect a change in forecaster performance.

On the other hand, confidence sequences are anytime-valid. In contrast, the DM and GW

tests suffer from an inflated type I error in the case of continuous testing. Our empirical

application in directional forecasts showed that confidence sequences can detect if the

performance of forecasters changed in the past. In light of our findings, we conclude that

Save Anytime-Valid Inference (SAVI) methods like confidence sequences lack the power

to be useful in ’live’ testing but can test ’backwards’ to detect changes in past forecaster

performance.

A promising direction of future research is to improve the tightness of confidence

sequences by examining different choices for the sequence (γ)∞i=1. As Choe & Ramdas

(2022) stated: a smarter choice may lead to tighter CS. This in turn increases the power

of confidence sequences.

As of now, SAVI methods are best suited for data-rich scenarios. Examples of these

include exchange rate data, stock market data and any other data that is available at a

daily or even hourly level. These contain enough data to offset the loss in power that comes

with anytime-valid methods and thus can utilise the anytime-validity of SAVI methods.
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A Diebold-Mariano Test Statistic

We use the following DM test statistic, which Franses et al. (2014) state is the most

popular in practice.

The loss-differential dt defined as

dt := e2A,t|t−h − e2B,t|t−h (18)

:= δ̂t, (19)

where e2A,t|t−h and e2B,t|t−h denote the forecast errors of forecasters A and B, respectively.

The null hypothesis states that the forecast errors of forecaster A and B are equal. This

implies H0 : E[dt] = 0. The test statistic is given as

d̄√
σ̂2
dt
/T

∼ N(0, 1), (20)

where d̄ = 1
T

∑T
t=1 dt denotes the sample mean of the loss-differential and σ̂2

dt
is the

variance of dt. This variance is computed as

σ̂2
dt = γ̂0 + 2

h−1∑
j=0

γ̂j, (21)

where the forecasting horizon h equals 1 and the j-th order sample autocovariance, γ̂j, is

computed as

γ̂j =
1

T

T−1−j∑
t=0

(dt − d̄)(dt−j − d̄). (22)

B Aggregation of Quarterly Forecasts to Biannual

Forecasts

The Index of Consumer Sentiment is transformed to biannual forecasts as follows. First,

we compute the biannual Index of Consumer Sentiment by computing the mean of the
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first two and last two quarters of the quarterly index, which correspond with the first and

second half of a year, respectively. This is then transformed to directional variables. If

the biannual index at time t is greater than the index at time t− 1, then the directional

variables is assigned one. Otherwise, the variable takes on zero.

The forecasts of the Survey of Professional Forecasters are growth forecasts. These

are transformed into biannual forecasters in the following way. First, the percentages are

transformed to decimals, x/100 + 1. Afterward, the growth forecasts adjacent quarters

(such as the first and second quarters, as well as the third and fourth quarters) are

combined using the following formula:

(gq ∗ gq−1 − 1)/100,

where gq is the growth forecast in quarter q, with q = 2, 4. These biannual growth rates

are then transformed to directional variables. In this transformation, positive growth

rates are assigned the value 1, while negative growth rates are assigned the value 0.

C Power Analysis - Bernoulli(0.4)

In Section 4.1, we analysed the power curves of confidence sequences with the outcome

variable Yt following Bernoulli(p = 0.7) distribution. To exclude the possibility that the

distribution influences our results we report the power curves of confidence sequences with

Yt ∼ Bernoulli(p = 0.7) in Figure 14.

We notice that the power curves differ from those in Figure 2 in Section 4.1 in the

following aspect. The power curves in Figure 14 are more volatile than those in Figure 2.

Similar to Figure 4.1, the volatility of the power curves decreases in the sample size T .

The power curves tell a similar story as the power curves in Figure 14. The DM test

reports the highest power followed by the GW test and confidence sequences.

D Programming Code

The zip file accompanying this thesis contains the files needed to generate the plots. The

folder Scripts Empirical Analysis contains six scripts that contain the code for the sequen-

tial comparison of Section 5, two scripts for each comparison. The scripts emp cons spf.py
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(a) T = 50 (b) T = 100

(c) T = 200 (d) T = 500

Figure 14: Power of confidence sequences (CS), DM and GW test for a given score differ-

ential ∆ for various sample sizes.
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and emp I cons spf.py sequentially compare the growth and inflation forecasts construc-

ted from the Consumer Sentiment Index and the Survey of Professional Forecasters, re-

spectively. The scripts emp cons liv.py and emp I cons liv.py sequentially compare the

Consumer Sentiment Forecasts with those constructed from Livingston Survey. The com-

parison of the professional and economist forecasts is contained in emp spf liv.py and

emp I spf liv.py.

The folder Scripts Simulation contains the code for the simulations of Section 4.

The script sim pow analysis.py contains power analysis plotted in Figure 2. The code

producing Figures 3, 4 and 5 is contained in the script sim henzi 2.py. The script

sim trend.py contains the simulation discussed in Section 4.2. The scripts sim henzi 1.py

and sim cum misc.py contain code producing Figures 7 and 8, respectively.

The folder plots contains all the plots produced and the folder lib contains frequently

used function. The code was created using Python 3.7.
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